A random walk approach to quantum algorithms.
Kendon, Vivien M
2006-12-15
The development of quantum algorithms based on quantum versions of random walks is placed in the context of the emerging field of quantum computing. Constructing a suitable quantum version of a random walk is not trivial; pure quantum dynamics is deterministic, so randomness only enters during the measurement phase, i.e. when converting the quantum information into classical information. The outcome of a quantum random walk is very different from the corresponding classical random walk owing to the interference between the different possible paths. The upshot is that quantum walkers find themselves further from their starting point than a classical walker on average, and this forms the basis of a quantum speed up, which can be exploited to solve problems faster. Surprisingly, the effect of making the walk slightly less than perfectly quantum can optimize the properties of the quantum walk for algorithmic applications. Looking to the future, even with a small quantum computer available, the development of quantum walk algorithms might proceed more rapidly than it has, especially for solving real problems.
Graphic matching based on shape contexts and reweighted random walks
NASA Astrophysics Data System (ADS)
Zhang, Mingxuan; Niu, Dongmei; Zhao, Xiuyang; Liu, Mingjun
2018-04-01
Graphic matching is a very critical issue in all aspects of computer vision. In this paper, a new graphics matching algorithm combining shape contexts and reweighted random walks was proposed. On the basis of the local descriptor, shape contexts, the reweighted random walks algorithm was modified to possess stronger robustness and correctness in the final result. Our main process is to use the descriptor of the shape contexts for the random walk on the iteration, of which purpose is to control the random walk probability matrix. We calculate bias matrix by using descriptors and then in the iteration we use it to enhance random walks' and random jumps' accuracy, finally we get the one-to-one registration result by discretization of the matrix. The algorithm not only preserves the noise robustness of reweighted random walks but also possesses the rotation, translation, scale invariance of shape contexts. Through extensive experiments, based on real images and random synthetic point sets, and comparisons with other algorithms, it is confirmed that this new method can produce excellent results in graphic matching.
Random Walk Quantum Clustering Algorithm Based on Space
NASA Astrophysics Data System (ADS)
Xiao, Shufen; Dong, Yumin; Ma, Hongyang
2018-01-01
In the random quantum walk, which is a quantum simulation of the classical walk, data points interacted when selecting the appropriate walk strategy by taking advantage of quantum-entanglement features; thus, the results obtained when the quantum walk is used are different from those when the classical walk is adopted. A new quantum walk clustering algorithm based on space is proposed by applying the quantum walk to clustering analysis. In this algorithm, data points are viewed as walking participants, and similar data points are clustered using the walk function in the pay-off matrix according to a certain rule. The walk process is simplified by implementing a space-combining rule. The proposed algorithm is validated by a simulation test and is proved superior to existing clustering algorithms, namely, Kmeans, PCA + Kmeans, and LDA-Km. The effects of some of the parameters in the proposed algorithm on its performance are also analyzed and discussed. Specific suggestions are provided.
Emergence of an optimal search strategy from a simple random walk
Sakiyama, Tomoko; Gunji, Yukio-Pegio
2013-01-01
In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths. PMID:23804445
Emergence of an optimal search strategy from a simple random walk.
Sakiyama, Tomoko; Gunji, Yukio-Pegio
2013-09-06
In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths.
Comparing Algorithms for Graph Isomorphism Using Discrete- and Continuous-Time Quantum Random Walks
Rudinger, Kenneth; Gamble, John King; Bach, Eric; ...
2013-07-01
Berry and Wang [Phys. Rev. A 83, 042317 (2011)] show numerically that a discrete-time quan- tum random walk of two noninteracting particles is able to distinguish some non-isomorphic strongly regular graphs from the same family. Here we analytically demonstrate how it is possible for these walks to distinguish such graphs, while continuous-time quantum walks of two noninteracting parti- cles cannot. We show analytically and numerically that even single-particle discrete-time quantum random walks can distinguish some strongly regular graphs, though not as many as two-particle noninteracting discrete-time walks. Additionally, we demonstrate how, given the same quantum random walk, subtle di erencesmore » in the graph certi cate construction algorithm can nontrivially im- pact the walk's distinguishing power. We also show that no continuous-time walk of a xed number of particles can distinguish all strongly regular graphs when used in conjunction with any of the graph certi cates we consider. We extend this constraint to discrete-time walks of xed numbers of noninteracting particles for one kind of graph certi cate; it remains an open question as to whether or not this constraint applies to the other graph certi cates we consider.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufi, M; Asl, A Kamali; Geramifar, P
2015-06-15
Purpose: The objective of this study was to find the best seed localization parameters in random walk algorithm application to lung tumor delineation in Positron Emission Tomography (PET) images. Methods: PET images suffer from statistical noise and therefore tumor delineation in these images is a challenging task. Random walk algorithm, a graph based image segmentation technique, has reliable image noise robustness. Also its fast computation and fast editing characteristics make it powerful for clinical purposes. We implemented the random walk algorithm using MATLAB codes. The validation and verification of the algorithm have been done by 4D-NCAT phantom with spherical lungmore » lesions in different diameters from 20 to 90 mm (with incremental steps of 10 mm) and different tumor to background ratios of 4:1 and 8:1. STIR (Software for Tomographic Image Reconstruction) has been applied to reconstruct the phantom PET images with different pixel sizes of 2×2×2 and 4×4×4 mm{sup 3}. For seed localization, we selected pixels with different maximum Standardized Uptake Value (SUVmax) percentages, at least (70%, 80%, 90% and 100%) SUVmax for foreground seeds and up to (20% to 55%, 5% increment) SUVmax for background seeds. Also, for investigation of algorithm performance on clinical data, 19 patients with lung tumor were studied. The resulted contours from algorithm have been compared with nuclear medicine expert manual contouring as ground truth. Results: Phantom and clinical lesion segmentation have shown that the best segmentation results obtained by selecting the pixels with at least 70% SUVmax as foreground seeds and pixels up to 30% SUVmax as background seeds respectively. The mean Dice Similarity Coefficient of 94% ± 5% (83% ± 6%) and mean Hausdorff Distance of 1 (2) pixels have been obtained for phantom (clinical) study. Conclusion: The accurate results of random walk algorithm in PET image segmentation assure its application for radiation treatment planning and diagnosis.« less
Equivalence of Szegedy's and coined quantum walks
NASA Astrophysics Data System (ADS)
Wong, Thomas G.
2017-09-01
Szegedy's quantum walk is a quantization of a classical random walk or Markov chain, where the walk occurs on the edges of the bipartite double cover of the original graph. To search, one can simply quantize a Markov chain with absorbing vertices. Recently, Santos proposed two alternative search algorithms that instead utilize the sign-flip oracle in Grover's algorithm rather than absorbing vertices. In this paper, we show that these two algorithms are exactly equivalent to two algorithms involving coined quantum walks, which are walks on the vertices of the original graph with an internal degree of freedom. The first scheme is equivalent to a coined quantum walk with one walk step per query of Grover's oracle, and the second is equivalent to a coined quantum walk with two walk steps per query of Grover's oracle. These equivalences lie outside the previously known equivalence of Szegedy's quantum walk with absorbing vertices and the coined quantum walk with the negative identity operator as the coin for marked vertices, whose precise relationships we also investigate.
Continuous-time quantum random walks require discrete space
NASA Astrophysics Data System (ADS)
Manouchehri, K.; Wang, J. B.
2007-11-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.
NASA Astrophysics Data System (ADS)
Ma, Tianren; Xia, Zhengyou
2017-05-01
Currently, with the rapid development of information technology, the electronic media for social communication is becoming more and more popular. Discovery of communities is a very effective way to understand the properties of complex networks. However, traditional community detection algorithms consider the structural characteristics of a social organization only, with more information about nodes and edges wasted. In the meanwhile, these algorithms do not consider each node on its merits. Label propagation algorithm (LPA) is a near linear time algorithm which aims to find the community in the network. It attracts many scholars owing to its high efficiency. In recent years, there are more improved algorithms that were put forward based on LPA. In this paper, an improved LPA based on random walk and node importance (NILPA) is proposed. Firstly, a list of node importance is obtained through calculation. The nodes in the network are sorted in descending order of importance. On the basis of random walk, a matrix is constructed to measure the similarity of nodes and it avoids the random choice in the LPA. Secondly, a new metric IAS (importance and similarity) is calculated by node importance and similarity matrix, which we can use to avoid the random selection in the original LPA and improve the algorithm stability. Finally, a test in real-world and synthetic networks is given. The result shows that this algorithm has better performance than existing methods in finding community structure.
Grebenkov, Denis S
2011-02-01
A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.
A partially reflecting random walk on spheres algorithm for electrical impedance tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maire, Sylvain, E-mail: maire@univ-tln.fr; Simon, Martin, E-mail: simon@math.uni-mainz.de
2015-12-15
In this work, we develop a probabilistic estimator for the voltage-to-current map arising in electrical impedance tomography. This novel so-called partially reflecting random walk on spheres estimator enables Monte Carlo methods to compute the voltage-to-current map in an embarrassingly parallel manner, which is an important issue with regard to the corresponding inverse problem. Our method uses the well-known random walk on spheres algorithm inside subdomains where the diffusion coefficient is constant and employs replacement techniques motivated by finite difference discretization to deal with both mixed boundary conditions and interface transmission conditions. We analyze the global bias and the variance ofmore » the new estimator both theoretically and experimentally. Subsequently, the variance of the new estimator is considerably reduced via a novel control variate conditional sampling technique which yields a highly efficient hybrid forward solver coupling probabilistic and deterministic algorithms.« less
Combinatorial approximation algorithms for MAXCUT using random walks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seshadhri, Comandur; Kale, Satyen
We give the first combinatorial approximation algorithm for MaxCut that beats the trivial 0.5 factor by a constant. The main partitioning procedure is very intuitive, natural, and easily described. It essentially performs a number of random walks and aggregates the information to provide the partition. We can control the running time to get an approximation factor-running time tradeoff. We show that for any constant b > 1.5, there is an {tilde O}(n{sup b}) algorithm that outputs a (0.5 + {delta})-approximation for MaxCut, where {delta} = {delta}(b) is some positive constant. One of the components of our algorithm is a weakmore » local graph partitioning procedure that may be of independent interest. Given a starting vertex i and a conductance parameter {phi}, unless a random walk of length {ell} = O(log n) starting from i mixes rapidly (in terms of {phi} and {ell}), we can find a cut of conductance at most {phi} close to the vertex. The work done per vertex found in the cut is sublinear in n.« less
Saxton, Michael J
2007-01-01
Modeling obstructed diffusion is essential to the understanding of diffusion-mediated processes in the crowded cellular environment. Simple Monte Carlo techniques for modeling obstructed random walks are explained and related to Brownian dynamics and more complicated Monte Carlo methods. Random number generation is reviewed in the context of random walk simulations. Programming techniques and event-driven algorithms are discussed as ways to speed simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendon, Viv
2014-12-04
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.
Quantum walks with tuneable self-avoidance in one dimension
Camilleri, Elizabeth; Rohde, Peter P.; Twamley, Jason
2014-01-01
Quantum walks exhibit many unique characteristics compared to classical random walks. In the classical setting, self-avoiding random walks have been studied as a variation on the usual classical random walk. Here the walker has memory of its previous locations and preferentially avoids stepping back to locations where it has previously resided. Classical self-avoiding random walks have found numerous algorithmic applications, most notably in the modelling of protein folding. We consider the analogous problem in the quantum setting – a quantum walk in one dimension with tunable levels of self-avoidance. We complement a quantum walk with a memory register that records where the walker has previously resided. The walker is then able to avoid returning back to previously visited sites or apply more general memory conditioned operations to control the walk. We characterise this walk by examining the variance of the walker's distribution against time, the standard metric for quantifying how quantum or classical a walk is. We parameterise the strength of the memory recording and the strength of the memory back-action on the walker, and investigate their effect on the dynamics of the walk. We find that by manipulating these parameters, which dictate the degree of self-avoidance, the walk can be made to reproduce ideal quantum or classical random walk statistics, or a plethora of more elaborate diffusive phenomena. In some parameter regimes we observe a close correspondence between classical self-avoiding random walks and the quantum self-avoiding walk. PMID:24762398
Random walks of colloidal probes in viscoelastic materials
NASA Astrophysics Data System (ADS)
Khan, Manas; Mason, Thomas G.
2014-04-01
To overcome limitations of using a single fixed time step in random walk simulations, such as those that rely on the classic Wiener approach, we have developed an algorithm for exploring random walks based on random temporal steps that are uniformly distributed in logarithmic time. This improvement enables us to generate random-walk trajectories of probe particles that span a highly extended dynamic range in time, thereby facilitating the exploration of probe motion in soft viscoelastic materials. By combining this faster approach with a Maxwell-Voigt model (MVM) of linear viscoelasticity, based on a slowly diffusing harmonically bound Brownian particle, we rapidly create trajectories of spherical probes in soft viscoelastic materials over more than 12 orders of magnitude in time. Appropriate windowing of these trajectories over different time intervals demonstrates that random walk for the MVM is neither self-similar nor self-affine, even if the viscoelastic material is isotropic. We extend this approach to spatially anisotropic viscoelastic materials, using binning to calculate the anisotropic mean square displacements and creep compliances along different orthogonal directions. The elimination of a fixed time step in simulations of random processes, including random walks, opens up interesting possibilities for modeling dynamics and response over a highly extended temporal dynamic range.
Finding paths in tree graphs with a quantum walk
NASA Astrophysics Data System (ADS)
Koch, Daniel; Hillery, Mark
2018-01-01
We analyze the potential for different types of searches using the formalism of scattering random walks on quantum computers. Given a particular type of graph consisting of nodes and connections, a "tree maze," we would like to find a selected final node as quickly as possible, faster than any classical search algorithm. We show that this can be done using a quantum random walk, both through numerical calculations as well as by using the eigenvectors and eigenvalues of the quantum system.
NASA Astrophysics Data System (ADS)
Odagaki, Takashi; Kasuya, Keisuke
2017-09-01
Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy's Weibull distribution b(a/b){a+1}/{b}[Γ({a+1}/{b})]-1x^a\\exp(-a/bx^b)} where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as p- α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) - ν(0) ] / [ ν(1) - ν(0) ] = pβ with β = 0.388 when p ≪ 0.1 and β = 0.0822 when p ≫ 0.1. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Ringed Seal Search for Global Optimization via a Sensitive Search Model.
Saadi, Younes; Yanto, Iwan Tri Riyadi; Herawan, Tutut; Balakrishnan, Vimala; Chiroma, Haruna; Risnumawan, Anhar
2016-01-01
The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems.
Wang, Guanglei; Wang, Pengyu; Han, Yechen; Liu, Xiuling; Li, Yan; Lu, Qian
2017-06-01
In recent years, optical coherence tomography (OCT) has developed into a popular coronary imaging technology at home and abroad. The segmentation of plaque regions in coronary OCT images has great significance for vulnerable plaque recognition and research. In this paper, a new algorithm based on K -means clustering and improved random walk is proposed and Semi-automated segmentation of calcified plaque, fibrotic plaque and lipid pool was achieved. And the weight function of random walk is improved. The distance between the edges of pixels in the image and the seed points is added to the definition of the weight function. It increases the weak edge weights and prevent over-segmentation. Based on the above methods, the OCT images of 9 coronary atherosclerotic patients were selected for plaque segmentation. By contrasting the doctor's manual segmentation results with this method, it was proved that this method had good robustness and accuracy. It is hoped that this method can be helpful for the clinical diagnosis of coronary heart disease.
A simplified analytical random walk model for proton dose calculation
NASA Astrophysics Data System (ADS)
Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.
2016-10-01
We propose an analytical random walk model for proton dose calculation in a laterally homogeneous medium. A formula for the spatial fluence distribution of primary protons is derived. The variance of the spatial distribution is in the form of a distance-squared law of the angular distribution. To improve the accuracy of dose calculation in the Bragg peak region, the energy spectrum of the protons is used. The accuracy is validated against Monte Carlo simulation in water phantoms with either air gaps or a slab of bone inserted. The algorithm accurately reflects the dose dependence on the depth of the bone and can deal with small-field dosimetry. We further applied the algorithm to patients’ cases in the highly heterogeneous head and pelvis sites and used a gamma test to show the reasonable accuracy of the algorithm in these sites. Our algorithm is fast for clinical use.
Adaptive Metropolis Sampling with Product Distributions
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Lee, Chiu Fan
2005-01-01
The Metropolis-Hastings (MH) algorithm is a way to sample a provided target distribution pi(z). It works by repeatedly sampling a separate proposal distribution T(x,x') to generate a random walk {x(t)}. We consider a modification of the MH algorithm in which T is dynamically updated during the walk. The update at time t uses the {x(t' less than t)} to estimate the product distribution that has the least Kullback-Leibler distance to pi. That estimate is the information-theoretically optimal mean-field approximation to pi. We demonstrate through computer experiments that our algorithm produces samples that are superior to those of the conventional MH algorithm.
Panda, Rashmi; Puhan, N B; Panda, Ganapati
2018-02-01
Accurate optic disc (OD) segmentation is an important step in obtaining cup-to-disc ratio-based glaucoma screening using fundus imaging. It is a challenging task because of the subtle OD boundary, blood vessel occlusion and intensity inhomogeneity. In this Letter, the authors propose an improved version of the random walk algorithm for OD segmentation to tackle such challenges. The algorithm incorporates the mean curvature and Gabor texture energy features to define the new composite weight function to compute the edge weights. Unlike the deformable model-based OD segmentation techniques, the proposed algorithm remains unaffected by curve initialisation and local energy minima problem. The effectiveness of the proposed method is verified with DRIVE, DIARETDB1, DRISHTI-GS and MESSIDOR database images using the performance measures such as mean absolute distance, overlapping ratio, dice coefficient, sensitivity, specificity and precision. The obtained OD segmentation results and quantitative performance measures show robustness and superiority of the proposed algorithm in handling the complex challenges in OD segmentation.
Adaptive random walks on the class of Web graphs
NASA Astrophysics Data System (ADS)
Tadić, B.
2001-09-01
We study random walk with adaptive move strategies on a class of directed graphs with variable wiring diagram. The graphs are grown from the evolution rules compatible with the dynamics of the world-wide Web [B. Tadić, Physica A 293, 273 (2001)], and are characterized by a pair of power-law distributions of out- and in-degree for each value of the parameter β, which measures the degree of rewiring in the graph. The walker adapts its move strategy according to locally available information both on out-degree of the visited node and in-degree of target node. A standard random walk, on the other hand, uses the out-degree only. We compute the distribution of connected subgraphs visited by an ensemble of walkers, the average access time and survival probability of the walks. We discuss these properties of the walk dynamics relative to the changes in the global graph structure when the control parameter β is varied. For β≥ 3, corresponding to the world-wide Web, the access time of the walk to a given level of hierarchy on the graph is much shorter compared to the standard random walk on the same graph. By reducing the amount of rewiring towards rigidity limit β↦βc≲ 0.1, corresponding to the range of naturally occurring biochemical networks, the survival probability of adaptive and standard random walk become increasingly similar. The adaptive random walk can be used as an efficient message-passing algorithm on this class of graphs for large degree of rewiring.
Quantum Algorithms Based on Physical Processes
2013-12-03
quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of
Quantum Algorithms Based on Physical Processes
2013-12-02
quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of
NASA Astrophysics Data System (ADS)
Mitran, T. L.; Melchert, O.; Hartmann, A. K.
2013-12-01
The main characteristics of biased greedy random walks (BGRWs) on two-dimensional lattices with real-valued quenched disorder on the lattice edges are studied. Here the disorder allows for negative edge weights. In previous studies, considering the negative-weight percolation (NWP) problem, this was shown to change the universality class of the existing, static percolation transition. In the presented study, four different types of BGRWs and an algorithm based on the ant colony optimization heuristic were considered. Regarding the BGRWs, the precise configurations of the lattice walks constructed during the numerical simulations were influenced by two parameters: a disorder parameter ρ that controls the amount of negative edge weights on the lattice and a bias strength B that governs the drift of the walkers along a certain lattice direction. The random walks are “greedy” in the sense that the local optimal choice of the walker is to preferentially traverse edges with a negative weight (associated with a net gain of “energy” for the walker). Here, the pivotal observable is the probability that, after termination, a lattice walk exhibits a total negative weight, which is here considered as percolating. The behavior of this observable as function of ρ for different bias strengths B is put under scrutiny. Upon tuning ρ, the probability to find such a feasible lattice walk increases from zero to 1. This is the key feature of the percolation transition in the NWP model. Here, we address the question how well the transition point ρc, resulting from numerically exact and “static” simulations in terms of the NWP model, can be resolved using simple dynamic algorithms that have only local information available, one of the basic questions in the physics of glassy systems.
NASA Astrophysics Data System (ADS)
Guex, Guillaume
2016-05-01
In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.
Ringed Seal Search for Global Optimization via a Sensitive Search Model
Saadi, Younes; Yanto, Iwan Tri Riyadi; Herawan, Tutut; Balakrishnan, Vimala; Chiroma, Haruna; Risnumawan, Anhar
2016-01-01
The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems. PMID:26790131
Information filtering via biased random walk on coupled social network.
Nie, Da-Cheng; Zhang, Zi-Ke; Dong, Qiang; Sun, Chongjing; Fu, Yan
2014-01-01
The recommender systems have advanced a great deal in the past two decades. However, most researchers focus their attentions on mining the similarities among users or objects in recommender systems and overlook the social influence which plays an important role in users' purchase process. In this paper, we design a biased random walk algorithm on coupled social networks which gives recommendation results based on both social interests and users' preference. Numerical analyses on two real data sets, Epinions and Friendfeed, demonstrate the improvement of recommendation performance by taking social interests into account, and experimental results show that our algorithm can alleviate the user cold-start problem more effectively compared with the mass diffusion and user-based collaborative filtering methods.
Information Filtering via Biased Random Walk on Coupled Social Network
Dong, Qiang; Fu, Yan
2014-01-01
The recommender systems have advanced a great deal in the past two decades. However, most researchers focus their attentions on mining the similarities among users or objects in recommender systems and overlook the social influence which plays an important role in users' purchase process. In this paper, we design a biased random walk algorithm on coupled social networks which gives recommendation results based on both social interests and users' preference. Numerical analyses on two real data sets, Epinions and Friendfeed, demonstrate the improvement of recommendation performance by taking social interests into account, and experimental results show that our algorithm can alleviate the user cold-start problem more effectively compared with the mass diffusion and user-based collaborative filtering methods. PMID:25147867
The scalable implementation of quantum walks using classical light
NASA Astrophysics Data System (ADS)
Goyal, Sandeep K.; Roux, F. S.; Forbes, Andrew; Konrad, Thomas
2014-02-01
A quantum walk is the quantum analog of the classical random walks. Despite their simple structure they form a universal platform to implement any algorithm of quantum computation. However, it is very hard to realize quantum walks with a sufficient number of iterations in quantum systems due to their sensitivity to environmental influences and subsequent loss of coherence. Here we present a scalable implementation scheme for one-dimensional quantum walks for arbitrary number of steps using the orbital angular momentum modes of classical light beams. Furthermore, we show that using the same setup with a minor adjustment we can also realize electric quantum walks.
Stamovlasis, Dimitrios; Tsaparlis, Georgios
2003-07-01
The present study examines the role of limited human channel capacity from a science education perspective. A model of science problem solving has been previously validated by applying concepts and tools of complexity theory (the working memory, random walk method). The method correlated the subjects' rank-order achievement scores in organic-synthesis chemistry problems with the subjects' working memory capacity. In this work, we apply the same nonlinear approach to a different data set, taken from chemical-equilibrium problem solving. In contrast to the organic-synthesis problems, these problems are algorithmic, require numerical calculations, and have a complex logical structure. As a result, these problems cause deviations from the model, and affect the pattern observed with the nonlinear method. In addition to Baddeley's working memory capacity, the Pascual-Leone's mental (M-) capacity is examined by the same random-walk method. As the complexity of the problem increases, the fractal dimension of the working memory random walk demonstrates a sudden drop, while the fractal dimension of the M-capacity random walk decreases in a linear fashion. A review of the basic features of the two capacities and their relation is included. The method and findings have consequences for problem solving not only in chemistry and science education, but also in other disciplines.
Random walks with shape prior for cochlea segmentation in ex vivo μCT.
Ruiz Pujadas, Esmeralda; Kjer, Hans Martin; Piella, Gemma; Ceresa, Mario; González Ballester, Miguel Angel
2016-09-01
Cochlear implantation is a safe and effective surgical procedure to restore hearing in deaf patients. However, the level of restoration achieved may vary due to differences in anatomy, implant type and surgical access. In order to reduce the variability of the surgical outcomes, we previously proposed the use of a high-resolution model built from [Formula: see text] images and then adapted to patient-specific clinical CT scans. As the accuracy of the model is dependent on the precision of the original segmentation, it is extremely important to have accurate [Formula: see text] segmentation algorithms. We propose a new framework for cochlea segmentation in ex vivo [Formula: see text] images using random walks where a distance-based shape prior is combined with a region term estimated by a Gaussian mixture model. The prior is also weighted by a confidence map to adjust its influence according to the strength of the image contour. Random walks is performed iteratively, and the prior mask is aligned in every iteration. We tested the proposed approach in ten [Formula: see text] data sets and compared it with other random walks-based segmentation techniques such as guided random walks (Eslami et al. in Med Image Anal 17(2):236-253, 2013) and constrained random walks (Li et al. in Advances in image and video technology. Springer, Berlin, pp 215-226, 2012). Our approach demonstrated higher accuracy results due to the probability density model constituted by the region term and shape prior information weighed by a confidence map. The weighted combination of the distance-based shape prior with a region term into random walks provides accurate segmentations of the cochlea. The experiments suggest that the proposed approach is robust for cochlea segmentation.
NASA Astrophysics Data System (ADS)
Choi, Wonjoon; Yoon, Myungchul; Roh, Byeong-Hee
Eavesdropping on backward channels in RFID environments may cause severe privacy problems because it means the exposure of personal information related to tags that each person has. However, most existing RFID tag security schemes are focused on the forward channel protections. In this paper, we propose a simple but effective method to solve the backward channel eavesdropping problem based on Randomized-tree walking algorithm for securing tag ID information and privacy in RFID-based applications. In order to show the efficiency of the proposed scheme, we derive two performance models for the cases when CRC is used and not used. It is shown that the proposed method can lower the probability of eavesdropping on backward channels near to ‘0.’
Coverage maximization under resource constraints using a nonuniform proliferating random walk.
Saha, Sudipta; Ganguly, Niloy
2013-02-01
Information management services on networks, such as search and dissemination, play a key role in any large-scale distributed system. One of the most desirable features of these services is the maximization of the coverage, i.e., the number of distinctly visited nodes under constraints of network resources as well as time. However, redundant visits of nodes by different message packets (modeled, e.g., as walkers) initiated by the underlying algorithms for these services cause wastage of network resources. In this work, using results from analytical studies done in the past on a K-random-walk-based algorithm, we identify that redundancy quickly increases with an increase in the density of the walkers. Based on this postulate, we design a very simple distributed algorithm which dynamically estimates the density of the walkers and thereby carefully proliferates walkers in sparse regions. We use extensive computer simulations to test our algorithm in various kinds of network topologies whereby we find it to be performing particularly well in networks that are highly clustered as well as sparse.
Li, Yun; Wu, Wenqi; Jiang, Qingan; Wang, Jinling
2016-01-01
Based on stochastic modeling of Coriolis vibration gyros by the Allan variance technique, this paper discusses Angle Random Walk (ARW), Rate Random Walk (RRW) and Markov process gyroscope noises which have significant impacts on the North-finding accuracy. A new continuous rotation alignment algorithm for a Coriolis vibration gyroscope Inertial Measurement Unit (IMU) is proposed in this paper, in which the extended observation equations are used for the Kalman filter to enhance the estimation of gyro drift errors, thus improving the north-finding accuracy. Theoretical and numerical comparisons between the proposed algorithm and the traditional ones are presented. The experimental results show that the new continuous rotation alignment algorithm using the extended observation equations in the Kalman filter is more efficient than the traditional two-position alignment method. Using Coriolis vibration gyros with bias instability of 0.1°/h, a north-finding accuracy of 0.1° (1σ) is achieved by the new continuous rotation alignment algorithm, compared with 0.6° (1σ) north-finding accuracy for the two-position alignment and 1° (1σ) for the fixed-position alignment. PMID:27983585
History dependent quantum random walks as quantum lattice gas automata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakeel, Asif, E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu; Love, Peter J., E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu; Meyer, David A., E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu
Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of quantum walks in algorithmic applications. We show that several history dependent QRW can be identified as one-particle sectors of QLGA. This provides a unifying conceptual framework for these models in which the extra degrees of freedom required to store the historymore » information arise naturally as geometrical degrees of freedom on the lattice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitley, L. Darrell; Howe, Adele E.; Watson, Jean-Paul
2004-09-01
Tabu search is one of the most effective heuristics for locating high-quality solutions to a diverse array of NP-hard combinatorial optimization problems. Despite the widespread success of tabu search, researchers have a poor understanding of many key theoretical aspects of this algorithm, including models of the high-level run-time dynamics and identification of those search space features that influence problem difficulty. We consider these questions in the context of the job-shop scheduling problem (JSP), a domain where tabu search algorithms have been shown to be remarkably effective. Previously, we demonstrated that the mean distance between random local optima and the nearestmore » optimal solution is highly correlated with problem difficulty for a well-known tabu search algorithm for the JSP introduced by Taillard. In this paper, we discuss various shortcomings of this measure and develop a new model of problem difficulty that corrects these deficiencies. We show that Taillard's algorithm can be modeled with high fidelity as a simple variant of a straightforward random walk. The random walk model accounts for nearly all of the variability in the cost required to locate both optimal and sub-optimal solutions to random JSPs, and provides an explanation for differences in the difficulty of random versus structured JSPs. Finally, we discuss and empirically substantiate two novel predictions regarding tabu search algorithm behavior. First, the method for constructing the initial solution is highly unlikely to impact the performance of tabu search. Second, tabu tenure should be selected to be as small as possible while simultaneously avoiding search stagnation; values larger than necessary lead to significant degradations in performance.« less
Quantum speedup of Monte Carlo methods.
Montanaro, Ashley
2015-09-08
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.
Quantum speedup of Monte Carlo methods
Montanaro, Ashley
2015-01-01
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently. PMID:26528079
NASA Astrophysics Data System (ADS)
Li, Hongzhi; Min, Donghong; Liu, Yusong; Yang, Wei
2007-09-01
To overcome the possible pseudoergodicity problem, molecular dynamic simulation can be accelerated via the realization of an energy space random walk. To achieve this, a biased free energy function (BFEF) needs to be priori obtained. Although the quality of BFEF is essential for sampling efficiency, its generation is usually tedious and nontrivial. In this work, we present an energy space metadynamics algorithm to efficiently and robustly obtain BFEFs. Moreover, in order to deal with the associated diffusion sampling problem caused by the random walk in the total energy space, the idea in the original umbrella sampling method is generalized to be the random walk in the essential energy space, which only includes the energy terms determining the conformation of a region of interest. This essential energy space generalization allows the realization of efficient localized enhanced sampling and also offers the possibility of further sampling efficiency improvement when high frequency energy terms irrelevant to the target events are free of activation. The energy space metadynamics method and its generalization in the essential energy space for the molecular dynamics acceleration are demonstrated in the simulation of a pentanelike system, the blocked alanine dipeptide model, and the leucine model.
Renormalization of the unitary evolution equation for coined quantum walks
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Li, Shanshan; Portugal, Renato
2017-03-01
We consider discrete-time evolution equations in which the stochastic operator of a classical random walk is replaced by a unitary operator. Such a problem has gained much attention as a framework for coined quantum walks that are essential for attaining the Grover limit for quantum search algorithms in physically realizable, low-dimensional geometries. In particular, we analyze the exact real-space renormalization group (RG) procedure recently introduced to study the scaling of quantum walks on fractal networks. While this procedure, when implemented numerically, was able to provide some deep insights into the relation between classical and quantum walks, its analytic basis has remained obscure. Our discussion here is laying the groundwork for a rigorous implementation of the RG for this important class of transport and algorithmic problems, although some instances remain unresolved. Specifically, we find that the RG fixed-point analysis of the classical walk, which typically focuses on the dominant Jacobian eigenvalue {λ1} , with walk dimension dw\\text{RW}={{log}2}{λ1} , needs to be extended to include the subdominant eigenvalue {λ2} , such that the dimension of the quantum walk obtains dw\\text{QW}={{log}2}\\sqrt{{λ1}{λ2}} . With that extension, we obtain analytically previously conjectured results for dw\\text{QW} of Grover walks on all but one of the fractal networks that have been considered.
Geographic Gossip: Efficient Averaging for Sensor Networks
NASA Astrophysics Data System (ADS)
Dimakis, Alexandros D. G.; Sarwate, Anand D.; Wainwright, Martin J.
Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repeatedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of $n$ and $\\sqrt{n}$ respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy $\\epsilon$ using $O(\\frac{n^{1.5}}{\\sqrt{\\log n}} \\log \\epsilon^{-1})$ radio transmissions, which yields a $\\sqrt{\\frac{n}{\\log n}}$ factor improvement over standard gossip algorithms. We illustrate these theoretical results with experimental comparisons between our algorithm and standard methods as applied to various classes of random fields.
Random Walk Particle Tracking For Multiphase Heat Transfer
NASA Astrophysics Data System (ADS)
Lattanzi, Aaron; Yin, Xiaolong; Hrenya, Christine
2017-11-01
As computing capabilities have advanced, direct numerical simulation (DNS) has become a highly effective tool for quantitatively predicting the heat transfer within multiphase flows. Here we utilize a hybrid DNS framework that couples the lattice Boltzmann method (LBM) to the random walk particle tracking (RWPT) algorithm. The main challenge of such a hybrid is that discontinuous fields pose a significant challenge to the RWPT framework and special attention must be given to the handling of interfaces. We derive a method for addressing discontinuities in the diffusivity field, arising at the interface between two phases. Analytical means are utilized to develop an interfacial tracer balance and modify the RWPT algorithm. By expanding the modulus of the stochastic (diffusive) step and only allowing a subset of the tracers within the high diffusivity medium to undergo a diffusive step, the correct equilibrium state can be restored (globally homogeneous tracer distribution). The new RWPT algorithm is implemented within the SUSP3D code and verified against a variety of systems: effective diffusivity of a static gas-solids mixture, hot sphere in unbounded diffusion, cooling sphere in unbounded diffusion, and uniform flow past a hot sphere.
Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentim, Alexandra; Rocha, Julio C. S.; Tsai, Shan-Ho
We considered a higher-dimensional extension for the replica-exchange Wang-Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, inmore » which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this diculty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.« less
Coverage-maximization in networks under resource constraints.
Nandi, Subrata; Brusch, Lutz; Deutsch, Andreas; Ganguly, Niloy
2010-06-01
Efficient coverage algorithms are essential for information search or dispersal in all kinds of networks. We define an extended coverage problem which accounts for constrained resources of consumed bandwidth B and time T . Our solution to the network challenge is here studied for regular grids only. Using methods from statistical mechanics, we develop a coverage algorithm with proliferating message packets and temporally modulated proliferation rate. The algorithm performs as efficiently as a single random walker but O(B(d-2)/d) times faster, resulting in significant service speed-up on a regular grid of dimension d . The algorithm is numerically compared to a class of generalized proliferating random walk strategies and on regular grids shown to perform best in terms of the product metric of speed and efficiency.
TemperSAT: A new efficient fair-sampling random k-SAT solver
NASA Astrophysics Data System (ADS)
Fang, Chao; Zhu, Zheng; Katzgraber, Helmut G.
The set membership problem is of great importance to many applications and, in particular, database searches for target groups. Recently, an approach to speed up set membership searches based on the NP-hard constraint-satisfaction problem (random k-SAT) has been developed. However, the bottleneck of the approach lies in finding the solution to a large SAT formula efficiently and, in particular, a large number of independent solutions is needed to reduce the probability of false positives. Unfortunately, traditional random k-SAT solvers such as WalkSAT are biased when seeking solutions to the Boolean formulas. By porting parallel tempering Monte Carlo to the sampling of binary optimization problems, we introduce a new algorithm (TemperSAT) whose performance is comparable to current state-of-the-art SAT solvers for large k with the added benefit that theoretically it can find many independent solutions quickly. We illustrate our results by comparing to the currently fastest implementation of WalkSAT, WalkSATlm.
Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
Ellis, Katherine; Kerr, Jacqueline; Godbole, Suneeta; Staudenmayer, John; Lanckriet, Gert
2016-05-01
Accelerometers are a valuable tool for objective measurement of physical activity (PA). Wrist-worn devices may improve compliance over standard hip placement, but more research is needed to evaluate their validity for measuring PA in free-living settings. Traditional cut-point methods for accelerometers can be inaccurate and need testing in free living with wrist-worn devices. In this study, we developed and tested the performance of machine learning (ML) algorithms for classifying PA types from both hip and wrist accelerometer data. Forty overweight or obese women (mean age = 55.2 ± 15.3 yr; BMI = 32.0 ± 3.7) wore two ActiGraph GT3X+ accelerometers (right hip, nondominant wrist; ActiGraph, Pensacola, FL) for seven free-living days. Wearable cameras captured ground truth activity labels. A classifier consisting of a random forest and hidden Markov model classified the accelerometer data into four activities (sitting, standing, walking/running, and riding in a vehicle). Free-living wrist and hip ML classifiers were compared with each other, with traditional accelerometer cut points, and with an algorithm developed in a laboratory setting. The ML classifier obtained average values of 89.4% and 84.6% balanced accuracy over the four activities using the hip and wrist accelerometer, respectively. In our data set with average values of 28.4 min of walking or running per day, the ML classifier predicted average values of 28.5 and 24.5 min of walking or running using the hip and wrist accelerometer, respectively. Intensity-based cut points and the laboratory algorithm significantly underestimated walking minutes. Our results demonstrate the superior performance of our PA-type classification algorithm, particularly in comparison with traditional cut points. Although the hip algorithm performed better, additional compliance achieved with wrist devices might justify using a slightly lower performing algorithm.
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471
Mining and Querying Multimedia Data
2011-09-29
able to capture more subtle spatial variations such as repetitiveness. Local feature descriptors such as SIFT [74] and SURF [12] have also been widely...empirically set to s = 90%, r = 50%, K = 20, where small variations lead to little perturbation of the output. The pseudo-code of the algorithm is...by constructing a three-layer graph based on clustering outputs, and executing a slight variation of random walk with restart algorithm. It provided
Jeong, Hyundoo; Yoon, Byung-Jun
2017-03-14
Network querying algorithms provide computational means to identify conserved network modules in large-scale biological networks that are similar to known functional modules, such as pathways or molecular complexes. Two main challenges for network querying algorithms are the high computational complexity of detecting potential isomorphism between the query and the target graphs and ensuring the biological significance of the query results. In this paper, we propose SEQUOIA, a novel network querying algorithm that effectively addresses these issues by utilizing a context-sensitive random walk (CSRW) model for network comparison and minimizing the network conductance of potential matches in the target network. The CSRW model, inspired by the pair hidden Markov model (pair-HMM) that has been widely used for sequence comparison and alignment, can accurately assess the node-to-node correspondence between different graphs by accounting for node insertions and deletions. The proposed algorithm identifies high-scoring network regions based on the CSRW scores, which are subsequently extended by maximally reducing the network conductance of the identified subnetworks. Performance assessment based on real PPI networks and known molecular complexes show that SEQUOIA outperforms existing methods and clearly enhances the biological significance of the query results. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/SEQUOIA .
Dorsch, Andrew K.; Thomas, Seth; Xu, Xiaoyu; Kaiser, William; Dobkin, Bruce H.
2014-01-01
Background Walking-related disability is the most frequent reason for inpatient stroke rehabilitation. Task-related practice is a critical component for improving patient outcomes. Objective To test the feasibility of providing quantitative feedback about daily walking performance and motivating greater skills practice via remote sensing. Methods In this phase III randomized, single blind clinical trial, patients participated in conventional therapies while wearing wireless sensors (tri-axial accelerometers) at both ankles. Activity-recognition algorithms calculated the speed, distance, and duration of walking bouts. Three times a week, therapists provided either feedback about performance on a 10-meter walk (speed-only) or walking speed feedback plus a review of walking activity recorded by the sensors (augmented). Primary outcomes at discharge included total daily walking time, derived from the sensors, and a timed 15-meter walk. Results Sixteen rehabilitation centers in 11 countries enrolled 135 participants over 15 months. Sensors recorded more than 1800 days of therapy, 37,000 individual walking bouts, and 2.5 million steps. No significant differences were found between the two feedback groups in daily walking time (15.1±13.1min vs. 16.6±14.3min, p=0.54) or 15-meter walking speed (0.93±0.47m/s vs. 0.91±0.53m/s, p=0.96). Remarkably, 30% of participants decreased their total daily walking time over their rehabilitation stay. Conclusions In this first trial of remote monitoring of inpatient stroke rehabilitation, augmented feedback beyond speed alone did not increase the time spent practicing or improve walking outcomes. Remarkably modest time was spent walking. Wireless sensing, however, allowed clinicians to audit skills practice and provided ground truth regarding changes in clinically important, mobility-related activities. PMID:25261154
Schlink, Uwe; Ragas, Ad M J
2011-01-01
Receptor-oriented approaches can assess the individual-specific exposure to air pollution. In such an individual-based model we analyse the impact of human mobility to the personal exposure that is perceived by individuals simulated in an exemplified urban area. The mobility models comprise random walk (reference point mobility, RPM), truncated Lévy flights (TLF), and agenda-based walk (RPMA). We describe and review the general concepts and provide an inter-comparison of these concepts. Stationary and ergodic behaviour are explained and applied as well as performance criteria for a comparative evaluation of the investigated algorithms. We find that none of the studied algorithm results in purely random trajectories. TLF and RPMA prove to be suitable for human mobility modelling, because they provide conditions for very individual-specific trajectories and exposure. Suggesting these models we demonstrate the plausibility of their results for exposure to air-borne benzene and the combined exposure to benzene and nonane. Copyright © 2011 Elsevier Ltd. All rights reserved.
Discriminative parameter estimation for random walks segmentation.
Baudin, Pierre-Yves; Goodman, Danny; Kumrnar, Puneet; Azzabou, Noura; Carlier, Pierre G; Paragios, Nikos; Kumar, M Pawan
2013-01-01
The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.
Monte Carlo Sampling in Fractal Landscapes
NASA Astrophysics Data System (ADS)
Leitão, Jorge C.; Lopes, J. M. Viana Parente; Altmann, Eduardo G.
2013-05-01
We design a random walk to explore fractal landscapes such as those describing chaotic transients in dynamical systems. We show that the random walk moves efficiently only when its step length depends on the height of the landscape via the largest Lyapunov exponent of the chaotic system. We propose a generalization of the Wang-Landau algorithm which constructs not only the density of states (transient time distribution) but also the correct step length. As a result, we obtain a flat-histogram Monte Carlo method which samples fractal landscapes in polynomial time, a dramatic improvement over the exponential scaling of traditional uniform-sampling methods. Our results are not limited by the dimensionality of the landscape and are confirmed numerically in chaotic systems with up to 30 dimensions.
Gradient-free MCMC methods for dynamic causal modelling
Sengupta, Biswa; Friston, Karl J.; Penny, Will D.
2015-03-14
Here, we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density -- albeit at almost 1000% increase in computational time, in comparisonmore » to the most efficient algorithm (i.e., the adaptive MCMC sampler).« less
The Pearson walk with shrinking steps in two dimensions
NASA Astrophysics Data System (ADS)
Serino, C. A.; Redner, S.
2010-01-01
We study the shrinking Pearson random walk in two dimensions and greater, in which the direction of the Nth step is random and its length equals λN-1, with λ<1. As λ increases past a critical value λc, the endpoint distribution in two dimensions, P(r), changes from having a global maximum away from the origin to being peaked at the origin. The probability distribution for a single coordinate, P(x), undergoes a similar transition, but exhibits multiple maxima on a fine length scale for λ close to λc. We numerically determine P(r) and P(x) by applying a known algorithm that accurately inverts the exact Bessel function product form of the Fourier transform for the probability distributions.
Exact and approximate graph matching using random walks.
Gori, Marco; Maggini, Marco; Sarti, Lorenzo
2005-07-01
In this paper, we propose a general framework for graph matching which is suitable for different problems of pattern recognition. The pattern representation we assume is at the same time highly structured, like for classic syntactic and structural approaches, and of subsymbolic nature with real-valued features, like for connectionist and statistic approaches. We show that random walk based models, inspired by Google's PageRank, give rise to a spectral theory that nicely enhances the graph topological features at node level. As a straightforward consequence, we derive a polynomial algorithm for the classic graph isomorphism problem, under the restriction of dealing with Markovian spectrally distinguishable graphs (MSD), a class of graphs that does not seem to be easily reducible to others proposed in the literature. The experimental results that we found on different test-beds of the TC-15 graph database show that the defined MSD class "almost always" covers the database, and that the proposed algorithm is significantly more efficient than top scoring VF algorithm on the same data. Most interestingly, the proposed approach is very well-suited for dealing with partial and approximate graph matching problems, derived for instance from image retrieval tasks. We consider the objects of the COIL-100 visual collection and provide a graph-based representation, whose node's labels contain appropriate visual features. We show that the adoption of classic bipartite graph matching algorithms offers a straightforward generalization of the algorithm given for graph isomorphism and, finally, we report very promising experimental results on the COIL-100 visual collection.
Global Binary Optimization on Graphs for Classification of High Dimensional Data
2014-09-01
Buades et al . in [10] introduce a new non-local means algorithm for image denoising and compare it to some of the best methods. In [28], Grady de...scribes a random walk algorithm for image seg- mentation using the solution to a Dirichlet prob- lem. Elmoataz et al . present generalizations of the...graph Laplacian [19] for image denoising and man- ifold smoothing. Couprie et al . in [16] propose a parameterized graph-based energy function that unifies
NASA Astrophysics Data System (ADS)
Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.
2016-10-01
The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.
Improvement of Frequency Locking Algorithm for Atomic Frequency Standards
NASA Astrophysics Data System (ADS)
Park, Young-Ho; Kang, Hoonsoo; Heyong Lee, Soo; Eon Park, Sang; Lee, Jong Koo; Lee, Ho Seong; Kwon, Taeg Yong
2010-09-01
The authors describe a novel method of frequency locking algorithm for atomic frequency standards. The new algorithm for locking the microwave frequency to the Ramsey resonance is compared with the old one that had been employed in the cesium atomic beam frequency standards such as NIST-7 and KRISS-1. Numerical simulations for testing the performance of the algorithm show that the new method has a noise filtering performance superior to the old one by a factor of 1.2 for the flicker signal noise and 1.4 for random-walk signal noise. The new algorithm can readily be used to enhance the frequency stability for a digital servo employing the slow square wave frequency modulation.
NASA Astrophysics Data System (ADS)
Brekhna, Brekhna; Mahmood, Arif; Zhou, Yuanfeng; Zhang, Caiming
2017-11-01
Superpixels have gradually become popular in computer vision and image processing applications. However, no comprehensive study has been performed to evaluate the robustness of superpixel algorithms in regard to common forms of noise in natural images. We evaluated the robustness of 11 recently proposed algorithms to different types of noise. The images were corrupted with various degrees of Gaussian blur, additive white Gaussian noise, and impulse noise that either made the object boundaries weak or added extra information to it. We performed a robustness analysis of simple linear iterative clustering (SLIC), Voronoi Cells (VCells), flooding-based superpixel generation (FCCS), bilateral geodesic distance (Bilateral-G), superpixel via geodesic distance (SSS-G), manifold SLIC (M-SLIC), Turbopixels, superpixels extracted via energy-driven sampling (SEEDS), lazy random walk (LRW), real-time superpixel segmentation by DBSCAN clustering, and video supervoxels using partially absorbing random walks (PARW) algorithms. The evaluation process was carried out both qualitatively and quantitatively. For quantitative performance comparison, we used achievable segmentation accuracy (ASA), compactness, under-segmentation error (USE), and boundary recall (BR) on the Berkeley image database. The results demonstrated that all algorithms suffered performance degradation due to noise. For Gaussian blur, Bilateral-G exhibited optimal results for ASA and USE measures, SLIC yielded optimal compactness, whereas FCCS and DBSCAN remained optimal for BR. For the case of additive Gaussian and impulse noises, FCCS exhibited optimal results for ASA, USE, and BR, whereas Bilateral-G remained a close competitor in ASA and USE for Gaussian noise only. Additionally, Turbopixel demonstrated optimal performance for compactness for both types of noise. Thus, no single algorithm was able to yield optimal results for all three types of noise across all performance measures. Conclusively, to solve real-world problems effectively, more robust superpixel algorithms must be developed.
From samples to populations in retinex models
NASA Astrophysics Data System (ADS)
Gianini, Gabriele
2017-05-01
Some spatial color algorithms, such as Brownian Milano retinex (MI-retinex) and random spray retinex (RSR), are based on sampling. In Brownian MI-retinex, memoryless random walks (MRWs) explore the neighborhood of a pixel and are then used to compute its output. Considering the relative redundancy and inefficiency of MRW exploration, the algorithm RSR replaced the walks by samples of points (the sprays). Recent works point to the fact that a mapping from the sampling formulation to the probabilistic formulation of the corresponding sampling process can offer useful insights into the models, at the same time featuring intrinsically noise-free outputs. The paper continues the development of this concept and shows that the population-based versions of RSR and Brownian MI-retinex can be used to obtain analytical expressions for the outputs of some test images. The comparison of the two analytic expressions from RSR and from Brownian MI-retinex demonstrates not only that the two outputs are, in general, different but also that they depend in a qualitatively different way upon the features of the image.
Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization.
Zhao, Zhi-Qin; Han, Guo-Sheng; Yu, Zu-Guo; Li, Jinyan
2015-08-01
Random walk on heterogeneous networks is a recently emerging approach to effective disease gene prioritization. Laplacian normalization is a technique capable of normalizing the weight of edges in a network. We use this technique to normalize the gene matrix and the phenotype matrix before the construction of the heterogeneous network, and also use this idea to define the transition matrices of the heterogeneous network. Our method has remarkably better performance than the existing methods for recovering known gene-phenotype relationships. The Shannon information entropy of the distribution of the transition probabilities in our networks is found to be smaller than the networks constructed by the existing methods, implying that a higher number of top-ranked genes can be verified as disease genes. In fact, the most probable gene-phenotype relationships ranked within top 3 or top 5 in our gene lists can be confirmed by the OMIM database for many cases. Our algorithms have shown remarkably superior performance over the state-of-the-art algorithms for recovering gene-phenotype relationships. All Matlab codes can be available upon email request. Copyright © 2015 Elsevier Ltd. All rights reserved.
Unsupervised Metric Fusion Over Multiview Data by Graph Random Walk-Based Cross-View Diffusion.
Wang, Yang; Zhang, Wenjie; Wu, Lin; Lin, Xuemin; Zhao, Xiang
2017-01-01
Learning an ideal metric is crucial to many tasks in computer vision. Diverse feature representations may combat this problem from different aspects; as visual data objects described by multiple features can be decomposed into multiple views, thus often provide complementary information. In this paper, we propose a cross-view fusion algorithm that leads to a similarity metric for multiview data by systematically fusing multiple similarity measures. Unlike existing paradigms, we focus on learning distance measure by exploiting a graph structure of data samples, where an input similarity matrix can be improved through a propagation of graph random walk. In particular, we construct multiple graphs with each one corresponding to an individual view, and a cross-view fusion approach based on graph random walk is presented to derive an optimal distance measure by fusing multiple metrics. Our method is scalable to a large amount of data by enforcing sparsity through an anchor graph representation. To adaptively control the effects of different views, we dynamically learn view-specific coefficients, which are leveraged into graph random walk to balance multiviews. However, such a strategy may lead to an over-smooth similarity metric where affinities between dissimilar samples may be enlarged by excessively conducting cross-view fusion. Thus, we figure out a heuristic approach to controlling the iteration number in the fusion process in order to avoid over smoothness. Extensive experiments conducted on real-world data sets validate the effectiveness and efficiency of our approach.
Recursive recovery of Markov transition probabilities from boundary value data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patch, Sarah Kathyrn
1994-04-01
In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requiresmore » finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 x 2 x 2 problem, is solved.« less
Jiang, Qingan; Wu, Wenqi; Jiang, Mingming; Li, Yun
2017-01-01
High-accuracy railway track surveying is essential for railway construction and maintenance. The traditional approaches based on total station equipment are not efficient enough since high precision surveying frequently needs static measurements. This paper proposes a new filtering and smoothing algorithm based on the IMU/odometer and landmarks integration for the railway track surveying. In order to overcome the difficulty of estimating too many error parameters with too few landmark observations, a new model with completely observable error states is established by combining error terms of the system. Based on covariance analysis, the analytical relationship between the railway track surveying accuracy requirements and equivalent gyro drifts including bias instability and random walk noise are established. Experiment results show that the accuracy of the new filtering and smoothing algorithm for railway track surveying can reach 1 mm (1σ) when using a Ring Laser Gyroscope (RLG)-based Inertial Measurement Unit (IMU) with gyro bias instability of 0.03°/h and random walk noise of 0.005°/h while control points of the track control network (CPIII) position observations are provided by the optical total station in about every 60 m interval. The proposed approach can satisfy at the same time the demands of high accuracy and work efficiency for railway track surveying. PMID:28629191
Chemical Continuous Time Random Walks
NASA Astrophysics Data System (ADS)
Aquino, T.; Dentz, M.
2017-12-01
Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.
Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks
Li, Jiayin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal
2017-01-01
Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs. PMID:29117152
Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks.
Zheng, Haifeng; Li, Jiayin; Feng, Xinxin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal
2017-11-08
Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs .
Gradient-free MCMC methods for dynamic causal modelling.
Sengupta, Biswa; Friston, Karl J; Penny, Will D
2015-05-15
In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density - albeit at almost 1000% increase in computational time, in comparison to the most efficient algorithm (i.e., the adaptive MCMC sampler). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Fast Kalman Filter for Random Walk Forecast model
NASA Astrophysics Data System (ADS)
Saibaba, A.; Kitanidis, P. K.
2013-12-01
Kalman filtering is a fundamental tool in statistical time series analysis to understand the dynamics of large systems for which limited, noisy observations are available. However, standard implementations of the Kalman filter are prohibitive because they require O(N^2) in memory and O(N^3) in computational cost, where N is the dimension of the state variable. In this work, we focus our attention on the Random walk forecast model which assumes the state transition matrix to be the identity matrix. This model is frequently adopted when the data is acquired at a timescale that is faster than the dynamics of the state variables and there is considerable uncertainty as to the physics governing the state evolution. We derive an efficient representation for the a priori and a posteriori estimate covariance matrices as a weighted sum of two contributions - the process noise covariance matrix and a low rank term which contains eigenvectors from a generalized eigenvalue problem, which combines information from the noise covariance matrix and the data. We describe an efficient algorithm to update the weights of the above terms and the computation of eigenmodes of the generalized eigenvalue problem (GEP). The resulting algorithm for the Kalman filter with Random walk forecast model scales as O(N) or O(N log N), both in memory and computational cost. This opens up the possibility of real-time adaptive experimental design and optimal control in systems of much larger dimension than was previously feasible. For a small number of measurements (~ 300 - 400), this procedure can be made numerically exact. However, as the number of measurements increase, for several choices of measurement operators and noise covariance matrices, the spectrum of the (GEP) decays rapidly and we are justified in only retaining the dominant eigenmodes. We discuss tradeoffs between accuracy and computational cost. The resulting algorithms are applied to an example application from ray-based travel time tomography.
SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, W; Farr, J
2015-06-15
Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MCmore » simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations.« less
An improved random walk algorithm for the implicit Monte Carlo method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keady, Kendra P., E-mail: keadyk@lanl.gov; Cleveland, Mathew A.
In this work, we introduce a modified Implicit Monte Carlo (IMC) Random Walk (RW) algorithm, which increases simulation efficiency for multigroup radiative transfer problems with strongly frequency-dependent opacities. To date, the RW method has only been implemented in “fully-gray” form; that is, the multigroup IMC opacities are group-collapsed over the full frequency domain of the problem to obtain a gray diffusion problem for RW. This formulation works well for problems with large spatial cells and/or opacities that are weakly dependent on frequency; however, the efficiency of the RW method degrades when the spatial cells are thin or the opacities aremore » a strong function of frequency. To address this inefficiency, we introduce a RW frequency group cutoff in each spatial cell, which divides the frequency domain into optically thick and optically thin components. In the modified algorithm, opacities for the RW diffusion problem are obtained by group-collapsing IMC opacities below the frequency group cutoff. Particles with frequencies above the cutoff are transported via standard IMC, while particles below the cutoff are eligible for RW. This greatly increases the total number of RW steps taken per IMC time-step, which in turn improves the efficiency of the simulation. We refer to this new method as Partially-Gray Random Walk (PGRW). We present numerical results for several multigroup radiative transfer problems, which show that the PGRW method is significantly more efficient than standard RW for several problems of interest. In general, PGRW decreases runtimes by a factor of ∼2–4 compared to standard RW, and a factor of ∼3–6 compared to standard IMC. While PGRW is slower than frequency-dependent Discrete Diffusion Monte Carlo (DDMC), it is also easier to adapt to unstructured meshes and can be used in spatial cells where DDMC is not applicable. This suggests that it may be optimal to employ both DDMC and PGRW in a single simulation.« less
Random walks and diffusion on networks
NASA Astrophysics Data System (ADS)
Masuda, Naoki; Porter, Mason A.; Lambiotte, Renaud
2017-11-01
Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and practical perspectives. They are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can be used to extract information about important entities or dense groups of entities in a network. Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures. In the present article, we survey the theory and applications of random walks on networks, restricting ourselves to simple cases of single and non-adaptive random walkers. We distinguish three main types of random walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric continuous-time random walks. We first briefly survey random walks on a line, and then we consider random walks on various types of networks. We extensively discuss applications of random walks, including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and opinion models such as voter models.
Escalated convergent artificial bee colony
NASA Astrophysics Data System (ADS)
Jadon, Shimpi Singh; Bansal, Jagdish Chand; Tiwari, Ritu
2016-03-01
Artificial bee colony (ABC) optimisation algorithm is a recent, fast and easy-to-implement population-based meta heuristic for optimisation. ABC has been proved a rival algorithm with some popular swarm intelligence-based algorithms such as particle swarm optimisation, firefly algorithm and ant colony optimisation. The solution search equation of ABC is influenced by a random quantity which helps its search process in exploration at the cost of exploitation. In order to find a fast convergent behaviour of ABC while exploitation capability is maintained, in this paper basic ABC is modified in two ways. First, to improve exploitation capability, two local search strategies, namely classical unidimensional local search and levy flight random walk-based local search are incorporated with ABC. Furthermore, a new solution search strategy, namely stochastic diffusion scout search is proposed and incorporated into the scout bee phase to provide more chance to abandon solution to improve itself. Efficiency of the proposed algorithm is tested on 20 benchmark test functions of different complexities and characteristics. Results are very promising and they prove it to be a competitive algorithm in the field of swarm intelligence-based algorithms.
Panzacchi, Manuela; Van Moorter, Bram; Strand, Olav; Saerens, Marco; Kivimäki, Ilkka; St Clair, Colleen C; Herfindal, Ivar; Boitani, Luigi
2016-01-01
The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP outperforms models that assume either optimality or random walk. The proposed approach models the multiscale cognitive maps by which animals likely navigate real landscapes and generalizes the most common algorithms for identifying corridors. Because suboptimal, but non-random, movement strategies are likely widespread, our approach has the potential to predict more realistic corridor-barrier continua for a wide range of species. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics.
Lin, Chenxi; Povinelli, Michelle L
2011-09-12
We design a partially aperiodic, vertically-aligned silicon nanowire array that maximizes photovoltaic absorption. The optimal structure is obtained using a random walk algorithm with transfer matrix method based electromagnetic forward solver. The optimal, aperiodic structure exhibits a 2.35 times enhancement in ultimate efficiency compared to its periodic counterpart. The spectral behavior mimics that of a periodic array with larger lattice constant. For our system, we find that randomly-selected, aperiodic structures invariably outperform the periodic array.
Dobkin, Bruce H; Xu, Xiaoyu; Batalin, Maxim; Thomas, Seth; Kaiser, William
2011-08-01
Outcome measures of mobility for large stroke trials are limited to timed walks for short distances in a laboratory, step counters and ordinal scales of disability and quality of life. Continuous monitoring and outcome measurements of the type and quantity of activity in the community would provide direct data about daily performance, including compliance with exercise and skills practice during routine care and clinical trials. Twelve adults with impaired ambulation from hemiparetic stroke and 6 healthy controls wore triaxial accelerometers on their ankles. Walking speed for repeated outdoor walks was determined by machine-learning algorithms and compared to a stopwatch calculation of speed for distances not known to the algorithm. The reliability of recognizing walking, exercise, and cycling by the algorithms was compared to activity logs. A high correlation was found between stopwatch-measured outdoor walking speed and algorithm-calculated speed (Pearson coefficient, 0.98; P=0.001) and for repeated measures of algorithm-derived walking speed (P=0.01). Bouts of walking >5 steps, variations in walking speed, cycling, stair climbing, and leg exercises were correctly identified during a day in the community. Compared to healthy subjects, those with stroke were, as expected, more sedentary and slower, and their gait revealed high paretic-to-unaffected leg swing ratios. Test-retest reliability and concurrent and construct validity are high for activity pattern-recognition Bayesian algorithms developed from inertial sensors. This ratio scale data can provide real-world monitoring and outcome measurements of lower extremity activities and walking speed for stroke and rehabilitation studies.
NASA Astrophysics Data System (ADS)
Sun, Min; Chen, Xinjian; Zhang, Zhiqiang; Ma, Chiyuan
2017-02-01
Accurate volume measurements of pituitary adenoma are important to the diagnosis and treatment for this kind of sellar tumor. The pituitary adenomas have different pathological representations and various shapes. Particularly, in the case of infiltrating to surrounding soft tissues, they present similar intensities and indistinct boundary in T1-weighted (T1W) magnetic resonance (MR) images. Then the extraction of pituitary adenoma from MR images is still a challenging task. In this paper, we propose an interactive method to segment the pituitary adenoma from brain MR data, by combining graph cuts based active contour model (GCACM) and random walk algorithm. By using the GCACM method, the segmentation task is formulated as an energy minimization problem by a hybrid active contour model (ACM), and then the problem is solved by the graph cuts method. The region-based term in the hybrid ACM considers the local image intensities as described by Gaussian distributions with different means and variances, expressed as maximum a posteriori probability (MAP). Random walk is utilized as an initialization tool to provide initialized surface for GCACM. The proposed method is evaluated on the three-dimensional (3-D) T1W MR data of 23 patients and compared with the standard graph cuts method, the random walk method, the hybrid ACM method, a GCACM method which considers global mean intensity in region forces, and a competitive region-growing based GrowCut method planted in 3D Slicer. Based on the experimental results, the proposed method is superior to those methods.
Brownian dynamics simulations on a hypersphere in 4-space
NASA Astrophysics Data System (ADS)
Nissfolk, Jarl; Ekholm, Tobias; Elvingson, Christer
2003-10-01
We describe an algorithm for performing Brownian dynamics simulations of particles diffusing on S3, a hypersphere in four dimensions. The system is chosen due to recent interest in doing computer simulations in a closed space where periodic boundary conditions can be avoided. We specifically address the question how to generate a random walk on the 3-sphere, starting from the solution of the corresponding diffusion equation, and we also discuss an efficient implementation based on controlled approximations. Since S3 is a closed manifold (space), the average square displacement during a random walk is no longer proportional to the elapsed time, as in R3. Instead, its time rate of change is continuously decreasing, and approaches zero as time becomes large. We show, however, that the effective diffusion coefficient can still be obtained from the time dependence of the square displacement.
The Excursion set approach: Stratonovich approximation and Cholesky decomposition
NASA Astrophysics Data System (ADS)
Nikakhtar, Farnik; Ayromlou, Mohammadreza; Baghram, Shant; Rahvar, Sohrab; Tabar, M. Reza Rahimi; Sheth, Ravi K.
2018-05-01
The excursion set approach is a framework for estimating how the number density of nonlinear structures in the cosmic web depends on the expansion history of the universe and the nature of gravity. A key part of the approach is the estimation of the first crossing distribution of a suitably chosen barrier by random walks having correlated steps: The shape of the barrier is determined by the physics of nonlinear collapse, and the correlations between steps by the nature of the initial density fluctuation field. We describe analytic and numerical methods for calculating such first up-crossing distributions. While the exact solution can be written formally as an infinite series, we show how to approximate it efficiently using the Stratonovich approximation. We demonstrate its accuracy using Monte-Carlo realizations of the walks, which we generate using a novel Cholesky-decomposition based algorithm, which is significantly faster than the algorithm that is currently in the literature.
Path statistics, memory, and coarse-graining of continuous-time random walks on networks
Kion-Crosby, Willow; Morozov, Alexandre V.
2015-01-01
Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained states (for example, those employed in studies of molecular kinetics) or spatial disorder can give rise to memory and non-exponential distributions of waiting times and first-passage statistics. However, existing methods for analyzing CTRWs on complex energy landscapes do not address these effects. Here we use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions. Our approach can be applied to calculating higher moments (beyond the mean) of path length, time, and action, as well as statistics of any conservative or non-conservative force along a path. For homogeneous networks, we derive exact relations between length and time moments, quantifying the validity of approximating a continuous-time process with its discrete-time projection. For more general models, we obtain recursion relations, reminiscent of transfer matrix and exact enumeration techniques, to efficiently calculate path statistics numerically. We have implemented our algorithm in PathMAN (Path Matrix Algorithm for Networks), a Python script that users can apply to their model of choice. We demonstrate the algorithm on a few representative examples which underscore the importance of non-exponential distributions, memory, and coarse-graining in CTRWs. PMID:26646868
RRW: repeated random walks on genome-scale protein networks for local cluster discovery
Macropol, Kathy; Can, Tolga; Singh, Ambuj K
2009-01-01
Background We propose an efficient and biologically sensitive algorithm based on repeated random walks (RRW) for discovering functional modules, e.g., complexes and pathways, within large-scale protein networks. Compared to existing cluster identification techniques, RRW implicitly makes use of network topology, edge weights, and long range interactions between proteins. Results We apply the proposed technique on a functional network of yeast genes and accurately identify statistically significant clusters of proteins. We validate the biological significance of the results using known complexes in the MIPS complex catalogue database and well-characterized biological processes. We find that 90% of the created clusters have the majority of their catalogued proteins belonging to the same MIPS complex, and about 80% have the majority of their proteins involved in the same biological process. We compare our method to various other clustering techniques, such as the Markov Clustering Algorithm (MCL), and find a significant improvement in the RRW clusters' precision and accuracy values. Conclusion RRW, which is a technique that exploits the topology of the network, is more precise and robust in finding local clusters. In addition, it has the added flexibility of being able to find multi-functional proteins by allowing overlapping clusters. PMID:19740439
Araújo, Ricardo de A
2010-12-01
This paper presents a hybrid intelligent methodology to design increasing translation invariant morphological operators applied to Brazilian stock market prediction (overcoming the random walk dilemma). The proposed Translation Invariant Morphological Robust Automatic phase-Adjustment (TIMRAA) method consists of a hybrid intelligent model composed of a Modular Morphological Neural Network (MMNN) with a Quantum-Inspired Evolutionary Algorithm (QIEA), which searches for the best time lags to reconstruct the phase space of the time series generator phenomenon and determines the initial (sub-optimal) parameters of the MMNN. Each individual of the QIEA population is further trained by the Back Propagation (BP) algorithm to improve the MMNN parameters supplied by the QIEA. Also, for each prediction model generated, it uses a behavioral statistical test and a phase fix procedure to adjust time phase distortions observed in stock market time series. Furthermore, an experimental analysis is conducted with the proposed method through four Brazilian stock market time series, and the achieved results are discussed and compared to results found with random walk models and the previously introduced Time-delay Added Evolutionary Forecasting (TAEF) and Morphological-Rank-Linear Time-lag Added Evolutionary Forecasting (MRLTAEF) methods. Copyright © 2010 Elsevier Ltd. All rights reserved.
Record statistics of a strongly correlated time series: random walks and Lévy flights
NASA Astrophysics Data System (ADS)
Godrèche, Claude; Majumdar, Satya N.; Schehr, Grégory
2017-08-01
We review recent advances on the record statistics of strongly correlated time series, whose entries denote the positions of a random walk or a Lévy flight on a line. After a brief survey of the theory of records for independent and identically distributed random variables, we focus on random walks. During the last few years, it was indeed realized that random walks are a very useful ‘laboratory’ to test the effects of correlations on the record statistics. We start with the simple one-dimensional random walk with symmetric jumps (both continuous and discrete) and discuss in detail the statistics of the number of records, as well as of the ages of the records, i.e. the lapses of time between two successive record breaking events. Then we review the results that were obtained for a wide variety of random walk models, including random walks with a linear drift, continuous time random walks, constrained random walks (like the random walk bridge) and the case of multiple independent random walkers. Finally, we discuss further observables related to records, like the record increments, as well as some questions raised by physical applications of record statistics, like the effects of measurement error and noise.
Walking Objectively Measured: Classifying Accelerometer Data with GPS and Travel Diaries
Kang, Bumjoon; Moudon, Anne V.; Hurvitz, Philip M.; Reichley, Lucas; Saelens, Brian E.
2013-01-01
Purpose This study developed and tested an algorithm to classify accelerometer data as walking or non-walking using either GPS or travel diary data within a large sample of adults under free-living conditions. Methods Participants wore an accelerometer and a GPS unit, and concurrently completed a travel diary for 7 consecutive days. Physical activity (PA) bouts were identified using accelerometry count sequences. PA bouts were then classified as walking or non-walking based on a decision-tree algorithm consisting of 7 classification scenarios. Algorithm reliability was examined relative to two independent analysts’ classification of a 100-bout verification sample. The algorithm was then applied to the entire set of PA bouts. Results The 706 participants’ (mean age 51 years, 62% female, 80% non-Hispanic white, 70% college graduate or higher) yielded 4,702 person-days of data and had a total of 13,971 PA bouts. The algorithm showed a mean agreement of 95% with the independent analysts. It classified physical activity into 8,170 (58.5 %) walking bouts and 5,337 (38.2%) non-walking bouts; 464 (3.3%) bouts were not classified for lack of GPS and diary data. Nearly 70% of the walking bouts and 68% of the non-walking bouts were classified using only the objective accelerometer and GPS data. Travel diary data helped classify 30% of all bouts with no GPS data. The mean duration of PA bouts classified as walking was 15.2 min (SD=12.9). On average, participants had 1.7 walking bouts and 25.4 total walking minutes per day. Conclusions GPS and travel diary information can be helpful in classifying most accelerometer-derived PA bouts into walking or non-walking behavior. PMID:23439414
'Extremotaxis': computing with a bacterial-inspired algorithm.
Nicolau, Dan V; Burrage, Kevin; Nicolau, Dan V; Maini, Philip K
2008-01-01
We present a general-purpose optimization algorithm inspired by "run-and-tumble", the biased random walk chemotactic swimming strategy used by the bacterium Escherichia coli to locate regions of high nutrient concentration The method uses particles (corresponding to bacteria) that swim through the variable space (corresponding to the attractant concentration profile). By constantly performing temporal comparisons, the particles drift towards the minimum or maximum of the function of interest. We illustrate the use of our method with four examples. We also present a discrete version of the algorithm. The new algorithm is expected to be useful in combinatorial optimization problems involving many variables, where the functional landscape is apparently stochastic and has local minima, but preserves some derivative structure at intermediate scales.
WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, L; Thomas, C; Syme, A
2016-06-15
Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depictingmore » the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases, without significant safety concerns that hinder immediate clinical implementation.« less
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics.
Lin, Chenxi; Huang, Ningfeng; Povinelli, Michelle L
2012-01-02
We carry out a systematic numerical study of the effects of aperiodicity on silicon nanorod anti-reflection structures. We use the scattering matrix method to calculate the average reflection loss over the solar spectrum for periodic and aperiodic arrangements of nanorods. We find that aperiodicity can either improve or deteriorate the anti-reflection performance, depending on the nanorod diameter. We use a guided random-walk algorithm to design optimal aperiodic structures that exhibit lower reflection loss than both optimal periodic and random aperiodic structures.
Connectivity is a Poor Indicator of Fast Quantum Search
NASA Astrophysics Data System (ADS)
Meyer, David A.; Wong, Thomas G.
2015-03-01
A randomly walking quantum particle evolving by Schrödinger's equation searches on d -dimensional cubic lattices in O (√{N }) time when d ≥5 , and with progressively slower runtime as d decreases. This suggests that graph connectivity (including vertex, edge, algebraic, and normalized algebraic connectivities) is an indicator of fast quantum search, a belief supported by fast quantum search on complete graphs, strongly regular graphs, and hypercubes, all of which are highly connected. In this Letter, we show this intuition to be false by giving two examples of graphs for which the opposite holds true: one with low connectivity but fast search, and one with high connectivity but slow search. The second example is a novel two-stage quantum walk algorithm in which the walking rate must be adjusted to yield high search probability.
Open quantum random walk in terms of quantum Bernoulli noise
NASA Astrophysics Data System (ADS)
Wang, Caishi; Wang, Ce; Ren, Suling; Tang, Yuling
2018-03-01
In this paper, we introduce an open quantum random walk, which we call the QBN-based open walk, by means of quantum Bernoulli noise, and study its properties from a random walk point of view. We prove that, with the localized ground state as its initial state, the QBN-based open walk has the same limit probability distribution as the classical random walk. We also show that the probability distributions of the QBN-based open walk include those of the unitary quantum walk recently introduced by Wang and Ye (Quantum Inf Process 15:1897-1908, 2016) as a special case.
Ranking and clustering of nodes in networks with smart teleportation
NASA Astrophysics Data System (ADS)
Lambiotte, R.; Rosvall, M.
2012-05-01
Random teleportation is a necessary evil for ranking and clustering directed networks based on random walks. Teleportation enables ergodic solutions, but the solutions must necessarily depend on the exact implementation and parametrization of the teleportation. For example, in the commonly used PageRank algorithm, the teleportation rate must trade off a heavily biased solution with a uniform solution. Here we show that teleportation to links rather than nodes enables a much smoother trade-off and effectively more robust results. We also show that, by not recording the teleportation steps of the random walker, we can further reduce the effect of teleportation with dramatic effects on clustering.
Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not?
Kim, Jihan; Rodgers, Jocelyn M; Athènes, Manuel; Smit, Berend
2011-10-11
In the waste recycling Monte Carlo (WRMC) algorithm, (1) multiple trial states may be simultaneously generated and utilized during Monte Carlo moves to improve the statistical accuracy of the simulations, suggesting that such an algorithm may be well posed for implementation in parallel on graphics processing units (GPUs). In this paper, we implement two waste recycling Monte Carlo algorithms in CUDA (Compute Unified Device Architecture) using uniformly distributed random trial states and trial states based on displacement random-walk steps, and we test the methods on a methane-zeolite MFI framework system to evaluate their utility. We discuss the specific implementation details of the waste recycling GPU algorithm and compare the methods to other parallel algorithms optimized for the framework system. We analyze the relationship between the statistical accuracy of our simulations and the CUDA block size to determine the efficient allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors. Finally, we apply our optimized GPU algorithms to the important problem of determining free energy landscapes, in this case for molecular motion through the zeolite LTA.
Schimpl, Michaela; Lederer, Christian; Daumer, Martin
2011-01-01
Walking speed is a fundamental indicator for human well-being. In a clinical setting, walking speed is typically measured by means of walking tests using different protocols. However, walking speed obtained in this way is unlikely to be representative of the conditions in a free-living environment. Recently, mobile accelerometry has opened up the possibility to extract walking speed from long-time observations in free-living individuals, but the validity of these measurements needs to be determined. In this investigation, we have developed algorithms for walking speed prediction based on 3D accelerometry data (actibelt®) and created a framework using a standardized data set with gold standard annotations to facilitate the validation and comparison of these algorithms. For this purpose 17 healthy subjects operated a newly developed mobile gold standard while walking/running on an indoor track. Subsequently, the validity of 12 candidate algorithms for walking speed prediction ranging from well-known simple approaches like combining step length with frequency to more sophisticated algorithms such as linear and non-linear models was assessed using statistical measures. As a result, a novel algorithm employing support vector regression was found to perform best with a concordance correlation coefficient of 0.93 (95%CI 0.92–0.94) and a coverage probability CP1 of 0.46 (95%CI 0.12–0.70) for a deviation of 0.1 m/s (CP2 0.78, CP3 0.94) when compared to the mobile gold standard while walking indoors. A smaller outdoor experiment confirmed those results with even better coverage probability. We conclude that walking speed thus obtained has the potential to help establish walking speed in free-living environments as a patient-oriented outcome measure. PMID:21850254
Efficiency of exchange schemes in replica exchange
NASA Astrophysics Data System (ADS)
Lingenheil, Martin; Denschlag, Robert; Mathias, Gerald; Tavan, Paul
2009-08-01
In replica exchange simulations a fast diffusion of the replicas through the temperature space maximizes the efficiency of the statistical sampling. Here, we compare the diffusion speed as measured by the round trip rates for four exchange algorithms. We find different efficiency profiles with optimal average acceptance probabilities ranging from 8% to 41%. The best performance is determined by benchmark simulations for the most widely used algorithm, which alternately tries to exchange all even and all odd replica pairs. By analytical mathematics we show that the excellent performance of this exchange scheme is due to the high diffusivity of the underlying random walk.
Quantum search algorithms on a regular lattice
NASA Astrophysics Data System (ADS)
Hein, Birgit; Tanner, Gregor
2010-07-01
Quantum algorithms for searching for one or more marked items on a d-dimensional lattice provide an extension of Grover’s search algorithm including a spatial component. We demonstrate that these lattice search algorithms can be viewed in terms of the level dynamics near an avoided crossing of a one-parameter family of quantum random walks. We give approximations for both the level splitting at the avoided crossing and the effectively two-dimensional subspace of the full Hilbert space spanning the level crossing. This makes it possible to give the leading order behavior for the search time and the localization probability in the limit of large lattice size including the leading order coefficients. For d=2 and d=3, these coefficients are calculated explicitly. Closed form expressions are given for higher dimensions.
Reynolds, Andy M; Leprêtre, Lisa; Bohan, David A
2013-11-07
Correlated random walks are the dominant conceptual framework for modelling and interpreting organism movement patterns. Recent years have witnessed a stream of high profile publications reporting that many organisms perform Lévy walks; movement patterns that seemingly stand apart from the correlated random walk paradigm because they are discrete and scale-free rather than continuous and scale-finite. Our new study of the movement patterns of Tenebrio molitor beetles in unchanging, featureless arenas provides the first empirical support for a remarkable and deep theoretical synthesis that unites correlated random walks and Lévy walks. It demonstrates that the two models are complementary rather than competing descriptions of movement pattern data and shows that correlated random walks are a part of the Lévy walk family. It follows from this that vast numbers of Lévy walkers could be hiding in plain sight.
Optimal Quantum Spatial Search on Random Temporal Networks
NASA Astrophysics Data System (ADS)
Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser
2017-12-01
To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.
Spatial Search by Quantum Walk is Optimal for Almost all Graphs.
Chakraborty, Shantanav; Novo, Leonardo; Ambainis, Andris; Omar, Yasser
2016-03-11
The problem of finding a marked node in a graph can be solved by the spatial search algorithm based on continuous-time quantum walks (CTQW). However, this algorithm is known to run in optimal time only for a handful of graphs. In this work, we prove that for Erdös-Renyi random graphs, i.e., graphs of n vertices where each edge exists with probability p, search by CTQW is almost surely optimal as long as p≥log^{3/2}(n)/n. Consequently, we show that quantum spatial search is in fact optimal for almost all graphs, meaning that the fraction of graphs of n vertices for which this optimality holds tends to one in the asymptotic limit. We obtain this result by proving that search is optimal on graphs where the ratio between the second largest and the largest eigenvalue is bounded by a constant smaller than 1. Finally, we show that we can extend our results on search to establish high fidelity quantum communication between two arbitrary nodes of a random network of interacting qubits, namely, to perform quantum state transfer, as well as entanglement generation. Our work shows that quantum information tasks typically designed for structured systems retain performance in very disordered structures.
On Convergent Probability of a Random Walk
ERIC Educational Resources Information Center
Lee, Y.-F.; Ching, W.-K.
2006-01-01
This note introduces an interesting random walk on a straight path with cards of random numbers. The method of recurrent relations is used to obtain the convergent probability of the random walk with different initial positions.
Mixing times in quantum walks on two-dimensional grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquezino, F. L.; Portugal, R.; Abal, G.
2010-10-15
Mixing properties of discrete-time quantum walks on two-dimensional grids with toruslike boundary conditions are analyzed, focusing on their connection to the complexity of the corresponding abstract search algorithm. In particular, an exact expression for the stationary distribution of the coherent walk over odd-sided lattices is obtained after solving the eigenproblem for the evolution operator for this particular graph. The limiting distribution and mixing time of a quantum walk with a coin operator modified as in the abstract search algorithm are obtained numerically. On the basis of these results, the relation between the mixing time of the modified walk and themore » running time of the corresponding abstract search algorithm is discussed.« less
Mixing times in quantum walks on two-dimensional grids
NASA Astrophysics Data System (ADS)
Marquezino, F. L.; Portugal, R.; Abal, G.
2010-10-01
Mixing properties of discrete-time quantum walks on two-dimensional grids with toruslike boundary conditions are analyzed, focusing on their connection to the complexity of the corresponding abstract search algorithm. In particular, an exact expression for the stationary distribution of the coherent walk over odd-sided lattices is obtained after solving the eigenproblem for the evolution operator for this particular graph. The limiting distribution and mixing time of a quantum walk with a coin operator modified as in the abstract search algorithm are obtained numerically. On the basis of these results, the relation between the mixing time of the modified walk and the running time of the corresponding abstract search algorithm is discussed.
Scaling Limit of Symmetric Random Walk in High-Contrast Periodic Environment
NASA Astrophysics Data System (ADS)
Piatnitski, A.; Zhizhina, E.
2017-11-01
The paper deals with the asymptotic properties of a symmetric random walk in a high contrast periodic medium in Z^d, d≥1. From the existing homogenization results it follows that under diffusive scaling the limit behaviour of this random walk need not be Markovian. The goal of this work is to show that if in addition to the coordinate of the random walk in Z^d we introduce an extra variable that characterizes the position of the random walk inside the period then the limit dynamics of this two-component process is Markov. We describe the limit process and observe that the components of the limit process are coupled. We also prove the convergence in the path space for the said random walk.
Chen, Lei; Liu, Tao; Zhao, Xian
2018-06-01
The anatomical therapeutic chemical (ATC) classification system is a widely accepted drug classification scheme. This system comprises five levels and includes several classes in each level. Drugs are classified into classes according to their therapeutic effects and characteristics. The first level includes 14 main classes. In this study, we proposed two network-based models to infer novel potential chemicals deemed to belong in the first level of ATC classification. To build these models, two large chemical networks were constructed using the chemical-chemical interaction information retrieved from the Search Tool for Interactions of Chemicals (STITCH). Two classic network algorithms, shortest path (SP) and random walk with restart (RWR) algorithms, were executed on the corresponding network to mine novel chemicals for each ATC class using the validated drugs in a class as seed nodes. Then, the obtained chemicals yielded by these two algorithms were further evaluated by a permutation test and an association test. The former can exclude chemicals produced by the structure of the network, i.e., false positive discoveries. By contrast, the latter identifies the most important chemicals that have strong associations with the ATC class. Comparisons indicated that the two models can provide quite dissimilar results, suggesting that the results yielded by one model can be essential supplements for those obtained by the other model. In addition, several representative inferred chemicals were analyzed to confirm the reliability of the results generated by the two models. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017 Elsevier B.V. All rights reserved.
Hybrid glowworm swarm optimization for task scheduling in the cloud environment
NASA Astrophysics Data System (ADS)
Zhou, Jing; Dong, Shoubin
2018-06-01
In recent years many heuristic algorithms have been proposed to solve task scheduling problems in the cloud environment owing to their optimization capability. This article proposes a hybrid glowworm swarm optimization (HGSO) based on glowworm swarm optimization (GSO), which uses a technique of evolutionary computation, a strategy of quantum behaviour based on the principle of neighbourhood, offspring production and random walk, to achieve more efficient scheduling with reasonable scheduling costs. The proposed HGSO reduces the redundant computation and the dependence on the initialization of GSO, accelerates the convergence and more easily escapes from local optima. The conducted experiments and statistical analysis showed that in most cases the proposed HGSO algorithm outperformed previous heuristic algorithms to deal with independent tasks.
Modeling and Bayesian parameter estimation for shape memory alloy bending actuators
NASA Astrophysics Data System (ADS)
Crews, John H.; Smith, Ralph C.
2012-04-01
In this paper, we employ a homogenized energy model (HEM) for shape memory alloy (SMA) bending actuators. Additionally, we utilize a Bayesian method for quantifying parameter uncertainty. The system consists of a SMA wire attached to a flexible beam. As the actuator is heated, the beam bends, providing endoscopic motion. The model parameters are fit to experimental data using an ordinary least-squares approach. The uncertainty in the fit model parameters is then quantified using Markov Chain Monte Carlo (MCMC) methods. The MCMC algorithm provides bounds on the parameters, which will ultimately be used in robust control algorithms. One purpose of the paper is to test the feasibility of the Random Walk Metropolis algorithm, the MCMC method used here.
Efficient sampling of complex network with modified random walk strategies
NASA Astrophysics Data System (ADS)
Xie, Yunya; Chang, Shuhua; Zhang, Zhipeng; Zhang, Mi; Yang, Lei
2018-02-01
We present two novel random walk strategies, choosing seed node (CSN) random walk and no-retracing (NR) random walk. Different from the classical random walk sampling, the CSN and NR strategies focus on the influences of the seed node choice and path overlap, respectively. Three random walk samplings are applied in the Erdös-Rényi (ER), Barabási-Albert (BA), Watts-Strogatz (WS), and the weighted USAir networks, respectively. Then, the major properties of sampled subnets, such as sampling efficiency, degree distributions, average degree and average clustering coefficient, are studied. The similar conclusions can be reached with these three random walk strategies. Firstly, the networks with small scales and simple structures are conducive to the sampling. Secondly, the average degree and the average clustering coefficient of the sampled subnet tend to the corresponding values of original networks with limited steps. And thirdly, all the degree distributions of the subnets are slightly biased to the high degree side. However, the NR strategy performs better for the average clustering coefficient of the subnet. In the real weighted USAir networks, some obvious characters like the larger clustering coefficient and the fluctuation of degree distribution are reproduced well by these random walk strategies.
Walking Distance Estimation Using Walking Canes with Inertial Sensors
Suh, Young Soo
2018-01-01
A walking distance estimation algorithm for cane users is proposed using an inertial sensor unit attached to various positions on the cane. A standard inertial navigation algorithm using an indirect Kalman filter was applied to update the velocity and position of the cane during movement. For quadripod canes, a standard zero-velocity measurement-updating method is proposed. For standard canes, a velocity-updating method based on an inverted pendulum model is proposed. The proposed algorithms were verified by three walking experiments with two different types of canes and different positions of the sensor module. PMID:29342971
Blatti, Charles; Sinha, Saurabh
2016-07-15
Analysis of co-expressed gene sets typically involves testing for enrichment of different annotations or 'properties' such as biological processes, pathways, transcription factor binding sites, etc., one property at a time. This common approach ignores any known relationships among the properties or the genes themselves. It is believed that known biological relationships among genes and their many properties may be exploited to more accurately reveal commonalities of a gene set. Previous work has sought to achieve this by building biological networks that combine multiple types of gene-gene or gene-property relationships, and performing network analysis to identify other genes and properties most relevant to a given gene set. Most existing network-based approaches for recognizing genes or annotations relevant to a given gene set collapse information about different properties to simplify (homogenize) the networks. We present a network-based method for ranking genes or properties related to a given gene set. Such related genes or properties are identified from among the nodes of a large, heterogeneous network of biological information. Our method involves a random walk with restarts, performed on an initial network with multiple node and edge types that preserve more of the original, specific property information than current methods that operate on homogeneous networks. In this first stage of our algorithm, we find the properties that are the most relevant to the given gene set and extract a subnetwork of the original network, comprising only these relevant properties. We then re-rank genes by their similarity to the given gene set, based on a second random walk with restarts, performed on the above subnetwork. We demonstrate the effectiveness of this algorithm for ranking genes related to Drosophila embryonic development and aggressive responses in the brains of social animals. DRaWR was implemented as an R package available at veda.cs.illinois.edu/DRaWR. blatti@illinois.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Valentini, Giorgio; Paccanaro, Alberto; Caniza, Horacio; Romero, Alfonso E; Re, Matteo
2014-06-01
In the context of "network medicine", gene prioritization methods represent one of the main tools to discover candidate disease genes by exploiting the large amount of data covering different types of functional relationships between genes. Several works proposed to integrate multiple sources of data to improve disease gene prioritization, but to our knowledge no systematic studies focused on the quantitative evaluation of the impact of network integration on gene prioritization. In this paper, we aim at providing an extensive analysis of gene-disease associations not limited to genetic disorders, and a systematic comparison of different network integration methods for gene prioritization. We collected nine different functional networks representing different functional relationships between genes, and we combined them through both unweighted and weighted network integration methods. We then prioritized genes with respect to each of the considered 708 medical subject headings (MeSH) diseases by applying classical guilt-by-association, random walk and random walk with restart algorithms, and the recently proposed kernelized score functions. The results obtained with classical random walk algorithms and the best single network achieved an average area under the curve (AUC) across the 708 MeSH diseases of about 0.82, while kernelized score functions and network integration boosted the average AUC to about 0.89. Weighted integration, by exploiting the different "informativeness" embedded in different functional networks, outperforms unweighted integration at 0.01 significance level, according to the Wilcoxon signed rank sum test. For each MeSH disease we provide the top-ranked unannotated candidate genes, available for further bio-medical investigation. Network integration is necessary to boost the performances of gene prioritization methods. Moreover the methods based on kernelized score functions can further enhance disease gene ranking results, by adopting both local and global learning strategies, able to exploit the overall topology of the network. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Soil porosity correlation and its influence in percolation dynamics
NASA Astrophysics Data System (ADS)
Rodriguez, Alfredo; Capa-Morocho, Mirian; Ruis-Ramos, Margarita; Tarquis, Ana M.
2016-04-01
The prediction of percolation in natural soils is relevant for modeling root growth and optimizing infiltration of water and nutrients. Also, it would improve our understanding on how pollutants as pesticides, and virus and bacteria (Darnault et al., 2003) reach significant depths without being filtered out by the soil matrix (Beven and Germann, 2013). Random walk algorithms have been used successfully to date to characterize the dynamical characteristics of disordered media. This approach has been used here to describe how soil at different bulk densities and with different threshold values applied to the 3D gray images influences the structure of the pore network and their implications on particle flow and distribution (Ruiz-Ramos et al., 2009). In order to do so first we applied several threshold values to each image analyzed and characterized them through Hurst exponents, then we computed random walks algorithms to calculate distances reached by the particles and speed of those particles. At the same time, 3D structures with a Hurst exponent of ca 0.5 and with different porosities were constructed and the same random walks simulations were replicated over these generated structures. We have found a relationship between Hurst exponents and the speed distribution of the particles reaching percolation of the total soil depth. REFERENCES Darnault, C.J. G., P. Garnier, Y.J. Kim, K.L. Oveson, T.S. Steenhuis, J.Y. Parlange, M. Jenkins, W.C. Ghiorse, and P. Baveye (2003), Preferential transport of Cryptosporidium parvum oocysts in variably saturated subsurface environments, Water Environ. Res., 75, 113-120. Beven, Keith and Germann, Peter. 2013. Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071-3092. DOI: 10.1002/wrcr.20156. Ruiz-Ramos, M., D. del Valle, D. Grinev, and A.M. Tarquis. 2009. Soil hydraulic behaviour at different bulk densities. Geophysical Research Abstracts, 11, EGU2009-6234.
Bi-dimensional null model analysis of presence-absence binary matrices.
Strona, Giovanni; Ulrich, Werner; Gotelli, Nicholas J
2018-01-01
Comparing the structure of presence/absence (i.e., binary) matrices with those of randomized counterparts is a common practice in ecology. However, differences in the randomization procedures (null models) can affect the results of the comparisons, leading matrix structural patterns to appear either "random" or not. Subjectivity in the choice of one particular null model over another makes it often advisable to compare the results obtained using several different approaches. Yet, available algorithms to randomize binary matrices differ substantially in respect to the constraints they impose on the discrepancy between observed and randomized row and column marginal totals, which complicates the interpretation of contrasting patterns. This calls for new strategies both to explore intermediate scenarios of restrictiveness in-between extreme constraint assumptions, and to properly synthesize the resulting information. Here we introduce a new modeling framework based on a flexible matrix randomization algorithm (named the "Tuning Peg" algorithm) that addresses both issues. The algorithm consists of a modified swap procedure in which the discrepancy between the row and column marginal totals of the target matrix and those of its randomized counterpart can be "tuned" in a continuous way by two parameters (controlling, respectively, row and column discrepancy). We show how combining the Tuning Peg with a wise random walk procedure makes it possible to explore the complete null space embraced by existing algorithms. This exploration allows researchers to visualize matrix structural patterns in an innovative bi-dimensional landscape of significance/effect size. We demonstrate the rational and potential of our approach with a set of simulated and real matrices, showing how the simultaneous investigation of a comprehensive and continuous portion of the null space can be extremely informative, and possibly key to resolving longstanding debates in the analysis of ecological matrices. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Durhuus, Bergfinnur; Jonsson, Thordur; Wheater, John F.
2006-02-01
We develop techniques to obtain rigorous bounds on the behaviour of random walks on combs. Using these bounds, we calculate exactly the spectral dimension of random combs with infinite teeth at random positions or teeth with random but finite length. We also calculate exactly the spectral dimension of some fixed non-translationally invariant combs. We relate the spectral dimension to the critical exponent of the mass of the two-point function for random walks on random combs, and compute mean displacements as a function of walk duration. We prove that the mean first passage time is generally infinite for combs with anomalous spectral dimension.
Diabetic Erythrocytes Test by Correlation Coefficient
Korol, A.M; Foresto, P; Darrigo, M; Rosso, O.A
2008-01-01
Even when a healthy individual is studied, his/her erythrocytes in capillaries continually change their shape in a synchronized erratic fashion. In this work, the problem of characterizing the cell behavior is studied from the perspective of bounded correlated random walk, based on the assumption that diffractometric data involves both deterministic and stochastic components. The photometric readings are obtained by ektacytometry over several millions of shear elongated cells, using a home-made device called Erythrodeformeter. We have only a scalar signal and no governing equations; therefore the complete behavior has to be reconstructed in an artificial phase space. To analyze dynamics we used the technique of time delay coordinates suggested by Takens, May algorithm, and Fourier transform. The results suggest that on random-walk approach the samples from healthy controls exhibit significant differences from those from diabetic patients and these could allow us to claim that we have linked mathematical nonlinear tools with clinical aspects of diabetic erythrocytes’ rheological properties. PMID:19415139
Quantum random walks on congested lattices and the effect of dephasing.
Motes, Keith R; Gilchrist, Alexei; Rohde, Peter P
2016-01-27
We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled on lattices that contain static defects which reverse the walker's direction. We implement a dephasing process after each step which allows us to smoothly interpolate between classical and quantum random walks as well as study the effect of dephasing on the quantum walk. Our key results show that a quantum walker escapes a finite boundary dramatically faster than a classical walker and that this advantage remains in the presence of heavily congested lattices.
Coupled continuous time-random walks in quenched random environment
NASA Astrophysics Data System (ADS)
Magdziarz, M.; Szczotka, W.
2018-02-01
We introduce a coupled continuous-time random walk with coupling which is characteristic for Lévy walks. Additionally we assume that the walker moves in a quenched random environment, i.e. the site disorder at each lattice point is fixed in time. We analyze the scaling limit of such a random walk. We show that for large times the behaviour of the analyzed process is exactly the same as in the case of uncoupled quenched trap model for Lévy flights.
NASA Astrophysics Data System (ADS)
Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.
2017-12-01
We analyze a Markovian random walk strategy on undirected regular networks involving power matrix functions of the type L\\frac{α{2}} where L indicates a ‘simple’ Laplacian matrix. We refer to such walks as ‘fractional random walks’ with admissible interval 0<α ≤slant 2 . We deduce probability-generating functions (network Green’s functions) for the fractional random walk. From these analytical results we establish a generalization of Polya’s recurrence theorem for fractional random walks on d-dimensional infinite lattices: The fractional random walk is transient for dimensions d > α (recurrent for d≤slantα ) of the lattice. As a consequence, for 0<α< 1 the fractional random walk is transient for all lattice dimensions d=1, 2, .. and in the range 1≤slantα < 2 for dimensions d≥slant 2 . Finally, for α=2 , Polya’s classical recurrence theorem is recovered, namely the walk is transient only for lattice dimensions d≥slant 3 . The generalization of Polya’s recurrence theorem remains valid for the class of random walks with Lévy flight asymptotics for long-range steps. We also analyze the mean first passage probabilities, mean residence times, mean first passage times and global mean first passage times (Kemeny constant) for the fractional random walk. For an infinite 1D lattice (infinite ring) we obtain for the transient regime 0<α<1 closed form expressions for the fractional lattice Green’s function matrix containing the escape and ever passage probabilities. The ever passage probabilities (fractional lattice Green’s functions) in the transient regime fulfil Riesz potential power law decay asymptotic behavior for nodes far from the departure node. The non-locality of the fractional random walk is generated by the non-diagonality of the fractional Laplacian matrix with Lévy-type heavy tailed inverse power law decay for the probability of long-range moves. This non-local and asymptotic behavior of the fractional random walk introduces small-world properties with the emergence of Lévy flights on large (infinite) lattices.
NASA Astrophysics Data System (ADS)
Zaburdaev, V.; Denisov, S.; Klafter, J.
2015-04-01
Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Lévy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Lévy walks, surveys their existing applications, including latest advances, and outlines further perspectives.
Search for Directed Networks by Different Random Walk Strategies
NASA Astrophysics Data System (ADS)
Zhu, Zi-Qi; Jin, Xiao-Ling; Huang, Zhi-Long
2012-03-01
A comparative study is carried out on the efficiency of five different random walk strategies searching on directed networks constructed based on several typical complex networks. Due to the difference in search efficiency of the strategies rooted in network clustering, the clustering coefficient in a random walker's eye on directed networks is defined and computed to be half of the corresponding undirected networks. The search processes are performed on the directed networks based on Erdös—Rényi model, Watts—Strogatz model, Barabási—Albert model and clustered scale-free network model. It is found that self-avoiding random walk strategy is the best search strategy for such directed networks. Compared to unrestricted random walk strategy, path-iteration-avoiding random walks can also make the search process much more efficient. However, no-triangle-loop and no-quadrangle-loop random walks do not improve the search efficiency as expected, which is different from those on undirected networks since the clustering coefficient of directed networks are smaller than that of undirected networks.
Quantum random walks on congested lattices and the effect of dephasing
Motes, Keith R.; Gilchrist, Alexei; Rohde, Peter P.
2016-01-01
We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled on lattices that contain static defects which reverse the walker’s direction. We implement a dephasing process after each step which allows us to smoothly interpolate between classical and quantum random walks as well as study the effect of dephasing on the quantum walk. Our key results show that a quantum walker escapes a finite boundary dramatically faster than a classical walker and that this advantage remains in the presence of heavily congested lattices. PMID:26812924
Identifying walking trips from GPS and accelerometer data in adolescent females
Rodriguez, Daniel; Cho, GH; Elder, John; Conway, Terry; Evenson, Kelly R; Ghosh-Dastidar, Bonnie; Shay, Elizabeth; Cohen, Deborah A; Veblen-Mortenson, Sarah; Pickrell, Julie; Lytle, Leslie
2013-01-01
Background Studies that have combined accelerometers and global positioning systems (GPS) to identify walking have done so in carefully controlled conditions. This study tested algorithms for identifying walking trips from accelerometer and GPS data in free-living conditions. The study also assessed the accuracy of the locations where walking occurred compared to what participants reported in a diary. Methods A convenience sample of high school females was recruited (N=42) in 2007. Participants wore a GPS unit and an accelerometer, and recorded their out-of-school travel for six days. Split-sample validation was used to examine agreement in the daily and total number of walking trips with Kappa statistics and count regression models, while agreement in locations visited by walking was examined with geographic information systems. Results Agreement varied based on the parameters of the algorithm, with algorithms exhibiting moderate to substantial agreement with self-reported daily (Kappa = 0.33–0.48) and weekly (Kappa = 0.41–0.64) walking trips. Comparison of reported locations reached by walking and GPS data suggest that reported locations are accurate. Conclusions The use of GPS and accelerometers is promising for assessing the number of walking trips and the walking locations of adolescent females. PMID:21934163
A discrete random walk on the hypercube
NASA Astrophysics Data System (ADS)
Zhang, Jingyuan; Xiang, Yonghong; Sun, Weigang
2018-03-01
In this paper, we study the scaling for mean first-passage time (MFPT) of random walks on the hypercube and obtain a closed-form formula for the MFPT over all node pairs. We also determine the exponent of scaling efficiency characterizing the random walks and compare it with those of the existing networks. Finally we study the random walks on the hypercube with a located trap and provide a solution of the Kirchhoff index of the hypercube.
Novel pseudo-random number generator based on quantum random walks.
Yang, Yu-Guang; Zhao, Qian-Qian
2016-02-04
In this paper, we investigate the potential application of quantum computation for constructing pseudo-random number generators (PRNGs) and further construct a novel PRNG based on quantum random walks (QRWs), a famous quantum computation model. The PRNG merely relies on the equations used in the QRWs, and thus the generation algorithm is simple and the computation speed is fast. The proposed PRNG is subjected to statistical tests such as NIST and successfully passed the test. Compared with the representative PRNG based on quantum chaotic maps (QCM), the present QRWs-based PRNG has some advantages such as better statistical complexity and recurrence. For example, the normalized Shannon entropy and the statistical complexity of the QRWs-based PRNG are 0.999699456771172 and 1.799961178212329e-04 respectively given the number of 8 bits-words, say, 16Mbits. By contrast, the corresponding values of the QCM-based PRNG are 0.999448131481064 and 3.701210794388818e-04 respectively. Thus the statistical complexity and the normalized entropy of the QRWs-based PRNG are closer to 0 and 1 respectively than those of the QCM-based PRNG when the number of words of the analyzed sequence increases. It provides a new clue to construct PRNGs and also extends the applications of quantum computation.
Novel pseudo-random number generator based on quantum random walks
Yang, Yu-Guang; Zhao, Qian-Qian
2016-01-01
In this paper, we investigate the potential application of quantum computation for constructing pseudo-random number generators (PRNGs) and further construct a novel PRNG based on quantum random walks (QRWs), a famous quantum computation model. The PRNG merely relies on the equations used in the QRWs, and thus the generation algorithm is simple and the computation speed is fast. The proposed PRNG is subjected to statistical tests such as NIST and successfully passed the test. Compared with the representative PRNG based on quantum chaotic maps (QCM), the present QRWs-based PRNG has some advantages such as better statistical complexity and recurrence. For example, the normalized Shannon entropy and the statistical complexity of the QRWs-based PRNG are 0.999699456771172 and 1.799961178212329e-04 respectively given the number of 8 bits-words, say, 16Mbits. By contrast, the corresponding values of the QCM-based PRNG are 0.999448131481064 and 3.701210794388818e-04 respectively. Thus the statistical complexity and the normalized entropy of the QRWs-based PRNG are closer to 0 and 1 respectively than those of the QCM-based PRNG when the number of words of the analyzed sequence increases. It provides a new clue to construct PRNGs and also extends the applications of quantum computation. PMID:26842402
Online Phase Detection Using Wearable Sensors for Walking with a Robotic Prosthesis
Goršič, Maja; Kamnik, Roman; Ambrožič, Luka; Vitiello, Nicola; Lefeber, Dirk; Pasquini, Guido; Munih, Marko
2014-01-01
This paper presents a gait phase detection algorithm for providing feedback in walking with a robotic prosthesis. The algorithm utilizes the output signals of a wearable wireless sensory system incorporating sensorized shoe insoles and inertial measurement units attached to body segments. The principle of detecting transitions between gait phases is based on heuristic threshold rules, dividing a steady-state walking stride into four phases. For the evaluation of the algorithm, experiments with three amputees, walking with the robotic prosthesis and wearable sensors, were performed. Results show a high rate of successful detection for all four phases (the average success rate across all subjects >90%). A comparison of the proposed method to an off-line trained algorithm using hidden Markov models reveals a similar performance achieved without the need for learning dataset acquisition and previous model training. PMID:24521944
Ellis, Katherine; Godbole, Suneeta; Marshall, Simon; Lanckriet, Gert; Staudenmayer, John; Kerr, Jacqueline
2014-01-01
Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper, we present a supervised machine learning method for transportation mode prediction from global positioning system (GPS) and accelerometer data. We collected a dataset of about 150 h of GPS and accelerometer data from two research assistants following a protocol of prescribed trips consisting of five activities: bicycling, riding in a vehicle, walking, sitting, and standing. We extracted 49 features from 1-min windows of this data. We compared the performance of several machine learning algorithms and chose a random forest algorithm to classify the transportation mode. We used a moving average output filter to smooth the output predictions over time. The random forest algorithm achieved 89.8% cross-validated accuracy on this dataset. Adding the moving average filter to smooth output predictions increased the cross-validated accuracy to 91.9%. Machine learning methods are a viable approach for automating measurement of active travel, particularly for measuring travel activities that traditional accelerometer data processing methods misclassify, such as bicycling and vehicle travel.
Using circuit theory to model connectivity in ecology, evolution, and conservation.
McRae, Brad H; Dickson, Brett G; Keitt, Timothy H; Shah, Viral B
2008-10-01
Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.
Influence of the random walk finite step on the first-passage probability
NASA Astrophysics Data System (ADS)
Klimenkova, Olga; Menshutin, Anton; Shchur, Lev
2018-01-01
A well known connection between first-passage probability of random walk and distribution of electrical potential described by Laplace equation is studied. We simulate random walk in the plane numerically as a discrete time process with fixed step length. We measure first-passage probability to touch the absorbing sphere of radius R in 2D. We found a regular deviation of the first-passage probability from the exact function, which we attribute to the finiteness of the random walk step.
Evolving a Behavioral Repertoire for a Walking Robot.
Cully, A; Mouret, J-B
2016-01-01
Numerous algorithms have been proposed to allow legged robots to learn to walk. However, most of these algorithms are devised to learn walking in a straight line, which is not sufficient to accomplish any real-world mission. Here we introduce the Transferability-based Behavioral Repertoire Evolution algorithm (TBR-Evolution), a novel evolutionary algorithm that simultaneously discovers several hundreds of simple walking controllers, one for each possible direction. By taking advantage of solutions that are usually discarded by evolutionary processes, TBR-Evolution is substantially faster than independently evolving each controller. Our technique relies on two methods: (1) novelty search with local competition, which searches for both high-performing and diverse solutions, and (2) the transferability approach, which combines simulations and real tests to evolve controllers for a physical robot. We evaluate this new technique on a hexapod robot. Results show that with only a few dozen short experiments performed on the robot, the algorithm learns a repertoire of controllers that allows the robot to reach every point in its reachable space. Overall, TBR-Evolution introduced a new kind of learning algorithm that simultaneously optimizes all the achievable behaviors of a robot.
Rare Event Simulation in Radiation Transport
NASA Astrophysics Data System (ADS)
Kollman, Craig
This dissertation studies methods for estimating extremely small probabilities by Monte Carlo simulation. Problems in radiation transport typically involve estimating very rare events or the expected value of a random variable which is with overwhelming probability equal to zero. These problems often have high dimensional state spaces and irregular geometries so that analytic solutions are not possible. Monte Carlo simulation must be used to estimate the radiation dosage being transported to a particular location. If the area is well shielded the probability of any one particular particle getting through is very small. Because of the large number of particles involved, even a tiny fraction penetrating the shield may represent an unacceptable level of radiation. It therefore becomes critical to be able to accurately estimate this extremely small probability. Importance sampling is a well known technique for improving the efficiency of rare event calculations. Here, a new set of probabilities is used in the simulation runs. The results are multiplied by the likelihood ratio between the true and simulated probabilities so as to keep our estimator unbiased. The variance of the resulting estimator is very sensitive to which new set of transition probabilities are chosen. It is shown that a zero variance estimator does exist, but that its computation requires exact knowledge of the solution. A simple random walk with an associated killing model for the scatter of neutrons is introduced. Large deviation results for optimal importance sampling in random walks are extended to the case where killing is present. An adaptive "learning" algorithm for implementing importance sampling is given for more general Markov chain models of neutron scatter. For finite state spaces this algorithm is shown to give, with probability one, a sequence of estimates converging exponentially fast to the true solution. In the final chapter, an attempt to generalize this algorithm to a continuous state space is made. This involves partitioning the space into a finite number of cells. There is a tradeoff between additional computation per iteration and variance reduction per iteration that arises in determining the optimal grid size. All versions of this algorithm can be thought of as a compromise between deterministic and Monte Carlo methods, capturing advantages of both techniques.
Modelling Evolutionary Algorithms with Stochastic Differential Equations.
Heredia, Jorge Pérez
2017-11-20
There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.
Thubagere, Anupama J; Li, Wei; Johnson, Robert F; Chen, Zibo; Doroudi, Shayan; Lee, Yae Lim; Izatt, Gregory; Wittman, Sarah; Srinivas, Niranjan; Woods, Damien; Winfree, Erik; Qian, Lulu
2017-09-15
Two critical challenges in the design and synthesis of molecular robots are modularity and algorithm simplicity. We demonstrate three modular building blocks for a DNA robot that performs cargo sorting at the molecular level. A simple algorithm encoding recognition between cargos and their destinations allows for a simple robot design: a single-stranded DNA with one leg and two foot domains for walking, and one arm and one hand domain for picking up and dropping off cargos. The robot explores a two-dimensional testing ground on the surface of DNA origami, picks up multiple cargos of two types that are initially at unordered locations, and delivers them to specified destinations until all molecules are sorted into two distinct piles. The robot is designed to perform a random walk without any energy supply. Exploiting this feature, a single robot can repeatedly sort multiple cargos. Localization on DNA origami allows for distinct cargo-sorting tasks to take place simultaneously in one test tube or for multiple robots to collectively perform the same task. Copyright © 2017, American Association for the Advancement of Science.
Complex network structure of musical compositions: Algorithmic generation of appealing music
NASA Astrophysics Data System (ADS)
Liu, Xiao Fan; Tse, Chi K.; Small, Michael
2010-01-01
In this paper we construct networks for music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurring connections. We analyze classical music from Bach, Mozart, Chopin, as well as other types of music such as Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. We conjecture that preserving the universal network properties is a necessary step in artificial composition of music. Power-law exponents of node degree, node strength and/or edge weight distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be composed artificially using a controlled random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. By generating a large number of compositions, we find that this algorithm generates music which has the necessary qualities to be subjectively judged as appealing.
A New Random Walk for Replica Detection in WSNs.
Aalsalem, Mohammed Y; Khan, Wazir Zada; Saad, N M; Hossain, Md Shohrab; Atiquzzaman, Mohammed; Khan, Muhammad Khurram
2016-01-01
Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical.
A New Random Walk for Replica Detection in WSNs
Aalsalem, Mohammed Y.; Saad, N. M.; Hossain, Md. Shohrab; Atiquzzaman, Mohammed; Khan, Muhammad Khurram
2016-01-01
Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical. PMID:27409082
The Shark Random Swim - (Lévy Flight with Memory)
NASA Astrophysics Data System (ADS)
Businger, Silvia
2018-05-01
The Elephant Random Walk (ERW), first introduced by Schütz and Trimper (Phys Rev E 70:045101, 2004), is a one-dimensional simple random walk on Z having a memory about the whole past. We study the Shark Random Swim, a random walk with memory about the whole past, whose steps are α -stable distributed with α \\in (0,2] . Our aim in this work is to study the impact of the heavy tailed step distributions on the asymptotic behavior of the random walk. We shall see that, as for the ERW, the asymptotic behavior of the Shark Random Swim depends on its memory parameter p, and that a phase transition can be observed at the critical value p=1/α.
On the mixing time in the Wang-Landau algorithm
NASA Astrophysics Data System (ADS)
Fadeeva, Marina; Shchur, Lev
2018-01-01
We present preliminary results of the investigation of the properties of the Markov random walk in the energy space generated by the Wang-Landau probability. We build transition matrix in the energy space (TMES) using the exact density of states for one-dimensional and two-dimensional Ising models. The spectral gap of TMES is inversely proportional to the mixing time of the Markov chain. We estimate numerically the dependence of the mixing time on the lattice size, and extract the mixing exponent.
Record statistics of financial time series and geometric random walks
NASA Astrophysics Data System (ADS)
Sabir, Behlool; Santhanam, M. S.
2014-09-01
The study of record statistics of correlated series in physics, such as random walks, is gaining momentum, and several analytical results have been obtained in the past few years. In this work, we study the record statistics of correlated empirical data for which random walk models have relevance. We obtain results for the records statistics of select stock market data and the geometric random walk, primarily through simulations. We show that the distribution of the age of records is a power law with the exponent α lying in the range 1.5≤α≤1.8. Further, the longest record ages follow the Fréchet distribution of extreme value theory. The records statistics of geometric random walk series is in good agreement with that obtained from empirical stock data.
Multidimensional generalized-ensemble algorithms for complex systems.
Mitsutake, Ayori; Okamoto, Yuko
2009-06-07
We give general formulations of the multidimensional multicanonical algorithm, simulated tempering, and replica-exchange method. We generalize the original potential energy function E(0) by adding any physical quantity V of interest as a new energy term. These multidimensional generalized-ensemble algorithms then perform a random walk not only in E(0) space but also in V space. Among the three algorithms, the replica-exchange method is the easiest to perform because the weight factor is just a product of regular Boltzmann-like factors, while the weight factors for the multicanonical algorithm and simulated tempering are not a priori known. We give a simple procedure for obtaining the weight factors for these two latter algorithms, which uses a short replica-exchange simulation and the multiple-histogram reweighting techniques. As an example of applications of these algorithms, we have performed a two-dimensional replica-exchange simulation and a two-dimensional simulated-tempering simulation using an alpha-helical peptide system. From these simulations, we study the helix-coil transitions of the peptide in gas phase and in aqueous solution.
Random element method for numerical modeling of diffusional processes
NASA Technical Reports Server (NTRS)
Ghoniem, A. F.; Oppenheim, A. K.
1982-01-01
The random element method is a generalization of the random vortex method that was developed for the numerical modeling of momentum transport processes as expressed in terms of the Navier-Stokes equations. The method is based on the concept that random walk, as exemplified by Brownian motion, is the stochastic manifestation of diffusional processes. The algorithm based on this method is grid-free and does not require the diffusion equation to be discritized over a mesh, it is thus devoid of numerical diffusion associated with finite difference methods. Moreover, the algorithm is self-adaptive in space and explicit in time, resulting in an improved numerical resolution of gradients as well as a simple and efficient computational procedure. The method is applied here to an assortment of problems of diffusion of momentum and energy in one-dimension as well as heat conduction in two-dimensions in order to assess its validity and accuracy. The numerical solutions obtained are found to be in good agreement with exact solution except for a statistical error introduced by using a finite number of elements, the error can be reduced by increasing the number of elements or by using ensemble averaging over a number of solutions.
Random Walk Graph Laplacian-Based Smoothness Prior for Soft Decoding of JPEG Images.
Liu, Xianming; Cheung, Gene; Wu, Xiaolin; Zhao, Debin
2017-02-01
Given the prevalence of joint photographic experts group (JPEG) compressed images, optimizing image reconstruction from the compressed format remains an important problem. Instead of simply reconstructing a pixel block from the centers of indexed discrete cosine transform (DCT) coefficient quantization bins (hard decoding), soft decoding reconstructs a block by selecting appropriate coefficient values within the indexed bins with the help of signal priors. The challenge thus lies in how to define suitable priors and apply them effectively. In this paper, we combine three image priors-Laplacian prior for DCT coefficients, sparsity prior, and graph-signal smoothness prior for image patches-to construct an efficient JPEG soft decoding algorithm. Specifically, we first use the Laplacian prior to compute a minimum mean square error initial solution for each code block. Next, we show that while the sparsity prior can reduce block artifacts, limiting the size of the overcomplete dictionary (to lower computation) would lead to poor recovery of high DCT frequencies. To alleviate this problem, we design a new graph-signal smoothness prior (desired signal has mainly low graph frequencies) based on the left eigenvectors of the random walk graph Laplacian matrix (LERaG). Compared with the previous graph-signal smoothness priors, LERaG has desirable image filtering properties with low computation overhead. We demonstrate how LERaG can facilitate recovery of high DCT frequencies of a piecewise smooth signal via an interpretation of low graph frequency components as relaxed solutions to normalized cut in spectral clustering. Finally, we construct a soft decoding algorithm using the three signal priors with appropriate prior weights. Experimental results show that our proposal outperforms the state-of-the-art soft decoding algorithms in both objective and subjective evaluations noticeably.
Rauscher, Sarah; Neale, Chris; Pomès, Régis
2009-10-13
Generalized-ensemble algorithms in temperature space have become popular tools to enhance conformational sampling in biomolecular simulations. A random walk in temperature leads to a corresponding random walk in potential energy, which can be used to cross over energetic barriers and overcome the problem of quasi-nonergodicity. In this paper, we introduce two novel methods: simulated tempering distributed replica sampling (STDR) and virtual replica exchange (VREX). These methods are designed to address the practical issues inherent in the replica exchange (RE), simulated tempering (ST), and serial replica exchange (SREM) algorithms. RE requires a large, dedicated, and homogeneous cluster of CPUs to function efficiently when applied to complex systems. ST and SREM both have the drawback of requiring extensive initial simulations, possibly adaptive, for the calculation of weight factors or potential energy distribution functions. STDR and VREX alleviate the need for lengthy initial simulations, and for synchronization and extensive communication between replicas. Both methods are therefore suitable for distributed or heterogeneous computing platforms. We perform an objective comparison of all five algorithms in terms of both implementation issues and sampling efficiency. We use disordered peptides in explicit water as test systems, for a total simulation time of over 42 μs. Efficiency is defined in terms of both structural convergence and temperature diffusion, and we show that these definitions of efficiency are in fact correlated. Importantly, we find that ST-based methods exhibit faster temperature diffusion and correspondingly faster convergence of structural properties compared to RE-based methods. Within the RE-based methods, VREX is superior to both SREM and RE. On the basis of our observations, we conclude that ST is ideal for simple systems, while STDR is well-suited for complex systems.
On efficient randomized algorithms for finding the PageRank vector
NASA Astrophysics Data System (ADS)
Gasnikov, A. V.; Dmitriev, D. Yu.
2015-03-01
Two randomized methods are considered for finding the PageRank vector; in other words, the solution of the system p T = p T P with a stochastic n × n matrix P, where n ˜ 107-109, is sought (in the class of probability distributions) with accuracy ɛ: ɛ ≫ n -1. Thus, the possibility of brute-force multiplication of P by the column is ruled out in the case of dense objects. The first method is based on the idea of Markov chain Monte Carlo algorithms. This approach is efficient when the iterative process p {/t+1 T} = p {/t T} P quickly reaches a steady state. Additionally, it takes into account another specific feature of P, namely, the nonzero off-diagonal elements of P are equal in rows (this property is used to organize a random walk over the graph with the matrix P). Based on modern concentration-of-measure inequalities, new bounds for the running time of this method are presented that take into account the specific features of P. In the second method, the search for a ranking vector is reduced to finding the equilibrium in the antagonistic matrix game where S n (1) is a unit simplex in ℝ n and I is the identity matrix. The arising problem is solved by applying a slightly modified Grigoriadis-Khachiyan algorithm (1995). This technique, like the Nazin-Polyak method (2009), is a randomized version of Nemirovski's mirror descent method. The difference is that randomization in the Grigoriadis-Khachiyan algorithm is used when the gradient is projected onto the simplex rather than when the stochastic gradient is computed. For sparse matrices P, the method proposed yields noticeably better results.
Phenomenological picture of fluctuations in branching random walks
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Munier, S.
2014-10-01
We propose a picture of the fluctuations in branching random walks, which leads to predictions for the distribution of a random variable that characterizes the position of the bulk of the particles. We also interpret the 1 /√{t } correction to the average position of the rightmost particle of a branching random walk for large times t ≫1 , computed by Ebert and Van Saarloos, as fluctuations on top of the mean-field approximation of this process with a Brunet-Derrida cutoff at the tip that simulates discreteness. Our analytical formulas successfully compare to numerical simulations of a particular model of a branching random walk.
Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua
2014-01-01
This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties. PMID:24741341
Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua
2014-01-01
This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties.
Covering Ground: Movement Patterns and Random Walk Behavior in Aquilonastra anomala Sea Stars.
Lohmann, Amanda C; Evangelista, Dennis; Waldrop, Lindsay D; Mah, Christopher L; Hedrick, Tyson L
2016-10-01
The paths animals take while moving through their environments affect their likelihood of encountering food and other resources; thus, models of foraging behavior abound. To collect movement data appropriate for comparison with these models, we used time-lapse photography to track movements of a small, hardy, and easy-to-obtain organism, Aquilonastra anomala sea stars. We recorded the sea stars in a tank over many hours, with and without a food cue. With food present, they covered less distance, as predicted by theory; this strategy would allow them to remain near food. We then compared the paths of the sea stars to three common models of animal movement: Brownian motion, Lévy walks, and correlated random walks; we found that the sea stars' movements most closely resembled a correlated random walk. Additionally, we compared the search performance of models of Brownian motion, a Lévy walk, and a correlated random walk to that of a model based on the sea stars' movements. We found that the behavior of the modeled sea star walk was similar to that of the modeled correlated random walk and the Brownian motion model, but that the sea star walk was slightly more likely than the other walks to find targets at intermediate distances. While organisms are unlikely to follow an idealized random walk in all details, our data suggest that comparing the effectiveness of an organism's paths to those from theory can give insight into the organism's actual movement strategy. Finally, automated optical tracking of invertebrates proved feasible, and A. anomala was revealed to be a tractable, 2D-movement study system.
A new time domain random walk method for solute transport in 1-D heterogeneous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banton, O.; Delay, F.; Porel, G.
A new method to simulate solute transport in 1-D heterogeneous media is presented. This time domain random walk method (TDRW), similar in concept to the classical random walk method, calculates the arrival time of a particle cloud at a given location (directly providing the solute breakthrough curve). The main advantage of the method is that the restrictions on the space increments and the time steps which exist with the finite differences and random walk methods are avoided. In a homogeneous zone, the breakthrough curve (BTC) can be calculated directly at a given distance using a few hundred particles or directlymore » at the boundary of the zone. Comparisons with analytical solutions and with the classical random walk method show the reliability of this method. The velocity and dispersivity calculated from the simulated results agree within two percent with the values used as input in the model. For contrasted heterogeneous media, the random walk can generate high numerical dispersion, while the time domain approach does not.« less
Spectrum of walk matrix for Koch network and its application
NASA Astrophysics Data System (ADS)
Xie, Pinchen; Lin, Yuan; Zhang, Zhongzhi
2015-06-01
Various structural and dynamical properties of a network are encoded in the eigenvalues of walk matrix describing random walks on the network. In this paper, we study the spectra of walk matrix of the Koch network, which displays the prominent scale-free and small-world features. Utilizing the particular architecture of the network, we obtain all the eigenvalues and their corresponding multiplicities. Based on the link between the eigenvalues of walk matrix and random target access time defined as the expected time for a walker going from an arbitrary node to another one selected randomly according to the steady-state distribution, we then derive an explicit solution to the random target access time for random walks on the Koch network. Finally, we corroborate our computation for the eigenvalues by enumerating spanning trees in the Koch network, using the connection governing eigenvalues and spanning trees, where a spanning tree of a network is a subgraph of the network, that is, a tree containing all the nodes.
Random walks exhibiting anomalous diffusion: elephants, urns and the limits of normality
NASA Astrophysics Data System (ADS)
Kearney, Michael J.; Martin, Richard J.
2018-01-01
A random walk model is presented which exhibits a transition from standard to anomalous diffusion as a parameter is varied. The model is a variant on the elephant random walk and differs in respect of the treatment of the initial state, which in the present work consists of a given number N of fixed steps. This also links the elephant random walk to other types of history dependent random walk. As well as being amenable to direct analysis, the model is shown to be asymptotically equivalent to a non-linear urn process. This provides fresh insights into the limiting form of the distribution of the walker’s position at large times. Although the distribution is intrinsically non-Gaussian in the anomalous diffusion regime, it gradually reverts to normal form when N is large under quite general conditions.
The Not-so-Random Drunkard's Walk
ERIC Educational Resources Information Center
Ehrhardt, George
2013-01-01
This dataset contains the results of a quasi-experiment, testing Karl Pearson's "drunkard's walk" analogy for an abstract random walk. Inspired by the alternate hypothesis that drunkards stumble to the side of their dominant hand, it includes data on intoxicated test subjects walking a 10' line. Variables include: the…
Antipersistent dynamics in kinetic models of wealth exchange
NASA Astrophysics Data System (ADS)
Goswami, Sanchari; Chatterjee, Arnab; Sen, Parongama
2011-11-01
We investigate the detailed dynamics of gains and losses made by agents in some kinetic models of wealth exchange. An earlier work suggested that a walk in an abstract gain-loss space can be conceived for the agents. For models in which agents do not save, or save with uniform saving propensity, the walk has diffusive behavior. For the case in which the saving propensity λ is distributed randomly (0≤λ<1), the resultant walk showed a ballistic nature (except at a particular value of λ*≈0.47). Here we consider several other features of the walk with random λ. While some macroscopic properties of this walk are comparable to a biased random walk, at microscopic level, there are gross differences. The difference turns out to be due to an antipersistent tendency toward making a gain (loss) immediately after making a loss (gain). This correlation is in fact present in kinetic models without saving or with uniform saving as well, such that the corresponding walks are not identical to ordinary random walks. In the distributed saving case, antipersistence occurs with a simultaneous overall bias.
Rare event simulation in radiation transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollman, Craig
1993-10-01
This dissertation studies methods for estimating extremely small probabilities by Monte Carlo simulation. Problems in radiation transport typically involve estimating very rare events or the expected value of a random variable which is with overwhelming probability equal to zero. These problems often have high dimensional state spaces and irregular geometries so that analytic solutions are not possible. Monte Carlo simulation must be used to estimate the radiation dosage being transported to a particular location. If the area is well shielded the probability of any one particular particle getting through is very small. Because of the large number of particles involved,more » even a tiny fraction penetrating the shield may represent an unacceptable level of radiation. It therefore becomes critical to be able to accurately estimate this extremely small probability. Importance sampling is a well known technique for improving the efficiency of rare event calculations. Here, a new set of probabilities is used in the simulation runs. The results are multiple by the likelihood ratio between the true and simulated probabilities so as to keep the estimator unbiased. The variance of the resulting estimator is very sensitive to which new set of transition probabilities are chosen. It is shown that a zero variance estimator does exist, but that its computation requires exact knowledge of the solution. A simple random walk with an associated killing model for the scatter of neutrons is introduced. Large deviation results for optimal importance sampling in random walks are extended to the case where killing is present. An adaptive ``learning`` algorithm for implementing importance sampling is given for more general Markov chain models of neutron scatter. For finite state spaces this algorithm is shown to give with probability one, a sequence of estimates converging exponentially fast to the true solution.« less
Patching, Geoffrey R.; Rahm, Johan; Jansson, Märit; Johansson, Maria
2017-01-01
Accurate assessment of people’s preferences for different outdoor lighting applications is increasingly considered important in the development of new urban environments. Here a new method of random environmental walking is proposed to complement current methods of assessing urban lighting applications, such as self-report questionnaires. The procedure involves participants repeatedly walking between different lighting applications by random selection of a lighting application and preferred choice or by random selection of a lighting application alone. In this manner, participants are exposed to all lighting applications of interest more than once and participants’ preferences for the different lighting applications are reflected in the number of times they walk to each lighting application. On the basis of an initial simulation study, to explore the feasibility of this approach, a comprehensive field test was undertaken. The field test included random environmental walking and collection of participants’ subjective ratings of perceived pleasantness (PP), perceived quality, perceived strength, and perceived flicker of four lighting applications. The results indicate that random environmental walking can reveal participants’ preferences for different lighting applications that, in the present study, conformed to participants’ ratings of PP and perceived quality of the lighting applications. As a complement to subjectively stated environmental preferences, random environmental walking has the potential to expose behavioral preferences for different lighting applications. PMID:28337163
Improving personalized link prediction by hybrid diffusion
NASA Astrophysics Data System (ADS)
Liu, Jin-Hu; Zhu, Yu-Xiao; Zhou, Tao
2016-04-01
Inspired by traditional link prediction and to solve the problem of recommending friends in social networks, we introduce the personalized link prediction in this paper, in which each individual will get equal number of diversiform predictions. While the performances of many classical algorithms are not satisfactory under this framework, thus new algorithms are in urgent need. Motivated by previous researches in other fields, we generalize heat conduction process to the framework of personalized link prediction and find that this method outperforms many classical similarity-based algorithms, especially in the performance of diversity. In addition, we demonstrate that adding one ground node that is supposed to connect all the nodes in the system will greatly benefit the performance of heat conduction. Finally, better hybrid algorithms composed of local random walk and heat conduction have been proposed. Numerical results show that the hybrid algorithms can outperform other algorithms simultaneously in all four adopted metrics: AUC, precision, recall and hamming distance. In a word, this work may shed some light on the in-depth understanding of the effect of physical processes in personalized link prediction.
A scaling law for random walks on networks
Perkins, Theodore J.; Foxall, Eric; Glass, Leon; Edwards, Roderick
2014-01-01
The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics. PMID:25311870
A scaling law for random walks on networks
NASA Astrophysics Data System (ADS)
Perkins, Theodore J.; Foxall, Eric; Glass, Leon; Edwards, Roderick
2014-10-01
The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics.
A scaling law for random walks on networks.
Perkins, Theodore J; Foxall, Eric; Glass, Leon; Edwards, Roderick
2014-10-14
The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics.
A Pearson Random Walk with Steps of Uniform Orientation and Dirichlet Distributed Lengths
NASA Astrophysics Data System (ADS)
Le Caër, Gérard
2010-08-01
A constrained diffusive random walk of n steps in ℝ d and a random flight in ℝ d , which are equivalent, were investigated independently in recent papers (J. Stat. Phys. 127:813, 2007; J. Theor. Probab. 20:769, 2007, and J. Stat. Phys. 131:1039, 2008). The n steps of the walk are independent and identically distributed random vectors of exponential length and uniform orientation. Conditioned on the sum of their lengths being equal to a given value l, closed-form expressions for the distribution of the endpoint of the walk were obtained altogether for any n for d=1,2,4. Uniform distributions of the endpoint inside a ball of radius l were evidenced for a walk of three steps in 2D and of two steps in 4D. The previous walk is generalized by considering step lengths which have independent and identical gamma distributions with a shape parameter q>0. Given the total walk length being equal to 1, the step lengths have a Dirichlet distribution whose parameters are all equal to q. The walk and the flight above correspond to q=1. Simple analytical expressions are obtained for any d≥2 and n≥2 for the endpoint distributions of two families of walks whose q are integers or half-integers which depend solely on d. These endpoint distributions have a simple geometrical interpretation. Expressed for a two-step planar walk whose q=1, it means that the distribution of the endpoint on a disc of radius 1 is identical to the distribution of the projection on the disc of a point M uniformly distributed over the surface of the 3D unit sphere. Five additional walks, with a uniform distribution of the endpoint in the inside of a ball, are found from known finite integrals of products of powers and Bessel functions of the first kind. They include four different walks in ℝ3, two of two steps and two of three steps, and one walk of two steps in ℝ4. Pearson-Liouville random walks, obtained by distributing the total lengths of the previous Pearson-Dirichlet walks according to some specified probability law are finally discussed. Examples of unconstrained random walks, whose step lengths are gamma distributed, are more particularly considered.
A Practical Comparison of Motion Planning Techniques for Robotic Legs in Environments with Obstacles
NASA Technical Reports Server (NTRS)
Smith, Tristan B.; Chavez-Clemente, Daniel
2009-01-01
ATHLETE is a large six-legged tele-operated robot. Each foot is a wheel; travel can be achieved by walking, rolling, or some combination of the two. Operators control ATHLETE by selecting parameterized commands from a command dictionary. While rolling can be done efficiently, any motion involving steps is cumbersome - each step can require multiple commands and take many minutes to complete. In this paper, we consider four different algorithms that generate a sequence of commands to take a step. We consider a baseline heuristic, a randomized motion planning algorithm, and two variants of A* search. Results for a variety of terrains are presented, and we discuss the quantitative and qualitative tradeoffs between the approaches.
Ellis, Katherine; Godbole, Suneeta; Marshall, Simon; Lanckriet, Gert; Staudenmayer, John; Kerr, Jacqueline
2014-01-01
Background: Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper, we present a supervised machine learning method for transportation mode prediction from global positioning system (GPS) and accelerometer data. Methods: We collected a dataset of about 150 h of GPS and accelerometer data from two research assistants following a protocol of prescribed trips consisting of five activities: bicycling, riding in a vehicle, walking, sitting, and standing. We extracted 49 features from 1-min windows of this data. We compared the performance of several machine learning algorithms and chose a random forest algorithm to classify the transportation mode. We used a moving average output filter to smooth the output predictions over time. Results: The random forest algorithm achieved 89.8% cross-validated accuracy on this dataset. Adding the moving average filter to smooth output predictions increased the cross-validated accuracy to 91.9%. Conclusion: Machine learning methods are a viable approach for automating measurement of active travel, particularly for measuring travel activities that traditional accelerometer data processing methods misclassify, such as bicycling and vehicle travel. PMID:24795875
Trapping photons on the line: controllable dynamics of a quantum walk
NASA Astrophysics Data System (ADS)
Xue, Peng; Qin, Hao; Tang, Bao
2014-04-01
Optical interferometers comprising birefringent-crystal beam displacers, wave plates, and phase shifters serve as stable devices for simulating quantum information processes such as heralded coined quantum walks. Quantum walks are important for quantum algorithms, universal quantum computing circuits, quantum transport in complex systems, and demonstrating intriguing nonlinear dynamical quantum phenomena. We introduce fully controllable polarization-independent phase shifters in optical pathes in order to realize site-dependent phase defects. The effectiveness of our interferometer is demonstrated through realizing single-photon quantum-walk dynamics in one dimension. By applying site-dependent phase defects, the translational symmetry of an ideal standard quantum walk is broken resulting in localization effect in a quantum walk architecture. The walk is realized for different site-dependent phase defects and coin settings, indicating the strength of localization signature depends on the level of phase due to site-dependent phase defects and coin settings and opening the way for the implementation of a quantum-walk-based algorithm.
The First Order Correction to the Exit Distribution for Some Random Walks
NASA Astrophysics Data System (ADS)
Kennedy, Tom
2016-07-01
We study three different random walk models on several two-dimensional lattices by Monte Carlo simulations. One is the usual nearest neighbor random walk. Another is the nearest neighbor random walk which is not allowed to backtrack. The final model is the smart kinetic walk. For all three of these models the distribution of the point where the walk exits a simply connected domain D in the plane converges weakly to harmonic measure on partial D as the lattice spacing δ → 0. Let ω (0,\\cdot ;D) be harmonic measure for D, and let ω _δ (0,\\cdot ;D) be the discrete harmonic measure for one of the random walk models. Our definition of the random walk models is unusual in that we average over the orientation of the lattice with respect to the domain. We are interested in the limit of (ω _δ (0,\\cdot ;D)- ω (0,\\cdot ;D))/δ . Our Monte Carlo simulations of the three models lead to the conjecture that this limit equals c_{M,L} ρ _D(z) times Lebesgue measure with respect to arc length along the boundary, where the function ρ _D(z) depends on the domain, but not on the model or lattice, and the constant c_{M,L} depends on the model and on the lattice, but not on the domain. So there is a form of universality for this first order correction. We also give an explicit formula for the conjectured density ρ _D.
Analysis of coined quantum walks with renormalization
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Li, Shanshan
2018-01-01
We introduce a framework to analyze quantum algorithms with the renormalization group (RG). To this end, we present a detailed analysis of the real-space RG for discrete-time quantum walks on fractal networks and show how deep insights into the analytic structure as well as generic results about the long-time behavior can be extracted. The RG flow for such a walk on a dual Sierpinski gasket and a Migdal-Kadanoff hierarchical network is obtained explicitly from elementary algebraic manipulations, after transforming the unitary evolution equation into Laplace space. Unlike for classical random walks, we find that the long-time asymptotics for the quantum walk requires consideration of a diverging number of Laplace poles, which we demonstrate exactly for the closed-form solution available for the walk on a one-dimensional loop. In particular, we calculate the probability of the walk to overlap with its starting position, which oscillates with a period that scales as NdwQ/df with system size N . While the largest Jacobian eigenvalue λ1 of the RG flow merely reproduces the fractal dimension, df=log2λ1 , the asymptotic analysis shows that the second Jacobian eigenvalue λ2 becomes essential to determine the dimension of the quantum walk via dwQ=log2√{λ1λ2 } . We trace this fact to delicate cancellations caused by unitarity. We obtain identical relations for other networks, although the details of the RG analysis may exhibit surprisingly distinct features. Thus, our conclusions—which trivially reproduce those for regular lattices with translational invariance with df=d and dwQ=1 —appear to be quite general and likely apply to networks beyond those studied here.
Trong Bui, Duong; Nguyen, Nhan Duc; Jeong, Gu-Min
2018-06-25
Human activity recognition and pedestrian dead reckoning are an interesting field because of their importance utilities in daily life healthcare. Currently, these fields are facing many challenges, one of which is the lack of a robust algorithm with high performance. This paper proposes a new method to implement a robust step detection and adaptive distance estimation algorithm based on the classification of five daily wrist activities during walking at various speeds using a smart band. The key idea is that the non-parametric adaptive distance estimator is performed after two activity classifiers and a robust step detector. In this study, two classifiers perform two phases of recognizing five wrist activities during walking. Then, a robust step detection algorithm, which is integrated with an adaptive threshold, peak and valley correction algorithm, is applied to the classified activities to detect the walking steps. In addition, the misclassification activities are fed back to the previous layer. Finally, three adaptive distance estimators, which are based on a non-parametric model of the average walking speed, calculate the length of each strike. The experimental results show that the average classification accuracy is about 99%, and the accuracy of the step detection is 98.7%. The error of the estimated distance is 2.2⁻4.2% depending on the type of wrist activities.
IS THE SUICIDE RATE A RANDOM WALK?
Yang, Bijou; Lester, David; Lyke, Jennifer; Olsen, Robert
2015-06-01
The yearly suicide rates for the period 1933-2010 and the daily suicide numbers for 1990 and 1991 were examined for whether the distribution of difference scores (from year to year and from day to day) fitted a normal distribution, a characteristic of stochastic processes that follow a random walk. If the suicide rate were a random walk, then any disturbance to the suicide rate would have a permanent effect and national suicide prevention efforts would likely fail. The distribution of difference scores from day to day (but not the difference scores from year to year) fitted a normal distribution and, therefore, were consistent with a random walk.
Faster search by lackadaisical quantum walk
NASA Astrophysics Data System (ADS)
Wong, Thomas G.
2018-03-01
In the typical model, a discrete-time coined quantum walk searching the 2D grid for a marked vertex achieves a success probability of O(1/log N) in O(√{N log N}) steps, which with amplitude amplification yields an overall runtime of O(√{N} log N). We show that making the quantum walk lackadaisical or lazy by adding a self-loop of weight 4 / N to each vertex speeds up the search, causing the success probability to reach a constant near 1 in O(√{N log N}) steps, thus yielding an O(√{log N}) improvement over the typical, loopless algorithm. This improved runtime matches the best known quantum algorithms for this search problem. Our results are based on numerical simulations since the algorithm is not an instance of the abstract search algorithm.
A New Family of Solvable Pearson-Dirichlet Random Walks
NASA Astrophysics Data System (ADS)
Le Caër, Gérard
2011-07-01
An n-step Pearson-Gamma random walk in ℝ d starts at the origin and consists of n independent steps with gamma distributed lengths and uniform orientations. The gamma distribution of each step length has a shape parameter q>0. Constrained random walks of n steps in ℝ d are obtained from the latter walks by imposing that the sum of the step lengths is equal to a fixed value. Simple closed-form expressions were obtained in particular for the distribution of the endpoint of such constrained walks for any d≥ d 0 and any n≥2 when q is either q = d/2 - 1 ( d 0=3) or q= d-1 ( d 0=2) (Le Caër in J. Stat. Phys. 140:728-751, 2010). When the total walk length is chosen, without loss of generality, to be equal to 1, then the constrained step lengths have a Dirichlet distribution whose parameters are all equal to q and the associated walk is thus named a Pearson-Dirichlet random walk. The density of the endpoint position of a n-step planar walk of this type ( n≥2), with q= d=2, was shown recently to be a weighted mixture of 1+ floor( n/2) endpoint densities of planar Pearson-Dirichlet walks with q=1 (Beghin and Orsingher in Stochastics 82:201-229, 2010). The previous result is generalized to any walk space dimension and any number of steps n≥2 when the parameter of the Pearson-Dirichlet random walk is q= d>1. We rely on the connection between an unconstrained random walk and a constrained one, which have both the same n and the same q= d, to obtain a closed-form expression of the endpoint density. The latter is a weighted mixture of 1+ floor( n/2) densities with simple forms, equivalently expressed as a product of a power and a Gauss hypergeometric function. The weights are products of factors which depends both on d and n and Bessel numbers independent of d.
An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles.
González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José
2015-07-09
A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences.
CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraldsdóttir, Hulda S.; Cousins, Ben; Thiele, Ines
In constraint-based metabolic modelling, physical and biochemical constraints define a polyhedral convex set of feasible flux vectors. Uniform sampling of this set provides an unbiased characterization of the metabolic capabilities of a biochemical network. However, reliable uniform sampling of genome-scale biochemical networks is challenging due to their high dimensionality and inherent anisotropy. Here, we present an implementation of a new sampling algorithm, coordinate hit-and-run with rounding (CHRR). This algorithm is based on the provably efficient hit-and-run random walk and crucially uses a preprocessing step to round the anisotropic flux set. CHRR provably converges to a uniform stationary sampling distribution. Wemore » apply it to metabolic networks of increasing dimensionality. We show that it converges several times faster than a popular artificial centering hit-and-run algorithm, enabling reliable and tractable sampling of genome-scale biochemical networks.« less
Martin, Bryan D.; Wolfson, Julian; Adomavicius, Gediminas; Fan, Yingling
2017-01-01
We propose and compare combinations of several methods for classifying transportation activity data from smartphone GPS and accelerometer sensors. We have two main objectives. First, we aim to classify our data as accurately as possible. Second, we aim to reduce the dimensionality of the data as much as possible in order to reduce the computational burden of the classification. We combine dimension reduction and classification algorithms and compare them with a metric that balances accuracy and dimensionality. In doing so, we develop a classification algorithm that accurately classifies five different modes of transportation (i.e., walking, biking, car, bus and rail) while being computationally simple enough to run on a typical smartphone. Further, we use data that required no behavioral changes from the smartphone users to collect. Our best classification model uses the random forest algorithm to achieve 96.8% accuracy. PMID:28885550
Martin, Bryan D; Addona, Vittorio; Wolfson, Julian; Adomavicius, Gediminas; Fan, Yingling
2017-09-08
We propose and compare combinations of several methods for classifying transportation activity data from smartphone GPS and accelerometer sensors. We have two main objectives. First, we aim to classify our data as accurately as possible. Second, we aim to reduce the dimensionality of the data as much as possible in order to reduce the computational burden of the classification. We combine dimension reduction and classification algorithms and compare them with a metric that balances accuracy and dimensionality. In doing so, we develop a classification algorithm that accurately classifies five different modes of transportation (i.e., walking, biking, car, bus and rail) while being computationally simple enough to run on a typical smartphone. Further, we use data that required no behavioral changes from the smartphone users to collect. Our best classification model uses the random forest algorithm to achieve 96.8% accuracy.
A novel dynamical community detection algorithm based on weighting scheme
NASA Astrophysics Data System (ADS)
Li, Ju; Yu, Kai; Hu, Ke
2015-12-01
Network dynamics plays an important role in analyzing the correlation between the function properties and the topological structure. In this paper, we propose a novel dynamical iteration (DI) algorithm, which incorporates the iterative process of membership vector with weighting scheme, i.e. weighting W and tightness T. These new elements can be used to adjust the link strength and the node compactness for improving the speed and accuracy of community structure detection. To estimate the optimal stop time of iteration, we utilize a new stability measure which is defined as the Markov random walk auto-covariance. We do not need to specify the number of communities in advance. It naturally supports the overlapping communities by associating each node with a membership vector describing the node's involvement in each community. Theoretical analysis and experiments show that the algorithm can uncover communities effectively and efficiently.
CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models
Haraldsdóttir, Hulda S.; Cousins, Ben; Thiele, Ines; ...
2017-01-31
In constraint-based metabolic modelling, physical and biochemical constraints define a polyhedral convex set of feasible flux vectors. Uniform sampling of this set provides an unbiased characterization of the metabolic capabilities of a biochemical network. However, reliable uniform sampling of genome-scale biochemical networks is challenging due to their high dimensionality and inherent anisotropy. Here, we present an implementation of a new sampling algorithm, coordinate hit-and-run with rounding (CHRR). This algorithm is based on the provably efficient hit-and-run random walk and crucially uses a preprocessing step to round the anisotropic flux set. CHRR provably converges to a uniform stationary sampling distribution. Wemore » apply it to metabolic networks of increasing dimensionality. We show that it converges several times faster than a popular artificial centering hit-and-run algorithm, enabling reliable and tractable sampling of genome-scale biochemical networks.« less
A Novel Walking Detection and Step Counting Algorithm Using Unconstrained Smartphones.
Kang, Xiaomin; Huang, Baoqi; Qi, Guodong
2018-01-19
Recently, with the development of artificial intelligence technologies and the popularity of mobile devices, walking detection and step counting have gained much attention since they play an important role in the fields of equipment positioning, saving energy, behavior recognition, etc. In this paper, a novel algorithm is proposed to simultaneously detect walking motion and count steps through unconstrained smartphones in the sense that the smartphone placement is not only arbitrary but also alterable. On account of the periodicity of the walking motion and sensitivity of gyroscopes, the proposed algorithm extracts the frequency domain features from three-dimensional (3D) angular velocities of a smartphone through FFT (fast Fourier transform) and identifies whether its holder is walking or not irrespective of its placement. Furthermore, the corresponding step frequency is recursively updated to evaluate the step count in real time. Extensive experiments are conducted by involving eight subjects and different walking scenarios in a realistic environment. It is shown that the proposed method achieves the precision of 93.76 % and recall of 93.65 % for walking detection, and its overall performance is significantly better than other well-known methods. Moreover, the accuracy of step counting by the proposed method is 95.74 % , and is better than both of the several well-known counterparts and commercial products.
Self-Attractive Random Walks: The Case of Critical Drifts
NASA Astrophysics Data System (ADS)
Ioffe, Dmitry; Velenik, Yvan
2012-07-01
Self-attractive random walks (polymers) undergo a phase transition in terms of the applied drift (force): If the drift is strong enough, then the walk is ballistic, whereas in the case of small drifts self-attraction wins and the walk is sub-ballistic. We show that, in any dimension d ≥ 2, this transition is of first order. In fact, we prove that the walk is already ballistic at critical drifts, and establish the corresponding LLN and CLT.
The Dynamical Classification of Centaurs which Evolve into Comets
NASA Astrophysics Data System (ADS)
Wood, Jeremy R.; Horner, Jonathan; Hinse, Tobias; Marsden, Stephen; Swinburne University of Technology
2016-10-01
Centaurs are small Solar system bodies with semi-major axes between Jupiter and Neptune and perihelia beyond Jupiter. Centaurs can be further subclassified into two dynamical categories - random walk and resonance hopping. Random walk Centaurs have mean square semi-major axes (< a2 >) which vary in time according to a generalized diffusion equation where < a2 > ~t2H. H is the Hurst exponent with 0 < H < 1, and t is time. The behavior of < a2 > for resonance hopping Centaurs is not well described by generalized diffusion.The aim of this study is to determine which dynamical type of Centaur is most likely to evolve into each class of comet. 31,722 fictional massless test particles were integrated for 3 Myr in the 6-body problem (Sun, Jovian planets, test particle). Initially each test particle was a member of one of four groups. The semi-major axes of all test particles in a group were clustered within 0.27 au from a first order, interior Mean Motion resonance of Neptune. The resonances were centered at 18.94 au, 22.95 au, 24.82 au and 28.37 au.If the perihelion of a test particle reached < 4 au then the test particle was considered to be a comet and classified as either a random walk or resonance hopping Centaur. The results showed that over 4,000 test particles evolved into comets within 3 Myr. 59% of these test particles were random walk and 41% were resonance hopping. The behavior of the semi-major axis in time was usually well described by generalized diffusion for random walk Centaurs (ravg = 0.98) and poorly described for resonance hopping Centaurs (ravg = 0.52). The average Hurst exponent was 0.48 for random walk Centaurs and 0.20 for resonance hopping Centaurs. Random walk Centaurs were more likely to evolve into short period comets while resonance hopping Centaurs were more likely to evolve into long period comets. For each initial cluster, resonance hopping Centaurs took longer to evolve into comets than random walk Centaurs. Overall the population of random walk Centaurs averaged 143 kyr to evolve into comets, and the population of resonance hopping Centaurs averaged 164 kyr.
Pólya number and first return of bursty random walk: Rigorous solutions
NASA Astrophysics Data System (ADS)
Wan, J.; Xu, X. P.
2012-03-01
The recurrence properties of random walks can be characterized by Pólya number, i.e., the probability that the walker has returned to the origin at least once. In this paper, we investigate Pólya number and first return for bursty random walk on a line, in which the walk has different step size and moving probabilities. Using the concept of the Catalan number, we obtain exact results for first return probability, the average first return time and Pólya number for the first time. We show that Pólya number displays two different functional behavior when the walk deviates from the recurrent point. By utilizing the Lagrange inversion formula, we interpret our findings by transferring Pólya number to the closed-form solutions of an inverse function. We also calculate Pólya number using another approach, which corroborates our results and conclusions. Finally, we consider the recurrence properties and Pólya number of two variations of the bursty random walk model.
Mesoscopic description of random walks on combs
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Iomin, Alexander; Campos, Daniel; Horsthemke, Werner
2015-12-01
Combs are a simple caricature of various types of natural branched structures, which belong to the category of loopless graphs and consist of a backbone and branches. We study continuous time random walks on combs and present a generic method to obtain their transport properties. The random walk along the branches may be biased, and we account for the effect of the branches by renormalizing the waiting time probability distribution function for the motion along the backbone. We analyze the overall diffusion properties along the backbone and find normal diffusion, anomalous diffusion, and stochastic localization (diffusion failure), respectively, depending on the characteristics of the continuous time random walk along the branches, and compare our analytical results with stochastic simulations.
Taniguchi, Chie; Sato, Chifumi
2016-10-01
We examined the effects of home-based walking on sedentary Japanese women's pregnancy outcomes and mood. A randomized controlled trial was conducted, involving 118 women aged 22-36 years. Participants were randomly assigned to walking intervention (n = 60) or control (n = 58) groups. The walking group was instructed to walk briskly for 30 min, three times weekly from 30 weeks' gestation until delivery. Both groups counted their daily steps using pedometers. Pregnancy and delivery outcomes were assessed, participants completed the Profile of Mood States, and we used the intention-to-treat principle. Groups showed no differences regarding pregnancy or delivery outcomes. The walking group exhibited decreased scores on the depression-dejection and confusion subscales of the Profile of Mood States. Five of the 54 women in the intervention group who remained in the study (9.2%) completed 100% of the prescribed walking program; 32 (59.3%) women completed 80% or more. Unsupervised walking improves sedentary pregnant women's mood, indicating that regular walking during pregnancy should be promoted in this group. © 2016 John Wiley & Sons Australia, Ltd.
An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles
González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José
2015-01-01
A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences. PMID:26184199
The one-dimensional asymmetric persistent random walk
NASA Astrophysics Data System (ADS)
Rossetto, Vincent
2018-04-01
Persistent random walks are intermediate transport processes between a uniform rectilinear motion and a Brownian motion. They are formed by successive steps of random finite lengths and directions travelled at a fixed speed. The isotropic and symmetric 1D persistent random walk is governed by the telegrapher’s equation, also called the hyperbolic heat conduction equation. These equations have been designed to resolve the paradox of the infinite speed in the heat and diffusion equations. The finiteness of both the speed and the correlation length leads to several classes of random walks: Persistent random walk in one dimension can display anomalies that cannot arise for Brownian motion such as anisotropy and asymmetries. In this work we focus on the case where the mean free path is anisotropic, the only anomaly leading to a physics that is different from the telegrapher’s case. We derive exact expression of its Green’s function, for its scattering statistics and distribution of first-passage time at the origin. The phenomenology of the latter shows a transition for quantities like the escape probability and the residence time.
An invariance property of generalized Pearson random walks in bounded geometries
NASA Astrophysics Data System (ADS)
Mazzolo, Alain
2009-03-01
Invariance properties of random walks in bounded domains are a topic of growing interest since they contribute to improving our understanding of diffusion in confined geometries. Recently, limited to Pearson random walks with exponentially distributed straight paths, it has been shown that under isotropic uniform incidence, the average length of the trajectories through the domain is independent of the random walk characteristic and depends only on the ratio of the volume's domain over its surface. In this paper, thanks to arguments of integral geometry, we generalize this property to any isotropic bounded stochastic process and we give the conditions of its validity for isotropic unbounded stochastic processes. The analytical form for the traveled distance from the boundary to the first scattering event that ensures the validity of the Cauchy formula is also derived. The generalization of the Cauchy formula is an analytical constraint that thus concerns a very wide range of stochastic processes, from the original Pearson random walk to a Rayleigh distribution of the displacements, covering many situations of physical importance.
Algorithm refinement for stochastic partial differential equations: II. Correlated systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Francis J.; Garcia, Alejandro L.; Tartakovsky, Daniel M.
2005-08-10
We analyze a hybrid particle/continuum algorithm for a hydrodynamic system with long ranged correlations. Specifically, we consider the so-called train model for viscous transport in gases, which is based on a generalization of the random walk process for the diffusion of momentum. This discrete model is coupled with its continuous counterpart, given by a pair of stochastic partial differential equations. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass and momentum conservation. This methodology is an extension of our stochastic Algorithm Refinement (AR) hybrid for simple diffusion [F. Alexander, A. Garcia,more » D. Tartakovsky, Algorithm refinement for stochastic partial differential equations: I. Linear diffusion, J. Comput. Phys. 182 (2002) 47-66]. Results from a variety of numerical experiments are presented for steady-state scenarios. In all cases the mean and variance of density and velocity are captured correctly by the stochastic hybrid algorithm. For a non-stochastic version (i.e., using only deterministic continuum fluxes) the long-range correlations of velocity fluctuations are qualitatively preserved but at reduced magnitude.« less
Quantum Walk Schemes for Universal Quantum Computation
NASA Astrophysics Data System (ADS)
Underwood, Michael S.
Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction. The many-particle quantum walk can be viewed as a single quantum walk undergoing perfect state transfer on a larger weighted graph, obtained via equitable partitioning. I extend this formalism to non-simple graphs. Examples of the application of equitable partitioning to the analysis of quantum walks and many-particle quantum systems are discussed.
Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.
Potdar, Alka A; Jeon, Junhwan; Weaver, Alissa M; Quaranta, Vito; Cummings, Peter T
2010-03-10
Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells) that exist in multi-cellular organisms (humans) follow a bimodal correlated random walk (BCRW). Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases) each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation). Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosmanis, Ansis
2011-02-15
I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, whichmore » asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.« less
Contact Time in Random Walk and Random Waypoint: Dichotomy in Tail Distribution
NASA Astrophysics Data System (ADS)
Zhao, Chen; Sichitiu, Mihail L.
Contact time (or link duration) is a fundamental factor that affects performance in Mobile Ad Hoc Networks. Previous research on theoretical analysis of contact time distribution for random walk models (RW) assume that the contact events can be modeled as either consecutive random walks or direct traversals, which are two extreme cases of random walk, thus with two different conclusions. In this paper we conduct a comprehensive research on this topic in the hope of bridging the gap between the two extremes. The conclusions from the two extreme cases will result in a power-law or exponential tail in the contact time distribution, respectively. However, we show that the actual distribution will vary between the two extremes: a power-law-sub-exponential dichotomy, whose transition point depends on the average flight duration. Through simulation results we show that such conclusion also applies to random waypoint.
Efficiency and robustness of different bus network designs
NASA Astrophysics Data System (ADS)
Pang, John Zhen Fu; Bin Othman, Nasri; Ng, Keng Meng; Monterola, Christopher
2015-07-01
We compare the efficiencies and robustness of four transport networks that can be possibly formed as a result of deliberate city planning. The networks are constructed based on their spatial resemblance to the cities of Manhattan (lattice), Sudan (random), Beijing (single-blob) and Greater Cairo (dual-blob). For a given type, a genetic algorithm is employed to obtain an optimized set of the bus routes. We then simulate how commuter travels using Yen's algorithms for k shortest paths on an adjacency matrix. The cost of traveling such as walking between stations is captured by varying the weighted sums of matrices. We also consider the number of transfers a posteriori by looking at the computed shortest paths. With consideration to distances via radius of gyration, redundancies of travel and number of bus transfers, our simulations indicate that random and dual-blob are more efficient than single-blob and lattice networks. Moreover, dual-blob type is least robust when node removals are targeted but is most resilient when node failures are random. The work hopes to guide and provide technical perspectives on how geospatial distribution of a city limits the optimality of transport designs.
Capela, Nicole A; Lemaire, Edward D; Baddour, Natalie
2015-02-20
The 6-minute walk test (6MWT: the maximum distance walked in 6 minutes) is used by rehabilitation professionals as a measure of exercise capacity. Today's smartphones contain hardware that can be used for wearable sensor applications and mobile data analysis. A smartphone application can run the 6MWT and provide typically unavailable biomechanical information about how the person moves during the test. A new algorithm for a calibration-free 6MWT smartphone application was developed that uses the test's inherent conditions and smartphone accelerometer-gyroscope data to report the total distance walked, step timing, gait symmetry, and walking changes over time. This information is not available with a standard 6MWT and could help with clinical decision-making. The 6MWT application was evaluated with 15 able-bodied participants. A BlackBerry Z10 smartphone was worn on a belt at the mid lower back. Audio from the phone instructed the person to start and stop walking. Digital video was independently recorded during the trial as a gold-standard comparator. The average difference between smartphone and gold standard foot strike timing was 0.014 ± 0.015 s. The total distance calculated by the application was within 1 m of the measured distance for all but one participant, which was more accurate than other smartphone-based studies. These results demonstrated that clinically relevant 6MWT results can be achieved with typical smartphone hardware and a novel algorithm.
Existence of the Harmonic Measure for Random Walks on Graphs and in Random Environments
NASA Astrophysics Data System (ADS)
Boivin, Daniel; Rau, Clément
2013-01-01
We give a sufficient condition for the existence of the harmonic measure from infinity of transient random walks on weighted graphs. In particular, this condition is verified by the random conductance model on ℤ d , d≥3, when the conductances are i.i.d. and the bonds with positive conductance percolate. The harmonic measure from infinity also exists for random walks on supercritical clusters of ℤ2. This is proved using results of Barlow (Ann. Probab. 32:3024-3084, 2004) and Barlow and Hambly (Electron. J. Probab. 14(1):1-27, 2009).
Scaling of Loop-Erased Walks in 2 to 4 Dimensions
NASA Astrophysics Data System (ADS)
Grassberger, Peter
2009-07-01
We simulate loop-erased random walks on simple (hyper-)cubic lattices of dimensions 2, 3 and 4. These simulations were mainly motivated to test recent two loop renormalization group predictions for logarithmic corrections in d=4, simulations in lower dimensions were done for completeness and in order to test the algorithm. In d=2, we verify with high precision the prediction D=5/4, where the number of steps n after erasure scales with the number N of steps before erasure as n˜ N D/2. In d=3 we again find a power law, but with an exponent different from the one found in the most precise previous simulations: D=1.6236±0.0004. Finally, we see clear deviations from the naive scaling n˜ N in d=4. While they agree only qualitatively with the leading logarithmic corrections predicted by several authors, their agreement with the two-loop prediction is nearly perfect.
Origins and nature of non-Fickian transport through fractures
NASA Astrophysics Data System (ADS)
Wang, L.; Cardenas, M. B.
2014-12-01
Non-Fickian transport occurs across all scales within fractured and porous geological media. Fundamental understanding and appropriate characterization of non-Fickian transport through fractures is critical for understanding and prediction of the fate of solutes and other scalars. We use both analytical and numerical modeling, including direct numerical simulation and particle tracking random walk, to investigate the origin of non-Fickian transport through both homogeneous and heterogeneous fractures. For the simple homogenous fracture case, i.e., parallel plates, we theoretically derived a formula for dynamic longitudinal dispersion (D) within Poiseuille flow. Using the closed-form expression for the theoretical D, we quantified the time (T) and length (L) scales separating preasymptotic and asymptotic dispersive transport, with T and L proportional to aperture (b) of parallel plates to second and fourth orders, respectively. As for heterogeneous fractures, the fracture roughness and correlation length are closely associated with the T and L, and thus indicate the origin for non-Fickian transport. Modeling solute transport through 2D rough-walled fractures with continuous time random walk with truncated power shows that the degree of deviation from Fickian transport is proportional to fracture roughness. The estimated L for 2D rough-walled fractures is significantly longer than that derived from the formula within Poiseuille flow with equivalent b. Moreover, we artificially generated normally distributed 3D fractures with fixed correlation length but different fracture dimensions. Solute transport through 3D fractures was modeled with a particle tracking random walk algorithm. We found that transport transitions from non-Fickian to Fickian with increasing fracture dimensions, where the estimated L for the studied 3D fractures is related to the correlation length.
Irreconcilable difference between quantum walks and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Wong, Thomas G.; Meyer, David A.
2016-06-01
Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.
NASA Astrophysics Data System (ADS)
Sun, Wei; Ding, Wei; Yan, Huifang; Duan, Shunli
2018-06-01
Shoe-mounted pedestrian navigation systems based on micro inertial sensors rely on zero velocity updates to correct their positioning errors in time, which effectively makes determining the zero velocity interval play a key role during normal walking. However, as walking gaits are complicated, and vary from person to person, it is difficult to detect walking gaits with a fixed threshold method. This paper proposes a pedestrian gait classification method based on a hidden Markov model. Pedestrian gait data are collected with a micro inertial measurement unit installed at the instep. On the basis of analyzing the characteristics of the pedestrian walk, a single direction angular rate gyro output is used to classify gait features. The angular rate data are modeled into a univariate Gaussian mixture model with three components, and a four-state left–right continuous hidden Markov model (CHMM) is designed to classify the normal walking gait. The model parameters are trained and optimized using the Baum–Welch algorithm and then the sliding window Viterbi algorithm is used to decode the gait. Walking data are collected through eight subjects walking along the same route at three different speeds; the leave-one-subject-out cross validation method is conducted to test the model. Experimental results show that the proposed algorithm can accurately detect different walking gaits of zero velocity interval. The location experiment shows that the precision of CHMM-based pedestrian navigation improved by 40% when compared to the angular rate threshold method.
Random walk study of electron motion in helium in crossed electromagnetic fields
NASA Technical Reports Server (NTRS)
Englert, G. W.
1972-01-01
Random walk theory, previously adapted to electron motion in the presence of an electric field, is extended to include a transverse magnetic field. In principle, the random walk approach avoids mathematical complexity and concomitant simplifying assumptions and permits determination of energy distributions and transport coefficients within the accuracy of available collisional cross section data. Application is made to a weakly ionized helium gas. Time of relaxation of electron energy distribution, determined by the random walk, is described by simple expressions based on energy exchange between the electron and an effective electric field. The restrictive effect of the magnetic field on electron motion, which increases the required number of collisions per walk to reach a terminal steady state condition, as well as the effect of the magnetic field on electron transport coefficients and mean energy can be quite adequately described by expressions involving only the Hall parameter.
Noteworthy fractal features and transport properties of Cantor tartans
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.; Golmankhaneh, Alireza K.; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel
2018-06-01
This Letter is focused on the impact of fractal topology on the transport processes governed by different kinds of random walks on Cantor tartans. We establish that the spectral dimension of the infinitely ramified Cantor tartan ds is equal to its fractal (self-similarity) dimension D. Consequently, the random walk on the Cantor tartan leads to a normal diffusion. On the other hand, the fractal geometry of Cantor tartans allows for a natural definition of power-law distributions of the waiting times and step lengths of random walkers. These distributions are Lévy stable if D > 1.5. Accordingly, we found that the random walk with rests leads to sub-diffusion, whereas the Lévy walk leads to ballistic diffusion. The Lévy walk with rests leads to super-diffusion, if D >√{ 3 }, or sub-diffusion, if 1.5 < D <√{ 3 }.
Relation between random walks and quantum walks
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Falkner, Stefan; Portugal, Renato
2015-05-01
Based on studies of four specific networks, we conjecture a general relation between the walk dimensions dw of discrete-time random walks and quantum walks with the (self-inverse) Grover coin. In each case, we find that dw of the quantum walk takes on exactly half the value found for the classical random walk on the same geometry. Since walks on homogeneous lattices satisfy this relation trivially, our results for heterogeneous networks suggest that such a relation holds irrespective of whether translational invariance is maintained or not. To develop our results, we extend the renormalization-group analysis (RG) of the stochastic master equation to one with a unitary propagator. As in the classical case, the solution ρ (x ,t ) in space and time of this quantum-walk equation exhibits a scaling collapse for a variable xdw/t in the weak limit, which defines dw and illuminates fundamental aspects of the walk dynamics, e.g., its mean-square displacement. We confirm the collapse for ρ (x ,t ) in each case with extensive numerical simulation. The exact values for dw themselves demonstrate that RG is a powerful complementary approach to study the asymptotics of quantum walks that weak-limit theorems have not been able to access, such as for systems lacking translational symmetries beyond simple trees.
A comparative analysis of signal processing methods for motion-based rate responsive pacing.
Greenhut, S E; Shreve, E A; Lau, C P
1996-08-01
Pacemakers that augment heart rate (HR) by sensing body motion have been the most frequently prescribed rate responsive pacemakers. Many comparisons between motion-based rate responsive pacemaker models have been published. However, conclusions regarding specific signal processing methods used for rate response (e.g., filters and algorithms) can be affected by device-specific features. To objectively compare commonly used motion sensing filters and algorithms, acceleration and ECG signals were recorded from 16 normal subjects performing exercise and daily living activities. Acceleration signals were filtered (1-4 or 15-Hz band-pass), then processed using threshold crossing (TC) or integration (IN) algorithms creating four filter/algorithm combinations. Data were converted to an acceleration indicated rate and compared to intrinsic HR using root mean square difference (RMSd) and signed RMSd. Overall, the filters and algorithms performed similarly for most activities. The only differences between filters were for walking at an increasing grade (1-4 Hz superior to 15-Hz) and for rocking in a chair (15-Hz superior to 1-4 Hz). The only differences between algorithms were for bicycling (TC superior to IN), walking at an increasing grade (IN superior to TC), and holding a drill (IN superior to TC). Performance of the four filter/algorithm combinations was also similar over most activities. The 1-4/IN (filter [Hz]/algorithm) combination performed best for walking at a grade, while the 15/TC combination was best for bicycling. However, the 15/TC combination tended to be most sensitive to higher frequency artifact, such as automobile driving, downstairs walking, and hand drilling. Chair rocking artifact was highest for 1-4/IN. The RMSd for bicycling and upstairs walking were large for all combinations, reflecting the nonphysiological nature of the sensor. The 1-4/TC combination demonstrated the least intersubject variability, was the only filter/algorithm combination insensitive to changes in footwear, and gave similar RMSd over a large range of amplitude thresholds for most activities. In conclusion, based on overall error performance, the preferred filter/algorithm combination depended upon the type of activity.
Self-avoiding walks on scale-free networks
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.
2005-01-01
Several kinds of walks on complex networks are currently used to analyze search and navigation in different systems. Many analytical and computational results are known for random walks on such networks. Self-avoiding walks (SAW’s) are expected to be more suitable than unrestricted random walks to explore various kinds of real-life networks. Here we study long-range properties of random SAW’s on scale-free networks, characterized by a degree distribution P (k) ˜ k-γ . In the limit of large networks (system size N→∞ ), the average number sn of SAW’s starting from a generic site increases as μn , with μ= < k2 > /
NASA Astrophysics Data System (ADS)
Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál
2018-04-01
We consider random walks on the square lattice of the plane along the lines of Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) and den Hollander (J Stat Phys 75:891-918, 1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotropic random walks with anisotropic density conditions á la Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) yield fixed column configurations and nearest-neighbour random walks in a random environment on the square lattice of the plane as in den Hollander (J Stat Phys 75:891-918, 1994) result in random column configurations. In both cases we conclude simultaneous weak Donsker and strong Strassen type invariance principles in terms of appropriately constructed anisotropic Brownian motions on the plane, with self-contained proofs in both cases. The style of presentation throughout will be that of a semi-expository survey of related results in a historical context.
Random walk of passive tracers among randomly moving obstacles.
Gori, Matteo; Donato, Irene; Floriani, Elena; Nardecchia, Ilaria; Pettini, Marco
2016-04-14
This study is mainly motivated by the need of understanding how the diffusion behavior of a biomolecule (or even of a larger object) is affected by other moving macromolecules, organelles, and so on, inside a living cell, whence the possibility of understanding whether or not a randomly walking biomolecule is also subject to a long-range force field driving it to its target. By means of the Continuous Time Random Walk (CTRW) technique the topic of random walk in random environment is here considered in the case of a passively diffusing particle among randomly moving and interacting obstacles. The relevant physical quantity which is worked out is the diffusion coefficient of the passive tracer which is computed as a function of the average inter-obstacles distance. The results reported here suggest that if a biomolecule, let us call it a test molecule, moves towards its target in the presence of other independently interacting molecules, its motion can be considerably slowed down.
NASA Astrophysics Data System (ADS)
Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál
2018-06-01
We consider random walks on the square lattice of the plane along the lines of Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) and den Hollander (J Stat Phys 75:891-918, 1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotropic random walks with anisotropic density conditions á la Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) yield fixed column configurations and nearest-neighbour random walks in a random environment on the square lattice of the plane as in den Hollander (J Stat Phys 75:891-918, 1994) result in random column configurations. In both cases we conclude simultaneous weak Donsker and strong Strassen type invariance principles in terms of appropriately constructed anisotropic Brownian motions on the plane, with self-contained proofs in both cases. The style of presentation throughout will be that of a semi-expository survey of related results in a historical context.
Origins and applications of the Montroll-Weiss continuous time random walk
NASA Astrophysics Data System (ADS)
Shlesinger, Michael F.
2017-05-01
The Continuous Time Random Walk (CTRW) was introduced by Montroll and Weiss in 1965 in a purely mathematical paper. Its antecedents and later applications beginning in 1973 are discussed, especially for the case of fractal time where the mean waiting time between jumps is infinite. Contribution to the Topical Issue: "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Nandigam, Ravi K.; Kroll, Daniel M.
2007-01-01
The extracellular space of the brain is the heterogeneous porous medium formed by the spaces between the brain cells. Diffusion in this interstitial space is the mechanism by which glucose and oxygen are delivered to the brain cells from the vascular system. It is also a medium for the transport of certain informational substances between the cells (called volume transmission), and for drug delivery. This work involves three-dimensional modeling of the extracellular space as void space in close-packed arrays of fluid membrane vesicles. These packings are generated by minimizing the configurational energy using a Monte Carlo procedure. Both regular and random packs of vesicles are considered. A random walk algorithm is then used to compute the geometric tortuosities, and the results are compared with published experimental data. For the random packings, it is found that although the absolute values for the tortuosities differ, the dependence of the tortuosity on pore volume fraction is very similar to that observed in experiment. The tortuosities we measure are larger than those computed in previous studies of packings of convex polytopes, and modeling improvements, which require higher resolution studies and an improved modeling of brain cell shapes and mechanical properties, could help resolve remaining discrepancies between model simulations and experiment. It is also shown that the specular reflection scheme is the appropriate technique for implementing zero-flux boundary conditions in random walk simulations commonly encountered in diffusion problems. PMID:17307830
Nandigam, Ravi K; Kroll, Daniel M
2007-05-15
The extracellular space of the brain is the heterogeneous porous medium formed by the spaces between the brain cells. Diffusion in this interstitial space is the mechanism by which glucose and oxygen are delivered to the brain cells from the vascular system. It is also a medium for the transport of certain informational substances between the cells (called volume transmission), and for drug delivery. This work involves three-dimensional modeling of the extracellular space as void space in close-packed arrays of fluid membrane vesicles. These packings are generated by minimizing the configurational energy using a Monte Carlo procedure. Both regular and random packs of vesicles are considered. A random walk algorithm is then used to compute the geometric tortuosities, and the results are compared with published experimental data. For the random packings, it is found that although the absolute values for the tortuosities differ, the dependence of the tortuosity on pore volume fraction is very similar to that observed in experiment. The tortuosities we measure are larger than those computed in previous studies of packings of convex polytopes, and modeling improvements, which require higher resolution studies and an improved modeling of brain cell shapes and mechanical properties, could help resolve remaining discrepancies between model simulations and experiment. It is also shown that the specular reflection scheme is the appropriate technique for implementing zero-flux boundary conditions in random walk simulations commonly encountered in diffusion problems.
Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun
2016-10-06
Comparative analysis of protein-protein interaction (PPI) networks provides an effective means of detecting conserved functional network modules across different species. Such modules typically consist of orthologous proteins with conserved interactions, which can be exploited to computationally predict the modules through network comparison. In this work, we propose a novel probabilistic framework for comparing PPI networks and effectively predicting the correspondence between proteins, represented as network nodes, that belong to conserved functional modules across the given PPI networks. The basic idea is to estimate the steady-state network flow between nodes that belong to different PPI networks based on a Markov random walk model. The random walker is designed to make random moves to adjacent nodes within a PPI network as well as cross-network moves between potential orthologous nodes with high sequence similarity. Based on this Markov random walk model, we estimate the steady-state network flow - or the long-term relative frequency of the transitions that the random walker makes - between nodes in different PPI networks, which can be used as a probabilistic score measuring their potential correspondence. Subsequently, the estimated scores can be used for detecting orthologous proteins in conserved functional modules through network alignment. Through evaluations based on multiple real PPI networks, we demonstrate that the proposed scheme leads to improved alignment results that are biologically more meaningful at reduced computational cost, outperforming the current state-of-the-art algorithms. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/CUFID .
NASA Astrophysics Data System (ADS)
Nan, Tongchao; Li, Kaixuan; Wu, Jichun; Yin, Lihe
2018-04-01
Sustainability has been one of the key criteria of effective water exploitation. Groundwater exploitation and water-table decline at Haolebaoji water source site in the Ordos basin in NW China has drawn public attention due to concerns about potential threats to ecosystems and grazing land in the area. To better investigate the impact of production wells at Haolebaoji on the water table, an adapted algorithm called the random walk on grid method (WOG) is applied to simulate the hydraulic head in the unconfined and confined aquifers. This is the first attempt to apply WOG to a real groundwater problem. The method can not only evaluate the head values but also the contributions made by each source/sink term. One is allowed to analyze the impact of source/sink terms just as if one had an analytical solution. The head values evaluated by WOG match the values derived from the software Groundwater Modeling System (GMS). It suggests that WOG is effective and applicable in a heterogeneous aquifer with respect to practical problems, and the resultant information is useful for groundwater management.
Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models
NASA Astrophysics Data System (ADS)
Giordano, Stefano
2017-12-01
Representing polymers by random walks on a lattice is a fruitful approach largely exploited to study configurational statistics of polymer chains and to develop efficient Monte Carlo algorithms. Nevertheless, the stretching and the folding/unfolding of polymer chains within the Gibbs (isotensional) and the Helmholtz (isometric) ensembles of the statistical mechanics have not been yet thoroughly analysed by means of the lattice methodology. This topic, motivated by the recent introduction of several single-molecule force spectroscopy techniques, is investigated in the present paper. In particular, we analyse the force-extension curves under the Gibbs and Helmholtz conditions and we give a proof of the ensembles equivalence in the thermodynamic limit for polymers represented by a standard random walk on a lattice. Then, we generalize these concepts for lattice polymers that can undergo conformational transitions or, equivalently, for chains composed of bistable or two-state elements (that can be either folded or unfolded). In this case, the isotensional condition leads to a plateau-like force-extension response, whereas the isometric condition causes a sawtooth-like force-extension curve, as predicted by numerous experiments. The equivalence of the ensembles is finally proved also for lattice polymer systems exhibiting conformational transitions.
Fast Inbound Top-K Query for Random Walk with Restart.
Zhang, Chao; Jiang, Shan; Chen, Yucheng; Sun, Yidan; Han, Jiawei
2015-09-01
Random walk with restart (RWR) is widely recognized as one of the most important node proximity measures for graphs, as it captures the holistic graph structure and is robust to noise in the graph. In this paper, we study a novel query based on the RWR measure, called the inbound top-k (Ink) query. Given a query node q and a number k , the Ink query aims at retrieving k nodes in the graph that have the largest weighted RWR scores to q . Ink queries can be highly useful for various applications such as traffic scheduling, disease treatment, and targeted advertising. Nevertheless, none of the existing RWR computation techniques can accurately and efficiently process the Ink query in large graphs. We propose two algorithms, namely Squeeze and Ripple, both of which can accurately answer the Ink query in a fast and incremental manner. To identify the top- k nodes, Squeeze iteratively performs matrix-vector multiplication and estimates the lower and upper bounds for all the nodes in the graph. Ripple employs a more aggressive strategy by only estimating the RWR scores for the nodes falling in the vicinity of q , the nodes outside the vicinity do not need to be evaluated because their RWR scores are propagated from the boundary of the vicinity and thus upper bounded. Ripple incrementally expands the vicinity until the top- k result set can be obtained. Our extensive experiments on real-life graph data sets show that Ink queries can retrieve interesting results, and the proposed algorithms are orders of magnitude faster than state-of-the-art method.
Advanced fitness landscape analysis and the performance of memetic algorithms.
Merz, Peter
2004-01-01
Memetic algorithms (MAs) have demonstrated very effective in combinatorial optimization. This paper offers explanations as to why this is so by investigating the performance of MAs in terms of efficiency and effectiveness. A special class of MAs is used to discuss efficiency and effectiveness for local search and evolutionary meta-search. It is shown that the efficiency of MAs can be increased drastically with the use of domain knowledge. However, effectiveness highly depends on the structure of the problem. As is well-known, identifying this structure is made easier with the notion of fitness landscapes: the local properties of the fitness landscape strongly influence the effectiveness of the local search while the global properties strongly influence the effectiveness of the evolutionary meta-search. This paper also introduces new techniques for analyzing the fitness landscapes of combinatorial problems; these techniques focus on the investigation of random walks in the fitness landscape starting at locally optimal solutions as well as on the escape from the basins of attractions of current local optima. It is shown for NK-landscapes and landscapes of the unconstrained binary quadratic programming problem (BQP) that a random walk to another local optimum can be used to explain the efficiency of recombination in comparison to mutation. Moreover, the paper shows that other aspects like the size of the basins of attractions of local optima are important for the efficiency of MAs and a local search escape analysis is proposed. These simple analysis techniques have several advantages over previously proposed statistical measures and provide valuable insight into the behaviour of MAs on different kinds of landscapes.
Stuart, Samuel; Hickey, Aodhán; Galna, Brook; Lord, Sue; Rochester, Lynn; Godfrey, Alan
2017-01-01
Detection of saccades (fast eye-movements) within raw mobile electrooculography (EOG) data involves complex algorithms which typically process data acquired during seated static tasks only. Processing of data during dynamic tasks such as walking is relatively rare and complex, particularly in older adults or people with Parkinson's disease (PD). Development of algorithms that can be easily implemented to detect saccades is required. This study aimed to develop an algorithm for the detection and measurement of saccades in EOG data during static (sitting) and dynamic (walking) tasks, in older adults and PD. Eye-tracking via mobile EOG and infra-red (IR) eye-tracker (with video) was performed with a group of older adults (n = 10) and PD participants (n = 10) (⩾50 years). Horizontal saccades made between targets set 5°, 10° and 15° apart were first measured while seated. Horizontal saccades were then measured while a participant walked and executed a 40° turn left and right. The EOG algorithm was evaluated by comparing the number of correct saccade detections and agreement (ICC 2,1 ) between output from visual inspection of eye-tracker videos and IR eye-tracker. The EOG algorithm detected 75-92% of saccades compared to video inspection and IR output during static testing, with fair to excellent agreement (ICC 2,1 0.49-0.93). However, during walking EOG saccade detection reduced to 42-88% compared to video inspection or IR output, with poor to excellent (ICC 2,1 0.13-0.88) agreement between methodologies. The algorithm was robust during seated testing but less so during walking, which was likely due to increased measurement and analysis error with a dynamic task. Future studies may consider a combination of EOG and IR for comprehensive measurement.
Intelligent agents: adaptation of autonomous bimodal microsystems
NASA Astrophysics Data System (ADS)
Smith, Patrice; Terry, Theodore B.
2014-03-01
Autonomous bimodal microsystems exhibiting survivability behaviors and characteristics are able to adapt dynamically in any given environment. Equipped with a background blending exoskeleton it will have the capability to stealthily detect and observe a self-chosen viewing area while exercising some measurable form of selfpreservation by either flying or crawling away from a potential adversary. The robotic agent in this capacity activates a walk-fly algorithm, which uses a built in multi-sensor processing and navigation subsystem or algorithm for visual guidance and best walk-fly path trajectory to evade capture or annihilation. The research detailed in this paper describes the theoretical walk-fly algorithm, which broadens the scope of spatial and temporal learning, locomotion, and navigational performances based on optical flow signals necessary for flight dynamics and walking stabilities. By observing a fly's travel and avoidance behaviors; and, understanding the reverse bioengineering research efforts of others, we were able to conceptualize an algorithm, which works in conjunction with decisionmaking functions, sensory processing, and sensorimotor integration. Our findings suggest that this highly complex decentralized algorithm promotes inflight or terrain travel mobile stability which is highly suitable for nonaggressive micro platforms supporting search and rescue (SAR), and chemical and explosive detection (CED) purposes; a necessity in turbulent, non-violent structured or unstructured environments.
Hamed, Kaveh Akbari; Gregg, Robert D
2016-07-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.
Hamed, Kaveh Akbari; Gregg, Robert D.
2016-01-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059
Bayesian microsaccade detection
Mihali, Andra; van Opheusden, Bas; Ma, Wei Ji
2017-01-01
Microsaccades are high-velocity fixational eye movements, with special roles in perception and cognition. The default microsaccade detection method is to determine when the smoothed eye velocity exceeds a threshold. We have developed a new method, Bayesian microsaccade detection (BMD), which performs inference based on a simple statistical model of eye positions. In this model, a hidden state variable changes between drift and microsaccade states at random times. The eye position is a biased random walk with different velocity distributions for each state. BMD generates samples from the posterior probability distribution over the eye state time series given the eye position time series. Applied to simulated data, BMD recovers the “true” microsaccades with fewer errors than alternative algorithms, especially at high noise. Applied to EyeLink eye tracker data, BMD detects almost all the microsaccades detected by the default method, but also apparent microsaccades embedded in high noise—although these can also be interpreted as false positives. Next we apply the algorithms to data collected with a Dual Purkinje Image eye tracker, whose higher precision justifies defining the inferred microsaccades as ground truth. When we add artificial measurement noise, the inferences of all algorithms degrade; however, at noise levels comparable to EyeLink data, BMD recovers the “true” microsaccades with 54% fewer errors than the default algorithm. Though unsuitable for online detection, BMD has other advantages: It returns probabilities rather than binary judgments, and it can be straightforwardly adapted as the generative model is refined. We make our algorithm available as a software package. PMID:28114483
Zhang, Yuting; Beenakker, Karel G M; Butala, Pankil M; Lin, Cheng-Chieh; Little, Thomas D C; Maier, Andrea B; Stijntjes, Marjon; Vartanian, Richard; Wagenaar, Robert C
2012-01-01
Changes in gait parameters have been shown to be an important indicator of several age-related cognitive and physical declines of older adults. In this paper we propose a method to monitor and analyze walking and cycling activities based on a triaxial accelerometer worn on one ankle. We use an algorithm that can (1) distinguish between static and dynamic functional activities, (2) detect walking and cycling events, (3) identify gait parameters, including step frequency, number of steps, number of walking periods, and total walking duration per day, and (4) evaluate cycling parameters, including cycling frequency, number of cycling periods, and total cycling duration. Our algorithm is evaluated against the triaxial accelerometer data obtained from a group of 297 middle-aged to older adults wearing an activity monitor on the right ankle for approximately one week while performing unconstrained daily activities in the home and community setting. The correlation coefficients between each of detected gait and cycling parameters on two weekdays are all statistically significant, ranging from 0.668 to 0.873. These results demonstrate good test-retest reliability of our method in monitoring walking and cycling activities and analyzing gait and cycling parameters. This algorithm is efficient and causal in time and thus implementable for real-time monitoring and feedback.
Accuracy metrics for judging time scale algorithms
NASA Technical Reports Server (NTRS)
Douglas, R. J.; Boulanger, J.-S.; Jacques, C.
1994-01-01
Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.
Recursive Branching Simulated Annealing Algorithm
NASA Technical Reports Server (NTRS)
Bolcar, Matthew; Smith, J. Scott; Aronstein, David
2012-01-01
This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal solution, and the region from which new configurations can be selected shrinks as the search continues. The key difference between these algorithms is that in the SA algorithm, a single path, or trajectory, is taken in parameter space, from the starting point to the globally optimal solution, while in the RBSA algorithm, many trajectories are taken; by exploring multiple regions of the parameter space simultaneously, the algorithm has been shown to converge on the globally optimal solution about an order of magnitude faster than when using conventional algorithms. Novel features of the RBSA algorithm include: 1. More efficient searching of the parameter space due to the branching structure, in which multiple random configurations are generated and multiple promising regions of the parameter space are explored; 2. The implementation of a trust region for each parameter in the parameter space, which provides a natural way of enforcing upper- and lower-bound constraints on the parameters; and 3. The optional use of a constrained gradient- search optimization, performed on the continuous variables around each branch s configuration in parameter space to improve search efficiency by allowing for fast fine-tuning of the continuous variables within the trust region at that configuration point.
Random walks with long-range steps generated by functions of Laplacian matrices
NASA Astrophysics Data System (ADS)
Riascos, A. P.; Michelitsch, T. M.; Collet, B. A.; Nowakowski, A. F.; Nicolleau, F. C. G. A.
2018-04-01
In this paper, we explore different Markovian random walk strategies on networks with transition probabilities between nodes defined in terms of functions of the Laplacian matrix. We generalize random walk strategies with local information in the Laplacian matrix, that describes the connections of a network, to a dynamic determined by functions of this matrix. The resulting processes are non-local allowing transitions of the random walker from one node to nodes beyond its nearest neighbors. We find that only two types of Laplacian functions are admissible with distinct behaviors for long-range steps in the infinite network limit: type (i) functions generate Brownian motions, type (ii) functions Lévy flights. For this asymptotic long-range step behavior only the lowest non-vanishing order of the Laplacian function is relevant, namely first order for type (i), and fractional order for type (ii) functions. In the first part, we discuss spectral properties of the Laplacian matrix and a series of relations that are maintained by a particular type of functions that allow to define random walks on any type of undirected connected networks. Once described general properties, we explore characteristics of random walk strategies that emerge from particular cases with functions defined in terms of exponentials, logarithms and powers of the Laplacian as well as relations of these dynamics with non-local strategies like Lévy flights and fractional transport. Finally, we analyze the global capacity of these random walk strategies to explore networks like lattices and trees and different types of random and complex networks.
Langbein, John O.
2012-01-01
Recent studies have documented that global positioning system (GPS) time series of position estimates have temporal correlations which have been modeled as a combination of power-law and white noise processes. When estimating quantities such as a constant rate from GPS time series data, the estimated uncertainties on these quantities are more realistic when using a noise model that includes temporal correlations than simply assuming temporally uncorrelated noise. However, the choice of the specific representation of correlated noise can affect the estimate of uncertainty. For many GPS time series, the background noise can be represented by either: (1) a sum of flicker and random-walk noise or, (2) as a power-law noise model that represents an average of the flicker and random-walk noise. For instance, if the underlying noise model is a combination of flicker and random-walk noise, then incorrectly choosing the power-law model could underestimate the rate uncertainty by a factor of two. Distinguishing between the two alternate noise models is difficult since the flicker component can dominate the assessment of the noise properties because it is spread over a significant portion of the measurable frequency band. But, although not necessarily detectable, the random-walk component can be a major constituent of the estimated rate uncertainty. None the less, it is possible to determine the upper bound on the random-walk noise.
Sunspot random walk and 22-year variation
Love, Jeffrey J.; Rigler, E. Joshua
2012-01-01
We examine two stochastic models for consistency with observed long-term secular trends in sunspot number and a faint, but semi-persistent, 22-yr signal: (1) a null hypothesis, a simple one-parameter random-walk model of sunspot-number cycle-to-cycle change, and, (2) an alternative hypothesis, a two-parameter random-walk model with an imposed 22-yr alternating amplitude. The observed secular trend in sunspots, seen from solar cycle 5 to 23, would not be an unlikely result of the accumulation of multiple random-walk steps. Statistical tests show that a 22-yr signal can be resolved in historical sunspot data; that is, the probability is low that it would be realized from random data. On the other hand, the 22-yr signal has a small amplitude compared to random variation, and so it has a relatively small effect on sunspot predictions. Many published predictions for cycle 24 sunspots fall within the dispersion of previous cycle-to-cycle sunspot differences. The probability is low that the Sun will, with the accumulation of random steps over the next few cycles, walk down to a Dalton-like minimum. Our models support published interpretations of sunspot secular variation and 22-yr variation resulting from cycle-to-cycle accumulation of dynamo-generated magnetic energy.
Flexible embedding of networks
NASA Astrophysics Data System (ADS)
Fernandez-Gracia, Juan; Buckee, Caroline; Onnela, Jukka-Pekka
We introduce a model for embedding one network into another, focusing on the case where network A is much bigger than network B. Nodes from network A are assigned to the nodes in network B using an algorithm where we control the extent of localization of node placement in network B using a single parameter. Starting from an unassigned node in network A, called the source node, we first map this node to a randomly chosen node in network B, called the target node. We then assign the neighbors of the source node to the neighborhood of the target node using a random walk based approach. To assign each neighbor of the source node to one of the nodes in network B, we perform a random walk starting from the target node with stopping probability α. We repeat this process until all nodes in network A have been mapped to the nodes of network B. The simplicity of the model allows us to calculate key quantities of interest in closed form. By varying the parameter α, we are able to produce embeddings from very local (α = 1) to very global (α --> 0). We show how our calculations fit the simulated results, and we apply the model to study how social networks are embedded in geography and how the neurons of C. Elegans are embedded in the surrounding volume.
Cubo, Esther; Leurgans, Sue; Goetz, Christopher G
2004-12-01
In a randomized single blind parallel study, we tested the efficacy of an auditory metronome on walking speed and freezing in Parkinson's disease (PD) patients with freezing gait impairment during their 'on' function. No pharmacological treatment is effective in managing 'on' freezing in PD. Like visual cues that can help overcome freezing, rhythmic auditory pacing may provide cues that help normalize walking pace and overcome freezing. Non-demented PD patients with freezing during their 'on' state walked under two conditions, in randomized order: unassisted walking and walking with the use of an audiocassette with a metronome recording. The walking trials were randomized and gait variables were rated from videotapes by a blinded evaluator. Outcome measures were total walking time (total trial time-total freezing time), which was considered the time over a course of specified length, freezing time, average freeze duration and number of freezes. All outcomes were averaged across trials for each person and then compared across conditions using Signed Rank tests. Twelve non-demented PD patients with a mean age of 65.8 +/- 11.2 years, and mean PD duration of 12.4 +/- 7.3 years were included. The use of the metronome slowed ambulation and increased the total walking time (P < 0.0005) only during the first visit, without affecting any freezing variable. In the nine patients who took the metronome recording home and used it daily for 1 week while walking, freezing remained unimproved. Though advocated in prior publications as a walking aid for PD patients, auditory metronome pacing slows walking and is not a beneficial intervention for freezing during their 'on' periods.
Imam, Bita; Miller, William C; Finlayson, Heather; Eng, Janice J; Jarus, Tal
2017-01-01
To assess the feasibility of Wii.n.Walk for improving walking capacity in older adults with lower limb amputation. A parallel, evaluator-blind randomized controlled feasibility trial. Community-living. Individuals who were ⩾50 years old with a unilateral lower limb amputation. Wii.n.Walk consisted of Wii Fit training, 3x/week (40 minute sessions), for 4 weeks. Training started in the clinic in groups of 3 and graduated to unsupervised home training. Control group were trained using cognitive games. Feasibility indicators: trial process (recruitment, retention, participants' perceived benefit from the Wii.n.Walk intervention measured by exit questionnaire), resources (adherence), management (participant processing, blinding), and treatment (adverse event, and Cohen's d effect size and variance). Primary clinical outcome: walking capacity measured using the 2 Minute Walk Test at baseline, end of treatment, and 3-week retention. Of 28 randomized participants, 24 completed the trial (12/arm). Median (range) age was 62.0 (50-78) years. Mean (SD) score for perceived benefit from the Wii.n.Walk intervention was 38.9/45 (6.8). Adherence was 83.4%. The effect sizes for the 2 Minute Walk Test were 0.5 (end of treatment) and 0.6 (3-week retention) based on intention to treat with imputed data; and 0.9 (end of treatment) and 1.2 (3-week retention) based on per protocol analysis. The required sample size for a future larger RCT was deemed to be 72 (36 per arm). The results suggested the feasibility of the Wii.n.Walk with a medium effect size for improving walking capacity. Future larger randomized controlled trials investigating efficacy are warranted.
NASA Astrophysics Data System (ADS)
Müller, Christian L.; Sbalzarini, Ivo F.; van Gunsteren, Wilfred F.; Žagrović, Bojan; Hünenberger, Philippe H.
2009-06-01
The concept of high-resolution shapes (also referred to as folds or states, depending on the context) of a polymer chain plays a central role in polymer science, structural biology, bioinformatics, and biopolymer dynamics. However, although the idea of shape is intuitively very useful, there is no unambiguous mathematical definition for this concept. In the present work, the distributions of high-resolution shapes within the ideal random-walk ensembles with N =3,…,6 beads (or up to N =10 for some properties) are investigated using a systematic (grid-based) approach based on a simple working definition of shapes relying on the root-mean-square atomic positional deviation as a metric (i.e., to define the distance between pairs of structures) and a single cutoff criterion for the shape assignment. Although the random-walk ensemble appears to represent the paramount of homogeneity and randomness, this analysis reveals that the distribution of shapes within this ensemble, i.e., in the total absence of interatomic interactions characteristic of a specific polymer (beyond the generic connectivity constraint), is significantly inhomogeneous. In particular, a specific (densest) shape occurs with a local probability that is 1.28, 1.79, 2.94, and 10.05 times (N =3,…,6) higher than the corresponding average over all possible shapes (these results can tentatively be extrapolated to a factor as large as about 1028 for N =100). The qualitative results of this analysis lead to a few rather counterintuitive suggestions, namely, that, e.g., (i) a fold classification analysis applied to the random-walk ensemble would lead to the identification of random-walk "folds;" (ii) a clustering analysis applied to the random-walk ensemble would also lead to the identification random-walk "states" and associated relative free energies; and (iii) a random-walk ensemble of polymer chains could lead to well-defined diffraction patterns in hypothetical fiber or crystal diffraction experiments. The inhomogeneous nature of the shape probability distribution identified here for random walks may represent a significant underlying baseline effect in the analysis of real polymer chain ensembles (i.e., in the presence of specific interatomic interactions). As a consequence, a part of what is called a polymer shape may actually reside just "in the eye of the beholder" rather than in the nature of the interactions between the constituting atoms, and the corresponding observation-related bias should be taken into account when drawing conclusions from shape analyses as applied to real structural ensembles.
Müller, Christian L; Sbalzarini, Ivo F; van Gunsteren, Wilfred F; Zagrović, Bojan; Hünenberger, Philippe H
2009-06-07
The concept of high-resolution shapes (also referred to as folds or states, depending on the context) of a polymer chain plays a central role in polymer science, structural biology, bioinformatics, and biopolymer dynamics. However, although the idea of shape is intuitively very useful, there is no unambiguous mathematical definition for this concept. In the present work, the distributions of high-resolution shapes within the ideal random-walk ensembles with N=3,...,6 beads (or up to N=10 for some properties) are investigated using a systematic (grid-based) approach based on a simple working definition of shapes relying on the root-mean-square atomic positional deviation as a metric (i.e., to define the distance between pairs of structures) and a single cutoff criterion for the shape assignment. Although the random-walk ensemble appears to represent the paramount of homogeneity and randomness, this analysis reveals that the distribution of shapes within this ensemble, i.e., in the total absence of interatomic interactions characteristic of a specific polymer (beyond the generic connectivity constraint), is significantly inhomogeneous. In particular, a specific (densest) shape occurs with a local probability that is 1.28, 1.79, 2.94, and 10.05 times (N=3,...,6) higher than the corresponding average over all possible shapes (these results can tentatively be extrapolated to a factor as large as about 10(28) for N=100). The qualitative results of this analysis lead to a few rather counterintuitive suggestions, namely, that, e.g., (i) a fold classification analysis applied to the random-walk ensemble would lead to the identification of random-walk "folds;" (ii) a clustering analysis applied to the random-walk ensemble would also lead to the identification random-walk "states" and associated relative free energies; and (iii) a random-walk ensemble of polymer chains could lead to well-defined diffraction patterns in hypothetical fiber or crystal diffraction experiments. The inhomogeneous nature of the shape probability distribution identified here for random walks may represent a significant underlying baseline effect in the analysis of real polymer chain ensembles (i.e., in the presence of specific interatomic interactions). As a consequence, a part of what is called a polymer shape may actually reside just "in the eye of the beholder" rather than in the nature of the interactions between the constituting atoms, and the corresponding observation-related bias should be taken into account when drawing conclusions from shape analyses as applied to real structural ensembles.
Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module
NASA Astrophysics Data System (ADS)
Martinez, Gregory D.; McKay, James; Farmer, Ben; Scott, Pat; Roebber, Elinore; Putze, Antje; Conrad, Jan
2017-11-01
We introduce ScannerBit, the statistics and sampling module of the public, open-source global fitting framework GAMBIT. ScannerBit provides a standardised interface to different sampling algorithms, enabling the use and comparison of multiple computational methods for inferring profile likelihoods, Bayesian posteriors, and other statistical quantities. The current version offers random, grid, raster, nested sampling, differential evolution, Markov Chain Monte Carlo (MCMC) and ensemble Monte Carlo samplers. We also announce the release of a new standalone differential evolution sampler, Diver, and describe its design, usage and interface to ScannerBit. We subject Diver and three other samplers (the nested sampler MultiNest, the MCMC GreAT, and the native ScannerBit implementation of the ensemble Monte Carlo algorithm T-Walk) to a battery of statistical tests. For this we use a realistic physical likelihood function, based on the scalar singlet model of dark matter. We examine the performance of each sampler as a function of its adjustable settings, and the dimensionality of the sampling problem. We evaluate performance on four metrics: optimality of the best fit found, completeness in exploring the best-fit region, number of likelihood evaluations, and total runtime. For Bayesian posterior estimation at high resolution, T-Walk provides the most accurate and timely mapping of the full parameter space. For profile likelihood analysis in less than about ten dimensions, we find that Diver and MultiNest score similarly in terms of best fit and speed, outperforming GreAT and T-Walk; in ten or more dimensions, Diver substantially outperforms the other three samplers on all metrics.
NASA Astrophysics Data System (ADS)
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-29
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.
Superdiffusive Dispersals Impart the Geometry of Underlying Random Walks
NASA Astrophysics Data System (ADS)
Zaburdaev, V.; Fouxon, I.; Denisov, S.; Barkai, E.
2016-12-01
It is recognized now that a variety of real-life phenomena ranging from diffusion of cold atoms to the motion of humans exhibit dispersal faster than normal diffusion. Lévy walks is a model that excelled in describing such superdiffusive behaviors albeit in one dimension. Here we show that, in contrast to standard random walks, the microscopic geometry of planar superdiffusive Lévy walks is imprinted in the asymptotic distribution of the walkers. The geometry of the underlying walk can be inferred from trajectories of the walkers by calculating the analogue of the Pearson coefficient.
Dual Fractal Dimension and Long-Range Correlation of Chinese Stock Prices
NASA Astrophysics Data System (ADS)
Chen, Chaoshi; Wang, Lei
2012-03-01
The recently developed modified inverse random midpoint displacement (mIRMD) and conventional detrended fluctuation analysis (DFA) algorithms are used to analyze the tick-by-tick high-frequency time series of Chinese A-share stock prices and indexes. A dual-fractal structure with a crossover at about 10 min is observed. The majority of the selected time series show visible persistence within this time threshold, but approach a random walk on a longer time scale. The phenomenon is found to be industry-dependent, i.e., the crossover is much more prominent for stocks belonging to cyclical industries than for those belonging to noncyclical (defensive) industries. We have also shown that the sign series show a similar dual-fractal structure, while like generally found, the magnitude series show a much longer time persistence.
Self-Avoiding Walks over Adaptive Triangular Grids
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Gao, Guang R.; Saini, Subhash (Technical Monitor)
1998-01-01
In this paper, we present a new approach to constructing a "self-avoiding" walk through a triangular mesh. Unlike the popular approach of visiting mesh elements using space-filling curves which is based on a geometric embedding, our approach is combinatorial in the sense that it uses the mesh connectivity only. We present an algorithm for constructing a self-avoiding walk which can be applied to any unstructured triangular mesh. The complexity of the algorithm is O(n x log(n)), where n is the number of triangles in the mesh. We show that for hierarchical adaptive meshes, the algorithm can be easily parallelized by taking advantage of the regularity of the refinement rules. The proposed approach should be very useful in the run-time partitioning and load balancing of adaptive unstructured grids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Mark William
2007-09-01
Gait or an individual's manner of walking, is one approach for recognizing people at a distance. Studies in psychophysics and medicine indicate that humans can recognize people by their gait and have found twenty-four different components to gait that taken together make it a unique signature. Besides not requiring close sensor contact, gait also does not necessarily require a cooperative subject. Using video data of people walking in different scenarios and environmental conditions we develop and test an algorithm that uses shape and motion to identify people from their gait. The algorithm uses dynamic time warping to match stored templatesmore » against an unknown sequence of silhouettes extracted from a person walking. While results under similar constraints and conditions are very good, the algorithm quickly degrades with varying conditions such as surface and clothing.« less
Kuo, Chun-Yu; Yeh, Yei-Yu
2016-01-01
Prior research has shown that free walking can enhance creative thinking. Nevertheless, it remains unclear whether bidirectional body-mind links are essential for the positive effect of free walking on creative thinking. Moreover, it is unknown whether the positive effect can be generalized to older adults. In Experiment 1, we replicated previous findings with two additional groups of young participants. Participants in the rectangular-walking condition walked along a rectangular path while generating unusual uses for chopsticks. Participants in the free-walking group walked freely as they wished, and participants in the free-generation condition generated unconstrained free paths while the participants in the random-experienced condition walked those paths. Only the free-walking group showed better performance in fluency, flexibility, and originality. In Experiment 2, two groups of older adults were randomly assigned to the free-walking and rectangular-walking conditions. The free-walking group showed better performance than the rectangular-walking group. Moreover, older adults in the free-walking group outperformed young adults in the rectangular-walking group in originality and performed comparably in fluency and flexibility. Bidirectional links between proprioceptive-motor kinematics and metaphorical abstract concepts can enhance divergent thinking for both young and older adults. PMID:27790178
Random Walks in a One-Dimensional Lévy Random Environment
NASA Astrophysics Data System (ADS)
Bianchi, Alessandra; Cristadoro, Giampaolo; Lenci, Marco; Ligabò, Marilena
2016-04-01
We consider a generalization of a one-dimensional stochastic process known in the physical literature as Lévy-Lorentz gas. The process describes the motion of a particle on the real line in the presence of a random array of marked points, whose nearest-neighbor distances are i.i.d. and long-tailed (with finite mean but possibly infinite variance). The motion is a continuous-time, constant-speed interpolation of a symmetric random walk on the marked points. We first study the quenched random walk on the point process, proving the CLT and the convergence of all the accordingly rescaled moments. Then we derive the quenched and annealed CLTs for the continuous-time process.
NASA Astrophysics Data System (ADS)
Weng, Tongfeng; Zhang, Jie; Small, Michael; Harandizadeh, Bahareh; Hui, Pan
2018-03-01
We propose a unified framework to evaluate and quantify the search time of multiple random searchers traversing independently and concurrently on complex networks. We find that the intriguing behaviors of multiple random searchers are governed by two basic principles—the logarithmic growth pattern and the harmonic law. Specifically, the logarithmic growth pattern characterizes how the search time increases with the number of targets, while the harmonic law explores how the search time of multiple random searchers varies relative to that needed by individual searchers. Numerical and theoretical results demonstrate these two universal principles established across a broad range of random search processes, including generic random walks, maximal entropy random walks, intermittent strategies, and persistent random walks. Our results reveal two fundamental principles governing the search time of multiple random searchers, which are expected to facilitate investigation of diverse dynamical processes like synchronization and spreading.
A simple method for finding the scattering coefficients of quantum graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottrell, Seth S.
2015-09-15
Quantum walks are roughly analogous to classical random walks, and similar to classical walks they have been used to find new (quantum) algorithms. When studying the behavior of large graphs or combinations of graphs, it is useful to find the response of a subgraph to signals of different frequencies. In doing so, we can replace an entire subgraph with a single vertex with variable scattering coefficients. In this paper, a simple technique for quickly finding the scattering coefficients of any discrete-time quantum graph will be presented. These scattering coefficients can be expressed entirely in terms of the characteristic polynomial ofmore » the graph’s time step operator. This is a marked improvement over previous techniques which have traditionally required finding eigenstates for a given eigenvalue, which is far more computationally costly. With the scattering coefficients we can easily derive the “impulse response” which is the key to predicting the response of a graph to any signal. This gives us a powerful set of tools for rapidly understanding the behavior of graphs or for reducing a large graph into its constituent subgraphs regardless of how they are connected.« less
A General Exponential Framework for Dimensionality Reduction.
Wang, Su-Jing; Yan, Shuicheng; Yang, Jian; Zhou, Chun-Guang; Fu, Xiaolan
2014-02-01
As a general framework, Laplacian embedding, based on a pairwise similarity matrix, infers low dimensional representations from high dimensional data. However, it generally suffers from three issues: 1) algorithmic performance is sensitive to the size of neighbors; 2) the algorithm encounters the well known small sample size (SSS) problem; and 3) the algorithm de-emphasizes small distance pairs. To address these issues, here we propose exponential embedding using matrix exponential and provide a general framework for dimensionality reduction. In the framework, the matrix exponential can be roughly interpreted by the random walk over the feature similarity matrix, and thus is more robust. The positive definite property of matrix exponential deals with the SSS problem. The behavior of the decay function of exponential embedding is more significant in emphasizing small distance pairs. Under this framework, we apply matrix exponential to extend many popular Laplacian embedding algorithms, e.g., locality preserving projections, unsupervised discriminant projections, and marginal fisher analysis. Experiments conducted on the synthesized data, UCI, and the Georgia Tech face database show that the proposed new framework can well address the issues mentioned above.
Tensor Spectral Clustering for Partitioning Higher-order Network Structures.
Benson, Austin R; Gleich, David F; Leskovec, Jure
2015-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.
Tensor Spectral Clustering for Partitioning Higher-order Network Structures
Benson, Austin R.; Gleich, David F.; Leskovec, Jure
2016-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms. PMID:27812399
ERIC Educational Resources Information Center
Kullgren, Jeffrey T.; Harkins, Kristin A.; Bellamy, Scarlett L.; Gonzales, Amy; Tao, Yuanyuan; Zhu, Jingsan; Volpp, Kevin G.; Asch, David A.; Heisler, Michele; Karlawish, Jason
2014-01-01
Background: Financial incentives and peer networks could be delivered through eHealth technologies to encourage older adults to walk more. Methods: We conducted a 24-week randomized trial in which 92 older adults with a computer and Internet access received a pedometer, daily walking goals, and weekly feedback on goal achievement. Participants…
Random Walks on Cartesian Products of Certain Nonamenable Groups and Integer Lattices
NASA Astrophysics Data System (ADS)
Vishnepolsky, Rachel
A random walk on a discrete group satisfies a local limit theorem with power law exponent \\alpha if the return probabilities follow the asymptotic law. P{ return to starting point after n steps } ˜ Crhonn-alpha.. A group has a universal local limit theorem if all random walks on the group with finitely supported step distributions obey a local limit theorem with the same power law exponent. Given two groups that obey universal local limit theorems, it is not known whether their cartesian product also has a universal local limit theorem. We settle the question affirmatively in one case, by considering a random walk on the cartesian product of a nonamenable group whose Cayley graph is a tree, and the integer lattice. As corollaries, we derive large deviations estimates and a central limit theorem.
Damrath, Martin; Korte, Sebastian; Hoeher, Peter Adam
2017-01-01
This paper introduces the equivalent discrete-time channel model (EDTCM) to the area of diffusion-based molecular communication (DBMC). Emphasis is on an absorbing receiver, which is based on the so-called first passage time concept. In the wireless communications community the EDTCM is well known. Therefore, it is anticipated that the EDTCM improves the accessibility of DBMC and supports the adaptation of classical wireless communication algorithms to the area of DBMC. Furthermore, the EDTCM has the capability to provide a remarkable reduction of computational complexity compared to random walk based DBMC simulators. Besides the exact EDTCM, three approximations thereof based on binomial, Gaussian, and Poisson approximation are proposed and analyzed in order to further reduce computational complexity. In addition, the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is adapted to all four channel models. Numerical results show the performance of the exact EDTCM, illustrate the performance of the adapted BCJR algorithm, and demonstrate the accuracy of the approximations.
Navigation of autonomous vehicles for oil spill cleaning in dynamic and uncertain environments
NASA Astrophysics Data System (ADS)
Jin, Xin; Ray, Asok
2014-04-01
In the context of oil spill cleaning by autonomous vehicles in dynamic and uncertain environments, this paper presents a multi-resolution algorithm that seamlessly integrates the concepts of local navigation and global navigation based on the sensory information; the objective here is to enable adaptive decision making and online replanning of vehicle paths. The proposed algorithm provides a complete coverage of the search area for clean-up of the oil spills and does not suffer from the problem of having local minima, which is commonly encountered in potential-field-based methods. The efficacy of the algorithm is tested on a high-fidelity player/stage simulator for oil spill cleaning in a harbour, where the underlying oil weathering process is modelled as 2D random-walk particle tracking. A preliminary version of this paper was presented by X. Jin and A. Ray as 'Coverage Control of Autonomous Vehicles for Oil Spill Cleaning in Dynamic and Uncertain Environments', Proceedings of the American Control Conference, Washington, DC, June 2013, pp. 2600-2605.
Image-based 3D reconstruction and virtual environmental walk-through
NASA Astrophysics Data System (ADS)
Sun, Jifeng; Fang, Lixiong; Luo, Ying
2001-09-01
We present a 3D reconstruction method, which combines geometry-based modeling, image-based modeling and rendering techniques. The first component is an interactive geometry modeling method which recovery of the basic geometry of the photographed scene. The second component is model-based stereo algorithm. We discus the image processing problems and algorithms of walking through in virtual space, then designs and implement a high performance multi-thread wandering algorithm. The applications range from architectural planning and archaeological reconstruction to virtual environments and cinematic special effects.
Atomic clocks and the continuous-time random-walk
NASA Astrophysics Data System (ADS)
Formichella, Valerio; Camparo, James; Tavella, Patrizia
2017-11-01
Atomic clocks play a fundamental role in many fields, most notably they generate Universal Coordinated Time and are at the heart of all global navigation satellite systems. Notwithstanding their excellent timekeeping performance, their output frequency does vary: it can display deterministic frequency drift; diverse continuous noise processes result in nonstationary clock noise (e.g., random-walk frequency noise, modelled as a Wiener process), and the clock frequency may display sudden changes (i.e., "jumps"). Typically, the clock's frequency instability is evaluated by the Allan or Hadamard variances, whose functional forms can identify the different operative noise processes. Here, we show that the Allan and Hadamard variances of a particular continuous-time random-walk, the compound Poisson process, have the same functional form as for a Wiener process with drift. The compound Poisson process, introduced as a model for observed frequency jumps, is an alternative to the Wiener process for modelling random walk frequency noise. This alternate model fits well the behavior of the rubidium clocks flying on GPS Block-IIR satellites. Further, starting from jump statistics, the model can be improved by considering a more general form of continuous-time random-walk, and this could bring new insights into the physics of atomic clocks.
Chaotic Traversal (CHAT): Very Large Graphs Traversal Using Chaotic Dynamics
NASA Astrophysics Data System (ADS)
Changaival, Boonyarit; Rosalie, Martin; Danoy, Grégoire; Lavangnananda, Kittichai; Bouvry, Pascal
2017-12-01
Graph Traversal algorithms can find their applications in various fields such as routing problems, natural language processing or even database querying. The exploration can be considered as a first stepping stone into knowledge extraction from the graph which is now a popular topic. Classical solutions such as Breadth First Search (BFS) and Depth First Search (DFS) require huge amounts of memory for exploring very large graphs. In this research, we present a novel memoryless graph traversal algorithm, Chaotic Traversal (CHAT) which integrates chaotic dynamics to traverse large unknown graphs via the Lozi map and the Rössler system. To compare various dynamics effects on our algorithm, we present an original way to perform the exploration of a parameter space using a bifurcation diagram with respect to the topological structure of attractors. The resulting algorithm is an efficient and nonresource demanding algorithm, and is therefore very suitable for partial traversal of very large and/or unknown environment graphs. CHAT performance using Lozi map is proven superior than the, commonly known, Random Walk, in terms of number of nodes visited (coverage percentage) and computation time where the environment is unknown and memory usage is restricted.
NASA Astrophysics Data System (ADS)
Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki
2018-03-01
We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2}). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3}) and the level sets of the Gaussian free field ({d≥ 3}). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.
NASA Astrophysics Data System (ADS)
Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki
2017-12-01
We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2} ). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3} ) and the level sets of the Gaussian free field ({d≥ 3} ). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.
Parametric Quantum Search Algorithm as Quantum Walk: A Quantum Simulation
NASA Astrophysics Data System (ADS)
Ellinas, Demosthenes; Konstandakis, Christos
2016-02-01
Parametric quantum search algorithm (PQSA) is a form of quantum search that results by relaxing the unitarity of the original algorithm. PQSA can naturally be cast in the form of quantum walk, by means of the formalism of oracle algebra. This is due to the fact that the completely positive trace preserving search map used by PQSA, admits a unitarization (unitary dilation) a la quantum walk, at the expense of introducing auxiliary quantum coin-qubit space. The ensuing QW describes a process of spiral motion, chosen to be driven by two unitary Kraus generators, generating planar rotations of Bloch vector around an axis. The quadratic acceleration of quantum search translates into an equivalent quadratic saving of the number of coin qubits in the QW analogue. The associated to QW model Hamiltonian operator is obtained and is shown to represent a multi-particle long-range interacting quantum system that simulates parametric search. Finally, the relation of PQSA-QW simulator to the QW search algorithm is elucidated.
Quantum Ultra-Walks: Walks on a Line with Spatial Disorder
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Falkner, Stefan
We discuss the model of a heterogeneous discrete-time walk on a line with spatial disorder in the form of a set of ultrametric barriers. Simulations show that such an quantum ultra-walk spreads with a walk exponent dw that ranges from ballistic (dw = 1) to complete confinement (dw = ∞) for increasing separation 1 <= 1 / ɛ < ∞ in barrier heights. We develop a formalism by which the classical random walk as well as the quantum walk can be treated in parallel using a coined walk with internal degrees of freedom. For the random walk, this amounts to a 2nd -order Markov process with a stochastic coin, better know as an (anti-)persistent walk. The exact analysis, based on the real-space renormalization group (RG), reproduces the results of the well-known model of ``ultradiffusion,'' dw = 1 -log2 ɛ for 0 < ɛ <= 1 / 2 . However, while the evaluation of the RG fixed-points proceeds virtually identical, for the corresponding quantum walk with a unitary coin it fails to reproduce the numerical results. A new way to analyze the RG is indicated. Supported by NSF-DMR 1207431.
A random-walk/giant-loop model for interphase chromosomes.
Sachs, R K; van den Engh, G; Trask, B; Yokota, H; Hearst, J E
1995-01-01
Fluorescence in situ hybridization data on distances between defined genomic sequences are used to construct a quantitative model for the overall geometric structure of a human chromosome. We suggest that the large-scale geometry during the G0/G1 part of the cell cycle may consist of flexible chromatin loops, averaging approximately 3 million bp, with a random-walk backbone. A fully explicit, three-parametric polymer model of this random-walk/giant-loop structure can account well for the data. More general models consistent with the data are briefly discussed. PMID:7708711
Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis.
Hickey, Aodhán; Del Din, Silvia; Rochester, Lynn; Godfrey, Alan
2017-01-01
Research suggests wearables and not instrumented walkways are better suited to quantify gait outcomes in clinic and free-living environments, providing a more comprehensive overview of walking due to continuous monitoring. Numerous validation studies in controlled settings exist, but few have examined the validity of wearables and associated algorithms for identifying and quantifying step counts and walking bouts in uncontrolled (free-living) environments. Studies which have examined free-living step and bout count validity found limited agreement due to variations in walking speed, changing terrain or task. Here we present a gait segmentation algorithm to define free-living step count and walking bouts from an open-source, high-resolution, accelerometer-based wearable (AX3, Axivity). Ten healthy participants (20-33 years) wore two portable gait measurement systems; a wearable accelerometer on the lower-back and a wearable body-mounted camera (GoPro HERO) on the chest, for 1 h on two separate occasions (24 h apart) during free-living activities. Step count and walking bouts were derived for both measurement systems and compared. For all participants during a total of almost 20 h of uncontrolled and unscripted free-living activity data, excellent relative (rho ⩾ 0.941) and absolute (ICC (2,1) ⩾ 0.975) agreement with no presence of bias were identified for step count compared to the camera (gold standard reference). Walking bout identification showed excellent relative (rho ⩾ 0.909) and absolute agreement (ICC (2,1) ⩾ 0.941) but demonstrated significant bias. The algorithm employed for identifying and quantifying steps and bouts from a single wearable accelerometer worn on the lower-back has been demonstrated to be valid and could be used for pragmatic gait analysis in prolonged uncontrolled free-living environments.
NASA Astrophysics Data System (ADS)
Malicet, Dominique
2017-12-01
In this paper, we study random walks {g_n=f_{n-1}\\ldots f_0} on the group Homeo ( S 1) of the homeomorphisms of the circle, where the homeomorphisms f k are chosen randomly, independently, with respect to a same probability measure {ν}. We prove that under the only condition that there is no probability measure invariant by {ν}-almost every homeomorphism, the random walk almost surely contracts small intervals. It generalizes what has been known on this subject until now, since various conditions on {ν} were imposed in order to get the phenomenon of contractions. Moreover, we obtain the surprising fact that the rate of contraction is exponential, even in the lack of assumptions of smoothness on the f k 's. We deduce various dynamical consequences on the random walk ( g n ): finiteness of ergodic stationary measures, distribution of the trajectories, asymptotic law of the evaluations, etc. The proof of the main result is based on a modification of the Ávila-Viana's invariance principle, working for continuous cocycles on a space fibred in circles.
The Walking School Bus and children's physical activity: A pilot cluster randomized controlled trial
USDA-ARS?s Scientific Manuscript database
To evaluate the impact of a "walking school bus" program on children's rates of active commuting to school and physical activity. We conducted a pilot cluster randomized controlled trial among 4th-graders from 8 schools in Houston, Texas (N = 149). Random allocation to treatment or control condition...
Branching random walk with step size coming from a power law
NASA Astrophysics Data System (ADS)
Bhattacharya, Ayan; Subhra Hazra, Rajat; Roy, Parthanil
2015-09-01
In their seminal work, Brunet and Derrida made predictions on the random point configurations associated with branching random walks. We shall discuss the limiting behavior of such point configurations when the displacement random variables come from a power law. In particular, we establish that two prediction of remains valid in this setup and investigate various other issues mentioned in their paper.
Anomalous Diffusion of Single Particles in Cytoplasm
Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J.
2013-01-01
The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM. PMID:23601312
Scaling behavior for random walks with memory of the largest distance from the origin
NASA Astrophysics Data System (ADS)
Serva, Maurizio
2013-11-01
We study a one-dimensional random walk with memory. The behavior of the walker is modified with respect to the simple symmetric random walk only when he or she is at the maximum distance ever reached from his or her starting point (home). In this case, having the choice to move farther or to move closer, the walker decides with different probabilities. If the probability of a forward step is higher then the probability of a backward step, the walker is bold, otherwise he or she is timorous. We investigate the asymptotic properties of this bold-timorous random walk, showing that the scaling behavior varies continuously from subdiffusive (timorous) to superdiffusive (bold). The scaling exponents are fully determined with a new mathematical approach based on a decomposition of the dynamics in active journeys (the walker is at the maximum distance) and lazy journeys (the walker is not at the maximum distance).
Locomotion with loads: practical techniques for predicting performance outcomes
including load), speed, and grade algorithms proposed will allow walking metabolic rates to be predicted to within 6.0 and 12.0 in laboratory and field...speeds to be predicted to within6.0 in both laboratory and field settings. Respective load-carriage algorithms for walking energy expenditure and...running speed will be developed and tested( Technical Objectives 1.0 and 2.0) in the laboratory and the field.
NASA Astrophysics Data System (ADS)
Most, S.; Jia, N.; Bijeljic, B.; Nowak, W.
2016-12-01
Pre-asymptotic characteristics are almost ubiquitous when analyzing solute transport processes in porous media. These pre-asymptotic aspects are caused by spatial coherence in the velocity field and by its heterogeneity. For the Lagrangian perspective of particle displacements, the causes of pre-asymptotic, non-Fickian transport are skewed velocity distribution, statistical dependencies between subsequent increments of particle positions (memory) and dependence between the x, y and z-components of particle increments. Valid simulation frameworks should account for these factors. We propose a particle tracking random walk (PTRW) simulation technique that can use empirical pore-space velocity distributions as input, enforces memory between subsequent random walk steps, and considers cross dependence. Thus, it is able to simulate pre-asymptotic non-Fickian transport phenomena. Our PTRW framework contains an advection/dispersion term plus a diffusion term. The advection/dispersion term produces time-series of particle increments from the velocity CDFs. These time series are equipped with memory by enforcing that the CDF values of subsequent velocities change only slightly. The latter is achieved through a random walk on the axis of CDF values between 0 and 1. The virtual diffusion coefficient for that random walk is our only fitting parameter. Cross-dependence can be enforced by constraining the random walk to certain combinations of CDF values between the three velocity components in x, y and z. We will show that this modelling framework is capable of simulating non-Fickian transport by comparison with a pore-scale transport simulation and we analyze the approach to asymptotic behavior.
Yang, Yea-Ru; Tsai, Meng-Pin; Chuang, Tien-Yow; Sung, Wen-Hsu; Wang, Ray-Yau
2008-08-01
This is a single blind randomized controlled trial to examine the effect of virtual reality-based training on the community ambulation in individuals with stroke. Twenty subjects with stroke were assigned randomly to either the control group (n=9) or the experimental group (n=11). Subjects in the control group received the treadmill training. Subjects in the experimental group underwent the virtual reality-based treadmill training. Walking speed, community walking time, walking ability questionnaire (WAQ), and activities-specific balance confidence (ABC) scale were evaluated. Subjects in the experimental group improved significantly in walking speed, community walking time, and WAQ score at posttraining and 1-month follow-up periods. Their ABC score also significantly increased at posttraining but did not maintain at follow-up period. Regarding the between-group comparisons, the experimental group improved significantly more than control group in walking speed (P=0.03) and community walking time (P=0.04) at posttraining period and in WAQ score (P=0.03) at follow-up period. Our results support the perceived benefits of gait training programs that incorporate virtual reality to augment the community ambulation of individuals with stroke.
Probability distributions for Markov chain based quantum walks
NASA Astrophysics Data System (ADS)
Balu, Radhakrishnan; Liu, Chaobin; Venegas-Andraca, Salvador E.
2018-01-01
We analyze the probability distributions of the quantum walks induced from Markov chains by Szegedy (2004). The first part of this paper is devoted to the quantum walks induced from finite state Markov chains. It is shown that the probability distribution on the states of the underlying Markov chain is always convergent in the Cesaro sense. In particular, we deduce that the limiting distribution is uniform if the transition matrix is symmetric. In the case of a non-symmetric Markov chain, we exemplify that the limiting distribution of the quantum walk is not necessarily identical with the stationary distribution of the underlying irreducible Markov chain. The Szegedy scheme can be extended to infinite state Markov chains (random walks). In the second part, we formulate the quantum walk induced from a lazy random walk on the line. We then obtain the weak limit of the quantum walk. It is noted that the current quantum walk appears to spread faster than its counterpart-quantum walk on the line driven by the Grover coin discussed in literature. The paper closes with an outlook on possible future directions.
A triboelectric motion sensor in wearable body sensor network for human activity recognition.
Hui Huang; Xian Li; Ye Sun
2016-08-01
The goal of this study is to design a novel triboelectric motion sensor in wearable body sensor network for human activity recognition. Physical activity recognition is widely used in well-being management, medical diagnosis and rehabilitation. Other than traditional accelerometers, we design a novel wearable sensor system based on triboelectrification. The triboelectric motion sensor can be easily attached to human body and collect motion signals caused by physical activities. The experiments are conducted to collect five common activity data: sitting and standing, walking, climbing upstairs, downstairs, and running. The k-Nearest Neighbor (kNN) clustering algorithm is adopted to recognize these activities and validate the feasibility of this new approach. The results show that our system can perform physical activity recognition with a successful rate over 80% for walking, sitting and standing. The triboelectric structure can also be used as an energy harvester for motion harvesting due to its high output voltage in random low-frequency motion.
NASA Astrophysics Data System (ADS)
Kimura, Kenji; Higuchi, Saburo
2017-11-01
We introduce a novel random walk model that emerges in the event-chain Monte Carlo (ECMC) of spin systems. In the ECMC, the lifting variable specifying the spin to be updated changes its value to one of its interacting neighbor spins. This movement can be regarded as a random walk in a random environment with a feedback. We investigate this random walk numerically in the case of the classical XY model in 1, 2, and 3 dimensions to find that it is superdiffusive near the critical point of the underlying spin system. It is suggested that the performance improvement of the ECMC is related to this anomalous behavior.
Composing Music with Complex Networks
NASA Astrophysics Data System (ADS)
Liu, Xiaofan; Tse, Chi K.; Small, Michael
In this paper we study the network structure in music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurrences. We analyze sample compositions from Bach, Mozart, Chopin, as well as other types of music including Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. Power-law exponents of degree distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be created by using a biased random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. The newly created music from complex networks will be played in the presentation.
Computer simulation of the probability that endangered whales will interact with oil spills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, M.; Jayko, K.; Bowles, A.
1987-03-01
A numerical model system was developed to assess quantitatively the probability that endangered bowhead and gray whales will encounter spilled oil in Alaskan waters. Bowhead and gray whale migration and diving-surfacing models, and an oil-spill trajectory model comprise the system. The migration models were developed from conceptual considerations, then calibrated with and tested against observations. The movement of a whale point is governed by a random walk algorithm which stochastically follows a migratory pathway. The oil-spill model, developed under a series of other contracts, accounts for transport and spreading behavior in open water and in the presence of sea ice.more » Historical wind records and heavy, normal, or light ice cover data sets are selected at random to provide stochastic oil-spill scenarios for whale-oil interaction simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, X; Chen, H; Zhou, L
2014-06-15
Purpose: To propose and validate a novel and accurate deformable image registration (DIR) scheme to facilitate dose accumulation among treatment fractions of high-dose-rate (HDR) gynecological brachytherapy. Method: We have developed a method to adapt DIR algorithms to gynecologic anatomies with HDR applicators by incorporating a segmentation step and a point-matching step into an existing DIR framework. In the segmentation step, random walks algorithm is used to accurately segment and remove the applicator region (AR) in the HDR CT image. A semi-automatic seed point generation approach is developed to obtain the incremented foreground and background point sets to feed the randommore » walks algorithm. In the subsequent point-matching step, a feature-based thin-plate spline-robust point matching (TPS-RPM) algorithm is employed for AR surface point matching. With the resulting mapping, a DVF characteristic of the deformation between the two AR surfaces is generated by B-spline approximation, which serves as the initial DVF for the following Demons DIR between the two AR-free HDR CT images. Finally, the calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. Results: The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative results as well as the visual inspection of the DIR indicate that our proposed method can suppress the interference of the applicator with the DIR algorithm, and accurately register HDR CT images as well as deform and add interfractional HDR doses. Conclusions: We have developed a novel and robust DIR scheme that can perform registration between HDR gynecological CT images and yield accurate registration results. This new DIR scheme has potential for accurate interfractional HDR dose accumulation. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no 81301940)« less
Random-Walk Type Model with Fat Tails for Financial Markets
NASA Astrophysics Data System (ADS)
Matuttis, Hans-Geors
Starting from the random-walk model, practices of financial markets are included into the random-walk so that fat tail distributions like those in the high frequency data of the SP500 index are reproduced, though the individual mechanisms are modeled by normally distributed data. The incorporation of local correlation narrows the distribution for "frequent" events, whereas global correlations due to technical analysis leads to fat tails. Delay of market transactions in the trading process shifts the fat tail probabilities downwards. Such an inclusion of reactions to market fluctuations leads to mini-trends which are distributed with unit variance.
Xu, Long; Zhao, Hua; Xu, Caixia; Zhang, Siqi; Zou, Yingyin K; Zhang, Jingwen
2014-02-01
A broadband optical amplification was observed and investigated in Er3+-doped electrostrictive ceramics of lanthanum-modified lead zirconate titanate under a corona atmosphere. The ceramic structure change caused by UV light, electric field, and random walks originated from the diffusive process in intrinsically disordered materials may all contribute to the optical amplification and the associated energy storage. Discussion based on optical energy storage and diffusive equations was given to explain the findings. Those experiments performed made it possible to study random walks and optical amplification in transparent ceramics materials.
NASA Astrophysics Data System (ADS)
Rysavy, Steven; Flores, Arturo; Enciso, Reyes; Okada, Kazunori
2008-03-01
This paper presents an experimental study for assessing the applicability of general-purpose 3D segmentation algorithms for analyzing dental periapical lesions in cone-beam computed tomography (CBCT) scans. In the field of Endodontics, clinical studies have been unable to determine if a periapical granuloma can heal with non-surgical methods. Addressing this issue, Simon et al. recently proposed a diagnostic technique which non-invasively classifies target lesions using CBCT. Manual segmentation exploited in their study, however, is too time consuming and unreliable for real world adoption. On the other hand, many technically advanced algorithms have been proposed to address segmentation problems in various biomedical and non-biomedical contexts, but they have not yet been applied to the field of dentistry. Presented in this paper is a novel application of such segmentation algorithms to the clinically-significant dental problem. This study evaluates three state-of-the-art graph-based algorithms: a normalized cut algorithm based on a generalized eigen-value problem, a graph cut algorithm implementing energy minimization techniques, and a random walks algorithm derived from discrete electrical potential theory. In this paper, we extend the original 2D formulation of the above algorithms to segment 3D images directly and apply the resulting algorithms to the dental CBCT images. We experimentally evaluate quality of the segmentation results for 3D CBCT images, as well as their 2D cross sections. The benefits and pitfalls of each algorithm are highlighted.
Continuous-Time Classical and Quantum Random Walk on Direct Product of Cayley Graphs
NASA Astrophysics Data System (ADS)
Salimi, S.; Jafarizadeh, M. A.
2009-06-01
In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on complicated graphs. Using this method, we calculate the probability of continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete Kn, charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t → ∞ but for quantum state is not always satisfied.
Khandelwal, Siddhartha; Wickström, Nicholas
2017-01-01
Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios. Copyright © 2016 Elsevier B.V. All rights reserved.
The guitar chord-generating algorithm based on complex network
NASA Astrophysics Data System (ADS)
Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais
2016-02-01
This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.
Genetic attack on neural cryptography.
Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka; Kanter, Ido
2006-03-01
Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.
Genetic attack on neural cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka
2006-03-15
Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold formore » the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.« less
Genetic attack on neural cryptography
NASA Astrophysics Data System (ADS)
Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka; Kanter, Ido
2006-03-01
Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.
Graph Kernels for Molecular Similarity.
Rupp, Matthias; Schneider, Gisbert
2010-04-12
Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, M.; Jayko, K.; Bowles, A.
1986-10-01
A numerical model system was developed to assess quantitatively the probability that endangered bowhead and gray whales will encounter spilled oil in Alaskan waters. Bowhead and gray whale migration diving-surfacing models, and an oil-spill-trajectory model comprise the system. The migration models were developed from conceptual considerations, then calibrated with and tested against observations. The distribution of animals is represented in space and time by discrete points, each of which may represent one or more whales. The movement of a whale point is governed by a random-walk algorithm which stochastically follows a migratory pathway.
Randomized Trial of Intelligent Sensor System for Early Illness Alerts in Senior Housing.
Rantz, Marilyn; Phillips, Lorraine J; Galambos, Colleen; Lane, Kari; Alexander, Gregory L; Despins, Laurel; Koopman, Richelle J; Skubic, Marjorie; Hicks, Lanis; Miller, Steven; Craver, Andy; Harris, Bradford H; Deroche, Chelsea B
2017-10-01
Measure the clinical effectiveness and cost effectiveness of using sensor data from an environmentally embedded sensor system for early illness recognition. This sensor system has demonstrated in pilot studies to detect changes in function and in chronic diseases or acute illnesses on average 10 days to 2 weeks before usual assessment methods or self-reports of illness. Prospective intervention study in 13 assisted living (AL) communities of 171 residents randomly assigned to intervention (n=86) or comparison group (n=85) receiving usual care. Intervention participants lived with the sensor system an average of one year. Continuous data collected 24 hours/7 days a week from motion sensors to measure overall activity, an under mattress bed sensor to capture respiration, pulse, and restlessness as people sleep, and a gait sensor that continuously measures gait speed, stride length and time, and automatically assess for increasing fall risk as the person walks around the apartment. Continuously running computer algorithms are applied to the sensor data and send health alerts to staff when there are changes in sensor data patterns. The randomized comparison group functionally declined more rapidly than the intervention group. Walking speed and several measures from GaitRite, velocity, step length left and right, stride length left and right, and the fall risk measure of functional ambulation profile (FAP) all had clinically significant changes. The walking speed increase (worse) and velocity decline (worse) of 0.073 m/s for comparison group exceeded 0.05 m/s, a value considered to be a minimum clinically important difference. No differences were measured in health care costs. These findings demonstrate that sensor data with health alerts and fall alerts sent to AL nursing staff can be an effective strategy to detect and intervene in early signs of illness or functional decline. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Ultra-accurate collaborative information filtering via directed user similarity
NASA Astrophysics Data System (ADS)
Guo, Q.; Song, W.-J.; Liu, J.-G.
2014-07-01
A key challenge of the collaborative filtering (CF) information filtering is how to obtain the reliable and accurate results with the help of peers' recommendation. Since the similarities from small-degree users to large-degree users would be larger than the ones in opposite direction, the large-degree users' selections are recommended extensively by the traditional second-order CF algorithms. By considering the users' similarity direction and the second-order correlations to depress the influence of mainstream preferences, we present the directed second-order CF (HDCF) algorithm specifically to address the challenge of accuracy and diversity of the CF algorithm. The numerical results for two benchmark data sets, MovieLens and Netflix, show that the accuracy of the new algorithm outperforms the state-of-the-art CF algorithms. Comparing with the CF algorithm based on random walks proposed by Liu et al. (Int. J. Mod. Phys. C, 20 (2009) 285) the average ranking score could reach 0.0767 and 0.0402, which is enhanced by 27.3% and 19.1% for MovieLens and Netflix, respectively. In addition, the diversity, precision and recall are also enhanced greatly. Without relying on any context-specific information, tuning the similarity direction of CF algorithms could obtain accurate and diverse recommendations. This work suggests that the user similarity direction is an important factor to improve the personalized recommendation performance.
Toots, Annika; Littbrand, Håkan; Holmberg, Henrik; Nordström, Peter; Lundin-Olsson, Lillemor; Gustafson, Yngve; Rosendahl, Erik
2017-03-01
To investigate the effects of exercise on gait speed, when tested using walking aids and without, and whether effects differed according to amount of support in the test. A cluster-randomized controlled trial. The Umeå Dementia and Exercise (UMDEX) study was set in 16 nursing homes in Umeå, Sweden. One hundred forty-one women and 45 men (mean age 85 years) with dementia, of whom 145 (78%) habitually used walking aids. Participants were randomized to the high-intensity functional exercise program or a seated attention control activity. Blinded assessors measured 4-m usual gait speed with walking aids if any gait speed (GS), and without walking aids and with minimum amount of support, at baseline, 4 months (on intervention completion), and 7 months. Linear mixed models showed no between-group effect in either gait speed test at 4 or 7 months. In interaction analyses exercise effects differed significantly between participants who walked unsupported compared with when walking aids or minimum support was used. Positive between-group exercise effects on gait speed (m/s) were found in subgroups that walked unsupported at 4 and 7 months (GS: 0.07, P = .009 and 0.13, P < .001; and GS test without walking aids: 0.05, P = .011 and 0.07, P = .029, respectively). In people with dementia living in nursing homes exercise had positive effects on gait when tested unsupported compared with when walking aids or minimum support was used. The study suggests that the use of walking aids in gait speed tests may conceal exercise effects. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Kapadia, Naaz; Masani, Kei; Catharine Craven, B.; Giangregorio, Lora M.; Hitzig, Sander L.; Richards, Kieva; Popovic, Milos R.
2014-01-01
Background Multi-channel surface functional electrical stimulation (FES) for walking has been used to improve voluntary walking and balance in individuals with spinal cord injury (SCI). Objective To investigate short- and long-term benefits of 16 weeks of thrice-weekly FES-assisted walking program, while ambulating on a body weight support treadmill and harness system, versus a non-FES exercise program, on improvements in gait and balance in individuals with chronic incomplete traumatic SCI, in a randomized controlled trial design. Methods Individuals with traumatic and chronic (≥18 months) motor incomplete SCI (level C2 to T12, American Spinal Cord Injury Association Impairment Scale C or D) were recruited from an outpatient SCI rehabilitation hospital, and randomized to FES-assisted walking therapy (intervention group) or aerobic and resistance training program (control group). Outcomes were assessed at baseline, and after 4, 6, and 12 months. Gait, balance, spasticity, and functional measures were collected. Results Spinal cord independence measure (SCIM) mobility sub-score improved over time in the intervention group compared with the control group (baseline/12 months: 17.27/21.33 vs. 19.09/17.36, respectively). On all other outcome measures the intervention and control groups had similar improvements. Irrespective of group allocation walking speed, endurance, and balance during ambulation all improved upon completion of therapy, and majority of participants retained these gains at long-term follow-ups. Conclusions Task-oriented training improves walking ability in individuals with incomplete SCI, even in the chronic stage. Further randomized controlled trials, involving a large number of participants are needed, to verify if FES-assisted treadmill training is superior to aerobic and strength training. PMID:25229735
NASA Astrophysics Data System (ADS)
Cheng, Ken
2015-09-01
In a perspective in this issue based on thorough review, Andy Reynolds [1] tackles the issue of how the by now ubiquitously found Lévy walks can be generated, by animals, by organisms other than animals, and other forms of life below the level of organisms, such as cells. The answer comes not in a single whole cloth, but rather in a patchwork of generating factors. Lévy-like movements arise in objects blowing in the wind, or from travelers encountering turbulence in the seas or being repelled by boundaries. A variety of desiderata in movements, not related to achieving optimal foraging, may also engender Lévy-like movements. These include avoiding other organisms or not crossing one's traveled path. Adding to that plethora are ways in which variations on the theme of garden-variety random walks can at least approach a Lévy walk, if not capturing the mathematical form perfectly. Such variations include executing random walks on multiple scales, a strategy exhibited by desert ants [2,3], mussels [4], and quite likely extant hunter-gatherer humans as well [5]. It is possible that fossil tracks over 50 million years old also show this strategy, as the curve fitting with multiple random walks, characterized by multiple exponential distributions, is as good or better than curve fits having the power-law distribution characteristic of Lévy walks [6]. Another variation is to have a random walk search whose scale is expanding over time. In great detail and based on extensive literature - the review has over 200 references - a range of other ways in which Lévy-like movements might come about are also discussed.
Asymptotic properties of a bold random walk
NASA Astrophysics Data System (ADS)
Serva, Maurizio
2014-08-01
In a recent paper we proposed a non-Markovian random walk model with memory of the maximum distance ever reached from the starting point (home). The behavior of the walker is different from the simple symmetric random walk only when she is at this maximum distance, where, having the choice to move either farther or closer, she decides with different probabilities. If the probability of a forward step is higher than the probability of a backward step, the walker is bold and her behavior turns out to be superdiffusive; otherwise she is timorous and her behavior turns out to be subdiffusive. The scaling behavior varies continuously from subdiffusive (timorous) to superdiffusive (bold) according to a single parameter γ ∈R. We investigate here the asymptotic properties of the bold case in the nonballistic region γ ∈[0,1/2], a problem which was left partially unsolved previously. The exact results proved in this paper require new probabilistic tools which rely on the construction of appropriate martingales of the random walk and its hitting times.
Random walk to a nonergodic equilibrium concept
NASA Astrophysics Data System (ADS)
Bel, G.; Barkai, E.
2006-01-01
Random walk models, such as the trap model, continuous time random walks, and comb models, exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is, what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this paper a nonergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the nonergodic phase the distribution of the occupation time of the particle in a finite region of space approaches U- or W-shaped distributions related to the arcsine law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the nonergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a δ function centered on the value predicted based on standard Boltzmann-Gibbs statistics. The relation of our work to single-molecule experiments is briefly discussed.
Walking adaptability therapy after stroke: study protocol for a randomized controlled trial.
Timmermans, Celine; Roerdink, Melvyn; van Ooijen, Marielle W; Meskers, Carel G; Janssen, Thomas W; Beek, Peter J
2016-08-26
Walking in everyday life requires the ability to adapt walking to the environment. This adaptability is often impaired after stroke, and this might contribute to the increased fall risk after stroke. To improve safe community ambulation, walking adaptability training might be beneficial after stroke. This study is designed to compare the effects of two interventions for improving walking speed and walking adaptability: treadmill-based C-Mill therapy (therapy with augmented reality) and the overground FALLS program (a conventional therapy program). We hypothesize that C-Mill therapy will result in better outcomes than the FALLS program, owing to its expected greater amount of walking practice. This is a single-center parallel group randomized controlled trial with pre-intervention, post-intervention, retention, and follow-up tests. Forty persons after stroke (≥3 months) with deficits in walking or balance will be included. Participants will be randomly allocated to either C-Mill therapy or the overground FALLS program for 5 weeks. Both interventions will incorporate practice of walking adaptability and will be matched in terms of frequency, duration, and therapist attention. Walking speed, as determined by the 10 Meter Walking Test, will be the primary outcome measure. Secondary outcome measures will pertain to walking adaptability (10 Meter Walking Test with context or cognitive dual-task and Interactive Walkway assessments). Furthermore, commonly used clinical measures to determine walking ability (Timed Up-and-Go test), walking independence (Functional Ambulation Category), balance (Berg Balance Scale), and balance confidence (Activities-specific Balance Confidence scale) will be used, as well as a complementary set of walking-related assessments. The amount of walking practice (the number of steps taken per session) will be registered using the treadmill's inbuilt step counter (C-Mill therapy) and video recordings (FALLS program). This process measure will be compared between the two interventions. This study will assess the effects of treadmill-based C-Mill therapy compared with the overground FALLS program and thereby the relative importance of the amount of walking practice as a key aspect of effective intervention programs directed at improving walking speed and walking adaptability after stroke. Netherlands Trial Register NTR4030 . Registered on 11 June 2013, amendment filed on 17 June 2016.
Dobkin, Bruce H.; Apple, David; Barbeau, Hugues; Basso, Michele; Behrman, Andrea; Deforge, Dan; Ditunno, John; Dudley, Gary; Elashoff, Robert; Fugate, Lisa; Harkema, Susan; Saulino, Michael; Scott, Michael
2014-01-01
The authors describe the rationale and methodology for the first prospective, multicenter, randomized clinical trial (RCT) of a task-oriented walking intervention for subjects during early rehabilitation for an acute traumatic spinal cord injury (SCI). The experimental strategy, body weight–supported treadmill training (BWSTT), allows physical therapists to systematically train patients to walk on a treadmill at increasing speeds typical of community ambulation with increasing weight bearing. The therapists provide verbal and tactile cues to facilitate the kinematic, kinetic, and temporal features of walking. Subjects were randomly assigned to a conventional therapy program for mobility versus the same intensity and duration of a combination of BWSTT and over-ground locomotor retraining. Subjects had an incomplete SCI (American Spinal Injury Association grades B, C, and D) from C-4 to T-10 (upper motoneuron group) or from T-11 to L-3 (lower motoneuron group). Within 8 weeks of a SCI, 146 subjects were entered for 12 weeks of intervention. The 2 single-blinded primary outcome measures are the level of independence for ambulation and, for those who are able to walk, the maximal speed for walking 50 feet, tested 6 and 12 months after randomization. The trial’s methodology offers a model for the feasibility of translating neuroscientific experiments into a RCT to develop evidence-based rehabilitation practices. PMID:14503436
Automatic detection of lift-off and touch-down of a pick-up walker using 3D kinematics.
Grootveld, L; Thies, S B; Ogden, D; Howard, D; Kenney, L P J
2014-02-01
Walking aids have been associated with falls and it is believed that incorrect use limits their usefulness. Measures are therefore needed that characterize their stable use and the classification of key events in walking aid movement is the first step in their development. This study presents an automated algorithm for detection of lift-off (LO) and touch-down (TD) events of a pick-up walker. For algorithm design and initial testing, a single user performed trials for which the four individual walker feet lifted off the ground and touched down again in various sequences, and for different amounts of frame loading (Dataset_1). For further validation, ten healthy young subjects walked with the pick-up walker on flat ground (Dataset_2a) and on a narrow beam (Dataset_2b), to challenge balance. One 88-year-old walking frame user was also assessed. Kinematic data were collected with a 3D optoelectronic camera system. The algorithm detected over 93% of events (Dataset_1), and 95% and 92% in Dataset_2a and b, respectively. Of the various LO/TD sequences, those associated with natural progression resulted in up to 100% correctly identified events. For the 88-year-old walking frame user, 96% of LO events and 93% of TD events were detected, demonstrating the potential of the approach. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Le, Duc-Hau; Verbeke, Lieven; Son, Le Hoang; Chu, Dinh-Toi; Pham, Van-Huy
2017-11-14
MicroRNAs (miRNAs) have been shown to play an important role in pathological initiation, progression and maintenance. Because identification in the laboratory of disease-related miRNAs is not straightforward, numerous network-based methods have been developed to predict novel miRNAs in silico. Homogeneous networks (in which every node is a miRNA) based on the targets shared between miRNAs have been widely used to predict their role in disease phenotypes. Although such homogeneous networks can predict potential disease-associated miRNAs, they do not consider the roles of the target genes of the miRNAs. Here, we introduce a novel method based on a heterogeneous network that not only considers miRNAs but also the corresponding target genes in the network model. Instead of constructing homogeneous miRNA networks, we built heterogeneous miRNA networks consisting of both miRNAs and their target genes, using databases of known miRNA-target gene interactions. In addition, as recent studies demonstrated reciprocal regulatory relations between miRNAs and their target genes, we considered these heterogeneous miRNA networks to be undirected, assuming mutual miRNA-target interactions. Next, we introduced a novel method (RWRMTN) operating on these mutual heterogeneous miRNA networks to rank candidate disease-related miRNAs using a random walk with restart (RWR) based algorithm. Using both known disease-associated miRNAs and their target genes as seed nodes, the method can identify additional miRNAs involved in the disease phenotype. Experiments indicated that RWRMTN outperformed two existing state-of-the-art methods: RWRMDA, a network-based method that also uses a RWR on homogeneous (rather than heterogeneous) miRNA networks, and RLSMDA, a machine learning-based method. Interestingly, we could relate this performance gain to the emergence of "disease modules" in the heterogeneous miRNA networks used as input for the algorithm. Moreover, we could demonstrate that RWRMTN is stable, performing well when using both experimentally validated and predicted miRNA-target gene interaction data for network construction. Finally, using RWRMTN, we identified 76 novel miRNAs associated with 23 disease phenotypes which were present in a recent database of known disease-miRNA associations. Summarizing, using random walks on mutual miRNA-target networks improves the prediction of novel disease-associated miRNAs because of the existence of "disease modules" in these networks.
INS/EKF-based stride length, height and direction intent detection for walking assistance robots.
Brescianini, Dario; Jung, Jun-Young; Jang, In-Hun; Park, Hyun Sub; Riener, Robert
2011-01-01
We propose an algorithm used to obtain the information on stride length, height difference, and direction based on user's intent during walking. For exoskeleton robots used to assist paraplegic patients' walking, this information is used to generate gait patterns by themselves in on-line. To obtain this information, we attach an inertial measurement unit(IMU) on crutches and apply an extended kalman filter-based error correction method to reduce the phenomena of drift due to bias of the IMU. The proposed method is verifed in real walking scenarios including walking, climbing up-stairs, and changing direction of walking with normal. © 2011 IEEE
NASA Astrophysics Data System (ADS)
Ramírez-López, A.; Romero-Romo, M. A.; Muñoz-Negron, D.; López-Ramírez, S.; Escarela-Pérez, R.; Duran-Valencia, C.
2012-10-01
Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical inconsistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidification, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed algorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.
Modelling nematode movement using time-fractional dynamics.
Hapca, Simona; Crawford, John W; MacMillan, Keith; Wilson, Mike J; Young, Iain M
2007-09-07
We use a correlated random walk model in two dimensions to simulate the movement of the slug parasitic nematode Phasmarhabditis hermaphrodita in homogeneous environments. The model incorporates the observed statistical distributions of turning angle and speed derived from time-lapse studies of individual nematode trails. We identify strong temporal correlations between the turning angles and speed that preclude the case of a simple random walk in which successive steps are independent. These correlated random walks are appropriately modelled using an anomalous diffusion model, more precisely using a fractional sub-diffusion model for which the associated stochastic process is characterised by strong memory effects in the probability density function.
NASA Astrophysics Data System (ADS)
Ding, Jian; Li, Li
2018-05-01
We initiate the study on chemical distances of percolation clusters for level sets of two-dimensional discrete Gaussian free fields as well as loop clusters generated by two-dimensional random walk loop soups. One of our results states that the chemical distance between two macroscopic annuli away from the boundary for the random walk loop soup at the critical intensity is of dimension 1 with positive probability. Our proof method is based on an interesting combination of a theorem of Makarov, isomorphism theory, and an entropic repulsion estimate for Gaussian free fields in the presence of a hard wall.
NASA Astrophysics Data System (ADS)
Ding, Jian; Li, Li
2018-06-01
We initiate the study on chemical distances of percolation clusters for level sets of two-dimensional discrete Gaussian free fields as well as loop clusters generated by two-dimensional random walk loop soups. One of our results states that the chemical distance between two macroscopic annuli away from the boundary for the random walk loop soup at the critical intensity is of dimension 1 with positive probability. Our proof method is based on an interesting combination of a theorem of Makarov, isomorphism theory, and an entropic repulsion estimate for Gaussian free fields in the presence of a hard wall.
Evolution of the concentration PDF in random environments modeled by global random walk
NASA Astrophysics Data System (ADS)
Suciu, Nicolae; Vamos, Calin; Attinger, Sabine; Knabner, Peter
2013-04-01
The evolution of the probability density function (PDF) of concentrations of chemical species transported in random environments is often modeled by ensembles of notional particles. The particles move in physical space along stochastic-Lagrangian trajectories governed by Ito equations, with drift coefficients given by the local values of the resolved velocity field and diffusion coefficients obtained by stochastic or space-filtering upscaling procedures. A general model for the sub-grid mixing also can be formulated as a system of Ito equations solving for trajectories in the composition space. The PDF is finally estimated by the number of particles in space-concentration control volumes. In spite of their efficiency, Lagrangian approaches suffer from two severe limitations. Since the particle trajectories are constructed sequentially, the demanded computing resources increase linearly with the number of particles. Moreover, the need to gather particles at the center of computational cells to perform the mixing step and to estimate statistical parameters, as well as the interpolation of various terms to particle positions, inevitably produce numerical diffusion in either particle-mesh or grid-free particle methods. To overcome these limitations, we introduce a global random walk method to solve the system of Ito equations in physical and composition spaces, which models the evolution of the random concentration's PDF. The algorithm consists of a superposition on a regular lattice of many weak Euler schemes for the set of Ito equations. Since all particles starting from a site of the space-concentration lattice are spread in a single numerical procedure, one obtains PDF estimates at the lattice sites at computational costs comparable with those for solving the system of Ito equations associated to a single particle. The new method avoids the limitations concerning the number of particles in Lagrangian approaches, completely removes the numerical diffusion, and speeds up the computation by orders of magnitude. The approach is illustrated for the transport of passive scalars in heterogeneous aquifers, with hydraulic conductivity modeled as a random field.
Fernández-Del-Olmo, Miguel Angel; Sanchez, Jose Andres; Bello, Olalla; Lopez-Alonso, Virginia; Márquez, Gonzalo; Morenilla, Luis; Castro, Xabier; Giraldez, Manolo; Santos-García, Diego
2014-01-01
Gait disturbances are one of the principal and most incapacitating symptoms of Parkinson's disease (PD). In addition, walking economy is impaired in PD patients and could contribute to excess fatigue in this population. An important number of studies have shown that treadmill training can improve kinematic parameters in PD patients. However, the effects of treadmill and overground walking on the walking economy remain unknown. The goal of this study was to explore the walking economy changes in response to a treadmill and an overground training program, as well as the differences in the walking economy during treadmill and overground walking. Twenty-two mild PD patients were randomly assigned to a treadmill or overground training group. The training program consisted of 5 weeks (3 sessions/week). We evaluated the energy expenditure of overground walking, before and after each of the training programs. The energy expenditure of treadmill walking (before the program) was also evaluated. The treadmill, but not the overground training program, lead to an improvement in the walking economy (the rate of oxygen consumed per distance during overground walking at a preferred speed) in PD patients. In addition, walking on a treadmill required more energy expenditure compared with overground walking at the same speed. This study provides evidence that in mild PD patients, treadmill training is more beneficial compared with that of walking overground, leading to a greater improvement in the walking economy. This finding is of clinical importance for the therapeutic administration of exercise in PD.
New algorithms to represent complex pseudoknotted RNA structures in dot-bracket notation.
Antczak, Maciej; Popenda, Mariusz; Zok, Tomasz; Zurkowski, Michal; Adamiak, Ryszard W; Szachniuk, Marta
2018-04-15
Understanding the formation, architecture and roles of pseudoknots in RNA structures are one of the most difficult challenges in RNA computational biology and structural bioinformatics. Methods predicting pseudoknots typically perform this with poor accuracy, often despite experimental data incorporation. Existing bioinformatic approaches differ in terms of pseudoknots' recognition and revealing their nature. A few ways of pseudoknot classification exist, most common ones refer to a genus or order. Following the latter one, we propose new algorithms that identify pseudoknots in RNA structure provided in BPSEQ format, determine their order and encode in dot-bracket-letter notation. The proposed encoding aims to illustrate the hierarchy of RNA folding. New algorithms are based on dynamic programming and hybrid (combining exhaustive search and random walk) approaches. They evolved from elementary algorithm implemented within the workflow of RNA FRABASE 1.0, our database of RNA structure fragments. They use different scoring functions to rank dissimilar dot-bracket representations of RNA structure. Computational experiments show an advantage of new methods over the others, especially for large RNA structures. Presented algorithms have been implemented as new functionality of RNApdbee webserver and are ready to use at http://rnapdbee.cs.put.poznan.pl. mszachniuk@cs.put.poznan.pl. Supplementary data are available at Bioinformatics online.
Convex hulls of random walks in higher dimensions: A large-deviation study
NASA Astrophysics Data System (ADS)
Schawe, Hendrik; Hartmann, Alexander K.; Majumdar, Satya N.
2017-12-01
The distribution of the hypervolume V and surface ∂ V of convex hulls of (multiple) random walks in higher dimensions are determined numerically, especially containing probabilities far smaller than P =10-1000 to estimate large deviation properties. For arbitrary dimensions and large walk lengths T , we suggest a scaling behavior of the distribution with the length of the walk T similar to the two-dimensional case and behavior of the distributions in the tails. We underpin both with numerical data in d =3 and d =4 dimensions. Further, we confirm the analytically known means of those distributions and calculate their variances for large T .
Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U
2016-12-01
This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O 2 ) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O 2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O 2 kinetics were estimated from heart rate and pulmonary V̇O 2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O 2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O 2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O 2 during walking, the assessment of muscular V̇O 2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.
Random walks with random velocities.
Zaburdaev, Vasily; Schmiedeberg, Michael; Stark, Holger
2008-07-01
We consider a random walk model that takes into account the velocity distribution of random walkers. Random motion with alternating velocities is inherent to various physical and biological systems. Moreover, the velocity distribution is often the first characteristic that is experimentally accessible. Here, we derive transport equations describing the dispersal process in the model and solve them analytically. The asymptotic properties of solutions are presented in the form of a phase diagram that shows all possible scaling regimes, including superdiffusive, ballistic, and superballistic motion. The theoretical results of this work are in excellent agreement with accompanying numerical simulations.
CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models.
Haraldsdóttir, Hulda S; Cousins, Ben; Thiele, Ines; Fleming, Ronan M T; Vempala, Santosh
2017-06-01
In constraint-based metabolic modelling, physical and biochemical constraints define a polyhedral convex set of feasible flux vectors. Uniform sampling of this set provides an unbiased characterization of the metabolic capabilities of a biochemical network. However, reliable uniform sampling of genome-scale biochemical networks is challenging due to their high dimensionality and inherent anisotropy. Here, we present an implementation of a new sampling algorithm, coordinate hit-and-run with rounding (CHRR). This algorithm is based on the provably efficient hit-and-run random walk and crucially uses a preprocessing step to round the anisotropic flux set. CHRR provably converges to a uniform stationary sampling distribution. We apply it to metabolic networks of increasing dimensionality. We show that it converges several times faster than a popular artificial centering hit-and-run algorithm, enabling reliable and tractable sampling of genome-scale biochemical networks. https://github.com/opencobra/cobratoolbox . ronan.mt.fleming@gmail.com or vempala@cc.gatech.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Sliding GAIT Algorithm for the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE)
NASA Technical Reports Server (NTRS)
Townsend, Julie; Biesiadecki, Jeffrey
2012-01-01
The design of a surface robotic system typically involves a trade between the traverse speed of a wheeled rover and the terrain-negotiating capabilities of a multi-legged walker. The ATHLETE mobility system, with both articulated limbs and wheels, is uniquely capable of both driving and walking, and has the flexibility to employ additional hybrid mobility modes. This paper introduces the Sliding Gait, an intermediate mobility algorithm faster than walking with better terrain-handling capabilities than wheeled mobility.
Self-Avoiding Walks Over Adaptive Triangular Grids
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Gao, Guang R.; Saini, Subhash (Technical Monitor)
1999-01-01
Space-filling curves is a popular approach based on a geometric embedding for linearizing computational meshes. We present a new O(n log n) combinatorial algorithm for constructing a self avoiding walk through a two dimensional mesh containing n triangles. We show that for hierarchical adaptive meshes, the algorithm can be locally adapted and easily parallelized by taking advantage of the regularity of the refinement rules. The proposed approach should be very useful in the runtime partitioning and load balancing of adaptive unstructured grids.
Exploring activity-driven network with biased walks
NASA Astrophysics Data System (ADS)
Wang, Yan; Wu, Ding Juan; Lv, Fang; Su, Meng Long
We investigate the concurrent dynamics of biased random walks and the activity-driven network, where the preferential transition probability is in terms of the edge-weighting parameter. We also obtain the analytical expressions for stationary distribution and the coverage function in directed and undirected networks, all of which depend on the weight parameter. Appropriately adjusting this parameter, more effective search strategy can be obtained when compared with the unbiased random walk, whether in directed or undirected networks. Since network weights play a significant role in the diffusion process.
Random walk in generalized quantum theory
NASA Astrophysics Data System (ADS)
Martin, Xavier; O'Connor, Denjoe; Sorkin, Rafael D.
2005-01-01
One can view quantum mechanics as a generalization of classical probability theory that provides for pairwise interference among alternatives. Adopting this perspective, we “quantize” the classical random walk by finding, subject to a certain condition of “strong positivity”, the most general Markovian, translationally invariant “decoherence functional” with nearest neighbor transitions.
Optimal plane-wave Hartree-Fock states for many-fermion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Llano, M.; Plastino, A.; Zabolitzky, J.G.
1979-12-01
The possibility of taking plane-wave orbitals of a Hartree-Fock determinant to fill k space differently from the ''normal'' Fermi sphere is investigated for several two-body potentials including the ''homework'' v/sub 0/, v/sub 1/, and v/sub 2/ - aken from the Reid nucleon-nucleon force - as well as a sum-of-Gaussians potential chosen to fit the deuteron binding and size. A random-search and random-walk numerical algorithm shows that, provided the potential strengths are made large enough, a single-shell ''abnormal'' occupation is always found to be lower in energy than the normal one if sufficient attraction is present in the two-body interaction. Nomore » abnormal occupation is possible for, among other pair interactions, the electron or charged-boson fluid, the repulsive square barrier, and a common form of the He-He interaction.« less
Stego on FPGA: An IWT Approach
Ramalingam, Balakrishnan
2014-01-01
A reconfigurable hardware architecture for the implementation of integer wavelet transform (IWT) based adaptive random image steganography algorithm is proposed. The Haar-IWT was used to separate the subbands namely, LL, LH, HL, and HH, from 8 × 8 pixel blocks and the encrypted secret data is hidden in the LH, HL, and HH blocks using Moore and Hilbert space filling curve (SFC) scan patterns. Either Moore or Hilbert SFC was chosen for hiding the encrypted data in LH, HL, and HH coefficients, whichever produces the lowest mean square error (MSE) and the highest peak signal-to-noise ratio (PSNR). The fixated random walk's verdict of all blocks is registered which is nothing but the furtive key. Our system took 1.6 µs for embedding the data in coefficient blocks and consumed 34% of the logic elements, 22% of the dedicated logic register, and 2% of the embedded multiplier on Cyclone II field programmable gate array (FPGA). PMID:24723794
Financial Data Analysis by means of Coupled Continuous-Time Random Walk in Rachev-Rűschendorf Model
NASA Astrophysics Data System (ADS)
Jurlewicz, A.; Wyłomańska, A.; Żebrowski, P.
2008-09-01
We adapt the continuous-time random walk formalism to describe asset price evolution. We expand the idea proposed by Rachev and Rűschendorf who analyzed the binomial pricing model in the discrete time with randomization of the number of price changes. As a result, in the framework of the proposed model we obtain a mixture of the Gaussian and a generalized arcsine laws as the limiting distribution of log-returns. Moreover, we derive an European-call-option price that is an extension of the Black-Scholes formula. We apply the obtained theoretical results to model actual financial data and try to show that the continuous-time random walk offers alternative tools to deal with several complex issues of financial markets.
An online social network to increase walking in dog owners: a randomized trial.
Schneider, Kristin L; Murphy, Deirdra; Ferrara, Cynthia; Oleski, Jessica; Panza, Emily; Savage, Clara; Gada, Kimberly; Bozzella, Brianne; Olendzki, Effie; Kern, Daniel; Lemon, Stephenie C
2015-03-01
Encouraging dog walking may increase physical activity in dog owners. This cluster-randomized controlled trial investigated whether a social networking Web site (Meetup™) could be used to deliver a multicomponent dog walking intervention to increase physical activity. Sedentary dog owners (n = 102) participated. Eight neighborhoods were randomly assigned to the Meetup™ condition (Meetup™) or a condition where participants received monthly e-mails with content from the American Heart Association regarding increasing physical activity. The Meetup™ intervention was delivered over 6 months and consisted of newsletters, dog walks, community events, and an activity monitor. The primary outcome was steps; secondary outcomes included social support for walking, sense of community, perceived dog walking outcomes, barriers to dog walking, and feasibility of the intervention. Mixed-model analyses examined change from baseline to postintervention (6 months) and whether change in outcomes differed by condition. Daily steps increased over time (P = 0.04, d = 0.28), with no differences by condition. The time-condition interaction was significant for the perceived outcomes of dog walking (P = 0.04, d = 0.40), such that the Meetup™ condition reported an increase in the perceived positive outcomes of dog walking, whereas the American Heart Association condition did not. Social support, sense of community, and dog walking barriers did not significantly change. Meetup™ logins averaged 58.38 per week (SD, 11.62). Within 2 months of the intervention ending, organization of the Meetup™ groups transitioned from the study staff to Meetup™ members. Results suggest that a Meetup™ group is feasible for increasing physical activity in dog owners. Further research is needed to understand how to increase participation in the Meetup™ group and facilitate greater connection among dog owners.
Richards, Elizabeth A; Ogata, Niwako; Cheng, Ching-Wei
2016-01-01
To facilitate physical activity (PA) adoption and maintenance, promotion of innovative population-level strategies that focus on incorporating moderate-intensity lifestyle PAs are needed. The purpose of this randomized controlled trial was to evaluate the Dogs, Physical Activity, and Walking intervention, a 3-month, social cognitive theory (SCT), e-mail-based PA intervention. In a longitudinal, repeated-measures design, 49 dog owners were randomly assigned to a control (n = 25) or intervention group (n = 24). The intervention group received e-mail messages (twice weekly for 4 weeks and weekly for 8 weeks) designed to influence SCT constructs of self-efficacy, self-regulation, outcome expectations and expectancies, and social support. At baseline and every 3 months through 1 year, participants completed self-reported questionnaires of individual, interpersonal, and PA variables. Linear mixed models were used to assess for significant differences in weekly minutes of dog walking and theoretical constructs between groups (intervention and control) across time. To test self-efficacy as a mediator of social support for dog walking, tests for mediation were conducted using the bootstrapping technique. With the exception of Month 9, participants in the intervention group accumulated significantly more weekly minutes of dog walking than the control group. On average, the intervention group accumulated 58.4 more minutes (SD = 18.1) of weekly dog walking than the control group (p < .05). Self-efficacy partially mediated the effect of social support variables on dog walking. Results indicate that a simple SCT-based e-mail intervention is effective in increasing and maintaining an increase in dog walking among dog owners at 12-month follow-up. In light of these findings, it may be advantageous to design dog walking interventions that focus on increasing self-efficacy for dog walking by fostering social support.
An Online Social Network to Increase Walking in Dog Owners: A Randomized Trial
Schneider, Kristin L.; Murphy, Deirdra; Ferrara, Cynthia; Oleski, Jessica; Panza, Emily; Savage, Clara; Gada, Kimberly; Bozzella, Brianne; Olendzki, Effie; Kern, Daniel; Lemon, Stephenie C.
2014-01-01
PURPOSE Encouraging dog walking may increase physical activity in dog owners. This cluster randomized controlled trial investigated whether a social networking website (Meetup™) could be used to deliver a multi-component dog walking intervention to increase physical activity. METHODS Sedentary dog owners (n=102) participated. Eight neighborhoods were randomly assigned to the Meetup condition (Meetup) or a condition where participants received monthly emails with content from the American Heart Association on increasing physical activity (AHA). The Meetup intervention was delivered over 6 months and consisted of newsletters, dog walks, community events and an activity monitor. The primary outcome was steps; secondary outcomes included social support for walking, sense of community, perceived dog walking outcomes, barriers to dog walking and feasibility of the intervention. RESULTS Mixed model analyses examined change from baseline to post-intervention (6 months) and whether change in outcomes differed by condition. Daily steps increased over time (p=0.04, d=0.28), with no differences by condition. The time x condition interaction was significant for the perceived outcomes of dog walking (p=0.04, d=0.40), such that the Meetup condition reported an increase in the perceived positive outcomes of dog walking, whereas the AHA condition did not. Social support, sense of community and dog walking barriers did not significantly change. Meetup logins averaged 58.38 per week (SD=11.62). Within two months of the intervention ending, organization of the Meetup groups transitioned from study staff to Meetup members. CONCLUSION Results suggest that a Meetup group is feasible for increasing physical activity in dog owners. Further research is needed to understand how to increase participation in the Meetup group and facilitate greater connection among dog owners. PMID:25003777
Inertial Pocket Navigation System: Unaided 3D Positioning
Munoz Diaz, Estefania
2015-01-01
Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care. PMID:25897501
Return probabilities and hitting times of random walks on sparse Erdös-Rényi graphs.
Martin, O C; Sulc, P
2010-03-01
We consider random walks on random graphs, focusing on return probabilities and hitting times for sparse Erdös-Rényi graphs. Using the tree approach, which is expected to be exact in the large graph limit, we show how to solve for the distribution of these quantities and we find that these distributions exhibit a form of self-similarity.
Haron, Zaiton; Bakar, Suhaimi Abu; Dimon, Mohamad Ngasri
2015-01-01
Strategic noise mapping provides important information for noise impact assessment and noise abatement. However, producing reliable strategic noise mapping in a dynamic, complex working environment is difficult. This study proposes the implementation of the random walk approach as a new stochastic technique to simulate noise mapping and to predict the noise exposure level in a workplace. A stochastic simulation framework and software, namely RW-eNMS, were developed to facilitate the random walk approach in noise mapping prediction. This framework considers the randomness and complexity of machinery operation and noise emission levels. Also, it assesses the impact of noise on the workers and the surrounding environment. For data validation, three case studies were conducted to check the accuracy of the prediction data and to determine the efficiency and effectiveness of this approach. The results showed high accuracy of prediction results together with a majority of absolute differences of less than 2 dBA; also, the predicted noise doses were mostly in the range of measurement. Therefore, the random walk approach was effective in dealing with environmental noises. It could predict strategic noise mapping to facilitate noise monitoring and noise control in the workplaces. PMID:25875019
Detection of gait characteristics for scene registration in video surveillance system.
Havasi, László; Szlávik, Zoltán; Szirányi, Tamás
2007-02-01
This paper presents a robust walk-detection algorithm, based on our symmetry approach which can be used to extract gait characteristics from video-image sequences. To obtain a useful descriptor of a walking person, we temporally track the symmetries of a person's legs. Our method is suitable for use in indoor or outdoor surveillance scenes. Determining the leading leg of the walking subject is important, and the presented method can identify this from two successive walk steps (one walk cycle). We tested the accuracy of the presented walk-detection method in a possible application: Image registration methods are presented which are applicable to multicamera systems viewing human subjects in motion.
Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
NASA Astrophysics Data System (ADS)
Borges, G. M.; Ferreira, A. S.; da Silva, M. A. A.; Cressoni, J. C.; Viswanathan, G. M.; Mariz, A. M.
2012-09-01
Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e.g., fractional Brownian motion, Lévy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation σt which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.
A generalized model via random walks for information filtering
NASA Astrophysics Data System (ADS)
Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng
2016-08-01
There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation.
Free-living and laboratory gait characteristics in patients with multiple sclerosis
Nair, K. P. S.; Clarke, Alison J.; Van der Meulen, Jill M.; Mazzà, Claudia
2018-01-01
Background Wearable sensors offer the potential to bring new knowledge to inform interventions in patients affected by multiple sclerosis (MS) by thoroughly quantifying gait characteristics and gait deficits from prolonged daily living measurements. The aim of this study was to characterise gait in both laboratory and daily life conditions for a group of patients with moderate to severe ambulatory impairment due to MS. To this purpose, algorithms to detect and characterise gait from wearable inertial sensors data were also validated. Methods Fourteen patients with MS were divided into two groups according to their disability level (EDSS 6.5–6.0 and EDSS 5.5–5.0, respectively). They performed both intermittent and continuous walking bouts (WBs) in a gait laboratory wearing waist and shank mounted inertial sensors. An algorithm (W-CWT) to estimate gait events and temporal parameters (mean and variability values) using data recorded from the waist mounted sensor (Dynaport, Mc Roberts) was tested against a reference algorithm (S-REF) based on the shank-worn sensors (OPAL, APDM). Subsequently, the accuracy of another algorithm (W-PAM) to detect and classify WBs was also tested. The validated algorithms were then used to quantify gait characteristics during short (sWB, 5–50 steps), intermediate (iWB, 51–100 steps) and long (lWB, >100 steps) daily living WBs and laboratory walking. Group means were compared using a two-way ANOVA. Results W-CWT compared to S-REF showed good gait event accuracy (0.05–0.10 s absolute error) and was not influenced by disability level. It slightly overestimated stride time in intermittent walking (0.012 s) and overestimated highly variability of temporal parameters in both intermittent (17.5%–58.2%) and continuous walking (11.2%–76.7%). The accuracy of W-PAM was speed-dependent and decreased with increasing disability. The ANOVA analysis showed that patients walked at a slower pace in daily living than in the laboratory. In daily living gait, all mean temporal parameters decreased as the WB duration increased. In the sWB, the patients with a lower disability score showed, on average, lower values of the temporal parameters. Variability decreased as the WB duration increased. Conclusions This study validated a method to quantify walking in real life in people with MS and showed how gait characteristics estimated from short walking bouts during daily living may be the most informative to quantify level of disability and effects of interventions in patients moderately affected by MS. The study provides a robust approach for the quantification of recognised clinically relevant outcomes and an innovative perspective in the study of real life walking. PMID:29715279
Discrete-time Quantum Walks via Interchange Framework and Memory in Quantum Evolution
NASA Astrophysics Data System (ADS)
Dimcovic, Zlatko
One of the newer and rapidly developing approaches in quantum computing is based on "quantum walks," which are quantum processes on discrete space that evolve in either discrete or continuous time and are characterized by mixing of components at each step. The idea emerged in analogy with the classical random walks and stochastic techniques, but these unitary processes are very different even as they have intriguing similarities. This thesis is concerned with study of discrete-time quantum walks. The original motivation from classical Markov chains required for discrete-time quantum walks that one adds an auxiliary Hilbert space, unrelated to the one in which the system evolves, in order to be able to mix components in that space and then take the evolution steps accordingly (based on the state in that space). This additional, "coin," space is very often an internal degree of freedom like spin. We have introduced a general framework for construction of discrete-time quantum walks in a close analogy with the classical random walks with memory that is rather different from the standard "coin" approach. In this method there is no need to bring in a different degree of freedom, while the full state of the system is still described in the direct product of spaces (of states). The state can be thought of as an arrow pointing from the previous to the current site in the evolution, representing the one-step memory. The next step is then controlled by a single local operator assigned to each site in the space, acting quite like a scattering operator. This allows us to probe and solve some problems of interest that have not had successful approaches with "coined" walks. We construct and solve a walk on the binary tree, a structure of great interest but until our result without an explicit discrete time quantum walk, due to difficulties in managing coin spaces necessary in the standard approach. Beyond algorithmic interests, the model based on memory allows one to explore effects of history on the quantum evolution and the subtle emergence of classical features as "memory" is explicitly kept for additional steps. We construct and solve a walk with an additional correlation step, finding interesting new features. On the other hand, the fact that the evolution is driven entirely by a local operator, not involving additional spaces, enables us to choose the Fourier transform as an operator completely controlling the evolution. This in turn allows us to combine the quantum walk approach with Fourier transform based techniques, something decidedly not possible in classical computational physics. We are developing a formalism for building networks manageable by walks constructed with this framework, based on the surprising efficiency of our framework in discovering internals of a simple network that we so far solved. Finally, in line with our expectation that the field of quantum walks can take cues from the rich history of development of the classical stochastic techniques, we establish starting points for the work on non-Abelian quantum walks, with a particular quantum-walk analog of the classical "card shuffling," the walk on the permutation group. In summary, this thesis presents a new framework for construction of discrete time quantum walks, employing and exploring memoried nature of unitary evolution. It is applied to fully solving the problems of: A walk on the binary tree and exploration of the quantum-to-classical transition with increased correlation length (history). It is then used for simple network discovery, and to lay the groundwork for analysis of complex networks, based on combined power of efficient exploration of the Hilbert space (as a walk mixing components) and Fourier transformation (since we can choose this for the evolution operator). We hope to establish this as a general technique as its power would be unmatched by any approaches available in the classical computing. We also looked at the promising and challenging prospect of walks on non-Abelian structures by setting up the problem of "quantum card shuffling," a quantum walk on the permutation group. Relation to other work is thoroughly discussed throughout, along with examination of the context of our work and overviews of our current and future work.
Mansfield, Avril; Wong, Jennifer S; Bryce, Jessica; Brunton, Karen; Inness, Elizabeth L; Knorr, Svetlana; Jones, Simon; Taati, Babak; McIlroy, William E
2015-10-01
Regaining independent ambulation is important to those with stroke. Increased walking practice during "down time" in rehabilitation could improve walking function for individuals with stroke. To determine the effect of providing physiotherapists with accelerometer-based feedback on patient activity and walking-related goals during inpatient stroke rehabilitation. Participants with stroke wore accelerometers around both ankles every weekday during inpatient rehabilitation. Participants were randomly assigned to receive daily feedback about walking activity via their physiotherapists (n = 29) or to receive no feedback (n = 28). Changes in measures of daily walking (walking time, number of steps, average cadence, longest bout duration, and number of "long" walking bouts) and changes in gait control and function assessed in-laboratory were compared between groups. There was no significant increase in walking time, number of steps, longest bout duration, or number of long walking bouts for the feedback group compared with the control group (P values > .20). However, individuals who received feedback significantly increased cadence of daily walking more than the control group (P = .013). From the in-laboratory gait assessment, individuals who received feedback had a greater increase in walking speed and decrease in step time variability than the control group (P values < .030). Feedback did not increase the amount of walking completed by individuals with stroke. However, there was a significant increase in cadence, indicating that intensity of daily walking was greater for those who received feedback than the control group. Additionally, more intense daily walking activity appeared to translate to greater improvements in walking speed. © The Author(s) 2015.
Le, Duc-Hau; Pham, Van-Huy
2017-06-15
Finding gene-disease and disease-disease associations play important roles in the biomedical area and many prioritization methods have been proposed for this goal. Among them, approaches based on a heterogeneous network of genes and diseases are considered state-of-the-art ones, which achieve high prediction performance and can be used for diseases with/without known molecular basis. Here, we developed a Cytoscape app, namely HGPEC, based on a random walk with restart algorithm on a heterogeneous network of genes and diseases. This app can prioritize candidate genes and diseases by employing a heterogeneous network consisting of a network of genes/proteins and a phenotypic disease similarity network. Based on the rankings, novel disease-gene and disease-disease associations can be identified. These associations can be supported with network- and rank-based visualization as well as evidences and annotations from biomedical data. A case study on prediction of novel breast cancer-associated genes and diseases shows the abilities of HGPEC. In addition, we showed prominence in the performance of HGPEC compared to other tools for prioritization of candidate disease genes. Taken together, our app is expected to effectively predict novel disease-gene and disease-disease associations and support network- and rank-based visualization as well as biomedical evidences for such the associations.
Metastability of Reversible Random Walks in Potential Fields
NASA Astrophysics Data System (ADS)
Landim, C.; Misturini, R.; Tsunoda, K.
2015-09-01
Let be an open and bounded subset of , and let be a twice continuously differentiable function. Denote by the discretization of , , and denote by the continuous-time, nearest-neighbor, random walk on which jumps from to at rate . We examine in this article the metastable behavior of among the wells of the potential F.
Electrical Resistance of the Low Dimensional Critical Branching Random Walk
NASA Astrophysics Data System (ADS)
Járai, Antal A.; Nachmias, Asaf
2014-10-01
We show that the electrical resistance between the origin and generation n of the incipient infinite oriented branching random walk in dimensions d < 6 is O( n 1- α ) for some universal constant α > 0. This answers a question of Barlow et al. (Commun Math Phys 278:385-431, 2008).
Exits in order: How crowding affects particle lifetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penington, Catherine J.; Simpson, Matthew J.; Baker, Ruth E.
2016-06-28
Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents inmore » a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked.« less
Accumulator and random-walk models of psychophysical discrimination: a counter-evaluation.
Vickers, D; Smith, P
1985-01-01
In a recent assessment of models of psychophysical discrimination, Heath criticises the accumulator model for its reliance on computer simulation and qualitative evidence, and contrasts it unfavourably with a modified random-walk model, which yields exact predictions, is susceptible to critical test, and is provided with simple parameter-estimation techniques. A counter-evaluation is presented, in which the approximations employed in the modified random-walk analysis are demonstrated to be seriously inaccurate, the resulting parameter estimates to be artefactually determined, and the proposed test not critical. It is pointed out that Heath's specific application of the model is not legitimate, his data treatment inappropriate, and his hypothesis concerning confidence inconsistent with experimental results. Evidence from adaptive performance changes is presented which shows that the necessary assumptions for quantitative analysis in terms of the modified random-walk model are not satisfied, and that the model can be reconciled with data at the qualitative level only by making it virtually indistinguishable from an accumulator process. A procedure for deriving exact predictions for an accumulator process is outlined.
NASA Astrophysics Data System (ADS)
Gatto, Riccardo
2017-12-01
This article considers the random walk over Rp, with p ≥ 2, where a given particle starts at the origin and moves stepwise with uniformly distributed step directions and step lengths following a common distribution. Step directions and step lengths are independent. The case where the number of steps of the particle is fixed and the more general case where it follows an independent continuous time inhomogeneous counting process are considered. Saddlepoint approximations to the distribution of the distance from the position of the particle to the origin are provided. Despite the p-dimensional nature of the random walk, the computations of the saddlepoint approximations are one-dimensional and thus simple. Explicit formulae are derived with dimension p = 3: for uniformly and exponentially distributed step lengths, for fixed and for Poisson distributed number of steps. In these situations, the high accuracy of the saddlepoint approximations is illustrated by numerical comparisons with Monte Carlo simulation. Contribution to the "Topical Issue: Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
DePaul, Vincent G; Wishart, Laurie R; Richardson, Julie; Thabane, Lehana; Ma, Jinhui; Lee, Timothy D
2015-05-01
Although task-related walking training has been recommended after stroke, the theoretical basis, content, and impact of interventions vary across the literature. There is a need for a comparison of different approaches to task-related walking training after stroke. To compare the impact of a motor-learning-science-based overground walking training program with body-weight-supported treadmill training (BWSTT) in ambulatory, community-dwelling adults within 1 year of stroke onset. In this rater-blinded, 1:1 parallel, randomized controlled trial, participants were stratified by baseline gait speed. Participants assigned to the Motor Learning Walking Program (MLWP) practiced various overground walking tasks under the supervision of 1 physiotherapist. Cognitive effort was encouraged through random practice and limited provision of feedback and guidance. The BWSTT program emphasized repetition of the normal gait cycle while supported on a treadmill and assisted by 1 to 3 therapy staff. The primary outcome was comfortable gait speed at postintervention assessment (T2). In total, 71 individuals (mean age = 67.3; standard deviation = 11.6 years) with stroke (mean onset = 20.9 [14.1] weeks) were randomized (MLWP, n = 35; BWSTT, n = 36). There was no significant between-group difference in gait speed at T2 (0.002 m/s; 95% confidence interval [CI] = -0.11, 0.12; P > .05). The MLWP group improved by 0.14 m/s (95% CI = 0.09, 0.19), and the BWSTT group improved by 0.14 m/s (95% CI = 0.08, 0.20). In this sample of community-dwelling adults within 1 year of stroke, a 15-session program of varied overground walking-focused training was not superior to a BWSTT program of equal frequency, duration, and in-session step activity. © The Author(s) 2014.
Counting in Lattices: Combinatorial Problems from Statistical Mechanics.
NASA Astrophysics Data System (ADS)
Randall, Dana Jill
In this thesis we consider two classical combinatorial problems arising in statistical mechanics: counting matchings and self-avoiding walks in lattice graphs. The first problem arises in the study of the thermodynamical properties of monomers and dimers (diatomic molecules) in crystals. Fisher, Kasteleyn and Temperley discovered an elegant technique to exactly count the number of perfect matchings in two dimensional lattices, but it is not applicable for matchings of arbitrary size, or in higher dimensional lattices. We present the first efficient approximation algorithm for computing the number of matchings of any size in any periodic lattice in arbitrary dimension. The algorithm is based on Monte Carlo simulation of a suitable Markov chain and has rigorously derived performance guarantees that do not rely on any assumptions. In addition, we show that these results generalize to counting matchings in any graph which is the Cayley graph of a finite group. The second problem is counting self-avoiding walks in lattices. This problem arises in the study of the thermodynamics of long polymer chains in dilute solution. While there are a number of Monte Carlo algorithms used to count self -avoiding walks in practice, these are heuristic and their correctness relies on unproven conjectures. In contrast, we present an efficient algorithm which relies on a single, widely-believed conjecture that is simpler than preceding assumptions and, more importantly, is one which the algorithm itself can test. Thus our algorithm is reliable, in the sense that it either outputs answers that are guaranteed, with high probability, to be correct, or finds a counterexample to the conjecture. In either case we know we can trust our results and the algorithm is guaranteed to run in polynomial time. This is the first algorithm for counting self-avoiding walks in which the error bounds are rigorously controlled. This work was supported in part by an AT&T graduate fellowship, a University of California dissertation year fellowship and Esprit working group "RAND". Part of this work was done while visiting ICSI and the University of Edinburgh.
Fractal analysis of multiscale spatial autocorrelation among point data
De Cola, L.
1991-01-01
The analysis of spatial autocorrelation among point-data quadrats is a well-developed technique that has made limited but intriguing use of the multiscale aspects of pattern. In this paper are presented theoretical and algorithmic approaches to the analysis of aggregations of quadrats at or above a given density, in which these sets are treated as multifractal regions whose fractal dimension, D, may vary with phenomenon intensity, scale, and location. The technique is illustrated with Matui's quadrat house-count data, which yield measurements consistent with a nonautocorrelated simulated Poisson process but not with an orthogonal unit-step random walk. The paper concludes with a discussion of the implications of such analysis for multiscale geographic analysis systems. -Author
On the genealogy of branching random walks and of directed polymers
NASA Astrophysics Data System (ADS)
Derrida, Bernard; Mottishaw, Peter
2016-08-01
It is well known that the mean-field theory of directed polymers in a random medium exhibits replica symmetry breaking with a distribution of overlaps which consists of two delta functions. Here we show that the leading finite-size correction to this distribution of overlaps has a universal character which can be computed explicitly. Our results can also be interpreted as genealogical properties of branching Brownian motion or of branching random walks.
NASA Astrophysics Data System (ADS)
Liu, Jian; Li, Baohe; Chen, Xiaosong
2018-02-01
The space-time coupled continuous time random walk model is a stochastic framework of anomalous diffusion with many applications in physics, geology and biology. In this manuscript the time averaged mean squared displacement and nonergodic property of a space-time coupled continuous time random walk model is studied, which is a prototype of the coupled continuous time random walk presented and researched intensively with various methods. The results in the present manuscript show that the time averaged mean squared displacements increase linearly with lag time which means ergodicity breaking occurs, besides, we find that the diffusion coefficient is intrinsically random which shows both aging and enhancement, the analysis indicates that the either aging or enhancement phenomena are determined by the competition between the correlation exponent γ and the waiting time's long-tailed index α.
Eich, H-J; Mach, H; Werner, C; Hesse, S
2004-09-01
To evaluate the immediate and long-term effects of aerobic treadmill plus Bobath walking training in subacute stroke survivors compared with Bobath walking training alone. Randomized controlled trial. Rehabilitation unit. Fifty patients, first-time supratentorial stroke, stroke interval less than six weeks, Barthel Index (0-100) from 50 to 80, able to walk a minimum distance of 12 m with either intermittent help or stand-by while walking, cardiovascular stable, minimum 50 W in the bicycle ergometry, randomly allocated to two groups, A and B. Group A 30 min of treadmill training, harness secured and minimally supported according to patients' needs, and 30 min of physiotherapy, every workday for six weeks, speed and inclination of the treadmill were adjusted to achieve a heart rate of HR: (Hrmax-HRrest)*0.6+HRrest; in group B 60 min of daily physiotherapy for six weeks. Primary outcome variables were the absolute improvement of walking velocity (m/s) and capacity (m), secondary were gross motor function including walking ability (score out of 13) and walking quality (score out of 41), blindly assessed before and after the intervention, and at follow-up three months later. Patients tolerated the aerobic training well with no side-effects, significantly greater improvement of walking velocity and capacity both at study end (p =0.001 versus p =0.002) and at follow-up (p <0.001 versus p <0.001) in the experimental group. Between weeks 0 and 6, the experimental group improved walking speed and capacity by a mean of.31 m/s and 91 m, the control group by a mean of 0.16 m/s and 56 m. Between weeks 0 and 18, the experimental group improved walking speed and capacity by a mean of 0.36 m/s and 111 m, the control group by a mean of 0.15 m/s and 57 m. Gross motor function and walking quality did not differ at any time. Aerobic treadmill plus Bobath walking training in moderately affected stroke patients was better than Bobath walking training alone with respect to the improvement of walking velocity and capacity. The treatment approach is recommended in patients meeting the inclusion criteria. A multicentre trial should follow to strengthen the evidence.
Combs-Miller, Stephanie A; Kalpathi Parameswaran, Anu; Colburn, Dawn; Ertel, Tara; Harmeyer, Amanda; Tucker, Lindsay; Schmid, Arlene A
2014-09-01
To compare the effects of body weight-supported treadmill training and overground walking training when matched for task and dose (duration/frequency/intensity) on improving walking function, activity, and participation after stroke. Single-blind, pilot randomized controlled trial with three-month follow-up. University and community settings. A convenience sample of participants (N = 20) at least six months post-stroke and able to walk independently were recruited. Thirty-minute walking interventions (body weight-supported treadmill training or overground walking training) were administered five times a week for two weeks. Intensity was monitored with the Borg Rating of Perceived Exertion Scale at five-minute increments to maintain a moderate training intensity. Walking speed (comfortable/fast 10-meter walk), walking endurance (6-minute walk), spatiotemporal symmetry, and the ICF Measure of Participation and ACTivity were assessed before, immediately after, and three months following the intervention. The overground walking training group demonstrated significantly greater improvements in comfortable walking speed compared with the body weight-supported treadmill training group immediately (change of 0.11 m/s vs. 0.06 m/s, respectively; p = 0.047) and three months (change of 0.14 m/s vs. 0.08 m/s, respectively; p = 0.029) after training. Only the overground walking training group significantly improved comfortable walking speed (p = 0.001), aspects of gait symmetry (p = 0.032), and activity (p = 0.003) immediately after training. Gains were maintained at the three-month follow-up (p < 0.05) for all measures except activity. Improvements in participation were not demonstrated. Overgound walking training was more beneficial than body weight-supported treadmill training at improving self-selected walking speed for the participants in this study. © The Author(s) 2014.
Coined quantum walks on weighted graphs
NASA Astrophysics Data System (ADS)
Wong, Thomas G.
2017-11-01
We define a discrete-time, coined quantum walk on weighted graphs that is inspired by Szegedy’s quantum walk. Using this, we prove that many lackadaisical quantum walks, where each vertex has l integer self-loops, can be generalized to a quantum walk where each vertex has a single self-loop of real-valued weight l. We apply this real-valued lackadaisical quantum walk to two problems. First, we analyze it on the line or one-dimensional lattice, showing that it is exactly equivalent to a continuous deformation of the three-state Grover walk with faster ballistic dispersion. Second, we generalize Grover’s algorithm, or search on the complete graph, to have a weighted self-loop at each vertex, yielding an improved success probability when l < 3 + 2\\sqrt{2} ≈ 5.828 .
Bruun-Olsen, Vigdis; Heiberg, Kristi Elisabeth; Wahl, Astrid Klopstad; Mengshoel, Anne Marit
2013-01-01
To examine the immediate and long-term effects of a walking-skill program compared with usual physiotherapy on physical function, pain and perceived self-efficacy in patients after total knee arthroplasty (TKA). A single blind randomized controlled trial design was applied. Fifty-seven patients with primary TKA, mean age of 69 years (SD ± 9), were randomly assigned to a walking-skill program emphasizing weight-bearing exercises or usual physiotherapy. Outcomes were assessed before the interventions started at 6 weeks postoperatively (T1), directly after the interventions at 12-14 weeks (T2) and 9 months after the interventions (T3). Walking was the primary outcome, assessed by the 6 min walk test (6MWT). The secondary outcomes were timed stair climbing, timed stands, Figure-of-eight test, Index of muscle function, active knee range of motion, Knee Injury and Osteoarthritis Outcome Score and self-efficacy score. From T1 to T2, a better 6MWT score was found in favor of the walking-skill program of 39 m (2-76), p = 0.04. The difference between the groups in 6MWT persisted at T3, 44 m (8-80), p = 0.02. No differences in other outcome measures were found. The walking-skill program had better effect on walking than usual physiotherapy. Weight bearing was tolerated. Implications for Rehabilitation Weight-bearing exercises are tolerated by the patients in the early stage after TKA. Physiotherapy that focuses on learning different ways of walking through practice may be a plausible way to train patients after TKA.
Accelerometer-based step initiation control for gait-assist neuroprostheses.
Foglyano, Kevin M; Schnellenberger, John R; Kobetic, Rudi; Lombardo, Lisa; Pinault, Gilles; Selkirk, Stephen; Makowski, Nathaniel S; Triolo, Ronald J
2016-01-01
Electrical activation of paralyzed musculature can generate or augment joint movements required for walking after central nervous system trauma. Proper timing of stimulation relative to residual volitional control is critical to usefully affecting ambulation. This study evaluates three-dimensional accelerometers and customized algorithms to detect the intent to step from voluntary movements to trigger stimulation during walking in individuals with significantly different etiologies, mobility limitations, manual dexterities, and walking aids. Three individuals with poststroke hemiplegia or partial spinal cord injury exhibiting varying gait deficits were implanted with multichannel pulse generators to provide joint motions at the hip, knee, and ankle. An accelerometer integrated into the external control unit was used to detect heel strike or walker movement, and wireless accelerometers were used to detect crutch strike. Algorithms were developed for each sensor location to detect intent to step to progress through individualized stimulation patterns. Testing these algorithms produced detection accuracies of at least 90% on both level ground and uneven terrain. All participants use their accelerometer-triggered implanted gait systems in the community; the validation/system testing was completed in the hospital. The results demonstrated that safe, reliable, and convenient accelerometer-based step initiation can be achieved regardless of specific gait deficits, manual dexterities, and walking aids.
Stationary states in quantum walk search
NASA Astrophysics Data System (ADS)
PrÅ«sis, Krišjānis; Vihrovs, Jevgěnijs; Wong, Thomas G.
2016-09-01
When classically searching a database, having additional correct answers makes the search easier. For a discrete-time quantum walk searching a graph for a marked vertex, however, additional marked vertices can make the search harder by causing the system to approximately begin in a stationary state, so the system fails to evolve. In this paper, we completely characterize the stationary states, or 1-eigenvectors, of the quantum walk search operator for general graphs and configurations of marked vertices by decomposing their amplitudes into uniform and flip states. This infinitely expands the number of known stationary states and gives an optimization procedure to find the stationary state closest to the initial uniform state of the walk. We further prove theorems on the existence of stationary states, with them conditionally existing if the marked vertices form a bipartite connected component and always existing if nonbipartite. These results utilize the standard oracle in Grover's algorithm, but we show that a different type of oracle prevents stationary states from interfering with the search algorithm.
Exploration properties of biased evanescent random walkers on a one-dimensional lattice
NASA Astrophysics Data System (ADS)
Esguerra, Jose Perico; Reyes, Jelian
2017-08-01
We investigate the combined effects of bias and evanescence on the characteristics of random walks on a one-dimensional lattice. We calculate the time-dependent return probability, eventual return probability, conditional mean return time, and the time-dependent mean number of visited sites of biased immortal and evanescent discrete-time random walkers on a one-dimensional lattice. We then extend the calculations to the case of a continuous-time step-coupled biased evanescent random walk on a one-dimensional lattice with an exponential waiting time distribution.
Zhang, S-X; Huang, F; Gates, M; Shen, X; Holmberg, E G
2016-11-01
This is a randomized controlled prospective trial with two parallel groups. The objective of this study was to determine whether early application of tail nerve electrical stimulation (TANES)-induced walking training can improve the locomotor function. This study was conducted in SCS Research Center in Colorado, USA. A contusion injury to spinal cord T10 was produced using the New York University impactor device with a 25 -mm height setting in female, adult Long-Evans rats. Injured rats were randomly divided into two groups (n=12 per group). One group was subjected to TANES-induced walking training 2 weeks post injury, and the other group, as control, received no TANES-induced walking training. Restorations of behavior and conduction were assessed using the Basso, Beattie and Bresnahan open-field rating scale, horizontal ladder rung walking test and electrophysiological test (Hoffmann reflex). Early application of TANES-induced walking training significantly improved the recovery of locomotor function and benefited the restoration of Hoffmann reflex. TANES-induced walking training is a useful method to promote locomotor recovery in rats with spinal cord injury.
Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
Pavey, Toby G; Gilson, Nicholas D; Gomersall, Sjaan R; Clark, Bronwyn; Trost, Stewart G
2017-01-01
Wrist-worn accelerometers are convenient to wear and associated with greater wear-time compliance. Previous work has generally relied on choreographed activity trials to train and test classification models. However, validity in free-living contexts is starting to emerge. Study aims were: (1) train and test a random forest activity classifier for wrist accelerometer data; and (2) determine if models trained on laboratory data perform well under free-living conditions. Twenty-one participants (mean age=27.6±6.2) completed seven lab-based activity trials and a 24h free-living trial (N=16). Participants wore a GENEActiv monitor on the non-dominant wrist. Classification models recognising four activity classes (sedentary, stationary+, walking, and running) were trained using time and frequency domain features extracted from 10-s non-overlapping windows. Model performance was evaluated using leave-one-out-cross-validation. Models were implemented using the randomForest package within R. Classifier accuracy during the 24h free living trial was evaluated by calculating agreement with concurrently worn activPAL monitors. Overall classification accuracy for the random forest algorithm was 92.7%. Recognition accuracy for sedentary, stationary+, walking, and running was 80.1%, 95.7%, 91.7%, and 93.7%, respectively for the laboratory protocol. Agreement with the activPAL data (stepping vs. non-stepping) during the 24h free-living trial was excellent and, on average, exceeded 90%. The ICC for stepping time was 0.92 (95% CI=0.75-0.97). However, sensitivity and positive predictive values were modest. Mean bias was 10.3min/d (95% LOA=-46.0 to 25.4min/d). The random forest classifier for wrist accelerometer data yielded accurate group-level predictions under controlled conditions, but was less accurate at identifying stepping verse non-stepping behaviour in free living conditions Future studies should conduct more rigorous field-based evaluations using observation as a criterion measure. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Girold, Sébastien; Rousseau, Jérome; Le Gal, Magalie; Coudeyre, Emmanuel; Le Henaff, Jacqueline
2017-07-01
With Nordic walking, or walking with poles, one can travel a greater distance and at a higher rate than with walking without poles, but whether the activity is beneficial for patients with cardiovascular disease is unknown. This randomized controlled trial was undertaken to determine whether Nordic walking was more effective than walking without poles on walk distance to support rehabilitation training for patients with acute coronary syndrome (ACS) and peripheral arterial occlusive disease (PAOD). Patients were recruited in a private specialized rehabilitation centre for cardiovascular diseases. The entire protocol, including patient recruitment, took place over 2 months, from September to October 2013. We divided patients into 2 groups: Nordic Walking Group (NWG, n=21) and Walking Group without poles (WG, n=21). All patients followed the same program over 4 weeks, except for the walk performed with or without poles. The main outcome was walk distance on the 6-min walk test. Secondary outcomes were maximum heart rate during exercise and walk distance and power output on a treadmill stress test. We included 42 patients (35 men; mean age 57.2±11 years and BMI 26.5±4.5kg/m 2 ). At the end of the training period, both groups showed improved walk distance on the 6-min walk test and treatment stress test as well as power on the treadmill stress test (P<0.05). The NWG showed significantly greater walk distance than the WG (P<0.05). Both ACS and PAOD groups showed improvement, but improvement was significant for only PAOD patients. After a 4-week training period, Nordic walking training appeared more efficient than training without poles for increasing walk distance on the 6-min walk test for patients with ACS and PAOD. Copyright © 2017. Published by Elsevier Masson SAS.
ERIC Educational Resources Information Center
Fific, Mario; Little, Daniel R.; Nosofsky, Robert M.
2010-01-01
We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli…
Random Walk Method for Potential Problems
NASA Technical Reports Server (NTRS)
Krishnamurthy, T.; Raju, I. S.
2002-01-01
A local Random Walk Method (RWM) for potential problems governed by Lapalace's and Paragon's equations is developed for two- and three-dimensional problems. The RWM is implemented and demonstrated in a multiprocessor parallel environment on a Beowulf cluster of computers. A speed gain of 16 is achieved as the number of processors is increased from 1 to 23.
ERIC Educational Resources Information Center
Kamienkowski, Juan E.; Pashler, Harold; Dehaene, Stanislas; Sigman, Mariano
2011-01-01
Does extensive practice reduce or eliminate central interference in dual-task processing? We explored the reorganization of task architecture with practice by combining interference analysis (delays in dual-task experiment) and random-walk models of decision making (measuring the decision and non-decision contributions to RT). The main delay…
Averaging in SU(2) open quantum random walk
NASA Astrophysics Data System (ADS)
Clement, Ampadu
2014-03-01
We study the average position and the symmetry of the distribution in the SU(2) open quantum random walk (OQRW). We show that the average position in the central limit theorem (CLT) is non-uniform compared with the average position in the non-CLT. The symmetry of distribution is shown to be even in the CLT.
Reheating-volume measure for random-walk inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winitzki, Sergei; Yukawa Institute of Theoretical Physics, Kyoto University, Kyoto
2008-09-15
The recently proposed 'reheating-volume' (RV) measure promises to solve the long-standing problem of extracting probabilistic predictions from cosmological multiverse scenarios involving eternal inflation. I give a detailed description of the new measure and its applications to generic models of eternal inflation of random-walk type. For those models I derive a general formula for RV-regulated probability distributions that is suitable for numerical computations. I show that the results of the RV cutoff in random-walk type models are always gauge invariant and independent of the initial conditions at the beginning of inflation. In a toy model where equal-time cutoffs lead to themore » 'youngness paradox', the RV cutoff yields unbiased results that are distinct from previously proposed measures.« less
Exercise training for intermittent claudication.
McDermott, Mary M
2017-11-01
The objective of this study was to provide an overview of evidence regarding exercise therapies for patients with lower extremity peripheral artery disease (PAD). This manuscript summarizes the content of a lecture delivered as part of the 2016 Crawford Critical Issues Symposium. Multiple randomized clinical trials demonstrate that supervised treadmill exercise significantly improves treadmill walking performance in people with PAD and intermittent claudication symptoms. A meta-analysis of 25 randomized trials demonstrated a 180-meter increase in treadmill walking distance in response to supervised exercise interventions compared with a nonexercising control group. Supervised treadmill exercise has been inaccessible to many patients with PAD because of lack of medical insurance coverage. However, in 2017, the Centers for Medicare and Medicaid Services issued a decision memorandum to support health insurance coverage of 12 weeks of supervised treadmill exercise for patients with walking impairment due to PAD. Recent evidence also supports home-based walking exercise to improve walking performance in people with PAD. Effective home-exercise programs incorporate behavioral change interventions such as a remote coach, goal setting, and self-monitoring. Supervised treadmill exercise programs preferentially improve treadmill walking performance, whereas home-based walking exercise programs preferentially improve corridor walking, such as the 6-minute walk test. Clinical trial evidence also supports arm or leg ergometry exercise to improve walking endurance in people with PAD. Treadmill walking exercise appears superior to resistance training alone for improving walking endurance. Supervised treadmill exercise significantly improves treadmill walking performance in people with PAD by approximately 180 meters compared with no exercise. Recent evidence suggests that home-based exercise is also effective and preferentially improves over-ground walking performance, such as the 6-minute walk test. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
2013-01-01
Background Regaining independent ambulation is the top priority for individuals recovering from stroke. Thus, physical rehabilitation post-stroke should focus on improving walking function and endurance. However, the amount of walking completed by individuals with stroke attending rehabilitation is far below that required for independent community ambulation. There has been increased interest in accelerometer-based monitoring of walking post-stroke. Walking monitoring could be integrated within the goal-setting process for those with ambulation goals in rehabilitation. The feedback from these devices can be downloaded to a computer to produce reports. The purpose of this study is to determine the effect of accelerometer-based feedback of daily walking activity during rehabilitation on the frequency and duration of walking post-stroke. Methods Participants will be randomly assigned to one of two groups: feedback or no feedback. Participants will wear accelerometers daily during in- and out-patient rehabilitation and, for participants in the feedback group, the participants’ treating physiotherapist will receive regular reports of walking activity. The primary outcome measures are the amount of daily walking completed, as measured using the accelerometers, and spatio-temporal characteristics of walking (e.g. walking speed). We will also examine goal attainment, satisfaction with progress towards goals, stroke self-efficacy, and community-integration. Discussion Increased walking activity during rehabilitation is expected to improve walking function and community re-integration following discharge. In addition, a focus on altering walking behaviour within the rehabilitation setting may lead to altered behaviour and increased activity patterns after discharge. Trial registration ClinicalTrials.gov NCT01521234 PMID:23865593
2016-01-01
This paper presents an algorithm, for use with a Portable Powered Ankle-Foot Orthosis (i.e., PPAFO) that can automatically detect changes in gait modes (level ground, ascent and descent of stairs or ramps), thus allowing for appropriate ankle actuation control during swing phase. An artificial neural network (ANN) algorithm used input signals from an inertial measurement unit and foot switches, that is, vertical velocity and segment angle of the foot. Output from the ANN was filtered and adjusted to generate a final data set used to classify different gait modes. Five healthy male subjects walked with the PPAFO on the right leg for two test scenarios (walking over level ground and up and down stairs or a ramp; three trials per scenario). Success rate was quantified by the number of correctly classified steps with respect to the total number of steps. The results indicated that the proposed algorithm's success rate was high (99.3%, 100%, and 98.3% for level, ascent, and descent modes in the stairs scenario, respectively; 98.9%, 97.8%, and 100% in the ramp scenario). The proposed algorithm continuously detected each step's gait mode with faster timing and higher accuracy compared to a previous algorithm that used a decision tree based on maximizing the reliability of the mode recognition. PMID:28070188
Michael, Yvonne L; Carlson, Nichole E
2009-07-30
Using data from the SHAPE trial, a randomized 6-month neighborhood-based intervention designed to increase walking activity among older adults, this study identified and analyzed social-ecological factors mediating and moderating changes in walking activity. Three potential mediators (social cohesion, walking efficacy, and perception of neighborhood problems) and minutes of brisk walking were assessed at baseline, 3-months, and 6-months. One moderator, neighborhood walkability, was assessed using an administrative GIS database. The mediating effect of change in process variables on change in brisk walking was tested using a product-of-coefficients test, and we evaluated the moderating effect of neighborhood walkability on change in brisk walking by testing the significance of the interaction between walkability and intervention status. Only one of the hypothesized mediators, walking efficacy, explained the intervention effect (product of the coefficients (95% CI) = 8.72 (2.53, 15.56). Contrary to hypotheses, perceived neighborhood problems appeared to suppress the intervention effects (product of the coefficients (95% CI = -2.48, -5.6, -0.22). Neighborhood walkability did not moderate the intervention effect. Walking efficacy may be an important mediator of lay-lead walking interventions for sedentary older adults. Social-ecologic theory-based analyses can support clinical interventions to elucidate the mediators and moderators responsible for producing intervention effects.
Real time visualization of quantum walk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, Akihide; Hamada, Shinji; Sekino, Hideo
2014-02-20
Time evolution of quantum particles like electrons is described by time-dependent Schrödinger equation (TDSE). The TDSE is regarded as the diffusion equation of electrons with imaginary diffusion coefficients. And the TDSE is solved by quantum walk (QW) which is regarded as a quantum version of a classical random walk. The diffusion equation is solved in discretized space/time as in the case of classical random walk with additional unitary transformation of internal degree of freedom typical for quantum particles. We call the QW for solution of the TDSE a Schrödinger walk (SW). For observation of one quantum particle evolution under amore » given potential in atto-second scale, we attempt a successive computation and visualization of the SW. Using Pure Data programming, we observe the correct behavior of a probability distribution under the given potential in real time for observers of atto-second scale.« less
Random walk with memory enhancement and decay
NASA Astrophysics Data System (ADS)
Tan, Zhi-Jie; Zou, Xian-Wu; Huang, Sheng-You; Zhang, Wei; Jin, Zhun-Zhi
2002-04-01
A model of random walk with memory enhancement and decay was presented on the basis of the characteristics of the biological intelligent walks. In this model, the movement of the walker is determined by the difference between the remaining information at the jumping-out site and jumping-in site. The amount of the memory information si(t) at a site i is enhanced with the increment of visiting times to that site, and decays with time t by the rate e-βt, where β is the memory decay exponent. When β=0, there exists a transition from Brownian motion (BM) to the compact growth of walking trajectory with the density of information energy u increasing. But for β>0, this transition does not appear and the walk with memory enhancement and decay can be considered as the BM of the mass center of the cluster composed of remembered sites in the late stage.
Fermionic entanglement via quantum walks in quantum dots
NASA Astrophysics Data System (ADS)
Melnikov, Alexey A.; Fedichkin, Leonid E.
2018-02-01
Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.
Continuous-Time Random Walk with multi-step memory: an application to market dynamics
NASA Astrophysics Data System (ADS)
Gubiec, Tomasz; Kutner, Ryszard
2017-11-01
An extended version of the Continuous-Time Random Walk (CTRW) model with memory is herein developed. This memory involves the dependence between arbitrary number of successive jumps of the process while waiting times between jumps are considered as i.i.d. random variables. This dependence was established analyzing empirical histograms for the stochastic process of a single share price on a market within the high frequency time scale. Then, it was justified theoretically by considering bid-ask bounce mechanism containing some delay characteristic for any double-auction market. Our model appeared exactly analytically solvable. Therefore, it enables a direct comparison of its predictions with their empirical counterparts, for instance, with empirical velocity autocorrelation function. Thus, the present research significantly extends capabilities of the CTRW formalism. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Global mean first-passage times of random walks on complex networks.
Tejedor, V; Bénichou, O; Voituriez, R
2009-12-01
We present a general framework, applicable to a broad class of random walks on complex networks, which provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged over its starting position, the so-called global mean first-passage time (GMFPT). This bound is simply expressed in terms of the equilibrium distribution at the target and implies a minimal scaling of the GMFPT with the network size. We show that this minimal scaling, which can be arbitrarily slow, is realized under the simple condition that the random walk is transient at the target site and independently of the small-world, scale-free, or fractal properties of the network. Last, we put forward that the GMFPT to a specific target is not a representative property of the network since the target averaged GMFPT satisfies much more restrictive bounds.
Emergence of Lévy Walks from Second-Order Stochastic Optimization
NASA Astrophysics Data System (ADS)
Kuśmierz, Łukasz; Toyoizumi, Taro
2017-12-01
In natural foraging, many organisms seem to perform two different types of motile search: directed search (taxis) and random search. The former is observed when the environment provides cues to guide motion towards a target. The latter involves no apparent memory or information processing and can be mathematically modeled by random walks. We show that both types of search can be generated by a common mechanism in which Lévy flights or Lévy walks emerge from a second-order gradient-based search with noisy observations. No explicit switching mechanism is required—instead, continuous transitions between the directed and random motions emerge depending on the Hessian matrix of the cost function. For a wide range of scenarios, the Lévy tail index is α =1 , consistent with previous observations in foraging organisms. These results suggest that adopting a second-order optimization method can be a useful strategy to combine efficient features of directed and random search.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Kausik, E-mail: kausik.chatterjee@aggiemail.usu.edu; Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322; Roadcap, John R., E-mail: john.roadcap@us.af.mil
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals ofmore » the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.« less
NASA Astrophysics Data System (ADS)
Chatterjee, Kausik; Roadcap, John R.; Singh, Surendra
2014-11-01
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson-Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.
Rotational diffusion of a molecular cat
NASA Astrophysics Data System (ADS)
Katz-Saporta, Ori; Efrati, Efi
We show that a simple isolated system can perform rotational random walk on account of internal excitations alone. We consider the classical dynamics of a ''molecular cat'': a triatomic molecule connected by three harmonic springs with non-zero rest lengths, suspended in free space. In this system, much like for falling cats, the angular momentum constraint is non-holonomic allowing for rotations with zero overall angular momentum. The geometric nonlinearities arising from the non-zero rest lengths of the springs suffice to break integrability and lead to chaotic dynamics. The coupling of the non-integrability of the system and its non-holonomic nature results in an angular random walk of the molecule. We study the properties and dynamics of this angular motion analytically and numerically. For low energy excitations the system displays normal-mode-like motion, while for high enough excitation energy we observe regular random-walk. In between, at intermediate energies we observe an angular Lévy-walk type motion associated with a fractional diffusion coefficient interpolating between the two regimes.
Park, Hyun-Ju; Oh, Duck-Won; Choi, Jong-Duk; Kim, Jong-Man; Kim, Suhn-Yeop; Cha, Yong-Jun; Jeon, Su-Jin
2017-08-01
To investigate the effects of action observation training involving community-based ambulation for improving walking ability after stroke. Randomized, controlled pilot study. Inpatient rehabilitation hospital. A total of 25 inpatients with post-stroke hemiparesis were randomly assigned to either the experimental group ( n = 12) or control group ( n = 13). Subjects of the experimental group watched video clips demonstrating four-staged ambulation training with a more complex environment factor for 30 minutes, three times a week for four weeks. Meanwhile, subjects of the control group watched video clips, which showed different landscape pictures. Walking function was evaluated before and after the four-week intervention using a 10-m walk test, community walk test, activities-specific balance confidence scale, and spatiotemporal gait measures. Changes in the values for the 10-m walk test (0.17 ±0.19 m/s vs. 0.05 ±0.08 m/s), community walk test (-151.42 ±123.82 seconds vs. 67.08 ±176.77 seconds), and activities-specific balance confidence (6.25 ±5.61 scores vs. 0.72 ±2.24 scores) and the spatiotemporal parameters (i.e. stride length (19.00 ±11.34 cm vs. 3.16 ±11.20 cm), single support (5.87 ±5.13% vs. 0.25 ±5.95%), and velocity (15.66 ±12.34 cm/s vs. 2.96 ±10.54 cm/s)) indicated a significant improvement in the experimental group compared with the control group. In the experimental group, walking function and ambulation confidence was significantly different between the pre- and post-intervention, whereas the control group showed a significant difference only in the 10-m walk test. Action observation training of community ambulation may be favorably used for improving walking function of patients with post-stroke hemiparesis.
Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming
2015-01-01
In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.
Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.
Chen, Duan
2017-11-01
In this work, we propose a fractional Poisson-Nernst-Planck model to describe ion permeation in gated ion channels. Due to the intrinsic conformational changes, crowdedness in narrow channel pores, binding and trapping introduced by functioning units of channel proteins, ionic transport in the channel exhibits a power-law-like anomalous diffusion dynamics. We start from continuous-time random walk model for a single ion and use a long-tailed density distribution function for the particle jump waiting time, to derive the fractional Fokker-Planck equation. Then, it is generalized to the macroscopic fractional Poisson-Nernst-Planck model for ionic concentrations. Necessary computational algorithms are designed to implement numerical simulations for the proposed model, and the dynamics of gating current is investigated. Numerical simulations show that the fractional PNP model provides a more qualitatively reasonable match to the profile of gating currents from experimental observations. Meanwhile, the proposed model motivates new challenges in terms of mathematical modeling and computations.
NASA Astrophysics Data System (ADS)
Berger, Quentin; Lacoin, Hubert
2011-01-01
We consider the continuous time version of the Random Walk Pinning Model (RWPM), studied in (Berger and Toninelli (Electron. J. Probab., to appear) and Birkner and Sun (Ann. Inst. Henri Poincaré Probab. Stat. 46:414-441, 2010; arXiv:0912.1663). Given a fixed realization of a random walk Y on ℤ d with jump rate ρ (that plays the role of the random medium), we modify the law of a random walk X on ℤ d with jump rate 1 by reweighting the paths, giving an energy reward proportional to the intersection time Lt(X,Y)=int0t {1}_{Xs=Ys} {d}s: the weight of the path under the new measure is exp ( βL t ( X, Y)), β∈ℝ. As β increases, the system exhibits a delocalization/localization transition: there is a critical value β c , such that if β> β c the two walks stick together for almost-all Y realizations. A natural question is that of disorder relevance, that is whether the quenched and annealed systems have the same behavior. In this paper we investigate how the disorder modifies the shape of the free energy curve: (1) We prove that, in dimension d≥3, the presence of disorder makes the phase transition at least of second order. This, in dimension d≥4, contrasts with the fact that the phase transition of the annealed system is of first order. (2) In any dimension, we prove that disorder modifies the low temperature asymptotic of the free energy.
QCCM Center for Quantum Algorithms
2008-10-17
algorithms (e.g., quantum walks and adiabatic computing ), as well as theoretical advances relating algorithms to physical implementations (e.g...Park, NC 27709-2211 15. SUBJECT TERMS Quantum algorithms, quantum computing , fault-tolerant error correction Richard Cleve MITACS East Academic...0511200 Algebraic results on quantum automata A. Ambainis, M. Beaudry, M. Golovkins, A. Kikusts, M. Mercer, D. Thrien Theory of Computing Systems 39(2006
ERIC Educational Resources Information Center
Reike, Dennis; Schwarz, Wolf
2016-01-01
The time required to determine the larger of 2 digits decreases with their numerical distance, and, for a given distance, increases with their magnitude (Moyer & Landauer, 1967). One detailed quantitative framework to account for these effects is provided by random walk models. These chronometric models describe how number-related noisy…
Random-walk diffusion and drying of porous materials
NASA Astrophysics Data System (ADS)
Mehrafarin, M.; Faghihi, M.
2001-12-01
Based on random-walk diffusion, a microscopic model for drying is proposed to explain the characteristic features of the drying-rate curve of porous materials. The constant drying-rate period is considered as a normal diffusion process. The transition to the falling-rate regime is attributed to the fractal nature of porous materials which results in crossover to anomalous diffusion.
A random walk rule for phase I clinical trials.
Durham, S D; Flournoy, N; Rosenberger, W F
1997-06-01
We describe a family of random walk rules for the sequential allocation of dose levels to patients in a dose-response study, or phase I clinical trial. Patients are sequentially assigned the next higher, same, or next lower dose level according to some probability distribution, which may be determined by ethical considerations as well as the patient's response. It is shown that one can choose these probabilities in order to center dose level assignments unimodally around any target quantile of interest. Estimation of the quantile is discussed; the maximum likelihood estimator and its variance are derived under a two-parameter logistic distribution, and the maximum likelihood estimator is compared with other nonparametric estimators. Random walk rules have clear advantages: they are simple to implement, and finite and asymptotic distribution theory is completely worked out. For a specific random walk rule, we compute finite and asymptotic properties and give examples of its use in planning studies. Having the finite distribution theory available and tractable obviates the need for elaborate simulation studies to analyze the properties of the design. The small sample properties of our rule, as determined by exact theory, compare favorably to those of the continual reassessment method, determined by simulation.
Monte Carlo Study of Four-Dimensional Self-avoiding Walks of up to One Billion Steps
NASA Astrophysics Data System (ADS)
Clisby, Nathan
2018-04-01
We study self-avoiding walks on the four-dimensional hypercubic lattice via Monte Carlo simulations of walks with up to one billion steps. We study the expected logarithmic corrections to scaling, and find convincing evidence in support the scaling form predicted by the renormalization group, with an estimate for the power of the logarithmic factor of 0.2516(14), which is consistent with the predicted value of 1/4. We also characterize the behaviour of the pivot algorithm for sampling four dimensional self-avoiding walks, and conjecture that the probability of a pivot move being successful for an N-step walk is O([ log N ]^{-1/4}).
May, Stefan
2018-01-01
This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients. PMID:29695098
Pfitzner, Christian; May, Stefan; Nüchter, Andreas
2018-04-24
This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients.
Do low step count goals inhibit walking behavior: a randomized controlled study.
Anson, Denis; Madras, Diane
2016-07-01
Confirmation and quantification of observed differences in goal-directed walking behavior. Single-blind, split-half randomized trial. Small rural university, Pennsylvania, United States. A total of 94 able-bodied subjects (self-selected volunteer students, faculty and staff of a small university) were randomly assigned walking goals, and 53 completed the study. Incentivized pedometer-monitored program requiring recording the step-count for 56-days into a custom-made website providing daily feedback. Steps logged per day. During the first half of the study, the 5000 and 10,000 step group logged significantly different steps 7500 and 9000, respectively (P > 0.05). During the second half of the study, the 5000 and 10,000 step groups logged 7000 and 8600 steps, respectively (significance P > 0.05). The group switched from 5000 to →10,000 steps logged, 7900 steps for the first half and 9500 steps for the second half (significance P > 0.05). The group switched from 10,000 to 5000 steps logged 9700 steps for the first half and 9000 steps for the second half, which was significant (p > 0.05). Levels of walking behavior are influenced by the goals assigned. Subjects with high goals walk more than those with low goals, even if they do not meet the assigned goal. Reducing goals from a high to low level can reduce walking behavior. © The Author(s) 2015.
Hamed, Kaveh Akbari; Gregg, Robert D
2017-07-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and [Formula: see text] robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.
Hamed, Kaveh Akbari; Gregg, Robert D.
2016-01-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and H2 robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:28959117
Braendvik, Siri Merete; Koret, Teija; Helbostad, Jorunn L; Lorås, Håvard; Bråthen, Geir; Hovdal, Harald Olav; Aamot, Inger Lise
2016-12-01
The most effective treatment approach to improve walking in people with multiple sclerosis (MS) is not known. The aim of this trial was to assess the efficacy of treadmill training and progressive strength training on walking in people with MS. A single blinded randomized parallel group trial was carried out. Eligible participants were adults with MS with Expanded Disability Status Scale score ≤6. A total of 29 participants were randomized and 28 received the allocated exercise intervention, treadmill (n = 13) or strength training (n = 15). Both groups exercised 30 minutes, three times a week for 8 weeks. Primary outcome was The Functional Ambulation Profile evaluated by the GAITRite walkway. Secondary outcomes were walking work economy and balance control during walking, measured by a small lightweight accelerometer connected to the lower back. Testing was performed at baseline and the subsequent week after completion of training. Two participants were lost to follow-up, and 11 (treadmill) and 15 (strength training) were left for analysis. The treadmill group increased their Functional Ambulation Profile score significantly compared with the strength training group (p = .037). A significant improvement in walking work economy (p = .024) and a reduction of root mean square of vertical acceleration (p = .047) also favoured the treadmill group. The results indicate that task-specific training by treadmill walking is a favourable approach compared with strength training to improve walking in persons with mild and moderate MS. Implications for Physiotherapy practice, this study adds knowledge for the decision of optimal treatment approaches in people with MS. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Image Processing, Coding, and Compression with Multiple-Point Impulse Response Functions.
NASA Astrophysics Data System (ADS)
Stossel, Bryan Joseph
1995-01-01
Aspects of image processing, coding, and compression with multiple-point impulse response functions are investigated. Topics considered include characterization of the corresponding random-walk transfer function, image recovery for images degraded by the multiple-point impulse response, and the application of the blur function to image coding and compression. It is found that although the zeros of the real and imaginary parts of the random-walk transfer function occur in continuous, closed contours, the zeros of the transfer function occur at isolated spatial frequencies. Theoretical calculations of the average number of zeros per area are in excellent agreement with experimental results obtained from computer counts of the zeros. The average number of zeros per area is proportional to the standard deviations of the real part of the transfer function as well as the first partial derivatives. Statistical parameters of the transfer function are calculated including the mean, variance, and correlation functions for the real and imaginary parts of the transfer function and their corresponding first partial derivatives. These calculations verify the assumptions required in the derivation of the expression for the average number of zeros. Interesting results are found for the correlations of the real and imaginary parts of the transfer function and their first partial derivatives. The isolated nature of the zeros in the transfer function and its characteristics at high spatial frequencies result in largely reduced reconstruction artifacts and excellent reconstructions are obtained for distributions of impulses consisting of 25 to 150 impulses. The multiple-point impulse response obscures original scenes beyond recognition. This property is important for secure transmission of data on many communication systems. The multiple-point impulse response enables the decoding and restoration of the original scene with very little distortion. Images prefiltered by the random-walk transfer function yield greater compression ratios than are obtained for the original scene. The multiple-point impulse response decreases the bit rate approximately 40-70% and affords near distortion-free reconstructions. Due to the lossy nature of transform-based compression algorithms, noise reduction measures must be incorporated to yield acceptable reconstructions after decompression.
Multiscale entropy analysis of human gait dynamics
NASA Astrophysics Data System (ADS)
Costa, M.; Peng, C.-K.; L. Goldberger, Ary; Hausdorff, Jeffrey M.
2003-12-01
We compare the complexity of human gait time series from healthy subjects under different conditions. Using the recently developed multiscale entropy algorithm, which provides a way to measure complexity over a range of scales, we observe that normal spontaneous walking has the highest complexity when compared to slow and fast walking and also to walking paced by a metronome. These findings have implications for modeling locomotor control and for quantifying gait dynamics in physiologic and pathologic states.
Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots
2000-06-01
physical models of bipedal walking. The insight gained from these models is used in the development of three planar (motion only in the sagittal plane ...ground is implemented and tested in simulation. The dynamics of the sagittal plane are suffciently decoupled from the dynamics of the frontal and...transverse planes such that control of each can be treated separately. We achieve three-dimensional walking by adding lateral balance to the planar algorithms
Harlaar, Jaap; Brehm, Merel; Becher, Jules G; Bregman, Daan J J; Buurke, Jaap; Holtkamp, Fred; De Groot, Vincent; Nollet, Frans
2010-09-01
Ankle Foot Orthoses (AFOs) to promote walking ability are a common treatment in patients with neurological or muscular diseases. However, guidelines on the prescription of AFOs are currently based on a low level of evidence regarding their efficacy. Recent studies aiming to demonstrate the efficacy of wearing an AFO in respect to walking ability are not always conclusive. In this paper it is argued to recognize two levels of evidence related to the ICF levels. Activity level evidence expresses the gain in walking ability for the patient, while mechanical evidence expresses the correct functioning of the AFO. Used in combination for the purpose of evaluating the efficacy of orthotic treatment, a conjunct improvement at both levels reinforces the treatment algorithm that is used. Conversely, conflicting outcomes will challenge current treatment algorithms and the supposed working mechanism of the AFO. A treatment algorithm must use relevant information as an input, derived from measurements with a high precision. Its result will be a specific AFO that matches the patient's needs, specified by the mechanical characterization of the AFO footwear combination. It is concluded that research on the efficacy of AFOs should use parameters from two levels of evidence, to prove the efficacy of a treatment algorithm, i.e., how to prescribe a well-matched AFO.
Høyer, Ellen; Jahnsen, Reidun; Stanghelle, Johan Kvalvik; Strand, Liv Inger
2012-01-01
Treadmill training with body weight support (TTBWS) for relearning walking ability after brain damage is an approach under current investigation. Efficiency of this method beyond traditional training is lacking evidence, especially in patients needing walking assistance after stroke. The objective of this study was to investigate change in walking and transfer abilities, comparing TTBWS with traditional walking training. A single-blinded, randomized controlled trial was conducted. Sixty patients referred for multi-disciplinary primary rehabilitation were assigned into one of two intervention groups, one received 30 sessions of TTBWS plus traditional training, the other traditional training alone. Daily training was 1 hr. Outcome measures were Functional Ambulation Categories (FAC), Walking, Functional Independence Measure (FIM); shorter transfer and stairs, 10 m and 6-min walk tests. Substantial improvements in walking and transfer were shown within both groups after 5 and 11 weeks of intervention. Overall no statistical significant differences were found between the groups, but 12 of 17 physical measures tended to show improvements in favour of the treadmill approach. Both training strategies provided significant improvements in the tested activities, suggesting that similar outcomes can be obtained in the two modalities by systematic, intensive and goal directed training.
Dual-Task Does Not Increase Slip and Fall Risk in Healthy Young and Older Adults during Walking
Soangra, Rahul
2017-01-01
Dual-task tests can identify gait characteristics peculiar to fallers and nonfallers. Understanding the relationship between gait performance and dual-task related cognitive-motor interference is important for fall prevention. Dual-task adapted changes in gait instability/variability can adversely affect fall risks. Although implicated, it is unclear if healthy participants' fall risks are modified by dual-task walking conditions. Seven healthy young and seven healthy older adults were randomly assigned to normal walking and dual-task walking sessions with a slip perturbation. In the dual-task session, the participants walked and simultaneously counted backwards from a randomly provided number. The results indicate that the gait changes in dual-task walking have no destabilizing effect on gait and slip responses in healthy individuals. We also found that, during dual-tasking, healthy individuals adopted cautious gait mode (CGM) strategy that is characterized by reduced walking speed, shorter step length, increased step width, and reduced heel contact velocity and is likely to be an adaptation to minimize attentional demand and decrease slip and fall risk during limited available attentional resources. Exploring interactions between gait variability and cognitive functions while walking may lead to designing appropriate fall interventions among healthy and patient population with fall risk. PMID:28255224
Merom, D; Gebel, K; Fahey, P; Astell-Burt, T; Voukelatos, A; Rissel, C; Sherrington, C
2015-01-01
In older adults the relationships between health, fall-related risk factors, perceived neighborhood walkability, walking behavior and intervention impacts are poorly understood. To determine whether: i) health and fall-related risk factors were associated with perceptions of neighborhood walkability; ii) perceived environmental attributes, and fall-related risk factors predicted change in walking behavior at 12 months; and iii) perceived environmental attributes and fall-related risk factors moderated the effect of a self-paced walking program on walking behavior. Randomized trial on walking and falls conducted between 2009 and 2012 involving 315 community-dwelling inactive adults ≥ 65 years living in Sydney, Australia. Measures were: mobility status, fall history, injurious fall and fear of falling (i.e., fall-related risk factors), health status, walking self-efficacy and 11 items from the neighborhood walkability scale and planned walking ≥ 150 min/week at 12 months. Participants with poorer mobility, fear of falling, and poor health perceived their surroundings as less walkable. Walking at 12 months was significantly greater in "less greenery" (AOR = 3.3, 95% CI: 1.11-9.98) and "high traffic" (AOR = 1.98, 95% CI: 1.00-3.91) neighborhoods. The intervention had greater effects in neighborhoods perceived to have poorer pedestrian infrastructure (p for interaction = 0.036). Low perceived walkability was shaped by health status and did not appear to be a barrier to walking behavior. There appears to be a greater impact of, and thus, need for, interventions to encourage walking in environments perceived not to have supportive walking infrastructure. Future studies on built environments and walking should gather information on fall-related risk factors to better understand how these characteristics interact.
Zhou, Hui; Ji, Ning; Samuel, Oluwarotimi Williams; Cao, Yafei; Zhao, Zheyi; Chen, Shixiong; Li, Guanglin
2016-10-01
Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor due to its convenience of use, small size, low cost, reliability, and low power consumption. Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO) and heel strike (HS) gait events in previous studies. While these algorithms could achieve a relatively reasonable performance in gait event detection, they suffer from limitations such as poor real-time performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new algorithm is proposed to detect the gait events on three walking terrains in real-time based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and then the determination of the peaks of jerk signals using peak heuristics. The performance of the newly proposed algorithm was evaluated with eight healthy subjects when they were walking on level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection on the three terrains. This indicates that the current algorithm would be robust and accurate for gait event detection on different terrains. Findings from the current study suggest that the proposed method may be a preferable option in some applications such as drop foot correction devices and leg prostheses.
Zhou, Hui; Ji, Ning; Samuel, Oluwarotimi Williams; Cao, Yafei; Zhao, Zheyi; Chen, Shixiong; Li, Guanglin
2016-01-01
Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor due to its convenience of use, small size, low cost, reliability, and low power consumption. Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO) and heel strike (HS) gait events in previous studies. While these algorithms could achieve a relatively reasonable performance in gait event detection, they suffer from limitations such as poor real-time performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new algorithm is proposed to detect the gait events on three walking terrains in real-time based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and then the determination of the peaks of jerk signals using peak heuristics. The performance of the newly proposed algorithm was evaluated with eight healthy subjects when they were walking on level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection on the three terrains. This indicates that the current algorithm would be robust and accurate for gait event detection on different terrains. Findings from the current study suggest that the proposed method may be a preferable option in some applications such as drop foot correction devices and leg prostheses. PMID:27706086
NASA Astrophysics Data System (ADS)
Zhou, Hang
Quantum walks are the quantum mechanical analogue of classical random walks. Discrete-time quantum walks have been introduced and studied mostly on the line Z or higher dimensional space Zd but rarely defined on graphs with fractal dimensions because the coin operator depends on the position and the Fourier transform on the fractals is not defined. Inspired by its nature of classical walks, different quantum walks will be defined by choosing different shift and coin operators. When the coin operator is uniform, the results of classical walks will be obtained upon measurement at each step. Moreover, with measurement at each step, our results reveal more information about the classical random walks. In this dissertation, two graphs with fractal dimensions will be considered. The first one is Sierpinski gasket, a degree-4 regular graph with Hausdorff dimension of df = ln 3/ ln 2. The second is the Cantor graph derived like Cantor set, with Hausdorff dimension of df = ln 2/ ln 3. The definitions and amplitude functions of the quantum walks will be introduced. The main part of this dissertation is to derive a recursive formula to compute the amplitude Green function. The exiting probability will be computed and compared with the classical results. When the generation of graphs goes to infinity, the recursion of the walks will be investigated and the convergence rates will be obtained and compared with the classical counterparts.
Extended shortest path selection for package routing of complex networks
NASA Astrophysics Data System (ADS)
Ye, Fan; Zhang, Lei; Wang, Bing-Hong; Liu, Lu; Zhang, Xing-Yi
The routing strategy plays a very important role in complex networks such as Internet system and Peer-to-Peer networks. However, most of the previous work concentrates only on the path selection, e.g. Flooding and Random Walk, or finding the shortest path (SP) and rarely considering the local load information such as SP and Distance Vector Routing. Flow-based Routing mainly considers load balance and still cannot achieve best optimization. Thus, in this paper, we propose a novel dynamic routing strategy on complex network by incorporating the local load information into SP algorithm to enhance the traffic flow routing optimization. It was found that the flow in a network is greatly affected by the waiting time of the network, so we should not consider only choosing optimized path for package transformation but also consider node congestion. As a result, the packages should be transmitted with a global optimized path with smaller congestion and relatively short distance. Analysis work and simulation experiments show that the proposed algorithm can largely enhance the network flow with the maximum throughput within an acceptable calculating time. The detailed analysis of the algorithm will also be provided for explaining the efficiency.
Levandowski, William Brower; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.
2015-01-01
We test this algorithm on the Proterozoic Midcontinent Rift (MCR), north-central U.S. The MCR provides a challenge because it hosts a gravity high overlying low shear-wave velocity crust in a generally flat region. Our initial density estimates are derived from a seismic velocity/crustal thickness model based on joint inversion of surface-wave dispersion and receiver functions. By adjusting these estimates to reproduce gravity and topography, we generate a lithospheric-scale model that reveals dense middle crust and eclogitized lowermost crust within the rift. Mantle lithospheric density beneath the MCR is not anomalous, consistent with geochemical evidence that lithospheric mantle was not the primary source of rift-related magmas and suggesting that extension occurred in response to far-field stress rather than a hot mantle plume. Similarly, the subsequent inversion of normal faults resulted from changing far-field stress that exploited not only warm, recently faulted crust but also a gravitational potential energy low in the MCR. The success of this density modeling algorithm in the face of such apparently contradictory geophysical properties suggests that it may be applicable to a variety of tectonic and geodynamic problems.
Automatic identification of inertial sensor placement on human body segments during walking
2013-01-01
Background Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided. We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Methods Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). Results and conclusions After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method. PMID:23517757
Automatic identification of inertial sensor placement on human body segments during walking.
Weenk, Dirk; van Beijnum, Bert-Jan F; Baten, Chris T M; Hermens, Hermie J; Veltink, Peter H
2013-03-21
Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided.We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method.
Interrelations between random walks on diagrams (graphs) with and without cycles.
Hill, T L
1988-05-01
Three topics are discussed. A discrete-state, continuous-time random walk with one or more absorption states can be studied by a presumably new method: some mean properties, including the mean time to absorption, can be found from a modified diagram (graph) in which each absorption state is replaced by a one-way cycle back to the starting state. The second problem is a random walk on a diagram (graph) with cycles. The walk terminates on completion of the first cycle. This walk can be replaced by an equivalent walk on a modified diagram with absorption. This absorption diagram can in turn be replaced by another modified diagram with one-way cycles back to the starting state, just as in the first problem. The third problem, important in biophysics, relates to a long-time continuous walk on a diagram with cycles. This diagram can be transformed (in two steps) to a modified, more-detailed, diagram with one-way cycles only. Thus, the one-way cycle fluxes of the original diagram can be found from the state probabilities of the modified diagram. These probabilities can themselves be obtained by simple matrix inversion (the probabilities are determined by linear algebraic steady-state equations). Thus, a simple method is now available to find one-way cycle fluxes exactly (previously Monte Carlo simulation was required to find these fluxes, with attendant fluctuations, for diagrams of any complexity). An incidental benefit of the above procedure is that it provides a simple proof of the one-way cycle flux relation Jn +/- = IIn +/- sigma n/sigma, where n is any cycle of the original diagram.
Someya, Fujiko
2013-01-01
Abstract Objective: To compare the effect of body-weight-supported treadmill training (BWSTT) and full-body-weight treadmill training (FBWTT) on patients with knee osteoarthritis (OA). Methods: Design was Randomized controlled trial. Patients with knee osteoarthritis (n = 30; mean age, 76.0±7.5 y) were randomly assigned to BWSTT or FBWTT group. All patients performed 20 min walking exercise twice a week for 6 weeks under the supervision of the therapist. Main measures were 10-meter walking test (10MWT), functional reach test (FRT), timed get up and go test (TUG), one-leg standing test, 6-minute walking test (6MWT), the parameters set on the treadmill, MOS Short-Form 36-Item Health Survey (SF36), Japanese Knee Osteoarthritis Measure (JKOM). Results: Twenty-five patients (10 men, 15 women; mean age, 76.5 ± 8.0 y) completed the experiment. Exercise capacity, indicated by the heart rate, was similar in both groups. After 3 weeks of BWSTT, the patients performed significantly better in the 10-m and 6-min walking tests. This was not the case with FBWTT even after 6 weeks training. Pain levels assessed were significantly improved after 3 weeks of BWSTT and 6 weeks of FBWTT. There were no significant improvements in either group assessed by the FRT, one-leg standing time test, TUG, or SF -36 questionnaire. Conclusions: BWSTT enhanced exercise capacity in terms of walking speed and pain reduction after 3 weeks; however, there was no significant improvement in patients' functional abilities or quality of life. PMID:25792901
Zhu, Zhizhong; Cui, Liling; Yin, Miaomiao; Yu, Yang; Zhou, Xiaona; Wang, Hongtu; Yan, Hua
2016-06-01
To investigate the effects of hydrotherapy on walking ability and balance in patients with chronic stroke. Single-blind, randomized controlled pilot trial. Outpatient rehabilitation clinic at a tertiary neurological hospital in China. A total of 28 participants with impairments in walking and controlling balance more than six months post-stroke. After baseline evaluations, participants were randomly assigned to a land-based therapy (control group, n = 14) or hydrotherapy (study group, n = 14). Participants underwent individual sessions for four weeks, five days a week, for 45 minutes per session. After four weeks of rehabilitation, all participants were evaluated by a blinded assessor. Functional assessments included the Functional Reach Test, Berg Balance Scale, 2-minute walk test, and Timed Up and Go Test. After four weeks of treatment, the Berg Balance Scale, functional reach test, 2-minute walk test, and the Timed Up and Go Test scores had improved significantly in each group (P < 0.05). The mean improvement of the functional reach test and 2-minute walk test were significantly higher in the aquatic group than in the control group (P < 0.01). The differences in the mean values of the improvements in the Berg Balance Scale and the Timed Up and Go Test were not statistically significant. The results of this study suggest that a relatively short programme (four weeks) of hydrotherapy exercise resulted in a large improvement in a small group (n = 14) of individuals with relatively high balance and walking function following a stroke. © The Author(s) 2015.
Kucza, Witold
2013-07-25
Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.
High-fidelity meshes from tissue samples for diffusion MRI simulations.
Panagiotaki, Eleftheria; Hall, Matt G; Zhang, Hui; Siow, Bernard; Lythgoe, Mark F; Alexander, Daniel C
2010-01-01
This paper presents a method for constructing detailed geometric models of tissue microstructure for synthesizing realistic diffusion MRI data. We construct three-dimensional mesh models from confocal microscopy image stacks using the marching cubes algorithm. Random-walk simulations within the resulting meshes provide synthetic diffusion MRI measurements. Experiments optimise simulation parameters and complexity of the meshes to achieve accuracy and reproducibility while minimizing computation time. Finally we assess the quality of the synthesized data from the mesh models by comparison with scanner data as well as synthetic data from simple geometric models and simplified meshes that vary only in two dimensions. The results support the extra complexity of the three-dimensional mesh compared to simpler models although sensitivity to the mesh resolution is quite robust.
Open quantum random walks: Bistability on pure states and ballistically induced diffusion
NASA Astrophysics Data System (ADS)
Bauer, Michel; Bernard, Denis; Tilloy, Antoine
2013-12-01
Open quantum random walks (OQRWs) deal with quantum random motions on a line for systems with internal and orbital degrees of freedom. The internal system behaves as a quantum random gyroscope coding for the direction of the orbital moves. We reveal the existence of a transition, depending on OQRW moduli, in the internal system behaviors from simple oscillations to random flips between two unstable pure states. This induces a transition in the orbital motions from the usual diffusion to ballistically induced diffusion with a large mean free path and large effective diffusion constant at large times. We also show that mixed states of the internal system are converted into random pure states during the process. We touch upon possible experimental realizations.
Variable Cadence Walking and Ground Adaptive Standing with a Powered Ankle Prosthesis
Shultz, Amanda H.; Lawson, Brian E.; Goldfarb, Michael
2015-01-01
Abstract This paper describes a control approach that provides walking and standing functionality for a powered ankle prosthesis, and demonstrates the efficacy of the approach in experiments in which a unilateral transtibial amputee subject walks with the prosthesis at variable cadences, and stands on various slopes. Both controllers incorporate a finite-state structure that emulates healthy ankle joint behavior via a series of piecewise passive impedance functions. The walking controller incorporates an algorithm to modify impedance parameters based on estimated cadence, while the standing controller incorporates an algorithm to modulate the ankle equilibrium angle in order to adapt to the ground slope and user posture, and the supervisory controller selects between the walking and standing controllers. The system is shown to reproduce several essential biomechanical features of the healthy joint during walking, particularly relative to a passive prosthesis, and is shown to adapt to variable cadences. The system is also shown to adapt to slopes over a range of ± 15 deg and to provide support to the user in a manner that is biomimetic, as validated by quasi-static stiffness measurements recorded by the prosthesis. Data from standing trials indicate that the user places more weight on the powered prosthesis than on his passive prosthesis when standing on sloped surfaces, particularly at angles of 10 deg or greater. The authors also demonstrated that the prosthesis typically began providing support within 1 s of initial contact with the ground. Further, the supervisory controller was shown to be effective in switching between walking and standing, as well as in determining ground slope just prior to the transition from the standing controller to the walking controller, where the estimated ground slope was within 1.25 deg of the actual ground slope for all trials. PMID:25955789
Wilson, Dawn K; Trumpeter, Nevelyn N; St George, Sara M; Coulon, Sandra M; Griffin, Sarah; Lee Van Horn, M; Lawman, Hannah G; Wandersman, Abe; Egan, Brent; Forthofer, Melinda; Goodlett, Benjamin D; Kitzman-Ulrich, Heather; Gadson, Barney
2010-11-01
Ethnic minorities and lower-income adults have among the highest rates of obesity and lowest levels of regular physical activity (PA). The Positive Action for Today's Health (PATH) trial compares three communities that are randomly assigned to different levels of an environmental intervention to improve safety and access for walking in low income communities. Three communities matched on census tract information (crime, PA, ethnic minorities, and income) were randomized to receive either: an intervention that combines a police-patrolled-walking program with social marketing strategies to promote PA, a police-patrolled-walking only intervention, or no-walking intervention (general health education only). Measures include PA (7-day accelerometer estimates), body composition, blood pressure, psychosocial measures, and perceptions of safety and access for PA at baseline, 6, 12, 18, and 24 months. The police-patrolled walking plus social marketing intervention targets increasing safety (training community leaders as walking captains, hiring off-duty police officers to patrol the walking trail, and containing stray dogs), increasing access for PA (marking a walking route), and utilizes a social marketing campaign that targets psychosocial and environmental mediators for increasing PA. MAIN HYPOTHESES/OUTCOMES: It is hypothesized that the police-patrolled walking plus social marketing intervention will result in greater increases in moderate-to-vigorous PA as compared to the police-patrolled-walking only or the general health intervention after 12 months and that this effect will be maintained at 18 and 24 months. Implications of this community-based trial are discussed. Copyright © 2010. Published by Elsevier Inc.
Wilson, Dawn K.; Trumpeter, Nevelyn N.; St. George, Sara M.; Coulon, Sandra M.; Griffin, Sarah; Van Horn, M. Lee; Lawman, Hannah G.; Wandersman, Abe; Egan, Brent; Forthofer, Melinda; Goodlett, Benjamin D.; Kitzman-Ulrich, Heather; Gadson, Barney
2012-01-01
Background Ethnic minorities and lower-income adults have among the highest rates of obesity and lowest levels of regular physical activity (PA). The Positive Action for Today's Health (PATH) trial compares three communities that are randomly assigned to different levels of an environmental intervention to improve safety and access for walking in low income communities. Design and setting Three communities matched on census tract information (crime, PA, ethnic minorities, and income) were randomized to receive either: an intervention that combines a police-patrolled-walking program with social marketing strategies to promote PA, a police-patrolled-walking only intervention, or no-walking intervention (general health education only). Measures include PA (7-day accelerometer estimates), body composition, blood pressure, psychosocial measures, and perceptions of safety and access for PA at baseline, 6, 12, 18, and 24 months. Intervention The police-patrolled walking plus social marketing intervention targets increasing safety (training community leaders as walking captains, hiring off-duty police officers to patrol the walking trail, and containing stray dogs), increasing access for PA (marking a walking route), and utilizes a social marketing campaign that targets psychosocial and environmental mediators for increasing PA. Main hypotheses/outcomes It is hypothesized that the police-patrolled walking plus social marketing intervention will result in greater increases in moderate-to-vigorous PA as compared to the police-patrolled-walking only or the general health intervention after 12 months and that this effect will be maintained at 18 and 24 months. Conclusions Implications of this community-based trial are discussed. PMID:20801233
Extreme events and event size fluctuations in biased random walks on networks.
Kishore, Vimal; Santhanam, M S; Amritkar, R E
2012-05-01
Random walk on discrete lattice models is important to understand various types of transport processes. The extreme events, defined as exceedences of the flux of walkers above a prescribed threshold, have been studied recently in the context of complex networks. This was motivated by the occurrence of rare events such as traffic jams, floods, and power blackouts which take place on networks. In this work, we study extreme events in a generalized random walk model in which the walk is preferentially biased by the network topology. The walkers preferentially choose to hop toward the hubs or small degree nodes. In this setting, we show that extremely large fluctuations in event sizes are possible on small degree nodes when the walkers are biased toward the hubs. In particular, we obtain the distribution of event sizes on the network. Further, the probability for the occurrence of extreme events on any node in the network depends on its "generalized strength," a measure of the ability of a node to attract walkers. The generalized strength is a function of the degree of the node and that of its nearest neighbors. We obtain analytical and simulation results for the probability of occurrence of extreme events on the nodes of a network using a generalized random walk model. The result reveals that the nodes with a larger value of generalized strength, on average, display lower probability for the occurrence of extreme events compared to the nodes with lower values of generalized strength.
Luo, Jiawei; Xiao, Qiu
2017-02-01
MicroRNAs (miRNAs) play a critical role by regulating their targets in post-transcriptional level. Identification of potential miRNA-disease associations will aid in deciphering the pathogenesis of human polygenic diseases. Several computational models have been developed to uncover novel miRNA-disease associations based on the predicted target genes. However, due to the insufficient number of experimentally validated miRNA-target interactions as well as the relatively high false-positive and false-negative rates of predicted target genes, it is still challenging for these prediction models to obtain remarkable performances. The purpose of this study is to prioritize miRNA candidates for diseases. We first construct a heterogeneous network, which consists of a disease similarity network, a miRNA functional similarity network and a known miRNA-disease association network. Then, an unbalanced bi-random walk-based algorithm on the heterogeneous network (BRWH) is adopted to discover potential associations by exploiting bipartite subgraphs. Based on 5-fold cross validation, the proposed network-based method achieves AUC values ranging from 0.782 to 0.907 for the 22 human diseases and an average AUC of almost 0.846. The experiments indicated that BRWH can achieve better performances compared with several popular methods. In addition, case studies of some common diseases further demonstrated the superior performance of our proposed method on prioritizing disease-related miRNA candidates. Copyright © 2017 Elsevier Inc. All rights reserved.
Euclidean commute time distance embedding and its application to spectral anomaly detection
NASA Astrophysics Data System (ADS)
Albano, James A.; Messinger, David W.
2012-06-01
Spectral image analysis problems often begin by performing a preprocessing step composed of applying a transformation that generates an alternative representation of the spectral data. In this paper, a transformation based on a Markov-chain model of a random walk on a graph is introduced. More precisely, we quantify the random walk using a quantity known as the average commute time distance and find a nonlinear transformation that embeds the nodes of a graph in a Euclidean space where the separation between them is equal to the square root of this quantity. This has been referred to as the Commute Time Distance (CTD) transformation and it has the important characteristic of increasing when the number of paths between two nodes decreases and/or the lengths of those paths increase. Remarkably, a closed form solution exists for computing the average commute time distance that avoids running an iterative process and is found by simply performing an eigendecomposition on the graph Laplacian matrix. Contained in this paper is a discussion of the particular graph constructed on the spectral data for which the commute time distance is then calculated from, an introduction of some important properties of the graph Laplacian matrix, and a subspace projection that approximately preserves the maximal variance of the square root commute time distance. Finally, RX anomaly detection and Topological Anomaly Detection (TAD) algorithms will be applied to the CTD subspace followed by a discussion of their results.
Record statistics for biased random walks, with an application to financial data
NASA Astrophysics Data System (ADS)
Wergen, Gregor; Bogner, Miro; Krug, Joachim
2011-05-01
We consider the occurrence of record-breaking events in random walks with asymmetric jump distributions. The statistics of records in symmetric random walks was previously analyzed by Majumdar and Ziff [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.050601 101, 050601 (2008)] and is well understood. Unlike the case of symmetric jump distributions, in the asymmetric case the statistics of records depends on the choice of the jump distribution. We compute the record rate Pn(c), defined as the probability for the nth value to be larger than all previous values, for a Gaussian jump distribution with standard deviation σ that is shifted by a constant drift c. For small drift, in the sense of c/σ≪n-1/2, the correction to Pn(c) grows proportional to arctan(n) and saturates at the value (c)/(2σ). For large n the record rate approaches a constant, which is approximately given by 1-(σ/2πc)exp(-c2/2σ2) for c/σ≫1. These asymptotic results carry over to other continuous jump distributions with finite variance. As an application, we compare our analytical results to the record statistics of 366 daily stock prices from the Standard & Poor's 500 index. The biased random walk accounts quantitatively for the increase in the number of upper records due to the overall trend in the stock prices, and after detrending the number of upper records is in good agreement with the symmetric random walk. However the number of lower records in the detrended data is significantly reduced by a mechanism that remains to be identified.
Noguchi, Hiroshi; Sanada, Hiromi
2017-01-01
Forefoot load (FL) contributes to callus formation, which is one of the pathways to diabetic foot ulcers (DFU). In this study, we hypothesized that excessive FL, which cannot be detected by plantar load measurements within laboratory settings, occurs in daily walks. To demonstrate this, we created a FL estimation algorithm using foot motion data. Acceleration and angular velocity data were obtained from a motion sensor attached to each shoe of the subjects. The accuracy of the estimated FL was validated by correlation with the FL measured by force sensors on the metatarsal heads, which was assessed using the Pearson correlation coefficient. The mean of correlation coefficients of all the subjects was 0.63 at a level corridor, while it showed an intersubject difference at a slope and stairs. We conducted daily walk measurements in two diabetic patients, and additionally, we verified the safety of daily walk measurement using a wearable motion sensor attached to each shoe. We found that excessive FL occurred during their daily walks for approximately three hours in total, when any adverse event was not observed. This study indicated that FL evaluation method using wearable motion sensors was one of the promising ways to prevent DFUs. PMID:28840130
Watanabe, Ayano; Noguchi, Hiroshi; Oe, Makoto; Sanada, Hiromi; Mori, Taketoshi
2017-01-01
Forefoot load (FL) contributes to callus formation, which is one of the pathways to diabetic foot ulcers (DFU). In this study, we hypothesized that excessive FL, which cannot be detected by plantar load measurements within laboratory settings, occurs in daily walks. To demonstrate this, we created a FL estimation algorithm using foot motion data. Acceleration and angular velocity data were obtained from a motion sensor attached to each shoe of the subjects. The accuracy of the estimated FL was validated by correlation with the FL measured by force sensors on the metatarsal heads, which was assessed using the Pearson correlation coefficient. The mean of correlation coefficients of all the subjects was 0.63 at a level corridor, while it showed an intersubject difference at a slope and stairs. We conducted daily walk measurements in two diabetic patients, and additionally, we verified the safety of daily walk measurement using a wearable motion sensor attached to each shoe. We found that excessive FL occurred during their daily walks for approximately three hours in total, when any adverse event was not observed. This study indicated that FL evaluation method using wearable motion sensors was one of the promising ways to prevent DFUs.
Metabolic Power in Team Sports - Part 1: An Update.
di Prampero, Pietro Enrico; Osgnach, Cristian
2018-06-14
Team sports are characterised by frequent episodes of accelerated/decelerated running. The corresponding energy cost can be estimated on the basis of the biomechanical equivalence between accelerated/decelerated running on flat terrain and constant speed running uphill/downhill. This approach allows one to: (i) estimate the time course of the instantaneous metabolic power requirement of any given player and (ii) infer therefrom the overall energy expenditure of any given time window of a soccer drill or match. In the original approach, walking and running were aggregated and energetically considered as running, even if in team sports several walking periods are interspersed among running bouts. However, since the transition speed between walking and running is known for any given incline of the terrain, we describe here an approach to identify walking episodes, thus utilising the corresponding energy cost which is smaller than in running. In addition, the new algorithm also takes into account the energy expenditure against the air resistance, for both walking and running. The new approach yields overall energy expenditure values, for a whole match,≈14% smaller than the original algorithm; moreover, it shows that the energy expenditure against the air resistance is≈2% of the total. © Georg Thieme Verlag KG Stuttgart · New York.
Reynolds, Andy M
2010-12-06
For many years, the dominant conceptual framework for describing non-oriented animal movement patterns has been the correlated random walk (CRW) model in which an individual's trajectory through space is represented by a sequence of distinct, independent randomly oriented 'moves'. It has long been recognized that the transformation of an animal's continuous movement path into a broken line is necessarily arbitrary and that probability distributions of move lengths and turning angles are model artefacts. Continuous-time analogues of CRWs that overcome this inherent shortcoming have appeared in the literature and are gaining prominence. In these models, velocities evolve as a Markovian process and have exponential autocorrelation. Integration of the velocity process gives the position process. Here, through a simple scaling argument and through an exact analytical analysis, it is shown that autocorrelation inevitably leads to Lévy walk (LW) movement patterns on timescales less than the autocorrelation timescale. This is significant because over recent years there has been an accumulation of evidence from a variety of experimental and theoretical studies that many organisms have movement patterns that can be approximated by LWs, and there is now intense debate about the relative merits of CRWs and LWs as representations of non-orientated animal movement patterns.
Random and Directed Walk-Based Top-k Queries in Wireless Sensor Networks
Fu, Jun-Song; Liu, Yun
2015-01-01
In wireless sensor networks, filter-based top-k query approaches are the state-of-the-art solutions and have been extensively researched in the literature, however, they are very sensitive to the network parameters, including the size of the network, dynamics of the sensors’ readings and declines in the overall range of all the readings. In this work, a random walk-based top-k query approach called RWTQ and a directed walk-based top-k query approach called DWTQ are proposed. At the beginning of a top-k query, one or several tokens are sent to the specific node(s) in the network by the base station. Then, each token walks in the network independently to record and process the readings in a random or directed way. A strategy of choosing the “right” way in DWTQ is carefully designed for the token(s) to arrive at the high-value regions as soon as possible. When designing the walking strategy for DWTQ, the spatial correlations of the readings are also considered. Theoretical analysis and simulation results indicate that RWTQ and DWTQ both are very robust against these parameters discussed previously. In addition, DWTQ outperforms TAG, FILA and EXTOK in transmission cost, energy consumption and network lifetime. PMID:26016914
Carlson, Jordan A; Saelens, Brian E; Kerr, Jacqueline; Schipperijn, Jasper; Conway, Terry L; Frank, Lawrence D; Chapman, Jim E; Glanz, Karen; Cain, Kelli L; Sallis, James F
2015-03-01
To investigate relations of walking, bicycling and vehicle time to neighborhood walkability and total physical activity in youth. Participants (N=690) were from 380 census block groups of high/low walkability and income in two US regions. Home neighborhood residential density, intersection density, retail density, entertainment density and walkability were derived using GIS. Minutes/day of walking, bicycling and vehicle time were derived from processing algorithms applied to GPS. Accelerometers estimated total daily moderate-to-vigorous physical activity (MVPA). Models were adjusted for nesting of days (N=2987) within participants within block groups. Walking occurred on 33%, active travel on 43%, and vehicle time on 91% of the days observed. Intersection density and neighborhood walkability were positively related to walking and bicycling and negatively related to vehicle time. Residential density was positively related to walking. Increasing walking in youth could be effective in increasing total physical activity. Built environment findings suggest potential for increasing walking in youth through improving neighborhood walkability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quantum walks on the chimera graph and its variants
NASA Astrophysics Data System (ADS)
Sanders, Barry; Sun, Xiangxiang; Xu, Shu; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum
We study quantum walks on the chimera graph, which is an important graph for performing quantum annealing, and we explore the nature of quantum walks on variants of the chimera graph. Features of these quantum walks provide profound insights into the nature of the chimera graph, including effects of greater and lesser connectivity, strong differences between quantum and classical random walks, isotropic spreading and localization only in the quantum case, and random graphs. We analyze finite-size effects due to limited width and length of the graph, and we explore the effect of different boundary conditions such as periodic and reflecting. Effects are explained via spectral analysis and the properties of stationary states, and spectral analysis enables us to characterize asymptotic behavior of the quantum walker in the long-time limit. Supported by China 1000 Talent Plan, National Science Foundation of China, Hefei National Laboratory for Physical Sciences at Microscale Fellowship, and the Chinese Academy of Sciences President's International Fellowship Initiative.
Random walk, diffusion and mixing in simulations of scalar transport in fluid flows
NASA Astrophysics Data System (ADS)
Klimenko, A. Y.
2008-12-01
Physical similarity and mathematical equivalence of continuous diffusion and particle random walk form one of the cornerstones of modern physics and the theory of stochastic processes. In many applied models used in simulation of turbulent transport and turbulent combustion, mixing between particles is used to reflect the influence of the continuous diffusion terms in the transport equations. We show that the continuous scalar transport and diffusion can be accurately specified by means of mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. This gives an alternative formulation for the stochastic process which is selected to represent the continuous diffusion. This paper focuses on statistical errors and deals with relatively simple cases, where one-particle distributions are sufficient for a complete description of the problem.
Morris, Meg E; Iansek, Robert; Kirkwood, Beth
2009-01-15
This randomized controlled clinical trial was conducted to compare the effects of movement rehabilitation strategies and exercise therapy in hospitalized patients with idiopathic Parkinson's disease. Participants were randomly assigned to a group that received movement strategy training or musculoskeletal exercises during 2 consecutive weeks of hospitalization. The primary outcome was disability as measured by the Unified Parkinson's Disease Rating Scale, UPDRS (motor and ADL components). Secondary outcomes were balance, walking speed, endurance, and quality of life. Assessments were carried out by blinded testers at baseline, after the 2 weeks of treatment and 3 months after discharge. The movement strategy group showed improvements on several outcome measures from admission to discharge, including the UPDRS, 10 m walk, 2 minute walk, balance, and PDQ39. However, from discharge to follow up there was significant regression in performance on the 2 minute walk and PDQ39. For the exercise group, quality of life improved significantly during inpatient hospitalization and this was retained at follow-up. Inpatient rehabilitation produces short term reductions in disability and improvements in quality of life in people with Parkinson's disease.
Stochastic resetting in backtrack recovery by RNA polymerases
NASA Astrophysics Data System (ADS)
Roldán, Édgar; Lisica, Ana; Sánchez-Taltavull, Daniel; Grill, Stephan W.
2016-06-01
Transcription is a key process in gene expression, in which RNA polymerases produce a complementary RNA copy from a DNA template. RNA polymerization is frequently interrupted by backtracking, a process in which polymerases perform a random walk along the DNA template. Recovery of polymerases from the transcriptionally inactive backtracked state is determined by a kinetic competition between one-dimensional diffusion and RNA cleavage. Here we describe backtrack recovery as a continuous-time random walk, where the time for a polymerase to recover from a backtrack of a given depth is described as a first-passage time of a random walker to reach an absorbing state. We represent RNA cleavage as a stochastic resetting process and derive exact expressions for the recovery time distributions and mean recovery times from a given initial backtrack depth for both continuous and discrete-lattice descriptions of the random walk. We show that recovery time statistics do not depend on the discreteness of the DNA lattice when the rate of one-dimensional diffusion is large compared to the rate of cleavage.
NASA Astrophysics Data System (ADS)
Tan, Zhi-Jie; Zou, Xian-Wu; Huang, Sheng-You; Zhang, Wei; Jin, Zhun-Zhi
2002-07-01
We investigate the pattern of particle distribution and its evolution with time in multiparticle systems using the model of random walks with memory enhancement and decay. This model describes some biological intelligent walks. With decrease in the memory decay exponent α, the distribution of particles changes from a random dispersive pattern to a locally dense one, and then returns to the random one. Correspondingly, the fractal dimension Df,p characterizing the distribution of particle positions increases from a low value to a maximum and then decreases to the low one again. This is determined by the degree of overlap of regions consisting of sites with remanent information. The second moment of the density ρ(2) was introduced to investigate the inhomogeneity of the particle distribution. The dependence of ρ(2) on α is similar to that of Df,p on α. ρ(2) increases with time as a power law in the process of adjusting the particle distribution, and then ρ(2) tends to a stable equilibrium value.
The Locomotion of Mouse Fibroblasts in Tissue Culture
Gail, Mitchell H.; Boone, Charles W.
1970-01-01
Time-lapse cinematography was used to investigate the motion of mouse fibroblasts in tissue culture. Observations over successive short time intervals revealed a tendency for the cells to persist in their direction of motion from one 2.5 hr time interval to the next. Over 5.0-hr time intervals, however, the direction of motion appeared random. This fact suggested that D, the diffusion constant of a random walk model, might serve to characterize cellular motility if suitably long observation times were used. We therefore investigated the effect of “persistence” on the pure random walk model, and we found theoretically and confirmed experimentally that the motility of a persisting cell could indeed be characterized by an augmented diffusion constant, D*. A method for determining confidence limits on D* was also developed. Thus a random walk model, modified to comprehend the persistence effect, was found to describe the motion of fibroblasts in tissue culture and to provide a numerical measure of cellular motility. PMID:5531614
A Perron-Frobenius type of theorem for quantum operations
NASA Astrophysics Data System (ADS)
Lagro, Matthew
Quantum random walks are a generalization of classical Markovian random walks to a quantum mechanical or quantum computing setting. Quantum walks have promising applications but are complicated by quantum decoherence. We prove that the long-time limiting behavior of the class of quantum operations which are the convex combination of norm one operators is governed by the eigenvectors with norm one eigenvalues which are shared by the operators. This class includes all operations formed by a coherent operation with positive probability of orthogonal measurement at each step. We also prove that any operation that has range contained in a low enough dimension subspace of the space of density operators has limiting behavior isomorphic to an associated Markov chain. A particular class of such operations are coherent operations followed by an orthogonal measurement. Applications of the convergence theorems to quantum walks are given.
ERIC Educational Resources Information Center
Scholtes, Vanessa A.; Becher, Jules G.; Janssen-Potten, Yvonne J.; Dekkers, Hurnet; Smallenbroek, Linda; Dallmeijer, Annet J.
2012-01-01
The objective of the study was to evaluate the effectiveness of functional progressive resistance exercise (PRE) training on walking ability in children with cerebral palsy (CP). Fifty-one ambulant children with spastic CP (mean age 10 years 5 months, 29 boys) were randomized to an intervention (n=26) or control group (n=25, receiving usual care).…
Some functional limit theorems for compound Cox processes
NASA Astrophysics Data System (ADS)
Korolev, Victor Yu.; Chertok, A. V.; Korchagin, A. Yu.; Kossova, E. V.; Zeifman, Alexander I.
2016-06-01
An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.
Continuous Time Random Walks with memory and financial distributions
NASA Astrophysics Data System (ADS)
Montero, Miquel; Masoliver, Jaume
2017-11-01
We study financial distributions from the perspective of Continuous Time Random Walks with memory. We review some of our previous developments and apply them to financial problems. We also present some new models with memory that can be useful in characterizing tendency effects which are inherent in most markets. We also briefly study the effect on return distributions of fractional behaviors in the distribution of pausing times between successive transactions.
Ages of Records in Random Walks
NASA Astrophysics Data System (ADS)
Szabó, Réka; Vető, Bálint
2016-12-01
We consider random walks with continuous and symmetric step distributions. We prove universal asymptotics for the average proportion of the age of the kth longest lasting record for k=1,2,ldots and for the probability that the record of the kth longest age is broken at step n. Due to the relation to the Chinese restaurant process, the ranked sequence of proportions of ages converges to the Poisson-Dirichlet distribution.
Some functional limit theorems for compound Cox processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, Victor Yu.; Institute of Informatics Problems FRC CSC RAS; Chertok, A. V.
2016-06-08
An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.
1976-05-01
random walk photon scattering, geometric optics refraction at a thin phase screen, plane wave scattering from a thin screen in the Fraunhofer limit and...significant cases. In the geometric optics regime the distribution of density of allowable multipath rays is gsslanly distributed and the power...3.1 Random Walk Approach to Scattering 10 3.2 Phase Screen Approximation to Strong Scattering 13 3.3 Ray Optics and Stationary Phase Analysis 21 3,3,1
Empirical scaling of the length of the longest increasing subsequences of random walks
NASA Astrophysics Data System (ADS)
Mendonça, J. Ricardo G.
2017-02-01
We provide Monte Carlo estimates of the scaling of the length L n of the longest increasing subsequences of n-step random walks for several different distributions of step lengths, short and heavy-tailed. Our simulations indicate that, barring possible logarithmic corrections, {{L}n}∼ {{n}θ} with the leading scaling exponent 0.60≲ θ ≲ 0.69 for the heavy-tailed distributions of step lengths examined, with values increasing as the distribution becomes more heavy-tailed, and θ ≃ 0.57 for distributions of finite variance, irrespective of the particular distribution. The results are consistent with existing rigorous bounds for θ, although in a somewhat surprising manner. For random walks with step lengths of finite variance, we conjecture that the correct asymptotic behavior of L n is given by \\sqrt{n}\\ln n , and also propose the form for the subleading asymptotics. The distribution of L n was found to follow a simple scaling form with scaling functions that vary with θ. Accordingly, when the step lengths are of finite variance they seem to be universal. The nature of this scaling remains unclear, since we lack a working model, microscopic or hydrodynamic, for the behavior of the length of the longest increasing subsequences of random walks.
Ant-inspired density estimation via random walks.
Musco, Cameron; Su, Hsin-Hao; Lynch, Nancy A
2017-10-03
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks.
Shnayderman, Ilana; Katz-Leurer, Michal
2013-03-01
To assess the effect of aerobic walking training as compared to active training, which includes muscle strengthening, on functional abilities among patients with chronic low back pain. Randomized controlled clinical trial with blind assessors. Outpatient clinic. Fifty-two sedentary patients, aged 18-65 years with chronic low back pain. Patients who were post surgery, post trauma, with cardiovascular problems, and with oncological disease were excluded. Experimental 'walking' group: moderate intense treadmill walking; control 'exercise' group: specific low back exercise; both, twice a week for six weeks. Six-minute walking test, Fear-Avoidance Belief Questionnaire, back and abdomen muscle endurance tests, Oswestry Disability Questionnaire, Low Back Pain Functional Scale (LBPFS). Significant improvements were noted in all outcome measures in both groups with non-significant difference between groups. The mean distance in metres covered during 6 minutes increased by 70.7 (95% confidence interval (CI) 12.3-127.7) in the 'walking' group and by 43.8 (95% CI 19.6-68.0) in the 'exercise' group. The trunk flexor endurance test showed significant improvement in both groups, increasing by 0.6 (95% CI 0.0-1.1) in the 'walking' group and by 1.1 (95% CI 0.3-1.8) in the 'exercise' group. A six-week walk training programme was as effective as six weeks of specific strengthening exercises programme for the low back.
2012-01-01
Background Osteoarthritis (OA) is the most common joint disorder in the world, as it is appears to be prevalent among 80% of individuals over the age of 75. Although physical activities such as walking have been scientifically proven to improve physical function and arthritic symptoms, individuals with OA tend to adopt a sedentary lifestyle. There is therefore a need to improve knowledge translation in order to influence individuals to adopt effective self-management interventions, such as an adapted walking program. Methods A single-blind, randomized control trial was conducted. Subjects (n = 222) were randomized to one of three knowledge translation groups: 1) Walking and Behavioural intervention (WB) (18 males, 57 females) which included the supervised community-based aerobic walking program combined with a behavioural intervention and an educational pamphlet on the benefits of walking; 2) Walking intervention (W) (24 males, 57 females) wherein participants only received the supervised community-based aerobic walking program intervention and the educational pamphlet; 3) Self-directed control (C) (32 males, 52 females) wherein participants only received the educational pamphlet. One-way analyses of variance were used to test for differences in quality of life, adherence, confidence, and clinical outcomes among the study groups at each 3 month assessment during the 12-month intervention period and 6-month follow-up period. Results The clinical and quality of life outcomes improved among participants in each of the three comparative groups. However, there were few statistically significant differences observed for quality of life and clinical outcomes at long-term measurements at 12-months end of intervention and at 6- months post intervention (18-month follow-up). Outcome results varied among the three groups. Conclusion The three groups were equivalent when determining the effectiveness of knowledge uptake and improvements in quality of life and other clinical outcomes. OA can be managed through the implementation of a proven effective walking program in existing community-based walking clubs. Trial registration Current Controlled Trials IRSCTNO9193542 PMID:23234575
Karstoft, Kristian; Winding, Kamilla; Knudsen, Sine H; Nielsen, Jens S; Thomsen, Carsten; Pedersen, Bente K; Solomon, Thomas P J
2013-02-01
To evaluate the feasibility of free-living walking training in type 2 diabetic patients and to investigate the effects of interval-walking training versus continuous-walking training upon physical fitness, body composition, and glycemic control. Subjects with type 2 diabetes were randomized to a control (n = 8), continuous-walking (n = 12), or interval-walking group (n = 12). Training groups were prescribed five sessions per week (60 min/session) and were controlled with an accelerometer and a heart-rate monitor. Continuous walkers performed all training at moderate intensity, whereas interval walkers alternated 3-min repetitions at low and high intensity. Before and after the 4-month intervention, the following variables were measured: VO(2)max, body composition, and glycemic control (fasting glucose, HbA(1c), oral glucose tolerance test, and continuous glucose monitoring [CGM]). Training adherence was high (89 ± 4%), and training energy expenditure and mean intensity were comparable. VO(2)max increased 16.1 ± 3.7% in the interval-walking group (P < 0.05), whereas no changes were observed in the continuous-walking or control group. Body mass and adiposity (fat mass and visceral fat) decreased in the interval-walking group only (P < 0.05). Glycemic control (elevated mean CGM glucose levels and increased fasting insulin) worsened in the control group (P < 0.05), whereas mean (P = 0.05) and maximum (P < 0.05) CGM glucose levels decreased in the interval-walking group. The continuous walkers showed no changes in glycemic control. Free-living walking training is feasible in type 2 diabetic patients. Continuous walking offsets the deterioration in glycemia seen in the control group, and interval walking is superior to energy expenditure-matched continuous walking for improving physical fitness, body composition, and glycemic control.
Peurala, Sinikka H; Tarkka, Ina M; Pitkänen, Kauko; Sivenius, Juhani
2005-08-01
To compare body weight-supported exercise on a gait trainer with walking exercise overground. Randomized controlled trial. Rehabilitation hospital. Forty-five ambulatory patients with chronic stroke. Patients were randomized to 3 groups: (1) gait trainer exercise with functional electric stimulation (GTstim), (2) gait trainer exercise without stimulation (GT), and (3) walking overground (WALK). All patients practiced gait for 15 sessions during 3 weeks (each session, 20 min), and they received additional physiotherapy 55 minutes daily. Ten-meter walk test (10MWT), six-minute walk test (6MWT), lower-limb spasticity and muscle force, postural sway tests, Modified Motor Assessment Scale (MMAS), and FIM instrument scores were recorded before, during, and after the rehabilitation and at 6 months follow-up. The mean walking distance using the gait trainer was 6900+/-1200 m in the GTstim group and 6500+/-1700 m in GT group. In the WALK group, the distance was 4800+/-2800 m, which was less than the walking distance obtained in the GTstim group (P=.027). The body-weight support was individually reduced from 30% to 9% of the body weight over the course of the program. In the pooled 45 patients, the 10MWT (P<.001), 6MWT (P<.001), MMAS (P<.001), dynamic balance test time (P<.001), and test trip (P=.005) scores improved; however, no differences were found between the groups. Both the body weight-supported training and walking exercise training programs resulted in faster gait after the intensive rehabilitation program. Patients' motor performance remained improved at the follow-up.
Effectiveness of Long and Short Bout Walking on Increasing Physical Activity in Women
Serwe, Katrina M.; Swartz, Ann M.; Hart, Teresa L.; Strath, Scott J.
2011-01-01
Abstract Background The accumulation of physical activity (PA) throughout the day has been suggested as a means to increase PA behavior. It is not known, however, if accumulated PA results in equivalent increases in PA behavior compared with one continuous session. The purpose of this investigation was to compare changes in PA between participants assigned to walk daily in accumulated shorter bouts vs. one continuous session. Methods In this 8-week randomized controlled trial, 60 inactive women were randomly assigned to one of the following: (1) control group, (2) 30 minutes a day of walking 5 days a week in one continuous long bout (LB), or (3) three short 10-minute bouts (SB) of walking a day, all at a prescribed heart rate intensity. Walking was assessed by pedometer and self-reported walking log. Before and after measures were taken of average steps/day, resting systolic and diastolic blood pressure (SBP, DBP), resting heart rate (RHR), six-minute walk test (6MWT) distance, height, weight, body mass index (BMI), and hip and waist circumference. Results Both walking groups significantly increased PA measured as steps/day compared to controls (p < 0.001), and no significant differences were found between LB and SB groups. The LB group demonstrated significant decreases in hip circumference and significant increases in 6MWT distance compared to the control group. Conclusions Both walking groups significantly increased PA participation. LB group participants completed more walking at a higher intensity than the SB and control groups, which resulted in significant increases in health benefits. PMID:21314449
Brach, Jennifer S.; Lowry, Kristin; Perera, Subashan; Hornyak, Victoria; Wert, David; Studenski, Stephanie A.; VanSwearingen, Jessie M.
2016-01-01
Objective The objective was to test the proposed mechanism of action of a task-specific motor learning intervention by examining its effect on measures of the motor control of gait. Design Single blinded randomized clinical trial. Setting University research laboratory. Participants Forty older adults 65 years of age and older, with gait speed >1.0 m/s and impaired motor skill (Figure of 8 walk time > 8 secs). Interventions The two interventions included a task-oriented motor learning and a standard exercise program. Both interventions lasted 12 weeks, with twice weekly one hour physical therapist supervised sessions. Main Outcome Measures Two measure of the motor control of gait, gait variability and smoothness of walking, were assessed pre and post intervention by assessors masked to treatment arm. Results Of 40 randomized subjects; 38 completed the trial (mean age 77.1±6.0 years). Motor control group improved more than standard group in double support time variability (0.13 vs. 0.05 m/s; adjusted difference, AD=0.006, p=0.03). Smoothness of walking in the anterior/posterior direction improved more in motor control than standard for all conditions (usual: AD=0.53, p=0.05; narrow: AD=0.56, p=0.01; dual task: AD=0.57, p=0.04). Conclusions Among older adults with subclinical walking difficulty, there is initial evidence that task-oriented motor learning exercise results in gains in the motor control of walking, while standard exercise does not. Task-oriented motor learning exercise is a promising intervention for improving timing and coordination deficits related to mobility difficulties in older adults, and needs to be evaluated in a definitive larger trial. PMID:25448244
Kim, Chang-Yong; Lee, Jung-Sun; Kim, Hyeong-Dong
2017-02-01
The purposes of the present study were to compare the effects of backward and lateral walking training and to identify whether additional backward or lateral walking training would be more effective in increasing the walking function of poststroke patients. Fifty-one subjects with hemiplegic stroke were randomly allocated to 3 groups, each containing 17 subjects: the control group, the backward walking training group, and the lateral walking training group. The walking abilities of each group were assessed using a 10-m walk test and the GAITRite system for spatiotemporal gait. The results show that there were significantly greater posttest increases in gait velocity (F = -12.09, P = 0.02) and stride length (F = -11.50, P = 0.02), decreases in the values of the 10-m walk test (F = -7.10, P = 0.03) (P < 0.05) and double-limb support period (F = 40.15, P = 0.000), and improvements in gait asymmetry (F = 13.88, P = 0.002) (P < 0.01) in subjects in the lateral walking training group compared with those in the other 2 groups. These findings demonstrate that asymmetric gait patterns in poststroke patients could be improved by receiving additional lateral walking training therapy rather than backward walking training. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) understand the potential benefits of backward walking (BW) and lateral walking (LW) training on improving muscle strength and gait; (2) appreciate the potential value of backward and lateral walking gait training in the treatment of hemiplegic stroke patients; and (3) appropriately incorporate backward and lateral walking gait training into the treatment plan of hemiplegic stroke patients. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.The Association of Academic Physiatrists designates this activity for a maximum of 1.5 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.
Determinants of gait stability while walking on a treadmill: A machine learning approach.
Reynard, Fabienne; Terrier, Philippe
2017-12-08
Dynamic balance in human locomotion can be assessed through the local dynamic stability (LDS) method. Whereas gait LDS has been used successfully in many settings and applications, little is known about its sensitivity to individual characteristics of healthy adults. Therefore, we reanalyzed a large dataset of accelerometric data measured for 100 healthy adults from 20 to 70 years of age performing 10 min treadmill walking. We sought to assess the extent to which the variations of age, body mass and height, sex, and preferred walking speed (PWS) could influence gait LDS. The random forest (RF) and multiple adaptive regression splines (MARS) algorithms were selected for their good bias-variance tradeoff and their capabilities to handle nonlinear associations. First, through variable importance measure (VIM), we used RF to evaluate which individual characteristics had the highest influence on gait LDS. Second, we used MARS to detect potential interactions among individual characteristics that may influence LDS. The VIM and MARS results indicated that PWS and age correlated with LDS, whereas no associations were found for sex, body height, and body mass. Further, the MARS model detected an age by PWS interaction: on one hand, at high PWS, gait stability is constant across age while, on the other hand, at low PWS, gait instability increases substantially with age. We conclude that it is advisable to consider the participants' age as well as their PWS to avoid potential biases in evaluating dynamic balance through LDS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hershberg, Julie A; Rose, Dorian K; Tilson, Julie K; Brutsch, Bettina; Correa, Anita; Gallichio, Joann; McLeod, Molly; Moore, Craig; Wu, Sam; Duncan, Pamela W; Behrman, Andrea L
2017-01-01
Despite efforts to translate knowledge into clinical practice, barriers often arise in adapting the strict protocols of a randomized, controlled trial (RCT) to the individual patient. The Locomotor Experience Applied Post-Stroke (LEAPS) RCT demonstrated equal effectiveness of 2 intervention protocols for walking recovery poststroke; both protocols were more effective than usual care physical therapy. The purpose of this article was to provide knowledge-translation tools to facilitate implementation of the LEAPS RCT protocols into clinical practice. Participants from 2 of the trial's intervention arms: (1) early Locomotor Training Program (LTP) and (2) Home Exercise Program (HEP) were chosen for case presentation. The two cases illustrate how the protocols are used in synergy with individual patient presentations and clinical expertise. Decision algorithms and guidelines for progression represent the interface between implementation of an RCT standardized intervention protocol and clinical decision-making. In each case, the participant presents with a distinct clinical challenge that the therapist addresses by integrating the participant's unique presentation with the therapist's expertise while maintaining fidelity to the LEAPS protocol. Both participants progressed through an increasingly challenging intervention despite their own unique presentation. Decision algorithms and exercise progression for the LTP and HEP protocols facilitate translation of the RCT protocol to the real world of clinical practice. The two case examples to facilitate translation of the LEAPS RCT into clinical practice by enhancing understanding of the protocols, their progression, and their application to individual participants.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A147).
Improved method of step length estimation based on inverted pendulum model.
Zhao, Qi; Zhang, Boxue; Wang, Jingjing; Feng, Wenquan; Jia, Wenyan; Sun, Mingui
2017-04-01
Step length estimation is an important issue in areas such as gait analysis, sport training, or pedestrian localization. In this article, we estimate the step length of walking using a waist-worn wearable computer named eButton. Motion sensors within this device are used to record body movement from the trunk instead of extremities. Two signal-processing techniques are applied to our algorithm design. The direction cosine matrix transforms vertical acceleration from the device coordinates to the topocentric coordinates. The empirical mode decomposition is used to remove the zero- and first-order skew effects resulting from an integration process. Our experimental results show that our algorithm performs well in step length estimation. The effectiveness of the direction cosine matrix algorithm is improved from 1.69% to 3.56% while the walking speed increased.
Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression
NASA Astrophysics Data System (ADS)
Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.
2013-10-01
Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.
2003-09-01
the effect of a 12-week home-based walking intervention on quality of life , body composition, and estrogen metabolism in survivors of breast cancer...randomized to the walking intervention will report higher levels of quality of life , experience less weight gain, and have more favorable estrogen
2004-09-01
the effect of a 12-week home-based walking intervention on quality of life , body composition, and estrogen metabolism in survivors of breast cancer...randomized to the walking intervention will report higher levels of quality of life , experience less weight gain, and have more favorable estrogen
Testing self-regulation interventions to increase walking using factorial randomized N-of-1 trials.
Sniehotta, Falko F; Presseau, Justin; Hobbs, Nicola; Araújo-Soares, Vera
2012-11-01
To investigate the suitability of N-of-1 randomized controlled trials (RCTs) as a means of testing the effectiveness of behavior change techniques based on self-regulation theory (goal setting and self-monitoring) for promoting walking in healthy adult volunteers. A series of N-of-1 RCTs in 10 normal and overweight adults ages 19-67 (M = 36.9 years). We randomly allocated 60 days within each individual to text message-prompted daily goal-setting and/or self-monitoring interventions in accordance with a 2 (step-count goal prompt vs. alternative goal prompt) × 2 (self-monitoring: open vs. blinded Omron-HJ-113-E pedometer) factorial design. Aggregated data were analyzed using random intercept multilevel models. Single cases were analyzed individually. The primary outcome was daily pedometer step counts over 60 days. Single-case analyses showed that 4 participants significantly increased walking: 2 on self-monitoring days and 2 on goal-setting days, compared with control days. Six participants did not benefit from the interventions. In aggregated analyses, mean step counts were higher on goal-setting days (8,499.9 vs. 7,956.3) and on self-monitoring days (8,630.3 vs. 7,825.9). Multilevel analyses showed a significant effect of the self-monitoring condition (p = .01), the goal-setting condition approached significance (p = .08), and there was a small linear increase in walking over time (p = .03). N-of-1 randomized trials are a suitable means to test behavioral interventions in individual participants.
Random walk on p-adics and hierarchical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukierska-Walasek, K.; Topolski, K.; Institute of Mathematics, Wroclaw University, pl. Grunwaldzki 2/4, 50-384 Wroclaw
2006-02-01
We show that p-adic analysis provides a quite natural basis for the description of relaxation in hierarchical systems. For our purposes, we specify the Markov stochastic process considered by Albeverio and Karwowski. As a result we have obtained a random walk on the p-adic integer numbers, which provides the generalization of Cayley tree proposed by Ogielski and Stein. The temperature-dependent power-law decay and the Kohlrausch law are derived.
Expert Assessment of Stigmergy: A Report for the Department of National Defence
2005-10-01
pheromone table may be reduced by implementing a clustering scheme. Termite can take advantage of the wireless broadcast medium, since it is possible for...comparing it with any other routing scheme. The Termite scheme [RW] differs from the source routing [ITT] by applying pheromone trails or random walks...rather than uniform or probabilistic ones. Random walk ants differ from uniform ants since they follow pheromone trails, if any. Termite [RW] also
Autocatalytic polymerization generates persistent random walk of crawling cells.
Sambeth, R; Baumgaertner, A
2001-05-28
The autocatalytic polymerization kinetics of the cytoskeletal actin network provides the basic mechanism for a persistent random walk of a crawling cell. It is shown that network remodeling by branching processes near the cell membrane is essential for the bimodal spatial stability of the network which induces a spontaneous breaking of isotropic cell motion. Details of the phenomena are analyzed using a simple polymerization model studied by analytical and simulation methods.
A Random Walk Picture of Basketball
NASA Astrophysics Data System (ADS)
Gabel, Alan; Redner, Sidney
2012-02-01
We analyze NBA basketball play-by-play data and found that scoring is well described by a weakly-biased, anti-persistent, continuous-time random walk. The time between successive scoring events follows an exponential distribution, with little memory between events. We account for a wide variety of statistical properties of scoring, such as the distribution of the score difference between opponents and the fraction of game time that one team is in the lead.
Approximate scaling properties of RNA free energy landscapes
NASA Technical Reports Server (NTRS)
Baskaran, S.; Stadler, P. F.; Schuster, P.
1996-01-01
RNA free energy landscapes are analysed by means of "time-series" that are obtained from random walks restricted to excursion sets. The power spectra, the scaling of the jump size distribution, and the scaling of the curve length measured with different yard stick lengths are used to describe the structure of these "time series". Although they are stationary by construction, we find that their local behavior is consistent with both AR(1) and self-affine processes. Random walks confined to excursion sets (i.e., with the restriction that the fitness value exceeds a certain threshold at each step) exhibit essentially the same statistics as free random walks. We find that an AR(1) time series is in general approximately self-affine on timescales up to approximately the correlation length. We present an empirical relation between the correlation parameter rho of the AR(1) model and the exponents characterizing self-affinity.
A Perron-Frobenius Type of Theorem for Quantum Operations
NASA Astrophysics Data System (ADS)
Lagro, Matthew; Yang, Wei-Shih; Xiong, Sheng
2017-10-01
We define a special class of quantum operations we call Markovian and show that it has the same spectral properties as a corresponding Markov chain. We then consider a convex combination of a quantum operation and a Markovian quantum operation and show that under a norm condition its spectrum has the same properties as in the conclusion of the Perron-Frobenius theorem if its Markovian part does. Moreover, under a compatibility condition of the two operations, we show that its limiting distribution is the same as the corresponding Markov chain. We apply our general results to partially decoherent quantum random walks with decoherence strength 0 ≤ p ≤ 1. We obtain a quantum ergodic theorem for partially decoherent processes. We show that for 0 < p ≤ 1, the limiting distribution of a partially decoherent quantum random walk is the same as the limiting distribution for the classical random walk.
Narrow log-periodic modulations in non-Markovian random walks
NASA Astrophysics Data System (ADS)
Diniz, R. M. B.; Cressoni, J. C.; da Silva, M. A. A.; Mariz, A. M.; de Araújo, J. M.
2017-12-01
What are the necessary ingredients for log-periodicity to appear in the dynamics of a random walk model? Can they be subtle enough to be overlooked? Previous studies suggest that long-range damaged memory and negative feedback together are necessary conditions for the emergence of log-periodic oscillations. The role of negative feedback would then be crucial, forcing the system to change direction. In this paper we show that small-amplitude log-periodic oscillations can emerge when the system is driven by positive feedback. Due to their very small amplitude, these oscillations can easily be mistaken for numerical finite-size effects. The models we use consist of discrete-time random walks with strong memory correlations where the decision process is taken from memory profiles based either on a binomial distribution or on a delta distribution. Anomalous superdiffusive behavior and log-periodic modulations are shown to arise in the large time limit for convenient choices of the models parameters.
Elephant random walks and their connection to Pólya-type urns
NASA Astrophysics Data System (ADS)
Baur, Erich; Bertoin, Jean
2016-11-01
In this paper, we explain the connection between the elephant random walk (ERW) and an urn model à la Pólya and derive functional limit theorems for the former. The ERW model was introduced in [Phys. Rev. E 70, 045101 (2004), 10.1103/PhysRevE.70.045101] to study memory effects in a highly non-Markovian setting. More specifically, the ERW is a one-dimensional discrete-time random walk with a complete memory of its past. The influence of the memory is measured in terms of a memory parameter p between zero and one. In the past years, a considerable effort has been undertaken to understand the large-scale behavior of the ERW, depending on the choice of p . Here, we use known results on urns to explicitly solve the ERW in all memory regimes. The method works as well for ERWs in higher dimensions and is widely applicable to related models.
Observing random walks of atoms in buffer gas through resonant light absorption
NASA Astrophysics Data System (ADS)
Aoki, Kenichiro; Mitsui, Takahisa
2016-07-01
Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.
Network Dynamics of Innovation Processes.
Iacopini, Iacopo; Milojević, Staša; Latora, Vito
2018-01-26
We introduce a model for the emergence of innovations, in which cognitive processes are described as random walks on the network of links among ideas or concepts, and an innovation corresponds to the first visit of a node. The transition matrix of the random walk depends on the network weights, while in turn the weight of an edge is reinforced by the passage of a walker. The presence of the network naturally accounts for the mechanism of the "adjacent possible," and the model reproduces both the rate at which novelties emerge and the correlations among them observed empirically. We show this by using synthetic networks and by studying real data sets on the growth of knowledge in different scientific disciplines. Edge-reinforced random walks on complex topologies offer a new modeling framework for the dynamics of correlated novelties and are another example of coevolution of processes and networks.
Statistical Modeling of Robotic Random Walks on Different Terrain
NASA Astrophysics Data System (ADS)
Naylor, Austin; Kinnaman, Laura
Issues of public safety, especially with crowd dynamics and pedestrian movement, have been modeled by physicists using methods from statistical mechanics over the last few years. Complex decision making of humans moving on different terrains can be modeled using random walks (RW) and correlated random walks (CRW). The effect of different terrains, such as a constant increasing slope, on RW and CRW was explored. LEGO robots were programmed to make RW and CRW with uniform step sizes. Level ground tests demonstrated that the robots had the expected step size distribution and correlation angles (for CRW). The mean square displacement was calculated for each RW and CRW on different terrains and matched expected trends. The step size distribution was determined to change based on the terrain; theoretical predictions for the step size distribution were made for various simple terrains. It's Dr. Laura Kinnaman, not sure where to put the Prefix.
Network Dynamics of Innovation Processes
NASA Astrophysics Data System (ADS)
Iacopini, Iacopo; Milojević, Staša; Latora, Vito
2018-01-01
We introduce a model for the emergence of innovations, in which cognitive processes are described as random walks on the network of links among ideas or concepts, and an innovation corresponds to the first visit of a node. The transition matrix of the random walk depends on the network weights, while in turn the weight of an edge is reinforced by the passage of a walker. The presence of the network naturally accounts for the mechanism of the "adjacent possible," and the model reproduces both the rate at which novelties emerge and the correlations among them observed empirically. We show this by using synthetic networks and by studying real data sets on the growth of knowledge in different scientific disciplines. Edge-reinforced random walks on complex topologies offer a new modeling framework for the dynamics of correlated novelties and are another example of coevolution of processes and networks.
Effective degrees of freedom of a random walk on a fractal
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.
2015-12-01
We argue that a non-Markovian random walk on a fractal can be treated as a Markovian process in a fractional dimensional space with a suitable metric. This allows us to define the fractional dimensional space allied to the fractal as the ν -dimensional space Fν equipped with the metric induced by the fractal topology. The relation between the number of effective spatial degrees of freedom of walkers on the fractal (ν ) and fractal dimensionalities is deduced. The intrinsic time of random walk in Fν is inferred. The Laplacian operator in Fν is constructed. This allows us to map physical problems on fractals into the corresponding problems in Fν. In this way, essential features of physics on fractals are revealed. Particularly, subdiffusion on path-connected fractals is elucidated. The Coulomb potential of a point charge on a fractal embedded in the Euclidean space is derived. Intriguing attributes of some types of fractals are highlighted.
2012-01-01
Background The implementation of evidence based clinical practice guidelines on self-management interventions to patients with chronic diseases is a complex process. A multifaceted strategy may offer an effective knowledge translation (KT) intervention to promote knowledge uptake and improve adherence in an effective walking program based on the Ottawa Panel Evidence Based Clinical Practice Guidelines among individuals with moderate osteoarthritis (OA). Methods A single-blind, randomized control trial was conducted. Patients with mild to moderate (OA) of the knee (n=222) were randomized to one of three KT groups: 1) Walking and Behavioural intervention (WB) (18 males, 57 females) which included the supervised community-based aerobic walking program combined with a behavioural intervention and an educational pamphlet on the benefits of walking for OA; 2) Walking intervention (W) (24 males, 57 females) wherein participants only received the supervised community-based aerobic walking program intervention and the educational pamphlet; 3) Self-directed control (C) (32 males, 52 females) wherein participants only received the educational pamphlet. One-way analyses of variance were used to test for differences in quality of life, adherence, confidence, and clinical outcomes among the study groups at each 3 month assessment during the 12-month intervention period and 6-month follow-up period. Results Short-term program adherence was greater in WB compared to C (p<0.012) after 3 months. No statistical significance (p> 0.05) was observed for long-term adherence (6 to 12 months), and total adherence between the three groups. The three knowledge translation strategies demonstrated equivalent long-term results for the implementation of a walking program for older individuals with moderate OA. Lower dropout rates as well as higher retention rates were observed for WB at 12 and 18 months. Conclusion The additional knowledge translation behavioural component facilitated the implementation of clinical practice guidelines on walking over a short-term period. More studies are needed to improve the long-term walking adherence or longer guidelines uptake on walking among participants with OA. Particular attention should be taken into account related to patient’s characteristic and preference. OA can be managed through the implementation of a walking program based on clinical practice guidelines in existing community-based walking clubs as well as at home with the minimal support of an exercise therapist or a trained volunteer. Trial Registration Current Controlled Trials IRSCTNO9193542 PMID:23061875
Zhang, Jian; Suo, Yan; Liu, Min; Xu, Xun
2018-06-01
Proliferative diabetic retinopathy (PDR) is one of the most common complications of diabetes and can lead to blindness. Proteomic studies have provided insight into the pathogenesis of PDR and a series of PDR-related genes has been identified but are far from fully characterized because the experimental methods are expensive and time consuming. In our previous study, we successfully identified 35 candidate PDR-related genes through the shortest-path algorithm. In the current study, we developed a computational method using the random walk with restart (RWR) algorithm and the protein-protein interaction (PPI) network to identify potential PDR-related genes. After some possible genes were obtained by the RWR algorithm, a three-stage filtration strategy, which includes the permutation test, interaction test and enrichment test, was applied to exclude potential false positives caused by the structure of PPI network, the poor interaction strength, and the limited similarity on gene ontology (GO) terms and biological pathways. As a result, 36 candidate genes were discovered by the method which was different from the 35 genes reported in our previous study. A literature review showed that 21 of these 36 genes are supported by previous experiments. These findings suggest the robustness and complementary effects of both our efforts using different computational methods, thus providing an alternative method to study PDR pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.
When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations
NASA Astrophysics Data System (ADS)
Hausdorff, Jeffrey M.; Ashkenazy, Yosef; Peng, Chang-K.; Ivanov, Plamen Ch.; Stanley, H. Eugene; Goldberger, Ary L.
2001-12-01
We present a random walk, fractal analysis of the stride-to-stride fluctuations in the human gait rhythm. The gait of healthy young adults is scale-free with long-range correlations extending over hundreds of strides. This fractal scaling changes characteristically with maturation in children and older adults and becomes almost completely uncorrelated with certain neurologic diseases. Stochastic modeling of the gait rhythm dynamics, based on transitions between different “neural centers”, reproduces distinctive statistical properties of the gait pattern. By tuning one model parameter, the hopping (transition) range, the model can describe alterations in gait dynamics from childhood to adulthood - including a decrease in the correlation and volatility exponents with maturation.
Random-walk approach to the d -dimensional disordered Lorentz gas
NASA Astrophysics Data System (ADS)
Adib, Artur B.
2008-02-01
A correlated random walk approach to diffusion is applied to the disordered nonoverlapping Lorentz gas. By invoking the Lu-Torquato theory for chord-length distributions in random media [J. Chem. Phys. 98, 6472 (1993)], an analytic expression for the diffusion constant in arbitrary number of dimensions d is obtained. The result corresponds to an Enskog-like correction to the Boltzmann prediction, being exact in the dilute limit, and better or nearly exact in comparison to renormalized kinetic theory predictions for all allowed densities in d=2,3 . Extensive numerical simulations were also performed to elucidate the role of the approximations involved.
Bragança, F M; Bosch, S; Voskamp, J P; Marin-Perianu, M; Van der Zwaag, B J; Vernooij, J C M; van Weeren, P R; Back, W
2017-07-01
Inertial measurement unit (IMU) sensor-based techniques are becoming more popular in horses as a tool for objective locomotor assessment. To describe, evaluate and validate a method of stride detection and quantification at walk and trot using distal limb mounted IMU sensors. Prospective validation study comparing IMU sensors and motion capture with force plate data. A total of seven Warmblood horses equipped with metacarpal/metatarsal IMU sensors and reflective markers for motion capture were hand walked and trotted over a force plate. Using four custom built algorithms hoof-on/hoof-off timing over the force plate were calculated for each trial from the IMU data. Accuracy of the computed parameters was calculated as the mean difference in milliseconds between the IMU or motion capture generated data and the data from the force plate, precision as the s.d. of these differences and percentage of error with accuracy of the calculated parameter as a percentage of the force plate stance duration. Accuracy, precision and percentage of error of the best performing IMU algorithm for stance duration at walk were 28.5, 31.6 ms and 3.7% for the forelimbs and -5.5, 20.1 ms and -0.8% for the hindlimbs, respectively. At trot the best performing algorithm achieved accuracy, precision and percentage of error of -27.6/8.8 ms/-8.4% for the forelimbs and 6.3/33.5 ms/9.1% for the hindlimbs. The described algorithms have not been assessed on different surfaces. Inertial measurement unit technology can be used to determine temporal kinematic stride variables at walk and trot justifying its use in gait and performance analysis. However, precision of the method may not be sufficient to detect all possible lameness-related changes. These data seem promising enough to warrant further research to evaluate whether this approach will be useful for appraising the majority of clinically relevant gait changes encountered in practice. © 2016 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.
Gu, Zhining; Guo, Wei; Li, Chaoyang; Zhu, Xinyan; Guo, Tao
2018-01-01
Pedestrian dead reckoning (PDR) positioning algorithms can be used to obtain a target’s location only for movement with step features and not for driving, for which the trilateral Bluetooth indoor positioning method can be used. In this study, to obtain the precise locations of different states (pedestrian/car) using the corresponding positioning algorithms, we propose an adaptive method for switching between the PDR and car indoor positioning algorithms based on multilayer time sequences (MTSs). MTSs, which consider the behavior context, comprise two main aspects: filtering of noisy data in small-scale time sequences and using a state chain to reduce the time delay of algorithm switching in large-scale time sequences. The proposed method can be expected to realize the recognition of stationary, walking, driving, or other states; switch to the correct indoor positioning algorithm; and improve the accuracy of localization compared to using a single positioning algorithm. Our experiments show that the recognition of static, walking, driving, and other states improves by 5.5%, 45.47%, 26.23%, and 21% on average, respectively, compared with convolutional neural network (CNN) method. The time delay decreases by approximately 0.5–8.5 s for the transition between states and by approximately 24 s for the entire process. PMID:29495503
NASA Astrophysics Data System (ADS)
Meirovitch, Hagai
1985-12-01
The scanning method proposed by us [J. Phys. A 15, L735 (1982); Macromolecules 18, 563 (1985)] for simulation of polymer chains is further developed and applied, for the first time, to a model with finite interactions. In addition to ``importance sampling,'' we remove the bias introduced by the scanning method with a procedure suggested recently by Schmidt [Phys. Rev. Lett. 51, 2175 (1983)]; this procedure has the advantage of enabling one to estimate the statistical error. We find these two procedures to be equally efficient. The model studied is an N-step random walk on a lattice, in which a random walk i has a statistical weight &, where p<1 is an attractive energy parameter and Mi is the number of distinct sites visited by walk i. This model, which corresponds to a model of random walks moving in a medium with randomly distributed static traps, has been solved analytically for N-->∞ for any dimension d by Donsker and Varadhan (DV) and by others.
Schauer, Michael; Mauritz, Karl-Heinz
2003-11-01
To demonstrate the effect of rhythmical auditory stimulation in a musical context for gait therapy in hemiparetic stroke patients, when the stimulation is played back measure by measure initiated by the patient's heel-strikes (musical motor feedback). Does this type of musical feedback improve walking more than a less specific gait therapy? The randomized controlled trial considered 23 registered stroke patients. Two groups were created by randomization: the control group received 15 sessions of conventional gait therapy and the test group received 15 therapy sessions with musical motor feedback. Inpatient rehabilitation hospital. Median post-stroke interval was 44 days and the patients were able to walk without technical aids with a speed of approximately 0.71 m/s. Gait velocity, step duration, gait symmetry, stride length and foot rollover path length (heel-on-toe-off distance). The test group showed more mean improvement than the control group: stride length increased by 18% versus 0%, symmetry deviation decreased by 58% versus 20%, walking speed increased by 27% versus 4% and rollover path length increased by 28% versus 11%. Musical motor feedback improves the stroke patient's walk in selected parameters more than conventional gait therapy. A fixed memory in the patient's mind about the song and its timing may stimulate the improvement of gait even without the presence of an external pacemaker.
Taveggia, Giovanni; Borboni, Alberto; Mulé, Chiara; Negrini, Stefano
2016-01-01
Robot gait training has the potential to increase the effectiveness of walking therapy. Clinical outcomes after robotic training are often not superior to conventional therapy. We evaluated the effectiveness of a robot training compared with a usual gait training physiotherapy during a standardized rehabilitation protocol in inpatient participants with poststroke hemiparesis. This was a randomized double-blind clinical trial in a postacute physical and rehabilitation medicine hospital. Twenty-eight patients, 39.3% women (72±6 years), with hemiparesis (<6 months after stroke) receiving a conventional treatment according to the Bobath approach were assigned randomly to an experimental or a control intervention of robot gait training to improve walking (five sessions a week for 5 weeks). Outcome measures included the 6-min walk test, the 10 m walk test, Functional Independence Measure, SF-36 physical functioning and the Tinetti scale. Outcomes were collected at baseline, immediately following the intervention period and 3 months following the end of the intervention. The experimental group showed a significant increase in functional independence and gait speed (10 m walk test) at the end of the treatment and follow-up, higher than the minimal detectable change. The control group showed a significant increase in the gait endurance (6-min walk test) at the follow-up, higher than the minimal detectable change. Both treatments were effective in the improvement of gait performances, although the statistical analysis of functional independence showed a significant improvement in the experimental group, indicating possible advantages during generic activities of daily living compared with overground treatment. PMID:26512928
Xu, Qun; Guo, Feng; Salem, Hassan M Abo; Chen, Hong; Huang, Xiaolin
2017-12-01
To investigate the effectiveness of mirror therapy combined with neuromuscular electrical stimulation in promoting motor recovery of the lower limbs and walking ability in patients suffering from foot drop after stroke. Randomized controlled study. Inpatient rehabilitation center of a teaching hospital. Sixty-nine patients with foot drop. Patients were randomly divided into three groups: control, mirror therapy, and mirror therapy + neuromuscular electrical stimulation. All groups received interventions for 0.5 hours/day and five days/week for four weeks. 10-Meter walk test, Brunnstrom stage of motor recovery of the lower limbs, Modified Ashworth Scale score of plantar flexor spasticity, and passive ankle joint dorsiflexion range of motion were assessed before and after the four-week period. After four weeks of intervention, Brunnstrom stage ( P = 0.04), 10-meter walk test ( P < 0.05), and passive range of motion ( P < 0.05) showed obvious improvements between patients in the mirror therapy and control groups. Patients in the mirror therapy + neuromuscular electrical stimulation group showed better results than those in the mirror therapy group in the 10-meter walk test ( P < 0.05). There was no significant difference in spasticity between patients in the two intervention groups. However, compared with patients in the control group, patients in the mirror therapy + neuromuscular electrical stimulation group showed a significant decrease in spasticity ( P < 0.001). Therapy combining mirror therapy and neuromuscular electrical stimulation may help improve walking ability and reduce spasticity in stroke patients with foot drop.
A random walk model for evaluating clinical trials involving serial observations.
Hopper, J L; Young, G P
1988-05-01
For clinical trials where the variable of interest is ordered and categorical (for example, disease severity, symptom scale), and where measurements are taken at intervals, it might be possible to achieve a greater discrimination between the efficacy of treatments by modelling each patient's progress as a stochastic process. The random walk is a simple, easily interpreted model that can be fitted by maximum likelihood using a maximization routine with inference based on standard likelihood theory. In general the model can allow for randomly censored data, incorporates measured prognostic factors, and inference is conditional on the (possibly non-random) allocation of patients. Tests of fit and of model assumptions are proposed, and application to two therapeutic trials of gastroenterological disorders are presented. The model gave measures of the rate of, and variability in, improvement for patients under different treatments. A small simulation study suggested that the model is more powerful than considering the difference between initial and final scores, even when applied to data generated by a mechanism other than the random walk model assumed in the analysis. It thus provides a useful additional statistical method for evaluating clinical trials.
DePaul, Vincent G; Wishart, Laurie R; Richardson, Julie; Lee, Timothy D; Thabane, Lehana
2011-10-21
Although task-oriented training has been shown to improve walking outcomes after stroke, it is not yet clear whether one task-oriented approach is superior to another. The purpose of this study is to compare the effectiveness of the Motor Learning Walking Program (MLWP), a varied overground walking task program consistent with key motor learning principles, to body-weight-supported treadmill training (BWSTT) in community-dwelling, ambulatory, adults within 1 year of stroke. A parallel, randomized controlled trial with stratification by baseline gait speed will be conducted. Allocation will be controlled by a central randomization service and participants will be allocated to the two active intervention groups (1:1) using a permuted block randomization process. Seventy participants will be assigned to one of two 15-session training programs. In MLWP, one physiotherapist will supervise practice of various overground walking tasks. Instructions, feedback, and guidance will be provided in a manner that facilitates self-evaluation and problem solving. In BWSTT, training will emphasize repetition of the normal gait cycle while supported over a treadmill, assisted by up to three physiotherapists. Outcomes will be assessed by a blinded assessor at baseline, post-intervention and at 2-month follow-up. The primary outcome will be post-intervention comfortable gait speed. Secondary outcomes include fast gait speed, walking endurance, balance self-efficacy, participation in community mobility, health-related quality of life, and goal attainment. Groups will be compared using analysis of covariance with baseline gait speed strata as the single covariate. Intention-to-treat analysis will be used. In order to direct clinicians, patients, and other health decision-makers, there is a need for a head-to-head comparison of different approaches to active, task-related walking training after stroke. We hypothesize that outcomes will be optimized through the application of a task-related training program that is consistent with key motor learning principles related to practice, guidance and feedback. ClinicalTrials.gov # NCT00561405.
2011-01-01
Background Although task-oriented training has been shown to improve walking outcomes after stroke, it is not yet clear whether one task-oriented approach is superior to another. The purpose of this study is to compare the effectiveness of the Motor Learning Walking Program (MLWP), a varied overground walking task program consistent with key motor learning principles, to body-weight-supported treadmill training (BWSTT) in community-dwelling, ambulatory, adults within 1 year of stroke. Methods/Design A parallel, randomized controlled trial with stratification by baseline gait speed will be conducted. Allocation will be controlled by a central randomization service and participants will be allocated to the two active intervention groups (1:1) using a permuted block randomization process. Seventy participants will be assigned to one of two 15-session training programs. In MLWP, one physiotherapist will supervise practice of various overground walking tasks. Instructions, feedback, and guidance will be provided in a manner that facilitates self-evaluation and problem solving. In BWSTT, training will emphasize repetition of the normal gait cycle while supported over a treadmill, assisted by up to three physiotherapists. Outcomes will be assessed by a blinded assessor at baseline, post-intervention and at 2-month follow-up. The primary outcome will be post-intervention comfortable gait speed. Secondary outcomes include fast gait speed, walking endurance, balance self-efficacy, participation in community mobility, health-related quality of life, and goal attainment. Groups will be compared using analysis of covariance with baseline gait speed strata as the single covariate. Intention-to-treat analysis will be used. Discussion In order to direct clinicians, patients, and other health decision-makers, there is a need for a head-to-head comparison of different approaches to active, task-related walking training after stroke. We hypothesize that outcomes will be optimized through the application of a task-related training program that is consistent with key motor learning principles related to practice, guidance and feedback. Trial Registration ClinicalTrials.gov # NCT00561405 PMID:22018267
Banck-Petersen, Anna; Olsen, Cecilie K; Djurhuus, Sissal S; Herrstedt, Anita; Thorsen-Streit, Sarah; Ried-Larsen, Mathias; Østerlind, Kell; Osterkamp, Jens; Krarup, Peter-Martin; Vistisen, Kirsten; Mosgaard, Camilla S; Pedersen, Bente K; Højman, Pernille; Christensen, Jesper F
2018-03-01
Low physical activity level is associated with poor prognosis in patients with colorectal cancer (CRC). To increase physical activity, technology-based platforms are emerging and provide intriguing opportunities to prescribe and monitor active lifestyle interventions. The "Interval Walking in Colorectal Cancer"(I-WALK-CRC) study explores the feasibility and efficacy a home-based interval-walking intervention delivered by a smart-phone application in order to improve cardio-metabolic health profile among CRC survivors. The aim of the present report is to describe the design, methods and recruitment results of the I-WALK-CRC study.Methods/Results: The I-WALK-CRC study is a randomized controlled trial designed to evaluate the feasibility and efficacy of a home-based interval walking intervention compared to a waiting-list control group for physiological and patient-reported outcomes. Patients who had completed surgery for local stage disease and patients who had completed surgery and any adjuvant chemotherapy for locally advanced stage disease were eligible for inclusion. Between October 1st , 2015, and February 1st , 2017, 136 inquiries were recorded; 83 patients were eligible for enrollment, and 42 patients accepted participation. Age and employment status were associated with participation, as participants were significantly younger (60.5 vs 70.8 years, P < 0.001) and more likely to be working (OR 5.04; 95%CI 1.96-12.98, P < 0.001) than non-participants. In the present study, recruitment of CRC survivors was feasible but we aim to better the recruitment rate in future studies. Further, the study clearly favored younger participants. The I-WALK-CRC study will provide important information regarding feasibility and efficacy of a home-based walking exercise program in CRC survivors.
Jaywant, Abhishek; Ellis, Terry D; Roy, Serge; Lin, Cheng-Chieh; Neargarder, Sandy; Cronin-Golomb, Alice
2016-05-01
To examine the feasibility and efficacy of a home-based gait observation intervention for improving walking in Parkinson disease (PD). Participants were randomly assigned to an intervention or control condition. A baseline walking assessment, a training period at home, and a posttraining assessment were conducted. The laboratory and participants' home and community environments. Nondemented individuals with PD (N=23) experiencing walking difficulty. In the gait observation (intervention) condition, participants viewed videos of healthy and parkinsonian gait. In the landscape observation (control) condition, participants viewed videos of moving water. These tasks were completed daily for 8 days. Spatiotemporal walking variables were assessed using accelerometers in the laboratory (baseline and posttraining assessments) and continuously at home during the training period. Variables included daily activity, walking speed, stride length, stride frequency, leg swing time, and gait asymmetry. Questionnaires including the 39-item Parkinson Disease Questionnaire (PDQ-39) were administered to determine self-reported change in walking, as well as feasibility. At posttraining assessment, only the gait observation group reported significantly improved mobility (PDQ-39). No improvements were seen in accelerometer-derived walking data. Participants found the at-home training tasks and accelerometer feasible to use. Participants found procedures feasible and reported improved mobility, suggesting that observational training holds promise in the rehabilitation of walking in PD. Observational training alone, however, may not be sufficient to enhance walking in PD. A more challenging and adaptive task, and the use of explicit perceptual learning and practice of actions, may be required to effect change. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Fields, Jo; Richardson, Alison; Hopkinson, Jane; Fenlon, Deborah
2016-10-01
Women taking aromatase inhibitors as treatment for breast cancer commonly experience joint pain and stiffness (aromatase inhibitor-associated arthralgia [AIAA]), which can cause problems with adherence. There is evidence that exercise might be helpful, and Nordic walking could reduce joint pain compared to normal walking. To determine the feasibility of a trial of Nordic walking as an exercise intervention for women with AIAA. A feasibility study was carried out in a sample of women with AIAA using a randomized control design. Women were randomized to exercise (six-week supervised group Nordic walking training once per week with an increasing independent element, followed by six weeks 4 × 30 minutes/week independent Nordic walking); or enhanced usual care. Data were collected on recruitment, retention, exercise adherence, safety, and acceptability. The Brief Pain Inventory, GP Physical Activity Questionnaire, and biopsychosocial measures were completed at baseline, six and 12 weeks. Forty of 159 eligible women were recruited and attrition was 10%. There was no increased lymphedema and no long-term or serious injury. Adherence was >90% for weekly supervised group Nordic walking, and during independent Nordic walking, >80% women managed one to two Nordic walking sessions per week. From baseline to study end point, overall activity levels increased and pain reduced in both the intervention and control groups. Our findings indicate that women with AIAA are prepared to take up Nordic walking, complete a six-week supervised course and maintain increased activity levels over a 12-week period with no adverse effects. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Cheng, Fang-Yu; Yang, Yea-Ru; Wu, Yih-Ru; Cheng, Shih-Jung; Wang, Ray-Yau
2017-10-01
The purpose of this study was to investigate the effects of curved-walking training (CWT) on curved-walking performance and freezing of gait (FOG) in people with Parkinson's disease (PD). Twenty-four PD subjects were recruited and randomly assigned to the CWT group or control exercise (CE) group and received 12 sessions of either CWT with a turning-based treadmill or general exercise training for 30 min followed by 10 min of over-ground walking in each session for 4-6 weeks. The primary outcomes included curved-walking performance and FOG. All measurements were assessed at baseline, after training, and at 1-month follow-up. Our results showed significant improvements in curved-walking performance (speed, p = 0.007; cadence, p = 0.003; step length, p < 0.001) and FOG, measured by a FOG questionnaire (p = 0.004). The secondary outcomes including straight-walking performance (speed, cadence and step length, p < 0.001), timed up and go test (p = 0.014), functional gait assessment (p < 0.001), Unified Parkinson's disease Rating Scale III (p = 0.001), and quality of life (p < 0.001) were also improved in the experimental group. We further noted that the improvements were maintained for at least one month after training (p < 0.05). A 12-session CWT program can improve curved-walking ability, FOG, and other measures of functional walking performance in individuals with PD. Most of the improvements were sustained for at least one month after training. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mandrà, Salvatore; Giacomo Guerreschi, Gian; Aspuru-Guzik, Alán
2016-07-01
We present an exact quantum algorithm for solving the Exact Satisfiability problem, which belongs to the important NP-complete complexity class. The algorithm is based on an intuitive approach that can be divided into two parts: the first step consists in the identification and efficient characterization of a restricted subspace that contains all the valid assignments of the Exact Satisfiability; while the second part performs a quantum search in such restricted subspace. The quantum algorithm can be used either to find a valid assignment (or to certify that no solution exists) or to count the total number of valid assignments. The query complexities for the worst-case are respectively bounded by O(\\sqrt{{2}n-{M\\prime }}) and O({2}n-{M\\prime }), where n is the number of variables and {M}\\prime the number of linearly independent clauses. Remarkably, the proposed quantum algorithm results to be faster than any known exact classical algorithm to solve dense formulas of Exact Satisfiability. As a concrete application, we provide the worst-case complexity for the Hamiltonian cycle problem obtained after mapping it to a suitable Occupation problem. Specifically, we show that the time complexity for the proposed quantum algorithm is bounded by O({2}n/4) for 3-regular undirected graphs, where n is the number of nodes. The same worst-case complexity holds for (3,3)-regular bipartite graphs. As a reference, the current best classical algorithm has a (worst-case) running time bounded by O({2}31n/96). Finally, when compared to heuristic techniques for Exact Satisfiability problems, the proposed quantum algorithm is faster than the classical WalkSAT and Adiabatic Quantum Optimization for random instances with a density of constraints close to the satisfiability threshold, the regime in which instances are typically the hardest to solve. The proposed quantum algorithm can be straightforwardly extended to the generalized version of the Exact Satisfiability known as Occupation problem. The general version of the algorithm is presented and analyzed.
Pantoni, Camila Bianca Falasco; Di Thommazo-Luporini, Luciana; Mendes, Renata Gonçalves; Caruso, Flávia Cristina Rossi; Mezzalira, Daniel; Arena, Ross; Amaral-Neto, Othon; Catai, Aparecida Maria; Borghi-Silva, Audrey
2016-01-01
Continuous positive airway pressure (CPAP) has been used as an effective support to decrease the negative pulmonary effects of coronary artery bypass graft (CABG) surgery. However, it is unknown whether CPAP can positively influence patients undergoing CABG during exercise. This study evaluated the effectiveness of CPAP on the first day of ambulation after CABG in patients undergoing inpatient cardiac rehabilitation (CR). Fifty-four patients after CABG surgery were randomly assigned to receive either inpatient CR and CPAP (CPG) or standard CR without CPAP (CG). Cardiac rehabilitation included walking and CPAP pressures were set between 10 to 12 cmH2O. Participants were assessed on the first day of walking at rest and during walking. Outcome measures included breathing pattern variables, exercise time in seconds (ETs), dyspnea/leg effort ratings, and peripheral oxygen saturation (SpO2). Twenty-seven patients (13 CPG vs 14 CG) completed the study. Compared with walking without noninvasive ventilation assistance, CPAP increased ETs by 43.4 seconds (P = .040) during walking, promoted better thoracoabdominal coordination, increased ventilation during walking by 12.5 L/min (P = .001), increased SpO2 values at the end of walking by 2.6% (P = .016), and reduced dyspnea ratings by 1 point (P = .008). Continuous positive airway pressure can positively influence exercise tolerance, ventilatory function, and breathing pattern in response to a single bout of exercise after CABG.
Yang, Yong; Diez-Roux, Ana V
2017-09-01
Studies on how the interaction of psychological and environmental characteristics influences walking are limited, and the results are inconsistent. Our aim is to examine how the attitude toward walking and neighborhood environments interacts to influence walking. Cross-sectional phone and mail survey. Participants randomly sampled from 6 study sites including Los Angeles, Chicago, Baltimore, Minneapolis, Manhattan, and Bronx Counties in New York City, and Forsyth and Davidson Counties in North Carolina. The final sample consisted of 2621 persons from 2011 to 2012. Total minutes of walking for travel or leisure, attitude toward walking, and perceptions of the neighborhood environments were self-reported. Street Smart (SS) Walk Score (a measure of walkability derived from a variety of geographic data) was obtained for each residential location. Linear regression models adjusting for age, gender, race/ethnicity, education, and income. Attitude toward walking was positively associated with walking for both purposes. Walking for travel was significantly associated with SS Walk Score, whereas walking for leisure was not. The SS Walk Score and selected perceived environment characteristics were associated with walking in people with a very positive attitude toward walking but were not associated with walking in people with a less positive attitude. Attitudes toward walking and neighborhood environments interact to affect walking behavior.
Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D
2015-01-01
About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive-physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (-77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). Long-term multicomponent cognitive-physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning.
Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D
2015-01-01
Background About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive–physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Methods Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Results Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (−77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). Conclusion Long-term multicomponent cognitive–physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning. PMID:26604719
Continuous-time random walks with reset events. Historical background and new perspectives
NASA Astrophysics Data System (ADS)
Montero, Miquel; Masó-Puigdellosas, Axel; Villarroel, Javier
2017-09-01
In this paper, we consider a stochastic process that may experience random reset events which relocate the system to its starting position. We focus our attention on a one-dimensional, monotonic continuous-time random walk with a constant drift: the process moves in a fixed direction between the reset events, either by the effect of the random jumps, or by the action of a deterministic bias. However, the orientation of its motion is randomly determined after each restart. As a result of these alternating dynamics, interesting properties do emerge. General formulas for the propagator as well as for two extreme statistics, the survival probability and the mean first-passage time, are also derived. The rigor of these analytical results is verified by numerical estimations, for particular but illuminating examples.
Continuous-time random-walk model for financial distributions
NASA Astrophysics Data System (ADS)
Masoliver, Jaume; Montero, Miquel; Weiss, George H.
2003-02-01
We apply the formalism of the continuous-time random walk to the study of financial data. The entire distribution of prices can be obtained once two auxiliary densities are known. These are the probability densities for the pausing time between successive jumps and the corresponding probability density for the magnitude of a jump. We have applied the formalism to data on the U.S. dollar deutsche mark future exchange, finding good agreement between theory and the observed data.
Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing
2010-03-01
because only certain collections (partitioned by font type) of sequences are allowed to be in each position (e.g., Arial = position 0, Comic ...rigidity of short oligos and the shape of the polar charge. Oligo movement was modeled by a Brownian motion 3 dimensional random walk. The one...temperature, kB is Boltz he viscosity of the medium. The random walk motion is modeled by assuming the oligo is on a three dimensional lattice and may
NASA Technical Reports Server (NTRS)
Englert, G. W.
1971-01-01
A model of the random walk is formulated to allow a simple computing procedure to replace the difficult problem of solution of the Fokker-Planck equation. The step sizes and probabilities of taking steps in the various directions are expressed in terms of Fokker-Planck coefficients. Application is made to many particle systems with Coulomb interactions. The relaxation of a highly peaked velocity distribution of particles to equilibrium conditions is illustrated.
Ant-inspired density estimation via random walks
Musco, Cameron; Su, Hsin-Hao
2017-01-01
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks. PMID:28928146
Noise in two-color electronic distance meter measurements revisited
Langbein, J.
2004-01-01
Frequent, high-precision geodetic data have temporally correlated errors. Temporal correlations directly affect both the estimate of rate and its standard error; the rate of deformation is a key product from geodetic measurements made in tectonically active areas. Various models of temporally correlated errors are developed and these provide relations between the power spectral density and the data covariance matrix. These relations are applied to two-color electronic distance meter (EDM) measurements made frequently in California over the past 15-20 years. Previous analysis indicated that these data have significant random walk error. Analysis using the noise models developed here indicates that the random walk model is valid for about 30% of the data. A second 30% of the data can be better modeled with power law noise with a spectral index between 1 and 2, while another 30% of the data can be modeled with a combination of band-pass-filtered plus random walk noise. The remaining 10% of the data can be best modeled as a combination of band-pass-filtered plus power law noise. This band-pass-filtered noise is a product of an annual cycle that leaks into adjacent frequency bands. For time spans of more than 1 year these more complex noise models indicate that the precision in rate estimates is better than that inferred by just the simpler, random walk model of noise.
Central limit theorem for recurrent random walks on a strip with bounded potential
NASA Astrophysics Data System (ADS)
Dolgopyat, D.; Goldsheid, I.
2018-07-01
We prove that the recurrent random walk (RW) in random environment (RE) on a strip in bounded potential satisfies the central limit theorem (CLT). The key ingredients of the proof are the analysis of the invariant measure equation and construction of a linearly growing martingale for walks in bounded potential. Our main result implies a complete classification of recurrent i.i.d. RWRE on the strip. Namely the walk either exhibits the Sinai behaviour in the sense that converges, as , to a (random) limit (the Sinai law) or, it satisfies the CLT. Another application of our main result is the CLT for the quasiperiodic environments with Diophantine frequencies in the recurrent case. We complement this result by proving that in the transient case the CLT holds for all uniquely ergodic environments. We also investigate the algebraic structure of the environments satisfying the CLT. In particular, we show that there exists a collection of proper algebraic subvarieties in the space of transition probabilities, such that: • If RE is stationary and ergodic and the transition probabilities are con-centrated on one of subvarieties from our collection then the CLT holds. • If the environment is i.i.d then the above condition is also necessary forthe CLT. All these results are valid for one-dimensional RWRE with bounded jumps as a particular case of the strip model.
Distributed clone detection in static wireless sensor networks: random walk with network division.
Khan, Wazir Zada; Aalsalem, Mohammed Y; Saad, N M
2015-01-01
Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.
Is walking a random walk? Evidence for long-range correlations in stride interval of human gait
NASA Technical Reports Server (NTRS)
Hausdorff, Jeffrey M.; Peng, C.-K.; Ladin, Zvi; Wei, Jeanne Y.; Goldberger, Ary L.
1995-01-01
Complex fluctuation of unknown origin appear in the normal gait pattern. These fluctuations might be described as being (1) uncorrelated white noise, (2) short-range correlations, or (3) long-range correlations with power-law scaling. To test these possibilities, the stride interval of 10 healthy young men was measured as they walked for 9 min at their usual rate. From these time series we calculated scaling indexes by using a modified random walk analysis and power spectral analysis. Both indexes indicated the presence of long-range self-similar correlations extending over hundreds of steps; the stride interval at any time depended on the stride interval at remote previous times, and this dependence decayed in a scale-free (fractallike) power-law fashion. These scaling indexes were significantly different from those obtained after random shuffling of the original time series, indicating the importance of the sequential ordering of the stride interval. We demonstrate that conventional models of gait generation fail to reproduce the observed scaling behavior and introduce a new type of central pattern generator model that sucessfully accounts for the experimentally observed long-range correlations.
Thøgersen-Ntoumani, C; Loughren, E A; Kinnafick, F-E; Taylor, I M; Duda, J L; Fox, K R
2015-12-01
Physical activity may regulate affective experiences at work, but controlled studies are needed and there has been a reliance on retrospective accounts of experience. The purpose of the present study was to examine the effect of lunchtime walks on momentary work affect at the individual and group levels. Physically inactive employees (N = 56; M age = 47.68; 92.86% female) from a large university in the UK were randomized to immediate treatment or delayed treatment (DT). The DT participants completed both a control and intervention period. During the intervention period, participants partook in three weekly 30-min lunchtime group-led walks for 10 weeks. They completed twice daily affective reports at work (morning and afternoon) using mobile phones on two randomly chosen days per week. Multilevel modeling was used to analyze the data. Lunchtime walks improved enthusiasm, relaxation, and nervousness at work, although the pattern of results differed depending on whether between-group or within-person analyses were conducted. The intervention was effective in changing some affective states and may have broader implications for public health and workplace performance. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Locator-Checker-Scaler Object Tracking Using Spatially Ordered and Weighted Patch Descriptor.
Kim, Han-Ul; Kim, Chang-Su
2017-08-01
In this paper, we propose a simple yet effective object descriptor and a novel tracking algorithm to track a target object accurately. For the object description, we divide the bounding box of a target object into multiple patches and describe them with color and gradient histograms. Then, we determine the foreground weight of each patch to alleviate the impacts of background information in the bounding box. To this end, we perform random walk with restart (RWR) simulation. We then concatenate the weighted patch descriptors to yield the spatially ordered and weighted patch (SOWP) descriptor. For the object tracking, we incorporate the proposed SOWP descriptor into a novel tracking algorithm, which has three components: locator, checker, and scaler (LCS). The locator and the scaler estimate the center location and the size of a target, respectively. The checker determines whether it is safe to adjust the target scale in a current frame. These three components cooperate with one another to achieve robust tracking. Experimental results demonstrate that the proposed LCS tracker achieves excellent performance on recent benchmarks.
Wang, Lichun; Cardenas, M Bayani
2015-08-01
The quantitative study of transport through fractured media has continued for many decades, but has often been constrained by observational and computational challenges. Here, we developed an efficient quasi-3D random walk particle tracking (RWPT) algorithm to simulate solute transport through natural fractures based on a 2D flow field generated from the modified local cubic law (MLCL). As a reference, we also modeled the actual breakthrough curves (BTCs) through direct simulations with the 3D advection-diffusion equation (ADE) and Navier-Stokes equations. The RWPT algorithm along with the MLCL accurately reproduced the actual BTCs calculated with the 3D ADE. The BTCs exhibited non-Fickian behavior, including early arrival and long tails. Using the spatial information of particle trajectories, we further analyzed the dynamic dispersion process through moment analysis. From this, asymptotic time scales were determined for solute dispersion to distinguish non-Fickian from Fickian regimes. This analysis illustrates the advantage and benefit of using an efficient combination of flow modeling and RWPT. Copyright © 2015 Elsevier B.V. All rights reserved.
Quantum walk on a chimera graph
NASA Astrophysics Data System (ADS)
Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.
2018-05-01
We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.
Low-contrast lesion detection in tomosynthetic breast imaging using a realistic breast phantom
NASA Astrophysics Data System (ADS)
Zhou, Lili; Oldan, Jorge; Fisher, Paul; Gindi, Gene
2006-03-01
Tomosynthesis mammography is a potentially valuable technique for detection of breast cancer. In this simulation study, we investigate the efficacy of three different tomographic reconstruction methods, EM, SART and Backprojection, in the context of an especially difficult mammographic detection task. The task is the detection of a very low-contrast mass embedded in very dense fibro-glandular tissue - a clinically useful task for which tomosynthesis may be well suited. The project uses an anatomically realistic 3D digital breast phantom whose normal anatomic variability limits lesion conspicuity. In order to capture anatomical object variability, we generate an ensemble of phantoms, each of which comprises random instances of various breast structures. We construct medium-sized 3D breast phantoms which model random instances of ductal structures, fibrous connective tissue, Cooper's ligaments and power law structural noise for small scale object variability. Random instances of 7-8 mm irregular masses are generated by a 3D random walk algorithm and placed in very dense fibro-glandular tissue. Several other components of the breast phantom are held fixed, i.e. not randomly generated. These include the fixed breast shape and size, nipple structure, fixed lesion location, and a pectoralis muscle. We collect low-dose data using an isocentric tomosynthetic geometry at 11 angles over 50 degrees and add Poisson noise. The data is reconstructed using the three algorithms. Reconstructed slices through the center of the lesion are presented to human observers in a 2AFC (two-alternative-forced-choice) test that measures detectability by computing AUC (area under the ROC curve). The data collected in each simulation includes two sources of variability, that due to the anatomical variability of the phantom and that due to the Poisson data noise. We found that for this difficult task that the AUC value for EM (0.89) was greater than that for SART (0.83) and Backprojection (0.66).
Non-linear continuous time random walk models★
NASA Astrophysics Data System (ADS)
Stage, Helena; Fedotov, Sergei
2017-11-01
A standard assumption of continuous time random walk (CTRW) processes is that there are no interactions between the random walkers, such that we obtain the celebrated linear fractional equation either for the probability density function of the walker at a certain position and time, or the mean number of walkers. The question arises how one can extend this equation to the non-linear case, where the random walkers interact. The aim of this work is to take into account this interaction under a mean-field approximation where the statistical properties of the random walker depend on the mean number of walkers. The implementation of these non-linear effects within the CTRW integral equations or fractional equations poses difficulties, leading to the alternative methodology we present in this work. We are concerned with non-linear effects which may either inhibit anomalous effects or induce them where they otherwise would not arise. Inhibition of these effects corresponds to a decrease in the waiting times of the random walkers, be this due to overcrowding, competition between walkers or an inherent carrying capacity of the system. Conversely, induced anomalous effects present longer waiting times and are consistent with symbiotic, collaborative or social walkers, or indirect pinpointing of favourable regions by their attractiveness. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Boyne, Pierce; Welge, Jeffrey; Kissela, Brett; Dunning, Kari
2017-03-01
To assess the influence of dosing parameters and patient characteristics on the efficacy of aerobic exercise (AEX) poststroke. A systematic review was conducted using PubMed, MEDLINE, Cumulative Index of Nursing and Allied Health Literature, Physiotherapy Evidence Database, and Academic Search Complete. Studies were selected that compared an AEX group with a nonaerobic control group among ambulatory persons with stroke. Extracted outcome data included peak oxygen consumption (V˙o 2 peak) during exercise testing, walking speed, and walking endurance (6-min walk test). Independent variables of interest were AEX mode (seated or walking), AEX intensity (moderate or vigorous), AEX volume (total hours), stroke chronicity, and baseline outcome scores. Significant between-study heterogeneity was confirmed for all outcomes. Pooled AEX effect size estimates (AEX group change minus control group change) from random effects models were V˙o 2 peak, 2.2mL⋅kg -1 ⋅min -1 (95% confidence interval [CI], 1.3-3.1mL⋅kg -1 ⋅min -1 ); walking speed, .06m/s (95% CI, .01-.11m/s); and 6-minute walk test distance, 29m (95% CI, 15-42m). In meta-regression, larger V˙o 2 peak effect sizes were significantly associated with higher AEX intensity and higher baseline V˙o 2 peak. Larger effect sizes for walking speed and the 6-minute walk test were significantly associated with a walking AEX mode. In contrast, seated AEX did not have a significant effect on walking outcomes. AEX significantly improves aerobic capacity poststroke, but may need to be task specific to affect walking speed and endurance. Higher AEX intensity is associated with better outcomes. Future randomized studies are needed to confirm these results. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Inferring Lévy walks from curved trajectories: A rescaling method
NASA Astrophysics Data System (ADS)
Tromer, R. M.; Barbosa, M. B.; Bartumeus, F.; Catalan, J.; da Luz, M. G. E.; Raposo, E. P.; Viswanathan, G. M.
2015-08-01
An important problem in the study of anomalous diffusion and transport concerns the proper analysis of trajectory data. The analysis and inference of Lévy walk patterns from empirical or simulated trajectories of particles in two and three-dimensional spaces (2D and 3D) is much more difficult than in 1D because path curvature is nonexistent in 1D but quite common in higher dimensions. Recently, a new method for detecting Lévy walks, which considers 1D projections of 2D or 3D trajectory data, has been proposed by Humphries et al. The key new idea is to exploit the fact that the 1D projection of a high-dimensional Lévy walk is itself a Lévy walk. Here, we ask whether or not this projection method is powerful enough to cleanly distinguish 2D Lévy walk with added curvature from a simple Markovian correlated random walk. We study the especially challenging case in which both 2D walks have exactly identical probability density functions (pdf) of step sizes as well as of turning angles between successive steps. Our approach extends the original projection method by introducing a rescaling of the projected data. Upon projection and coarse-graining, the renormalized pdf for the travel distances between successive turnings is seen to possess a fat tail when there is an underlying Lévy process. We exploit this effect to infer a Lévy walk process in the original high-dimensional curved trajectory. In contrast, no fat tail appears when a (Markovian) correlated random walk is analyzed in this way. We show that this procedure works extremely well in clearly identifying a Lévy walk even when there is noise from curvature. The present protocol may be useful in realistic contexts involving ongoing debates on the presence (or not) of Lévy walks related to animal movement on land (2D) and in air and oceans (3D).
Effects of walking speed and age on the muscle forces of unimpaired gait subjects
NASA Astrophysics Data System (ADS)
Fliger, Carlos G.; Crespo, Marcos J.; Braidot, Ariel A.; Ravera, Emiliano P.
2016-04-01
Clinical gait analysis provides great contributions to the understanding of gait disorders and also provides a mean for a more comprehensive treatment plan. However, direct measures of muscle forces are difficult to obtain in clinical settings because it generally requires invasive techniques. Techniques of musculoskeletal modeling have been used for several decades to improve the benefits of clinical gait analysis, but many of the previous studies were focused on analyzing separately the muscle forces distribution of children or adult subjects with only one condition of walking speed. For these reason, the present study aims to enhance the current literature by describing the age and speed gait effects on muscle forces during walking. We used a musculoskeletal model with 23 degrees of freedom and 92 musculotendon actuators to represent 76 muscles in the lower extremities and torso. The computed muscle control algorithm was used to estimate the muscle forces from the kinematics and to adjust the model obtained in the residual reduction algorithm. We find that hamstrings has an important peak in the mid-stance phase in the adult group but this peak disappears in the children group with the same walking speed condition. Furthermore, the rectus femoris presents an increase in the muscle force during the pre- and mid-swing in concordance with the increment in the walking speed of subjects. This behavior could be associated with the role that the rectus femoris has in the acceleration of the knee joint. Finally, we show that the soleus is the muscle that perform the major force throughout the gait cycle regardless of age and walking speed.
Pilot study of a dog walking randomized intervention: effects of a focus on canine exercise.
Rhodes, Ryan E; Murray, Holly; Temple, Viviene A; Tuokko, Holly; Higgins, Joan Wharf
2012-05-01
The promotion of dog walking among owners who do not walk their dogs regularly may be a viable physical activity intervention aperture, yet research is very limited and no intervention studies have employed control groups. Therefore, the purpose of this pilot study was to examine the viability of dog walking for physical activity intervention using messages targeting canine exercise. Inactive dog owners (n=58) were randomized to either a standard control condition or the intervention (persuasive material about canine health from walking and a calendar to mark walks) after completing a baseline questionnaire package and wearing a pedometer for one week. Participants (standard condition n=28; intervention condition n=30) completed the six and 12 week follow-up questionnaire packages. Intention to treat analyses showed that both groups increased physical activity significantly across the 12 weeks (η(2)=0.09 to 0.21). The intervention group resulted in significantly higher step-counts compared to the control group (Δ 1823 steps) and showed significantly higher trajectories from baseline to 12 weeks in the self-reported physical activity measures (η(2)=0.11 to 0.27). The results are promising for the viability of increasing dog walking as a means for physical activity promotion and suggest that theoretical fidelity targeting canine exercise may be a helpful approach. Copyright © 2012 Elsevier Inc. All rights reserved.
Quantifying the dose-response of walking in reducing coronary heart disease risk: meta-analysis.
Zheng, Henry; Orsini, Nicola; Amin, Janaki; Wolk, Alicja; Nguyen, Van Thi Thuy; Ehrlich, Fred
2009-01-01
The evidence for the efficacy of walking in reducing the risk of and preventing coronary heart disease (CHD) is not completely understood. This meta-analysis aimed to quantify the dose-response relationship between walking and CHD risk reduction for both men and women in the general population. Studies on walking and CHD primary prevention between 1954 and 2007 were identified through Medline, SportDiscus and the Cochrane Database of Systematic Reviews. Random-effect meta-regression models were used to pool the relative risks from individual studies. A total of 11 prospective cohort studies and one randomized control trial study met the inclusion criteria, with 295,177 participants free of CHD at baseline and 7,094 cases at follow-up. The meta-analysis indicated that an increment of approximately 30 min of normal walking a day for 5 days a week was associated with 19% CHD risk reduction (95% CI = 14-23%; P-heterogeneity = 0.56; I (2) = 0%). We found no evidence of heterogeneity between subgroups of studies defined by gender (P = 0.67); age of the study population (P = 0.52); or follow-up duration (P = 0.77). The meta-analysis showed that the risk for developing CHD decreases as walking dose increases. Walking should be prescribed as an evidence-based effective exercise modality for CHD prevention in the general population.
Unbiased Sampling of Globular Lattice Proteins in Three Dimensions
NASA Astrophysics Data System (ADS)
Jacobsen, Jesper Lykke
2008-03-01
We present a Monte Carlo method that allows efficient and unbiased sampling of Hamiltonian walks on a cubic lattice. Such walks are self-avoiding and visit each lattice site exactly once. They are often used as simple models of globular proteins, upon adding suitable local interactions. Our algorithm can easily be equipped with such interactions, but we study here mainly the flexible homopolymer case where each conformation is generated with uniform probability. We argue that the algorithm is ergodic and has dynamical exponent z=0. We then use it to study polymers of size up to 643=262144 monomers. Results are presented for the effective interaction between end points, and the interaction with the boundaries of the system.
Rapid equilibrium sampling initiated from nonequilibrium data.
Huang, Xuhui; Bowman, Gregory R; Bacallado, Sergio; Pande, Vijay S
2009-11-24
Simulating the conformational dynamics of biomolecules is extremely difficult due to the rugged nature of their free energy landscapes and multiple long-lived, or metastable, states. Generalized ensemble (GE) algorithms, which have become popular in recent years, attempt to facilitate crossing between states at low temperatures by inducing a random walk in temperature space. Enthalpic barriers may be crossed more easily at high temperatures; however, entropic barriers will become more significant. This poses a problem because the dominant barriers to conformational change are entropic for many biological systems, such as the short RNA hairpin studied here. We present a new efficient algorithm for conformational sampling, called the adaptive seeding method (ASM), which uses nonequilibrium GE simulations to identify the metastable states, and seeds short simulations at constant temperature from each of them to quantitatively determine their equilibrium populations. Thus, the ASM takes advantage of the broad sampling possible with GE algorithms but generally crosses entropic barriers more efficiently during the seeding simulations at low temperature. We show that only local equilibrium is necessary for ASM, so very short seeding simulations may be used. Moreover, the ASM may be used to recover equilibrium properties from existing datasets that failed to converge, and is well suited to running on modern computer clusters.
node2vec: Scalable Feature Learning for Networks
Grover, Aditya; Leskovec, Jure
2016-01-01
Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node’s network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks. PMID:27853626