Reynolds, Andy M; Leprêtre, Lisa; Bohan, David A
2013-11-07
Correlated random walks are the dominant conceptual framework for modelling and interpreting organism movement patterns. Recent years have witnessed a stream of high profile publications reporting that many organisms perform Lévy walks; movement patterns that seemingly stand apart from the correlated random walk paradigm because they are discrete and scale-free rather than continuous and scale-finite. Our new study of the movement patterns of Tenebrio molitor beetles in unchanging, featureless arenas provides the first empirical support for a remarkable and deep theoretical synthesis that unites correlated random walks and Lévy walks. It demonstrates that the two models are complementary rather than competing descriptions of movement pattern data and shows that correlated random walks are a part of the Lévy walk family. It follows from this that vast numbers of Lévy walkers could be hiding in plain sight.
NASA Astrophysics Data System (ADS)
Weng, Tongfeng; Zhang, Jie; Small, Michael; Harandizadeh, Bahareh; Hui, Pan
2018-03-01
We propose a unified framework to evaluate and quantify the search time of multiple random searchers traversing independently and concurrently on complex networks. We find that the intriguing behaviors of multiple random searchers are governed by two basic principles—the logarithmic growth pattern and the harmonic law. Specifically, the logarithmic growth pattern characterizes how the search time increases with the number of targets, while the harmonic law explores how the search time of multiple random searchers varies relative to that needed by individual searchers. Numerical and theoretical results demonstrate these two universal principles established across a broad range of random search processes, including generic random walks, maximal entropy random walks, intermittent strategies, and persistent random walks. Our results reveal two fundamental principles governing the search time of multiple random searchers, which are expected to facilitate investigation of diverse dynamical processes like synchronization and spreading.
Reynolds, Andy M
2010-12-06
For many years, the dominant conceptual framework for describing non-oriented animal movement patterns has been the correlated random walk (CRW) model in which an individual's trajectory through space is represented by a sequence of distinct, independent randomly oriented 'moves'. It has long been recognized that the transformation of an animal's continuous movement path into a broken line is necessarily arbitrary and that probability distributions of move lengths and turning angles are model artefacts. Continuous-time analogues of CRWs that overcome this inherent shortcoming have appeared in the literature and are gaining prominence. In these models, velocities evolve as a Markovian process and have exponential autocorrelation. Integration of the velocity process gives the position process. Here, through a simple scaling argument and through an exact analytical analysis, it is shown that autocorrelation inevitably leads to Lévy walk (LW) movement patterns on timescales less than the autocorrelation timescale. This is significant because over recent years there has been an accumulation of evidence from a variety of experimental and theoretical studies that many organisms have movement patterns that can be approximated by LWs, and there is now intense debate about the relative merits of CRWs and LWs as representations of non-orientated animal movement patterns.
Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.
Potdar, Alka A; Jeon, Junhwan; Weaver, Alissa M; Quaranta, Vito; Cummings, Peter T
2010-03-10
Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells) that exist in multi-cellular organisms (humans) follow a bimodal correlated random walk (BCRW). Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases) each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation). Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.
Evidence of Levy walk foraging patterns in human hunter-gatherers.
Raichlen, David A; Wood, Brian M; Gordon, Adam D; Mabulla, Audax Z P; Marlowe, Frank W; Pontzer, Herman
2014-01-14
When searching for food, many organisms adopt a superdiffusive, scale-free movement pattern called a Lévy walk, which is considered optimal when foraging for heterogeneously located resources with little prior knowledge of distribution patterns [Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE (2011) The Physics of Foraging: An Introduction to Random Searches and Biological Encounters]. Although memory of food locations and higher cognition may limit the benefits of random walk strategies, no studies to date have fully explored search patterns in human foraging. Here, we show that human hunter-gatherers, the Hadza of northern Tanzania, perform Lévy walks in nearly one-half of all foraging bouts. Lévy walks occur when searching for a wide variety of foods from animal prey to underground tubers, suggesting that, even in the most cognitively complex forager on Earth, such patterns are essential to understanding elementary foraging mechanisms. This movement pattern may be fundamental to how humans experience and interact with the world across a wide range of ecological contexts, and it may be adaptive to food distribution patterns on the landscape, which previous studies suggested for organisms with more limited cognition. Additionally, Lévy walks may have become common early in our genus when hunting and gathering arose as a major foraging strategy, playing an important role in the evolution of human mobility.
NASA Astrophysics Data System (ADS)
Tan, Zhi-Jie; Zou, Xian-Wu; Huang, Sheng-You; Zhang, Wei; Jin, Zhun-Zhi
2002-07-01
We investigate the pattern of particle distribution and its evolution with time in multiparticle systems using the model of random walks with memory enhancement and decay. This model describes some biological intelligent walks. With decrease in the memory decay exponent α, the distribution of particles changes from a random dispersive pattern to a locally dense one, and then returns to the random one. Correspondingly, the fractal dimension Df,p characterizing the distribution of particle positions increases from a low value to a maximum and then decreases to the low one again. This is determined by the degree of overlap of regions consisting of sites with remanent information. The second moment of the density ρ(2) was introduced to investigate the inhomogeneity of the particle distribution. The dependence of ρ(2) on α is similar to that of Df,p on α. ρ(2) increases with time as a power law in the process of adjusting the particle distribution, and then ρ(2) tends to a stable equilibrium value.
A scaling law for random walks on networks
Perkins, Theodore J.; Foxall, Eric; Glass, Leon; Edwards, Roderick
2014-01-01
The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics. PMID:25311870
A scaling law for random walks on networks
NASA Astrophysics Data System (ADS)
Perkins, Theodore J.; Foxall, Eric; Glass, Leon; Edwards, Roderick
2014-10-01
The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics.
A scaling law for random walks on networks.
Perkins, Theodore J; Foxall, Eric; Glass, Leon; Edwards, Roderick
2014-10-14
The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics.
Individual analyses of Lévy walk in semi-free ranging Tonkean macaques (Macaca tonkeana).
Sueur, Cédric; Briard, Léa; Petit, Odile
2011-01-01
Animals adapt their movement patterns to their environment in order to maximize their efficiency when searching for food. The Lévy walk and the Brownian walk are two types of random movement found in different species. Studies have shown that these random movements can switch from a Brownian to a Lévy walk according to the size distribution of food patches. However no study to date has analysed how characteristics such as sex, age, dominance or body mass affect the movement patterns of an individual. In this study we used the maximum likelihood method to examine the nature of the distribution of step lengths and waiting times and assessed how these distributions are influenced by the age and the sex of group members in a semi free-ranging group of ten Tonkean macaques. Individuals highly differed in their activity budget and in their movement patterns. We found an effect of age and sex of individuals on the power distribution of their step lengths and of their waiting times. The males and old individuals displayed a higher proportion of longer trajectories than females and young ones. As regards waiting times, females and old individuals displayed higher rates of long stationary periods than males and young individuals. These movement patterns resembling random walks can probably be explained by the animals moving from one location to other known locations. The power distribution of step lengths might be due to a power distribution of food patches in the enclosure while the power distribution of waiting times might be due to the power distribution of the patch sizes.
Covering Ground: Movement Patterns and Random Walk Behavior in Aquilonastra anomala Sea Stars.
Lohmann, Amanda C; Evangelista, Dennis; Waldrop, Lindsay D; Mah, Christopher L; Hedrick, Tyson L
2016-10-01
The paths animals take while moving through their environments affect their likelihood of encountering food and other resources; thus, models of foraging behavior abound. To collect movement data appropriate for comparison with these models, we used time-lapse photography to track movements of a small, hardy, and easy-to-obtain organism, Aquilonastra anomala sea stars. We recorded the sea stars in a tank over many hours, with and without a food cue. With food present, they covered less distance, as predicted by theory; this strategy would allow them to remain near food. We then compared the paths of the sea stars to three common models of animal movement: Brownian motion, Lévy walks, and correlated random walks; we found that the sea stars' movements most closely resembled a correlated random walk. Additionally, we compared the search performance of models of Brownian motion, a Lévy walk, and a correlated random walk to that of a model based on the sea stars' movements. We found that the behavior of the modeled sea star walk was similar to that of the modeled correlated random walk and the Brownian motion model, but that the sea star walk was slightly more likely than the other walks to find targets at intermediate distances. While organisms are unlikely to follow an idealized random walk in all details, our data suggest that comparing the effectiveness of an organism's paths to those from theory can give insight into the organism's actual movement strategy. Finally, automated optical tracking of invertebrates proved feasible, and A. anomala was revealed to be a tractable, 2D-movement study system.
Hierarchical random walks in trace fossils and the origin of optimal search behavior
Sims, David W.; Reynolds, Andrew M.; Humphries, Nicolas E.; Southall, Emily J.; Wearmouth, Victoria J.; Metcalfe, Brett; Twitchett, Richard J.
2014-01-01
Efficient searching is crucial for timely location of food and other resources. Recent studies show that diverse living animals use a theoretically optimal scale-free random search for sparse resources known as a Lévy walk, but little is known of the origins and evolution of foraging behavior and the search strategies of extinct organisms. Here, using simulations of self-avoiding trace fossil trails, we show that randomly introduced strophotaxis (U-turns)—initiated by obstructions such as self-trail avoidance or innate cueing—leads to random looping patterns with clustering across increasing scales that is consistent with the presence of Lévy walks. This predicts that optimal Lévy searches may emerge from simple behaviors observed in fossil trails. We then analyzed fossilized trails of benthic marine organisms by using a novel path analysis technique and find the first evidence, to our knowledge, of Lévy-like search strategies in extinct animals. Our results show that simple search behaviors of extinct animals in heterogeneous environments give rise to hierarchically nested Brownian walk clusters that converge to optimal Lévy patterns. Primary productivity collapse and large-scale food scarcity characterizing mass extinctions evident in the fossil record may have triggered adaptation of optimal Lévy-like searches. The findings suggest that Lévy-like behavior has been used by foragers since at least the Eocene but may have a more ancient origin, which might explain recent widespread observations of such patterns among modern taxa. PMID:25024221
Evaluating random search strategies in three mammals from distinct feeding guilds.
Auger-Méthé, Marie; Derocher, Andrew E; DeMars, Craig A; Plank, Michael J; Codling, Edward A; Lewis, Mark A
2016-09-01
Searching allows animals to find food, mates, shelter and other resources essential for survival and reproduction and is thus among the most important activities performed by animals. Theory predicts that animals will use random search strategies in highly variable and unpredictable environments. Two prominent models have been suggested for animals searching in sparse and heterogeneous environments: (i) the Lévy walk and (ii) the composite correlated random walk (CCRW) and its associated area-restricted search behaviour. Until recently, it was difficult to differentiate between the movement patterns of these two strategies. Using a new method that assesses whether movement patterns are consistent with these two strategies and two other common random search strategies, we investigated the movement behaviour of three species inhabiting sparse northern environments: woodland caribou (Rangifer tarandus caribou), barren-ground grizzly bear (Ursus arctos) and polar bear (Ursus maritimus). These three species vary widely in their diets and thus allow us to contrast the movement patterns of animals from different feeding guilds. Our results showed that although more traditional methods would have found evidence for the Lévy walk for some individuals, a comparison of the Lévy walk to CCRWs showed stronger support for the latter. While a CCRW was the best model for most individuals, there was a range of support for its absolute fit. A CCRW was sufficient to explain the movement of nearly half of herbivorous caribou and a quarter of omnivorous grizzly bears, but was insufficient to explain the movement of all carnivorous polar bears. Strong evidence for CCRW movement patterns suggests that many individuals may use a multiphasic movement strategy rather than one-behaviour strategies such as the Lévy walk. The fact that the best model was insufficient to describe the movement paths of many individuals suggests that some animals living in sparse environments may use strategies that are more complicated than those described by the standard random search models. Thus, our results indicate a need to develop movement models that incorporate factors such as the perceptual and cognitive capacities of animals. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Is walking a random walk? Evidence for long-range correlations in stride interval of human gait
NASA Technical Reports Server (NTRS)
Hausdorff, Jeffrey M.; Peng, C.-K.; Ladin, Zvi; Wei, Jeanne Y.; Goldberger, Ary L.
1995-01-01
Complex fluctuation of unknown origin appear in the normal gait pattern. These fluctuations might be described as being (1) uncorrelated white noise, (2) short-range correlations, or (3) long-range correlations with power-law scaling. To test these possibilities, the stride interval of 10 healthy young men was measured as they walked for 9 min at their usual rate. From these time series we calculated scaling indexes by using a modified random walk analysis and power spectral analysis. Both indexes indicated the presence of long-range self-similar correlations extending over hundreds of steps; the stride interval at any time depended on the stride interval at remote previous times, and this dependence decayed in a scale-free (fractallike) power-law fashion. These scaling indexes were significantly different from those obtained after random shuffling of the original time series, indicating the importance of the sequential ordering of the stride interval. We demonstrate that conventional models of gait generation fail to reproduce the observed scaling behavior and introduce a new type of central pattern generator model that sucessfully accounts for the experimentally observed long-range correlations.
The influence of personal patterns of behavior on the physiological effects of woodland walking.
Toda, Masahiro; Takeshita, Tatsuya
2015-01-01
The effects of forest walking are once again being recognized; however, few studies have investigated individual variations in the effects of forest walking. The objective of the current study was to investigate the influence of individual patterns of behavior on the physiological effects of walking through woodland. The study employed a crossover, open-label, single-group, self-controlled design. This study was conducted in the forest on Ikoma Mountain, at the eastern edge of Osaka Prefecture in Japan. Participants were 20 healthy males, selected randomly from a population of members at a nonprofit organization with a mean age of 67.6 y. Moving from the start of a mountain path to an observation platform, participants took a 1000-m walk through the forest. On another day, participants remained in their offices. Patterns of personal behavior were assessed preintervention by written questionnaire, identifying type A and type B behavior patterns. Salivary chromogranin A (CgA) levels were determined immediately before and after the walk as well as at 20 min after and 40 min after its end. On the day when participants sat in their offices, control samples were collected at the same times as on the day of the walk. In the type B-behavior pattern group, a significant increase in the levels of CgA occurred after the walk. No change was observed in the type A-behavior pattern group. The findings suggest that walking in woodland may bring about positive health benefits, particularly to individuals with type B characteristics.
The Weierstrassian movement patterns of snails
Santini, Giacomo; Chelazzi, Guido; Focardi, Stefano
2017-01-01
Weierstrassian Lévy walks are the archetypical form of random walk that do not satisfy the central limit theorem and are instead characterized by scale invariance. They were originally regarded as a mathematical abstraction but subsequent theoretical studies showed that they can, in principle, at least, be generated by chaos. Recently, Weierstrassian Lévy walks have been found to provide accurate representations of the movement patterns of mussels (Mytilus edulis) and mud snails (Hydrobia ulvae) recorded in the laboratory under controlled conditions. Here, we tested whether Weierstrassian Lévy walks and chaos are present under natural conditions in intertidal limpets Patella vulgata and P. rustica, and found that both characteristics are pervasive. We thereby show that Weierstrassian Lévy walks may be fundamental to how molluscs experience and interact with the world across a wide range of ecological contexts. We also show in an easily accessible way how chaos can produce a wide variety of Weierstrassian Lévy walk movement patterns. Our findings support the Lévy flight foraging hypothesis that posits that because Lévy walks can optimize search efficiencies, natural selection should have led to adaptations for Lévy walks. PMID:28680656
Older adults adopted more cautious gait patterns when walking in socks than barefoot.
Tsai, Yi-Ju; Lin, Sang-I
2013-01-01
Walking barefoot or in socks is common for ambulating indoors and has been reported to be associated with increased risk of falls and related injuries in the elderly. This study sought to determine if gait patterns differed between these two conditions for young and older adults. A motion analysis system was used to record and calculate the stride characteristics and motion of the body's center of mass (COM) of 21 young and 20 older adults. For the walking tasks, the participants walked on a smooth floor surface at their preferred speed either barefoot or in socks in a random order. The socks were commercially available and commonly used. The results demonstrated that while walking in socks, compared with walking barefoot, older adults adopted a more cautious gait pattern including decreased walking speed and shortened stride length as well as reduced COM minimal velocity during the single limb support phase. Young adults, however, did not demonstrate significant changes. These findings suggest that walking with socks might present a greater balance threat for older adults. Clinically, safety precautions about walking in socks should be considered to be given to older adults, especially those with balance deficits. Copyright © 2012 Elsevier B.V. All rights reserved.
Pantoni, Camila Bianca Falasco; Di Thommazo-Luporini, Luciana; Mendes, Renata Gonçalves; Caruso, Flávia Cristina Rossi; Mezzalira, Daniel; Arena, Ross; Amaral-Neto, Othon; Catai, Aparecida Maria; Borghi-Silva, Audrey
2016-01-01
Continuous positive airway pressure (CPAP) has been used as an effective support to decrease the negative pulmonary effects of coronary artery bypass graft (CABG) surgery. However, it is unknown whether CPAP can positively influence patients undergoing CABG during exercise. This study evaluated the effectiveness of CPAP on the first day of ambulation after CABG in patients undergoing inpatient cardiac rehabilitation (CR). Fifty-four patients after CABG surgery were randomly assigned to receive either inpatient CR and CPAP (CPG) or standard CR without CPAP (CG). Cardiac rehabilitation included walking and CPAP pressures were set between 10 to 12 cmH2O. Participants were assessed on the first day of walking at rest and during walking. Outcome measures included breathing pattern variables, exercise time in seconds (ETs), dyspnea/leg effort ratings, and peripheral oxygen saturation (SpO2). Twenty-seven patients (13 CPG vs 14 CG) completed the study. Compared with walking without noninvasive ventilation assistance, CPAP increased ETs by 43.4 seconds (P = .040) during walking, promoted better thoracoabdominal coordination, increased ventilation during walking by 12.5 L/min (P = .001), increased SpO2 values at the end of walking by 2.6% (P = .016), and reduced dyspnea ratings by 1 point (P = .008). Continuous positive airway pressure can positively influence exercise tolerance, ventilatory function, and breathing pattern in response to a single bout of exercise after CABG.
Stamovlasis, Dimitrios; Tsaparlis, Georgios
2003-07-01
The present study examines the role of limited human channel capacity from a science education perspective. A model of science problem solving has been previously validated by applying concepts and tools of complexity theory (the working memory, random walk method). The method correlated the subjects' rank-order achievement scores in organic-synthesis chemistry problems with the subjects' working memory capacity. In this work, we apply the same nonlinear approach to a different data set, taken from chemical-equilibrium problem solving. In contrast to the organic-synthesis problems, these problems are algorithmic, require numerical calculations, and have a complex logical structure. As a result, these problems cause deviations from the model, and affect the pattern observed with the nonlinear method. In addition to Baddeley's working memory capacity, the Pascual-Leone's mental (M-) capacity is examined by the same random-walk method. As the complexity of the problem increases, the fractal dimension of the working memory random walk demonstrates a sudden drop, while the fractal dimension of the M-capacity random walk decreases in a linear fashion. A review of the basic features of the two capacities and their relation is included. The method and findings have consequences for problem solving not only in chemistry and science education, but also in other disciplines.
NASA Astrophysics Data System (ADS)
Lewis, M. A.; McKenzie, H.; Merrill, E.
2010-12-01
In this talk I will outline first passage time analysis for animals undertaking complex movement patterns, and will demonstrate how first passage time can be used to derive functional responses in predator prey systems. The result is a new approach to understanding type III functional responses based on a random walk model. I will extend the analysis to heterogeneous environments to assess the effects of linear features on functional responses in wolves and elk using GPS tracking data.
Generalized run-and-turn motions: From bacteria to Lévy walks
NASA Astrophysics Data System (ADS)
Detcheverry, François
2017-07-01
Swimming bacteria exhibit a repertoire of motility patterns, in which persistent motion is interrupted by turning events. What are the statistical properties of such random walks? If some particular instances have long been studied, the general case where turning times do not follow a Poisson process has remained unsolved. We present a generic extension of the continuous time random walks formalism relying on operators and noncommutative calculus. The approach is first applied to a unimodal model of bacterial motion. We examine the existence of a minimum in velocity correlation function and discuss the maximum of diffusivity at an optimal value of rotational diffusion. The model is then extended to bimodal patterns and includes as particular cases all swimming strategies: run-and-tumble, run-stop, run-reverse and run-reverse-flick. We characterize their velocity correlation functions and investigate how bimodality affects diffusivity. Finally, the wider applicability of the method is illustrated by considering curved trajectories and Lévy walks. Our results are relevant for intermittent motion of living beings, be they swimming micro-organisms or crawling cells.
When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations
NASA Astrophysics Data System (ADS)
Hausdorff, Jeffrey M.; Ashkenazy, Yosef; Peng, Chang-K.; Ivanov, Plamen Ch.; Stanley, H. Eugene; Goldberger, Ary L.
2001-12-01
We present a random walk, fractal analysis of the stride-to-stride fluctuations in the human gait rhythm. The gait of healthy young adults is scale-free with long-range correlations extending over hundreds of strides. This fractal scaling changes characteristically with maturation in children and older adults and becomes almost completely uncorrelated with certain neurologic diseases. Stochastic modeling of the gait rhythm dynamics, based on transitions between different “neural centers”, reproduces distinctive statistical properties of the gait pattern. By tuning one model parameter, the hopping (transition) range, the model can describe alterations in gait dynamics from childhood to adulthood - including a decrease in the correlation and volatility exponents with maturation.
Movement analyses of wood cricket ( Nemobius sylvestris) (Orthoptera: Gryllidae).
Brouwers, N C; Newton, A C
2010-12-01
Information on the dispersal ability of invertebrate species associated with woodland habitats is severely lacking. Therefore, a study was conducted examining the movement patterns of wood cricket (Nemobius sylvestris) (Orthoptera: Gryllidae) on the Isle of Wight, UK. Juvenile (i.e. nymphs) and adult wood crickets were released and observed over time within different ground surface substrates. Their movement paths were recorded and subsequently analysed using random walk models. Nymphs were found to move more slowly than adults did; and, when given a choice, both nymphs and adults showed a preference for moving through or over leaf litter compared to bare soil or grass. A correlated random walk (CRW) model accurately described the movement pattern of adult wood crickets through leaf litter, indicating a level of directional persistence in their movements. The estimated population spread through leaf litter for adults was 17.9 cm min-1. Movements of nymphs through leaf litter could not accurately be described by a random walk model, showing a change in their movement pattern over time from directed to more random movements. The estimated population spread through leaf litter for nymphs was 10.1 cm min-1. The results indicate that wood cricket adults can be considered as more powerful dispersers than nymphs; however, further analysis of how the insects move through natural heterogeneous environments at a range of spatio-temporal scales needs to be performed to provide a complete understanding of the dispersal ability of the species.
NASA Astrophysics Data System (ADS)
Sims, David W.
2015-09-01
The seminal papers by Viswanathan and colleagues in the late 1990s [1,2] proposed not only that scale-free, superdiffusive Lévy walks can describe the free-ranging movement patterns observed in animals such as the albatross [1], but that the Lévy walk was optimal for searching for sparsely and randomly distributed resource targets [2]. This distinct advantage, now shown to be present over a much broader set of conditions than originally theorised [3], implied that the Lévy walk is a search strategy that should be found very widely in organisms [4]. In the years since there have been several influential empirical studies showing that Lévy walks can indeed be detected in the movement patterns of a very broad range of taxa, from jellyfish, insects, fish, reptiles, seabirds, humans [5-10], and even in the fossilised trails of extinct invertebrates [11]. The broad optimality and apparent deep evolutionary origin of movement (search) patterns that are well approximated by Lévy walks led to the development of the Lévy flight foraging (LFF) hypothesis [12], which states that "since Lévy flights and walks can optimize search efficiencies, therefore natural selection should have led to adaptations for Lévy flight foraging".
NASA Astrophysics Data System (ADS)
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; Bulanov, S. S.; Gong, Z.; Yan, X. Q.; Kando, M.
2017-04-01
The multiple colliding laser pulse concept formulated by Bulanov et al. (Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motion resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.
The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; ...
2017-03-09
The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less
NASA Astrophysics Data System (ADS)
Müller, Christian L.; Sbalzarini, Ivo F.; van Gunsteren, Wilfred F.; Žagrović, Bojan; Hünenberger, Philippe H.
2009-06-01
The concept of high-resolution shapes (also referred to as folds or states, depending on the context) of a polymer chain plays a central role in polymer science, structural biology, bioinformatics, and biopolymer dynamics. However, although the idea of shape is intuitively very useful, there is no unambiguous mathematical definition for this concept. In the present work, the distributions of high-resolution shapes within the ideal random-walk ensembles with N =3,…,6 beads (or up to N =10 for some properties) are investigated using a systematic (grid-based) approach based on a simple working definition of shapes relying on the root-mean-square atomic positional deviation as a metric (i.e., to define the distance between pairs of structures) and a single cutoff criterion for the shape assignment. Although the random-walk ensemble appears to represent the paramount of homogeneity and randomness, this analysis reveals that the distribution of shapes within this ensemble, i.e., in the total absence of interatomic interactions characteristic of a specific polymer (beyond the generic connectivity constraint), is significantly inhomogeneous. In particular, a specific (densest) shape occurs with a local probability that is 1.28, 1.79, 2.94, and 10.05 times (N =3,…,6) higher than the corresponding average over all possible shapes (these results can tentatively be extrapolated to a factor as large as about 1028 for N =100). The qualitative results of this analysis lead to a few rather counterintuitive suggestions, namely, that, e.g., (i) a fold classification analysis applied to the random-walk ensemble would lead to the identification of random-walk "folds;" (ii) a clustering analysis applied to the random-walk ensemble would also lead to the identification random-walk "states" and associated relative free energies; and (iii) a random-walk ensemble of polymer chains could lead to well-defined diffraction patterns in hypothetical fiber or crystal diffraction experiments. The inhomogeneous nature of the shape probability distribution identified here for random walks may represent a significant underlying baseline effect in the analysis of real polymer chain ensembles (i.e., in the presence of specific interatomic interactions). As a consequence, a part of what is called a polymer shape may actually reside just "in the eye of the beholder" rather than in the nature of the interactions between the constituting atoms, and the corresponding observation-related bias should be taken into account when drawing conclusions from shape analyses as applied to real structural ensembles.
Müller, Christian L; Sbalzarini, Ivo F; van Gunsteren, Wilfred F; Zagrović, Bojan; Hünenberger, Philippe H
2009-06-07
The concept of high-resolution shapes (also referred to as folds or states, depending on the context) of a polymer chain plays a central role in polymer science, structural biology, bioinformatics, and biopolymer dynamics. However, although the idea of shape is intuitively very useful, there is no unambiguous mathematical definition for this concept. In the present work, the distributions of high-resolution shapes within the ideal random-walk ensembles with N=3,...,6 beads (or up to N=10 for some properties) are investigated using a systematic (grid-based) approach based on a simple working definition of shapes relying on the root-mean-square atomic positional deviation as a metric (i.e., to define the distance between pairs of structures) and a single cutoff criterion for the shape assignment. Although the random-walk ensemble appears to represent the paramount of homogeneity and randomness, this analysis reveals that the distribution of shapes within this ensemble, i.e., in the total absence of interatomic interactions characteristic of a specific polymer (beyond the generic connectivity constraint), is significantly inhomogeneous. In particular, a specific (densest) shape occurs with a local probability that is 1.28, 1.79, 2.94, and 10.05 times (N=3,...,6) higher than the corresponding average over all possible shapes (these results can tentatively be extrapolated to a factor as large as about 10(28) for N=100). The qualitative results of this analysis lead to a few rather counterintuitive suggestions, namely, that, e.g., (i) a fold classification analysis applied to the random-walk ensemble would lead to the identification of random-walk "folds;" (ii) a clustering analysis applied to the random-walk ensemble would also lead to the identification random-walk "states" and associated relative free energies; and (iii) a random-walk ensemble of polymer chains could lead to well-defined diffraction patterns in hypothetical fiber or crystal diffraction experiments. The inhomogeneous nature of the shape probability distribution identified here for random walks may represent a significant underlying baseline effect in the analysis of real polymer chain ensembles (i.e., in the presence of specific interatomic interactions). As a consequence, a part of what is called a polymer shape may actually reside just "in the eye of the beholder" rather than in the nature of the interactions between the constituting atoms, and the corresponding observation-related bias should be taken into account when drawing conclusions from shape analyses as applied to real structural ensembles.
Random walks and diffusion on networks
NASA Astrophysics Data System (ADS)
Masuda, Naoki; Porter, Mason A.; Lambiotte, Renaud
2017-11-01
Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and practical perspectives. They are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can be used to extract information about important entities or dense groups of entities in a network. Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures. In the present article, we survey the theory and applications of random walks on networks, restricting ourselves to simple cases of single and non-adaptive random walkers. We distinguish three main types of random walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric continuous-time random walks. We first briefly survey random walks on a line, and then we consider random walks on various types of networks. We extensively discuss applications of random walks, including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and opinion models such as voter models.
Automated time activity classification based on global positioning system (GPS) tracking data
2011-01-01
Background Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data. Methods We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model. Results Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute, but was likely less robust than the rule-based model under the condition of biased or poor quality training data. Conclusions Our models can successfully identify indoor and in-vehicle travel points from the raw GPS data, but challenges remain in developing models to distinguish outdoor static points and walking. Accurate training data are essential in developing reliable models in classifying time-activity patterns. PMID:22082316
Automated time activity classification based on global positioning system (GPS) tracking data.
Wu, Jun; Jiang, Chengsheng; Houston, Douglas; Baker, Dean; Delfino, Ralph
2011-11-14
Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data. We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model. Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute, but was likely less robust than the rule-based model under the condition of biased or poor quality training data. Our models can successfully identify indoor and in-vehicle travel points from the raw GPS data, but challenges remain in developing models to distinguish outdoor static points and walking. Accurate training data are essential in developing reliable models in classifying time-activity patterns.
Scaling laws of marine predator search behaviour.
Sims, David W; Southall, Emily J; Humphries, Nicolas E; Hays, Graeme C; Bradshaw, Corey J A; Pitchford, Jonathan W; James, Alex; Ahmed, Mohammed Z; Brierley, Andrew S; Hindell, Mark A; Morritt, David; Musyl, Michael K; Righton, David; Shepard, Emily L C; Wearmouth, Victoria J; Wilson, Rory P; Witt, Matthew J; Metcalfe, Julian D
2008-02-28
Many free-ranging predators have to make foraging decisions with little, if any, knowledge of present resource distribution and availability. The optimal search strategy they should use to maximize encounter rates with prey in heterogeneous natural environments remains a largely unresolved issue in ecology. Lévy walks are specialized random walks giving rise to fractal movement trajectories that may represent an optimal solution for searching complex landscapes. However, the adaptive significance of this putative strategy in response to natural prey distributions remains untested. Here we analyse over a million movement displacements recorded from animal-attached electronic tags to show that diverse marine predators-sharks, bony fishes, sea turtles and penguins-exhibit Lévy-walk-like behaviour close to a theoretical optimum. Prey density distributions also display Lévy-like fractal patterns, suggesting response movements by predators to prey distributions. Simulations show that predators have higher encounter rates when adopting Lévy-type foraging in natural-like prey fields compared with purely random landscapes. This is consistent with the hypothesis that observed search patterns are adapted to observed statistical patterns of the landscape. This may explain why Lévy-like behaviour seems to be widespread among diverse organisms, from microbes to humans, as a 'rule' that evolved in response to patchy resource distributions.
2013-01-01
Background Regaining independent ambulation is the top priority for individuals recovering from stroke. Thus, physical rehabilitation post-stroke should focus on improving walking function and endurance. However, the amount of walking completed by individuals with stroke attending rehabilitation is far below that required for independent community ambulation. There has been increased interest in accelerometer-based monitoring of walking post-stroke. Walking monitoring could be integrated within the goal-setting process for those with ambulation goals in rehabilitation. The feedback from these devices can be downloaded to a computer to produce reports. The purpose of this study is to determine the effect of accelerometer-based feedback of daily walking activity during rehabilitation on the frequency and duration of walking post-stroke. Methods Participants will be randomly assigned to one of two groups: feedback or no feedback. Participants will wear accelerometers daily during in- and out-patient rehabilitation and, for participants in the feedback group, the participants’ treating physiotherapist will receive regular reports of walking activity. The primary outcome measures are the amount of daily walking completed, as measured using the accelerometers, and spatio-temporal characteristics of walking (e.g. walking speed). We will also examine goal attainment, satisfaction with progress towards goals, stroke self-efficacy, and community-integration. Discussion Increased walking activity during rehabilitation is expected to improve walking function and community re-integration following discharge. In addition, a focus on altering walking behaviour within the rehabilitation setting may lead to altered behaviour and increased activity patterns after discharge. Trial registration ClinicalTrials.gov NCT01521234 PMID:23865593
Reuter, I.; Mehnert, S.; Leone, P.; Kaps, M.; Oechsner, M.; Engelhardt, M.
2011-01-01
Symptoms of Parkinson's disease (PD) progress despite optimized medical treatment. The present study investigated the effects of a flexibility and relaxation programme, walking, and Nordic walking (NW) on walking speed, stride length, stride length variability, Parkinson-specific disability (UPDRS), and health-related quality of life (PDQ 39). 90 PD patients were randomly allocated to the 3 treatment groups. Patients participated in a 6-month study with 3 exercise sessions per week, each lasting 70 min. Assessment after completion of the training showed that pain was reduced in all groups, and balance and health-related quality of life were improved. Furthermore, walking, and Nordic walking improved stride length, gait variability, maximal walking speed, exercise capacity at submaximal level, and PD disease-specific disability on the UPDRS in addition. Nordic walking was superior to the flexibility and relaxation programme and walking in improving postural stability, stride length, gait pattern and gait variability. No significant injuries occurred during the training. All patients of the Nordic walking group continued Nordic walking after completing the study. PMID:21603199
Thøgersen-Ntoumani, C; Loughren, E A; Kinnafick, F-E; Taylor, I M; Duda, J L; Fox, K R
2015-12-01
Physical activity may regulate affective experiences at work, but controlled studies are needed and there has been a reliance on retrospective accounts of experience. The purpose of the present study was to examine the effect of lunchtime walks on momentary work affect at the individual and group levels. Physically inactive employees (N = 56; M age = 47.68; 92.86% female) from a large university in the UK were randomized to immediate treatment or delayed treatment (DT). The DT participants completed both a control and intervention period. During the intervention period, participants partook in three weekly 30-min lunchtime group-led walks for 10 weeks. They completed twice daily affective reports at work (morning and afternoon) using mobile phones on two randomly chosen days per week. Multilevel modeling was used to analyze the data. Lunchtime walks improved enthusiasm, relaxation, and nervousness at work, although the pattern of results differed depending on whether between-group or within-person analyses were conducted. The intervention was effective in changing some affective states and may have broader implications for public health and workplace performance. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Stochastic modeling of a serial killer
Simkin, M.V.; Roychowdhury, V.P.
2014-01-01
We analyze the time pattern of the activity of a serial killer, who during twelve years had murdered 53 people. The plot of the cumulative number of murders as a function of time is of “Devil’s staircase” type. The distribution of the intervals between murders (step length) follows a power law with the exponent of 1.4. We propose a model according to which the serial killer commits murders when neuronal excitation in his brain exceeds certain threshold. We model this neural activity as a branching process, which in turn is approximated by a random walk. As the distribution of the random walk return times is a power law with the exponent 1.5, the distribution of the inter-murder intervals is thus explained. We illustrate analytical results by numerical simulation. Time pattern activity data from two other serial killers further substantiate our analysis. PMID:24721476
Stochastic modeling of a serial killer.
Simkin, M V; Roychowdhury, V P
2014-08-21
We analyze the time pattern of the activity of a serial killer, who during 12 years had murdered 53 people. The plot of the cumulative number of murders as a function of time is of "Devil's staircase" type. The distribution of the intervals between murders (step length) follows a power law with the exponent of 1.4. We propose a model according to which the serial killer commits murders when neuronal excitation in his brain exceeds certain threshold. We model this neural activity as a branching process, which in turn is approximated by a random walk. As the distribution of the random walk return times is a power law with the exponent 1.5, the distribution of the inter-murder intervals is thus explained. We illustrate analytical results by numerical simulation. Time pattern activity data from two other serial killers further substantiate our analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Record statistics of a strongly correlated time series: random walks and Lévy flights
NASA Astrophysics Data System (ADS)
Godrèche, Claude; Majumdar, Satya N.; Schehr, Grégory
2017-08-01
We review recent advances on the record statistics of strongly correlated time series, whose entries denote the positions of a random walk or a Lévy flight on a line. After a brief survey of the theory of records for independent and identically distributed random variables, we focus on random walks. During the last few years, it was indeed realized that random walks are a very useful ‘laboratory’ to test the effects of correlations on the record statistics. We start with the simple one-dimensional random walk with symmetric jumps (both continuous and discrete) and discuss in detail the statistics of the number of records, as well as of the ages of the records, i.e. the lapses of time between two successive record breaking events. Then we review the results that were obtained for a wide variety of random walk models, including random walks with a linear drift, continuous time random walks, constrained random walks (like the random walk bridge) and the case of multiple independent random walkers. Finally, we discuss further observables related to records, like the record increments, as well as some questions raised by physical applications of record statistics, like the effects of measurement error and noise.
Dynamical Signatures of Living Systems
NASA Technical Reports Server (NTRS)
Zak, M.
1999-01-01
One of the main challenges in modeling living systems is to distinguish a random walk of physical origin (for instance, Brownian motions) from those of biological origin and that will constitute the starting point of the proposed approach. As conjectured, the biological random walk must be nonlinear. Indeed, any stochastic Markov process can be described by linear Fokker-Planck equation (or its discretized version), only that type of process has been observed in the inanimate world. However, all such processes always converge to a stable (ergodic or periodic) state, i.e., to the states of a lower complexity and high entropy. At the same time, the evolution of living systems directed toward a higher level of complexity if complexity is associated with a number of structural variations. The simplest way to mimic such a tendency is to incorporate a nonlinearity into the random walk; then the probability evolution will attain the features of diffusion equation: the formation and dissipation of shock waves initiated by small shallow wave disturbances. As a result, the evolution never "dies:" it produces new different configurations which are accompanied by an increase or decrease of entropy (the decrease takes place during formation of shock waves, the increase-during their dissipation). In other words, the evolution can be directed "against the second law of thermodynamics" by forming patterns outside of equilibrium in the probability space. Due to that, a specie is not locked up in a certain pattern of behavior: it still can perform a variety of motions, and only the statistics of these motions is constrained by this pattern. It should be emphasized that such a "twist" is based upon the concept of reflection, i.e., the existence of the self-image (adopted from psychology). The model consists of a generator of stochastic processes which represents the motor dynamics in the form of nonlinear random walks, and a simulator of the nonlinear version of the diffusion equation which represents the mental dynamics. It has been demonstrated that coupled mental-motor dynamics can simulate emerging self-organization, prey-predator games, collaboration and competition, "collective brain," etc.
A random walk model to evaluate autism
NASA Astrophysics Data System (ADS)
Moura, T. R. S.; Fulco, U. L.; Albuquerque, E. L.
2018-02-01
A common test administered during neurological examination in children is the analysis of their social communication and interaction across multiple contexts, including repetitive patterns of behavior. Poor performance may be associated with neurological conditions characterized by impairments in executive function, such as the so-called pervasive developmental disorders (PDDs), a particular condition of the autism spectrum disorders (ASDs). Inspired in these diagnosis tools, mainly those related to repetitive movements and behaviors, we studied here how the diffusion regimes of two discrete-time random walkers, mimicking the lack of social interaction and restricted interests developed for children with PDDs, are affected. Our model, which is based on the so-called elephant random walk (ERW) approach, consider that one of the random walker can learn and imitate the microscopic behavior of the other with probability f (1 - f otherwise). The diffusion regimes, measured by the Hurst exponent (H), is then obtained, whose changes may indicate a different degree of autism.
Li, Fangmin; Liu, Guo; Liu, Jian; Chen, Xiaochuang; Ma, Xiaolin
2016-10-28
Most location-based services are based on a global positioning system (GPS), which only works well in outdoor environments. Compared to outdoor environments, indoor localization has created more buzz in recent years as people spent most of their time indoors working at offices and shopping at malls, etc. Existing solutions mainly rely on inertial sensors (i.e., accelerometer and gyroscope) embedded in mobile devices, which are usually not accurate enough to be useful due to the mobile devices' random movements while people are walking. In this paper, we propose the use of shoe sensing (i.e., sensors attached to shoes) to achieve 3D indoor positioning. Specifically, a short-time energy-based approach is used to extract the gait pattern. Moreover, in order to improve the accuracy of vertical distance estimation while the person is climbing upstairs, a state classification is designed to distinguish the walking status including plane motion (i.e., normal walking and jogging horizontally), walking upstairs, and walking downstairs. Furthermore, we also provide a mechanism to reduce the vertical distance accumulation error. Experimental results show that we can achieve nearly 100% accuracy when extracting gait patterns from walking/jogging with a low-cost shoe sensor, and can also achieve 3D indoor real-time positioning with high accuracy.
From Lévy to Brownian: a computational model based on biological fluctuation.
Nurzaman, Surya G; Matsumoto, Yoshio; Nakamura, Yutaka; Shirai, Kazumichi; Koizumi, Satoshi; Ishiguro, Hiroshi
2011-02-03
Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.
Open quantum random walk in terms of quantum Bernoulli noise
NASA Astrophysics Data System (ADS)
Wang, Caishi; Wang, Ce; Ren, Suling; Tang, Yuling
2018-03-01
In this paper, we introduce an open quantum random walk, which we call the QBN-based open walk, by means of quantum Bernoulli noise, and study its properties from a random walk point of view. We prove that, with the localized ground state as its initial state, the QBN-based open walk has the same limit probability distribution as the classical random walk. We also show that the probability distributions of the QBN-based open walk include those of the unitary quantum walk recently introduced by Wang and Ye (Quantum Inf Process 15:1897-1908, 2016) as a special case.
Current status and future directions of Lévy walk research
2018-01-01
ABSTRACT Lévy walks are a mathematical construction useful for describing random patterns of movement with bizarre fractal properties that seem to have no place in biology. Nonetheless, movement patterns resembling Lévy walks have been observed at scales ranging from the microscopic to the ecological. They have been seen in the molecular machinery operating within cells during intracellular trafficking, in the movement patterns of T cells within the brain, in DNA, in some molluscs, insects, fish, birds and mammals, in the airborne flights of spores and seeds, and in the collective movements of some animal groups. Lévy walks are also evident in trace fossils (ichnofossils) – the preserved form of tracks made by organisms that occupied ancient sea beds about 252-66 million years ago. And they are utilised by algae that originated around two billion years ago, and still exist today. In September of 2017, leading researchers from across the life sciences, along with mathematicians and physicists, got together at a Company of Biologists' Workshop to discuss the origins and biological significance of these movement patterns. In this Review the essence of the technical and sometimes heated discussions is distilled and made accessible for all. In just a few pages, the reader is taken from a gentle introduction to the frontiers of a very active field of scientific enquiry. What emerges is a fascinating story of a truly inter-disciplinary scientific endeavour that is seeking to better understand movement patterns occurring across all biological scales. PMID:29326297
Social aggregation in pea aphids: experiment and random walk modeling.
Nilsen, Christa; Paige, John; Warner, Olivia; Mayhew, Benjamin; Sutley, Ryan; Lam, Matthew; Bernoff, Andrew J; Topaz, Chad M
2013-01-01
From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control.
Quantum walks with tuneable self-avoidance in one dimension
Camilleri, Elizabeth; Rohde, Peter P.; Twamley, Jason
2014-01-01
Quantum walks exhibit many unique characteristics compared to classical random walks. In the classical setting, self-avoiding random walks have been studied as a variation on the usual classical random walk. Here the walker has memory of its previous locations and preferentially avoids stepping back to locations where it has previously resided. Classical self-avoiding random walks have found numerous algorithmic applications, most notably in the modelling of protein folding. We consider the analogous problem in the quantum setting – a quantum walk in one dimension with tunable levels of self-avoidance. We complement a quantum walk with a memory register that records where the walker has previously resided. The walker is then able to avoid returning back to previously visited sites or apply more general memory conditioned operations to control the walk. We characterise this walk by examining the variance of the walker's distribution against time, the standard metric for quantifying how quantum or classical a walk is. We parameterise the strength of the memory recording and the strength of the memory back-action on the walker, and investigate their effect on the dynamics of the walk. We find that by manipulating these parameters, which dictate the degree of self-avoidance, the walk can be made to reproduce ideal quantum or classical random walk statistics, or a plethora of more elaborate diffusive phenomena. In some parameter regimes we observe a close correspondence between classical self-avoiding random walks and the quantum self-avoiding walk. PMID:24762398
Licence, Sammy; Smith, Robynne; McGuigan, Miranda P.; Earnest, Conrad P.
2015-01-01
Objectives Mobile phone texting is a common daily occurrence with a paucity of research examining corresponding gait characteristics. To date, most studies have participants walk in a straight line vs. overcoming barriers and obstacles that occur during regular walking. The aim of our study is to examine the effect of mobile phone texting during periods of cognitive distraction while walking and negotiating barriers synonymous with pedestrian traffic. Methods Thirty participants (18-50y) completed three randomized, counter-balanced walking tasks over a course during: (1) normal walking (control), (2) texting and walking, and (3) texting and walking whilst being cognitively distraction via a standard mathematical test performed while negotiating the obstacle course. We analyzed gait characteristics during course negotiation using a 3-dimensional motion analysis system and a general linear model and Dunnet-Hsu post-hoc procedure the normal walking condition to assess gait characteristic differences. Primary outcomes included the overall time to complete the course time and barrier contact. Secondary outcomes included obstacle clearance height, step frequency, step time, double support phase and lateral deviation. Results Participants took significantly longer (mean ± SD) to complete the course while texting (24.96±4.20 sec) and during cognitive distraction COG (24.09±3.36 sec) vs. normal walking (19.32±2.28 sec; all, P<0.001). No significant differences were noted for barrier contacts (P = 0.28). Step frequency, step time, double support phase and lateral deviation all increased in duration during the texting and cognitive distraction trial. Texting and being cognitively distracted also increased obstacle clearance versus the walking condition (all, P<0.02). Conclusions Texting while walking and/or being cognitively distracted significantly affect gait characteristics concordant to mobile phone usage resulting in a more cautious gate pattern. Future research should also examine a similar study in older participants who may be at a greater risk of tripping with such walking deviations. PMID:26222430
Evidence for intermittency and a truncated power law from highly resolved aphid movement data.
Mashanova, Alla; Oliver, Tom H; Jansen, Vincent A A
2010-01-06
Power laws are increasingly used to describe animal movement. Despite this, the use of power laws has been criticized on both empirical and theoretical grounds, and alternative models based on extensions of conventional random walk theory (Brownian motion) have been suggested. In this paper, we analyse a large volume of data of aphid walking behaviour (65,068 data points), which provides a highly resolved dataset to investigate the pattern of movement. We show that aphid movement is intermittent--with alternations of a slow movement with frequent change of direction and a fast, relatively directed movement--and that the fast movement consists of two phases--a strongly directed phase that gradually changes into an uncorrelated random walk. By measuring the mean-squared displacement and the duration of non-stop movement episodes we found that both spatial and temporal aspects of aphid movement are best described using a truncated power law approach. We suggest that the observed spatial pattern arises from the duration of non-stop movement phases rather than from correlations in turning angles. We discuss the implications of these findings for interpreting movement data, such as distinguishing between movement and non-movement, and the effect of the range of data used in the analysis on the conclusions.
Kim, Chang-Yong; Lee, Jung-Sun; Kim, Hyeong-Dong
2017-02-01
The purposes of the present study were to compare the effects of backward and lateral walking training and to identify whether additional backward or lateral walking training would be more effective in increasing the walking function of poststroke patients. Fifty-one subjects with hemiplegic stroke were randomly allocated to 3 groups, each containing 17 subjects: the control group, the backward walking training group, and the lateral walking training group. The walking abilities of each group were assessed using a 10-m walk test and the GAITRite system for spatiotemporal gait. The results show that there were significantly greater posttest increases in gait velocity (F = -12.09, P = 0.02) and stride length (F = -11.50, P = 0.02), decreases in the values of the 10-m walk test (F = -7.10, P = 0.03) (P < 0.05) and double-limb support period (F = 40.15, P = 0.000), and improvements in gait asymmetry (F = 13.88, P = 0.002) (P < 0.01) in subjects in the lateral walking training group compared with those in the other 2 groups. These findings demonstrate that asymmetric gait patterns in poststroke patients could be improved by receiving additional lateral walking training therapy rather than backward walking training. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) understand the potential benefits of backward walking (BW) and lateral walking (LW) training on improving muscle strength and gait; (2) appreciate the potential value of backward and lateral walking gait training in the treatment of hemiplegic stroke patients; and (3) appropriately incorporate backward and lateral walking gait training into the treatment plan of hemiplegic stroke patients. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.The Association of Academic Physiatrists designates this activity for a maximum of 1.5 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.
On Convergent Probability of a Random Walk
ERIC Educational Resources Information Center
Lee, Y.-F.; Ching, W.-K.
2006-01-01
This note introduces an interesting random walk on a straight path with cards of random numbers. The method of recurrent relations is used to obtain the convergent probability of the random walk with different initial positions.
Scaling Limit of Symmetric Random Walk in High-Contrast Periodic Environment
NASA Astrophysics Data System (ADS)
Piatnitski, A.; Zhizhina, E.
2017-11-01
The paper deals with the asymptotic properties of a symmetric random walk in a high contrast periodic medium in Z^d, d≥1. From the existing homogenization results it follows that under diffusive scaling the limit behaviour of this random walk need not be Markovian. The goal of this work is to show that if in addition to the coordinate of the random walk in Z^d we introduce an extra variable that characterizes the position of the random walk inside the period then the limit dynamics of this two-component process is Markov. We describe the limit process and observe that the components of the limit process are coupled. We also prove the convergence in the path space for the said random walk.
Graphic matching based on shape contexts and reweighted random walks
NASA Astrophysics Data System (ADS)
Zhang, Mingxuan; Niu, Dongmei; Zhao, Xiuyang; Liu, Mingjun
2018-04-01
Graphic matching is a very critical issue in all aspects of computer vision. In this paper, a new graphics matching algorithm combining shape contexts and reweighted random walks was proposed. On the basis of the local descriptor, shape contexts, the reweighted random walks algorithm was modified to possess stronger robustness and correctness in the final result. Our main process is to use the descriptor of the shape contexts for the random walk on the iteration, of which purpose is to control the random walk probability matrix. We calculate bias matrix by using descriptors and then in the iteration we use it to enhance random walks' and random jumps' accuracy, finally we get the one-to-one registration result by discretization of the matrix. The algorithm not only preserves the noise robustness of reweighted random walks but also possesses the rotation, translation, scale invariance of shape contexts. Through extensive experiments, based on real images and random synthetic point sets, and comparisons with other algorithms, it is confirmed that this new method can produce excellent results in graphic matching.
Inferring Lévy walks from curved trajectories: A rescaling method
NASA Astrophysics Data System (ADS)
Tromer, R. M.; Barbosa, M. B.; Bartumeus, F.; Catalan, J.; da Luz, M. G. E.; Raposo, E. P.; Viswanathan, G. M.
2015-08-01
An important problem in the study of anomalous diffusion and transport concerns the proper analysis of trajectory data. The analysis and inference of Lévy walk patterns from empirical or simulated trajectories of particles in two and three-dimensional spaces (2D and 3D) is much more difficult than in 1D because path curvature is nonexistent in 1D but quite common in higher dimensions. Recently, a new method for detecting Lévy walks, which considers 1D projections of 2D or 3D trajectory data, has been proposed by Humphries et al. The key new idea is to exploit the fact that the 1D projection of a high-dimensional Lévy walk is itself a Lévy walk. Here, we ask whether or not this projection method is powerful enough to cleanly distinguish 2D Lévy walk with added curvature from a simple Markovian correlated random walk. We study the especially challenging case in which both 2D walks have exactly identical probability density functions (pdf) of step sizes as well as of turning angles between successive steps. Our approach extends the original projection method by introducing a rescaling of the projected data. Upon projection and coarse-graining, the renormalized pdf for the travel distances between successive turnings is seen to possess a fat tail when there is an underlying Lévy process. We exploit this effect to infer a Lévy walk process in the original high-dimensional curved trajectory. In contrast, no fat tail appears when a (Markovian) correlated random walk is analyzed in this way. We show that this procedure works extremely well in clearly identifying a Lévy walk even when there is noise from curvature. The present protocol may be useful in realistic contexts involving ongoing debates on the presence (or not) of Lévy walks related to animal movement on land (2D) and in air and oceans (3D).
From Lévy to Brownian: A Computational Model Based on Biological Fluctuation
Nurzaman, Surya G.; Matsumoto, Yoshio; Nakamura, Yutaka; Shirai, Kazumichi; Koizumi, Satoshi; Ishiguro, Hiroshi
2011-01-01
Background Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. Methodology/Principal Findings We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. Conclusions/Significance Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior. PMID:21304911
A new modelling approach for zooplankton behaviour
NASA Astrophysics Data System (ADS)
Keiyu, A. Y.; Yamazaki, H.; Strickler, J. R.
We have developed a new simulation technique to model zooplankton behaviour. The approach utilizes neither the conventional artificial intelligence nor neural network methods. We have designed an adaptive behaviour network, which is similar to BEER [(1990) Intelligence as an adaptive behaviour: an experiment in computational neuroethology, Academic Press], based on observational studies of zooplankton behaviour. The proposed method is compared with non- "intelligent" models—random walk and correlated walk models—as well as observed behaviour in a laboratory tank. Although the network is simple, the model exhibits rich behavioural patterns similar to live copepods.
A random walk approach to quantum algorithms.
Kendon, Vivien M
2006-12-15
The development of quantum algorithms based on quantum versions of random walks is placed in the context of the emerging field of quantum computing. Constructing a suitable quantum version of a random walk is not trivial; pure quantum dynamics is deterministic, so randomness only enters during the measurement phase, i.e. when converting the quantum information into classical information. The outcome of a quantum random walk is very different from the corresponding classical random walk owing to the interference between the different possible paths. The upshot is that quantum walkers find themselves further from their starting point than a classical walker on average, and this forms the basis of a quantum speed up, which can be exploited to solve problems faster. Surprisingly, the effect of making the walk slightly less than perfectly quantum can optimize the properties of the quantum walk for algorithmic applications. Looking to the future, even with a small quantum computer available, the development of quantum walk algorithms might proceed more rapidly than it has, especially for solving real problems.
Efficient sampling of complex network with modified random walk strategies
NASA Astrophysics Data System (ADS)
Xie, Yunya; Chang, Shuhua; Zhang, Zhipeng; Zhang, Mi; Yang, Lei
2018-02-01
We present two novel random walk strategies, choosing seed node (CSN) random walk and no-retracing (NR) random walk. Different from the classical random walk sampling, the CSN and NR strategies focus on the influences of the seed node choice and path overlap, respectively. Three random walk samplings are applied in the Erdös-Rényi (ER), Barabási-Albert (BA), Watts-Strogatz (WS), and the weighted USAir networks, respectively. Then, the major properties of sampled subnets, such as sampling efficiency, degree distributions, average degree and average clustering coefficient, are studied. The similar conclusions can be reached with these three random walk strategies. Firstly, the networks with small scales and simple structures are conducive to the sampling. Secondly, the average degree and the average clustering coefficient of the sampled subnet tend to the corresponding values of original networks with limited steps. And thirdly, all the degree distributions of the subnets are slightly biased to the high degree side. However, the NR strategy performs better for the average clustering coefficient of the subnet. In the real weighted USAir networks, some obvious characters like the larger clustering coefficient and the fluctuation of degree distribution are reproduced well by these random walk strategies.
Continuous time quantum random walks in free space
NASA Astrophysics Data System (ADS)
Eichelkraut, Toni; Vetter, Christian; Perez-Leija, Armando; Christodoulides, Demetrios; Szameit, Alexander
2014-05-01
We show theoretically and experimentally that two-dimensional continuous time coherent random walks are possible in free space, that is, in the absence of any external potential, by properly tailoring the associated initial wave function. These effects are experimentally demonstrated using classical paraxial light. Evidently, the usage of classical beams to explore the dynamics of point-like quantum particles is possible since both phenomena are mathematically equivalent. This in turn makes our approach suitable for the realization of random walks using different quantum particles, including electrons and photons. To study the spatial evolution of a wavefunction theoretically, we consider the one-dimensional paraxial wave equation (i∂z +1/2 ∂x2) Ψ = 0 . Starting with the initially localized wavefunction Ψ (x , 0) = exp [ -x2 / 2σ2 ] J0 (αx) , one can show that the evolution of such Gaussian-apodized Bessel envelopes within a region of validity resembles the probability pattern of a quantum walker traversing a uniform lattice. In order to generate the desired input-field in our experimental setting we shape the amplitude and phase of a collimated light beam originating from a classical HeNe-Laser (633 nm) utilizing a spatial light modulator.
Normal and tumoral melanocytes exhibit q-Gaussian random search patterns.
da Silva, Priscila C A; Rosembach, Tiago V; Santos, Anésia A; Rocha, Márcio S; Martins, Marcelo L
2014-01-01
In multicellular organisms, cell motility is central in all morphogenetic processes, tissue maintenance, wound healing and immune surveillance. Hence, failures in its regulation potentiates numerous diseases. Here, cell migration assays on plastic 2D surfaces were performed using normal (Melan A) and tumoral (B16F10) murine melanocytes in random motility conditions. The trajectories of the centroids of the cell perimeters were tracked through time-lapse microscopy. The statistics of these trajectories was analyzed by building velocity and turn angle distributions, as well as velocity autocorrelations and the scaling of mean-squared displacements. We find that these cells exhibit a crossover from a normal to a super-diffusive motion without angular persistence at long time scales. Moreover, these melanocytes move with non-Gaussian velocity distributions. This major finding indicates that amongst those animal cells supposedly migrating through Lévy walks, some of them can instead perform q-Gaussian walks. Furthermore, our results reveal that B16F10 cells infected by mycoplasmas exhibit essentially the same diffusivity than their healthy counterparts. Finally, a q-Gaussian random walk model was proposed to account for these melanocytic migratory traits. Simulations based on this model correctly describe the crossover to super-diffusivity in the cell migration tracks.
Current status and future directions of Lévy walk research.
Reynolds, Andy M
2018-01-11
Lévy walks are a mathematical construction useful for describing random patterns of movement with bizarre fractal properties that seem to have no place in biology. Nonetheless, movement patterns resembling Lévy walks have been observed at scales ranging from the microscopic to the ecological. They have been seen in the molecular machinery operating within cells during intracellular trafficking, in the movement patterns of T cells within the brain, in DNA, in some molluscs, insects, fish, birds and mammals, in the airborne flights of spores and seeds, and in the collective movements of some animal groups. Lévy walks are also evident in trace fossils (ichnofossils) - the preserved form of tracks made by organisms that occupied ancient sea beds about 252-66 million years ago. And they are utilised by algae that originated around two billion years ago, and still exist today. In September of 2017, leading researchers from across the life sciences, along with mathematicians and physicists, got together at a Company of Biologists' Workshop to discuss the origins and biological significance of these movement patterns. In this Review the essence of the technical and sometimes heated discussions is distilled and made accessible for all. In just a few pages, the reader is taken from a gentle introduction to the frontiers of a very active field of scientific enquiry. What emerges is a fascinating story of a truly inter-disciplinary scientific endeavour that is seeking to better understand movement patterns occurring across all biological scales. © 2018. Published by The Company of Biologists Ltd.
Kim, Kyoung; Lee, Dong-Kyu; Jung, Sang-In
2015-01-01
[Purpose] To investigate the effect of coordination movement using the Proprioceptive Neuromuscular Facilitation pattern underwater on the balance and gait of stroke patients. [Subjects and Methods] Twenty stroke patients were randomly assigned to an experimental group that performed coordination movement using the Proprioceptive Neuromuscular Facilitation pattern underwater and a control group (n =10 each). Both the groups underwent neurodevelopmental treatment, and the experimental group performed coordination movement using the Proprioceptive neuromuscular facilitation pattern underwater. Balance was measured using the Berg Balance Scale and Functional Reach Test, and gait was measured using the 10-Meter Walk Test and Timed Up and Go Test. To compare in-group data before and after the intervention, paired t-test was used. Independent t-test was used to compare differences in the results of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test before and after the intervention between the groups. [Results] Comparison within the groups showed significant differences in the results of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test before and after the experimental intervention. On comparison between the groups, there were greater improvements in the scores of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test in the experimental group. [Conclusion] The findings demonstrate that coordination movement using the Proprioceptive Neuromuscular Facilitation pattern under water has a significant effect on the balance and gait of stroke patients. PMID:26834335
Different Patterns of Walking and Postprandial Triglycerides in Older Women
KASHIWABARA, KYOKO; KIDOKORO, TETSUHIRO; YANAOKA, TAKUMA; BURNS, STEPHEN F.; STENSEL, DAVID J.; MIYASHITA, MASASHI
2018-01-01
ABSTRACT Purpose Although a single bout of continuous exercise (≥30 min) reduces postprandial triglyceride (TG), little evidence is available regarding the effect of multiple short (≤10 min) bouts of exercise on postprandial TG in individuals at increased risk for cardiovascular diseases. This study compared the effects of different patterns of walking on postprandial TG in postmenopausal, older women with hypertriglyceridemia. Methods Twelve inactive women (mean age ± SD, 71 ± 5 yr) with hypertriglyceridemia (fasting TG ≥1.70 mmol·L−1) completed three, 1-d laboratory-based trials in a random order: 1) control, 2) continuous walking, and 3) multiple short bouts of walking. On the control trial, participants sat in a chair for 8 h. For the walking trials, participants walked briskly in either one 30-min bout in the morning (0900–0930 h) or twenty 90-s bouts over 8 h. Except for walking, both exercise trials mimicked the control trial. In each trial, participants consumed a standardized breakfast (0800 h) and lunch (1100 h). Venous blood samples were collected in the fasted state and at 2, 4, 6, and 8 h after breakfast. Results The serum TG incremental area under the curve was 35% and 33% lower on the continuous and multiple short bouts of walking trials than that on the control trial (8.2 ± 3.1 vs 8.5 ± 5.4 vs 12.7 ± 5.8 mmol per 8 h·L−1, respectively; main effect of trial: effect size = 0.459, P = 0.001). Conclusions Accumulating walking in short bouts limits postprandial TG in at-risk, inactive older women with fasting hypertriglyceridemia. PMID:28857839
Why the null matters: statistical tests, random walks and evolution.
Sheets, H D; Mitchell, C E
2001-01-01
A number of statistical tests have been developed to determine what type of dynamics underlie observed changes in morphology in evolutionary time series, based on the pattern of change within the time series. The theory of the 'scaled maximum', the 'log-rate-interval' (LRI) method, and the Hurst exponent all operate on the same principle of comparing the maximum change, or rate of change, in the observed dataset to the maximum change expected of a random walk. Less change in a dataset than expected of a random walk has been interpreted as indicating stabilizing selection, while more change implies directional selection. The 'runs test' in contrast, operates on the sequencing of steps, rather than on excursion. Applications of these tests to computer generated, simulated time series of known dynamical form and various levels of additive noise indicate that there is a fundamental asymmetry in the rate of type II errors of the tests based on excursion: they are all highly sensitive to noise in models of directional selection that result in a linear trend within a time series, but are largely noise immune in the case of a simple model of stabilizing selection. Additionally, the LRI method has a lower sensitivity than originally claimed, due to the large range of LRI rates produced by random walks. Examination of the published results of these tests show that they have seldom produced a conclusion that an observed evolutionary time series was due to directional selection, a result which needs closer examination in light of the asymmetric response of these tests.
NASA Astrophysics Data System (ADS)
Durhuus, Bergfinnur; Jonsson, Thordur; Wheater, John F.
2006-02-01
We develop techniques to obtain rigorous bounds on the behaviour of random walks on combs. Using these bounds, we calculate exactly the spectral dimension of random combs with infinite teeth at random positions or teeth with random but finite length. We also calculate exactly the spectral dimension of some fixed non-translationally invariant combs. We relate the spectral dimension to the critical exponent of the mass of the two-point function for random walks on random combs, and compute mean displacements as a function of walk duration. We prove that the mean first passage time is generally infinite for combs with anomalous spectral dimension.
Quantum random walks on congested lattices and the effect of dephasing.
Motes, Keith R; Gilchrist, Alexei; Rohde, Peter P
2016-01-27
We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled on lattices that contain static defects which reverse the walker's direction. We implement a dephasing process after each step which allows us to smoothly interpolate between classical and quantum random walks as well as study the effect of dephasing on the quantum walk. Our key results show that a quantum walker escapes a finite boundary dramatically faster than a classical walker and that this advantage remains in the presence of heavily congested lattices.
Coupled continuous time-random walks in quenched random environment
NASA Astrophysics Data System (ADS)
Magdziarz, M.; Szczotka, W.
2018-02-01
We introduce a coupled continuous-time random walk with coupling which is characteristic for Lévy walks. Additionally we assume that the walker moves in a quenched random environment, i.e. the site disorder at each lattice point is fixed in time. We analyze the scaling limit of such a random walk. We show that for large times the behaviour of the analyzed process is exactly the same as in the case of uncoupled quenched trap model for Lévy flights.
NASA Astrophysics Data System (ADS)
Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.
2017-12-01
We analyze a Markovian random walk strategy on undirected regular networks involving power matrix functions of the type L\\frac{α{2}} where L indicates a ‘simple’ Laplacian matrix. We refer to such walks as ‘fractional random walks’ with admissible interval 0<α ≤slant 2 . We deduce probability-generating functions (network Green’s functions) for the fractional random walk. From these analytical results we establish a generalization of Polya’s recurrence theorem for fractional random walks on d-dimensional infinite lattices: The fractional random walk is transient for dimensions d > α (recurrent for d≤slantα ) of the lattice. As a consequence, for 0<α< 1 the fractional random walk is transient for all lattice dimensions d=1, 2, .. and in the range 1≤slantα < 2 for dimensions d≥slant 2 . Finally, for α=2 , Polya’s classical recurrence theorem is recovered, namely the walk is transient only for lattice dimensions d≥slant 3 . The generalization of Polya’s recurrence theorem remains valid for the class of random walks with Lévy flight asymptotics for long-range steps. We also analyze the mean first passage probabilities, mean residence times, mean first passage times and global mean first passage times (Kemeny constant) for the fractional random walk. For an infinite 1D lattice (infinite ring) we obtain for the transient regime 0<α<1 closed form expressions for the fractional lattice Green’s function matrix containing the escape and ever passage probabilities. The ever passage probabilities (fractional lattice Green’s functions) in the transient regime fulfil Riesz potential power law decay asymptotic behavior for nodes far from the departure node. The non-locality of the fractional random walk is generated by the non-diagonality of the fractional Laplacian matrix with Lévy-type heavy tailed inverse power law decay for the probability of long-range moves. This non-local and asymptotic behavior of the fractional random walk introduces small-world properties with the emergence of Lévy flights on large (infinite) lattices.
Wheeled and standard walkers in Parkinson's disease patients with gait freezing.
Cubo, Esther; Moore, Charity G; Leurgans, Sue; Goetz, Christopher G
2003-10-01
Compare the efficacy of two walking assistance devices (wheeled walker and standard walker) to unassisted walking for patients with PD and gait freezing. Although numerous walking devices are used clinically, their relative effects on freezing and walking speed have never been systematically tested. Nineteen PD patients (14 non-demented) walked under three conditions in randomized order: unassisted walking, standard walker, and wheeled walker. Patients walked up to three times in each condition through a standard course that included rising from a chair, walking through a doorway, straightway walking, pivoting, and return. Total walking time, freezing time and number of freezes were compared for the three conditions using mixed models (walking time) and Friedman's test (freezing). The wheeled walker was further studied by comparing the effect of an attached laser that projected a bar of light on the floor as a visual walking cue. Use of either type of device significantly slowed walking compared to unassisted walking. Neither walker reduced any index of freezing, nor the laser attachment offered any advantage to the wheeled walker. The standard walker increased freezing, and the wheeled walker had no effect on freezing. Among the non-demented subjects (n=14), the same patterns occurred, although the walking speed was less impaired by the wheeled walker than the standard walker in this group. Though walkers may stabilize patients and increase confidence, PD patients walk more slowly when using them, without reducing freezing. Because the wheeled walker was intermediate for walking time and does not aggravate freezing, if walkers are used for these subjects, this type of walker should be favored.
NASA Astrophysics Data System (ADS)
Zaburdaev, V.; Denisov, S.; Klafter, J.
2015-04-01
Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Lévy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Lévy walks, surveys their existing applications, including latest advances, and outlines further perspectives.
Continuous-time quantum random walks require discrete space
NASA Astrophysics Data System (ADS)
Manouchehri, K.; Wang, J. B.
2007-11-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.
Search for Directed Networks by Different Random Walk Strategies
NASA Astrophysics Data System (ADS)
Zhu, Zi-Qi; Jin, Xiao-Ling; Huang, Zhi-Long
2012-03-01
A comparative study is carried out on the efficiency of five different random walk strategies searching on directed networks constructed based on several typical complex networks. Due to the difference in search efficiency of the strategies rooted in network clustering, the clustering coefficient in a random walker's eye on directed networks is defined and computed to be half of the corresponding undirected networks. The search processes are performed on the directed networks based on Erdös—Rényi model, Watts—Strogatz model, Barabási—Albert model and clustered scale-free network model. It is found that self-avoiding random walk strategy is the best search strategy for such directed networks. Compared to unrestricted random walk strategy, path-iteration-avoiding random walks can also make the search process much more efficient. However, no-triangle-loop and no-quadrangle-loop random walks do not improve the search efficiency as expected, which is different from those on undirected networks since the clustering coefficient of directed networks are smaller than that of undirected networks.
Godi, Marco; Giardini, Marica; Arcolin, Ilaria; Nardone, Antonio; Giordano, Andrea; Schieppati, Marco
2018-01-01
Background Several patients with Parkinson´s disease (PD) can walk normally along straight trajectories, and impairment in their stride length and cadence may not be easily discernible. Do obvious abnormalities occur in these high-functioning patients when more challenging trajectories are travelled, such as circular paths, which normally implicate a graded modulation in the duration of the interlimb gait cycle phases? Methods We compared a cohort of well-treated mildly to moderately affected PD patients to a group of age-matched healthy subjects (HS), by deliberately including HS spontaneously walking at the same speed of the patients with PD. All participants performed, in random order: linear and circular walking (clockwise and counter-clockwise) at self-selected speed. By means of pressure-sensitive insoles, we recorded walking speed, cadence, duration of single support, double support, swing phase, and stride time. Stride length-cadence relationships were built for linear and curved walking. Stride-to-stride variability of temporal gait parameters was also estimated. Results Walking speed, cadence or stride length were not different between PD and HS during linear walking. Speed, cadence and stride length diminished during curved walking in both groups, stride length more in PD than HS. In PD compared to HS, the stride length-cadence relationship was altered during curved walking. Duration of the double-support phase was also increased during curved walking, as was variability of the single support, swing phase and double support phase. Conclusion The spatio-temporal gait pattern and variability are significantly modified in well-treated, high-functioning patients with PD walking along circular trajectories, even when they exhibit no changes in speed in straight-line walking. The increased variability of the gait phases during curved walking is an identifying characteristic of PD. We discuss our findings in term of interplay between control of balance and of locomotor progression: the former is challenged by curved trajectories even in high-functioning patients, while the latter may not be critically affected. PMID:29750815
Quantum random walks on congested lattices and the effect of dephasing
Motes, Keith R.; Gilchrist, Alexei; Rohde, Peter P.
2016-01-01
We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled on lattices that contain static defects which reverse the walker’s direction. We implement a dephasing process after each step which allows us to smoothly interpolate between classical and quantum random walks as well as study the effect of dephasing on the quantum walk. Our key results show that a quantum walker escapes a finite boundary dramatically faster than a classical walker and that this advantage remains in the presence of heavily congested lattices. PMID:26812924
A discrete random walk on the hypercube
NASA Astrophysics Data System (ADS)
Zhang, Jingyuan; Xiang, Yonghong; Sun, Weigang
2018-03-01
In this paper, we study the scaling for mean first-passage time (MFPT) of random walks on the hypercube and obtain a closed-form formula for the MFPT over all node pairs. We also determine the exponent of scaling efficiency characterizing the random walks and compare it with those of the existing networks. Finally we study the random walks on the hypercube with a located trap and provide a solution of the Kirchhoff index of the hypercube.
Walking-age analyzer for healthcare applications.
Jin, Bo; Thu, Tran Hoai; Baek, Eunhye; Sakong, SungHwan; Xiao, Jin; Mondal, Tapas; Deen, M Jamal
2014-05-01
This paper describes a walking-age pattern analysis and identification system using a 3-D accelerometer and a gyroscope. First, a walking pattern database from 79 volunteers of ages ranging from 10 to 83 years is constructed. Second, using feature extraction and clustering, three distinct walking-age groups, children of ages 10 and below, adults in 20-60s, and elders in 70s and 80s, were identified. For this study, low-pass filtering, empirical mode decomposition, and K-means were used to process and analyze the experimental results. Analysis shows that volunteers' walking-ages can be categorized into distinct groups based on simple walking pattern signals. This grouping can then be used to detect persons with walking patterns outside their age groups. If the walking pattern puts an individual in a higher "walking age" grouping, then this could be an indicator of potential health/walking problems, such as weak joints, poor musculoskeletal support system or a tendency to fall.
NASA Astrophysics Data System (ADS)
Reynolds, A. M.
2008-07-01
The results of numerical simulations indicate that deterministic walks with inverse-square power-law scaling are a robust emergent property of predators that use chemotaxis to locate randomly and sparsely distributed stationary prey items. It is suggested that chemotactic destructive foraging accounts for the apparent Lévy flight movement patterns of Oxyrrhis marina microzooplankton in still water containing prey items. This challenges the view that these organisms are executing an innate optimal Lévy flight searching strategy. Crucial for the emergence of inverse-square power-law scaling is the tendency of chemotaxis to occasionally cause predators to miss the nearest prey item, an occurrence which would not arise if prey were located through the employment of a reliable cognitive map or if prey location were visually cued and perfect.
Influence of the random walk finite step on the first-passage probability
NASA Astrophysics Data System (ADS)
Klimenkova, Olga; Menshutin, Anton; Shchur, Lev
2018-01-01
A well known connection between first-passage probability of random walk and distribution of electrical potential described by Laplace equation is studied. We simulate random walk in the plane numerically as a discrete time process with fixed step length. We measure first-passage probability to touch the absorbing sphere of radius R in 2D. We found a regular deviation of the first-passage probability from the exact function, which we attribute to the finiteness of the random walk step.
NASA Astrophysics Data System (ADS)
Odagaki, Takashi; Kasuya, Keisuke
2017-09-01
Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy's Weibull distribution b(a/b){a+1}/{b}[Γ({a+1}/{b})]-1x^a\\exp(-a/bx^b)} where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as p- α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) - ν(0) ] / [ ν(1) - ν(0) ] = pβ with β = 0.388 when p ≪ 0.1 and β = 0.0822 when p ≫ 0.1. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
A New Random Walk for Replica Detection in WSNs.
Aalsalem, Mohammed Y; Khan, Wazir Zada; Saad, N M; Hossain, Md Shohrab; Atiquzzaman, Mohammed; Khan, Muhammad Khurram
2016-01-01
Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical.
A New Random Walk for Replica Detection in WSNs
Aalsalem, Mohammed Y.; Saad, N. M.; Hossain, Md. Shohrab; Atiquzzaman, Mohammed; Khan, Muhammad Khurram
2016-01-01
Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical. PMID:27409082
Signatures of active and passive optimized Lévy searching in jellyfish.
Reynolds, Andy M
2014-10-06
Some of the strongest empirical support for Lévy search theory has come from telemetry data for the dive patterns of marine predators (sharks, bony fishes, sea turtles and penguins). The dive patterns of the unusually large jellyfish Rhizostoma octopus do, however, sit outside of current Lévy search theory which predicts that a single search strategy is optimal. When searching the water column, the movement patterns of these jellyfish change over time. Movement bouts can be approximated by a variety of Lévy and Brownian (exponential) walks. The adaptive value of this variation is not known. On some occasions movement pattern data are consistent with the jellyfish prospecting away from a preferred depth, not finding an improvement in conditions elsewhere and so returning to their original depth. This 'bounce' behaviour also sits outside of current Lévy walk search theory. Here, it is shown that the jellyfish movement patterns are consistent with their using optimized 'fast simulated annealing'--a novel kind of Lévy walk search pattern--to locate the maximum prey concentration in the water column and/or to locate the strongest of many olfactory trails emanating from more distant prey. Fast simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a large search space. This new finding shows that the notion of active optimized Lévy walk searching is not limited to the search for randomly and sparsely distributed resources, as previously thought, but can be extended to embrace other scenarios, including that of the jellyfish R. octopus. In the presence of convective currents, it could become energetically favourable to search the water column by riding the convective currents. Here, it is shown that these passive movements can be represented accurately by Lévy walks of the type occasionally seen in R. octopus. This result vividly illustrates that Lévy walks are not necessarily the result of selection pressures for advantageous searching behaviour but can instead arise freely and naturally from simple processes. It also shows that the family of Lévy walkers is vastly larger than previously thought and includes spores, pollens, seeds and minute wingless arthropods that on warm days disperse passively within the atmospheric boundary layer. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Random walks of colloidal probes in viscoelastic materials
NASA Astrophysics Data System (ADS)
Khan, Manas; Mason, Thomas G.
2014-04-01
To overcome limitations of using a single fixed time step in random walk simulations, such as those that rely on the classic Wiener approach, we have developed an algorithm for exploring random walks based on random temporal steps that are uniformly distributed in logarithmic time. This improvement enables us to generate random-walk trajectories of probe particles that span a highly extended dynamic range in time, thereby facilitating the exploration of probe motion in soft viscoelastic materials. By combining this faster approach with a Maxwell-Voigt model (MVM) of linear viscoelasticity, based on a slowly diffusing harmonically bound Brownian particle, we rapidly create trajectories of spherical probes in soft viscoelastic materials over more than 12 orders of magnitude in time. Appropriate windowing of these trajectories over different time intervals demonstrates that random walk for the MVM is neither self-similar nor self-affine, even if the viscoelastic material is isotropic. We extend this approach to spatially anisotropic viscoelastic materials, using binning to calculate the anisotropic mean square displacements and creep compliances along different orthogonal directions. The elimination of a fixed time step in simulations of random processes, including random walks, opens up interesting possibilities for modeling dynamics and response over a highly extended temporal dynamic range.
The Shark Random Swim - (Lévy Flight with Memory)
NASA Astrophysics Data System (ADS)
Businger, Silvia
2018-05-01
The Elephant Random Walk (ERW), first introduced by Schütz and Trimper (Phys Rev E 70:045101, 2004), is a one-dimensional simple random walk on Z having a memory about the whole past. We study the Shark Random Swim, a random walk with memory about the whole past, whose steps are α -stable distributed with α \\in (0,2] . Our aim in this work is to study the impact of the heavy tailed step distributions on the asymptotic behavior of the random walk. We shall see that, as for the ERW, the asymptotic behavior of the Shark Random Swim depends on its memory parameter p, and that a phase transition can be observed at the critical value p=1/α.
Record statistics of financial time series and geometric random walks
NASA Astrophysics Data System (ADS)
Sabir, Behlool; Santhanam, M. S.
2014-09-01
The study of record statistics of correlated series in physics, such as random walks, is gaining momentum, and several analytical results have been obtained in the past few years. In this work, we study the record statistics of correlated empirical data for which random walk models have relevance. We obtain results for the records statistics of select stock market data and the geometric random walk, primarily through simulations. We show that the distribution of the age of records is a power law with the exponent α lying in the range 1.5≤α≤1.8. Further, the longest record ages follow the Fréchet distribution of extreme value theory. The records statistics of geometric random walk series is in good agreement with that obtained from empirical stock data.
Comparing Algorithms for Graph Isomorphism Using Discrete- and Continuous-Time Quantum Random Walks
Rudinger, Kenneth; Gamble, John King; Bach, Eric; ...
2013-07-01
Berry and Wang [Phys. Rev. A 83, 042317 (2011)] show numerically that a discrete-time quan- tum random walk of two noninteracting particles is able to distinguish some non-isomorphic strongly regular graphs from the same family. Here we analytically demonstrate how it is possible for these walks to distinguish such graphs, while continuous-time quantum walks of two noninteracting parti- cles cannot. We show analytically and numerically that even single-particle discrete-time quantum random walks can distinguish some strongly regular graphs, though not as many as two-particle noninteracting discrete-time walks. Additionally, we demonstrate how, given the same quantum random walk, subtle di erencesmore » in the graph certi cate construction algorithm can nontrivially im- pact the walk's distinguishing power. We also show that no continuous-time walk of a xed number of particles can distinguish all strongly regular graphs when used in conjunction with any of the graph certi cates we consider. We extend this constraint to discrete-time walks of xed numbers of noninteracting particles for one kind of graph certi cate; it remains an open question as to whether or not this constraint applies to the other graph certi cates we consider.« less
Phenomenological picture of fluctuations in branching random walks
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Munier, S.
2014-10-01
We propose a picture of the fluctuations in branching random walks, which leads to predictions for the distribution of a random variable that characterizes the position of the bulk of the particles. We also interpret the 1 /√{t } correction to the average position of the rightmost particle of a branching random walk for large times t ≫1 , computed by Ebert and Van Saarloos, as fluctuations on top of the mean-field approximation of this process with a Brunet-Derrida cutoff at the tip that simulates discreteness. Our analytical formulas successfully compare to numerical simulations of a particular model of a branching random walk.
Effects of visual focus and gait speed on walking balance in the frontal plane.
Goodworth, Adam; Perrone, Kathryn; Pillsbury, Mark; Yargeau, Michelle
2015-08-01
We investigated how head position and gait speed influenced frontal plane balance responses to external perturbations during gait. Thirteen healthy participants walked on a treadmill at three different gait speeds. Visual conditions included either focus downward on lower extremities and walking surface only or focus forward on a stationary scene with horizontal and vertical lines. The treadmill was positioned on a platform that was stationary (non-perturbed) or moving in a pattern that appeared random to the subjects (perturbed). In non-perturbed walking, medial-lateral upper body motion was very similar between visual conditions. However, in perturbed walking, there was significantly less body motion when focus was on the stationary visual scene, suggesting visual feedback of stationary vertical and horizontal cues are particularly important when balance is challenged. Sensitivity of body motion to perturbations was significantly decreased by increasing gait speed, suggesting that faster walking was less sensitive to frontal plane perturbations. Finally, our use of external perturbations supported the idea that certain differences in balance control mechanisms can only be detected in more challenging situations, which is an important consideration for approaches to investigating sensory contribution to balance during gait. Copyright © 2015 Elsevier B.V. All rights reserved.
A new time domain random walk method for solute transport in 1-D heterogeneous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banton, O.; Delay, F.; Porel, G.
A new method to simulate solute transport in 1-D heterogeneous media is presented. This time domain random walk method (TDRW), similar in concept to the classical random walk method, calculates the arrival time of a particle cloud at a given location (directly providing the solute breakthrough curve). The main advantage of the method is that the restrictions on the space increments and the time steps which exist with the finite differences and random walk methods are avoided. In a homogeneous zone, the breakthrough curve (BTC) can be calculated directly at a given distance using a few hundred particles or directlymore » at the boundary of the zone. Comparisons with analytical solutions and with the classical random walk method show the reliability of this method. The velocity and dispersivity calculated from the simulated results agree within two percent with the values used as input in the model. For contrasted heterogeneous media, the random walk can generate high numerical dispersion, while the time domain approach does not.« less
Spectrum of walk matrix for Koch network and its application
NASA Astrophysics Data System (ADS)
Xie, Pinchen; Lin, Yuan; Zhang, Zhongzhi
2015-06-01
Various structural and dynamical properties of a network are encoded in the eigenvalues of walk matrix describing random walks on the network. In this paper, we study the spectra of walk matrix of the Koch network, which displays the prominent scale-free and small-world features. Utilizing the particular architecture of the network, we obtain all the eigenvalues and their corresponding multiplicities. Based on the link between the eigenvalues of walk matrix and random target access time defined as the expected time for a walker going from an arbitrary node to another one selected randomly according to the steady-state distribution, we then derive an explicit solution to the random target access time for random walks on the Koch network. Finally, we corroborate our computation for the eigenvalues by enumerating spanning trees in the Koch network, using the connection governing eigenvalues and spanning trees, where a spanning tree of a network is a subgraph of the network, that is, a tree containing all the nodes.
Random walks exhibiting anomalous diffusion: elephants, urns and the limits of normality
NASA Astrophysics Data System (ADS)
Kearney, Michael J.; Martin, Richard J.
2018-01-01
A random walk model is presented which exhibits a transition from standard to anomalous diffusion as a parameter is varied. The model is a variant on the elephant random walk and differs in respect of the treatment of the initial state, which in the present work consists of a given number N of fixed steps. This also links the elephant random walk to other types of history dependent random walk. As well as being amenable to direct analysis, the model is shown to be asymptotically equivalent to a non-linear urn process. This provides fresh insights into the limiting form of the distribution of the walker’s position at large times. Although the distribution is intrinsically non-Gaussian in the anomalous diffusion regime, it gradually reverts to normal form when N is large under quite general conditions.
Risk of falls in older people during fast-walking--the TASCOG study.
Callisaya, M L; Blizzard, L; McGinley, J L; Srikanth, V K
2012-07-01
To investigate the relationship between fast-walking and falls in older people. Individuals aged 60-86 years were randomly selected from the electoral roll (n=176). Gait speed, step length, cadence and a walk ratio were recorded during preferred- and fast-walking using an instrumented walkway. Falls were recorded prospectively over 12 months. Log multinomial regression was used to estimate the relative risk of single and multiple falls associated with gait variables during fast-walking and change between preferred- and fast-walking. Covariates included age, sex, mood, physical activity, sensorimotor and cognitive measures. The risk of multiple falls was increased for those with a smaller walk ratio (shorter steps, faster cadence) during fast-walking (RR 0.92, CI 0.87, 0.97) and greater reduction in the walk ratio (smaller increase in step length, larger increase in cadence) when changing to fast-walking (RR 0.73, CI 0.63, 0.85). These gait patterns were associated with poorer physiological and cognitive function (p<0.05). A higher risk of multiple falls was also seen for those in the fastest quarter of gait speed (p=0.01) at fast-walking. A trend for better reaction time, balance, memory and physical activity for higher categories of gait speed was stronger for fallers than non-fallers (p<0.05). Tests of fast-walking may be useful in identifying older individuals at risk of multiple falls. There may be two distinct groups at risk--the frail person with short shuffling steps, and the healthy person exposed to greater risk. Copyright © 2012 Elsevier B.V. All rights reserved.
The Not-so-Random Drunkard's Walk
ERIC Educational Resources Information Center
Ehrhardt, George
2013-01-01
This dataset contains the results of a quasi-experiment, testing Karl Pearson's "drunkard's walk" analogy for an abstract random walk. Inspired by the alternate hypothesis that drunkards stumble to the side of their dominant hand, it includes data on intoxicated test subjects walking a 10' line. Variables include: the…
Antipersistent dynamics in kinetic models of wealth exchange
NASA Astrophysics Data System (ADS)
Goswami, Sanchari; Chatterjee, Arnab; Sen, Parongama
2011-11-01
We investigate the detailed dynamics of gains and losses made by agents in some kinetic models of wealth exchange. An earlier work suggested that a walk in an abstract gain-loss space can be conceived for the agents. For models in which agents do not save, or save with uniform saving propensity, the walk has diffusive behavior. For the case in which the saving propensity λ is distributed randomly (0≤λ<1), the resultant walk showed a ballistic nature (except at a particular value of λ*≈0.47). Here we consider several other features of the walk with random λ. While some macroscopic properties of this walk are comparable to a biased random walk, at microscopic level, there are gross differences. The difference turns out to be due to an antipersistent tendency toward making a gain (loss) immediately after making a loss (gain). This correlation is in fact present in kinetic models without saving or with uniform saving as well, such that the corresponding walks are not identical to ordinary random walks. In the distributed saving case, antipersistence occurs with a simultaneous overall bias.
Patching, Geoffrey R.; Rahm, Johan; Jansson, Märit; Johansson, Maria
2017-01-01
Accurate assessment of people’s preferences for different outdoor lighting applications is increasingly considered important in the development of new urban environments. Here a new method of random environmental walking is proposed to complement current methods of assessing urban lighting applications, such as self-report questionnaires. The procedure involves participants repeatedly walking between different lighting applications by random selection of a lighting application and preferred choice or by random selection of a lighting application alone. In this manner, participants are exposed to all lighting applications of interest more than once and participants’ preferences for the different lighting applications are reflected in the number of times they walk to each lighting application. On the basis of an initial simulation study, to explore the feasibility of this approach, a comprehensive field test was undertaken. The field test included random environmental walking and collection of participants’ subjective ratings of perceived pleasantness (PP), perceived quality, perceived strength, and perceived flicker of four lighting applications. The results indicate that random environmental walking can reveal participants’ preferences for different lighting applications that, in the present study, conformed to participants’ ratings of PP and perceived quality of the lighting applications. As a complement to subjectively stated environmental preferences, random environmental walking has the potential to expose behavioral preferences for different lighting applications. PMID:28337163
Signatures of active and passive optimized Lévy searching in jellyfish
Reynolds, Andy M.
2014-01-01
Some of the strongest empirical support for Lévy search theory has come from telemetry data for the dive patterns of marine predators (sharks, bony fishes, sea turtles and penguins). The dive patterns of the unusually large jellyfish Rhizostoma octopus do, however, sit outside of current Lévy search theory which predicts that a single search strategy is optimal. When searching the water column, the movement patterns of these jellyfish change over time. Movement bouts can be approximated by a variety of Lévy and Brownian (exponential) walks. The adaptive value of this variation is not known. On some occasions movement pattern data are consistent with the jellyfish prospecting away from a preferred depth, not finding an improvement in conditions elsewhere and so returning to their original depth. This ‘bounce’ behaviour also sits outside of current Lévy walk search theory. Here, it is shown that the jellyfish movement patterns are consistent with their using optimized ‘fast simulated annealing’—a novel kind of Lévy walk search pattern—to locate the maximum prey concentration in the water column and/or to locate the strongest of many olfactory trails emanating from more distant prey. Fast simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a large search space. This new finding shows that the notion of active optimized Lévy walk searching is not limited to the search for randomly and sparsely distributed resources, as previously thought, but can be extended to embrace other scenarios, including that of the jellyfish R. octopus. In the presence of convective currents, it could become energetically favourable to search the water column by riding the convective currents. Here, it is shown that these passive movements can be represented accurately by Lévy walks of the type occasionally seen in R. octopus. This result vividly illustrates that Lévy walks are not necessarily the result of selection pressures for advantageous searching behaviour but can instead arise freely and naturally from simple processes. It also shows that the family of Lévy walkers is vastly larger than previously thought and includes spores, pollens, seeds and minute wingless arthropods that on warm days disperse passively within the atmospheric boundary layer. PMID:25100323
Adaptive random walks on the class of Web graphs
NASA Astrophysics Data System (ADS)
Tadić, B.
2001-09-01
We study random walk with adaptive move strategies on a class of directed graphs with variable wiring diagram. The graphs are grown from the evolution rules compatible with the dynamics of the world-wide Web [B. Tadić, Physica A 293, 273 (2001)], and are characterized by a pair of power-law distributions of out- and in-degree for each value of the parameter β, which measures the degree of rewiring in the graph. The walker adapts its move strategy according to locally available information both on out-degree of the visited node and in-degree of target node. A standard random walk, on the other hand, uses the out-degree only. We compute the distribution of connected subgraphs visited by an ensemble of walkers, the average access time and survival probability of the walks. We discuss these properties of the walk dynamics relative to the changes in the global graph structure when the control parameter β is varied. For β≥ 3, corresponding to the world-wide Web, the access time of the walk to a given level of hierarchy on the graph is much shorter compared to the standard random walk on the same graph. By reducing the amount of rewiring towards rigidity limit β↦βc≲ 0.1, corresponding to the range of naturally occurring biochemical networks, the survival probability of adaptive and standard random walk become increasingly similar. The adaptive random walk can be used as an efficient message-passing algorithm on this class of graphs for large degree of rewiring.
When Human Walking is a Random Walk
NASA Astrophysics Data System (ADS)
Hausdorff, J. M.
1998-03-01
The complex, hierarchical locomotor system normally does a remarkable job of controlling an inherently unstable, multi-joint system. Nevertheless, the stride interval --- the duration of a gait cycle --- fluctuates from one stride to the next, even under stationary conditions. We used random walk analysis to study the dynamical properties of these fluctuations under normal conditions and how they change with disease and aging. Random walk analysis of the stride-to-stride fluctuations of healthy, young adult men surprisingly reveals a self-similar pattern: fluctuations at one time scale are statistically similar to those at multiple other time scales (Hausdorff et al, J Appl Phsyiol, 1995). To study the stability of this fractal property, we analyzed data obtained from healthy subjects who walked for 1 hour at their usual pace, as well as at slower and faster speeds. The stride interval fluctuations exhibited long-range correlations with power-law decay for up to a thousand strides at all three walking rates. In contrast, during metronomically-paced walking, these long-range correlations disappeared; variations in the stride interval were uncorrelated and non-fractal (Hausdorff et al, J Appl Phsyiol, 1996). To gain insight into the mechanism(s) responsible for this fractal property, we examined the effects of aging and neurological impairment. Using detrended fluctuation analysis (DFA), we computed α, a measure of the degree to which one stride interval is correlated with previous and subsequent intervals over different time scales. α was significantly lower in healthy elderly subjects compared to young adults (p < .003) and in subjects with Huntington's disease, a neuro-degenerative disorder of the central nervous system, compared to disease-free controls (p < 0.005) (Hausdorff et al, J Appl Phsyiol, 1997). α was also significantly related to degree of functional impairment in subjects with Huntington's disease (r=0.78). Recently, we have observed that just as there are changes with α during aging, there also changes with development. Apparently, the fractal scaling of walking does not become mature until children are eleven years old. Conclusions: The fractal dynamics of spontaneous stride interval fluctuations are normally quite robust and are apparently intrinsic to the healthy adult locomotor system. However, alterations in this fractal scaling property are associated with impairment in central nervous system control, aging and neural development.
A Pearson Random Walk with Steps of Uniform Orientation and Dirichlet Distributed Lengths
NASA Astrophysics Data System (ADS)
Le Caër, Gérard
2010-08-01
A constrained diffusive random walk of n steps in ℝ d and a random flight in ℝ d , which are equivalent, were investigated independently in recent papers (J. Stat. Phys. 127:813, 2007; J. Theor. Probab. 20:769, 2007, and J. Stat. Phys. 131:1039, 2008). The n steps of the walk are independent and identically distributed random vectors of exponential length and uniform orientation. Conditioned on the sum of their lengths being equal to a given value l, closed-form expressions for the distribution of the endpoint of the walk were obtained altogether for any n for d=1,2,4. Uniform distributions of the endpoint inside a ball of radius l were evidenced for a walk of three steps in 2D and of two steps in 4D. The previous walk is generalized by considering step lengths which have independent and identical gamma distributions with a shape parameter q>0. Given the total walk length being equal to 1, the step lengths have a Dirichlet distribution whose parameters are all equal to q. The walk and the flight above correspond to q=1. Simple analytical expressions are obtained for any d≥2 and n≥2 for the endpoint distributions of two families of walks whose q are integers or half-integers which depend solely on d. These endpoint distributions have a simple geometrical interpretation. Expressed for a two-step planar walk whose q=1, it means that the distribution of the endpoint on a disc of radius 1 is identical to the distribution of the projection on the disc of a point M uniformly distributed over the surface of the 3D unit sphere. Five additional walks, with a uniform distribution of the endpoint in the inside of a ball, are found from known finite integrals of products of powers and Bessel functions of the first kind. They include four different walks in ℝ3, two of two steps and two of three steps, and one walk of two steps in ℝ4. Pearson-Liouville random walks, obtained by distributing the total lengths of the previous Pearson-Dirichlet walks according to some specified probability law are finally discussed. Examples of unconstrained random walks, whose step lengths are gamma distributed, are more particularly considered.
Iliopoulos, Efthymios; Galanis, Nikiforos; Zafeiridis, Andreas; Iosifidis, Michael; Papadopoulos, Pericles; Potoupnis, Michael; Geladas, Nikolaos; Vrabas, Ioannis S; Kirkos, John
2017-10-01
Anterior cruciate ligament (ACL) injury is associated with a pathologic gait pattern and increased energy cost during locomotion. ACL reconstruction could improve the gait pattern. Hamstrings tendon (HAM) and bone-patellar tendon-bone (BPTB) grafts are usually used for reconstruction. The aim of this study was to compare the efficacy of anatomic ACL reconstruction with HAM and BPTB grafts on improving and normalizing the energy cost and physiologic reserves during flat, uphill, and downhill walking. Twenty male subjects with unilateral ACL injuries were randomly assigned to ACL reconstruction with a HAM (n = 10) or BPTB (n = 10) graft. Ten matched controls were also enrolled. All participants performed three 8-min walking tasks at 0, +10, and -10 % gradients before and 9 months after surgery. Energy cost (oxygen consumption, VO 2 ), heart rate (HR), and ventilation (VE) were measured. Lysholm/IKDC scores were recorded. Pre-operatively, VO 2 , HR, and VE were higher in the HAM and BPTB groups than in controls during walking at 0, +10, and -10 % gradients (p < 0.001-0.01). Post-operatively, both HAM and BPTB groups showed reduced VO 2 , HR, and VE during the three walking tasks (p < 0.001-0.01). Although the post-operative VO 2 in both surgical groups reached 90-95 % of the normative (control) value during walking, it remained elevated against the value observed in controls (p < 0.001-0.01). The HAM and BPTB groups showed no differences in post-surgical VO 2 or HR during walking at all three gradients. Anatomic ACL reconstruction with either HAM or BPTB graft resulted in similar short-term improvements in energy cost and nearly normalized locomotion economy and cardiorespiratory reserves during flat, uphill, and downhill walking. The improved locomotion economy is an additional benefit of anatomic ACL reconstruction, irrespective of the type of graft used, that the orthopaedic surgeons should consider. II.
Motor modules during adaptation to walking in a powered ankle exoskeleton.
Jacobs, Daniel A; Koller, Jeffrey R; Steele, Katherine M; Ferris, Daniel P
2018-01-03
Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R 2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R 2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle exoskeleton.
The First Order Correction to the Exit Distribution for Some Random Walks
NASA Astrophysics Data System (ADS)
Kennedy, Tom
2016-07-01
We study three different random walk models on several two-dimensional lattices by Monte Carlo simulations. One is the usual nearest neighbor random walk. Another is the nearest neighbor random walk which is not allowed to backtrack. The final model is the smart kinetic walk. For all three of these models the distribution of the point where the walk exits a simply connected domain D in the plane converges weakly to harmonic measure on partial D as the lattice spacing δ → 0. Let ω (0,\\cdot ;D) be harmonic measure for D, and let ω _δ (0,\\cdot ;D) be the discrete harmonic measure for one of the random walk models. Our definition of the random walk models is unusual in that we average over the orientation of the lattice with respect to the domain. We are interested in the limit of (ω _δ (0,\\cdot ;D)- ω (0,\\cdot ;D))/δ . Our Monte Carlo simulations of the three models lead to the conjecture that this limit equals c_{M,L} ρ _D(z) times Lebesgue measure with respect to arc length along the boundary, where the function ρ _D(z) depends on the domain, but not on the model or lattice, and the constant c_{M,L} depends on the model and on the lattice, but not on the domain. So there is a form of universality for this first order correction. We also give an explicit formula for the conjectured density ρ _D.
IS THE SUICIDE RATE A RANDOM WALK?
Yang, Bijou; Lester, David; Lyke, Jennifer; Olsen, Robert
2015-06-01
The yearly suicide rates for the period 1933-2010 and the daily suicide numbers for 1990 and 1991 were examined for whether the distribution of difference scores (from year to year and from day to day) fitted a normal distribution, a characteristic of stochastic processes that follow a random walk. If the suicide rate were a random walk, then any disturbance to the suicide rate would have a permanent effect and national suicide prevention efforts would likely fail. The distribution of difference scores from day to day (but not the difference scores from year to year) fitted a normal distribution and, therefore, were consistent with a random walk.
A New Family of Solvable Pearson-Dirichlet Random Walks
NASA Astrophysics Data System (ADS)
Le Caër, Gérard
2011-07-01
An n-step Pearson-Gamma random walk in ℝ d starts at the origin and consists of n independent steps with gamma distributed lengths and uniform orientations. The gamma distribution of each step length has a shape parameter q>0. Constrained random walks of n steps in ℝ d are obtained from the latter walks by imposing that the sum of the step lengths is equal to a fixed value. Simple closed-form expressions were obtained in particular for the distribution of the endpoint of such constrained walks for any d≥ d 0 and any n≥2 when q is either q = d/2 - 1 ( d 0=3) or q= d-1 ( d 0=2) (Le Caër in J. Stat. Phys. 140:728-751, 2010). When the total walk length is chosen, without loss of generality, to be equal to 1, then the constrained step lengths have a Dirichlet distribution whose parameters are all equal to q and the associated walk is thus named a Pearson-Dirichlet random walk. The density of the endpoint position of a n-step planar walk of this type ( n≥2), with q= d=2, was shown recently to be a weighted mixture of 1+ floor( n/2) endpoint densities of planar Pearson-Dirichlet walks with q=1 (Beghin and Orsingher in Stochastics 82:201-229, 2010). The previous result is generalized to any walk space dimension and any number of steps n≥2 when the parameter of the Pearson-Dirichlet random walk is q= d>1. We rely on the connection between an unconstrained random walk and a constrained one, which have both the same n and the same q= d, to obtain a closed-form expression of the endpoint density. The latter is a weighted mixture of 1+ floor( n/2) densities with simple forms, equivalently expressed as a product of a power and a Gauss hypergeometric function. The weights are products of factors which depends both on d and n and Bessel numbers independent of d.
Tan, Tzer Han; Silverberg, Jesse L; Floss, Daniela S; Harrison, Maria J; Henley, Christopher L; Cohen, Itai
2015-10-20
Experimental studies show that plant root morphologies can vary widely from straight gravity-aligned primary roots to fractal-like root architectures. However, the opaqueness of soil makes it difficult to observe how environmental factors modulate these patterns. Here, we combine a transparent hydrogel growth medium with a custom built 3D laser scanner to directly image the morphology of Medicago truncatula primary roots. In our experiments, root growth is obstructed by an inclined plane in the growth medium. As the tilt of this rigid barrier is varied, we find Medicago transitions between randomly directed root coiling, sinusoidal root waving, and normal gravity-aligned morphologies. Although these root phenotypes appear morphologically distinct, our analysis demonstrates the divisions are less well defined, and instead, can be viewed as a 2D biased random walk that seeks the path of steepest decent along the inclined plane. Features of this growth response are remarkably similar to the widely known run-and-tumble chemotactic behavior of Escherichia coli bacteria, where biased random walks are used as optimal strategies for nutrient uptake.
Najafi, Bijan; Grewal, Gurtej S; Bharara, Manish; Menzies, Robert; Talal, Talal K; Armstrong, David G
2017-07-01
The objective was to report patterns of physical activity and their relationship to wound healing success in patients with diabetic foot ulcers protected with removable or irremovable offloading devices. Forty-nine people with diabetic foot ulcers were randomized to wear either a removable cast walker (RCW) or an irremovable instant total contact cast (iTCC). Primary outcome measures included change in wound size, physical activities including position (ie, sitting, standing, lying) and locomotion (speed, steps, etc). Outcomes parameters were assessed on weekly basis until wound healing or until 12 weeks. A higher proportion of patients healed at 12 weeks in the iTCC group ( P = .038). Significant differences in activity were observed between groups starting at week 4. RCW patients became more active than the iTCC group (75% higher duration of standing, 100% longer duration of walking, and 126% longer unbroken walking bout, P < .05). Overall, there was an inverse association between rate of weekly wound healing and number of steps taken per day ( r < -.33, P < .05) for both groups. RCW patients had a significant inverse correlation between duration of daily standing and weekly rate of healing ( r = -.67, P < .05). Standing duration was the only significant predictor of healing at 12 weeks. The results from this study suggest significant differences in activity patterns between removable and irremovable offloading devices. These patterns appear to start diverging at week 4, which may indicate a decline in adherence to offloading. Results suggest that while walking may delay wound healing, unprotected standing might be an even more unrealized and sinister culprit.
NASA Technical Reports Server (NTRS)
Buccello, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.
2008-01-01
Falling is a main contributor of injury in older adults. The decline in sensory systems associated with aging limits information needed to successfully compensate for unexpected perturbations. Therefore, sensory changes result in older adults having problems maintaining balance stability when experiencing an unexpected lateral perturbation (e.g. slip) in the environment. The goal of this study was to determine head stability movement strategies used by older adults when experiencing an unexpected lateral perturbation during walking. A total of 16 healthy adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors were placed on the center of mass for the head and trunk segments to collect head and trunk movement in all three planes of motion. The predominant movement strategies for maintaining head stability were determined from the results of the cross-correlation analyses between the head and trunk segments. The Chi square test of independence was used to evaluate the movement pattern distributions of head-trunk coordination during perturbed and non-perturbed walking. When perturbed, head stabilization was significantly challenged in the yaw and roll planes of motion. Subjects demonstrated a movement pattern of the head leading the trunk in an effort to stabilize the head. The older adult subjects used this head stabilization movement pattern to compensate for sensory changes when experiencing the unexpected lateral perturbation.
Self-Attractive Random Walks: The Case of Critical Drifts
NASA Astrophysics Data System (ADS)
Ioffe, Dmitry; Velenik, Yvan
2012-07-01
Self-attractive random walks (polymers) undergo a phase transition in terms of the applied drift (force): If the drift is strong enough, then the walk is ballistic, whereas in the case of small drifts self-attraction wins and the walk is sub-ballistic. We show that, in any dimension d ≥ 2, this transition is of first order. In fact, we prove that the walk is already ballistic at critical drifts, and establish the corresponding LLN and CLT.
Independent voluntary correction and savings in locomotor learning.
Leech, Kristan A; Roemmich, Ryan T
2018-06-14
People can acquire new walking patterns in many different ways. For example, we can change our gait voluntarily in response to instruction or adapt by sensing our movement errors. Here we investigated how acquisition of a new walking pattern through simultaneous voluntary correction and adaptive learning affected the resulting motor memory of the learned pattern. We studied adaptation to split-belt treadmill walking with and without visual feedback of stepping patterns. As expected, visual feedback enabled faster acquisition of the new walking pattern. However, upon later re-exposure to the same split-belt perturbation, participants exhibited similar motor memories whether they had learned with or without visual feedback. Participants who received feedback did not re-engage the mechanism used to accelerate initial acquisition of the new walking pattern to similarly accelerate subsequent relearning. These findings reveal that voluntary correction neither benefits nor interferes with the ability to save a new walking pattern over time. © 2018. Published by The Company of Biologists Ltd.
The Dynamical Classification of Centaurs which Evolve into Comets
NASA Astrophysics Data System (ADS)
Wood, Jeremy R.; Horner, Jonathan; Hinse, Tobias; Marsden, Stephen; Swinburne University of Technology
2016-10-01
Centaurs are small Solar system bodies with semi-major axes between Jupiter and Neptune and perihelia beyond Jupiter. Centaurs can be further subclassified into two dynamical categories - random walk and resonance hopping. Random walk Centaurs have mean square semi-major axes (< a2 >) which vary in time according to a generalized diffusion equation where < a2 > ~t2H. H is the Hurst exponent with 0 < H < 1, and t is time. The behavior of < a2 > for resonance hopping Centaurs is not well described by generalized diffusion.The aim of this study is to determine which dynamical type of Centaur is most likely to evolve into each class of comet. 31,722 fictional massless test particles were integrated for 3 Myr in the 6-body problem (Sun, Jovian planets, test particle). Initially each test particle was a member of one of four groups. The semi-major axes of all test particles in a group were clustered within 0.27 au from a first order, interior Mean Motion resonance of Neptune. The resonances were centered at 18.94 au, 22.95 au, 24.82 au and 28.37 au.If the perihelion of a test particle reached < 4 au then the test particle was considered to be a comet and classified as either a random walk or resonance hopping Centaur. The results showed that over 4,000 test particles evolved into comets within 3 Myr. 59% of these test particles were random walk and 41% were resonance hopping. The behavior of the semi-major axis in time was usually well described by generalized diffusion for random walk Centaurs (ravg = 0.98) and poorly described for resonance hopping Centaurs (ravg = 0.52). The average Hurst exponent was 0.48 for random walk Centaurs and 0.20 for resonance hopping Centaurs. Random walk Centaurs were more likely to evolve into short period comets while resonance hopping Centaurs were more likely to evolve into long period comets. For each initial cluster, resonance hopping Centaurs took longer to evolve into comets than random walk Centaurs. Overall the population of random walk Centaurs averaged 143 kyr to evolve into comets, and the population of resonance hopping Centaurs averaged 164 kyr.
Pólya number and first return of bursty random walk: Rigorous solutions
NASA Astrophysics Data System (ADS)
Wan, J.; Xu, X. P.
2012-03-01
The recurrence properties of random walks can be characterized by Pólya number, i.e., the probability that the walker has returned to the origin at least once. In this paper, we investigate Pólya number and first return for bursty random walk on a line, in which the walk has different step size and moving probabilities. Using the concept of the Catalan number, we obtain exact results for first return probability, the average first return time and Pólya number for the first time. We show that Pólya number displays two different functional behavior when the walk deviates from the recurrent point. By utilizing the Lagrange inversion formula, we interpret our findings by transferring Pólya number to the closed-form solutions of an inverse function. We also calculate Pólya number using another approach, which corroborates our results and conclusions. Finally, we consider the recurrence properties and Pólya number of two variations of the bursty random walk model.
Mesoscopic description of random walks on combs
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Iomin, Alexander; Campos, Daniel; Horsthemke, Werner
2015-12-01
Combs are a simple caricature of various types of natural branched structures, which belong to the category of loopless graphs and consist of a backbone and branches. We study continuous time random walks on combs and present a generic method to obtain their transport properties. The random walk along the branches may be biased, and we account for the effect of the branches by renormalizing the waiting time probability distribution function for the motion along the backbone. We analyze the overall diffusion properties along the backbone and find normal diffusion, anomalous diffusion, and stochastic localization (diffusion failure), respectively, depending on the characteristics of the continuous time random walk along the branches, and compare our analytical results with stochastic simulations.
Taniguchi, Chie; Sato, Chifumi
2016-10-01
We examined the effects of home-based walking on sedentary Japanese women's pregnancy outcomes and mood. A randomized controlled trial was conducted, involving 118 women aged 22-36 years. Participants were randomly assigned to walking intervention (n = 60) or control (n = 58) groups. The walking group was instructed to walk briskly for 30 min, three times weekly from 30 weeks' gestation until delivery. Both groups counted their daily steps using pedometers. Pregnancy and delivery outcomes were assessed, participants completed the Profile of Mood States, and we used the intention-to-treat principle. Groups showed no differences regarding pregnancy or delivery outcomes. The walking group exhibited decreased scores on the depression-dejection and confusion subscales of the Profile of Mood States. Five of the 54 women in the intervention group who remained in the study (9.2%) completed 100% of the prescribed walking program; 32 (59.3%) women completed 80% or more. Unsupervised walking improves sedentary pregnant women's mood, indicating that regular walking during pregnancy should be promoted in this group. © 2016 John Wiley & Sons Australia, Ltd.
Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search
Fricke, G. Matthew; Letendre, Kenneth A.; Moses, Melanie E.; Cannon, Judy L.
2016-01-01
Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103
The one-dimensional asymmetric persistent random walk
NASA Astrophysics Data System (ADS)
Rossetto, Vincent
2018-04-01
Persistent random walks are intermediate transport processes between a uniform rectilinear motion and a Brownian motion. They are formed by successive steps of random finite lengths and directions travelled at a fixed speed. The isotropic and symmetric 1D persistent random walk is governed by the telegrapher’s equation, also called the hyperbolic heat conduction equation. These equations have been designed to resolve the paradox of the infinite speed in the heat and diffusion equations. The finiteness of both the speed and the correlation length leads to several classes of random walks: Persistent random walk in one dimension can display anomalies that cannot arise for Brownian motion such as anisotropy and asymmetries. In this work we focus on the case where the mean free path is anisotropic, the only anomaly leading to a physics that is different from the telegrapher’s case. We derive exact expression of its Green’s function, for its scattering statistics and distribution of first-passage time at the origin. The phenomenology of the latter shows a transition for quantities like the escape probability and the residence time.
An invariance property of generalized Pearson random walks in bounded geometries
NASA Astrophysics Data System (ADS)
Mazzolo, Alain
2009-03-01
Invariance properties of random walks in bounded domains are a topic of growing interest since they contribute to improving our understanding of diffusion in confined geometries. Recently, limited to Pearson random walks with exponentially distributed straight paths, it has been shown that under isotropic uniform incidence, the average length of the trajectories through the domain is independent of the random walk characteristic and depends only on the ratio of the volume's domain over its surface. In this paper, thanks to arguments of integral geometry, we generalize this property to any isotropic bounded stochastic process and we give the conditions of its validity for isotropic unbounded stochastic processes. The analytical form for the traveled distance from the boundary to the first scattering event that ensures the validity of the Cauchy formula is also derived. The generalization of the Cauchy formula is an analytical constraint that thus concerns a very wide range of stochastic processes, from the original Pearson random walk to a Rayleigh distribution of the displacements, covering many situations of physical importance.
Contact Time in Random Walk and Random Waypoint: Dichotomy in Tail Distribution
NASA Astrophysics Data System (ADS)
Zhao, Chen; Sichitiu, Mihail L.
Contact time (or link duration) is a fundamental factor that affects performance in Mobile Ad Hoc Networks. Previous research on theoretical analysis of contact time distribution for random walk models (RW) assume that the contact events can be modeled as either consecutive random walks or direct traversals, which are two extreme cases of random walk, thus with two different conclusions. In this paper we conduct a comprehensive research on this topic in the hope of bridging the gap between the two extremes. The conclusions from the two extreme cases will result in a power-law or exponential tail in the contact time distribution, respectively. However, we show that the actual distribution will vary between the two extremes: a power-law-sub-exponential dichotomy, whose transition point depends on the average flight duration. Through simulation results we show that such conclusion also applies to random waypoint.
Existence of the Harmonic Measure for Random Walks on Graphs and in Random Environments
NASA Astrophysics Data System (ADS)
Boivin, Daniel; Rau, Clément
2013-01-01
We give a sufficient condition for the existence of the harmonic measure from infinity of transient random walks on weighted graphs. In particular, this condition is verified by the random conductance model on ℤ d , d≥3, when the conductances are i.i.d. and the bonds with positive conductance percolate. The harmonic measure from infinity also exists for random walks on supercritical clusters of ℤ2. This is proved using results of Barlow (Ann. Probab. 32:3024-3084, 2004) and Barlow and Hambly (Electron. J. Probab. 14(1):1-27, 2009).
Random Walk Quantum Clustering Algorithm Based on Space
NASA Astrophysics Data System (ADS)
Xiao, Shufen; Dong, Yumin; Ma, Hongyang
2018-01-01
In the random quantum walk, which is a quantum simulation of the classical walk, data points interacted when selecting the appropriate walk strategy by taking advantage of quantum-entanglement features; thus, the results obtained when the quantum walk is used are different from those when the classical walk is adopted. A new quantum walk clustering algorithm based on space is proposed by applying the quantum walk to clustering analysis. In this algorithm, data points are viewed as walking participants, and similar data points are clustered using the walk function in the pay-off matrix according to a certain rule. The walk process is simplified by implementing a space-combining rule. The proposed algorithm is validated by a simulation test and is proved superior to existing clustering algorithms, namely, Kmeans, PCA + Kmeans, and LDA-Km. The effects of some of the parameters in the proposed algorithm on its performance are also analyzed and discussed. Specific suggestions are provided.
Random walk study of electron motion in helium in crossed electromagnetic fields
NASA Technical Reports Server (NTRS)
Englert, G. W.
1972-01-01
Random walk theory, previously adapted to electron motion in the presence of an electric field, is extended to include a transverse magnetic field. In principle, the random walk approach avoids mathematical complexity and concomitant simplifying assumptions and permits determination of energy distributions and transport coefficients within the accuracy of available collisional cross section data. Application is made to a weakly ionized helium gas. Time of relaxation of electron energy distribution, determined by the random walk, is described by simple expressions based on energy exchange between the electron and an effective electric field. The restrictive effect of the magnetic field on electron motion, which increases the required number of collisions per walk to reach a terminal steady state condition, as well as the effect of the magnetic field on electron transport coefficients and mean energy can be quite adequately described by expressions involving only the Hall parameter.
Noteworthy fractal features and transport properties of Cantor tartans
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.; Golmankhaneh, Alireza K.; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel
2018-06-01
This Letter is focused on the impact of fractal topology on the transport processes governed by different kinds of random walks on Cantor tartans. We establish that the spectral dimension of the infinitely ramified Cantor tartan ds is equal to its fractal (self-similarity) dimension D. Consequently, the random walk on the Cantor tartan leads to a normal diffusion. On the other hand, the fractal geometry of Cantor tartans allows for a natural definition of power-law distributions of the waiting times and step lengths of random walkers. These distributions are Lévy stable if D > 1.5. Accordingly, we found that the random walk with rests leads to sub-diffusion, whereas the Lévy walk leads to ballistic diffusion. The Lévy walk with rests leads to super-diffusion, if D >√{ 3 }, or sub-diffusion, if 1.5 < D <√{ 3 }.
Complex scaling behavior in animal foraging patterns
NASA Astrophysics Data System (ADS)
Premachandra, Prabhavi Kaushalya
This dissertation attempts to answer questions from two different areas of biology, ecology and neuroscience, using physics-based techniques. In Section 2, suitability of three competing random walk models is tested to describe the emergent movement patterns of two species of primates. The truncated power law (power law with exponential cut off) is the most suitable random walk model that characterizes the emergent movement patterns of these primates. In Section 3, an agent-based model is used to simulate search behavior in different environments (landscapes) to investigate the impact of the resource landscape on the optimal foraging movement patterns of deterministic foragers. It should be noted that this model goes beyond previous work in that it includes parameters such as spatial memory and satiation, which have received little consideration to date in the field of movement ecology. When the food availability is scarce in a tropical forest-like environment with feeding trees distributed in a clumped fashion and the size of those trees are distributed according to a lognormal distribution, the optimal foraging pattern of a generalist who can consume various and abundant food types indeed reaches the Levy range, and hence, show evidence for Levy-flight-like (power law distribution with exponent between 1 and 3) behavior. Section 4 of the dissertation presents an investigation of phase transition behavior in a network of locally coupled self-sustained oscillators as the system passes through various bursting states. The results suggest that a phase transition does not occur for this locally coupled neuronal network. The data analysis in the dissertation adopts a model selection approach and relies on methods based on information theory and maximum likelihood.
Refining Time-Activity Classification of Human Subjects Using the Global Positioning System.
Hu, Maogui; Li, Wei; Li, Lianfa; Houston, Douglas; Wu, Jun
2016-01-01
Detailed spatial location information is important in accurately estimating personal exposure to air pollution. Global Position System (GPS) has been widely used in tracking personal paths and activities. Previous researchers have developed time-activity classification models based on GPS data, most of them were developed for specific regions. An adaptive model for time-location classification can be widely applied to air pollution studies that use GPS to track individual level time-activity patterns. Time-activity data were collected for seven days using GPS loggers and accelerometers from thirteen adult participants from Southern California under free living conditions. We developed an automated model based on random forests to classify major time-activity patterns (i.e. indoor, outdoor-static, outdoor-walking, and in-vehicle travel). Sensitivity analysis was conducted to examine the contribution of the accelerometer data and the supplemental spatial data (i.e. roadway and tax parcel data) to the accuracy of time-activity classification. Our model was evaluated using both leave-one-fold-out and leave-one-subject-out methods. Maximum speeds in averaging time intervals of 7 and 5 minutes, and distance to primary highways with limited access were found to be the three most important variables in the classification model. Leave-one-fold-out cross-validation showed an overall accuracy of 99.71%. Sensitivities varied from 84.62% (outdoor walking) to 99.90% (indoor). Specificities varied from 96.33% (indoor) to 99.98% (outdoor static). The exclusion of accelerometer and ambient light sensor variables caused a slight loss in sensitivity for outdoor walking, but little loss in overall accuracy. However, leave-one-subject-out cross-validation showed considerable loss in sensitivity for outdoor static and outdoor walking conditions. The random forests classification model can achieve high accuracy for the four major time-activity categories. The model also performed well with just GPS, road and tax parcel data. However, caution is warranted when generalizing the model developed from a small number of subjects to other populations.
Relation between random walks and quantum walks
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Falkner, Stefan; Portugal, Renato
2015-05-01
Based on studies of four specific networks, we conjecture a general relation between the walk dimensions dw of discrete-time random walks and quantum walks with the (self-inverse) Grover coin. In each case, we find that dw of the quantum walk takes on exactly half the value found for the classical random walk on the same geometry. Since walks on homogeneous lattices satisfy this relation trivially, our results for heterogeneous networks suggest that such a relation holds irrespective of whether translational invariance is maintained or not. To develop our results, we extend the renormalization-group analysis (RG) of the stochastic master equation to one with a unitary propagator. As in the classical case, the solution ρ (x ,t ) in space and time of this quantum-walk equation exhibits a scaling collapse for a variable xdw/t in the weak limit, which defines dw and illuminates fundamental aspects of the walk dynamics, e.g., its mean-square displacement. We confirm the collapse for ρ (x ,t ) in each case with extensive numerical simulation. The exact values for dw themselves demonstrate that RG is a powerful complementary approach to study the asymptotics of quantum walks that weak-limit theorems have not been able to access, such as for systems lacking translational symmetries beyond simple trees.
Bondi, Moshe; Zeilig, Gabi; Bloch, Ayala; Fasano, Alfonso; Plotnik, Meir
2017-08-01
Human locomotion is defined by bilateral coordination of gait (BCG) and shared features with the fore-hindlimb coordination of quadrupeds. The objective of the present study is to explore the influence of arm swinging (AS) on BCG. Sixteen young, healthy individuals (eight women; eight right motor-dominant, eight left-motor dominant) participated. Participants performed 10 walking trials (2 min). In each of the trials AS was unilaterally manipulated (e.g., arm restriction, weight on the wrist), bilaterally manipulated, or not manipulated. The order of trials was random. Walking trials were performed on a treadmill. Gait kinematics were recorded by a motion capture system. Using feedback-controlled belt speed allowed the participants to walk at a self-determined gait speed. Effects of the manipulations were assessed by AS amplitudes and the phase coordination index (PCI), which quantifies the left-right anti-phased stepping pattern. Most of the AS manipulations caused an increase in PCI values (i.e., reduced lower limb coordination). Unilateral AS manipulation had a reciprocal effect on the AS amplitude of the other arm such that, for example, over-swinging of the right arm led to a decrease in the AS amplitude of the left arm. Side of motor dominance was not found to have a significant impact on PCI and AS amplitude. The present findings suggest that lower limb BCG is markedly influenced by the rhythmic AS during walking. It may thus be important for gait rehabilitation programs targeting BCG to take AS into account. NEW & NOTEWORTHY Control mechanisms for four-limb coordination in human locomotion are not fully known. To study the influence of arm swinging (AS) on bilateral coordination of the lower limbs during walking, we introduced a split-AS paradigm in young, healthy adults. AS manipulations caused deterioration in the anti-phased stepping pattern and impacted the AS amplitudes for the contralateral arm, suggesting that lower limb coordination is markedly influenced by the rhythmic AS during walking. Copyright © 2017 the American Physiological Society.
Self-avoiding walks on scale-free networks
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.
2005-01-01
Several kinds of walks on complex networks are currently used to analyze search and navigation in different systems. Many analytical and computational results are known for random walks on such networks. Self-avoiding walks (SAW’s) are expected to be more suitable than unrestricted random walks to explore various kinds of real-life networks. Here we study long-range properties of random SAW’s on scale-free networks, characterized by a degree distribution P (k) ˜ k-γ . In the limit of large networks (system size N→∞ ), the average number sn of SAW’s starting from a generic site increases as μn , with μ= < k2 > /
NASA Astrophysics Data System (ADS)
Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál
2018-04-01
We consider random walks on the square lattice of the plane along the lines of Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) and den Hollander (J Stat Phys 75:891-918, 1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotropic random walks with anisotropic density conditions á la Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) yield fixed column configurations and nearest-neighbour random walks in a random environment on the square lattice of the plane as in den Hollander (J Stat Phys 75:891-918, 1994) result in random column configurations. In both cases we conclude simultaneous weak Donsker and strong Strassen type invariance principles in terms of appropriately constructed anisotropic Brownian motions on the plane, with self-contained proofs in both cases. The style of presentation throughout will be that of a semi-expository survey of related results in a historical context.
Random walk of passive tracers among randomly moving obstacles.
Gori, Matteo; Donato, Irene; Floriani, Elena; Nardecchia, Ilaria; Pettini, Marco
2016-04-14
This study is mainly motivated by the need of understanding how the diffusion behavior of a biomolecule (or even of a larger object) is affected by other moving macromolecules, organelles, and so on, inside a living cell, whence the possibility of understanding whether or not a randomly walking biomolecule is also subject to a long-range force field driving it to its target. By means of the Continuous Time Random Walk (CTRW) technique the topic of random walk in random environment is here considered in the case of a passively diffusing particle among randomly moving and interacting obstacles. The relevant physical quantity which is worked out is the diffusion coefficient of the passive tracer which is computed as a function of the average inter-obstacles distance. The results reported here suggest that if a biomolecule, let us call it a test molecule, moves towards its target in the presence of other independently interacting molecules, its motion can be considerably slowed down.
NASA Astrophysics Data System (ADS)
Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál
2018-06-01
We consider random walks on the square lattice of the plane along the lines of Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) and den Hollander (J Stat Phys 75:891-918, 1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotropic random walks with anisotropic density conditions á la Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) yield fixed column configurations and nearest-neighbour random walks in a random environment on the square lattice of the plane as in den Hollander (J Stat Phys 75:891-918, 1994) result in random column configurations. In both cases we conclude simultaneous weak Donsker and strong Strassen type invariance principles in terms of appropriately constructed anisotropic Brownian motions on the plane, with self-contained proofs in both cases. The style of presentation throughout will be that of a semi-expository survey of related results in a historical context.
Origins and applications of the Montroll-Weiss continuous time random walk
NASA Astrophysics Data System (ADS)
Shlesinger, Michael F.
2017-05-01
The Continuous Time Random Walk (CTRW) was introduced by Montroll and Weiss in 1965 in a purely mathematical paper. Its antecedents and later applications beginning in 1973 are discussed, especially for the case of fractal time where the mean waiting time between jumps is infinite. Contribution to the Topical Issue: "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
'It was not just a walking experience': reflections on the role of care in dog-walking.
Degeling, Chris; Rock, Melanie
2013-09-01
Research into physical activity and human health has recently begun to attend to dog-walking. This study extends the literature on dog-walking as a health behaviour by conceptualizing dog-walking as a caring practice. It centres on qualitative interviews with 11 Canadian dog-owners. All participants resided in urban neighbourhoods identified through previous quantitative research as conducive to dog-walking. Canine characteristics, including breed and age, were found to influence people's physical activity. The health of the dog and its position in the life-course influenced patterns of dog-walking. Frequency, duration and spatial patterns of dog-walking all depended on relationships and people's capacity to tap into resources. In foregrounding networks of care, inclusive of pets and public spaces, a relational conceptualization of dog-walking as a practice of caring helps to make sense of heterogeneity in patterns of physical activity among dog-owners.
Electron avalanche structure determined by random walk theory
NASA Technical Reports Server (NTRS)
Englert, G. W.
1973-01-01
A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is made possible by a random walk technique. Results show that the electric field patterns in the early formation stages of avalanches in helium are close to those obtained from theory based on constant transport coefficients. Regions of maximum and minimum induced electrostatic potential phi are located on the axis of symmetry and within the volume covered by the electron swarm. As formation time continues, however, the region of minimum phi moves to slightly higher radii and the electric field between the extrema becomes somewhat erratic. In the intermediate formation periods the avalanche growth is slightly retarded by the high concentration of ions in the tail which oppose the external electric field. Eventually the formation of ions and electrons in the localized regions of high field strength more than offset this effect causing a very abrupt increase in avalanche growth.
Stochastic modelling of animal movement.
Smouse, Peter E; Focardi, Stefano; Moorcroft, Paul R; Kie, John G; Forester, James D; Morales, Juan M
2010-07-27
Modern animal movement modelling derives from two traditions. Lagrangian models, based on random walk behaviour, are useful for multi-step trajectories of single animals. Continuous Eulerian models describe expected behaviour, averaged over stochastic realizations, and are usefully applied to ensembles of individuals. We illustrate three modern research arenas. (i) Models of home-range formation describe the process of an animal 'settling down', accomplished by including one or more focal points that attract the animal's movements. (ii) Memory-based models are used to predict how accumulated experience translates into biased movement choices, employing reinforced random walk behaviour, with previous visitation increasing or decreasing the probability of repetition. (iii) Lévy movement involves a step-length distribution that is over-dispersed, relative to standard probability distributions, and adaptive in exploring new environments or searching for rare targets. Each of these modelling arenas implies more detail in the movement pattern than general models of movement can accommodate, but realistic empiric evaluation of their predictions requires dense locational data, both in time and space, only available with modern GPS telemetry.
Optimization and universality of Brownian search in a basic model of quenched heterogeneous media
NASA Astrophysics Data System (ADS)
Godec, Aljaž; Metzler, Ralf
2015-05-01
The kinetics of a variety of transport-controlled processes can be reduced to the problem of determining the mean time needed to arrive at a given location for the first time, the so-called mean first-passage time (MFPT) problem. The occurrence of occasional large jumps or intermittent patterns combining various types of motion are known to outperform the standard random walk with respect to the MFPT, by reducing oversampling of space. Here we show that a regular but spatially heterogeneous random walk can significantly and universally enhance the search in any spatial dimension. In a generic minimal model we consider a spherically symmetric system comprising two concentric regions with piecewise constant diffusivity. The MFPT is analyzed under the constraint of conserved average dynamics, that is, the spatially averaged diffusivity is kept constant. Our analytical calculations and extensive numerical simulations demonstrate the existence of an optimal heterogeneity minimizing the MFPT to the target. We prove that the MFPT for a random walk is completely dominated by what we term direct trajectories towards the target and reveal a remarkable universality of the spatially heterogeneous search with respect to target size and system dimensionality. In contrast to intermittent strategies, which are most profitable in low spatial dimensions, the spatially inhomogeneous search performs best in higher dimensions. Discussing our results alongside recent experiments on single-particle tracking in living cells, we argue that the observed spatial heterogeneity may be beneficial for cellular signaling processes.
Najafi, Bijan; Grewal, Gurtej S.; Bharara, Manish; Menzies, Robert; Talal, Talal K.; Armstrong, David G.
2016-01-01
Objective: The objective was to report patterns of physical activity and their relationship to wound healing success in patients with diabetic foot ulcers protected with removable or irremovable offloading devices. Methods: Forty-nine people with diabetic foot ulcers were randomized to wear either a removable cast walker (RCW) or an irremovable instant total contact cast (iTCC). Primary outcome measures included change in wound size, physical activities including position (ie, sitting, standing, lying) and locomotion (speed, steps, etc). Outcomes parameters were assessed on weekly basis until wound healing or until 12 weeks. Results: A higher proportion of patients healed at 12 weeks in the iTCC group (P = .038). Significant differences in activity were observed between groups starting at week 4. RCW patients became more active than the iTCC group (75% higher duration of standing, 100% longer duration of walking, and 126% longer unbroken walking bout, P < .05). Overall, there was an inverse association between rate of weekly wound healing and number of steps taken per day (r < –.33, P < .05) for both groups. RCW patients had a significant inverse correlation between duration of daily standing and weekly rate of healing (r = –.67, P < .05). Standing duration was the only significant predictor of healing at 12 weeks. Conclusion: The results from this study suggest significant differences in activity patterns between removable and irremovable offloading devices. These patterns appear to start diverging at week 4, which may indicate a decline in adherence to offloading. Results suggest that while walking may delay wound healing, unprotected standing might be an even more unrealized and sinister culprit. PMID:27510440
Random walks with shape prior for cochlea segmentation in ex vivo μCT.
Ruiz Pujadas, Esmeralda; Kjer, Hans Martin; Piella, Gemma; Ceresa, Mario; González Ballester, Miguel Angel
2016-09-01
Cochlear implantation is a safe and effective surgical procedure to restore hearing in deaf patients. However, the level of restoration achieved may vary due to differences in anatomy, implant type and surgical access. In order to reduce the variability of the surgical outcomes, we previously proposed the use of a high-resolution model built from [Formula: see text] images and then adapted to patient-specific clinical CT scans. As the accuracy of the model is dependent on the precision of the original segmentation, it is extremely important to have accurate [Formula: see text] segmentation algorithms. We propose a new framework for cochlea segmentation in ex vivo [Formula: see text] images using random walks where a distance-based shape prior is combined with a region term estimated by a Gaussian mixture model. The prior is also weighted by a confidence map to adjust its influence according to the strength of the image contour. Random walks is performed iteratively, and the prior mask is aligned in every iteration. We tested the proposed approach in ten [Formula: see text] data sets and compared it with other random walks-based segmentation techniques such as guided random walks (Eslami et al. in Med Image Anal 17(2):236-253, 2013) and constrained random walks (Li et al. in Advances in image and video technology. Springer, Berlin, pp 215-226, 2012). Our approach demonstrated higher accuracy results due to the probability density model constituted by the region term and shape prior information weighed by a confidence map. The weighted combination of the distance-based shape prior with a region term into random walks provides accurate segmentations of the cochlea. The experiments suggest that the proposed approach is robust for cochlea segmentation.
Random walks with long-range steps generated by functions of Laplacian matrices
NASA Astrophysics Data System (ADS)
Riascos, A. P.; Michelitsch, T. M.; Collet, B. A.; Nowakowski, A. F.; Nicolleau, F. C. G. A.
2018-04-01
In this paper, we explore different Markovian random walk strategies on networks with transition probabilities between nodes defined in terms of functions of the Laplacian matrix. We generalize random walk strategies with local information in the Laplacian matrix, that describes the connections of a network, to a dynamic determined by functions of this matrix. The resulting processes are non-local allowing transitions of the random walker from one node to nodes beyond its nearest neighbors. We find that only two types of Laplacian functions are admissible with distinct behaviors for long-range steps in the infinite network limit: type (i) functions generate Brownian motions, type (ii) functions Lévy flights. For this asymptotic long-range step behavior only the lowest non-vanishing order of the Laplacian function is relevant, namely first order for type (i), and fractional order for type (ii) functions. In the first part, we discuss spectral properties of the Laplacian matrix and a series of relations that are maintained by a particular type of functions that allow to define random walks on any type of undirected connected networks. Once described general properties, we explore characteristics of random walk strategies that emerge from particular cases with functions defined in terms of exponentials, logarithms and powers of the Laplacian as well as relations of these dynamics with non-local strategies like Lévy flights and fractional transport. Finally, we analyze the global capacity of these random walk strategies to explore networks like lattices and trees and different types of random and complex networks.
Langbein, John O.
2012-01-01
Recent studies have documented that global positioning system (GPS) time series of position estimates have temporal correlations which have been modeled as a combination of power-law and white noise processes. When estimating quantities such as a constant rate from GPS time series data, the estimated uncertainties on these quantities are more realistic when using a noise model that includes temporal correlations than simply assuming temporally uncorrelated noise. However, the choice of the specific representation of correlated noise can affect the estimate of uncertainty. For many GPS time series, the background noise can be represented by either: (1) a sum of flicker and random-walk noise or, (2) as a power-law noise model that represents an average of the flicker and random-walk noise. For instance, if the underlying noise model is a combination of flicker and random-walk noise, then incorrectly choosing the power-law model could underestimate the rate uncertainty by a factor of two. Distinguishing between the two alternate noise models is difficult since the flicker component can dominate the assessment of the noise properties because it is spread over a significant portion of the measurable frequency band. But, although not necessarily detectable, the random-walk component can be a major constituent of the estimated rate uncertainty. None the less, it is possible to determine the upper bound on the random-walk noise.
Sunspot random walk and 22-year variation
Love, Jeffrey J.; Rigler, E. Joshua
2012-01-01
We examine two stochastic models for consistency with observed long-term secular trends in sunspot number and a faint, but semi-persistent, 22-yr signal: (1) a null hypothesis, a simple one-parameter random-walk model of sunspot-number cycle-to-cycle change, and, (2) an alternative hypothesis, a two-parameter random-walk model with an imposed 22-yr alternating amplitude. The observed secular trend in sunspots, seen from solar cycle 5 to 23, would not be an unlikely result of the accumulation of multiple random-walk steps. Statistical tests show that a 22-yr signal can be resolved in historical sunspot data; that is, the probability is low that it would be realized from random data. On the other hand, the 22-yr signal has a small amplitude compared to random variation, and so it has a relatively small effect on sunspot predictions. Many published predictions for cycle 24 sunspots fall within the dispersion of previous cycle-to-cycle sunspot differences. The probability is low that the Sun will, with the accumulation of random steps over the next few cycles, walk down to a Dalton-like minimum. Our models support published interpretations of sunspot secular variation and 22-yr variation resulting from cycle-to-cycle accumulation of dynamo-generated magnetic energy.
Novel Kinetic Strategies Adopted in Asymmetric Split-Belt Treadmill Walking.
Hinkel-Lipsker, Jacob W; Hahn, Michael E
2016-01-01
The hip and ankle strategies that affect learning of a novel gait have not been fully determined, and could be of importance in design of clinical gait interventions. The authors' purpose was to determine the effects of asymmetric split-belt treadmill walking on ankle and hip work during propulsion. Participants were randomized into either a gradual training group or a sudden training group and later returned for a retention test. The gradual training group performed significantly more work at the hip joint of the slow limb during acquisition, and decreased the hip joint work performed during retention. These findings reveal the hip joint on the slow limb during initial swing as a possible site of adaptation to a novel locomotor pattern.
Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics.
Rhea, Christopher K; Kiefer, Adam W; D'Andrea, Susan E; Warren, William H; Aaron, Roy K
2014-08-01
Fractal patterns characterize healthy biological systems and are considered to reflect the ability of the system to adapt to varying environmental conditions. Previous research has shown that fractal patterns in gait are altered following natural aging or disease, and this has potential negative consequences for gait adaptability that can lead to increased risk of injury. However, the flexibility of a healthy neurological system to exhibit different fractal patterns in gait has yet to be explored, and this is a necessary step toward understanding human locomotor control. Fifteen participants walked for 15min on a treadmill, either in the absence of a visual stimulus or while they attempted to couple the timing of their gait with a visual metronome that exhibited a persistent fractal pattern (contained long-range correlations) or a random pattern (contained no long-range correlations). The stride-to-stride intervals of the participants were recorded via analog foot pressure switches and submitted to detrended fluctuation analysis (DFA) to determine if the fractal patterns during the visual metronome conditions differed from the baseline (no metronome) condition. DFA α in the baseline condition was 0.77±0.09. The fractal patterns in the stride-to-stride intervals were significantly altered when walking to the fractal metronome (DFA α=0.87±0.06) and to the random metronome (DFA α=0.61±0.10) (both p<.05 when compared to the baseline condition), indicating that a global change in gait dynamics was observed. A variety of strategies were identified at the local level with a cross-correlation analysis, indicating that local behavior did not account for the consistent global changes. Collectively, the results show that a gait dynamics can be shifted in a prescribed manner using a visual stimulus and the shift appears to be a global phenomenon. Copyright © 2014 Elsevier B.V. All rights reserved.
Cubo, Esther; Leurgans, Sue; Goetz, Christopher G
2004-12-01
In a randomized single blind parallel study, we tested the efficacy of an auditory metronome on walking speed and freezing in Parkinson's disease (PD) patients with freezing gait impairment during their 'on' function. No pharmacological treatment is effective in managing 'on' freezing in PD. Like visual cues that can help overcome freezing, rhythmic auditory pacing may provide cues that help normalize walking pace and overcome freezing. Non-demented PD patients with freezing during their 'on' state walked under two conditions, in randomized order: unassisted walking and walking with the use of an audiocassette with a metronome recording. The walking trials were randomized and gait variables were rated from videotapes by a blinded evaluator. Outcome measures were total walking time (total trial time-total freezing time), which was considered the time over a course of specified length, freezing time, average freeze duration and number of freezes. All outcomes were averaged across trials for each person and then compared across conditions using Signed Rank tests. Twelve non-demented PD patients with a mean age of 65.8 +/- 11.2 years, and mean PD duration of 12.4 +/- 7.3 years were included. The use of the metronome slowed ambulation and increased the total walking time (P < 0.0005) only during the first visit, without affecting any freezing variable. In the nine patients who took the metronome recording home and used it daily for 1 week while walking, freezing remained unimproved. Though advocated in prior publications as a walking aid for PD patients, auditory metronome pacing slows walking and is not a beneficial intervention for freezing during their 'on' periods.
Imam, Bita; Miller, William C; Finlayson, Heather; Eng, Janice J; Jarus, Tal
2017-01-01
To assess the feasibility of Wii.n.Walk for improving walking capacity in older adults with lower limb amputation. A parallel, evaluator-blind randomized controlled feasibility trial. Community-living. Individuals who were ⩾50 years old with a unilateral lower limb amputation. Wii.n.Walk consisted of Wii Fit training, 3x/week (40 minute sessions), for 4 weeks. Training started in the clinic in groups of 3 and graduated to unsupervised home training. Control group were trained using cognitive games. Feasibility indicators: trial process (recruitment, retention, participants' perceived benefit from the Wii.n.Walk intervention measured by exit questionnaire), resources (adherence), management (participant processing, blinding), and treatment (adverse event, and Cohen's d effect size and variance). Primary clinical outcome: walking capacity measured using the 2 Minute Walk Test at baseline, end of treatment, and 3-week retention. Of 28 randomized participants, 24 completed the trial (12/arm). Median (range) age was 62.0 (50-78) years. Mean (SD) score for perceived benefit from the Wii.n.Walk intervention was 38.9/45 (6.8). Adherence was 83.4%. The effect sizes for the 2 Minute Walk Test were 0.5 (end of treatment) and 0.6 (3-week retention) based on intention to treat with imputed data; and 0.9 (end of treatment) and 1.2 (3-week retention) based on per protocol analysis. The required sample size for a future larger RCT was deemed to be 72 (36 per arm). The results suggested the feasibility of the Wii.n.Walk with a medium effect size for improving walking capacity. Future larger randomized controlled trials investigating efficacy are warranted.
Limited Transfer of Newly Acquired Movement Patterns across Walking and Running in Humans
Ogawa, Tetsuya; Kawashima, Noritaka; Ogata, Toru; Nakazawa, Kimitaka
2012-01-01
The two major modes of locomotion in humans, walking and running, may be regarded as a function of different speed (walking as slower and running as faster). Recent results using motor learning tasks in humans, as well as more direct evidence from animal models, advocate for independence in the neural control mechanisms underlying different locomotion tasks. In the current study, we investigated the possible independence of the neural mechanisms underlying human walking and running. Subjects were tested on a split-belt treadmill and adapted to walking or running on an asymmetrically driven treadmill surface. Despite the acquisition of asymmetrical movement patterns in the respective modes, the emergence of asymmetrical movement patterns in the subsequent trials was evident only within the same modes (walking after learning to walk and running after learning to run) and only partial in the opposite modes (walking after learning to run and running after learning to walk) (thus transferred only limitedly across the modes). Further, the storage of the acquired movement pattern in each mode was maintained independently of the opposite mode. Combined, these results provide indirect evidence for independence in the neural control mechanisms underlying the two locomotive modes. PMID:23029490
Using circuit theory to model connectivity in ecology, evolution, and conservation.
McRae, Brad H; Dickson, Brett G; Keitt, Timothy H; Shah, Viral B
2008-10-01
Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.
A marching-walking hybrid induces step length adaptation and transfers to natural walking.
Long, Andrew W; Finley, James M; Bastian, Amy J
2015-06-01
Walking is highly adaptable to new demands and environments. We have previously studied adaptation of locomotor patterns via a split-belt treadmill, where subjects learn to walk with one foot moving faster than the other. Subjects learn to adapt their walking pattern by changing the location (spatial) and time (temporal) of foot placement. Here we asked whether we can induce adaptation of a specific walking pattern when one limb does not "walk" but instead marches in place (i.e., marching-walking hybrid). The marching leg's movement is limited during the stance phase, and thus certain sensory signals important for walking may be reduced. We hypothesized that this would produce a spatial-temporal strategy different from that of normal split-belt adaptation. Healthy subjects performed two experiments to determine whether they could adapt their spatial-temporal pattern of step lengths during the marching-walking hybrid and whether the learning transfers to over ground walking. Results showed that the hybrid group did adapt their step lengths, but the time course of adaptation and deadaption was slower than that for the split-belt group. We also observed that the hybrid group utilized a mostly spatial strategy whereas the split-belt group utilized both spatial and temporal strategies. Surprisingly, we found no significant difference between the hybrid and split-belt groups in over ground transfer. Moreover, the hybrid group retained more of the learned pattern when they returned to the treadmill. These findings suggest that physical rehabilitation with this marching-walking paradigm on conventional treadmills may produce changes in symmetry comparable to what is observed during split-belt training. Copyright © 2015 the American Physiological Society.
Gender issues in a cataract surgical population in South India.
Joseph, Sanil; Ravilla, Thulasiraj; Bassett, Ken
2013-04-01
To investigate patterns and characteristics of men and women who used different cataract surgery payment streams in a South Indian hospital. We randomly sampled patients with age-related cataract aged 40 years and over from three routine cataract surgical service streams: walk-in paying, walk-in subsidized and free camp. Presenting visual acuity (VA) and cataract surgical details were obtained from routine hospital records. Demographic and socioeconomic factors were collected from patient interviews. Multiple logistic regression was used to investigate factors associated with use of different streams with walk-in paying as the reference group. There were 7076 eligible admissions (3742 women and 3334 men). Proportionately more women than men attended the walk-in subsidized (56%) or free camp sections (55%) compared to the walk-in paying stream (42%, odds ratio, OR, 1.40 95% confidence interval, CI, 1.25-1.57 and OR 1.33 95% CI 1.19-1.49, respectively). After adjustment for socioeconomic factors (illiteracy, not being in paid work), rural residence and poor presenting VA, OR for women compared to men for the walk-in subsided stream was 1.02, (95% CI 0.87-1.18) and for the free camp 0.94 (95% CI 0.80-1.11). Our results indicate that women are underrepresented in the paying section, reflecting their poorer socioeconomic and educational statuses.
EFFECTS OF THE GENIUM MICROPROCESSOR KNEE SYSTEM ON KNEE MOMENT SYMMETRY DURING HILL WALKING.
Highsmith, M Jason; Klenow, Tyler D; Kahle, Jason T; Wernke, Matthew M; Carey, Stephanie L; Miro, Rebecca M; Lura, Derek J
2016-09-01
Use of the Genium microprocessor knee (MPK) system reportedly improves knee kinematics during walking and other functional tasks compared to other MPK systems. This improved kinematic pattern was observed when walking on different hill conditions and at different speeds. Given the improved kinematics associated with hill walking while using the Genium, a similar improvement in the symmetry of knee kinetics is also feasible. The purpose of this study was to determine if Genium MPK use would reduce the degree of asymmetry (DoA) of peak stance knee flexion moment compared to the C-Leg MPK in transfemoral amputation (TFA) patients. This study used a randomized experimental crossover of TFA patients using Genium and C-Leg MPKs ( n = 20). Biomechanical gait analysis by 3D motion tracking with floor mounted force plates of TFA patients ambulating at different speeds on 5° ramps was completed. Knee moment DoA was significantly different between MPK conditions in the slow and fast uphill as well as the slow and self-selected downhill conditions. In a sample of high-functioning TFA patients, Genium knee system accommodation and use improved knee moment symmetry in slow speed walking up and down a five degree ramp compared with C-Leg. Additionally, the Genium improved knee moment symmetry when walking downhill at comfortable speed. These results likely have application in other patients who could benefit from more consistent knee function, such as older patients and others who have slower walking speeds.
Superdiffusive Dispersals Impart the Geometry of Underlying Random Walks
NASA Astrophysics Data System (ADS)
Zaburdaev, V.; Fouxon, I.; Denisov, S.; Barkai, E.
2016-12-01
It is recognized now that a variety of real-life phenomena ranging from diffusion of cold atoms to the motion of humans exhibit dispersal faster than normal diffusion. Lévy walks is a model that excelled in describing such superdiffusive behaviors albeit in one dimension. Here we show that, in contrast to standard random walks, the microscopic geometry of planar superdiffusive Lévy walks is imprinted in the asymptotic distribution of the walkers. The geometry of the underlying walk can be inferred from trajectories of the walkers by calculating the analogue of the Pearson coefficient.
Human pelvis motions when walking and when riding a therapeutic horse.
Garner, Brian A; Rigby, B Rhett
2015-02-01
A prevailing rationale for equine assisted therapies is that the motion of a horse can provide sensory stimulus and movement patterns that mimic those of natural human activities such as walking. The purpose of this study was to quantitatively measure and compare human pelvis motions when walking to those when riding a horse. Six able-bodied children (inexperienced riders, 8-12years old) participated in over-ground trials of self-paced walking and leader-paced riding on four different horses. Five kinematic measures were extracted from three-dimensional pelvis motion data: anteroposterior, superoinferior, and mediolateral translations, list angle about the anteroposterior axis, and twist angle about the superoinferior axis. There was generally as much or more variability in motion range observed between riding on the different horses as between riding and walking. Pelvis trajectories exhibited many similar features between walking and riding, including distorted lemniscate patterns in the transverse and frontal planes. In the sagittal plane the pelvis trajectory during walking exhibited a somewhat circular pattern whereas during riding it exhibited a more diagonal pattern. This study shows that riding on a horse can generate movement patterns in the human pelvis that emulate many, but not all, characteristics of those during natural walking. Copyright © 2014 Elsevier B.V. All rights reserved.
Performance of a visuomotor walking task in an augmented reality training setting.
Haarman, Juliet A M; Choi, Julia T; Buurke, Jaap H; Rietman, Johan S; Reenalda, Jasper
2017-12-01
Visual cues can be used to train walking patterns. Here, we studied the performance and learning capacities of healthy subjects executing a high-precision visuomotor walking task, in an augmented reality training set-up. A beamer was used to project visual stepping targets on the walking surface of an instrumented treadmill. Two speeds were used to manipulate task difficulty. All participants (n = 20) had to change their step length to hit visual stepping targets with a specific part of their foot, while walking on a treadmill over seven consecutive training blocks, each block composed of 100 stepping targets. Distance between stepping targets was varied between short, medium and long steps. Training blocks could either be composed of random stepping targets (no fixed sequence was present in the distance between the stepping targets) or sequenced stepping targets (repeating fixed sequence was present). Random training blocks were used to measure non-specific learning and sequenced training blocks were used to measure sequence-specific learning. Primary outcome measures were performance (% of correct hits), and learning effects (increase in performance over the training blocks: both sequence-specific and non-specific). Secondary outcome measures were the performance and stepping-error in relation to the step length (distance between stepping target). Subjects were able to score 76% and 54% at first try for lower speed (2.3 km/h) and higher speed (3.3 km/h) trials, respectively. Performance scores did not increase over the course of the trials, nor did the subjects show the ability to learn a sequenced walking task. Subjects were better able to hit targets while increasing their step length, compared to shortening it. In conclusion, augmented reality training by use of the current set-up was intuitive for the user. Suboptimal feedback presentation might have limited the learning effects of the subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
Network-based stochastic competitive learning approach to disambiguation in collaborative networks.
Christiano Silva, Thiago; Raphael Amancio, Diego
2013-03-01
Many patterns have been uncovered in complex systems through the application of concepts and methodologies of complex networks. Unfortunately, the validity and accuracy of the unveiled patterns are strongly dependent on the amount of unavoidable noise pervading the data, such as the presence of homonymous individuals in social networks. In the current paper, we investigate the problem of name disambiguation in collaborative networks, a task that plays a fundamental role on a myriad of scientific contexts. In special, we use an unsupervised technique which relies on a particle competition mechanism in a networked environment to detect the clusters. It has been shown that, in this kind of environment, the learning process can be improved because the network representation of data can capture topological features of the input data set. Specifically, in the proposed disambiguating model, a set of particles is randomly spawned into the nodes constituting the network. As time progresses, the particles employ a movement strategy composed of a probabilistic convex mixture of random and preferential walking policies. In the former, the walking rule exclusively depends on the topology of the network and is responsible for the exploratory behavior of the particles. In the latter, the walking rule depends both on the topology and the domination levels that the particles impose on the neighboring nodes. This type of behavior compels the particles to perform a defensive strategy, because it will force them to revisit nodes that are already dominated by them, rather than exploring rival territories. Computer simulations conducted on the networks extracted from the arXiv repository of preprint papers and also from other databases reveal the effectiveness of the model, which turned out to be more accurate than traditional clustering methods.
Network-based stochastic competitive learning approach to disambiguation in collaborative networks
NASA Astrophysics Data System (ADS)
Christiano Silva, Thiago; Raphael Amancio, Diego
2013-03-01
Many patterns have been uncovered in complex systems through the application of concepts and methodologies of complex networks. Unfortunately, the validity and accuracy of the unveiled patterns are strongly dependent on the amount of unavoidable noise pervading the data, such as the presence of homonymous individuals in social networks. In the current paper, we investigate the problem of name disambiguation in collaborative networks, a task that plays a fundamental role on a myriad of scientific contexts. In special, we use an unsupervised technique which relies on a particle competition mechanism in a networked environment to detect the clusters. It has been shown that, in this kind of environment, the learning process can be improved because the network representation of data can capture topological features of the input data set. Specifically, in the proposed disambiguating model, a set of particles is randomly spawned into the nodes constituting the network. As time progresses, the particles employ a movement strategy composed of a probabilistic convex mixture of random and preferential walking policies. In the former, the walking rule exclusively depends on the topology of the network and is responsible for the exploratory behavior of the particles. In the latter, the walking rule depends both on the topology and the domination levels that the particles impose on the neighboring nodes. This type of behavior compels the particles to perform a defensive strategy, because it will force them to revisit nodes that are already dominated by them, rather than exploring rival territories. Computer simulations conducted on the networks extracted from the arXiv repository of preprint papers and also from other databases reveal the effectiveness of the model, which turned out to be more accurate than traditional clustering methods.
Wang, Tze-Hsuan; Peng, Yi-Chun; Chen, Yu-Ling; Lu, Tung-Wu; Liao, Hua-Fang; Tang, Pei-Fang; Shieh, Jeng-Yi
2013-10-01
Neurologic music therapy has demonstrated improved walking performance in persons with neurologic disease; however, little evidence supports the use of music with functional resistance exercise to improve motor capacity and daily functions for children with cerebral palsy. To investigate the effect of additional patterned sensory enhancement (PSE) music combined with exercise for children with spastic diplegia. An assessor-blind, randomized controlled trial with 6- and 12-week follow-ups was carried out. Thirty-six children with spastic diplegia, aged 5 to 13 years, were assigned to a PSE group (n = 18) or a no-music group (n = 18). Both groups received 6-week, home-based, loaded sit-to-stand exercise, but only the PSE group exercised with prerecorded PSE music. The primary outcome was Gross Motor Function Measure (GMFM). Secondary outcomes included Pediatric Evaluation of Disability Inventory (PEDI) mobility and self-care domains, 1-repetition maximum of sit-to-stand, and walking speeds. Three children did not complete the program. Intention-to-treat analysis showed both groups improved in GMFM D, E, and Goal dimensions; Functional Skills Scales of PEDI mobility domain; and 1-repetition maximum of sit-to-stand at posttest and follow-ups (P ≤ .005). The PSE group improved significantly greater than the no-music group in the GMFM D and Goal dimensions (P < .005) after training, and the improvement persisted for at least 6 or 12 weeks (P ≤ .013). No significant improvements in the rest PEDI scales and walking speeds were found. Adding neurologic music therapy to functional resistance exercise could induce greater improvements in gross motor capacity for children with cerebral palsy.
Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking
2011-01-01
Background Motorized treadmills are widely used in research or in clinical therapy. Small kinematics, kinetics and energetics changes induced by Treadmill Walking (TW) as compared to Overground Walking (OW) have been reported in literature. The purpose of the present study was to characterize the differences between OW and TW in terms of stride-to-stride variability. Classical (Standard Deviation, SD) and non-linear (fractal dynamics, local dynamic stability) methods were used. In addition, the correlations between the different variability indexes were analyzed. Methods Twenty healthy subjects performed 10 min TW and OW in a random sequence. A triaxial accelerometer recorded trunk accelerations. Kinematic variability was computed as the average SD (MeanSD) of acceleration patterns among standardized strides. Fractal dynamics (scaling exponent α) was assessed by Detrended Fluctuation Analysis (DFA) of stride intervals. Short-term and long-term dynamic stability were estimated by computing the maximal Lyapunov exponents of acceleration signals. Results TW did not modify kinematic gait variability as compared to OW (multivariate T2, p = 0.87). Conversely, TW significantly modified fractal dynamics (t-test, p = 0.01), and both short and long term local dynamic stability (T2 p = 0.0002). No relationship was observed between variability indexes with the exception of significant negative correlation between MeanSD and dynamic stability in TW (3 × 6 canonical correlation, r = 0.94). Conclusions Treadmill induced a less correlated pattern in the stride intervals and increased gait stability, but did not modify kinematic variability in healthy subjects. This could be due to changes in perceptual information induced by treadmill walking that would affect locomotor control of the gait and hence specifically alter non-linear dependencies among consecutive strides. Consequently, the type of walking (i.e. treadmill or overground) is important to consider in each protocol design. PMID:21345241
Kuo, Chun-Yu; Yeh, Yei-Yu
2016-01-01
Prior research has shown that free walking can enhance creative thinking. Nevertheless, it remains unclear whether bidirectional body-mind links are essential for the positive effect of free walking on creative thinking. Moreover, it is unknown whether the positive effect can be generalized to older adults. In Experiment 1, we replicated previous findings with two additional groups of young participants. Participants in the rectangular-walking condition walked along a rectangular path while generating unusual uses for chopsticks. Participants in the free-walking group walked freely as they wished, and participants in the free-generation condition generated unconstrained free paths while the participants in the random-experienced condition walked those paths. Only the free-walking group showed better performance in fluency, flexibility, and originality. In Experiment 2, two groups of older adults were randomly assigned to the free-walking and rectangular-walking conditions. The free-walking group showed better performance than the rectangular-walking group. Moreover, older adults in the free-walking group outperformed young adults in the rectangular-walking group in originality and performed comparably in fluency and flexibility. Bidirectional links between proprioceptive-motor kinematics and metaphorical abstract concepts can enhance divergent thinking for both young and older adults. PMID:27790178
Random Walks in a One-Dimensional Lévy Random Environment
NASA Astrophysics Data System (ADS)
Bianchi, Alessandra; Cristadoro, Giampaolo; Lenci, Marco; Ligabò, Marilena
2016-04-01
We consider a generalization of a one-dimensional stochastic process known in the physical literature as Lévy-Lorentz gas. The process describes the motion of a particle on the real line in the presence of a random array of marked points, whose nearest-neighbor distances are i.i.d. and long-tailed (with finite mean but possibly infinite variance). The motion is a continuous-time, constant-speed interpolation of a symmetric random walk on the marked points. We first study the quenched random walk on the point process, proving the CLT and the convergence of all the accordingly rescaled moments. Then we derive the quenched and annealed CLTs for the continuous-time process.
ERIC Educational Resources Information Center
Kullgren, Jeffrey T.; Harkins, Kristin A.; Bellamy, Scarlett L.; Gonzales, Amy; Tao, Yuanyuan; Zhu, Jingsan; Volpp, Kevin G.; Asch, David A.; Heisler, Michele; Karlawish, Jason
2014-01-01
Background: Financial incentives and peer networks could be delivered through eHealth technologies to encourage older adults to walk more. Methods: We conducted a 24-week randomized trial in which 92 older adults with a computer and Internet access received a pedometer, daily walking goals, and weekly feedback on goal achievement. Participants…
Random Walks on Cartesian Products of Certain Nonamenable Groups and Integer Lattices
NASA Astrophysics Data System (ADS)
Vishnepolsky, Rachel
A random walk on a discrete group satisfies a local limit theorem with power law exponent \\alpha if the return probabilities follow the asymptotic law. P{ return to starting point after n steps } ˜ Crhonn-alpha.. A group has a universal local limit theorem if all random walks on the group with finitely supported step distributions obey a local limit theorem with the same power law exponent. Given two groups that obey universal local limit theorems, it is not known whether their cartesian product also has a universal local limit theorem. We settle the question affirmatively in one case, by considering a random walk on the cartesian product of a nonamenable group whose Cayley graph is a tree, and the integer lattice. As corollaries, we derive large deviations estimates and a central limit theorem.
A marching-walking hybrid induces step length adaptation and transfers to natural walking
Long, Andrew W.; Finley, James M.
2015-01-01
Walking is highly adaptable to new demands and environments. We have previously studied adaptation of locomotor patterns via a split-belt treadmill, where subjects learn to walk with one foot moving faster than the other. Subjects learn to adapt their walking pattern by changing the location (spatial) and time (temporal) of foot placement. Here we asked whether we can induce adaptation of a specific walking pattern when one limb does not “walk” but instead marches in place (i.e., marching-walking hybrid). The marching leg's movement is limited during the stance phase, and thus certain sensory signals important for walking may be reduced. We hypothesized that this would produce a spatial-temporal strategy different from that of normal split-belt adaptation. Healthy subjects performed two experiments to determine whether they could adapt their spatial-temporal pattern of step lengths during the marching-walking hybrid and whether the learning transfers to over ground walking. Results showed that the hybrid group did adapt their step lengths, but the time course of adaptation and deadaption was slower than that for the split-belt group. We also observed that the hybrid group utilized a mostly spatial strategy whereas the split-belt group utilized both spatial and temporal strategies. Surprisingly, we found no significant difference between the hybrid and split-belt groups in over ground transfer. Moreover, the hybrid group retained more of the learned pattern when they returned to the treadmill. These findings suggest that physical rehabilitation with this marching-walking paradigm on conventional treadmills may produce changes in symmetry comparable to what is observed during split-belt training. PMID:25867742
Atomic clocks and the continuous-time random-walk
NASA Astrophysics Data System (ADS)
Formichella, Valerio; Camparo, James; Tavella, Patrizia
2017-11-01
Atomic clocks play a fundamental role in many fields, most notably they generate Universal Coordinated Time and are at the heart of all global navigation satellite systems. Notwithstanding their excellent timekeeping performance, their output frequency does vary: it can display deterministic frequency drift; diverse continuous noise processes result in nonstationary clock noise (e.g., random-walk frequency noise, modelled as a Wiener process), and the clock frequency may display sudden changes (i.e., "jumps"). Typically, the clock's frequency instability is evaluated by the Allan or Hadamard variances, whose functional forms can identify the different operative noise processes. Here, we show that the Allan and Hadamard variances of a particular continuous-time random-walk, the compound Poisson process, have the same functional form as for a Wiener process with drift. The compound Poisson process, introduced as a model for observed frequency jumps, is an alternative to the Wiener process for modelling random walk frequency noise. This alternate model fits well the behavior of the rubidium clocks flying on GPS Block-IIR satellites. Further, starting from jump statistics, the model can be improved by considering a more general form of continuous-time random-walk, and this could bring new insights into the physics of atomic clocks.
NASA Astrophysics Data System (ADS)
Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki
2018-03-01
We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2}). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3}) and the level sets of the Gaussian free field ({d≥ 3}). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.
NASA Astrophysics Data System (ADS)
Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki
2017-12-01
We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2} ). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3} ) and the level sets of the Gaussian free field ({d≥ 3} ). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.
Quantum Ultra-Walks: Walks on a Line with Spatial Disorder
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Falkner, Stefan
We discuss the model of a heterogeneous discrete-time walk on a line with spatial disorder in the form of a set of ultrametric barriers. Simulations show that such an quantum ultra-walk spreads with a walk exponent dw that ranges from ballistic (dw = 1) to complete confinement (dw = ∞) for increasing separation 1 <= 1 / ɛ < ∞ in barrier heights. We develop a formalism by which the classical random walk as well as the quantum walk can be treated in parallel using a coined walk with internal degrees of freedom. For the random walk, this amounts to a 2nd -order Markov process with a stochastic coin, better know as an (anti-)persistent walk. The exact analysis, based on the real-space renormalization group (RG), reproduces the results of the well-known model of ``ultradiffusion,'' dw = 1 -log2 ɛ for 0 < ɛ <= 1 / 2 . However, while the evaluation of the RG fixed-points proceeds virtually identical, for the corresponding quantum walk with a unitary coin it fails to reproduce the numerical results. A new way to analyze the RG is indicated. Supported by NSF-DMR 1207431.
A random-walk/giant-loop model for interphase chromosomes.
Sachs, R K; van den Engh, G; Trask, B; Yokota, H; Hearst, J E
1995-01-01
Fluorescence in situ hybridization data on distances between defined genomic sequences are used to construct a quantitative model for the overall geometric structure of a human chromosome. We suggest that the large-scale geometry during the G0/G1 part of the cell cycle may consist of flexible chromatin loops, averaging approximately 3 million bp, with a random-walk backbone. A fully explicit, three-parametric polymer model of this random-walk/giant-loop structure can account well for the data. More general models consistent with the data are briefly discussed. PMID:7708711
Belcher, Britni R; Berrigan, David; Papachristopoulou, Alexia; Brady, Sheila M; Bernstein, Shanna B; Brychta, Robert J; Hattenbach, Jacob D; Tigner, Ira L; Courville, Amber B; Drinkard, Bart E; Smith, Kevin P; Rosing, Douglas R; Wolters, Pamela L; Chen, Kong Y; Yanovski, Jack A
2015-10-01
Limited data suggest that interrupting sedentary behaviors with activity improves metabolic parameters in adults. We tested whether interrupting sitting with short, moderate-intensity walking bouts improved glucose tolerance in children. Participants underwent two experimental conditions in random order on different days: continuous sitting for 3 hours or sitting interrupted by walking (3 min of moderate-intensity walking every 30 min). Insulin, C-peptide, glucose, and free fatty acids were measured every 30 minutes for 3 hours during an oral glucose tolerance test. Area under the curve (AUC) was calculated from hormone and substrate measurements. Children were given a buffet meal after each condition. The study was conducted at the National Institutes of Health Hatfield Clinical Research Center. Twenty-eight normal-weight 7-11 year olds participated. Patterns of substrate/hormone secretion and AUC, as well as energy intake, were examined by experimental condition. Interrupting sitting resulted in a 32% lower insulin AUC (P < .001), 17% lower C-peptide AUC (P < .001), and 7% lower glucose AUC (P = .018) vs continuous sitting. Mixed model results indicated that insulin (P = .036) and free fatty acid concentrations (P = .009) were significantly lower in the interrupted vs the continuous sitting condition. Lunchtime buffet meal energy intake did not significantly differ between the conditions (975 ± 387 vs 963 ± 309 kcal; P = .85). Interrupting sedentary time with brief moderate-intensity walking improved short-term metabolic function in non-overweight children without increasing subsequent energy intake. These findings suggest that interrupting sedentary behavior may be a promising prevention strategy for reducing cardiometabolic risk in children.
Women with fibromyalgia walk with an altered muscle synergy.
Pierrynowski, Michael R; Tiidus, Peter M; Galea, Victoria
2005-11-01
Most individuals can use different movement and muscle recruitment patterns to perform a stated task but often only one pattern is selected which optimizes an unknown global objective given the individual's neuromusculoskeletal characteristics. Patients with fibromyalgia syndrome (FS), characterized by their chronic pain, reduced physical work capacity and muscular fatigue, could exhibit a different control signature compared to asymptomatic control volunteers (CV). To test this proposal, 22 women with FS, and 11 CV, were assessed in a gait analysis laboratory. Each subject walked repeatedly at self-selected slow, comfortable, and fast walking speeds. The gait analysis provided, for each walk, each subject's stride time, length, and velocity, and ground reaction force, and lower extremity joint kinematics, moments and powers. The data were then anthropometrically scaled and velocity normalized to reduce the influence of subject mass, leg length, and walking speed on the measured gait outcomes. Similarities and differences in the two groups' scaled and normalized gait patterns were then determined. Results show that FS and CV walk with externally similar stride lengths, times, and velocities, and joint angles and ground reaction forces but they use internally different muscle recruitment patterns. Specifically, FS preferentially power gait using their hip flexors instead of their ankle plantarflexors. Interestingly, CV use a similar muscle fatiguing recruitment pattern to walk fast which parallels the common complaint of fatigue reported by FS walking at comfortable speed.
Mind your step: metabolic energy cost while walking an enforced gait pattern.
Wezenberg, D; de Haan, A; van Bennekom, C A M; Houdijk, H
2011-04-01
The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instrumented treadmill. The first trial consisted of unconstrained walking. In the next two trials, subject walked while following a step pattern projected on the treadmill. The steps projected were either composed of the averaged step characteristics (periodic trial), or were an exact copy including the variability of the steps taken while walking unconstrained (variable trial). Metabolic energy cost was assessed and center of pressure profiles were analyzed to determine task performance, and to gain insight into the balance control strategies applied. Results showed that the metabolic energy cost was significantly higher in both the periodic and variable trial (8% and 13%, respectively) compared to unconstrained walking. The variation in center of pressure trajectories during single limb support was higher when a gait pattern was enforced, indicating a more active ankle strategy. The increased metabolic energy cost could originate from increased preparatory muscle activation to ensure proper foot placement and a more active ankle strategy to control for lateral balance. These results entail that metabolic energy cost of walking can be influenced significantly by control strategies that do not necessary alter global gait characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Malicet, Dominique
2017-12-01
In this paper, we study random walks {g_n=f_{n-1}\\ldots f_0} on the group Homeo ( S 1) of the homeomorphisms of the circle, where the homeomorphisms f k are chosen randomly, independently, with respect to a same probability measure {ν}. We prove that under the only condition that there is no probability measure invariant by {ν}-almost every homeomorphism, the random walk almost surely contracts small intervals. It generalizes what has been known on this subject until now, since various conditions on {ν} were imposed in order to get the phenomenon of contractions. Moreover, we obtain the surprising fact that the rate of contraction is exponential, even in the lack of assumptions of smoothness on the f k 's. We deduce various dynamical consequences on the random walk ( g n ): finiteness of ergodic stationary measures, distribution of the trajectories, asymptotic law of the evaluations, etc. The proof of the main result is based on a modification of the Ávila-Viana's invariance principle, working for continuous cocycles on a space fibred in circles.
Quantifying patterns of research interest evolution
NASA Astrophysics Data System (ADS)
Jia, Tao; Wang, Dashun; Szymanski, Boleslaw
Changing and shifting research interest is an integral part of a scientific career. Despite extensive investigations of various factors that influence a scientist's choice of research topics, quantitative assessments of mechanisms that give rise to macroscopic patterns characterizing research interest evolution of individual scientists remain limited. Here we perform a large-scale analysis of extensive publication records, finding that research interest change follows a reproducible pattern characterized by an exponential distribution. We identify three fundamental features responsible for the observed exponential distribution, which arise from a subtle interplay between exploitation and exploration in research interest evolution. We develop a random walk based model, which adequately reproduces our empirical observations. Our study presents one of the first quantitative analyses of macroscopic patterns governing research interest change, documenting a high degree of regularity underlying scientific research and individual careers.
Linking clinical measurements and kinematic gait patterns of toe-walking using fuzzy decision trees.
Armand, Stéphane; Watelain, Eric; Roux, Emmanuel; Mercier, Moïse; Lepoutre, François-Xavier
2007-03-01
Toe-walking is one of the most prevalent gait deviations and has been linked to many diseases. Three major ankle kinematic patterns have been identified in toe-walkers, but the relationships between the causes of toe-walking and these patterns remain unknown. This study aims to identify these relationships. Clearly, such knowledge would increase our understanding of this gait deviation, and could help clinicians plan treatment. The large quantity of data provided by gait analysis often makes interpretation a difficult task. Artificial intelligence techniques were used in this study to facilitate interpretation as well as to decrease subjective interpretation. Of the 716 limbs evaluated, 240 showed signs of toe-walking and met inclusion criteria. The ankle kinematic pattern of the evaluated limbs during gait was assigned to one of three toe-walking pattern groups to build the training data set. Toe-walker clinical measurements (range of movement, muscle spasticity and muscle strength) were coded in fuzzy modalities, and fuzzy decision trees were induced to create intelligible rules allowing toe-walkers to be assigned to one of the three groups. A stratified 10-fold cross validation situated the classification accuracy at 81%. Twelve rules depicting the causes of toe-walking were selected, discussed and characterized using kinematic, kinetic and EMG charts. This study proposes an original approach to linking the possible causes of toe-walking with gait patterns.
The Walking School Bus and children's physical activity: A pilot cluster randomized controlled trial
USDA-ARS?s Scientific Manuscript database
To evaluate the impact of a "walking school bus" program on children's rates of active commuting to school and physical activity. We conducted a pilot cluster randomized controlled trial among 4th-graders from 8 schools in Houston, Texas (N = 149). Random allocation to treatment or control condition...
Branching random walk with step size coming from a power law
NASA Astrophysics Data System (ADS)
Bhattacharya, Ayan; Subhra Hazra, Rajat; Roy, Parthanil
2015-09-01
In their seminal work, Brunet and Derrida made predictions on the random point configurations associated with branching random walks. We shall discuss the limiting behavior of such point configurations when the displacement random variables come from a power law. In particular, we establish that two prediction of remains valid in this setup and investigate various other issues mentioned in their paper.
Anomalous Diffusion of Single Particles in Cytoplasm
Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J.
2013-01-01
The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM. PMID:23601312
Scaling behavior for random walks with memory of the largest distance from the origin
NASA Astrophysics Data System (ADS)
Serva, Maurizio
2013-11-01
We study a one-dimensional random walk with memory. The behavior of the walker is modified with respect to the simple symmetric random walk only when he or she is at the maximum distance ever reached from his or her starting point (home). In this case, having the choice to move farther or to move closer, the walker decides with different probabilities. If the probability of a forward step is higher then the probability of a backward step, the walker is bold, otherwise he or she is timorous. We investigate the asymptotic properties of this bold-timorous random walk, showing that the scaling behavior varies continuously from subdiffusive (timorous) to superdiffusive (bold). The scaling exponents are fully determined with a new mathematical approach based on a decomposition of the dynamics in active journeys (the walker is at the maximum distance) and lazy journeys (the walker is not at the maximum distance).
Liberating Lévy walk research from the shackles of optimal foraging
NASA Astrophysics Data System (ADS)
Reynolds, Andy
2015-09-01
There is now compelling evidence that many organisms have movement patterns that can be described as Lévy walks, or Lévy flights. Lévy movement patterns have been identified in cells, microorganisms, molluscs, insects, reptiles, fish, birds and even human hunter-gatherers. Most research into Lévy walks as models of organism movement patterns has been shaped by the 'Lévy flight foraging hypothesis'. This states that, since Lévy walks can optimize search efficiencies, natural selection should lead to adaptations that select for Lévy walk foraging. However, a growing body of research on generative mechanisms suggests that Lévy walks can arise freely as by-products of otherwise innocuous behaviours; consequently their advantageous properties are purely coincidental. This suggests that the Lévy flight foraging hypothesis should be amended, or even replaced, by a simpler and more general hypothesis. This new hypothesis would state that 'Lévy walks emerge spontaneously and naturally from innate behaviours and innocuous responses to the environment but, if advantageous, then there could be selection against losing them'. The new hypothesis has the virtue of making fewer assumptions and being broader than the original hypothesis; it also encompasses the many examples of suboptimal Lévy patterns that challenge the prevailing paradigm. This does not detract from the Lévy flight foraging hypothesis, in fact, it adds to the theory by providing a stronger and more compelling case for the occurrence of Lévy walks. It dispenses with concerns about the theoretical arguments in support of the Lévy flight foraging hypothesis and so may lead to a wider acceptance of Lévy walks as models of movement pattern data. Furthermore, organisms can approximate Lévy walks by adapting intrinsic behaviour in simple ways; this occurs when Lévy movement patterns are advantageous, but come with an associated cost. These new developments represent a major change in perspective and provide the broadest picture yet of Lévy movement patterns. However, the process of understanding and identifying Lévy movement patterns still has a long way to go, and further reinterpretations and shifts in understanding will occur. In conclusion, Lévy walk research remains exciting precisely because so much remains to be understood, and because, even relatively small studies, are interesting discoveries in their own right.
Liberating Lévy walk research from the shackles of optimal foraging.
Reynolds, Andy
2015-09-01
There is now compelling evidence that many organisms have movement patterns that can be described as Lévy walks, or Lévy flights. Lévy movement patterns have been identified in cells, microorganisms, molluscs, insects, reptiles, fish, birds and even human hunter-gatherers. Most research into Lévy walks as models of organism movement patterns has been shaped by the 'Lévy flight foraging hypothesis'. This states that, since Lévy walks can optimize search efficiencies, natural selection should lead to adaptations that select for Lévy walk foraging. However, a growing body of research on generative mechanisms suggests that Lévy walks can arise freely as by-products of otherwise innocuous behaviours; consequently their advantageous properties are purely coincidental. This suggests that the Lévy flight foraging hypothesis should be amended, or even replaced, by a simpler and more general hypothesis. This new hypothesis would state that 'Lévy walks emerge spontaneously and naturally from innate behaviours and innocuous responses to the environment but, if advantageous, then there could be selection against losing them'. The new hypothesis has the virtue of making fewer assumptions and being broader than the original hypothesis; it also encompasses the many examples of suboptimal Lévy patterns that challenge the prevailing paradigm. This does not detract from the Lévy flight foraging hypothesis, in fact, it adds to the theory by providing a stronger and more compelling case for the occurrence of Lévy walks. It dispenses with concerns about the theoretical arguments in support of the Lévy flight foraging hypothesis and so may lead to a wider acceptance of Lévy walks as models of movement pattern data. Furthermore, organisms can approximate Lévy walks by adapting intrinsic behaviour in simple ways; this occurs when Lévy movement patterns are advantageous, but come with an associated cost. These new developments represent a major change in perspective and provide the broadest picture yet of Lévy movement patterns. However, the process of understanding and identifying Lévy movement patterns still has a long way to go, and further reinterpretations and shifts in understanding will occur. In conclusion, Lévy walk research remains exciting precisely because so much remains to be understood, and because, even relatively small studies, are interesting discoveries in their own right. Copyright © 2015 Elsevier B.V. All rights reserved.
2013-10-15
statistic,” in Artifical Intelligence and Statistics (AISTATS), 2013. [6] ——, “Detecting activity in graphs via the Graph Ellipsoid Scan Statistic... Artifical Intelligence and Statistics (AISTATS), 2013. [8] ——, “Near-optimal anomaly detection in graphs using Lovász Extended Scan Statistic,” in Neural...networks,” in Artificial Intelligence and Statistics (AISTATS), 2010. 11 [11] D. Aldous, “The random walk construction of uniform spanning trees and
NASA Astrophysics Data System (ADS)
Most, S.; Jia, N.; Bijeljic, B.; Nowak, W.
2016-12-01
Pre-asymptotic characteristics are almost ubiquitous when analyzing solute transport processes in porous media. These pre-asymptotic aspects are caused by spatial coherence in the velocity field and by its heterogeneity. For the Lagrangian perspective of particle displacements, the causes of pre-asymptotic, non-Fickian transport are skewed velocity distribution, statistical dependencies between subsequent increments of particle positions (memory) and dependence between the x, y and z-components of particle increments. Valid simulation frameworks should account for these factors. We propose a particle tracking random walk (PTRW) simulation technique that can use empirical pore-space velocity distributions as input, enforces memory between subsequent random walk steps, and considers cross dependence. Thus, it is able to simulate pre-asymptotic non-Fickian transport phenomena. Our PTRW framework contains an advection/dispersion term plus a diffusion term. The advection/dispersion term produces time-series of particle increments from the velocity CDFs. These time series are equipped with memory by enforcing that the CDF values of subsequent velocities change only slightly. The latter is achieved through a random walk on the axis of CDF values between 0 and 1. The virtual diffusion coefficient for that random walk is our only fitting parameter. Cross-dependence can be enforced by constraining the random walk to certain combinations of CDF values between the three velocity components in x, y and z. We will show that this modelling framework is capable of simulating non-Fickian transport by comparison with a pore-scale transport simulation and we analyze the approach to asymptotic behavior.
Different knee joint loading patterns in ACL deficient copers and non-copers during walking.
Alkjær, Tine; Henriksen, Marius; Simonsen, Erik B
2011-04-01
Rupture of the anterior cruciate ligament (ACL) causes changes in the walking pattern. ACL deficient subjects classified as copers and non-copers have been observed to adopt different post-injury walking patterns. How these different patterns affect the knee compression and shear forces is unresolved. Thus, the aim of the present study was to investigate how different walking patterns observed between copers, non-copers, and controls affect the knee compression and shear forces during walking. Three-dimensional gait analyses were performed in copers (n = 9), non-copers (n = 10), and control subjects (n =19). The net knee joint moment, knee joint reaction forces, and the sagittal knee joint angle were input parameters to a biomechanical model that assessed the knee compression and shear forces. The results showed that the non-copers walked with significantly reduced knee compression and shear forces than the controls. The overall knee compression force pattern was similar between the copers and controls, although this variable was significantly increased at heel strike in the copers compared to both non-copers and controls. The peak shear force was significantly dependent on the peak knee extensor moment. This covariance was significantly different between groups meaning that at a given knee extensor moment the shear force was significantly reduced in the copers compared to controls. The different knee joint loading patterns observed between non-copers and copers reflected the different walking strategies adopted by these groups, which may have implications for the knee joint stability. The strategy adopted by the copers may resemble an effective way to stabilize the knee joint during walking after an ACL rupture and that the knee kinematics may play a key role for this strategy. It is clinically relevant to investigate if gait retraining would enable non-copers to walk as copers and thereby improve their knee joint stability.
Yang, Yea-Ru; Tsai, Meng-Pin; Chuang, Tien-Yow; Sung, Wen-Hsu; Wang, Ray-Yau
2008-08-01
This is a single blind randomized controlled trial to examine the effect of virtual reality-based training on the community ambulation in individuals with stroke. Twenty subjects with stroke were assigned randomly to either the control group (n=9) or the experimental group (n=11). Subjects in the control group received the treadmill training. Subjects in the experimental group underwent the virtual reality-based treadmill training. Walking speed, community walking time, walking ability questionnaire (WAQ), and activities-specific balance confidence (ABC) scale were evaluated. Subjects in the experimental group improved significantly in walking speed, community walking time, and WAQ score at posttraining and 1-month follow-up periods. Their ABC score also significantly increased at posttraining but did not maintain at follow-up period. Regarding the between-group comparisons, the experimental group improved significantly more than control group in walking speed (P=0.03) and community walking time (P=0.04) at posttraining period and in WAQ score (P=0.03) at follow-up period. Our results support the perceived benefits of gait training programs that incorporate virtual reality to augment the community ambulation of individuals with stroke.
Emergence of an optimal search strategy from a simple random walk
Sakiyama, Tomoko; Gunji, Yukio-Pegio
2013-01-01
In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths. PMID:23804445
Emergence of an optimal search strategy from a simple random walk.
Sakiyama, Tomoko; Gunji, Yukio-Pegio
2013-09-06
In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths.
Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks
Li, Jiayin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal
2017-01-01
Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs. PMID:29117152
Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks.
Zheng, Haifeng; Li, Jiayin; Feng, Xinxin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal
2017-11-08
Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs .
Probability distributions for Markov chain based quantum walks
NASA Astrophysics Data System (ADS)
Balu, Radhakrishnan; Liu, Chaobin; Venegas-Andraca, Salvador E.
2018-01-01
We analyze the probability distributions of the quantum walks induced from Markov chains by Szegedy (2004). The first part of this paper is devoted to the quantum walks induced from finite state Markov chains. It is shown that the probability distribution on the states of the underlying Markov chain is always convergent in the Cesaro sense. In particular, we deduce that the limiting distribution is uniform if the transition matrix is symmetric. In the case of a non-symmetric Markov chain, we exemplify that the limiting distribution of the quantum walk is not necessarily identical with the stationary distribution of the underlying irreducible Markov chain. The Szegedy scheme can be extended to infinite state Markov chains (random walks). In the second part, we formulate the quantum walk induced from a lazy random walk on the line. We then obtain the weak limit of the quantum walk. It is noted that the current quantum walk appears to spread faster than its counterpart-quantum walk on the line driven by the Grover coin discussed in literature. The paper closes with an outlook on possible future directions.
NASA Astrophysics Data System (ADS)
Kimura, Kenji; Higuchi, Saburo
2017-11-01
We introduce a novel random walk model that emerges in the event-chain Monte Carlo (ECMC) of spin systems. In the ECMC, the lifting variable specifying the spin to be updated changes its value to one of its interacting neighbor spins. This movement can be regarded as a random walk in a random environment with a feedback. We investigate this random walk numerically in the case of the classical XY model in 1, 2, and 3 dimensions to find that it is superdiffusive near the critical point of the underlying spin system. It is suggested that the performance improvement of the ECMC is related to this anomalous behavior.
On a phase diagram for random neural networks with embedded spike timing dependent plasticity.
Turova, Tatyana S; Villa, Alessandro E P
2007-01-01
This paper presents an original mathematical framework based on graph theory which is a first attempt to investigate the dynamics of a model of neural networks with embedded spike timing dependent plasticity. The neurons correspond to integrate-and-fire units located at the vertices of a finite subset of 2D lattice. There are two types of vertices, corresponding to the inhibitory and the excitatory neurons. The edges are directed and labelled by the discrete values of the synaptic strength. We assume that there is an initial firing pattern corresponding to a subset of units that generate a spike. The number of activated externally vertices is a small fraction of the entire network. The model presented here describes how such pattern propagates throughout the network as a random walk on graph. Several results are compared with computational simulations and new data are presented for identifying critical parameters of the model.
Rhythm Pattern of Sole through Electrification of the Human Body When Walking
NASA Astrophysics Data System (ADS)
Takiguchi, Kiyoaki; Wada, Takayuki; Tohyama, Shigeki
The rhythm of automatic cyclic movements such as walking is known to be generated by a rhythm generator called CPG in the spinal cord. The measurement of rhythm characteristics in walking is considered to be important for analyzing human bipedal walking and adaptive walking on irregular terrain. In particular, the soles that contact the terrain surface perform flexible movements similar to the movement of the fins of a lungfish, which is considered to be the predecessor of land animals. The sole movements are believed to be a basic movement acquired during prehistoric times. The detailed rhythm pattern of sole motion is considered to be important. We developed a method for measuring electrification without installing device on a subject's body and footwear for stabilizing the electrification of the human body. We measured the rhythm pattern of 20 subjects including 4 infants when walking by using this system and the corresponding equipment. Therefore, we confirmed the commonality of the correlative rhythm patterns of 20 subjects. Further, with regard to an individual subject, the reproducibility of a rhythm pattern with strong correlation coefficient > 0.93 ± 0.5 (mean ± SD) concerning rhythms of trials that are differently conducted on adult subjects could be confirmed.
Random-Walk Type Model with Fat Tails for Financial Markets
NASA Astrophysics Data System (ADS)
Matuttis, Hans-Geors
Starting from the random-walk model, practices of financial markets are included into the random-walk so that fat tail distributions like those in the high frequency data of the SP500 index are reproduced, though the individual mechanisms are modeled by normally distributed data. The incorporation of local correlation narrows the distribution for "frequent" events, whereas global correlations due to technical analysis leads to fat tails. Delay of market transactions in the trading process shifts the fat tail probabilities downwards. Such an inclusion of reactions to market fluctuations leads to mini-trends which are distributed with unit variance.
Xu, Long; Zhao, Hua; Xu, Caixia; Zhang, Siqi; Zou, Yingyin K; Zhang, Jingwen
2014-02-01
A broadband optical amplification was observed and investigated in Er3+-doped electrostrictive ceramics of lanthanum-modified lead zirconate titanate under a corona atmosphere. The ceramic structure change caused by UV light, electric field, and random walks originated from the diffusive process in intrinsically disordered materials may all contribute to the optical amplification and the associated energy storage. Discussion based on optical energy storage and diffusive equations was given to explain the findings. Those experiments performed made it possible to study random walks and optical amplification in transparent ceramics materials.
Refining Time-Activity Classification of Human Subjects Using the Global Positioning System
Hu, Maogui; Li, Wei; Li, Lianfa; Houston, Douglas; Wu, Jun
2016-01-01
Background Detailed spatial location information is important in accurately estimating personal exposure to air pollution. Global Position System (GPS) has been widely used in tracking personal paths and activities. Previous researchers have developed time-activity classification models based on GPS data, most of them were developed for specific regions. An adaptive model for time-location classification can be widely applied to air pollution studies that use GPS to track individual level time-activity patterns. Methods Time-activity data were collected for seven days using GPS loggers and accelerometers from thirteen adult participants from Southern California under free living conditions. We developed an automated model based on random forests to classify major time-activity patterns (i.e. indoor, outdoor-static, outdoor-walking, and in-vehicle travel). Sensitivity analysis was conducted to examine the contribution of the accelerometer data and the supplemental spatial data (i.e. roadway and tax parcel data) to the accuracy of time-activity classification. Our model was evaluated using both leave-one-fold-out and leave-one-subject-out methods. Results Maximum speeds in averaging time intervals of 7 and 5 minutes, and distance to primary highways with limited access were found to be the three most important variables in the classification model. Leave-one-fold-out cross-validation showed an overall accuracy of 99.71%. Sensitivities varied from 84.62% (outdoor walking) to 99.90% (indoor). Specificities varied from 96.33% (indoor) to 99.98% (outdoor static). The exclusion of accelerometer and ambient light sensor variables caused a slight loss in sensitivity for outdoor walking, but little loss in overall accuracy. However, leave-one-subject-out cross-validation showed considerable loss in sensitivity for outdoor static and outdoor walking conditions. Conclusions The random forests classification model can achieve high accuracy for the four major time-activity categories. The model also performed well with just GPS, road and tax parcel data. However, caution is warranted when generalizing the model developed from a small number of subjects to other populations. PMID:26919723
Continuous-Time Classical and Quantum Random Walk on Direct Product of Cayley Graphs
NASA Astrophysics Data System (ADS)
Salimi, S.; Jafarizadeh, M. A.
2009-06-01
In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on complicated graphs. Using this method, we calculate the probability of continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete Kn, charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t → ∞ but for quantum state is not always satisfied.
Neuromorphic walking gait control.
Still, Susanne; Hepp, Klaus; Douglas, Rodney J
2006-03-01
We present a neuromorphic pattern generator for controlling the walking gaits of four-legged robots which is inspired by central pattern generators found in the nervous system and which is implemented as a very large scale integrated (VLSI) chip. The chip contains oscillator circuits that mimic the output of motor neurons in a strongly simplified way. We show that four coupled oscillators can produce rhythmic patterns with phase relationships that are appropriate to generate all four-legged animal walking gaits. These phase relationships together with frequency and duty cycle of the oscillators determine the walking behavior of a robot driven by the chip, and they depend on a small set of stationary bias voltages. We give analytic expressions for these dependencies. This chip reduces the complex, dynamic inter-leg control problem associated with walking gait generation to the problem of setting a few stationary parameters. It provides a compact and low power solution for walking gait control in robots.
Saxton, Michael J
2007-01-01
Modeling obstructed diffusion is essential to the understanding of diffusion-mediated processes in the crowded cellular environment. Simple Monte Carlo techniques for modeling obstructed random walks are explained and related to Brownian dynamics and more complicated Monte Carlo methods. Random number generation is reviewed in the context of random walk simulations. Programming techniques and event-driven algorithms are discussed as ways to speed simulations.
NASA Astrophysics Data System (ADS)
Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel
2014-09-01
We would like to thank all commentators for their insightful and thought-provoking commentaries [1-4] that also helped to further broaden the scope of our review [5] as well as to extend the list of references. We very much appreciate the positive comments on the relevance, timeliness and comprehensiveness of our work.
Hejrati, Babak; Chesebrough, Sam; Bo Foreman, K; Abbott, Jake J; Merryweather, Andrew S
2016-10-01
Previous studies have shown that inclusion of arm swing in gait rehabilitation leads to more effective walking recovery in patients with walking impairments. However, little is known about the correct arm-swing trajectories to be used in gait rehabilitation given the fact that changes in walking conditions affect arm-swing patterns. In this paper we present a comprehensive look at the effects of a variety of conditions on arm-swing patterns during walking. The results describe the effects of surface slope, walking speed, and physical characteristics on arm-swing patterns in healthy individuals. We propose data-driven mathematical models to describe arm-swing trajectories. Thirty individuals (fifteen females and fifteen males) with a wide range of height (1.58-1.91m) and body mass (49-98kg), participated in our study. Based on their self-selected walking speed, each participant performed walking trials with four speeds on five surface slopes while their whole-body kinematics were recorded. Statistical analysis showed that walking speed, surface slope, and height were the major factors influencing arm swing during locomotion. The results demonstrate that data-driven models can successfully describe arm-swing trajectories for normal gait under varying walking conditions. The findings also provide insight into the behavior of the elbow during walking. Copyright © 2016. Published by Elsevier B.V.
Toots, Annika; Littbrand, Håkan; Holmberg, Henrik; Nordström, Peter; Lundin-Olsson, Lillemor; Gustafson, Yngve; Rosendahl, Erik
2017-03-01
To investigate the effects of exercise on gait speed, when tested using walking aids and without, and whether effects differed according to amount of support in the test. A cluster-randomized controlled trial. The Umeå Dementia and Exercise (UMDEX) study was set in 16 nursing homes in Umeå, Sweden. One hundred forty-one women and 45 men (mean age 85 years) with dementia, of whom 145 (78%) habitually used walking aids. Participants were randomized to the high-intensity functional exercise program or a seated attention control activity. Blinded assessors measured 4-m usual gait speed with walking aids if any gait speed (GS), and without walking aids and with minimum amount of support, at baseline, 4 months (on intervention completion), and 7 months. Linear mixed models showed no between-group effect in either gait speed test at 4 or 7 months. In interaction analyses exercise effects differed significantly between participants who walked unsupported compared with when walking aids or minimum support was used. Positive between-group exercise effects on gait speed (m/s) were found in subgroups that walked unsupported at 4 and 7 months (GS: 0.07, P = .009 and 0.13, P < .001; and GS test without walking aids: 0.05, P = .011 and 0.07, P = .029, respectively). In people with dementia living in nursing homes exercise had positive effects on gait when tested unsupported compared with when walking aids or minimum support was used. The study suggests that the use of walking aids in gait speed tests may conceal exercise effects. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Kapadia, Naaz; Masani, Kei; Catharine Craven, B.; Giangregorio, Lora M.; Hitzig, Sander L.; Richards, Kieva; Popovic, Milos R.
2014-01-01
Background Multi-channel surface functional electrical stimulation (FES) for walking has been used to improve voluntary walking and balance in individuals with spinal cord injury (SCI). Objective To investigate short- and long-term benefits of 16 weeks of thrice-weekly FES-assisted walking program, while ambulating on a body weight support treadmill and harness system, versus a non-FES exercise program, on improvements in gait and balance in individuals with chronic incomplete traumatic SCI, in a randomized controlled trial design. Methods Individuals with traumatic and chronic (≥18 months) motor incomplete SCI (level C2 to T12, American Spinal Cord Injury Association Impairment Scale C or D) were recruited from an outpatient SCI rehabilitation hospital, and randomized to FES-assisted walking therapy (intervention group) or aerobic and resistance training program (control group). Outcomes were assessed at baseline, and after 4, 6, and 12 months. Gait, balance, spasticity, and functional measures were collected. Results Spinal cord independence measure (SCIM) mobility sub-score improved over time in the intervention group compared with the control group (baseline/12 months: 17.27/21.33 vs. 19.09/17.36, respectively). On all other outcome measures the intervention and control groups had similar improvements. Irrespective of group allocation walking speed, endurance, and balance during ambulation all improved upon completion of therapy, and majority of participants retained these gains at long-term follow-ups. Conclusions Task-oriented training improves walking ability in individuals with incomplete SCI, even in the chronic stage. Further randomized controlled trials, involving a large number of participants are needed, to verify if FES-assisted treadmill training is superior to aerobic and strength training. PMID:25229735
NASA Astrophysics Data System (ADS)
Cheng, Ken
2015-09-01
In a perspective in this issue based on thorough review, Andy Reynolds [1] tackles the issue of how the by now ubiquitously found Lévy walks can be generated, by animals, by organisms other than animals, and other forms of life below the level of organisms, such as cells. The answer comes not in a single whole cloth, but rather in a patchwork of generating factors. Lévy-like movements arise in objects blowing in the wind, or from travelers encountering turbulence in the seas or being repelled by boundaries. A variety of desiderata in movements, not related to achieving optimal foraging, may also engender Lévy-like movements. These include avoiding other organisms or not crossing one's traveled path. Adding to that plethora are ways in which variations on the theme of garden-variety random walks can at least approach a Lévy walk, if not capturing the mathematical form perfectly. Such variations include executing random walks on multiple scales, a strategy exhibited by desert ants [2,3], mussels [4], and quite likely extant hunter-gatherer humans as well [5]. It is possible that fossil tracks over 50 million years old also show this strategy, as the curve fitting with multiple random walks, characterized by multiple exponential distributions, is as good or better than curve fits having the power-law distribution characteristic of Lévy walks [6]. Another variation is to have a random walk search whose scale is expanding over time. In great detail and based on extensive literature - the review has over 200 references - a range of other ways in which Lévy-like movements might come about are also discussed.
Asymptotic properties of a bold random walk
NASA Astrophysics Data System (ADS)
Serva, Maurizio
2014-08-01
In a recent paper we proposed a non-Markovian random walk model with memory of the maximum distance ever reached from the starting point (home). The behavior of the walker is different from the simple symmetric random walk only when she is at this maximum distance, where, having the choice to move either farther or closer, she decides with different probabilities. If the probability of a forward step is higher than the probability of a backward step, the walker is bold and her behavior turns out to be superdiffusive; otherwise she is timorous and her behavior turns out to be subdiffusive. The scaling behavior varies continuously from subdiffusive (timorous) to superdiffusive (bold) according to a single parameter γ ∈R. We investigate here the asymptotic properties of the bold case in the nonballistic region γ ∈[0,1/2], a problem which was left partially unsolved previously. The exact results proved in this paper require new probabilistic tools which rely on the construction of appropriate martingales of the random walk and its hitting times.
Random walk to a nonergodic equilibrium concept
NASA Astrophysics Data System (ADS)
Bel, G.; Barkai, E.
2006-01-01
Random walk models, such as the trap model, continuous time random walks, and comb models, exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is, what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this paper a nonergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the nonergodic phase the distribution of the occupation time of the particle in a finite region of space approaches U- or W-shaped distributions related to the arcsine law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the nonergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a δ function centered on the value predicted based on standard Boltzmann-Gibbs statistics. The relation of our work to single-molecule experiments is briefly discussed.
Walking adaptability therapy after stroke: study protocol for a randomized controlled trial.
Timmermans, Celine; Roerdink, Melvyn; van Ooijen, Marielle W; Meskers, Carel G; Janssen, Thomas W; Beek, Peter J
2016-08-26
Walking in everyday life requires the ability to adapt walking to the environment. This adaptability is often impaired after stroke, and this might contribute to the increased fall risk after stroke. To improve safe community ambulation, walking adaptability training might be beneficial after stroke. This study is designed to compare the effects of two interventions for improving walking speed and walking adaptability: treadmill-based C-Mill therapy (therapy with augmented reality) and the overground FALLS program (a conventional therapy program). We hypothesize that C-Mill therapy will result in better outcomes than the FALLS program, owing to its expected greater amount of walking practice. This is a single-center parallel group randomized controlled trial with pre-intervention, post-intervention, retention, and follow-up tests. Forty persons after stroke (≥3 months) with deficits in walking or balance will be included. Participants will be randomly allocated to either C-Mill therapy or the overground FALLS program for 5 weeks. Both interventions will incorporate practice of walking adaptability and will be matched in terms of frequency, duration, and therapist attention. Walking speed, as determined by the 10 Meter Walking Test, will be the primary outcome measure. Secondary outcome measures will pertain to walking adaptability (10 Meter Walking Test with context or cognitive dual-task and Interactive Walkway assessments). Furthermore, commonly used clinical measures to determine walking ability (Timed Up-and-Go test), walking independence (Functional Ambulation Category), balance (Berg Balance Scale), and balance confidence (Activities-specific Balance Confidence scale) will be used, as well as a complementary set of walking-related assessments. The amount of walking practice (the number of steps taken per session) will be registered using the treadmill's inbuilt step counter (C-Mill therapy) and video recordings (FALLS program). This process measure will be compared between the two interventions. This study will assess the effects of treadmill-based C-Mill therapy compared with the overground FALLS program and thereby the relative importance of the amount of walking practice as a key aspect of effective intervention programs directed at improving walking speed and walking adaptability after stroke. Netherlands Trial Register NTR4030 . Registered on 11 June 2013, amendment filed on 17 June 2016.
Linear and Nonlinear Statistical Characterization of DNA
NASA Astrophysics Data System (ADS)
Norio Oiwa, Nestor; Goldman, Carla; Glazier, James
2002-03-01
We find spatial order in the distribution of protein-coding (including RNAs) and control segments of GenBank genomic sequences, irrespective of ATCG content. This is achieved by correlations, histograms, fractal dimensions and singularity spectra. Estimates of these quantities in complete nuclear genome indicate that coding sequences are long-range correlated and their disposition are self-similar (multifractal) for eukaryotes. These characteristics are absent in prokaryotes, where there are few noncoding sequences, suggesting the `junk' DNA play a relevant role to the genome structure and function. Concerning the genetic message of ATCG sequences, we build a random walk (Levy flight), using DNA symmetry arguments, where we associate A, T, C and G as left, right, down and up steps, respectively. Nonlinear analysis of mitochondrial DNA walks reveal multifractal pattern based on palindromic sequences, which fold in hairpins and loops.
Funato, Tetsuro; Aoi, Shinya; Oshima, Hiroko; Tsuchiya, Kazuo
2010-09-01
Step length, cadence and joint flexion all increase in response to increases in gradient and walking speed. However, the tuning strategy leading to these changes has not been elucidated. One characteristic of joint variation that occurs during walking is the close relationship among the joints. This property reduces the number of degrees of freedom and seems to be a key issue in discussing the tuning strategy. This correlation has been analyzed for the lower limbs, but the relation between the trunk and lower body is generally ignored. Two questions about posture during walking are discussed in this paper: (1) whether there is a low-dimensional restriction that determines walking posture, which depends not just on the lower limbs but on the whole body, including the trunk and (2) whether some simple rules appear in different walking conditions. To investigate the correlation, singular value decomposition was applied to a measured walking pattern. This showed that the whole movement can be described by a closed loop on a two-dimensional plane in joint space. Furthermore, by investigating the effect of the walking condition on the decomposed patterns, the position and the tilt of the constraint plane was found to change significantly, while the loop pattern on the constraint plane was shown to be robust. This result indicates that humans select only certain kinematic characteristics for adapting to various walking conditions.
The walking behaviour of pedestrian social groups and its impact on crowd dynamics.
Moussaïd, Mehdi; Perozo, Niriaska; Garnier, Simon; Helbing, Dirk; Theraulaz, Guy
2010-04-07
Human crowd motion is mainly driven by self-organized processes based on local interactions among pedestrians. While most studies of crowd behaviour consider only interactions among isolated individuals, it turns out that up to 70% of people in a crowd are actually moving in groups, such as friends, couples, or families walking together. These groups constitute medium-scale aggregated structures and their impact on crowd dynamics is still largely unknown. In this work, we analyze the motion of approximately 1500 pedestrian groups under natural condition, and show that social interactions among group members generate typical group walking patterns that influence crowd dynamics. At low density, group members tend to walk side by side, forming a line perpendicular to the walking direction. As the density increases, however, the linear walking formation is bent forward, turning it into a V-like pattern. These spatial patterns can be well described by a model based on social communication between group members. We show that the V-like walking pattern facilitates social interactions within the group, but reduces the flow because of its "non-aerodynamic" shape. Therefore, when crowd density increases, the group organization results from a trade-off between walking faster and facilitating social exchange. These insights demonstrate that crowd dynamics is not only determined by physical constraints induced by other pedestrians and the environment, but also significantly by communicative, social interactions among individuals.
Dobkin, Bruce H.; Apple, David; Barbeau, Hugues; Basso, Michele; Behrman, Andrea; Deforge, Dan; Ditunno, John; Dudley, Gary; Elashoff, Robert; Fugate, Lisa; Harkema, Susan; Saulino, Michael; Scott, Michael
2014-01-01
The authors describe the rationale and methodology for the first prospective, multicenter, randomized clinical trial (RCT) of a task-oriented walking intervention for subjects during early rehabilitation for an acute traumatic spinal cord injury (SCI). The experimental strategy, body weight–supported treadmill training (BWSTT), allows physical therapists to systematically train patients to walk on a treadmill at increasing speeds typical of community ambulation with increasing weight bearing. The therapists provide verbal and tactile cues to facilitate the kinematic, kinetic, and temporal features of walking. Subjects were randomly assigned to a conventional therapy program for mobility versus the same intensity and duration of a combination of BWSTT and over-ground locomotor retraining. Subjects had an incomplete SCI (American Spinal Injury Association grades B, C, and D) from C-4 to T-10 (upper motoneuron group) or from T-11 to L-3 (lower motoneuron group). Within 8 weeks of a SCI, 146 subjects were entered for 12 weeks of intervention. The 2 single-blinded primary outcome measures are the level of independence for ambulation and, for those who are able to walk, the maximal speed for walking 50 feet, tested 6 and 12 months after randomization. The trial’s methodology offers a model for the feasibility of translating neuroscientific experiments into a RCT to develop evidence-based rehabilitation practices. PMID:14503436
Adaptive gait responses to awareness of an impending slip during treadmill walking.
Yang, Feng; Kim, JaeEun; Munoz, Jose
2016-10-01
The awareness of potential slip risk has been shown to cause protective changes to human gait during overground walking. It remains unknown if such adaptations to walking pattern also exist when ambulating on a treadmill. This study sought to determine whether and to what extent individuals, when being aware of a potential slip risk during treadmill walking, could adjust their gait pattern to improve their dynamic stability against backward balance loss in response to the impending slip hazard. Fifty-four healthy young subjects (age: 23.9±4.7years) participated in this study. Subjects' gait pattern was measured under two conditions: walking on a treadmill without (or normal walking) and with (or aware walking) the awareness of the potential slip perturbation. During both walking conditions, subjects' full body kinematics were gathered by using a motion capture system. Spatial gait parameters and the dynamic gait stability against backward balance were compared between the two walking conditions. The results revealed that subjects proactively adopted a "cautious gait" during aware walking compared with the normal walking. The cautious gait, which was achieved by taking a shorter step and a more flatfoot landing, positioned the body center of mass closer to the base of support, improving participants' dynamic stability and increasing their resistance against a possible slip-related fall. The finding from this study could provide insights into the dynamic stability control when individuals anticipate potential slip risk during treadmill walking. Copyright © 2016 Elsevier B.V. All rights reserved.
Modelling nematode movement using time-fractional dynamics.
Hapca, Simona; Crawford, John W; MacMillan, Keith; Wilson, Mike J; Young, Iain M
2007-09-07
We use a correlated random walk model in two dimensions to simulate the movement of the slug parasitic nematode Phasmarhabditis hermaphrodita in homogeneous environments. The model incorporates the observed statistical distributions of turning angle and speed derived from time-lapse studies of individual nematode trails. We identify strong temporal correlations between the turning angles and speed that preclude the case of a simple random walk in which successive steps are independent. These correlated random walks are appropriately modelled using an anomalous diffusion model, more precisely using a fractional sub-diffusion model for which the associated stochastic process is characterised by strong memory effects in the probability density function.
NASA Astrophysics Data System (ADS)
Ding, Jian; Li, Li
2018-05-01
We initiate the study on chemical distances of percolation clusters for level sets of two-dimensional discrete Gaussian free fields as well as loop clusters generated by two-dimensional random walk loop soups. One of our results states that the chemical distance between two macroscopic annuli away from the boundary for the random walk loop soup at the critical intensity is of dimension 1 with positive probability. Our proof method is based on an interesting combination of a theorem of Makarov, isomorphism theory, and an entropic repulsion estimate for Gaussian free fields in the presence of a hard wall.
NASA Astrophysics Data System (ADS)
Ding, Jian; Li, Li
2018-06-01
We initiate the study on chemical distances of percolation clusters for level sets of two-dimensional discrete Gaussian free fields as well as loop clusters generated by two-dimensional random walk loop soups. One of our results states that the chemical distance between two macroscopic annuli away from the boundary for the random walk loop soup at the critical intensity is of dimension 1 with positive probability. Our proof method is based on an interesting combination of a theorem of Makarov, isomorphism theory, and an entropic repulsion estimate for Gaussian free fields in the presence of a hard wall.
The stochastic dynamics of intermittent porescale particle motion
NASA Astrophysics Data System (ADS)
Dentz, Marco; Morales, Veronica; Puyguiraud, Alexandre; Gouze, Philippe; Willmann, Matthias; Holzner, Markus
2017-04-01
Numerical and experimental data for porescale particle dynamics show intermittent patterns in Lagrangian velocities and accelerations, which manifest in long time intervals of low and short durations of high velocities [1, 2]. This phenomenon is due to the spatial persistence of particle velocities on characteristic heterogeneity length scales. In order to systematically quantify these behaviors and extract the stochastic dynamics of particle motion, we focus on the analysis of Lagrangian velocities sampled equidistantly along trajectories [3]. This method removes the intermittency observed under isochrone sampling. The space-Lagrangian velocity series can be quantified by a Markov process that is continuous in distance along streamline. It is fully parameterized in terms of the flux-weighted Eulerian velocity PDF and the characteristic pore-length. The resulting stochastic particle motion describes a continuous time random walk (CTRW). This approach allows for the process based interpretation of experimental and numerical porescale velocity, acceleration and displacement data. It provides a framework for the characterization and upscaling of particle transport and dispersion from the pore to the Darcy-scale based on the medium geometry and Eulerian flow attributes. [1] P. De Anna, T. Le Borgne, M. Dentz, A.M. Tartakovsky, D. Bolster, and P. Davy, "Flow intermittency, dispersion, and correlated continuous time random walks in porous media," Phys. Rev. Lett. 110, 184502 (2013). [2] M. Holzner, V. L. Morales, M. Willmann, and M. Dentz, "Intermittent Lagrangian velocities and accelerations in three- dimensional porous medium flow," Phys. Rev. E 92, 013015 (2015). [3] M. Dentz, P. K. Kang, A. Comolli, T. Le Borgne, and D. R. Lester, "Continuous time random walks for the evolution of Lagrangian velocities," Phys. Rev. Fluids (2016).
EMG patterns during assisted walking in the exoskeleton
Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P.
2014-01-01
Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns. PMID:24982628
EMG patterns during assisted walking in the exoskeleton.
Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P
2014-01-01
Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.
Fernández-Del-Olmo, Miguel Angel; Sanchez, Jose Andres; Bello, Olalla; Lopez-Alonso, Virginia; Márquez, Gonzalo; Morenilla, Luis; Castro, Xabier; Giraldez, Manolo; Santos-García, Diego
2014-01-01
Gait disturbances are one of the principal and most incapacitating symptoms of Parkinson's disease (PD). In addition, walking economy is impaired in PD patients and could contribute to excess fatigue in this population. An important number of studies have shown that treadmill training can improve kinematic parameters in PD patients. However, the effects of treadmill and overground walking on the walking economy remain unknown. The goal of this study was to explore the walking economy changes in response to a treadmill and an overground training program, as well as the differences in the walking economy during treadmill and overground walking. Twenty-two mild PD patients were randomly assigned to a treadmill or overground training group. The training program consisted of 5 weeks (3 sessions/week). We evaluated the energy expenditure of overground walking, before and after each of the training programs. The energy expenditure of treadmill walking (before the program) was also evaluated. The treadmill, but not the overground training program, lead to an improvement in the walking economy (the rate of oxygen consumed per distance during overground walking at a preferred speed) in PD patients. In addition, walking on a treadmill required more energy expenditure compared with overground walking at the same speed. This study provides evidence that in mild PD patients, treadmill training is more beneficial compared with that of walking overground, leading to a greater improvement in the walking economy. This finding is of clinical importance for the therapeutic administration of exercise in PD.
Spiess, Martina R; Jaramillo, Jeffrey P; Behrman, Andrea L; Teraoka, Jeffrey K; Patten, Carolynn
2012-08-01
To investigate the effect of walking speed on the emergence of locomotor electromyogram (EMG) patterns in an individual with chronic incomplete spinal cord injury (SCI), and to determine whether central pattern generator activity during robotic locomotor training (RLT) transfers to volitional EMG activity during overground walking. Single-case (B-A-B; experimental treatment-withdrawal-experimental treatment) design. Freestanding rehabilitation research center. A 50-year-old man who was nonambulatory for 16 months after incomplete SCI (sub-T11). The participant completed two 6-week blocks of RLT, training 4 times per week for 30 minutes per session at walking speeds up to 5km/h (1.4m/s) over continuous bouts lasting up to 17 minutes. Surface EMG was recorded weekly during RLT and overground walking. The Walking Index for Spinal Cord Injury (WISCI-II) was assessed daily during training blocks. During week 4, reciprocal, patterned EMG emerged during RLT. EMG amplitude modulation revealed a curvilinear relationship over the range of walking speeds from 1.5 to 5km/h (1.4m/s). Functionally, the participant improved from being nonambulatory (WISCI-II 1/20), to walking overground with reciprocal stepping using knee-ankle-foot orthoses and a walker (WISCI-II 9/20). EMG was also observed during overground walking. These functional gains were maintained greater than 4 years after locomotor training (LT). Here we report an unexpected course of locomotor recovery in an individual with chronic incomplete SCI. Through RLT at physiologic walking speeds, it was possible to activate the central pattern generator even 16 months postinjury. Further, to a certain degree, improvements from RLT transferred to overground walking. Our results suggest that LT-induced changes affect the central pattern generator and allow supraspinal inputs to engage residual spinal pathways. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Metabolic cost and mechanics of walking in women with fibromyalgia syndrome.
MacPhee, Renée S; McFall, Kristen; Perry, Stephen D; Tiidus, Peter M
2013-10-18
Fibromyalgia syndrome (FS) is characterized by the presence of widespread pain, fatigue, muscle weakness and reduced work capacity. Previous research has demonstrated that women with fibromyalgia have altered walking (gait) patterns, which may be a consequence of muscular pain. This altered gait is characterized by greater reliance on hip flexors rather than ankle plantar flexors and resembles gait patterns seen in normal individuals walking at higher speeds, suggesting that gait of individuals with fibromyalgia may be less efficient.This study compared rates of energy expenditure of 6 females with FS relative to 6 normal, age and weight matched controls, at various walking speeds on a motorized treadmill. Metabolic measurements including V02 (ml/kg/min), respirations, heart rate and calculated energy expenditures as well as the Borg Scale of Perceived Exertion scale ratings were determined at baseline and for 10 min while walking at each of 2, 4 and 5 km/hour on 1% grade. Kinematic recordings of limb and body movements while treadmill walking and separate measurements of ground reaction forces while walking over ground were also determined. In addition, all subjects completed the RAND 36-Item Health Survey (1.0). Gait analysis results were similar to previous reports of altered gait patterns in FS females. Despite noticeable differences in gait patterns, no significant differences (p > 0.05) existed between the FS and control subjects on any metabolic measures at any walking speed. Total number of steps taken was also similar between groups. Ratings on the Borg Scale of Perceived Exertion, the RAND and self-reported levels of pain indicated significantly greater (p < 0.05) perceived effort and pain in FS subjects relative to control subjects during walking and daily activities. The altered gait patterns and greater perceptions of effort and pain did not significantly increase the metabolic costs of walking in women with FS and hence, increased sensations of fatigue in FS women may not be related to alteration in metabolic cost of ambulation.
Metabolic cost and mechanics of walking in women with fibromyalgia syndrome
2013-01-01
Background Fibromyalgia syndrome (FS) is characterized by the presence of widespread pain, fatigue, muscle weakness and reduced work capacity. Previous research has demonstrated that women with fibromyalgia have altered walking (gait) patterns, which may be a consequence of muscular pain. This altered gait is characterized by greater reliance on hip flexors rather than ankle plantar flexors and resembles gait patterns seen in normal individuals walking at higher speeds, suggesting that gait of individuals with fibromyalgia may be less efficient. This study compared rates of energy expenditure of 6 females with FS relative to 6 normal, age and weight matched controls, at various walking speeds on a motorized treadmill. Metabolic measurements including V02 (ml/kg/min), respirations, heart rate and calculated energy expenditures as well as the Borg Scale of Perceived Exertion scale ratings were determined at baseline and for 10 min while walking at each of 2, 4 and 5 km/hour on 1% grade. Kinematic recordings of limb and body movements while treadmill walking and separate measurements of ground reaction forces while walking over ground were also determined. In addition, all subjects completed the RAND 36-Item Health Survey (1.0). Findings Gait analysis results were similar to previous reports of altered gait patterns in FS females. Despite noticeable differences in gait patterns, no significant differences (p > 0.05) existed between the FS and control subjects on any metabolic measures at any walking speed. Total number of steps taken was also similar between groups. Ratings on the Borg Scale of Perceived Exertion, the RAND and self-reported levels of pain indicated significantly greater (p < 0.05) perceived effort and pain in FS subjects relative to control subjects during walking and daily activities. Conclusions The altered gait patterns and greater perceptions of effort and pain did not significantly increase the metabolic costs of walking in women with FS and hence, increased sensations of fatigue in FS women may not be related to alteration in metabolic cost of ambulation. PMID:24139565
Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy.
Menz, Hylton B; Lord, Stephen R; St George, Rebecca; Fitzpatrick, Richard C
2004-02-01
To evaluate, in older people with diabetic peripheral neuropathy (DPN) and in age-matched controls, acceleration patterns of the head and pelvis when walking to determine the effect of lower-limb sensory loss on walking stability. Case-control study. Falls and balance laboratory in Australia. Thirty persons with diabetes mellitus (age range, 55-91 y) and 30 age-matched controls. Acceleration patterns of the head and pelvis were measured while participants walked on a level surface and an irregular walkway. Participants also underwent tests of vision, sensation, strength, reaction time, and balance. Temporospatial gait parameters and variables derived from acceleration signals. Participants with DPN had reduced walking speed, cadence, and step length, and less rhythmic acceleration patterns at the head and pelvis compared with controls. These differences were particularly evident when participants walked on the irregular surface. Participants with DPN also had impaired peripheral sensation, reaction time, and balance. Older people with DPN have an impaired ability to stabilize their body when walking on irregular surfaces, even if they adopt a more conservative gait pattern. These results provide further insights into the role of peripheral sensory input in the control of gait stability, and suggest possible mechanisms underlying the increased risk of falling in older people with diabetic neuropathy.
Langevin Dynamics Deciphers the Motility Pattern of Swimming Parasites
NASA Astrophysics Data System (ADS)
Zaburdaev, Vasily; Uppaluri, Sravanti; Pfohl, Thomas; Engstler, Markus; Friedrich, Rudolf; Stark, Holger
2011-05-01
The parasite African trypanosome swims in the bloodstream of mammals and causes the highly dangerous human sleeping sickness. Cell motility is essential for the parasite’s survival within the mammalian host. We present an analysis of the random-walk pattern of a swimming trypanosome. From experimental time-autocorrelation functions for the direction of motion we identify two relaxation times that differ by an order of magnitude. They originate from the rapid deformations of the cell body and a slower rotational diffusion of the average swimming direction. Velocity fluctuations are athermal and increase for faster cells whose trajectories are also straighter. We demonstrate that such a complex dynamics is captured by two decoupled Langevin equations that decipher the complex trajectory pattern by referring it to the microscopic details of cell behavior.
Convex hulls of random walks in higher dimensions: A large-deviation study
NASA Astrophysics Data System (ADS)
Schawe, Hendrik; Hartmann, Alexander K.; Majumdar, Satya N.
2017-12-01
The distribution of the hypervolume V and surface ∂ V of convex hulls of (multiple) random walks in higher dimensions are determined numerically, especially containing probabilities far smaller than P =10-1000 to estimate large deviation properties. For arbitrary dimensions and large walk lengths T , we suggest a scaling behavior of the distribution with the length of the walk T similar to the two-dimensional case and behavior of the distributions in the tails. We underpin both with numerical data in d =3 and d =4 dimensions. Further, we confirm the analytically known means of those distributions and calculate their variances for large T .
Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U
2016-12-01
This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O 2 ) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O 2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O 2 kinetics were estimated from heart rate and pulmonary V̇O 2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O 2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O 2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O 2 during walking, the assessment of muscular V̇O 2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.
Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric
2016-01-01
Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.
Random walks with random velocities.
Zaburdaev, Vasily; Schmiedeberg, Michael; Stark, Holger
2008-07-01
We consider a random walk model that takes into account the velocity distribution of random walkers. Random motion with alternating velocities is inherent to various physical and biological systems. Moreover, the velocity distribution is often the first characteristic that is experimentally accessible. Here, we derive transport equations describing the dispersal process in the model and solve them analytically. The asymptotic properties of solutions are presented in the form of a phase diagram that shows all possible scaling regimes, including superdiffusive, ballistic, and superballistic motion. The theoretical results of this work are in excellent agreement with accompanying numerical simulations.
Nekoukar, Vahab; Erfanian, Abbas
2013-11-01
In this paper, we propose a musculoskeletal model of walker-assisted FES-activated paraplegic walking for the generation of muscle stimulation patterns and characterization of the causal relationships between muscle excitations, multi-joint movement, and handle reaction force (HRF). The model consists of the lower extremities, trunk, hands, and a walker. The simulation of walking is performed using particle swarm optimization to minimize the tracking errors from the desired trajectories for the lower extremity joints, to reduce the stimulations of the muscle groups acting around the hip, knee, and ankle joints, and to minimize the HRF. The results of the simulation studies using data recorded from healthy subjects performing walker-assisted walking indicate that the model-generated muscle stimulation patterns are in agreement with the EMG patterns that have been reported in the literature. The experimental results on two paraplegic subjects demonstrate that the proposed methodology can improve walking performance, reduce HRF, and increase walking speed when compared to the conventional FES-activated paraplegic walking. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Exploring activity-driven network with biased walks
NASA Astrophysics Data System (ADS)
Wang, Yan; Wu, Ding Juan; Lv, Fang; Su, Meng Long
We investigate the concurrent dynamics of biased random walks and the activity-driven network, where the preferential transition probability is in terms of the edge-weighting parameter. We also obtain the analytical expressions for stationary distribution and the coverage function in directed and undirected networks, all of which depend on the weight parameter. Appropriately adjusting this parameter, more effective search strategy can be obtained when compared with the unbiased random walk, whether in directed or undirected networks. Since network weights play a significant role in the diffusion process.
Finding paths in tree graphs with a quantum walk
NASA Astrophysics Data System (ADS)
Koch, Daniel; Hillery, Mark
2018-01-01
We analyze the potential for different types of searches using the formalism of scattering random walks on quantum computers. Given a particular type of graph consisting of nodes and connections, a "tree maze," we would like to find a selected final node as quickly as possible, faster than any classical search algorithm. We show that this can be done using a quantum random walk, both through numerical calculations as well as by using the eigenvectors and eigenvalues of the quantum system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendon, Viv
2014-12-04
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.
Adaptation of the walking pattern to uphill walking in normal and spinal-cord injured subjects.
Leroux, A; Fung, J; Barbeau, H
1999-06-01
Lower-limb movements and muscle-activity patterns were assessed from seven normal and seven ambulatory subjects with incomplete spinal-cord injury (SCI) during level and uphill treadmill walking (5, 10 and 15 degrees). Increasing the treadmill grade from 0 degrees to 15 degrees induced an increasingly flexed posture of the hip, knee and ankle during initial contact in all normal subjects, resulting in a larger excursion throughout stance. This adaptation process actually began in mid-swing with a graded increase in hip flexion and ankle dorsiflexion as well as a gradual decrease in knee extension. In SCI subjects, a similar trend was found at the hip joint for both swing and stance phases, whereas the knee angle showed very limited changes and the ankle angle showed large variations with grade throughout the walking cycle. A distinct coordination pattern between the hip and knee was observed in normal subjects, but not in SCI subjects during level walking. The same coordination pattern was preserved in all normal subjects and in five of seven SCI subjects during uphill walking. The duration of electromyographic (EMG) activity of thigh muscles was progressively increased during uphill walking, whereas no significant changes occurred in leg muscles. In SCI subjects, EMG durations of both thigh and leg muscles, which were already active throughout stance during level walking, were not significantly affected by uphill walking. The peak amplitude of EMG activity of the vastus lateralis, medial hamstrings, soleus, medial gastrocnemius and tibialis anterior was progressively increased during uphill walking in normal subjects. In SCI subjects, the peak amplitude of EMG activity of the medial hamstrings was adapted in a similar fashion, whereas the vastus lateralis, soleus and medial gastrocnemius showed very limited adaptation during uphill walking. We conclude that SCI subjects can adapt to uphill treadmill walking within certain limits, but they use different strategies to adapt to the changing locomotor demands.
Fractal analysis of the ambulation pattern of Japanese quail.
Kembro, J M; Perillo, M A; Pury, P A; Satterlee, D G; Marín, R H
2009-03-01
1. The study examined the practicality and usefulness of fractal analyses in evaluating the temporal organisation of avian ambulatory behaviour by using female Japanese quail in their home boxes as the model system. To induce two locomotion activity levels, we tested half of the birds without disturbance (Unstimulated) and the other half when food was scattered on the floor of the home box after 3 h of feeder withdrawal (Stimulated). 2. Ambulatory activity was recorded during 40 min at a resolution of 1 s and evaluated by: (1) detrended fluctuation analyses (DFA), (2) the frequency distribution of the duration of the walking or non-walking events (FDD-W or FDD-NW, respectively), and (3) the transition probabilities between walking/non-walking states. Conventional measures of total time spent walking and average duration of the walking/non-walking events were also employed. 3. DFA showed a decreased value of the self-similarity parameter (alpha; indicative of a more complex ambulatory pattern) in Stimulated birds compared to their Unstimulated counterparts. The FDD-NW showed a more negative scaling factor in Stimulated than in Unstimulated birds. Stimulated birds also had more transitions between non-walking and walking states, consistent with stimulated exploratory activity. No differences were found between groups in the FDD-W, in percentage of total time spent walking, or in average duration of the walking events. 4. The temporal walking pattern of female Japanese quail has a fractal structure and its organisation and complexity is altered when birds are stimulated to explore. The fractal analyses detected differences between the Unstimulated and Stimulated groups that went undetected by the traditional measurements of the percentage of total time spent walking and the duration of the walking events suggesting its usefulness as a tool for behavioural studies.
Random walk in generalized quantum theory
NASA Astrophysics Data System (ADS)
Martin, Xavier; O'Connor, Denjoe; Sorkin, Rafael D.
2005-01-01
One can view quantum mechanics as a generalization of classical probability theory that provides for pairwise interference among alternatives. Adopting this perspective, we “quantize” the classical random walk by finding, subject to a certain condition of “strong positivity”, the most general Markovian, translationally invariant “decoherence functional” with nearest neighbor transitions.
Financial Data Analysis by means of Coupled Continuous-Time Random Walk in Rachev-Rűschendorf Model
NASA Astrophysics Data System (ADS)
Jurlewicz, A.; Wyłomańska, A.; Żebrowski, P.
2008-09-01
We adapt the continuous-time random walk formalism to describe asset price evolution. We expand the idea proposed by Rachev and Rűschendorf who analyzed the binomial pricing model in the discrete time with randomization of the number of price changes. As a result, in the framework of the proposed model we obtain a mixture of the Gaussian and a generalized arcsine laws as the limiting distribution of log-returns. Moreover, we derive an European-call-option price that is an extension of the Black-Scholes formula. We apply the obtained theoretical results to model actual financial data and try to show that the continuous-time random walk offers alternative tools to deal with several complex issues of financial markets.
An online social network to increase walking in dog owners: a randomized trial.
Schneider, Kristin L; Murphy, Deirdra; Ferrara, Cynthia; Oleski, Jessica; Panza, Emily; Savage, Clara; Gada, Kimberly; Bozzella, Brianne; Olendzki, Effie; Kern, Daniel; Lemon, Stephenie C
2015-03-01
Encouraging dog walking may increase physical activity in dog owners. This cluster-randomized controlled trial investigated whether a social networking Web site (Meetup™) could be used to deliver a multicomponent dog walking intervention to increase physical activity. Sedentary dog owners (n = 102) participated. Eight neighborhoods were randomly assigned to the Meetup™ condition (Meetup™) or a condition where participants received monthly e-mails with content from the American Heart Association regarding increasing physical activity. The Meetup™ intervention was delivered over 6 months and consisted of newsletters, dog walks, community events, and an activity monitor. The primary outcome was steps; secondary outcomes included social support for walking, sense of community, perceived dog walking outcomes, barriers to dog walking, and feasibility of the intervention. Mixed-model analyses examined change from baseline to postintervention (6 months) and whether change in outcomes differed by condition. Daily steps increased over time (P = 0.04, d = 0.28), with no differences by condition. The time-condition interaction was significant for the perceived outcomes of dog walking (P = 0.04, d = 0.40), such that the Meetup™ condition reported an increase in the perceived positive outcomes of dog walking, whereas the American Heart Association condition did not. Social support, sense of community, and dog walking barriers did not significantly change. Meetup™ logins averaged 58.38 per week (SD, 11.62). Within 2 months of the intervention ending, organization of the Meetup™ groups transitioned from the study staff to Meetup™ members. Results suggest that a Meetup™ group is feasible for increasing physical activity in dog owners. Further research is needed to understand how to increase participation in the Meetup™ group and facilitate greater connection among dog owners.
Richards, Elizabeth A; Ogata, Niwako; Cheng, Ching-Wei
2016-01-01
To facilitate physical activity (PA) adoption and maintenance, promotion of innovative population-level strategies that focus on incorporating moderate-intensity lifestyle PAs are needed. The purpose of this randomized controlled trial was to evaluate the Dogs, Physical Activity, and Walking intervention, a 3-month, social cognitive theory (SCT), e-mail-based PA intervention. In a longitudinal, repeated-measures design, 49 dog owners were randomly assigned to a control (n = 25) or intervention group (n = 24). The intervention group received e-mail messages (twice weekly for 4 weeks and weekly for 8 weeks) designed to influence SCT constructs of self-efficacy, self-regulation, outcome expectations and expectancies, and social support. At baseline and every 3 months through 1 year, participants completed self-reported questionnaires of individual, interpersonal, and PA variables. Linear mixed models were used to assess for significant differences in weekly minutes of dog walking and theoretical constructs between groups (intervention and control) across time. To test self-efficacy as a mediator of social support for dog walking, tests for mediation were conducted using the bootstrapping technique. With the exception of Month 9, participants in the intervention group accumulated significantly more weekly minutes of dog walking than the control group. On average, the intervention group accumulated 58.4 more minutes (SD = 18.1) of weekly dog walking than the control group (p < .05). Self-efficacy partially mediated the effect of social support variables on dog walking. Results indicate that a simple SCT-based e-mail intervention is effective in increasing and maintaining an increase in dog walking among dog owners at 12-month follow-up. In light of these findings, it may be advantageous to design dog walking interventions that focus on increasing self-efficacy for dog walking by fostering social support.
An Online Social Network to Increase Walking in Dog Owners: A Randomized Trial
Schneider, Kristin L.; Murphy, Deirdra; Ferrara, Cynthia; Oleski, Jessica; Panza, Emily; Savage, Clara; Gada, Kimberly; Bozzella, Brianne; Olendzki, Effie; Kern, Daniel; Lemon, Stephenie C.
2014-01-01
PURPOSE Encouraging dog walking may increase physical activity in dog owners. This cluster randomized controlled trial investigated whether a social networking website (Meetup™) could be used to deliver a multi-component dog walking intervention to increase physical activity. METHODS Sedentary dog owners (n=102) participated. Eight neighborhoods were randomly assigned to the Meetup condition (Meetup) or a condition where participants received monthly emails with content from the American Heart Association on increasing physical activity (AHA). The Meetup intervention was delivered over 6 months and consisted of newsletters, dog walks, community events and an activity monitor. The primary outcome was steps; secondary outcomes included social support for walking, sense of community, perceived dog walking outcomes, barriers to dog walking and feasibility of the intervention. RESULTS Mixed model analyses examined change from baseline to post-intervention (6 months) and whether change in outcomes differed by condition. Daily steps increased over time (p=0.04, d=0.28), with no differences by condition. The time x condition interaction was significant for the perceived outcomes of dog walking (p=0.04, d=0.40), such that the Meetup condition reported an increase in the perceived positive outcomes of dog walking, whereas the AHA condition did not. Social support, sense of community and dog walking barriers did not significantly change. Meetup logins averaged 58.38 per week (SD=11.62). Within two months of the intervention ending, organization of the Meetup groups transitioned from study staff to Meetup members. CONCLUSION Results suggest that a Meetup group is feasible for increasing physical activity in dog owners. Further research is needed to understand how to increase participation in the Meetup group and facilitate greater connection among dog owners. PMID:25003777
[Assessing Motor-Cognition Interaction of Patients with Cognitive Disorders: Clinical Aspects].
Schniepp, R; Wuehr, M; Schöberl, F; Zwergal, A
2016-08-01
Difficulties of walking and deficits of cognitive functions appear to be associated in the elderly. Thus, clinical assessment in geriatry and neurology should focus on: (1) diagnostic approaches covering both domains of everyday functioning; (2) therapeutic interventions that take into account possible interactions and synergies of both domains. In order to assess the capability for motor-cognitive interactions in the elderly it is recommended to investigate walking patterns during dual-tasks (e.g. walking and counting backwards, walking and naming words) and to examine clinical tests of everyday mobility tasks, such as the Timed-up-and-go-Test and spatial navigation tasks. Patients with cognitive disorders often perform inferior with a reduction of walking speed and an increase of stepping variability. Dual-task performance appears to be a reliable parameter for long-term observations of the course of the disease. Moreover, it might improve the quality of the gait examination during diagnostic or therapeutic interventions (e.g. the spinal tap test in patients with NPH). Several studies further highlight gait deficits during dual-task walking as a marker for the everyday functioning and the quality of life in elderly persons and patients with cognitive disorders.Therapeutic approaches in this context comprise complex motor-cognitive interventions, such as Thai Chi and Dalcroze rhythmic exercises. These interventions appear to act synergistically in motor and cognitive domains. First evidence for the efficacy for improving executive functions and reducing the fall risk of patients with cognitive impairments is given, thought randomized, controlled trials are rare. © Georg Thieme Verlag KG Stuttgart · New York.
2013-01-01
Background Robot-assisted gait training and treadmill training can complement conventional physical therapy in children with neuro-orthopedic movement disorders. The aim of this study was to investigate surface electromyography (sEMG) activity patterns during robot-assisted gait training (with and without motivating instructions from a therapist) and unassisted treadmill walking and to compare these with physiological sEMG patterns. Methods Nine children with motor impairments and eight healthy children walked in various conditions: (a) on a treadmill in the driven gait orthosis Lokomat®, (b) same condition, with additional motivational instructions from a therapist, and (c) on the treadmill without assistance. sEMG recordings were made of the tibialis anterior, gastrocnemius lateralis, vastus medialis, and biceps femoris muscles. Differences in sEMG amplitudes between the three conditions were analyzed for the duration of stance and swing phase (for each group and muscle separately) using non-parametric tests. Spearman’s correlation coefficients illustrated similarity of muscle activation patterns between conditions, between groups, and with published reference trajectories. Results The relative duration of stance and swing phase differed between patients and controls, and between driven gait orthosis conditions and treadmill walking. While sEMG amplitudes were higher when being encouraged by a therapist compared to robot-assisted gait training without instructions (0.008 ≤ p-value ≤ 0.015), muscle activation patterns were highly comparable (0.648 ≤ Spearman correlation coefficients ≤ 0.969). In general, comparisons of the sEMG patterns with published reference data of over-ground walking revealed that walking in the driven gait orthosis could induce more physiological muscle activation patterns compared to unsupported treadmill walking. Conclusions Our results suggest that robotic-assisted gait training with therapeutic encouragement could appropriately increase muscle activity. Robotic-assisted gait training in general could induce physiological muscle activation patterns, which might indicate that this training exploits restorative rather than compensatory mechanisms. PMID:23867005
Divergent morphological and acoustic traits in sympatric communities of Asian barbets
Tamma, Krishnapriya
2016-01-01
The opposing effects of environmental filtering and competitive interactions may influence community assembly and coexistence of related species. Competition, both in the domain of ecological resources, and in the sensory domain (for example, acoustic interference) may also result in sympatric species evolving divergent traits and niches. Delineating these scenarios within communities requires understanding trait distributions and phylogenetic structure within the community, as well as patterns of trait evolution. We report that sympatric assemblages of Asian barbets (frugivorous canopy birds) consist of a random phylogenetic sample of species, but are divergent in both morphological and acoustic traits. Additionally, we find that morphology is more divergent than expected under Brownian evolution, whereas vocal frequency evolution is close to the pattern expected under Brownian motion (i.e. a random walk). Together, these patterns are consistent with a role for competition or competitive exclusion in driving community assembly. Phylogenetic patterns of morphological divergence between related species suggest that these traits are key in species coexistence. Because vocal frequency and size are correlated in barbets, we therefore hypothesize that frequency differences between sympatric barbets are a by-product of their divergent morphologies. PMID:27853589
Exact and approximate graph matching using random walks.
Gori, Marco; Maggini, Marco; Sarti, Lorenzo
2005-07-01
In this paper, we propose a general framework for graph matching which is suitable for different problems of pattern recognition. The pattern representation we assume is at the same time highly structured, like for classic syntactic and structural approaches, and of subsymbolic nature with real-valued features, like for connectionist and statistic approaches. We show that random walk based models, inspired by Google's PageRank, give rise to a spectral theory that nicely enhances the graph topological features at node level. As a straightforward consequence, we derive a polynomial algorithm for the classic graph isomorphism problem, under the restriction of dealing with Markovian spectrally distinguishable graphs (MSD), a class of graphs that does not seem to be easily reducible to others proposed in the literature. The experimental results that we found on different test-beds of the TC-15 graph database show that the defined MSD class "almost always" covers the database, and that the proposed algorithm is significantly more efficient than top scoring VF algorithm on the same data. Most interestingly, the proposed approach is very well-suited for dealing with partial and approximate graph matching problems, derived for instance from image retrieval tasks. We consider the objects of the COIL-100 visual collection and provide a graph-based representation, whose node's labels contain appropriate visual features. We show that the adoption of classic bipartite graph matching algorithms offers a straightforward generalization of the algorithm given for graph isomorphism and, finally, we report very promising experimental results on the COIL-100 visual collection.
Beck, Eric N; Intzandt, Brittany N; Almeida, Quincy J
2018-01-01
It may be possible to use attention-based exercise to decrease demands associated with walking in Parkinson's disease (PD), and thus improve dual task walking ability. For example, an external focus of attention (focusing on the effect of an action on the environment) may recruit automatic control processes degenerated in PD, whereas an internal focus (limb movement) may recruit conscious (nonautomatic) control processes. Thus, we aimed to investigate how externally and internally focused exercise influences dual task walking and symptom severity in PD. Forty-seven participants with PD were randomized to either an Externally (n = 24) or Internally (n = 23) focused group and completed 33 one-hour attention-based exercise sessions over 11 weeks. In addition, 16 participants were part of a control group. Before, after, and 8 weeks following the program (pre/post/washout), gait patterns were measured during single and dual task walking (digit-monitoring task, ie, walking while counting numbers announced by an audio-track), and symptom severity (UPDRS-III) was assessed ON and OFF dopamine replacement. Pairwise comparisons (95% confidence intervals [CIs]) and repeated-measures analyses of variance were conducted. Pre to post: Dual task step time decreased in the external group (Δ = 0.02 seconds, CI 0.01-0.04). Dual task step length (Δ = 2.3 cm, CI 0.86-3.75) and velocity (Δ = 4.5 cm/s, CI 0.59-8.48) decreased (became worse) in the internal group. UPDRS-III scores (ON and OFF) decreased (improved) in only the External group. Pre to washout: Dual task step time ( P = .005) and percentage in double support ( P = .014) significantly decreased (improved) in both exercise groups, although only the internal group increased error on the secondary counting task (ie, more errors monitoring numbers). UPDRS-III scores in both exercise groups significantly decreased ( P = .001). Since dual task walking improvements were found immediately, and 8 weeks after the cessation of an externally focused exercise program, we conclude that externally focused exercise may improve on functioning of automatic control networks in PD. Internally focused exercise hindered dual tasking ability. Overall, externally focused exercise led to greater rehabilitation benefits in dual tasking and motor symptoms compared with internally focused exercise.
Return probabilities and hitting times of random walks on sparse Erdös-Rényi graphs.
Martin, O C; Sulc, P
2010-03-01
We consider random walks on random graphs, focusing on return probabilities and hitting times for sparse Erdös-Rényi graphs. Using the tree approach, which is expected to be exact in the large graph limit, we show how to solve for the distribution of these quantities and we find that these distributions exhibit a form of self-similarity.
Nordic Walking Practice Might Improve Plantar Pressure Distribution
ERIC Educational Resources Information Center
Perez-Soriano, Pedro; Llana-Belloch, Salvador; Martinez-Nova, Alfonso; Morey-Klapsing, G.; Encarnacion-Martinez, Alberto
2011-01-01
Nordic walking (NW), characterized by the use of two walking poles, is becoming increasingly popular (Morgulec-Adamowicz, Marszalek, & Jagustyn, 2011). We studied walking pressure patterns of 20 experienced and 30 beginner Nordic walkers. Plantar pressures from nine foot zones were measured during trials performed at two walking speeds (preferred…
Haron, Zaiton; Bakar, Suhaimi Abu; Dimon, Mohamad Ngasri
2015-01-01
Strategic noise mapping provides important information for noise impact assessment and noise abatement. However, producing reliable strategic noise mapping in a dynamic, complex working environment is difficult. This study proposes the implementation of the random walk approach as a new stochastic technique to simulate noise mapping and to predict the noise exposure level in a workplace. A stochastic simulation framework and software, namely RW-eNMS, were developed to facilitate the random walk approach in noise mapping prediction. This framework considers the randomness and complexity of machinery operation and noise emission levels. Also, it assesses the impact of noise on the workers and the surrounding environment. For data validation, three case studies were conducted to check the accuracy of the prediction data and to determine the efficiency and effectiveness of this approach. The results showed high accuracy of prediction results together with a majority of absolute differences of less than 2 dBA; also, the predicted noise doses were mostly in the range of measurement. Therefore, the random walk approach was effective in dealing with environmental noises. It could predict strategic noise mapping to facilitate noise monitoring and noise control in the workplaces. PMID:25875019
Physical activity patterns in morbidly obese and normal-weight women.
Kwon, Soyang; Mohammad, Jamal; Samuel, Isaac
2011-01-01
To compare physical activity patterns between morbidly obese and normal-weight women. Daily physical activity of 18 morbidly obese and 7 normal-weight women aged 30-58 years was measured for 2 days using the Intelligent Device for Energy Expenditure and Activity (IDEEA) device. The obese group spent about 2 hr/day less standing and 30 min/day less walking than did the normal-weight group. Time spent standing (standing time) was positively associated with time spent walking (walking time). Age- and walking time-adjusted standing time did not differ according to weight status. Promoting standing may be a strategy to increase walking.
Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
NASA Astrophysics Data System (ADS)
Borges, G. M.; Ferreira, A. S.; da Silva, M. A. A.; Cressoni, J. C.; Viswanathan, G. M.; Mariz, A. M.
2012-09-01
Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e.g., fractional Brownian motion, Lévy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation σt which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.
A generalized model via random walks for information filtering
NASA Astrophysics Data System (ADS)
Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng
2016-08-01
There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation.
NASA Technical Reports Server (NTRS)
Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.; Peterson, L. E.
2001-01-01
The patterns of DSBs induced in the genome are different for sparsely and densely ionizing radiations: In the former case, the patterns are well described by a random-breakage model; in the latter, a more sophisticated tool is needed. We used a Monte Carlo algorithm with a random-walk geometry of chromatin, and a track structure defined by the radial distribution of energy deposition from an incident ion, to fit the PFGE data for fragment-size distribution after high-dose irradiation. These fits determined the unknown parameters of the model, enabling the extrapolation of data for high-dose irradiation to the low doses that are relevant for NASA space radiation research. The randomly-located-clusters formalism was used to speed the simulations. It was shown that only one adjustable parameter, Q, the track efficiency parameter, was necessary to predict DNA fragment sizes for wide ranges of doses. This parameter was determined for a variety of radiations and LETs and was used to predict the DSB patterns at the HPRT locus of the human X chromosome after low-dose irradiation. It was found that high-LET radiation would be more likely than low-LET radiation to induce additional DSBs within the HPRT gene if this gene already contained one DSB.
Ito, Tomotaka; Tsubahara, Akio; Shinkoda, Koichi; Yoshimura, Yosuke; Kobara, Kenichi; Osaka, Hiroshi
2015-01-01
Our previous single-pulse transcranial magnetic stimulation (TMS) study revealed that excitability in the motor cortex can be altered by conscious control of walking relative to less conscious normal walking. However, substantial elements and underlying mechanisms for inducing walking-related cortical plasticity are still unknown. Hence, in this study we aimed to examine the characteristics of electromyographic (EMG) recordings obtained during different walking conditions, namely, symmetrical walking (SW), asymmetrical walking 1 (AW1), and asymmetrical walking 2 (AW2), with left to right stance duration ratios of 1:1, 1:2, and 2:1, respectively. Furthermore, we investigated the influence of three types of walking control on subsequent changes in the intracortical neural circuits. Prior to each type of 7-min walking task, EMG analyses of the left tibialis anterior (TA) and soleus (SOL) muscles during walking were performed following approximately 3 min of preparative walking. Paired-pulse TMS was used to measure short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the left TA and SOL at baseline, immediately after the 7-min walking task, and 30 min post-task. EMG activity in the TA was significantly increased during AW1 and AW2 compared to during SW, whereas a significant difference in EMG activity of the SOL was observed only between AW1 and AW2. As for intracortical excitability, there was a significant alteration in SICI in the TA between SW and AW1, but not between SW and AW2. For the same amount of walking exercise, we found that the different methods used to control walking patterns induced different excitability changes in SICI. Our research shows that activation patterns associated with controlled leg muscles can alter post-exercise excitability in intracortical circuits. Therefore, how leg muscles are activated in a clinical setting could influence the outcome of walking in patients with stroke. PMID:25688972
Mansfield, Avril; Wong, Jennifer S; Bryce, Jessica; Brunton, Karen; Inness, Elizabeth L; Knorr, Svetlana; Jones, Simon; Taati, Babak; McIlroy, William E
2015-10-01
Regaining independent ambulation is important to those with stroke. Increased walking practice during "down time" in rehabilitation could improve walking function for individuals with stroke. To determine the effect of providing physiotherapists with accelerometer-based feedback on patient activity and walking-related goals during inpatient stroke rehabilitation. Participants with stroke wore accelerometers around both ankles every weekday during inpatient rehabilitation. Participants were randomly assigned to receive daily feedback about walking activity via their physiotherapists (n = 29) or to receive no feedback (n = 28). Changes in measures of daily walking (walking time, number of steps, average cadence, longest bout duration, and number of "long" walking bouts) and changes in gait control and function assessed in-laboratory were compared between groups. There was no significant increase in walking time, number of steps, longest bout duration, or number of long walking bouts for the feedback group compared with the control group (P values > .20). However, individuals who received feedback significantly increased cadence of daily walking more than the control group (P = .013). From the in-laboratory gait assessment, individuals who received feedback had a greater increase in walking speed and decrease in step time variability than the control group (P values < .030). Feedback did not increase the amount of walking completed by individuals with stroke. However, there was a significant increase in cadence, indicating that intensity of daily walking was greater for those who received feedback than the control group. Additionally, more intense daily walking activity appeared to translate to greater improvements in walking speed. © The Author(s) 2015.
Yeung, Ling-Fung; Ockenfeld, Corinna; Pang, Man-Kit; Wai, Hon-Wah; Soo, Oi-Yan; Li, Sheung-Wai; Tong, Kai-Yu
2018-06-19
Robot-assisted ankle-foot-orthosis (AFO) can provide immediate powered ankle assistance in post-stroke gait training. Our research team has developed a novel lightweight portable robot-assisted AFO which is capable of detecting walking intentions using sensor feedback of wearer's gait pattern. This study aims to investigate the therapeutic effects of robot-assisted gait training with ankle dorsiflexion assistance. This was a double-blinded randomized controlled trial. Nineteen chronic stroke patients with motor impairment at ankle participated in 20-session robot-assisted gait training for about five weeks, with 30-min over-ground walking and stair ambulation practices. Robot-assisted AFO either provided active powered ankle assistance during swing phase in Robotic Group (n = 9), or torque impedance at ankle joint as passive AFO in Sham Group (n = 10). Functional assessments were performed before and after the 20-session gait training with 3-month Follow-up. Primary outcome measure was gait independency assessed by Functional Ambulatory Category (FAC). Secondary outcome measures were clinical scores including Fugl-Meyer Assessment (FMA), Modified Ashworth Scale (MAS), Berg Balance Scale (BBS), Timed 10-Meter Walk Test (10MWT), Six-minute Walk Test (SMWT), supplemented by gait analysis. All outcome measures were performed in unassisted gait after patients had taken off the robot-assisted AFO. Repeated-measures analysis of covariance was conducted to test the group differences referenced to clinical scores before training. After 20-session robot-assisted gait training with ankle dorsiflexion assistance, the active ankle assistance in Robotic Group induced changes in gait pattern with improved gait independency (all patients FAC ≥ 5 post-training and 3-month follow-up), motor recovery, walking speed, and greater confidence in affected side loading response (vertical ground reaction force + 1.49 N/kg, peak braking force + 0.24 N/kg) with heel strike instead of flat foot touch-down at initial contact (foot tilting + 1.91°). Sham Group reported reduction in affected leg range of motion (ankle dorsiflexion - 2.36° and knee flexion - 8.48°) during swing. Robot-assisted gait training with ankle dorsiflexion assistance could improve gait independency and help stroke patients developing confidence in weight acceptance, but future development of robot-assisted AFO should consider more lightweight and custom-fit design. ClinicalTrials.gov NCT02471248 . Registered 15 June 2015 retrospectively registered.
Metastability of Reversible Random Walks in Potential Fields
NASA Astrophysics Data System (ADS)
Landim, C.; Misturini, R.; Tsunoda, K.
2015-09-01
Let be an open and bounded subset of , and let be a twice continuously differentiable function. Denote by the discretization of , , and denote by the continuous-time, nearest-neighbor, random walk on which jumps from to at rate . We examine in this article the metastable behavior of among the wells of the potential F.
Electrical Resistance of the Low Dimensional Critical Branching Random Walk
NASA Astrophysics Data System (ADS)
Járai, Antal A.; Nachmias, Asaf
2014-10-01
We show that the electrical resistance between the origin and generation n of the incipient infinite oriented branching random walk in dimensions d < 6 is O( n 1- α ) for some universal constant α > 0. This answers a question of Barlow et al. (Commun Math Phys 278:385-431, 2008).
Exits in order: How crowding affects particle lifetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penington, Catherine J.; Simpson, Matthew J.; Baker, Ruth E.
2016-06-28
Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents inmore » a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked.« less
Accumulator and random-walk models of psychophysical discrimination: a counter-evaluation.
Vickers, D; Smith, P
1985-01-01
In a recent assessment of models of psychophysical discrimination, Heath criticises the accumulator model for its reliance on computer simulation and qualitative evidence, and contrasts it unfavourably with a modified random-walk model, which yields exact predictions, is susceptible to critical test, and is provided with simple parameter-estimation techniques. A counter-evaluation is presented, in which the approximations employed in the modified random-walk analysis are demonstrated to be seriously inaccurate, the resulting parameter estimates to be artefactually determined, and the proposed test not critical. It is pointed out that Heath's specific application of the model is not legitimate, his data treatment inappropriate, and his hypothesis concerning confidence inconsistent with experimental results. Evidence from adaptive performance changes is presented which shows that the necessary assumptions for quantitative analysis in terms of the modified random-walk model are not satisfied, and that the model can be reconciled with data at the qualitative level only by making it virtually indistinguishable from an accumulator process. A procedure for deriving exact predictions for an accumulator process is outlined.
NASA Astrophysics Data System (ADS)
Gatto, Riccardo
2017-12-01
This article considers the random walk over Rp, with p ≥ 2, where a given particle starts at the origin and moves stepwise with uniformly distributed step directions and step lengths following a common distribution. Step directions and step lengths are independent. The case where the number of steps of the particle is fixed and the more general case where it follows an independent continuous time inhomogeneous counting process are considered. Saddlepoint approximations to the distribution of the distance from the position of the particle to the origin are provided. Despite the p-dimensional nature of the random walk, the computations of the saddlepoint approximations are one-dimensional and thus simple. Explicit formulae are derived with dimension p = 3: for uniformly and exponentially distributed step lengths, for fixed and for Poisson distributed number of steps. In these situations, the high accuracy of the saddlepoint approximations is illustrated by numerical comparisons with Monte Carlo simulation. Contribution to the "Topical Issue: Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
The Relationship Between Objectively Measured Walking and Risk of Pedestrian–Motor Vehicle Collision
Quistberg, D. Alex; Howard, Eric J.; Hurvitz, Philip M.; Moudon, Anne V.; Ebel, Beth E.; Rivara, Frederick P.; Saelens, Brian E.
2017-01-01
Abstract Safe urban walking environments may improve health by encouraging physical activity, but the relationship between an individual's location and walking pattern and the risk of pedestrian–motor vehicle collision is unknown. We examined associations between individuals’ walking bouts and walking risk, measured as mean exposure to the risk of pedestrian-vehicle collision. Walking bouts were ascertained through integrated accelerometry and global positioning system data and from individual travel-diary data obtained from adults in the Travel Assessment and Community Study (King County, Washington) in 2008–2009. Walking patterns were superimposed onto maps of the historical probabilities of pedestrian-vehicle collisions for intersections and midblock segments within Seattle, Washington. Mean risk of pedestrian-vehicle collision in specific walking locations was assessed according to walking exposure (duration, distance, and intensity) and participant demographic characteristics in linear mixed models. Participants typically walked in areas with low pedestrian collision risk when walking for recreation, walking at a faster pace, or taking longer-duration walks. Mean daily walking duration and distance were not associated with collision risk. Males walked in areas with higher collision risk compared with females, while vehicle owners, residents of single-family homes, and parents of young children walked in areas with lower collision risk. These findings may suggest that pedestrians moderate collision risk by using lower-risk routes. PMID:28338921
DePaul, Vincent G; Wishart, Laurie R; Richardson, Julie; Thabane, Lehana; Ma, Jinhui; Lee, Timothy D
2015-05-01
Although task-related walking training has been recommended after stroke, the theoretical basis, content, and impact of interventions vary across the literature. There is a need for a comparison of different approaches to task-related walking training after stroke. To compare the impact of a motor-learning-science-based overground walking training program with body-weight-supported treadmill training (BWSTT) in ambulatory, community-dwelling adults within 1 year of stroke onset. In this rater-blinded, 1:1 parallel, randomized controlled trial, participants were stratified by baseline gait speed. Participants assigned to the Motor Learning Walking Program (MLWP) practiced various overground walking tasks under the supervision of 1 physiotherapist. Cognitive effort was encouraged through random practice and limited provision of feedback and guidance. The BWSTT program emphasized repetition of the normal gait cycle while supported on a treadmill and assisted by 1 to 3 therapy staff. The primary outcome was comfortable gait speed at postintervention assessment (T2). In total, 71 individuals (mean age = 67.3; standard deviation = 11.6 years) with stroke (mean onset = 20.9 [14.1] weeks) were randomized (MLWP, n = 35; BWSTT, n = 36). There was no significant between-group difference in gait speed at T2 (0.002 m/s; 95% confidence interval [CI] = -0.11, 0.12; P > .05). The MLWP group improved by 0.14 m/s (95% CI = 0.09, 0.19), and the BWSTT group improved by 0.14 m/s (95% CI = 0.08, 0.20). In this sample of community-dwelling adults within 1 year of stroke, a 15-session program of varied overground walking-focused training was not superior to a BWSTT program of equal frequency, duration, and in-session step activity. © The Author(s) 2014.
On the genealogy of branching random walks and of directed polymers
NASA Astrophysics Data System (ADS)
Derrida, Bernard; Mottishaw, Peter
2016-08-01
It is well known that the mean-field theory of directed polymers in a random medium exhibits replica symmetry breaking with a distribution of overlaps which consists of two delta functions. Here we show that the leading finite-size correction to this distribution of overlaps has a universal character which can be computed explicitly. Our results can also be interpreted as genealogical properties of branching Brownian motion or of branching random walks.
Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-ichiro; Nakazawa, Kimitaka; Akai, Masami
2004-06-17
The purpose of this study was to compare the changes in ground reaction forces (GRF), joint angular displacements (JAD), joint moments (JM) and electromyographic (EMG) activities that occur during walking at various speeds in water and on land. Fifteen healthy adults participated in this study. In the water experiments, the water depth was adjusted so that body weight was reduced by 80%. A video-motion analysis system and waterproof force platform was used to obtain kinematics and kinetics data and to calculate the JMs. Results revealed that (1) the anterior-posterior GRF patterns differed between walking in water and walking on land, whereas the medio-lateral GRF patterns were similar, (2) the JAD patterns of the hip and ankle were similar between water- and land-walking, whereas the range of motion at the knee joint was lower in water than on land, (3) the JMs in all three joints were lower in water than on land throughout the stance phase, and (4) the hip joint extension moment and hip extensor muscle EMG activity were increased as walking speed increase during walking in water. Rehabilitative water-walking exercise could be designed to incorporate large-muscle activities, especially of the lower-limb extensor muscles, through full joint range of motion and minimization of joint moments.
NASA Astrophysics Data System (ADS)
Liu, Jian; Li, Baohe; Chen, Xiaosong
2018-02-01
The space-time coupled continuous time random walk model is a stochastic framework of anomalous diffusion with many applications in physics, geology and biology. In this manuscript the time averaged mean squared displacement and nonergodic property of a space-time coupled continuous time random walk model is studied, which is a prototype of the coupled continuous time random walk presented and researched intensively with various methods. The results in the present manuscript show that the time averaged mean squared displacements increase linearly with lag time which means ergodicity breaking occurs, besides, we find that the diffusion coefficient is intrinsically random which shows both aging and enhancement, the analysis indicates that the either aging or enhancement phenomena are determined by the competition between the correlation exponent γ and the waiting time's long-tailed index α.
Kleindienst, F I; Michel, K J; Schwarz, J; Krabbe, B
2006-03-01
Based on a higher cardio-pulmonary and cardio-vascular benefit and a promised reduction of mechanical load of the musculoskeletal system Nordic Walking (NW) shows an increased market potential. The present study should investigate whether there are biomechanical differences between the locomotion patterns NW, walking and running. Moreover possible resultant load differences should be determined. Eleven subjects, who were already experienced with the NW-technique, participated in this experiment. The kinematic data were collected using two high-speed camera systems from posterior and from lateral at the same time. Simultaneously the ground reaction forces were recorded. The kinematic and the kinetic data reveal differences between the three analyzed locomotion patterns. For NW as well as walking the mechanical load of the lower extremity is lower compared to running. None of the kinematic parameters suggest a "physiological benefit" of NW compared to walking. Moreover NW shows higher vertical and horizontal forces during landing. Exclusively the lower vertical force peak during push off indicates a lower mechanical load for NW in comparison to walking. Consequently it is questionable is NW -- based on its promised "biomechanical benefits" compared to walking -- should be still recommended for overweight people and for people with existing musculoskeletal problems of the lower limb.
Eich, H-J; Mach, H; Werner, C; Hesse, S
2004-09-01
To evaluate the immediate and long-term effects of aerobic treadmill plus Bobath walking training in subacute stroke survivors compared with Bobath walking training alone. Randomized controlled trial. Rehabilitation unit. Fifty patients, first-time supratentorial stroke, stroke interval less than six weeks, Barthel Index (0-100) from 50 to 80, able to walk a minimum distance of 12 m with either intermittent help or stand-by while walking, cardiovascular stable, minimum 50 W in the bicycle ergometry, randomly allocated to two groups, A and B. Group A 30 min of treadmill training, harness secured and minimally supported according to patients' needs, and 30 min of physiotherapy, every workday for six weeks, speed and inclination of the treadmill were adjusted to achieve a heart rate of HR: (Hrmax-HRrest)*0.6+HRrest; in group B 60 min of daily physiotherapy for six weeks. Primary outcome variables were the absolute improvement of walking velocity (m/s) and capacity (m), secondary were gross motor function including walking ability (score out of 13) and walking quality (score out of 41), blindly assessed before and after the intervention, and at follow-up three months later. Patients tolerated the aerobic training well with no side-effects, significantly greater improvement of walking velocity and capacity both at study end (p =0.001 versus p =0.002) and at follow-up (p <0.001 versus p <0.001) in the experimental group. Between weeks 0 and 6, the experimental group improved walking speed and capacity by a mean of.31 m/s and 91 m, the control group by a mean of 0.16 m/s and 56 m. Between weeks 0 and 18, the experimental group improved walking speed and capacity by a mean of 0.36 m/s and 111 m, the control group by a mean of 0.15 m/s and 57 m. Gross motor function and walking quality did not differ at any time. Aerobic treadmill plus Bobath walking training in moderately affected stroke patients was better than Bobath walking training alone with respect to the improvement of walking velocity and capacity. The treatment approach is recommended in patients meeting the inclusion criteria. A multicentre trial should follow to strengthen the evidence.
NASA Astrophysics Data System (ADS)
Sun, Y.
2017-09-01
In development of sustainable transportation and green city, policymakers encourage people to commute by cycling and walking instead of motor vehicles in cities. One the one hand, cycling and walking enables decrease in air pollution emissions. On the other hand, cycling and walking offer health benefits by increasing people's physical activity. Earlier studies on investigating spatial patterns of active travel (cycling and walking) are limited by lacks of spatially fine-grained data. In recent years, with the development of information and communications technology, GPS-enabled devices are popular and portable. With smart phones or smart watches, people are able to record their cycling or walking GPS traces when they are moving. A large number of cyclists and pedestrians upload their GPS traces to sport social media to share their historical traces with other people. Those sport social media thus become a potential source for spatially fine-grained cycling and walking data. Very recently, Strava Metro offer aggregated cycling and walking data with high spatial granularity. Strava Metro aggregated a large amount of cycling and walking GPS traces of Strava users to streets or intersections across a city. Accordingly, as a kind of crowdsourced geographic information, the aggregated data is useful for investigating spatial patterns of cycling and walking activities, and thus is of high potential in understanding cycling or walking behavior at a large spatial scale. This study is a start of demonstrating usefulness of Strava Metro data for exploring cycling or walking patterns at a large scale.
Combs-Miller, Stephanie A; Kalpathi Parameswaran, Anu; Colburn, Dawn; Ertel, Tara; Harmeyer, Amanda; Tucker, Lindsay; Schmid, Arlene A
2014-09-01
To compare the effects of body weight-supported treadmill training and overground walking training when matched for task and dose (duration/frequency/intensity) on improving walking function, activity, and participation after stroke. Single-blind, pilot randomized controlled trial with three-month follow-up. University and community settings. A convenience sample of participants (N = 20) at least six months post-stroke and able to walk independently were recruited. Thirty-minute walking interventions (body weight-supported treadmill training or overground walking training) were administered five times a week for two weeks. Intensity was monitored with the Borg Rating of Perceived Exertion Scale at five-minute increments to maintain a moderate training intensity. Walking speed (comfortable/fast 10-meter walk), walking endurance (6-minute walk), spatiotemporal symmetry, and the ICF Measure of Participation and ACTivity were assessed before, immediately after, and three months following the intervention. The overground walking training group demonstrated significantly greater improvements in comfortable walking speed compared with the body weight-supported treadmill training group immediately (change of 0.11 m/s vs. 0.06 m/s, respectively; p = 0.047) and three months (change of 0.14 m/s vs. 0.08 m/s, respectively; p = 0.029) after training. Only the overground walking training group significantly improved comfortable walking speed (p = 0.001), aspects of gait symmetry (p = 0.032), and activity (p = 0.003) immediately after training. Gains were maintained at the three-month follow-up (p < 0.05) for all measures except activity. Improvements in participation were not demonstrated. Overgound walking training was more beneficial than body weight-supported treadmill training at improving self-selected walking speed for the participants in this study. © The Author(s) 2014.
Bruun-Olsen, Vigdis; Heiberg, Kristi Elisabeth; Wahl, Astrid Klopstad; Mengshoel, Anne Marit
2013-01-01
To examine the immediate and long-term effects of a walking-skill program compared with usual physiotherapy on physical function, pain and perceived self-efficacy in patients after total knee arthroplasty (TKA). A single blind randomized controlled trial design was applied. Fifty-seven patients with primary TKA, mean age of 69 years (SD ± 9), were randomly assigned to a walking-skill program emphasizing weight-bearing exercises or usual physiotherapy. Outcomes were assessed before the interventions started at 6 weeks postoperatively (T1), directly after the interventions at 12-14 weeks (T2) and 9 months after the interventions (T3). Walking was the primary outcome, assessed by the 6 min walk test (6MWT). The secondary outcomes were timed stair climbing, timed stands, Figure-of-eight test, Index of muscle function, active knee range of motion, Knee Injury and Osteoarthritis Outcome Score and self-efficacy score. From T1 to T2, a better 6MWT score was found in favor of the walking-skill program of 39 m (2-76), p = 0.04. The difference between the groups in 6MWT persisted at T3, 44 m (8-80), p = 0.02. No differences in other outcome measures were found. The walking-skill program had better effect on walking than usual physiotherapy. Weight bearing was tolerated. Implications for Rehabilitation Weight-bearing exercises are tolerated by the patients in the early stage after TKA. Physiotherapy that focuses on learning different ways of walking through practice may be a plausible way to train patients after TKA.
Bipedal animals, and their differences from humans.
Alexander, R McN
2004-05-01
Humans, birds and (occasionally) apes walk bipedally. Humans, birds, many lizards and (at their highest speeds) cockroaches run bipedally. Kangaroos, some rodents and many birds hop bipedally, and jerboas and crows use a skipping gait. This paper deals only with walking and running bipeds. Chimpanzees walk with their knees bent and their backs sloping forward. Most birds walk and run with their backs and femurs sloping at small angles to the horizontal, and with their knees bent. These differences from humans make meaningful comparisons of stride length, duty factor, etc., difficult, even with the aid of dimensionless parameters that would take account of size differences, if dynamic similarity were preserved. Lizards and cockroaches use wide trackways. Humans exert a two-peaked pattern of force on the ground when walking, and an essentially single-peaked pattern when running. The patterns of force exerted by apes and birds are never as markedly two-peaked as in fast human walking. Comparisons with quadrupedal mammals of the same body mass show that human walking is relatively economical of metabolic energy, and human running is expensive. Bipedal locomotion is remarkably economical for wading birds, and expensive for geese and penguins.
Bipedal animals, and their differences from humans
Alexander, R McN
2004-01-01
Humans, birds and (occasionally) apes walk bipedally. Humans, birds, many lizards and (at their highest speeds) cockroaches run bipedally. Kangaroos, some rodents and many birds hop bipedally, and jerboas and crows use a skipping gait. This paper deals only with walking and running bipeds. Chimpanzees walk with their knees bent and their backs sloping forward. Most birds walk and run with their backs and femurs sloping at small angles to the horizontal, and with their knees bent. These differences from humans make meaningful comparisons of stride length, duty factor, etc., difficult, even with the aid of dimensionless parameters that would take account of size differences, if dynamic similarity were preserved. Lizards and cockroaches use wide trackways. Humans exert a two-peaked pattern of force on the ground when walking, and an essentially single-peaked pattern when running. The patterns of force exerted by apes and birds are never as markedly two-peaked as in fast human walking. Comparisons with quadrupedal mammals of the same body mass show that human walking is relatively economical of metabolic energy, and human running is expensive. Bipedal locomotion is remarkably economical for wading birds, and expensive for geese and penguins. PMID:15198697
Simple robot suggests physical interlimb communication is essential for quadruped walking
Owaki, Dai; Kano, Takeshi; Nagasawa, Ko; Tero, Atsushi; Ishiguro, Akio
2013-01-01
Quadrupeds have versatile gait patterns, depending on the locomotion speed, environmental conditions and animal species. These locomotor patterns are generated via the coordination between limbs and are partly controlled by an intraspinal neural network called the central pattern generator (CPG). Although this forms the basis for current control paradigms of interlimb coordination, the mechanism responsible for interlimb coordination remains elusive. By using a minimalistic approach, we have developed a simple-structured quadruped robot, with the help of which we propose an unconventional CPG model that consists of four decoupled oscillators with only local force feedback in each leg. Our robot exhibits good adaptability to changes in weight distribution and walking speed simply by responding to local feedback, and it can mimic the walking patterns of actual quadrupeds. Our proposed CPG-based control method suggests that physical interaction between legs during movements is essential for interlimb coordination in quadruped walking. PMID:23097501
Simple robot suggests physical interlimb communication is essential for quadruped walking.
Owaki, Dai; Kano, Takeshi; Nagasawa, Ko; Tero, Atsushi; Ishiguro, Akio
2013-01-06
Quadrupeds have versatile gait patterns, depending on the locomotion speed, environmental conditions and animal species. These locomotor patterns are generated via the coordination between limbs and are partly controlled by an intraspinal neural network called the central pattern generator (CPG). Although this forms the basis for current control paradigms of interlimb coordination, the mechanism responsible for interlimb coordination remains elusive. By using a minimalistic approach, we have developed a simple-structured quadruped robot, with the help of which we propose an unconventional CPG model that consists of four decoupled oscillators with only local force feedback in each leg. Our robot exhibits good adaptability to changes in weight distribution and walking speed simply by responding to local feedback, and it can mimic the walking patterns of actual quadrupeds. Our proposed CPG-based control method suggests that physical interaction between legs during movements is essential for interlimb coordination in quadruped walking.
Exploration properties of biased evanescent random walkers on a one-dimensional lattice
NASA Astrophysics Data System (ADS)
Esguerra, Jose Perico; Reyes, Jelian
2017-08-01
We investigate the combined effects of bias and evanescence on the characteristics of random walks on a one-dimensional lattice. We calculate the time-dependent return probability, eventual return probability, conditional mean return time, and the time-dependent mean number of visited sites of biased immortal and evanescent discrete-time random walkers on a one-dimensional lattice. We then extend the calculations to the case of a continuous-time step-coupled biased evanescent random walk on a one-dimensional lattice with an exponential waiting time distribution.
Zhang, S-X; Huang, F; Gates, M; Shen, X; Holmberg, E G
2016-11-01
This is a randomized controlled prospective trial with two parallel groups. The objective of this study was to determine whether early application of tail nerve electrical stimulation (TANES)-induced walking training can improve the locomotor function. This study was conducted in SCS Research Center in Colorado, USA. A contusion injury to spinal cord T10 was produced using the New York University impactor device with a 25 -mm height setting in female, adult Long-Evans rats. Injured rats were randomly divided into two groups (n=12 per group). One group was subjected to TANES-induced walking training 2 weeks post injury, and the other group, as control, received no TANES-induced walking training. Restorations of behavior and conduction were assessed using the Basso, Beattie and Bresnahan open-field rating scale, horizontal ladder rung walking test and electrophysiological test (Hoffmann reflex). Early application of TANES-induced walking training significantly improved the recovery of locomotor function and benefited the restoration of Hoffmann reflex. TANES-induced walking training is a useful method to promote locomotor recovery in rats with spinal cord injury.
Girold, Sébastien; Rousseau, Jérome; Le Gal, Magalie; Coudeyre, Emmanuel; Le Henaff, Jacqueline
2017-07-01
With Nordic walking, or walking with poles, one can travel a greater distance and at a higher rate than with walking without poles, but whether the activity is beneficial for patients with cardiovascular disease is unknown. This randomized controlled trial was undertaken to determine whether Nordic walking was more effective than walking without poles on walk distance to support rehabilitation training for patients with acute coronary syndrome (ACS) and peripheral arterial occlusive disease (PAOD). Patients were recruited in a private specialized rehabilitation centre for cardiovascular diseases. The entire protocol, including patient recruitment, took place over 2 months, from September to October 2013. We divided patients into 2 groups: Nordic Walking Group (NWG, n=21) and Walking Group without poles (WG, n=21). All patients followed the same program over 4 weeks, except for the walk performed with or without poles. The main outcome was walk distance on the 6-min walk test. Secondary outcomes were maximum heart rate during exercise and walk distance and power output on a treadmill stress test. We included 42 patients (35 men; mean age 57.2±11 years and BMI 26.5±4.5kg/m 2 ). At the end of the training period, both groups showed improved walk distance on the 6-min walk test and treatment stress test as well as power on the treadmill stress test (P<0.05). The NWG showed significantly greater walk distance than the WG (P<0.05). Both ACS and PAOD groups showed improvement, but improvement was significant for only PAOD patients. After a 4-week training period, Nordic walking training appeared more efficient than training without poles for increasing walk distance on the 6-min walk test for patients with ACS and PAOD. Copyright © 2017. Published by Elsevier Masson SAS.
ERIC Educational Resources Information Center
Fific, Mario; Little, Daniel R.; Nosofsky, Robert M.
2010-01-01
We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli…
Random Walk Method for Potential Problems
NASA Technical Reports Server (NTRS)
Krishnamurthy, T.; Raju, I. S.
2002-01-01
A local Random Walk Method (RWM) for potential problems governed by Lapalace's and Paragon's equations is developed for two- and three-dimensional problems. The RWM is implemented and demonstrated in a multiprocessor parallel environment on a Beowulf cluster of computers. A speed gain of 16 is achieved as the number of processors is increased from 1 to 23.
ERIC Educational Resources Information Center
Kamienkowski, Juan E.; Pashler, Harold; Dehaene, Stanislas; Sigman, Mariano
2011-01-01
Does extensive practice reduce or eliminate central interference in dual-task processing? We explored the reorganization of task architecture with practice by combining interference analysis (delays in dual-task experiment) and random-walk models of decision making (measuring the decision and non-decision contributions to RT). The main delay…
Averaging in SU(2) open quantum random walk
NASA Astrophysics Data System (ADS)
Clement, Ampadu
2014-03-01
We study the average position and the symmetry of the distribution in the SU(2) open quantum random walk (OQRW). We show that the average position in the central limit theorem (CLT) is non-uniform compared with the average position in the non-CLT. The symmetry of distribution is shown to be even in the CLT.
Reheating-volume measure for random-walk inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winitzki, Sergei; Yukawa Institute of Theoretical Physics, Kyoto University, Kyoto
2008-09-15
The recently proposed 'reheating-volume' (RV) measure promises to solve the long-standing problem of extracting probabilistic predictions from cosmological multiverse scenarios involving eternal inflation. I give a detailed description of the new measure and its applications to generic models of eternal inflation of random-walk type. For those models I derive a general formula for RV-regulated probability distributions that is suitable for numerical computations. I show that the results of the RV cutoff in random-walk type models are always gauge invariant and independent of the initial conditions at the beginning of inflation. In a toy model where equal-time cutoffs lead to themore » 'youngness paradox', the RV cutoff yields unbiased results that are distinct from previously proposed measures.« less
Goodman, Anna; Johnson, Rob; Aldred, Rachel; Brage, Soren; Bhalla, Kavi; Woodcock, James
2018-01-01
Background Street imagery is a promising and growing big data source providing current and historical images in more than 100 countries. Studies have reported using this data to audit road infrastructure and other built environment features. Here we explore a novel application, using Google Street View (GSV) to predict travel patterns at the city level. Methods We sampled 34 cities in Great Britain. In each city, we accessed 2000 GSV images from 1000 random locations. We selected archived images from time periods overlapping with the 2011 Census and the 2011–2013 Active People Survey (APS). We manually annotated the images into seven categories of road users. We developed regression models with the counts of images of road users as predictors. The outcomes included Census-reported commute shares of four modes (combined walking plus public transport, cycling, motorcycle, and car), as well as APS-reported past-month participation in walking and cycling. Results We found high correlations between GSV counts of cyclists (‘GSV-cyclists’) and cycle commute mode share (r = 0.92)/past-month cycling (r = 0.90). Likewise, GSV-pedestrians was moderately correlated with past-month walking for transport (r = 0.46), GSV-motorcycles was moderately correlated with commute share of motorcycles (r = 0.44), and GSV-buses was highly correlated with commute share of walking plus public transport (r = 0.81). GSV-car was not correlated with car commute mode share (r = –0.12). However, in multivariable regression models, all outcomes were predicted well, except past-month walking. The prediction performance was measured using cross-validation analyses. GSV-buses and GSV-cyclists are the strongest predictors for most outcomes. Conclusions GSV images are a promising new big data source to predict urban mobility patterns. Predictive power was the greatest for those modes that varied the most (cycle and bus). With its ability to identify mode of travel and capture street activity often excluded in routinely carried out surveys, GSV has the potential to be complementary to new and traditional data. With half the world’s population covered by street imagery, and with up to 10 years historical data available in GSV, further testing across multiple settings is warranted both for cross-sectional and longitudinal assessments. PMID:29718953
Exercise training for intermittent claudication.
McDermott, Mary M
2017-11-01
The objective of this study was to provide an overview of evidence regarding exercise therapies for patients with lower extremity peripheral artery disease (PAD). This manuscript summarizes the content of a lecture delivered as part of the 2016 Crawford Critical Issues Symposium. Multiple randomized clinical trials demonstrate that supervised treadmill exercise significantly improves treadmill walking performance in people with PAD and intermittent claudication symptoms. A meta-analysis of 25 randomized trials demonstrated a 180-meter increase in treadmill walking distance in response to supervised exercise interventions compared with a nonexercising control group. Supervised treadmill exercise has been inaccessible to many patients with PAD because of lack of medical insurance coverage. However, in 2017, the Centers for Medicare and Medicaid Services issued a decision memorandum to support health insurance coverage of 12 weeks of supervised treadmill exercise for patients with walking impairment due to PAD. Recent evidence also supports home-based walking exercise to improve walking performance in people with PAD. Effective home-exercise programs incorporate behavioral change interventions such as a remote coach, goal setting, and self-monitoring. Supervised treadmill exercise programs preferentially improve treadmill walking performance, whereas home-based walking exercise programs preferentially improve corridor walking, such as the 6-minute walk test. Clinical trial evidence also supports arm or leg ergometry exercise to improve walking endurance in people with PAD. Treadmill walking exercise appears superior to resistance training alone for improving walking endurance. Supervised treadmill exercise significantly improves treadmill walking performance in people with PAD by approximately 180 meters compared with no exercise. Recent evidence suggests that home-based exercise is also effective and preferentially improves over-ground walking performance, such as the 6-minute walk test. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Michael, Yvonne L; Carlson, Nichole E
2009-07-30
Using data from the SHAPE trial, a randomized 6-month neighborhood-based intervention designed to increase walking activity among older adults, this study identified and analyzed social-ecological factors mediating and moderating changes in walking activity. Three potential mediators (social cohesion, walking efficacy, and perception of neighborhood problems) and minutes of brisk walking were assessed at baseline, 3-months, and 6-months. One moderator, neighborhood walkability, was assessed using an administrative GIS database. The mediating effect of change in process variables on change in brisk walking was tested using a product-of-coefficients test, and we evaluated the moderating effect of neighborhood walkability on change in brisk walking by testing the significance of the interaction between walkability and intervention status. Only one of the hypothesized mediators, walking efficacy, explained the intervention effect (product of the coefficients (95% CI) = 8.72 (2.53, 15.56). Contrary to hypotheses, perceived neighborhood problems appeared to suppress the intervention effects (product of the coefficients (95% CI = -2.48, -5.6, -0.22). Neighborhood walkability did not moderate the intervention effect. Walking efficacy may be an important mediator of lay-lead walking interventions for sedentary older adults. Social-ecologic theory-based analyses can support clinical interventions to elucidate the mediators and moderators responsible for producing intervention effects.
Quistberg, D Alex; Howard, Eric J; Hurvitz, Philip M; Moudon, Anne V; Ebel, Beth E; Rivara, Frederick P; Saelens, Brian E
2017-05-01
Safe urban walking environments may improve health by encouraging physical activity, but the relationship between an individual's location and walking pattern and the risk of pedestrian-motor vehicle collision is unknown. We examined associations between individuals' walking bouts and walking risk, measured as mean exposure to the risk of pedestrian-vehicle collision. Walking bouts were ascertained through integrated accelerometry and global positioning system data and from individual travel-diary data obtained from adults in the Travel Assessment and Community Study (King County, Washington) in 2008-2009. Walking patterns were superimposed onto maps of the historical probabilities of pedestrian-vehicle collisions for intersections and midblock segments within Seattle, Washington. Mean risk of pedestrian-vehicle collision in specific walking locations was assessed according to walking exposure (duration, distance, and intensity) and participant demographic characteristics in linear mixed models. Participants typically walked in areas with low pedestrian collision risk when walking for recreation, walking at a faster pace, or taking longer-duration walks. Mean daily walking duration and distance were not associated with collision risk. Males walked in areas with higher collision risk compared with females, while vehicle owners, residents of single-family homes, and parents of young children walked in areas with lower collision risk. These findings may suggest that pedestrians moderate collision risk by using lower-risk routes. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Real time visualization of quantum walk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, Akihide; Hamada, Shinji; Sekino, Hideo
2014-02-20
Time evolution of quantum particles like electrons is described by time-dependent Schrödinger equation (TDSE). The TDSE is regarded as the diffusion equation of electrons with imaginary diffusion coefficients. And the TDSE is solved by quantum walk (QW) which is regarded as a quantum version of a classical random walk. The diffusion equation is solved in discretized space/time as in the case of classical random walk with additional unitary transformation of internal degree of freedom typical for quantum particles. We call the QW for solution of the TDSE a Schrödinger walk (SW). For observation of one quantum particle evolution under amore » given potential in atto-second scale, we attempt a successive computation and visualization of the SW. Using Pure Data programming, we observe the correct behavior of a probability distribution under the given potential in real time for observers of atto-second scale.« less
Random walk with memory enhancement and decay
NASA Astrophysics Data System (ADS)
Tan, Zhi-Jie; Zou, Xian-Wu; Huang, Sheng-You; Zhang, Wei; Jin, Zhun-Zhi
2002-04-01
A model of random walk with memory enhancement and decay was presented on the basis of the characteristics of the biological intelligent walks. In this model, the movement of the walker is determined by the difference between the remaining information at the jumping-out site and jumping-in site. The amount of the memory information si(t) at a site i is enhanced with the increment of visiting times to that site, and decays with time t by the rate e-βt, where β is the memory decay exponent. When β=0, there exists a transition from Brownian motion (BM) to the compact growth of walking trajectory with the density of information energy u increasing. But for β>0, this transition does not appear and the walk with memory enhancement and decay can be considered as the BM of the mass center of the cluster composed of remembered sites in the late stage.
Fermionic entanglement via quantum walks in quantum dots
NASA Astrophysics Data System (ADS)
Melnikov, Alexey A.; Fedichkin, Leonid E.
2018-02-01
Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.
Continuous-Time Random Walk with multi-step memory: an application to market dynamics
NASA Astrophysics Data System (ADS)
Gubiec, Tomasz; Kutner, Ryszard
2017-11-01
An extended version of the Continuous-Time Random Walk (CTRW) model with memory is herein developed. This memory involves the dependence between arbitrary number of successive jumps of the process while waiting times between jumps are considered as i.i.d. random variables. This dependence was established analyzing empirical histograms for the stochastic process of a single share price on a market within the high frequency time scale. Then, it was justified theoretically by considering bid-ask bounce mechanism containing some delay characteristic for any double-auction market. Our model appeared exactly analytically solvable. Therefore, it enables a direct comparison of its predictions with their empirical counterparts, for instance, with empirical velocity autocorrelation function. Thus, the present research significantly extends capabilities of the CTRW formalism. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Global mean first-passage times of random walks on complex networks.
Tejedor, V; Bénichou, O; Voituriez, R
2009-12-01
We present a general framework, applicable to a broad class of random walks on complex networks, which provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged over its starting position, the so-called global mean first-passage time (GMFPT). This bound is simply expressed in terms of the equilibrium distribution at the target and implies a minimal scaling of the GMFPT with the network size. We show that this minimal scaling, which can be arbitrarily slow, is realized under the simple condition that the random walk is transient at the target site and independently of the small-world, scale-free, or fractal properties of the network. Last, we put forward that the GMFPT to a specific target is not a representative property of the network since the target averaged GMFPT satisfies much more restrictive bounds.
Emergence of Lévy Walks from Second-Order Stochastic Optimization
NASA Astrophysics Data System (ADS)
Kuśmierz, Łukasz; Toyoizumi, Taro
2017-12-01
In natural foraging, many organisms seem to perform two different types of motile search: directed search (taxis) and random search. The former is observed when the environment provides cues to guide motion towards a target. The latter involves no apparent memory or information processing and can be mathematically modeled by random walks. We show that both types of search can be generated by a common mechanism in which Lévy flights or Lévy walks emerge from a second-order gradient-based search with noisy observations. No explicit switching mechanism is required—instead, continuous transitions between the directed and random motions emerge depending on the Hessian matrix of the cost function. For a wide range of scenarios, the Lévy tail index is α =1 , consistent with previous observations in foraging organisms. These results suggest that adopting a second-order optimization method can be a useful strategy to combine efficient features of directed and random search.
Invariant hip moment pattern while walking with a robotic hip exoskeleton
Lewis, Cara L.; Ferris, Daniel P.
2011-01-01
Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 minutes of the powered condition and the unpowered condition. After completing three 30-minute training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. PMID:21333995
Does dual task training improve walking performance of older adults with concern of falling?
Wollesen, B; Schulz, S; Seydell, L; Delbaere, K
2017-09-11
Older adults with concerns of falling show decrements of gait stability under single (ST) and dual task (DT) conditions. To compare the effects of a DT training integrating task managing strategies for independent living older adults with and without concern about falling (CoF) to a non-training control group on walking performance under ST and DT conditions. Single center parallel group single blind randomized controlled trial with group-based interventions (DT-managing balance training) compared to a control group (Ninety-five independent living older adults; 71.5 ± 5.2 years). A progressive DT training (12 sessions; 60 min each; 12 weeks) including task-managing strategies was compared to a non-training control group. group based intervention for independent living elderly in a gym. ST and DT walking (visual verbal Stroop task) were measured on a treadmill. Gait parameters (step length, step width, and gait line) and cognitive performance while walking were compared with a 2x2x2 Repeated Measures Analyses of Variance. Participants in the intervention group showed an increased step length under ST and DT conditions following the intervention, for both people with and without CoF compared to their respective control groups. Foot rolling movement and cognitive performance while walking however only improved in participants without CoF. The results showed that DT managing training can improve walking performance under ST and DT conditions in people with and without CoF. Additional treatment to directly address CoF, such as cognitive behavioural therapy, should be considered to further improve the cautious gait pattern (as evidenced by reduced foot rolling movements). The study was retrospectively registered in the German Clinical Trials Register (DRKS; Identification number DRKS00012382 , 11.05.2017).
Swimming pattern of Pseudomonas putida - navigating with stops and reversals
NASA Astrophysics Data System (ADS)
Hintsche, Marius; Waljor, Veronika; Alirezaeizanjani, Zahra; Theves, Matthias; Beta, Carsten
Bacterial swimming strategies depend on factors such as the chemical and physical environment, as well as the flagellation pattern of a species. For some bacteria the motility pattern and the underlying flagellar dynamics are well known, such as the classical run-and-tumble behavior of E. coli. Here we study the swimming motility and chemotactic behavior of the polar, multi-flagellated soil dwelling bacterium Pseudomonas putida. Compared to E. coli, its motility pattern is more diverse. In addition to different speed levels, P. putida exhibits two types of reorientation events, stops and reversals, the occurrence of which is modulated according to the growth conditions. We also analyzed the swimming pattern in the presence of chemical gradients. Using benzoate as a chemoattractant, we measured key motility parameters in order to characterize P. putida's chemotaxis strategy and to quantify the directional bias in its random walk. Our results indicate a change in the reversal frequency depending on changes in the chemoattractant concentration consistent with the classical scenario of temporal sensing. DFG.
Rotational diffusion of a molecular cat
NASA Astrophysics Data System (ADS)
Katz-Saporta, Ori; Efrati, Efi
We show that a simple isolated system can perform rotational random walk on account of internal excitations alone. We consider the classical dynamics of a ''molecular cat'': a triatomic molecule connected by three harmonic springs with non-zero rest lengths, suspended in free space. In this system, much like for falling cats, the angular momentum constraint is non-holonomic allowing for rotations with zero overall angular momentum. The geometric nonlinearities arising from the non-zero rest lengths of the springs suffice to break integrability and lead to chaotic dynamics. The coupling of the non-integrability of the system and its non-holonomic nature results in an angular random walk of the molecule. We study the properties and dynamics of this angular motion analytically and numerically. For low energy excitations the system displays normal-mode-like motion, while for high enough excitation energy we observe regular random-walk. In between, at intermediate energies we observe an angular Lévy-walk type motion associated with a fractional diffusion coefficient interpolating between the two regimes.
Stepping strategies for regulating gait adaptability and stability.
Hak, Laura; Houdijk, Han; Steenbrink, Frans; Mert, Agali; van der Wurff, Peter; Beek, Peter J; van Dieën, Jaap H
2013-03-15
Besides a stable gait pattern, gait in daily life requires the capability to adapt this pattern in response to environmental conditions. The purpose of this study was to elucidate the anticipatory strategies used by able-bodied people to attain an adaptive gait pattern, and how these strategies interact with strategies used to maintain gait stability. Ten healthy subjects walked in a Computer Assisted Rehabilitation ENvironment (CAREN). To provoke an adaptive gait pattern, subjects had to hit virtual targets, with markers guided by their knees, while walking on a self-paced treadmill. The effects of walking with and without this task on walking speed, step length, step frequency, step width and the margins of stability (MoS) were assessed. Furthermore, these trials were performed with and without additional continuous ML platform translations. When an adaptive gait pattern was required, subjects decreased step length (p<0.01), tended to increase step width (p=0.074), and decreased walking speed while maintaining similar step frequency compared to unconstrained walking. These adaptations resulted in the preservation of equal MoS between trials, despite the disturbing influence of the gait adaptability task. When the gait adaptability task was combined with the balance perturbation subjects further decreased step length, as evidenced by a significant interaction between both manipulations (p=0.012). In conclusion, able-bodied people reduce step length and increase step width during walking conditions requiring a high level of both stability and adaptability. Although an increase in step frequency has previously been found to enhance stability, a faster movement, which would coincide with a higher step frequency, hampers accuracy and may consequently limit gait adaptability. Copyright © 2012 Elsevier Ltd. All rights reserved.
Charreire, Hélène; Weber, Christiane; Chaix, Basile; Salze, Paul; Casey, Romain; Banos, Arnaud; Badariotti, Dominique; Kesse-Guyot, Emmanuelle; Hercberg, Serge; Simon, Chantal; Oppert, Jean-Michel
2012-05-23
Socio-ecological models suggest that both individual and neighborhood characteristics contribute to facilitating health-enhancing behaviors such as physical activity. Few European studies have explored relationships between local built environmental characteristics, recreational walking and cycling and weight status in adults. The aim of this study was to identify built environmental patterns in a French urban context and to assess associations with recreational walking and cycling behaviors as performed by middle-aged adult residents. We used a two-step procedure based on cluster analysis to identify built environmental patterns in the region surrounding Paris, France, using measures derived from Geographic Information Systems databases on green spaces, proximity facilities (destinations) and cycle paths. Individual data were obtained from participants in the SU.VI.MAX cohort; 1,309 participants residing in the Ile-de-France in 2007 were included in this analysis. Associations between built environment patterns, leisure walking/cycling data (h/week) and measured weight status were assessed using multinomial logistic regression with adjustment for individual and neighborhood characteristics. Based on accessibility to green spaces, proximity facilities and availability of cycle paths, seven built environmental patterns were identified. The geographic distribution of built environmental patterns in the Ile-de-France showed that a pattern characterized by poor spatial accessibility to green spaces and proximity facilities and an absence of cycle paths was found only in neighborhoods in the outer suburbs, whereas patterns characterized by better spatial accessibility to green spaces, proximity facilities and cycle paths were more evenly distributed across the region. Compared to the reference pattern (poor accessibility to green areas and facilities, absence of cycle paths), subjects residing in neighborhoods characterized by high accessibility to green areas and local facilities and by a high density of cycle paths were more likely to walk/cycle, after adjustment for individual and neighborhood sociodemographic characteristics (OR = 2.5 95%CI 1.4-4.6). Body mass index did not differ across patterns. Built environmental patterns were associated with walking and cycling among French adults. These analyses may be useful in determining urban and public health policies aimed at promoting a healthy lifestyle.
Hinton, Dorelle Clare; Cheng, Yeu-Yao; Paquette, Caroline
2018-01-01
With increasing numbers of adults owning a cell phone, walking while texting has become common in daily life. Previous research has shown that walking is not entirely automated and when challenged with a secondary task, normal walking patterns are disrupted. This study investigated the effects of texting on the walking patterns of healthy young adults while walking on a split-belt treadmill. Following full adaptation to the split-belt treadmill, thirteen healthy adults (23±3years) walked on a tied-belt and split-belt treadmill, both with and without a simultaneous texting task. Inertial-based movement monitors recorded spatiotemporal components of gait and stability. Measures of spatial and temporal gait symmetry were calculated to compare gait patterns between treadmill (tied-belt and split-belt) and between texting (absent or present) conditions. Typing speed and accuracy were recorded to monitor texting performance. Similar to previous research, the split-belt treadmill caused an alteration to both spatial and temporal aspects of gait, but not to time spent in dual support or stability. However, all participants successfully maintained balance while walking and were able to perform the texting task with no significant change to accuracy or speed on either treadmill. From this paradigm it is evident that when university students are challenged to text while walking on either a tied-belt or split-belt treadmill, without any other distraction, their gait is minimally affected and they are able to maintain texting performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Perez-Rizo, Enrique; Trincado-Alonso, Fernando; Pérez-Nombela, Soraya; Del Ama-Espinosa, Antonio; Jiménez-Díaz, Fernando; Lozano-Berrio, Vicente; Gil-Agudo, Angel
2017-01-01
Specific biomechanical models have been developed to study gait using crutches. Clinical application of these models is needed in adult spinal cord injury (SCI) population walking with different patterns of gait with crutches to prevent overuse shoulder injuries. To apply a biomechanical model in a clinical environment to analyze shoulder in adult SCI patients walking with two different patterns of gait with crutches: two point reciprocal gait (RG) and swing-through gait (SG). Load cells were fixed to the distal ends and forearm cuffs of a pair of crutches. An active markers system was used for kinematics. Five cycles for each gait pattern were analyzed applying a biomechanical model of the upper limbs. Fifteen subjects with SCI were analyzed. The flexo-extension range of motion was significantly greater when using SG (p < 0.01). Similarly, the superior, posterior and medial forces were significantly stronger for SG in all 3 directions. Flexion, adduction and internal rotation torques were also greater in SG (p < 0.01). A biomechanical model was successfully applied to study shoulder biomechanics in adult patients with SCI walking with crutches in two different gait patterns. Greater loads exerted on the shoulder walking with SG were confirmed compared to RG.
Park, Hyun-Ju; Oh, Duck-Won; Choi, Jong-Duk; Kim, Jong-Man; Kim, Suhn-Yeop; Cha, Yong-Jun; Jeon, Su-Jin
2017-08-01
To investigate the effects of action observation training involving community-based ambulation for improving walking ability after stroke. Randomized, controlled pilot study. Inpatient rehabilitation hospital. A total of 25 inpatients with post-stroke hemiparesis were randomly assigned to either the experimental group ( n = 12) or control group ( n = 13). Subjects of the experimental group watched video clips demonstrating four-staged ambulation training with a more complex environment factor for 30 minutes, three times a week for four weeks. Meanwhile, subjects of the control group watched video clips, which showed different landscape pictures. Walking function was evaluated before and after the four-week intervention using a 10-m walk test, community walk test, activities-specific balance confidence scale, and spatiotemporal gait measures. Changes in the values for the 10-m walk test (0.17 ±0.19 m/s vs. 0.05 ±0.08 m/s), community walk test (-151.42 ±123.82 seconds vs. 67.08 ±176.77 seconds), and activities-specific balance confidence (6.25 ±5.61 scores vs. 0.72 ±2.24 scores) and the spatiotemporal parameters (i.e. stride length (19.00 ±11.34 cm vs. 3.16 ±11.20 cm), single support (5.87 ±5.13% vs. 0.25 ±5.95%), and velocity (15.66 ±12.34 cm/s vs. 2.96 ±10.54 cm/s)) indicated a significant improvement in the experimental group compared with the control group. In the experimental group, walking function and ambulation confidence was significantly different between the pre- and post-intervention, whereas the control group showed a significant difference only in the 10-m walk test. Action observation training of community ambulation may be favorably used for improving walking function of patients with post-stroke hemiparesis.
Tan, Uner
2007-01-01
After discovering two families with handicapped children exhibiting the "Uner Tan syndrome," the author discovered a man exhibiting only wrist-walking with no primitive mental abilities including language. According to his mother, he had an infectious disease with high fever as a three months old baby; as a result, the left leg had been paralyzed after a penicilline injection. This paralysis most probably resulted from a viral disease, possibly poliomyelitis. He is now (2006) 36 years old; the left leg is flaccid and atrophic, with no tendon reflexes; however, sensation is normal. The boy never stood up on his feet while maturing. The father forced him to walk upright using physical devices and making due exercises, but the child always rejected standing upright and walking in erect posture; he always preferred wrist-walking; he expresses that wrist-walking is much more comfortable for him than upright-walking. He is very strong now, making daily body building exercises, and walking quite fast using a "three legs," although he cannot stand upright. Mental status, including the language and conscious experience, is quite normal. There was no intra-familiar marriage as in the two families mentioned earlier, and there is no wrist-walking in his family and relatives. There were no cerebellar signs and symptoms upon neurological examination. The brain-MRI was normal; there was no atrophy in cerebellum and vermis. It was concluded that there may be sporadic wrist-walkers exhibiting no "Uner Tan Syndrome." The results suggest that the cerebellum has nothing to do with human wrist-walking, which may rather be an atavistic trait appearing from time to time in normal individuals, indicating a live model for human reverse evolution. It was concluded that pure quadrupeds may sporadically appear due to random fluctuations in genotypes and/or environmental factors (hormonal or nutritional); the human development following the human evolution may be stopped in the stage of transition from quadrupedality to bipedality. That is, the activity of the philogenetically youngest supraspinal centers for bipedal walking responsible for suppression of the older supraspinal centers for quadrupedal gait may be interrupted at the atavistic level due to genetic and/or environmental factors. Consequently, it is assumed that these individuals prefer their natural wrist-walking to move around more quickly and efficiently.
Dorsch, Andrew K.; Thomas, Seth; Xu, Xiaoyu; Kaiser, William; Dobkin, Bruce H.
2014-01-01
Background Walking-related disability is the most frequent reason for inpatient stroke rehabilitation. Task-related practice is a critical component for improving patient outcomes. Objective To test the feasibility of providing quantitative feedback about daily walking performance and motivating greater skills practice via remote sensing. Methods In this phase III randomized, single blind clinical trial, patients participated in conventional therapies while wearing wireless sensors (tri-axial accelerometers) at both ankles. Activity-recognition algorithms calculated the speed, distance, and duration of walking bouts. Three times a week, therapists provided either feedback about performance on a 10-meter walk (speed-only) or walking speed feedback plus a review of walking activity recorded by the sensors (augmented). Primary outcomes at discharge included total daily walking time, derived from the sensors, and a timed 15-meter walk. Results Sixteen rehabilitation centers in 11 countries enrolled 135 participants over 15 months. Sensors recorded more than 1800 days of therapy, 37,000 individual walking bouts, and 2.5 million steps. No significant differences were found between the two feedback groups in daily walking time (15.1±13.1min vs. 16.6±14.3min, p=0.54) or 15-meter walking speed (0.93±0.47m/s vs. 0.91±0.53m/s, p=0.96). Remarkably, 30% of participants decreased their total daily walking time over their rehabilitation stay. Conclusions In this first trial of remote monitoring of inpatient stroke rehabilitation, augmented feedback beyond speed alone did not increase the time spent practicing or improve walking outcomes. Remarkably modest time was spent walking. Wireless sensing, however, allowed clinicians to audit skills practice and provided ground truth regarding changes in clinically important, mobility-related activities. PMID:25261154
NASA Astrophysics Data System (ADS)
Berger, Quentin; Lacoin, Hubert
2011-01-01
We consider the continuous time version of the Random Walk Pinning Model (RWPM), studied in (Berger and Toninelli (Electron. J. Probab., to appear) and Birkner and Sun (Ann. Inst. Henri Poincaré Probab. Stat. 46:414-441, 2010; arXiv:0912.1663). Given a fixed realization of a random walk Y on ℤ d with jump rate ρ (that plays the role of the random medium), we modify the law of a random walk X on ℤ d with jump rate 1 by reweighting the paths, giving an energy reward proportional to the intersection time Lt(X,Y)=int0t {1}_{Xs=Ys} {d}s: the weight of the path under the new measure is exp ( βL t ( X, Y)), β∈ℝ. As β increases, the system exhibits a delocalization/localization transition: there is a critical value β c , such that if β> β c the two walks stick together for almost-all Y realizations. A natural question is that of disorder relevance, that is whether the quenched and annealed systems have the same behavior. In this paper we investigate how the disorder modifies the shape of the free energy curve: (1) We prove that, in dimension d≥3, the presence of disorder makes the phase transition at least of second order. This, in dimension d≥4, contrasts with the fact that the phase transition of the annealed system is of first order. (2) In any dimension, we prove that disorder modifies the low temperature asymptotic of the free energy.
Burr, Leigh-Anne; Javiad, Mahmood; Jell, Grace; Werner-Seidler, Aliza; Dunn, Barnaby D
2017-04-01
The way individuals appraise positive emotions may modulate affective experience during positive activity scheduling. Individuals may either engage in dampening appraisals (e.g., think "this is too good to last") or amplifying appraisals (e.g., think "I deserve this"). A cross-over randomized design was used to examine the consequences of these appraisal styles. Participants (N = 43) rated positive affect (PA) and negative affect (NA) during four daily walks in pleasant locations, whilst following dampening, emotion-focus amplifying (focusing on how good one feels), self-focus amplifying (focusing on positive self qualities), or control instructions. There was no difference between the two amplifying and control conditions, which all increased PA and reduced NA during the walks. However, the dampening condition significantly differed from all other conditions, reducing PA and increasing NA during the walk. Individual differences in anhedonia symptoms did not significantly moderate the pattern of findings. This evidence supports the view that dampening appraisals may be one mechanism driving anhedonia and may account for why positive activity scheduling can sometimes backfire when utilized in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Reike, Dennis; Schwarz, Wolf
2016-01-01
The time required to determine the larger of 2 digits decreases with their numerical distance, and, for a given distance, increases with their magnitude (Moyer & Landauer, 1967). One detailed quantitative framework to account for these effects is provided by random walk models. These chronometric models describe how number-related noisy…
Random-walk diffusion and drying of porous materials
NASA Astrophysics Data System (ADS)
Mehrafarin, M.; Faghihi, M.
2001-12-01
Based on random-walk diffusion, a microscopic model for drying is proposed to explain the characteristic features of the drying-rate curve of porous materials. The constant drying-rate period is considered as a normal diffusion process. The transition to the falling-rate regime is attributed to the fractal nature of porous materials which results in crossover to anomalous diffusion.
A random walk rule for phase I clinical trials.
Durham, S D; Flournoy, N; Rosenberger, W F
1997-06-01
We describe a family of random walk rules for the sequential allocation of dose levels to patients in a dose-response study, or phase I clinical trial. Patients are sequentially assigned the next higher, same, or next lower dose level according to some probability distribution, which may be determined by ethical considerations as well as the patient's response. It is shown that one can choose these probabilities in order to center dose level assignments unimodally around any target quantile of interest. Estimation of the quantile is discussed; the maximum likelihood estimator and its variance are derived under a two-parameter logistic distribution, and the maximum likelihood estimator is compared with other nonparametric estimators. Random walk rules have clear advantages: they are simple to implement, and finite and asymptotic distribution theory is completely worked out. For a specific random walk rule, we compute finite and asymptotic properties and give examples of its use in planning studies. Having the finite distribution theory available and tractable obviates the need for elaborate simulation studies to analyze the properties of the design. The small sample properties of our rule, as determined by exact theory, compare favorably to those of the continual reassessment method, determined by simulation.
NASA Astrophysics Data System (ADS)
Li, Hongzhi; Min, Donghong; Liu, Yusong; Yang, Wei
2007-09-01
To overcome the possible pseudoergodicity problem, molecular dynamic simulation can be accelerated via the realization of an energy space random walk. To achieve this, a biased free energy function (BFEF) needs to be priori obtained. Although the quality of BFEF is essential for sampling efficiency, its generation is usually tedious and nontrivial. In this work, we present an energy space metadynamics algorithm to efficiently and robustly obtain BFEFs. Moreover, in order to deal with the associated diffusion sampling problem caused by the random walk in the total energy space, the idea in the original umbrella sampling method is generalized to be the random walk in the essential energy space, which only includes the energy terms determining the conformation of a region of interest. This essential energy space generalization allows the realization of efficient localized enhanced sampling and also offers the possibility of further sampling efficiency improvement when high frequency energy terms irrelevant to the target events are free of activation. The energy space metadynamics method and its generalization in the essential energy space for the molecular dynamics acceleration are demonstrated in the simulation of a pentanelike system, the blocked alanine dipeptide model, and the leucine model.
Do low step count goals inhibit walking behavior: a randomized controlled study.
Anson, Denis; Madras, Diane
2016-07-01
Confirmation and quantification of observed differences in goal-directed walking behavior. Single-blind, split-half randomized trial. Small rural university, Pennsylvania, United States. A total of 94 able-bodied subjects (self-selected volunteer students, faculty and staff of a small university) were randomly assigned walking goals, and 53 completed the study. Incentivized pedometer-monitored program requiring recording the step-count for 56-days into a custom-made website providing daily feedback. Steps logged per day. During the first half of the study, the 5000 and 10,000 step group logged significantly different steps 7500 and 9000, respectively (P > 0.05). During the second half of the study, the 5000 and 10,000 step groups logged 7000 and 8600 steps, respectively (significance P > 0.05). The group switched from 5000 to →10,000 steps logged, 7900 steps for the first half and 9500 steps for the second half (significance P > 0.05). The group switched from 10,000 to 5000 steps logged 9700 steps for the first half and 9000 steps for the second half, which was significant (p > 0.05). Levels of walking behavior are influenced by the goals assigned. Subjects with high goals walk more than those with low goals, even if they do not meet the assigned goal. Reducing goals from a high to low level can reduce walking behavior. © The Author(s) 2015.
Grebenkov, Denis S
2011-02-01
A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.
Braendvik, Siri Merete; Koret, Teija; Helbostad, Jorunn L; Lorås, Håvard; Bråthen, Geir; Hovdal, Harald Olav; Aamot, Inger Lise
2016-12-01
The most effective treatment approach to improve walking in people with multiple sclerosis (MS) is not known. The aim of this trial was to assess the efficacy of treadmill training and progressive strength training on walking in people with MS. A single blinded randomized parallel group trial was carried out. Eligible participants were adults with MS with Expanded Disability Status Scale score ≤6. A total of 29 participants were randomized and 28 received the allocated exercise intervention, treadmill (n = 13) or strength training (n = 15). Both groups exercised 30 minutes, three times a week for 8 weeks. Primary outcome was The Functional Ambulation Profile evaluated by the GAITRite walkway. Secondary outcomes were walking work economy and balance control during walking, measured by a small lightweight accelerometer connected to the lower back. Testing was performed at baseline and the subsequent week after completion of training. Two participants were lost to follow-up, and 11 (treadmill) and 15 (strength training) were left for analysis. The treadmill group increased their Functional Ambulation Profile score significantly compared with the strength training group (p = .037). A significant improvement in walking work economy (p = .024) and a reduction of root mean square of vertical acceleration (p = .047) also favoured the treadmill group. The results indicate that task-specific training by treadmill walking is a favourable approach compared with strength training to improve walking in persons with mild and moderate MS. Implications for Physiotherapy practice, this study adds knowledge for the decision of optimal treatment approaches in people with MS. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Høyer, Ellen; Jahnsen, Reidun; Stanghelle, Johan Kvalvik; Strand, Liv Inger
2012-01-01
Treadmill training with body weight support (TTBWS) for relearning walking ability after brain damage is an approach under current investigation. Efficiency of this method beyond traditional training is lacking evidence, especially in patients needing walking assistance after stroke. The objective of this study was to investigate change in walking and transfer abilities, comparing TTBWS with traditional walking training. A single-blinded, randomized controlled trial was conducted. Sixty patients referred for multi-disciplinary primary rehabilitation were assigned into one of two intervention groups, one received 30 sessions of TTBWS plus traditional training, the other traditional training alone. Daily training was 1 hr. Outcome measures were Functional Ambulation Categories (FAC), Walking, Functional Independence Measure (FIM); shorter transfer and stairs, 10 m and 6-min walk tests. Substantial improvements in walking and transfer were shown within both groups after 5 and 11 weeks of intervention. Overall no statistical significant differences were found between the groups, but 12 of 17 physical measures tended to show improvements in favour of the treadmill approach. Both training strategies provided significant improvements in the tested activities, suggesting that similar outcomes can be obtained in the two modalities by systematic, intensive and goal directed training.
Dual-Task Does Not Increase Slip and Fall Risk in Healthy Young and Older Adults during Walking
Soangra, Rahul
2017-01-01
Dual-task tests can identify gait characteristics peculiar to fallers and nonfallers. Understanding the relationship between gait performance and dual-task related cognitive-motor interference is important for fall prevention. Dual-task adapted changes in gait instability/variability can adversely affect fall risks. Although implicated, it is unclear if healthy participants' fall risks are modified by dual-task walking conditions. Seven healthy young and seven healthy older adults were randomly assigned to normal walking and dual-task walking sessions with a slip perturbation. In the dual-task session, the participants walked and simultaneously counted backwards from a randomly provided number. The results indicate that the gait changes in dual-task walking have no destabilizing effect on gait and slip responses in healthy individuals. We also found that, during dual-tasking, healthy individuals adopted cautious gait mode (CGM) strategy that is characterized by reduced walking speed, shorter step length, increased step width, and reduced heel contact velocity and is likely to be an adaptation to minimize attentional demand and decrease slip and fall risk during limited available attentional resources. Exploring interactions between gait variability and cognitive functions while walking may lead to designing appropriate fall interventions among healthy and patient population with fall risk. PMID:28255224
Stride-related rein tension patterns in walk and trot in the ridden horse.
Egenvall, Agneta; Roepstorff, Lars; Eisersiö, Marie; Rhodin, Marie; van Weeren, René
2015-12-30
The use of tack (equipment such as saddles and reins) and especially of bits because of rein tension resulting in pressure in the mouth is questioned because of welfare concerns. We hypothesised that rein tension patterns in walk and trot reflect general gait kinematics, but are also determined by individual horse and rider effects. Six professional riders rode three familiar horses in walk and trot. Horses were equipped with rein tension meters logged by inertial measurement unit technique. Left and right rein tension data were synchronized with the gait. Stride split data (0-100 %) were analysed using mixed models technique to elucidate the left/right rein and stride percentage interaction, in relation to the exercises performed. In walk, rein tension was highest at hindlimb stance. Rein tension was highest in the suspension phase at trot, and lowest during the stance phase. In rising trot there was a significant difference between the two midstance phases, but not in sitting trot. When turning in trot there was a significant statistical association with the gait pattern with the tension being highest in the inside rein when the horse was on the outer fore-inner hindlimb diagonal. Substantial between-rider variation was demonstrated in walk and trot and between-horse variation in walk. Biphasic rein tensions patterns during the stride were found mainly in trot.
Gorassini, Monica A.; Norton, Jonathan A.; Nevett-Duchcherer, Jennifer; Roy, Francois D.; Yang, Jaynie F.
2009-01-01
Intensive treadmill training after incomplete spinal cord injury can improve functional walking abilities. To determine the changes in muscle activation patterns that are associated with improvements in walking, we measured the electromyography (EMG) of leg muscles in 17 individuals with incomplete spinal cord injury during similar walking conditions both before and after training. Specific differences were observed between subjects that eventually gained functional improvements in overground walking (responders), compared with subjects where treadmill training was ineffective (nonresponders). Although both groups developed a more regular and less clonic EMG pattern on the treadmill, it was only the tibialis anterior and hamstring muscles in the responders that displayed increases in EMG activation. Likewise, only the responders demonstrated decreases in burst duration and cocontraction of proximal (hamstrings and quadriceps) muscle activity. Surprisingly, the proximal muscle activity in the responders, unlike nonresponders, was three- to fourfold greater than that in uninjured control subjects walking at similar speeds and level of body weight support, suggesting that the ability to modify muscle activation patterns after injury may predict the ability of subjects to further compensate in response to motor training. In summary, increases in the amount and decreases in the duration of EMG activity of specific muscles are associated with functional recovery of walking skills after treadmill training in subjects that are able to modify muscle activity patterns following incomplete spinal cord injury. PMID:19073799
Merom, D; Gebel, K; Fahey, P; Astell-Burt, T; Voukelatos, A; Rissel, C; Sherrington, C
2015-01-01
In older adults the relationships between health, fall-related risk factors, perceived neighborhood walkability, walking behavior and intervention impacts are poorly understood. To determine whether: i) health and fall-related risk factors were associated with perceptions of neighborhood walkability; ii) perceived environmental attributes, and fall-related risk factors predicted change in walking behavior at 12 months; and iii) perceived environmental attributes and fall-related risk factors moderated the effect of a self-paced walking program on walking behavior. Randomized trial on walking and falls conducted between 2009 and 2012 involving 315 community-dwelling inactive adults ≥ 65 years living in Sydney, Australia. Measures were: mobility status, fall history, injurious fall and fear of falling (i.e., fall-related risk factors), health status, walking self-efficacy and 11 items from the neighborhood walkability scale and planned walking ≥ 150 min/week at 12 months. Participants with poorer mobility, fear of falling, and poor health perceived their surroundings as less walkable. Walking at 12 months was significantly greater in "less greenery" (AOR = 3.3, 95% CI: 1.11-9.98) and "high traffic" (AOR = 1.98, 95% CI: 1.00-3.91) neighborhoods. The intervention had greater effects in neighborhoods perceived to have poorer pedestrian infrastructure (p for interaction = 0.036). Low perceived walkability was shaped by health status and did not appear to be a barrier to walking behavior. There appears to be a greater impact of, and thus, need for, interventions to encourage walking in environments perceived not to have supportive walking infrastructure. Future studies on built environments and walking should gather information on fall-related risk factors to better understand how these characteristics interact.
NASA Astrophysics Data System (ADS)
Zhou, Hang
Quantum walks are the quantum mechanical analogue of classical random walks. Discrete-time quantum walks have been introduced and studied mostly on the line Z or higher dimensional space Zd but rarely defined on graphs with fractal dimensions because the coin operator depends on the position and the Fourier transform on the fractals is not defined. Inspired by its nature of classical walks, different quantum walks will be defined by choosing different shift and coin operators. When the coin operator is uniform, the results of classical walks will be obtained upon measurement at each step. Moreover, with measurement at each step, our results reveal more information about the classical random walks. In this dissertation, two graphs with fractal dimensions will be considered. The first one is Sierpinski gasket, a degree-4 regular graph with Hausdorff dimension of df = ln 3/ ln 2. The second is the Cantor graph derived like Cantor set, with Hausdorff dimension of df = ln 2/ ln 3. The definitions and amplitude functions of the quantum walks will be introduced. The main part of this dissertation is to derive a recursive formula to compute the amplitude Green function. The exiting probability will be computed and compared with the classical results. When the generation of graphs goes to infinity, the recursion of the walks will be investigated and the convergence rates will be obtained and compared with the classical counterparts.
Barkocy, Marybeth; Dexter, James; Petranovich, Colleen
2017-07-01
To evaluate the effectiveness of serial casting in a child with autism spectrum disorder (ASD) exhibiting a toe-walking gait pattern with equinus contractures. Although many children with ASD toe walk, little research on physical therapy interventions exists for this population. Serial casting has been validated for use in idiopathic toe walking to increase passive dorsiflexion and improve gait, but not for toe walking in children with ASD. Serial casting followed by ankle-foot orthosis use was implemented to treat a child with ASD who had an obligatory equinus gait pattern. Gait analysis supported improvements in kinematic, spatial, and temporal parameters of gait, and the child maintained a consistent heel-toe gait at 2-year follow-up. STATEMENT OF CONCLUSION AND RECOMMENDATIONS FOR CLINICAL PRACTICE:: Serial casting followed by ankle-foot orthosis use is a viable treatment option for toe walking in children with ASD.
Accumulating Brisk Walking for Fitness, Cardiovascular Risk, and Psychological Health.
ERIC Educational Resources Information Center
Murphy, Marie; Nevill, Alan; Neville, Charlotte; Biddle, Stuart; Hardman, Adrianne
2002-01-01
Compared the effects of different patterns of regular brisk walking on fitness, cardiovascular disease risk factors, and psychological well-being in previously sedentary adults. Data on adults who completed either short-bout or long-bout walking programs found that three short bouts of brisk walking accumulated throughout the day were as effective…
Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning.
Musselman, Kristin E; Roemmich, Ryan T; Garrett, Ben; Bastian, Amy J
2016-05-01
Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted walking pattern in children aged 6-17 yr. We found that all children, regardless of age, showed adult-like patterns of retention of the adapted walking pattern. In contrast, children under 12 yr of age did not re-learn faster on the next day after washout had occurred-they behaved as if they had never adapted their walking before. Re-learning could be improved in younger children when the adaptation time on day 1 was increased to allow more practice at the plateau of the adapted pattern, but never to adult-like levels. These results show that the ability to store a separate, adapted version of the same general motor pattern does not fully develop until adolescence, and furthermore, that the mechanisms underlying the retention and rapid re-learning of adapted motor patterns are distinct. © 2016 Musselman et al.; Published by Cold Spring Harbor Laboratory Press.
NASA Astrophysics Data System (ADS)
Mitran, T. L.; Melchert, O.; Hartmann, A. K.
2013-12-01
The main characteristics of biased greedy random walks (BGRWs) on two-dimensional lattices with real-valued quenched disorder on the lattice edges are studied. Here the disorder allows for negative edge weights. In previous studies, considering the negative-weight percolation (NWP) problem, this was shown to change the universality class of the existing, static percolation transition. In the presented study, four different types of BGRWs and an algorithm based on the ant colony optimization heuristic were considered. Regarding the BGRWs, the precise configurations of the lattice walks constructed during the numerical simulations were influenced by two parameters: a disorder parameter ρ that controls the amount of negative edge weights on the lattice and a bias strength B that governs the drift of the walkers along a certain lattice direction. The random walks are “greedy” in the sense that the local optimal choice of the walker is to preferentially traverse edges with a negative weight (associated with a net gain of “energy” for the walker). Here, the pivotal observable is the probability that, after termination, a lattice walk exhibits a total negative weight, which is here considered as percolating. The behavior of this observable as function of ρ for different bias strengths B is put under scrutiny. Upon tuning ρ, the probability to find such a feasible lattice walk increases from zero to 1. This is the key feature of the percolation transition in the NWP model. Here, we address the question how well the transition point ρc, resulting from numerically exact and “static” simulations in terms of the NWP model, can be resolved using simple dynamic algorithms that have only local information available, one of the basic questions in the physics of glassy systems.
Interrelations between random walks on diagrams (graphs) with and without cycles.
Hill, T L
1988-05-01
Three topics are discussed. A discrete-state, continuous-time random walk with one or more absorption states can be studied by a presumably new method: some mean properties, including the mean time to absorption, can be found from a modified diagram (graph) in which each absorption state is replaced by a one-way cycle back to the starting state. The second problem is a random walk on a diagram (graph) with cycles. The walk terminates on completion of the first cycle. This walk can be replaced by an equivalent walk on a modified diagram with absorption. This absorption diagram can in turn be replaced by another modified diagram with one-way cycles back to the starting state, just as in the first problem. The third problem, important in biophysics, relates to a long-time continuous walk on a diagram with cycles. This diagram can be transformed (in two steps) to a modified, more-detailed, diagram with one-way cycles only. Thus, the one-way cycle fluxes of the original diagram can be found from the state probabilities of the modified diagram. These probabilities can themselves be obtained by simple matrix inversion (the probabilities are determined by linear algebraic steady-state equations). Thus, a simple method is now available to find one-way cycle fluxes exactly (previously Monte Carlo simulation was required to find these fluxes, with attendant fluctuations, for diagrams of any complexity). An incidental benefit of the above procedure is that it provides a simple proof of the one-way cycle flux relation Jn +/- = IIn +/- sigma n/sigma, where n is any cycle of the original diagram.
Someya, Fujiko
2013-01-01
Abstract Objective: To compare the effect of body-weight-supported treadmill training (BWSTT) and full-body-weight treadmill training (FBWTT) on patients with knee osteoarthritis (OA). Methods: Design was Randomized controlled trial. Patients with knee osteoarthritis (n = 30; mean age, 76.0±7.5 y) were randomly assigned to BWSTT or FBWTT group. All patients performed 20 min walking exercise twice a week for 6 weeks under the supervision of the therapist. Main measures were 10-meter walking test (10MWT), functional reach test (FRT), timed get up and go test (TUG), one-leg standing test, 6-minute walking test (6MWT), the parameters set on the treadmill, MOS Short-Form 36-Item Health Survey (SF36), Japanese Knee Osteoarthritis Measure (JKOM). Results: Twenty-five patients (10 men, 15 women; mean age, 76.5 ± 8.0 y) completed the experiment. Exercise capacity, indicated by the heart rate, was similar in both groups. After 3 weeks of BWSTT, the patients performed significantly better in the 10-m and 6-min walking tests. This was not the case with FBWTT even after 6 weeks training. Pain levels assessed were significantly improved after 3 weeks of BWSTT and 6 weeks of FBWTT. There were no significant improvements in either group assessed by the FRT, one-leg standing time test, TUG, or SF -36 questionnaire. Conclusions: BWSTT enhanced exercise capacity in terms of walking speed and pain reduction after 3 weeks; however, there was no significant improvement in patients' functional abilities or quality of life. PMID:25792901
Zhu, Zhizhong; Cui, Liling; Yin, Miaomiao; Yu, Yang; Zhou, Xiaona; Wang, Hongtu; Yan, Hua
2016-06-01
To investigate the effects of hydrotherapy on walking ability and balance in patients with chronic stroke. Single-blind, randomized controlled pilot trial. Outpatient rehabilitation clinic at a tertiary neurological hospital in China. A total of 28 participants with impairments in walking and controlling balance more than six months post-stroke. After baseline evaluations, participants were randomly assigned to a land-based therapy (control group, n = 14) or hydrotherapy (study group, n = 14). Participants underwent individual sessions for four weeks, five days a week, for 45 minutes per session. After four weeks of rehabilitation, all participants were evaluated by a blinded assessor. Functional assessments included the Functional Reach Test, Berg Balance Scale, 2-minute walk test, and Timed Up and Go Test. After four weeks of treatment, the Berg Balance Scale, functional reach test, 2-minute walk test, and the Timed Up and Go Test scores had improved significantly in each group (P < 0.05). The mean improvement of the functional reach test and 2-minute walk test were significantly higher in the aquatic group than in the control group (P < 0.01). The differences in the mean values of the improvements in the Berg Balance Scale and the Timed Up and Go Test were not statistically significant. The results of this study suggest that a relatively short programme (four weeks) of hydrotherapy exercise resulted in a large improvement in a small group (n = 14) of individuals with relatively high balance and walking function following a stroke. © The Author(s) 2015.
Influence of Systematic Increases in Treadmill Walking Speed on Gait Kinematics After Stroke
Tyrell, Christine M.; Roos, Margaret A.; Rudolph, Katherine S.
2011-01-01
Background Fast treadmill training improves walking speed to a greater extent than training at a self-selected speed after stroke. It is unclear whether fast treadmill walking facilitates a more normal gait pattern after stroke, as has been suggested for treadmill training at self-selected speeds. Given the massed stepping practice that occurs during treadmill training, it is important for therapists to understand how the treadmill speed selected influences the gait pattern that is practiced on the treadmill. Objective The purpose of this study was to characterize the effect of systematic increases in treadmill speed on common gait deviations observed after stroke. Design A repeated-measures design was used. Methods Twenty patients with stroke walked on a treadmill at their self-selected walking speed, their fastest speed, and 2 speeds in between. Using a motion capture system, spatiotemporal gait parameters and kinematic gait compensations were measured. Results Significant improvements in paretic- and nonparetic-limb step length and in single- and double-limb support were found. Asymmetry of these measures improved only for step length. Significant improvements in paretic hip extension, trailing limb position, and knee flexion during swing also were found as speed increased. No increases in circumduction or hip hiking were found with increasing speed. Limitations Caution should be used when generalizing these results to survivors of a stroke with a self-selected walking speed of less than 0.4 m/s. This study did not address changes with speed during overground walking. Conclusions Faster treadmill walking facilitates a more normal walking pattern after stroke, without concomitant increases in common gait compensations, such as circumduction. The improvements in gait deviations were observed with small increases in walking speed. PMID:21252308
Is the Limit-Cycle-Attractor an (almost) invariable characteristic in human walking?
Broscheid, Kim-Charline; Dettmers, Christian; Vieten, Manfred
2018-05-16
Common methods of gait analyses measure step length/width, gait velocity and gait variability to name just a few. Those parameters tend to be changing with fitness and skill of the subjects. But, do stable subject characteristic parameters in walking exist? Does the Limit-Cycle-Attractor qualify as such a parameter?. The attractor method is a new approach focusing on the dynamics of human motion. It classifies the fundamental walking pattern by calculating the Limit-Cycle-Attractor and its variability from acceleration data of the feet. Our hypothesis is that the fundamental walking pattern in healthy controls and in people with Multiple Sclerosis (pwMS) is stable, but can be altered through acute interventions or rehabilitation. For this purpose, two investigations were conducted involving 113 subjects. The short-term stability was tested pre and post a 15 min passive/active MOTOmed (ergometer) session as well as up to 20 min afterwards. The long-term stability was tested over five weeks of rehabilitation once a week in pwMS. The main parameter of interest describes the velocity normalized average difference between two attractors (δM), which is an indicator for the change in movement pattern. The Friedman's two-way ANOVA by ranks did not reveal any significant difference in δM. However, the conventional walking tests (6 min.10 m) improved significantly (p < 0.05) during rehabilitation. Contrary to our original hypothesis, the fundamental walking pattern was highly stable against controlled motor-assisted movement initiation via MOTOmed and rehabilitation treatment. Movement characteristics appeared to be independent of the improved fitness as indicated by the enhanced walking speed and distance. The individual Limit-Cycle-Attractor is extremely robust and might indeed qualify as an (almost) invariable characteristic in human walking. This opens up the possibility to encode the individual walking characteristics. Conditions as Parkinson, Multiple Sclerosis etc., might display disease specific distinctions via the Limit-Cycle-Attractor. Copyright © 2018 Elsevier B.V. All rights reserved.
Invariant hip moment pattern while walking with a robotic hip exoskeleton.
Lewis, Cara L; Ferris, Daniel P
2011-03-15
Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits.
Luu, Trieu Phat; Low, Kin Huat; Qu, Xingda; Lim, Hup Boon; Hoon, Kay Hiang
2014-01-01
Therapist-assisted body weight supported (TABWS) gait rehabilitation was introduced two decades ago. The benefit of TABWS in functional recovery of walking in spinal cord injury and stroke patients has been demonstrated and reported. However, shortage of therapists, labor-intensiveness, and short duration of training are some limitations of this approach. To overcome these deficiencies, robotic-assisted gait rehabilitation systems have been suggested. These systems have gained attentions from researchers and clinical practitioner in recent years. To achieve the same objective, an over-ground gait rehabilitation system, NaTUre-gaits, was developed at the Nanyang Technological University. The design was based on a clinical approach to provide four main features, which are pelvic motion, body weight support, over-ground walking experience, and lower limb assistance. These features can be achieved by three main modules of NaTUre-gaits: 1) pelvic assistance mechanism, mobile platform, and robotic orthosis. Predefined gait patterns are required for a robotic assisted system to follow. In this paper, the gait pattern planning for NaTUre-gaits was accomplished by an individual-specific gait pattern prediction model. The model generates gait patterns that resemble natural gait patterns of the targeted subjects. The features of NaTUre-gaits have been demonstrated by walking trials with several subjects. The trials have been evaluated by therapists and doctors. The results show that 10-m walking trial with a reduction in manpower. The task-specific repetitive training approach and natural walking gait patterns were also successfully achieved.
Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits
Low, Kin Huat; Qu, Xingda; Lim, Hup Boon; Hoon, Kay Hiang
2014-01-01
Therapist-assisted body weight supported (TABWS) gait rehabilitation was introduced two decades ago. The benefit of TABWS in functional recovery of walking in spinal cord injury and stroke patients has been demonstrated and reported. However, shortage of therapists, labor-intensiveness, and short duration of training are some limitations of this approach. To overcome these deficiencies, robotic-assisted gait rehabilitation systems have been suggested. These systems have gained attentions from researchers and clinical practitioner in recent years. To achieve the same objective, an over-ground gait rehabilitation system, NaTUre-gaits, was developed at the Nanyang Technological University. The design was based on a clinical approach to provide four main features, which are pelvic motion, body weight support, over-ground walking experience, and lower limb assistance. These features can be achieved by three main modules of NaTUre-gaits: 1) pelvic assistance mechanism, mobile platform, and robotic orthosis. Predefined gait patterns are required for a robotic assisted system to follow. In this paper, the gait pattern planning for NaTUre-gaits was accomplished by an individual-specific gait pattern prediction model. The model generates gait patterns that resemble natural gait patterns of the targeted subjects. The features of NaTUre-gaits have been demonstrated by walking trials with several subjects. The trials have been evaluated by therapists and doctors. The results show that 10-m walking trial with a reduction in manpower. The task-specific repetitive training approach and natural walking gait patterns were also successfully achieved. PMID:27170876
Open quantum random walks: Bistability on pure states and ballistically induced diffusion
NASA Astrophysics Data System (ADS)
Bauer, Michel; Bernard, Denis; Tilloy, Antoine
2013-12-01
Open quantum random walks (OQRWs) deal with quantum random motions on a line for systems with internal and orbital degrees of freedom. The internal system behaves as a quantum random gyroscope coding for the direction of the orbital moves. We reveal the existence of a transition, depending on OQRW moduli, in the internal system behaviors from simple oscillations to random flips between two unstable pure states. This induces a transition in the orbital motions from the usual diffusion to ballistically induced diffusion with a large mean free path and large effective diffusion constant at large times. We also show that mixed states of the internal system are converted into random pure states during the process. We touch upon possible experimental realizations.
Reproductive pair correlations and the clustering of organisms.
Young, W R; Roberts, A J; Stuhne, G
2001-07-19
Clustering of organisms can be a consequence of social behaviour, or of the response of individuals to chemical and physical cues. Environmental variability can also cause clustering: for example, marine turbulence transports plankton and produces chlorophyll concentration patterns in the upper ocean. Even in a homogeneous environment, nonlinear interactions between species can result in spontaneous pattern formation. Here we show that a population of independent, random-walking organisms ('brownian bugs'), reproducing by binary division and dying at constant rates, spontaneously aggregates. Using an individual-based model, we show that clusters form out of spatially homogeneous initial conditions without environmental variability, predator-prey interactions, kinesis or taxis. The clustering mechanism is reproductively driven-birth must always be adjacent to a living organism. This clustering can overwhelm diffusion and create non-poissonian correlations between pairs (parent and offspring) or organisms, leading to the emergence of patterns.
Movement coordination patterns between the foot joints during walking.
Arnold, John B; Caravaggi, Paolo; Fraysse, François; Thewlis, Dominic; Leardini, Alberto
2017-01-01
In 3D gait analysis, kinematics of the foot joints are usually reported via isolated time histories of joint rotations and no information is provided on the relationship between rotations at different joints. The aim of this study was to identify movement coordination patterns in the foot during walking by expanding an existing vector coding technique according to an established multi-segment foot and ankle model. A graphical representation is also described to summarise the coordination patterns of joint rotations across multiple patients. Three-dimensional multi-segment foot kinematics were recorded in 13 adults during walking. A modified vector coding technique was used to identify coordination patterns between foot joints involving calcaneus, midfoot, metatarsus and hallux segments. According to the type and direction of joints rotations, these were classified as in-phase (same direction), anti-phase (opposite directions), proximal or distal joint dominant. In early stance, 51 to 75% of walking trials showed proximal-phase coordination between foot joints comprising the calcaneus, midfoot and metatarsus. In-phase coordination was more prominent in late stance, reflecting synergy in the simultaneous inversion occurring at multiple foot joints. Conversely, a distal-phase coordination pattern was identified for sagittal plane motion of the ankle relative to the midtarsal joint, highlighting the critical role of arch shortening to locomotor function in push-off. This study has identified coordination patterns between movement of the calcaneus, midfoot, metatarsus and hallux by expanding an existing vector cording technique for assessing and classifying coordination patterns of foot joints rotations during walking. This approach provides a different perspective in the analysis of multi-segment foot kinematics, and may be used for the objective quantification of the alterations in foot joint coordination patterns due to lower limb pathologies or following injuries.
Wilson, Dawn K; Trumpeter, Nevelyn N; St George, Sara M; Coulon, Sandra M; Griffin, Sarah; Lee Van Horn, M; Lawman, Hannah G; Wandersman, Abe; Egan, Brent; Forthofer, Melinda; Goodlett, Benjamin D; Kitzman-Ulrich, Heather; Gadson, Barney
2010-11-01
Ethnic minorities and lower-income adults have among the highest rates of obesity and lowest levels of regular physical activity (PA). The Positive Action for Today's Health (PATH) trial compares three communities that are randomly assigned to different levels of an environmental intervention to improve safety and access for walking in low income communities. Three communities matched on census tract information (crime, PA, ethnic minorities, and income) were randomized to receive either: an intervention that combines a police-patrolled-walking program with social marketing strategies to promote PA, a police-patrolled-walking only intervention, or no-walking intervention (general health education only). Measures include PA (7-day accelerometer estimates), body composition, blood pressure, psychosocial measures, and perceptions of safety and access for PA at baseline, 6, 12, 18, and 24 months. The police-patrolled walking plus social marketing intervention targets increasing safety (training community leaders as walking captains, hiring off-duty police officers to patrol the walking trail, and containing stray dogs), increasing access for PA (marking a walking route), and utilizes a social marketing campaign that targets psychosocial and environmental mediators for increasing PA. MAIN HYPOTHESES/OUTCOMES: It is hypothesized that the police-patrolled walking plus social marketing intervention will result in greater increases in moderate-to-vigorous PA as compared to the police-patrolled-walking only or the general health intervention after 12 months and that this effect will be maintained at 18 and 24 months. Implications of this community-based trial are discussed. Copyright © 2010. Published by Elsevier Inc.
Wilson, Dawn K.; Trumpeter, Nevelyn N.; St. George, Sara M.; Coulon, Sandra M.; Griffin, Sarah; Van Horn, M. Lee; Lawman, Hannah G.; Wandersman, Abe; Egan, Brent; Forthofer, Melinda; Goodlett, Benjamin D.; Kitzman-Ulrich, Heather; Gadson, Barney
2012-01-01
Background Ethnic minorities and lower-income adults have among the highest rates of obesity and lowest levels of regular physical activity (PA). The Positive Action for Today's Health (PATH) trial compares three communities that are randomly assigned to different levels of an environmental intervention to improve safety and access for walking in low income communities. Design and setting Three communities matched on census tract information (crime, PA, ethnic minorities, and income) were randomized to receive either: an intervention that combines a police-patrolled-walking program with social marketing strategies to promote PA, a police-patrolled-walking only intervention, or no-walking intervention (general health education only). Measures include PA (7-day accelerometer estimates), body composition, blood pressure, psychosocial measures, and perceptions of safety and access for PA at baseline, 6, 12, 18, and 24 months. Intervention The police-patrolled walking plus social marketing intervention targets increasing safety (training community leaders as walking captains, hiring off-duty police officers to patrol the walking trail, and containing stray dogs), increasing access for PA (marking a walking route), and utilizes a social marketing campaign that targets psychosocial and environmental mediators for increasing PA. Main hypotheses/outcomes It is hypothesized that the police-patrolled walking plus social marketing intervention will result in greater increases in moderate-to-vigorous PA as compared to the police-patrolled-walking only or the general health intervention after 12 months and that this effect will be maintained at 18 and 24 months. Conclusions Implications of this community-based trial are discussed. PMID:20801233
Extreme events and event size fluctuations in biased random walks on networks.
Kishore, Vimal; Santhanam, M S; Amritkar, R E
2012-05-01
Random walk on discrete lattice models is important to understand various types of transport processes. The extreme events, defined as exceedences of the flux of walkers above a prescribed threshold, have been studied recently in the context of complex networks. This was motivated by the occurrence of rare events such as traffic jams, floods, and power blackouts which take place on networks. In this work, we study extreme events in a generalized random walk model in which the walk is preferentially biased by the network topology. The walkers preferentially choose to hop toward the hubs or small degree nodes. In this setting, we show that extremely large fluctuations in event sizes are possible on small degree nodes when the walkers are biased toward the hubs. In particular, we obtain the distribution of event sizes on the network. Further, the probability for the occurrence of extreme events on any node in the network depends on its "generalized strength," a measure of the ability of a node to attract walkers. The generalized strength is a function of the degree of the node and that of its nearest neighbors. We obtain analytical and simulation results for the probability of occurrence of extreme events on the nodes of a network using a generalized random walk model. The result reveals that the nodes with a larger value of generalized strength, on average, display lower probability for the occurrence of extreme events compared to the nodes with lower values of generalized strength.
Bi-dimensional null model analysis of presence-absence binary matrices.
Strona, Giovanni; Ulrich, Werner; Gotelli, Nicholas J
2018-01-01
Comparing the structure of presence/absence (i.e., binary) matrices with those of randomized counterparts is a common practice in ecology. However, differences in the randomization procedures (null models) can affect the results of the comparisons, leading matrix structural patterns to appear either "random" or not. Subjectivity in the choice of one particular null model over another makes it often advisable to compare the results obtained using several different approaches. Yet, available algorithms to randomize binary matrices differ substantially in respect to the constraints they impose on the discrepancy between observed and randomized row and column marginal totals, which complicates the interpretation of contrasting patterns. This calls for new strategies both to explore intermediate scenarios of restrictiveness in-between extreme constraint assumptions, and to properly synthesize the resulting information. Here we introduce a new modeling framework based on a flexible matrix randomization algorithm (named the "Tuning Peg" algorithm) that addresses both issues. The algorithm consists of a modified swap procedure in which the discrepancy between the row and column marginal totals of the target matrix and those of its randomized counterpart can be "tuned" in a continuous way by two parameters (controlling, respectively, row and column discrepancy). We show how combining the Tuning Peg with a wise random walk procedure makes it possible to explore the complete null space embraced by existing algorithms. This exploration allows researchers to visualize matrix structural patterns in an innovative bi-dimensional landscape of significance/effect size. We demonstrate the rational and potential of our approach with a set of simulated and real matrices, showing how the simultaneous investigation of a comprehensive and continuous portion of the null space can be extremely informative, and possibly key to resolving longstanding debates in the analysis of ecological matrices. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.
Neogi, Tuhina; King, Wendy C.; LaValley, Michael P.; Kritchevsky, Stephen B.; Nevitt, Michael C.; Harris, Tamara B.; Ferrucci, Luigi; Simonsick, Eleanor M.; Satterfield, Suzanne; Strotmeyer, Elsa S.; Zhang, Yuqing
2014-01-01
Background The ability to walk for short and prolonged periods of time is often measured with separate walking tests. It is unclear whether decline in the 2-minute walk coincides with decline in a shorter 20-m walk among older adults. Objective The aim of this study was to describe patterns of change in the 20-m walk and 2-minute walk over 8 years among a large cohort of older adults. Should change be similar between tests of walking ability, separate retesting of prolonged walking may need to be reconsidered. Design A longitudinal, observational cohort study was conducted. Methods Data were from 1,893 older adults who were well-functioning (≥70 years of age). The 20-m walk and 2-minute walk were repeatedly measured over 8 years to measure change during short and prolonged periods of walking, respectively. Change was examined using a dual group-based trajectory model (dual model), and agreement between walking trajectories was quantified with a weighted kappa statistic. Results Three trajectory groups for the 20-m walk and 2-minute walk were identified. More than 86% of the participants were in similar trajectory groups for both tests from the dual model. There was high chance-corrected agreement (kappa=.84; 95% confidence interval=.82, .86) between the 20-m walk and 2-minute walk trajectory groups. Limitations One-third of the original Health, Aging and Body Composition (Health ABC) study cohort was excluded from analysis due to missing clinic visits, followed by being excluded for health reasons for performing the 2-minute walk, limiting generalizability to healthy older adults. Conclusions Patterns of change in the 2-minute walk are similar to those in the 20-m walk. Thus, separate retesting of the 2-minute walk may need to be reconsidered to gauge change in prolonged walking. PMID:24786943
Hilderley, Alicia J; Fehlings, Darcy; Lee, Gloria W; Wright, F Virginia
2016-01-01
Enhancement of functional ambulation is a key goal of rehabilitation for children with cerebral palsy (CP) who experience gross motor impairment. Physiotherapy (PT) approaches often involve overground and treadmill-based gait training to promote motor learning, typically as free walking or with body-weight support. Robotic-assisted gait training (RAGT), using a device such as the Lokomat ® Pro, may permit longer training duration, faster and more variable gait speeds, and support walking pattern guidance more than overground/treadmill training to further capitalize on motor learning principles. Single group pre-/post-test studies have demonstrated an association between RAGT and moderate to large improvements in gross motor skills, gait velocity and endurance. A single published randomized controlled trial (RCT) comparing RAGT to a PT-only intervention showed no difference in gait kinematics. However, gross motor function and walking endurance were not evaluated and conclusions were limited by a large PT group drop-out rate. In this two-group cross-over RCT, children are randomly allocated to the RAGT or PT arm (each with twice weekly sessions for eight weeks), with cross-over to the other intervention arm following a six-week break. Both interventions are grounded in motor learning principles with incorporation of individualized mobility-based goals. Sessions are fully operationalized through manualized, menu-based protocols and post-session documentation to enhance internal and external validity. Assessments occur pre/post each intervention arm (four time points total) by an independent assessor. The co-primary outcomes are gross motor functional ability (Gross Motor Function Measure (GMFM-66) and 6-minute walk test), with secondary outcome measures assessing: (a) individualized goals; (b) gait variables and daily walking amounts; and (c) functional abilities, participation and quality of life. Investigators and statisticians are blinded to study group allocation in the analyses, and assessors are blinded to treatment group. The primary analysis will be the pre- to post-test differences (change scores) of the GMFM-66 and 6MWT between RAGT and PT groups. This study is the first RCT comparing RAGT to an active gait-related PT intervention in paediatric CP that addresses gait-related gross motor, participation and individualized outcomes, and as such, is expected to provide comprehensive information as to the potential role of RAGT in clinical practice. Trial registration ClinicalTrials.gov NCT02196298.
NASA Astrophysics Data System (ADS)
Taki, Majid; San Miguel, Maxi; Santagiustina, Marco
2000-02-01
Degenerate optical parametric oscillators can exhibit both uniformly translating fronts and nonuniformly translating envelope fronts under the walk-off effect. The nonlinear dynamics near threshold is shown to be described by a real convective Swift-Hohenberg equation, which provides the main characteristics of the walk-off effect on pattern selection. The predictions of the selected wave vector and the absolute instability threshold are in very good quantitative agreement with numerical solutions found from the equations describing the optical parametric oscillator.
Springer, Shmuel; Friedman, Itamar; Ohry, Avi
2018-01-01
Background Age-related changes in coordinated movement pattern of the thorax and pelvis may be one of the factors contributing to fall risk. This report describes the feasibility of using a new thoracopelvic assisted movement device to improve gait and balance in an elderly population with increased risk for falls. Methods In this case series, 19 older adults were recruited from an assisted living facility. All had gait difficulties (gait speed <1.0 m/s) and history of falls. Participants received 12 training sessions with the thoracopelvic assisted movement device. Functional performance was measured before, during (after 6 sessions), and after the 12 sessions. Outcomes measures were Timed Up and Go, Functional Reach Test, and the 10-meter Walk Test. Changes in outcomes were calculated for each participant in the context of minimal detectable change (MDC) values. Results More than 25% of participants showed changes >MDC in their clinical measures after 6 treatment sessions, and more than half improved >MDC after 12 sessions. Six subjects (32%) improved their Timed Up and Go time by >4 seconds after 6 sessions, and 10 (53%) after 12 sessions. After the intervention, 4 subjects (21%) improved their 10-meter Walk Test velocity from limited community ambulation (0.4–0.8 m/s) to functional community ambulation (>0.8 m/s). Conclusion Thoracopelvic assisted movement training that mimics normal walking pattern may have clinical implications, by improving skills that enhance balance and gait function. Additional randomized, controlled studies are required to examine the effects of this intervention on larger cohorts with a variety of subjects.
Are fixations in static natural scenes a useful predictor of attention in the real world?
Foulsham, Tom; Kingstone, Alan
2017-06-01
Research investigating scene perception normally involves laboratory experiments using static images. Much has been learned about how observers look at pictures of the real world and the attentional mechanisms underlying this behaviour. However, the use of static, isolated pictures as a proxy for studying everyday attention in real environments has led to the criticism that such experiments are artificial. We report a new study that tests the extent to which the real world can be reduced to simpler laboratory stimuli. We recorded the gaze of participants walking on a university campus with a mobile eye tracker, and then showed static frames from this walk to new participants, in either a random or sequential order. The aim was to compare the gaze of participants walking in the real environment with fixations on pictures of the same scene. The data show that picture order affects interobserver fixation consistency and changes looking patterns. Critically, while fixations on the static images overlapped significantly with the actual real-world eye movements, they did so no more than a model that assumed a general bias to the centre. Remarkably, a model that simply takes into account where the eyes are normally positioned in the head-independent of what is actually in the scene-does far better than any other model. These data reveal that viewing patterns to static scenes are a relatively poor proxy for predicting real world eye movement behaviour, while raising intriguing possibilities for how to best measure attention in everyday life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Panfilov, V E; Gurfinkel', V S
2009-01-01
Eight test-subjects participated in 120 treadmill tests (drive power of 10 and 85 kW) aimed to compare the walking patterns at 1 and reduced gravity. The temporal pattern of steps was noted to change significantly on the low-power treadmill. On the strength of convergence of calculated and experimental data the suggestion has been made that the leg transfer movement follows the pattern of spontaneous oscillations.
Randomized Trial of Intelligent Sensor System for Early Illness Alerts in Senior Housing.
Rantz, Marilyn; Phillips, Lorraine J; Galambos, Colleen; Lane, Kari; Alexander, Gregory L; Despins, Laurel; Koopman, Richelle J; Skubic, Marjorie; Hicks, Lanis; Miller, Steven; Craver, Andy; Harris, Bradford H; Deroche, Chelsea B
2017-10-01
Measure the clinical effectiveness and cost effectiveness of using sensor data from an environmentally embedded sensor system for early illness recognition. This sensor system has demonstrated in pilot studies to detect changes in function and in chronic diseases or acute illnesses on average 10 days to 2 weeks before usual assessment methods or self-reports of illness. Prospective intervention study in 13 assisted living (AL) communities of 171 residents randomly assigned to intervention (n=86) or comparison group (n=85) receiving usual care. Intervention participants lived with the sensor system an average of one year. Continuous data collected 24 hours/7 days a week from motion sensors to measure overall activity, an under mattress bed sensor to capture respiration, pulse, and restlessness as people sleep, and a gait sensor that continuously measures gait speed, stride length and time, and automatically assess for increasing fall risk as the person walks around the apartment. Continuously running computer algorithms are applied to the sensor data and send health alerts to staff when there are changes in sensor data patterns. The randomized comparison group functionally declined more rapidly than the intervention group. Walking speed and several measures from GaitRite, velocity, step length left and right, stride length left and right, and the fall risk measure of functional ambulation profile (FAP) all had clinically significant changes. The walking speed increase (worse) and velocity decline (worse) of 0.073 m/s for comparison group exceeded 0.05 m/s, a value considered to be a minimum clinically important difference. No differences were measured in health care costs. These findings demonstrate that sensor data with health alerts and fall alerts sent to AL nursing staff can be an effective strategy to detect and intervene in early signs of illness or functional decline. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Record statistics for biased random walks, with an application to financial data
NASA Astrophysics Data System (ADS)
Wergen, Gregor; Bogner, Miro; Krug, Joachim
2011-05-01
We consider the occurrence of record-breaking events in random walks with asymmetric jump distributions. The statistics of records in symmetric random walks was previously analyzed by Majumdar and Ziff [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.050601 101, 050601 (2008)] and is well understood. Unlike the case of symmetric jump distributions, in the asymmetric case the statistics of records depends on the choice of the jump distribution. We compute the record rate Pn(c), defined as the probability for the nth value to be larger than all previous values, for a Gaussian jump distribution with standard deviation σ that is shifted by a constant drift c. For small drift, in the sense of c/σ≪n-1/2, the correction to Pn(c) grows proportional to arctan(n) and saturates at the value (c)/(2σ). For large n the record rate approaches a constant, which is approximately given by 1-(σ/2πc)exp(-c2/2σ2) for c/σ≫1. These asymptotic results carry over to other continuous jump distributions with finite variance. As an application, we compare our analytical results to the record statistics of 366 daily stock prices from the Standard & Poor's 500 index. The biased random walk accounts quantitatively for the increase in the number of upper records due to the overall trend in the stock prices, and after detrending the number of upper records is in good agreement with the symmetric random walk. However the number of lower records in the detrended data is significantly reduced by a mechanism that remains to be identified.
Nikamp, Corien D M; van der Palen, Job; Hermens, Hermie J; Rietman, Johan S; Buurke, Jaap H
2018-06-01
Compensatory pelvis, hip- and knee movements are reported after stroke to overcome insufficient foot-clearance. Ankle-foot orthoses (AFOs) are often used to improve foot-clearance, but the optimal timing of AFO-provision post-stroke is unknown. Early AFO-provision to prevent foot-drop might decrease the development of compensatory movements, but it is unknown whether timing of AFO-provision affects post-stroke kinematics. 1) To compare the effect of AFO-provision at two different points in time (early versus delayed) on frontal pelvis and hip, and sagittal hip and knee kinematics in patients with sub-acute stroke. Effects were assessed after 26 weeks; 2) To study whether possible changes in kinematics or walking speed during the 26-weeks follow-up period differed between both groups. An explorative randomized controlled trial was performed, including unilateral hemiparetic patients maximal six weeks post-stroke with indication for AFO-use. Subjects were randomly assigned to AFO-provision early (at inclusion) or delayed (eight weeks later). 3D gait-analysis with and without AFO was performed in randomized order. Measurements were performed in study-week 1, 9, 17 and 26. Twenty-six subjects (15 early, 11 delayed) were analyzed. After 26 weeks, no differences in kinematics were found between both groups for any of the joint angles, both for the without and with AFO-condition. Changes in kinematics during the 26-weeks follow-up period did not differ between both groups for any of the joint angles during walking without AFO. Significant differences in changes in walking speed during the 26-weeks follow-up were found (p = 0.034), corresponding to the first eight weeks after AFO-provision. Results indicate that early or delayed AFO-use post-stroke does not influence pelvis, hip and knee movements after 26 weeks, despite that AFO-use properly corrected drop-foot. AFOs should be provided to improve drop-foot post-stroke, but not with the intention to influence development of compensatory patterns around pelvis and hip. Copyright © 2018 Elsevier B.V. All rights reserved.
Walking and the Preservation of Cognitive Function in Older Populations
ERIC Educational Resources Information Center
Prohaska, Thomas R.; Eisenstein, Amy R.; Satariano, William A.; Hunter, Rebecca; Bayles, Constance M.; Kurtovich, Elaine; Kealey, Melissa; Ivey, Susan L.
2009-01-01
Purpose: This cross-sectional study takes a unique look at the association between patterns of walking and cognitive functioning by examining whether older adults with mild cognitive impairment differ in terms of the community settings where they walk and the frequency, intensity, or duration of walking. Design and Methods: The sample was based on…
Random and Directed Walk-Based Top-k Queries in Wireless Sensor Networks
Fu, Jun-Song; Liu, Yun
2015-01-01
In wireless sensor networks, filter-based top-k query approaches are the state-of-the-art solutions and have been extensively researched in the literature, however, they are very sensitive to the network parameters, including the size of the network, dynamics of the sensors’ readings and declines in the overall range of all the readings. In this work, a random walk-based top-k query approach called RWTQ and a directed walk-based top-k query approach called DWTQ are proposed. At the beginning of a top-k query, one or several tokens are sent to the specific node(s) in the network by the base station. Then, each token walks in the network independently to record and process the readings in a random or directed way. A strategy of choosing the “right” way in DWTQ is carefully designed for the token(s) to arrive at the high-value regions as soon as possible. When designing the walking strategy for DWTQ, the spatial correlations of the readings are also considered. Theoretical analysis and simulation results indicate that RWTQ and DWTQ both are very robust against these parameters discussed previously. In addition, DWTQ outperforms TAG, FILA and EXTOK in transmission cost, energy consumption and network lifetime. PMID:26016914
Quantum walks on the chimera graph and its variants
NASA Astrophysics Data System (ADS)
Sanders, Barry; Sun, Xiangxiang; Xu, Shu; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum
We study quantum walks on the chimera graph, which is an important graph for performing quantum annealing, and we explore the nature of quantum walks on variants of the chimera graph. Features of these quantum walks provide profound insights into the nature of the chimera graph, including effects of greater and lesser connectivity, strong differences between quantum and classical random walks, isotropic spreading and localization only in the quantum case, and random graphs. We analyze finite-size effects due to limited width and length of the graph, and we explore the effect of different boundary conditions such as periodic and reflecting. Effects are explained via spectral analysis and the properties of stationary states, and spectral analysis enables us to characterize asymptotic behavior of the quantum walker in the long-time limit. Supported by China 1000 Talent Plan, National Science Foundation of China, Hefei National Laboratory for Physical Sciences at Microscale Fellowship, and the Chinese Academy of Sciences President's International Fellowship Initiative.
Random walk, diffusion and mixing in simulations of scalar transport in fluid flows
NASA Astrophysics Data System (ADS)
Klimenko, A. Y.
2008-12-01
Physical similarity and mathematical equivalence of continuous diffusion and particle random walk form one of the cornerstones of modern physics and the theory of stochastic processes. In many applied models used in simulation of turbulent transport and turbulent combustion, mixing between particles is used to reflect the influence of the continuous diffusion terms in the transport equations. We show that the continuous scalar transport and diffusion can be accurately specified by means of mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. This gives an alternative formulation for the stochastic process which is selected to represent the continuous diffusion. This paper focuses on statistical errors and deals with relatively simple cases, where one-particle distributions are sufficient for a complete description of the problem.
Master stability functions reveal diffusion-driven pattern formation in networks
NASA Astrophysics Data System (ADS)
Brechtel, Andreas; Gramlich, Philipp; Ritterskamp, Daniel; Drossel, Barbara; Gross, Thilo
2018-03-01
We study diffusion-driven pattern formation in networks of networks, a class of multilayer systems, where different layers have the same topology, but different internal dynamics. Agents are assumed to disperse within a layer by undergoing random walks, while they can be created or destroyed by reactions between or within a layer. We show that the stability of homogeneous steady states can be analyzed with a master stability function approach that reveals a deep analogy between pattern formation in networks and pattern formation in continuous space. For illustration, we consider a generalized model of ecological meta-food webs. This fairly complex model describes the dispersal of many different species across a region consisting of a network of individual habitats while subject to realistic, nonlinear predator-prey interactions. In this example, the method reveals the intricate dependence of the dynamics on the spatial structure. The ability of the proposed approach to deal with this fairly complex system highlights it as a promising tool for ecology and other applications.
Morris, Meg E; Iansek, Robert; Kirkwood, Beth
2009-01-15
This randomized controlled clinical trial was conducted to compare the effects of movement rehabilitation strategies and exercise therapy in hospitalized patients with idiopathic Parkinson's disease. Participants were randomly assigned to a group that received movement strategy training or musculoskeletal exercises during 2 consecutive weeks of hospitalization. The primary outcome was disability as measured by the Unified Parkinson's Disease Rating Scale, UPDRS (motor and ADL components). Secondary outcomes were balance, walking speed, endurance, and quality of life. Assessments were carried out by blinded testers at baseline, after the 2 weeks of treatment and 3 months after discharge. The movement strategy group showed improvements on several outcome measures from admission to discharge, including the UPDRS, 10 m walk, 2 minute walk, balance, and PDQ39. However, from discharge to follow up there was significant regression in performance on the 2 minute walk and PDQ39. For the exercise group, quality of life improved significantly during inpatient hospitalization and this was retained at follow-up. Inpatient rehabilitation produces short term reductions in disability and improvements in quality of life in people with Parkinson's disease.
Stochastic resetting in backtrack recovery by RNA polymerases
NASA Astrophysics Data System (ADS)
Roldán, Édgar; Lisica, Ana; Sánchez-Taltavull, Daniel; Grill, Stephan W.
2016-06-01
Transcription is a key process in gene expression, in which RNA polymerases produce a complementary RNA copy from a DNA template. RNA polymerization is frequently interrupted by backtracking, a process in which polymerases perform a random walk along the DNA template. Recovery of polymerases from the transcriptionally inactive backtracked state is determined by a kinetic competition between one-dimensional diffusion and RNA cleavage. Here we describe backtrack recovery as a continuous-time random walk, where the time for a polymerase to recover from a backtrack of a given depth is described as a first-passage time of a random walker to reach an absorbing state. We represent RNA cleavage as a stochastic resetting process and derive exact expressions for the recovery time distributions and mean recovery times from a given initial backtrack depth for both continuous and discrete-lattice descriptions of the random walk. We show that recovery time statistics do not depend on the discreteness of the DNA lattice when the rate of one-dimensional diffusion is large compared to the rate of cleavage.
The Locomotion of Mouse Fibroblasts in Tissue Culture
Gail, Mitchell H.; Boone, Charles W.
1970-01-01
Time-lapse cinematography was used to investigate the motion of mouse fibroblasts in tissue culture. Observations over successive short time intervals revealed a tendency for the cells to persist in their direction of motion from one 2.5 hr time interval to the next. Over 5.0-hr time intervals, however, the direction of motion appeared random. This fact suggested that D, the diffusion constant of a random walk model, might serve to characterize cellular motility if suitably long observation times were used. We therefore investigated the effect of “persistence” on the pure random walk model, and we found theoretically and confirmed experimentally that the motility of a persisting cell could indeed be characterized by an augmented diffusion constant, D*. A method for determining confidence limits on D* was also developed. Thus a random walk model, modified to comprehend the persistence effect, was found to describe the motion of fibroblasts in tissue culture and to provide a numerical measure of cellular motility. PMID:5531614
2012-01-01
Background Socio-ecological models suggest that both individual and neighborhood characteristics contribute to facilitating health-enhancing behaviors such as physical activity. Few European studies have explored relationships between local built environmental characteristics, recreational walking and cycling and weight status in adults. The aim of this study was to identify built environmental patterns in a French urban context and to assess associations with recreational walking and cycling behaviors as performed by middle-aged adult residents. Methods We used a two-step procedure based on cluster analysis to identify built environmental patterns in the region surrounding Paris, France, using measures derived from Geographic Information Systems databases on green spaces, proximity facilities (destinations) and cycle paths. Individual data were obtained from participants in the SU.VI.MAX cohort; 1,309 participants residing in the Ile-de-France in 2007 were included in this analysis. Associations between built environment patterns, leisure walking/cycling data (h/week) and measured weight status were assessed using multinomial logistic regression with adjustment for individual and neighborhood characteristics. Results Based on accessibility to green spaces, proximity facilities and availability of cycle paths, seven built environmental patterns were identified. The geographic distribution of built environmental patterns in the Ile-de-France showed that a pattern characterized by poor spatial accessibility to green spaces and proximity facilities and an absence of cycle paths was found only in neighborhoods in the outer suburbs, whereas patterns characterized by better spatial accessibility to green spaces, proximity facilities and cycle paths were more evenly distributed across the region. Compared to the reference pattern (poor accessibility to green areas and facilities, absence of cycle paths), subjects residing in neighborhoods characterized by high accessibility to green areas and local facilities and by a high density of cycle paths were more likely to walk/cycle, after adjustment for individual and neighborhood sociodemographic characteristics (OR = 2.5 95%CI 1.4-4.6). Body mass index did not differ across patterns. Conclusions Built environmental patterns were associated with walking and cycling among French adults. These analyses may be useful in determining urban and public health policies aimed at promoting a healthy lifestyle. PMID:22620266
A Perron-Frobenius type of theorem for quantum operations
NASA Astrophysics Data System (ADS)
Lagro, Matthew
Quantum random walks are a generalization of classical Markovian random walks to a quantum mechanical or quantum computing setting. Quantum walks have promising applications but are complicated by quantum decoherence. We prove that the long-time limiting behavior of the class of quantum operations which are the convex combination of norm one operators is governed by the eigenvectors with norm one eigenvalues which are shared by the operators. This class includes all operations formed by a coherent operation with positive probability of orthogonal measurement at each step. We also prove that any operation that has range contained in a low enough dimension subspace of the space of density operators has limiting behavior isomorphic to an associated Markov chain. A particular class of such operations are coherent operations followed by an orthogonal measurement. Applications of the convergence theorems to quantum walks are given.
ERIC Educational Resources Information Center
Scholtes, Vanessa A.; Becher, Jules G.; Janssen-Potten, Yvonne J.; Dekkers, Hurnet; Smallenbroek, Linda; Dallmeijer, Annet J.
2012-01-01
The objective of the study was to evaluate the effectiveness of functional progressive resistance exercise (PRE) training on walking ability in children with cerebral palsy (CP). Fifty-one ambulant children with spastic CP (mean age 10 years 5 months, 29 boys) were randomized to an intervention (n=26) or control group (n=25, receiving usual care).…
Some functional limit theorems for compound Cox processes
NASA Astrophysics Data System (ADS)
Korolev, Victor Yu.; Chertok, A. V.; Korchagin, A. Yu.; Kossova, E. V.; Zeifman, Alexander I.
2016-06-01
An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.
Continuous Time Random Walks with memory and financial distributions
NASA Astrophysics Data System (ADS)
Montero, Miquel; Masoliver, Jaume
2017-11-01
We study financial distributions from the perspective of Continuous Time Random Walks with memory. We review some of our previous developments and apply them to financial problems. We also present some new models with memory that can be useful in characterizing tendency effects which are inherent in most markets. We also briefly study the effect on return distributions of fractional behaviors in the distribution of pausing times between successive transactions.
Ages of Records in Random Walks
NASA Astrophysics Data System (ADS)
Szabó, Réka; Vető, Bálint
2016-12-01
We consider random walks with continuous and symmetric step distributions. We prove universal asymptotics for the average proportion of the age of the kth longest lasting record for k=1,2,ldots and for the probability that the record of the kth longest age is broken at step n. Due to the relation to the Chinese restaurant process, the ranked sequence of proportions of ages converges to the Poisson-Dirichlet distribution.
Some functional limit theorems for compound Cox processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, Victor Yu.; Institute of Informatics Problems FRC CSC RAS; Chertok, A. V.
2016-06-08
An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.
1976-05-01
random walk photon scattering, geometric optics refraction at a thin phase screen, plane wave scattering from a thin screen in the Fraunhofer limit and...significant cases. In the geometric optics regime the distribution of density of allowable multipath rays is gsslanly distributed and the power...3.1 Random Walk Approach to Scattering 10 3.2 Phase Screen Approximation to Strong Scattering 13 3.3 Ray Optics and Stationary Phase Analysis 21 3,3,1
Empirical scaling of the length of the longest increasing subsequences of random walks
NASA Astrophysics Data System (ADS)
Mendonça, J. Ricardo G.
2017-02-01
We provide Monte Carlo estimates of the scaling of the length L n of the longest increasing subsequences of n-step random walks for several different distributions of step lengths, short and heavy-tailed. Our simulations indicate that, barring possible logarithmic corrections, {{L}n}∼ {{n}θ} with the leading scaling exponent 0.60≲ θ ≲ 0.69 for the heavy-tailed distributions of step lengths examined, with values increasing as the distribution becomes more heavy-tailed, and θ ≃ 0.57 for distributions of finite variance, irrespective of the particular distribution. The results are consistent with existing rigorous bounds for θ, although in a somewhat surprising manner. For random walks with step lengths of finite variance, we conjecture that the correct asymptotic behavior of L n is given by \\sqrt{n}\\ln n , and also propose the form for the subleading asymptotics. The distribution of L n was found to follow a simple scaling form with scaling functions that vary with θ. Accordingly, when the step lengths are of finite variance they seem to be universal. The nature of this scaling remains unclear, since we lack a working model, microscopic or hydrodynamic, for the behavior of the length of the longest increasing subsequences of random walks.
Ant-inspired density estimation via random walks.
Musco, Cameron; Su, Hsin-Hao; Lynch, Nancy A
2017-10-03
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks.
A dual-learning paradigm can simultaneously train multiple characteristics of walking
Toliver, Alexis; Bastian, Amy J.
2016-01-01
Impairments in human motor patterns are complex: what is often observed as a single global deficit (e.g., limping when walking) is actually the sum of several distinct abnormalities. Motor adaptation can be useful to teach patients more normal motor patterns, yet conventional training paradigms focus on individual features of a movement, leaving others unaddressed. It is known that under certain conditions, distinct movement components can be simultaneously adapted without interference. These previous “dual-learning” studies focused solely on short, planar reaching movements, yet it is unknown whether these findings can generalize to a more complex behavior like walking. Here we asked whether a dual-learning paradigm, incorporating two distinct motor adaptation tasks, can be used to simultaneously train multiple components of the walking pattern. We developed a joint-angle learning task that provided biased visual feedback of sagittal joint angles to increase peak knee or hip flexion during the swing phase of walking. Healthy, young participants performed this task independently or concurrently with another locomotor adaptation task, split-belt treadmill adaptation, where subjects adapted their step length symmetry. We found that participants were able to successfully adapt both components of the walking pattern simultaneously, without interference, and at the same rate as adapting either component independently. This leads us to the interesting possibility that combining rehabilitation modalities within a single training session could be used to help alleviate multiple deficits at once in patients with complex gait impairments. PMID:26961100
Xu, Benlei; Yan, Tiebin; Yang, Yuanle; Ou, Ruiqing; Huang, Shuping
2016-01-01
Functional electrical stimulation is a widely used technique for rehabilitation. To assess the efficacy of walking-pattern-based four-channel functional electric stimulation and its influence on the gait features of stroke patients with hemiplegia. A total of 21 stroke patients with hemiplegia were enrolled into the study. The walking gaits of patients were investigated before, during and after walking-pattern-based FES treatment using the gait analysis system. The changes of gait indexes were comparatively analyzed. After walking-pattern-based FES therapy, the pace, stride rate, gait cycle, and step length of stroke patients with hemiplegia were 50.19 ± 14.45 cm/s, 36.85 ± 5.85 time/min, 1.6643 ± 0.2626 sec, 80.3333 ± 15.1438 cm, respectively. The motion range of hip and knee joint were 47.5238 ± 10.7453, 56.7619 ± 14.5255, respectively. We found these indexes were significantly improved compared with those before FES treatment (P < 0.05). The single swing rate (injured extremity/uninjured extremity) after FES treatment was 1.5589 ± 0.4550. The statistical results showed that the gait cycle, pace, stride rat, and single swing rate (injured extremity/uninjured extremity) were significantly improved after FES treatment (P < 0.05). Our results demonstrate that walking-paradigm based FES we developed is effective for treating stroke patients during rehabilitation.
The scalable implementation of quantum walks using classical light
NASA Astrophysics Data System (ADS)
Goyal, Sandeep K.; Roux, F. S.; Forbes, Andrew; Konrad, Thomas
2014-02-01
A quantum walk is the quantum analog of the classical random walks. Despite their simple structure they form a universal platform to implement any algorithm of quantum computation. However, it is very hard to realize quantum walks with a sufficient number of iterations in quantum systems due to their sensitivity to environmental influences and subsequent loss of coherence. Here we present a scalable implementation scheme for one-dimensional quantum walks for arbitrary number of steps using the orbital angular momentum modes of classical light beams. Furthermore, we show that using the same setup with a minor adjustment we can also realize electric quantum walks.
Shnayderman, Ilana; Katz-Leurer, Michal
2013-03-01
To assess the effect of aerobic walking training as compared to active training, which includes muscle strengthening, on functional abilities among patients with chronic low back pain. Randomized controlled clinical trial with blind assessors. Outpatient clinic. Fifty-two sedentary patients, aged 18-65 years with chronic low back pain. Patients who were post surgery, post trauma, with cardiovascular problems, and with oncological disease were excluded. Experimental 'walking' group: moderate intense treadmill walking; control 'exercise' group: specific low back exercise; both, twice a week for six weeks. Six-minute walking test, Fear-Avoidance Belief Questionnaire, back and abdomen muscle endurance tests, Oswestry Disability Questionnaire, Low Back Pain Functional Scale (LBPFS). Significant improvements were noted in all outcome measures in both groups with non-significant difference between groups. The mean distance in metres covered during 6 minutes increased by 70.7 (95% confidence interval (CI) 12.3-127.7) in the 'walking' group and by 43.8 (95% CI 19.6-68.0) in the 'exercise' group. The trunk flexor endurance test showed significant improvement in both groups, increasing by 0.6 (95% CI 0.0-1.1) in the 'walking' group and by 1.1 (95% CI 0.3-1.8) in the 'exercise' group. A six-week walk training programme was as effective as six weeks of specific strengthening exercises programme for the low back.
2012-01-01
Background Osteoarthritis (OA) is the most common joint disorder in the world, as it is appears to be prevalent among 80% of individuals over the age of 75. Although physical activities such as walking have been scientifically proven to improve physical function and arthritic symptoms, individuals with OA tend to adopt a sedentary lifestyle. There is therefore a need to improve knowledge translation in order to influence individuals to adopt effective self-management interventions, such as an adapted walking program. Methods A single-blind, randomized control trial was conducted. Subjects (n = 222) were randomized to one of three knowledge translation groups: 1) Walking and Behavioural intervention (WB) (18 males, 57 females) which included the supervised community-based aerobic walking program combined with a behavioural intervention and an educational pamphlet on the benefits of walking; 2) Walking intervention (W) (24 males, 57 females) wherein participants only received the supervised community-based aerobic walking program intervention and the educational pamphlet; 3) Self-directed control (C) (32 males, 52 females) wherein participants only received the educational pamphlet. One-way analyses of variance were used to test for differences in quality of life, adherence, confidence, and clinical outcomes among the study groups at each 3 month assessment during the 12-month intervention period and 6-month follow-up period. Results The clinical and quality of life outcomes improved among participants in each of the three comparative groups. However, there were few statistically significant differences observed for quality of life and clinical outcomes at long-term measurements at 12-months end of intervention and at 6- months post intervention (18-month follow-up). Outcome results varied among the three groups. Conclusion The three groups were equivalent when determining the effectiveness of knowledge uptake and improvements in quality of life and other clinical outcomes. OA can be managed through the implementation of a proven effective walking program in existing community-based walking clubs. Trial registration Current Controlled Trials IRSCTNO9193542 PMID:23234575
Karstoft, Kristian; Winding, Kamilla; Knudsen, Sine H; Nielsen, Jens S; Thomsen, Carsten; Pedersen, Bente K; Solomon, Thomas P J
2013-02-01
To evaluate the feasibility of free-living walking training in type 2 diabetic patients and to investigate the effects of interval-walking training versus continuous-walking training upon physical fitness, body composition, and glycemic control. Subjects with type 2 diabetes were randomized to a control (n = 8), continuous-walking (n = 12), or interval-walking group (n = 12). Training groups were prescribed five sessions per week (60 min/session) and were controlled with an accelerometer and a heart-rate monitor. Continuous walkers performed all training at moderate intensity, whereas interval walkers alternated 3-min repetitions at low and high intensity. Before and after the 4-month intervention, the following variables were measured: VO(2)max, body composition, and glycemic control (fasting glucose, HbA(1c), oral glucose tolerance test, and continuous glucose monitoring [CGM]). Training adherence was high (89 ± 4%), and training energy expenditure and mean intensity were comparable. VO(2)max increased 16.1 ± 3.7% in the interval-walking group (P < 0.05), whereas no changes were observed in the continuous-walking or control group. Body mass and adiposity (fat mass and visceral fat) decreased in the interval-walking group only (P < 0.05). Glycemic control (elevated mean CGM glucose levels and increased fasting insulin) worsened in the control group (P < 0.05), whereas mean (P = 0.05) and maximum (P < 0.05) CGM glucose levels decreased in the interval-walking group. The continuous walkers showed no changes in glycemic control. Free-living walking training is feasible in type 2 diabetic patients. Continuous walking offsets the deterioration in glycemia seen in the control group, and interval walking is superior to energy expenditure-matched continuous walking for improving physical fitness, body composition, and glycemic control.
Peurala, Sinikka H; Tarkka, Ina M; Pitkänen, Kauko; Sivenius, Juhani
2005-08-01
To compare body weight-supported exercise on a gait trainer with walking exercise overground. Randomized controlled trial. Rehabilitation hospital. Forty-five ambulatory patients with chronic stroke. Patients were randomized to 3 groups: (1) gait trainer exercise with functional electric stimulation (GTstim), (2) gait trainer exercise without stimulation (GT), and (3) walking overground (WALK). All patients practiced gait for 15 sessions during 3 weeks (each session, 20 min), and they received additional physiotherapy 55 minutes daily. Ten-meter walk test (10MWT), six-minute walk test (6MWT), lower-limb spasticity and muscle force, postural sway tests, Modified Motor Assessment Scale (MMAS), and FIM instrument scores were recorded before, during, and after the rehabilitation and at 6 months follow-up. The mean walking distance using the gait trainer was 6900+/-1200 m in the GTstim group and 6500+/-1700 m in GT group. In the WALK group, the distance was 4800+/-2800 m, which was less than the walking distance obtained in the GTstim group (P=.027). The body-weight support was individually reduced from 30% to 9% of the body weight over the course of the program. In the pooled 45 patients, the 10MWT (P<.001), 6MWT (P<.001), MMAS (P<.001), dynamic balance test time (P<.001), and test trip (P=.005) scores improved; however, no differences were found between the groups. Both the body weight-supported training and walking exercise training programs resulted in faster gait after the intensive rehabilitation program. Patients' motor performance remained improved at the follow-up.
Effectiveness of Long and Short Bout Walking on Increasing Physical Activity in Women
Serwe, Katrina M.; Swartz, Ann M.; Hart, Teresa L.; Strath, Scott J.
2011-01-01
Abstract Background The accumulation of physical activity (PA) throughout the day has been suggested as a means to increase PA behavior. It is not known, however, if accumulated PA results in equivalent increases in PA behavior compared with one continuous session. The purpose of this investigation was to compare changes in PA between participants assigned to walk daily in accumulated shorter bouts vs. one continuous session. Methods In this 8-week randomized controlled trial, 60 inactive women were randomly assigned to one of the following: (1) control group, (2) 30 minutes a day of walking 5 days a week in one continuous long bout (LB), or (3) three short 10-minute bouts (SB) of walking a day, all at a prescribed heart rate intensity. Walking was assessed by pedometer and self-reported walking log. Before and after measures were taken of average steps/day, resting systolic and diastolic blood pressure (SBP, DBP), resting heart rate (RHR), six-minute walk test (6MWT) distance, height, weight, body mass index (BMI), and hip and waist circumference. Results Both walking groups significantly increased PA measured as steps/day compared to controls (p < 0.001), and no significant differences were found between LB and SB groups. The LB group demonstrated significant decreases in hip circumference and significant increases in 6MWT distance compared to the control group. Conclusions Both walking groups significantly increased PA participation. LB group participants completed more walking at a higher intensity than the SB and control groups, which resulted in significant increases in health benefits. PMID:21314449
2010-01-01
Background Stair climbing up and down is an essential part of everyday's mobility. To enable wheelchair-dependent patients the repetitive practice of this task, a novel gait robot, G-EO-Systems (EO, Lat: I walk), based on the end-effector principle, has been designed. The trajectories of the foot plates are freely programmable enabling not only the practice of simulated floor walking but also stair climbing up and down. The article intended to compare lower limb muscle activation patterns of hemiparetic subjects during real floor walking and stairs climbing up, and during the corresponding simulated conditions on the machine, and secondly to demonstrate gait improvement on single case after training on the machine. Methods The muscle activation pattern of seven lower limb muscles of six hemiparetic patients during free and simulated walking on the floor and stair climbing was measured via dynamic electromyography. A non-ambulatory, sub-acute stroke patient additionally trained on the G-EO-Systems every workday for five weeks. Results The muscle activation patterns were comparable during the real and simulated conditions, both on the floor and during stair climbing up. Minor differences, concerning the real and simulated floor walking conditions, were a delayed (prolonged) onset (duration) of the thigh muscle activation on the machine across all subjects. Concerning stair climbing conditions, the shank muscle activation was more phasic and timely correct in selected patients on the device. The severely affected subject regained walking and stair climbing ability. Conclusions The G-EO-Systems is an interesting new option in gait rehabilitation after stroke. The lower limb muscle activation patterns were comparable, a training thus feasible, and the positive case report warrants further clinical studies. PMID:20584307
Hesse, Stefan; Waldner, Andreas; Tomelleri, Christopher
2010-06-28
Stair climbing up and down is an essential part of everyday's mobility. To enable wheelchair-dependent patients the repetitive practice of this task, a novel gait robot, G-EO-Systems (EO, Lat: I walk), based on the end-effector principle, has been designed. The trajectories of the foot plates are freely programmable enabling not only the practice of simulated floor walking but also stair climbing up and down. The article intended to compare lower limb muscle activation patterns of hemiparetic subjects during real floor walking and stairs climbing up, and during the corresponding simulated conditions on the machine, and secondly to demonstrate gait improvement on single case after training on the machine. The muscle activation pattern of seven lower limb muscles of six hemiparetic patients during free and simulated walking on the floor and stair climbing was measured via dynamic electromyography. A non-ambulatory, sub-acute stroke patient additionally trained on the G-EO-Systems every workday for five weeks. The muscle activation patterns were comparable during the real and simulated conditions, both on the floor and during stair climbing up. Minor differences, concerning the real and simulated floor walking conditions, were a delayed (prolonged) onset (duration) of the thigh muscle activation on the machine across all subjects. Concerning stair climbing conditions, the shank muscle activation was more phasic and timely correct in selected patients on the device. The severely affected subject regained walking and stair climbing ability. The G-EO-Systems is an interesting new option in gait rehabilitation after stroke. The lower limb muscle activation patterns were comparable, a training thus feasible, and the positive case report warrants further clinical studies.
de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Beijnen, Jos H; Lamoth, Claudine J C
2014-02-01
A flexed posture (FP) is characterized by protrusion of the head and an increased thoracic kyphosis (TK), which may be caused by osteoporotic vertebral fractures (VFs). These impairments may affect motor function, and consequently increase the risk of falling and fractures. The aim of the current study was therefore to examine postural control during walking in elderly patients with FP, and to investigate the relationship with geriatric phenomena that may cause FP, such as increased TK, VFs, frailty, polypharmacy and cognitive impairments. Fifty-six elderly patients (aged 80 ± 5.2 years; 70% female) walked 160 m at self-selected speed while trunk accelerations were recorded. Walking speed, mean stride time and coefficient of variation (CV) of stride time were recorded. In addition, postural control during walking was quantified by time-dependent variability measures derived from the theory of stochastic dynamics, indicating smoothness, degree of predictability, and local stability of trunk acceleration patterns. Twenty-five patients (45%) had FP and demonstrated a more variable and less structured gait pattern, and a more irregular trunk acceleration pattern than patients with normal posture. FP was significantly associated with an increased TK, but not with other geriatric phenomena. An increased TK may bring the body's centre of mass forward, which requires correcting responses, and reduces the ability to respond on perturbation, which was reflected by higher variation in the gait pattern in FP-patients. Impairments in postural control during walking are a major risk factor for falling: the results indicate that patients with FP have impaired postural control during walking and might therefore be at increased risk of falling. Copyright © 2013 Elsevier B.V. All rights reserved.
ROLE OF TIMING IN ASSESSMENT OF NERVE REGENERATION
BRENNER, MICHAEL J.; MORADZADEH, ARASH; MYCKATYN, TERENCE M.; TUNG, THOMAS H. H.; MENDEZ, ALLEN B.; HUNTER, DANIEL A.; MACKINNON, SUSAN E.
2014-01-01
Small animal models are indispensable for research on nerve injury and reconstruction, but their superlative regenerative potential may confound experimental interpretation. This study investigated time-dependent neuroregenerative phenomena in rodents. Forty-six Lewis rats were randomized to three nerve allograft groups treated with 2 mg/(kg day) tacrolimus; 5 mg/(kg day) Cyclosporine A; or placebo injection. Nerves were subjected to histomorphometric and walking track analysis at serial time points. Tacrolimus increased fiber density, percent neural tissue, and nerve fiber count and accelerated functional recovery at 40 days, but these differences were undetectable by 70 days. Serial walking track analysis showed a similar pattern of recovery. A ‘blow-through’ effect is observed in rodents whereby an advancing nerve front overcomes an experimental defect given sufficient time, rendering experimental groups indistinguishable at late time points. Selection of validated time points and corroboration in higher animal models are essential prerequisites for the clinical application of basic research on nerve regeneration. PMID:18381659
Brach, Jennifer S.; Lowry, Kristin; Perera, Subashan; Hornyak, Victoria; Wert, David; Studenski, Stephanie A.; VanSwearingen, Jessie M.
2016-01-01
Objective The objective was to test the proposed mechanism of action of a task-specific motor learning intervention by examining its effect on measures of the motor control of gait. Design Single blinded randomized clinical trial. Setting University research laboratory. Participants Forty older adults 65 years of age and older, with gait speed >1.0 m/s and impaired motor skill (Figure of 8 walk time > 8 secs). Interventions The two interventions included a task-oriented motor learning and a standard exercise program. Both interventions lasted 12 weeks, with twice weekly one hour physical therapist supervised sessions. Main Outcome Measures Two measure of the motor control of gait, gait variability and smoothness of walking, were assessed pre and post intervention by assessors masked to treatment arm. Results Of 40 randomized subjects; 38 completed the trial (mean age 77.1±6.0 years). Motor control group improved more than standard group in double support time variability (0.13 vs. 0.05 m/s; adjusted difference, AD=0.006, p=0.03). Smoothness of walking in the anterior/posterior direction improved more in motor control than standard for all conditions (usual: AD=0.53, p=0.05; narrow: AD=0.56, p=0.01; dual task: AD=0.57, p=0.04). Conclusions Among older adults with subclinical walking difficulty, there is initial evidence that task-oriented motor learning exercise results in gains in the motor control of walking, while standard exercise does not. Task-oriented motor learning exercise is a promising intervention for improving timing and coordination deficits related to mobility difficulties in older adults, and needs to be evaluated in a definitive larger trial. PMID:25448244
van Bloemendaal, Maijke; Bus, Sicco A; de Boer, Charlotte E; Nollet, Frans; Geurts, Alexander C H; Beelen, Anita
2016-10-01
Many stroke survivors suffer from paresis of lower limb muscles, resulting in compensatory gait patterns characterised by asymmetries in spatial and temporal parameters and reduced walking capacity. Functional electrical stimulation has been used to improve walking capacity, but evidence is mostly limited to the orthotic effects of peroneal functional electrical stimulation in the chronic phase after stroke. The aim of this study is to investigate the therapeutic effects of up to 10 weeks of multi-channel functional electrical stimulation (MFES)-assisted gait training on the restoration of spatiotemporal gait symmetry and walking capacity in subacute stroke patients. In a proof-of-principle study with a randomised controlled design, 40 adult patients with walking deficits who are admitted for inpatient rehabilitation within 31 days since the onset of stroke are randomised to either MFES-assisted gait training or conventional gait training. Gait training is delivered in 30-minute sessions each workday for up to 10 weeks. The step length symmetry ratio is the primary outcome. Blinded assessors conduct outcome assessments at baseline, every 2 weeks during the intervention period, immediately post intervention and at 3-month follow-up. This study aims to provide preliminary evidence for the feasibility and effectiveness of MFES-assisted gait rehabilitation early after stroke. Results will inform the design of a larger multi-centre trial. This trial is registered at the Netherlands Trial Register (number NTR4762 , registered 28 August 2014).
Equivalence of Szegedy's and coined quantum walks
NASA Astrophysics Data System (ADS)
Wong, Thomas G.
2017-09-01
Szegedy's quantum walk is a quantization of a classical random walk or Markov chain, where the walk occurs on the edges of the bipartite double cover of the original graph. To search, one can simply quantize a Markov chain with absorbing vertices. Recently, Santos proposed two alternative search algorithms that instead utilize the sign-flip oracle in Grover's algorithm rather than absorbing vertices. In this paper, we show that these two algorithms are exactly equivalent to two algorithms involving coined quantum walks, which are walks on the vertices of the original graph with an internal degree of freedom. The first scheme is equivalent to a coined quantum walk with one walk step per query of Grover's oracle, and the second is equivalent to a coined quantum walk with two walk steps per query of Grover's oracle. These equivalences lie outside the previously known equivalence of Szegedy's quantum walk with absorbing vertices and the coined quantum walk with the negative identity operator as the coin for marked vertices, whose precise relationships we also investigate.
Shirota, C; Tucker, M R; Lambercy, O; Gassert, R
2017-07-01
The capabilities of robotic gait assistive devices are ever increasing; however, their adoption outside of the lab is still limited. A critical barrier for the functionality of these devices are the still unknown mechanical properties of the human leg during dynamic conditions such as walking. We built a robotic knee exoskeleton to address this problem. Here, we present the effects of our device on the walking pattern of four subjects. We assessed the effects after a short period of acclimation as well as after a 1.5h walking protocol. We found that the knee exoskeleton decreased (towards extension) the peak hip extension and peak knee flexion of the leg with the exoskeleton, while minimally affecting the non-exoskeleton leg. Comparatively smaller changes occurred after prolonged walking. These results suggest that walking patterns attained after a few minutes of acclimation with a knee exoskeleton are stable for at least a couple of hours.
Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation
Herr, Hugh M.; Grabowski, Alena M.
2012-01-01
Over time, leg prostheses have improved in design, but have been incapable of actively adapting to different walking velocities in a manner comparable to a biological limb. People with a leg amputation using such commercially available passive-elastic prostheses require significantly more metabolic energy to walk at the same velocities, prefer to walk slower and have abnormal biomechanics compared with non-amputees. A bionic prosthesis has been developed that emulates the function of a biological ankle during level-ground walking, specifically providing the net positive work required for a range of walking velocities. We compared metabolic energy costs, preferred velocities and biomechanical patterns of seven people with a unilateral transtibial amputation using the bionic prosthesis and using their own passive-elastic prosthesis to those of seven non-amputees during level-ground walking. Compared with using a passive-elastic prosthesis, using the bionic prosthesis decreased metabolic cost by 8 per cent, increased trailing prosthetic leg mechanical work by 57 per cent and decreased the leading biological leg mechanical work by 10 per cent, on average, across walking velocities of 0.75–1.75 m s−1 and increased preferred walking velocity by 23 per cent. Using the bionic prosthesis resulted in metabolic energy costs, preferred walking velocities and biomechanical patterns that were not significantly different from people without an amputation. PMID:21752817
Motor modules in robot-aided walking
2012-01-01
Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%). Results The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns. PMID:23043818
van Kessel, Kirsten; Wouldes, Trecia; Moss-Morris, Rona
2016-05-01
To pilot and compare the efficacy of an internet-based cognitive behavioural therapy self-management programme with (MSInvigor8-Plus) and without (MSInvigor8-Only) the use of email support in reducing fatigue severity and impact (primary outcomes), and depressed and anxious mood (secondary outcomes). Randomized controlled trial using an independent randomization system built into the website and intention-to-treat analysis. Participants were recruited through the local Multiple Sclerosis Society and hospital neurological services in New Zealand. A total of 39 people (aged 31-63 years), experiencing multiple sclerosis fatigue, able to walk with and without walking aids, were randomized to MSInvigor8-Only (n = 20) or to MSInvigor8-Plus (n = 19). MSInvigor8 is an eight-session programme based on cognitive behaviour therapy principles including psycho-education, self-monitoring, and changing unhelpful activity and thought patterns. Outcome measures included fatigue severity (Chalder Fatigue Scale) and impact (Modified Fatigue Impact Scale), and anxiety and depression (Hospital Anxiety and Depression Scale). Assessments were performed at baseline and at 10 weeks. The MSInvigor8-Plus condition resulted in significantly greater reductions in fatigue severity (F [1,36] = 9.09, p < 0.01) and impact (F [1,36] = 6.03, p < 0.02) compared with the MSInvigor8-Only condition. Large between-group effect sizes for fatigue severity (d = 0.99) and fatigue impact (d = 0.81) were obtained. No significant differences were found between the groups on changes in anxiety and depression. MSInvigor8 delivered with email-based support is a potentially promising, acceptable, and cost-effective approach to treating fatigue in people with multiple sclerosis in New Zealand. © The Author(s) 2015.
Strategies for Walking on a Laterally Oscillating Treadmill
NASA Technical Reports Server (NTRS)
Peters, Brian T.; Brady, Rachel A.; Bloomberg, Jacob, J.
2008-01-01
Most people use a variety of gait patterns each day. These changes can come about by voluntary actions, such as a decision to walk faster when running late. They can also be a result of both conscious and subconscious changes made to account for variation in the environmental conditions. Many factors can play a role in determining the optimal gait patterns, but the relative importance of each could vary between subjects. A goal of this study was to investigate whether subjects used consistent gait strategies when walking on an unstable support surface.
2003-09-01
the effect of a 12-week home-based walking intervention on quality of life , body composition, and estrogen metabolism in survivors of breast cancer...randomized to the walking intervention will report higher levels of quality of life , experience less weight gain, and have more favorable estrogen
2004-09-01
the effect of a 12-week home-based walking intervention on quality of life , body composition, and estrogen metabolism in survivors of breast cancer...randomized to the walking intervention will report higher levels of quality of life , experience less weight gain, and have more favorable estrogen
Testing self-regulation interventions to increase walking using factorial randomized N-of-1 trials.
Sniehotta, Falko F; Presseau, Justin; Hobbs, Nicola; Araújo-Soares, Vera
2012-11-01
To investigate the suitability of N-of-1 randomized controlled trials (RCTs) as a means of testing the effectiveness of behavior change techniques based on self-regulation theory (goal setting and self-monitoring) for promoting walking in healthy adult volunteers. A series of N-of-1 RCTs in 10 normal and overweight adults ages 19-67 (M = 36.9 years). We randomly allocated 60 days within each individual to text message-prompted daily goal-setting and/or self-monitoring interventions in accordance with a 2 (step-count goal prompt vs. alternative goal prompt) × 2 (self-monitoring: open vs. blinded Omron-HJ-113-E pedometer) factorial design. Aggregated data were analyzed using random intercept multilevel models. Single cases were analyzed individually. The primary outcome was daily pedometer step counts over 60 days. Single-case analyses showed that 4 participants significantly increased walking: 2 on self-monitoring days and 2 on goal-setting days, compared with control days. Six participants did not benefit from the interventions. In aggregated analyses, mean step counts were higher on goal-setting days (8,499.9 vs. 7,956.3) and on self-monitoring days (8,630.3 vs. 7,825.9). Multilevel analyses showed a significant effect of the self-monitoring condition (p = .01), the goal-setting condition approached significance (p = .08), and there was a small linear increase in walking over time (p = .03). N-of-1 randomized trials are a suitable means to test behavioral interventions in individual participants.
Random walk on p-adics and hierarchical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukierska-Walasek, K.; Topolski, K.; Institute of Mathematics, Wroclaw University, pl. Grunwaldzki 2/4, 50-384 Wroclaw
2006-02-01
We show that p-adic analysis provides a quite natural basis for the description of relaxation in hierarchical systems. For our purposes, we specify the Markov stochastic process considered by Albeverio and Karwowski. As a result we have obtained a random walk on the p-adic integer numbers, which provides the generalization of Cayley tree proposed by Ogielski and Stein. The temperature-dependent power-law decay and the Kohlrausch law are derived.
Expert Assessment of Stigmergy: A Report for the Department of National Defence
2005-10-01
pheromone table may be reduced by implementing a clustering scheme. Termite can take advantage of the wireless broadcast medium, since it is possible for...comparing it with any other routing scheme. The Termite scheme [RW] differs from the source routing [ITT] by applying pheromone trails or random walks...rather than uniform or probabilistic ones. Random walk ants differ from uniform ants since they follow pheromone trails, if any. Termite [RW] also
Autocatalytic polymerization generates persistent random walk of crawling cells.
Sambeth, R; Baumgaertner, A
2001-05-28
The autocatalytic polymerization kinetics of the cytoskeletal actin network provides the basic mechanism for a persistent random walk of a crawling cell. It is shown that network remodeling by branching processes near the cell membrane is essential for the bimodal spatial stability of the network which induces a spontaneous breaking of isotropic cell motion. Details of the phenomena are analyzed using a simple polymerization model studied by analytical and simulation methods.
A Random Walk Picture of Basketball
NASA Astrophysics Data System (ADS)
Gabel, Alan; Redner, Sidney
2012-02-01
We analyze NBA basketball play-by-play data and found that scoring is well described by a weakly-biased, anti-persistent, continuous-time random walk. The time between successive scoring events follows an exponential distribution, with little memory between events. We account for a wide variety of statistical properties of scoring, such as the distribution of the score difference between opponents and the fraction of game time that one team is in the lead.
Approximate scaling properties of RNA free energy landscapes
NASA Technical Reports Server (NTRS)
Baskaran, S.; Stadler, P. F.; Schuster, P.
1996-01-01
RNA free energy landscapes are analysed by means of "time-series" that are obtained from random walks restricted to excursion sets. The power spectra, the scaling of the jump size distribution, and the scaling of the curve length measured with different yard stick lengths are used to describe the structure of these "time series". Although they are stationary by construction, we find that their local behavior is consistent with both AR(1) and self-affine processes. Random walks confined to excursion sets (i.e., with the restriction that the fitness value exceeds a certain threshold at each step) exhibit essentially the same statistics as free random walks. We find that an AR(1) time series is in general approximately self-affine on timescales up to approximately the correlation length. We present an empirical relation between the correlation parameter rho of the AR(1) model and the exponents characterizing self-affinity.
A Perron-Frobenius Type of Theorem for Quantum Operations
NASA Astrophysics Data System (ADS)
Lagro, Matthew; Yang, Wei-Shih; Xiong, Sheng
2017-10-01
We define a special class of quantum operations we call Markovian and show that it has the same spectral properties as a corresponding Markov chain. We then consider a convex combination of a quantum operation and a Markovian quantum operation and show that under a norm condition its spectrum has the same properties as in the conclusion of the Perron-Frobenius theorem if its Markovian part does. Moreover, under a compatibility condition of the two operations, we show that its limiting distribution is the same as the corresponding Markov chain. We apply our general results to partially decoherent quantum random walks with decoherence strength 0 ≤ p ≤ 1. We obtain a quantum ergodic theorem for partially decoherent processes. We show that for 0 < p ≤ 1, the limiting distribution of a partially decoherent quantum random walk is the same as the limiting distribution for the classical random walk.
Narrow log-periodic modulations in non-Markovian random walks
NASA Astrophysics Data System (ADS)
Diniz, R. M. B.; Cressoni, J. C.; da Silva, M. A. A.; Mariz, A. M.; de Araújo, J. M.
2017-12-01
What are the necessary ingredients for log-periodicity to appear in the dynamics of a random walk model? Can they be subtle enough to be overlooked? Previous studies suggest that long-range damaged memory and negative feedback together are necessary conditions for the emergence of log-periodic oscillations. The role of negative feedback would then be crucial, forcing the system to change direction. In this paper we show that small-amplitude log-periodic oscillations can emerge when the system is driven by positive feedback. Due to their very small amplitude, these oscillations can easily be mistaken for numerical finite-size effects. The models we use consist of discrete-time random walks with strong memory correlations where the decision process is taken from memory profiles based either on a binomial distribution or on a delta distribution. Anomalous superdiffusive behavior and log-periodic modulations are shown to arise in the large time limit for convenient choices of the models parameters.
Elephant random walks and their connection to Pólya-type urns
NASA Astrophysics Data System (ADS)
Baur, Erich; Bertoin, Jean
2016-11-01
In this paper, we explain the connection between the elephant random walk (ERW) and an urn model à la Pólya and derive functional limit theorems for the former. The ERW model was introduced in [Phys. Rev. E 70, 045101 (2004), 10.1103/PhysRevE.70.045101] to study memory effects in a highly non-Markovian setting. More specifically, the ERW is a one-dimensional discrete-time random walk with a complete memory of its past. The influence of the memory is measured in terms of a memory parameter p between zero and one. In the past years, a considerable effort has been undertaken to understand the large-scale behavior of the ERW, depending on the choice of p . Here, we use known results on urns to explicitly solve the ERW in all memory regimes. The method works as well for ERWs in higher dimensions and is widely applicable to related models.
Observing random walks of atoms in buffer gas through resonant light absorption
NASA Astrophysics Data System (ADS)
Aoki, Kenichiro; Mitsui, Takahisa
2016-07-01
Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.
A partially reflecting random walk on spheres algorithm for electrical impedance tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maire, Sylvain, E-mail: maire@univ-tln.fr; Simon, Martin, E-mail: simon@math.uni-mainz.de
2015-12-15
In this work, we develop a probabilistic estimator for the voltage-to-current map arising in electrical impedance tomography. This novel so-called partially reflecting random walk on spheres estimator enables Monte Carlo methods to compute the voltage-to-current map in an embarrassingly parallel manner, which is an important issue with regard to the corresponding inverse problem. Our method uses the well-known random walk on spheres algorithm inside subdomains where the diffusion coefficient is constant and employs replacement techniques motivated by finite difference discretization to deal with both mixed boundary conditions and interface transmission conditions. We analyze the global bias and the variance ofmore » the new estimator both theoretically and experimentally. Subsequently, the variance of the new estimator is considerably reduced via a novel control variate conditional sampling technique which yields a highly efficient hybrid forward solver coupling probabilistic and deterministic algorithms.« less
Network Dynamics of Innovation Processes.
Iacopini, Iacopo; Milojević, Staša; Latora, Vito
2018-01-26
We introduce a model for the emergence of innovations, in which cognitive processes are described as random walks on the network of links among ideas or concepts, and an innovation corresponds to the first visit of a node. The transition matrix of the random walk depends on the network weights, while in turn the weight of an edge is reinforced by the passage of a walker. The presence of the network naturally accounts for the mechanism of the "adjacent possible," and the model reproduces both the rate at which novelties emerge and the correlations among them observed empirically. We show this by using synthetic networks and by studying real data sets on the growth of knowledge in different scientific disciplines. Edge-reinforced random walks on complex topologies offer a new modeling framework for the dynamics of correlated novelties and are another example of coevolution of processes and networks.
Statistical Modeling of Robotic Random Walks on Different Terrain
NASA Astrophysics Data System (ADS)
Naylor, Austin; Kinnaman, Laura
Issues of public safety, especially with crowd dynamics and pedestrian movement, have been modeled by physicists using methods from statistical mechanics over the last few years. Complex decision making of humans moving on different terrains can be modeled using random walks (RW) and correlated random walks (CRW). The effect of different terrains, such as a constant increasing slope, on RW and CRW was explored. LEGO robots were programmed to make RW and CRW with uniform step sizes. Level ground tests demonstrated that the robots had the expected step size distribution and correlation angles (for CRW). The mean square displacement was calculated for each RW and CRW on different terrains and matched expected trends. The step size distribution was determined to change based on the terrain; theoretical predictions for the step size distribution were made for various simple terrains. It's Dr. Laura Kinnaman, not sure where to put the Prefix.
Network Dynamics of Innovation Processes
NASA Astrophysics Data System (ADS)
Iacopini, Iacopo; Milojević, Staša; Latora, Vito
2018-01-01
We introduce a model for the emergence of innovations, in which cognitive processes are described as random walks on the network of links among ideas or concepts, and an innovation corresponds to the first visit of a node. The transition matrix of the random walk depends on the network weights, while in turn the weight of an edge is reinforced by the passage of a walker. The presence of the network naturally accounts for the mechanism of the "adjacent possible," and the model reproduces both the rate at which novelties emerge and the correlations among them observed empirically. We show this by using synthetic networks and by studying real data sets on the growth of knowledge in different scientific disciplines. Edge-reinforced random walks on complex topologies offer a new modeling framework for the dynamics of correlated novelties and are another example of coevolution of processes and networks.
Effective degrees of freedom of a random walk on a fractal
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.
2015-12-01
We argue that a non-Markovian random walk on a fractal can be treated as a Markovian process in a fractional dimensional space with a suitable metric. This allows us to define the fractional dimensional space allied to the fractal as the ν -dimensional space Fν equipped with the metric induced by the fractal topology. The relation between the number of effective spatial degrees of freedom of walkers on the fractal (ν ) and fractal dimensionalities is deduced. The intrinsic time of random walk in Fν is inferred. The Laplacian operator in Fν is constructed. This allows us to map physical problems on fractals into the corresponding problems in Fν. In this way, essential features of physics on fractals are revealed. Particularly, subdiffusion on path-connected fractals is elucidated. The Coulomb potential of a point charge on a fractal embedded in the Euclidean space is derived. Intriguing attributes of some types of fractals are highlighted.
2012-01-01
Background The implementation of evidence based clinical practice guidelines on self-management interventions to patients with chronic diseases is a complex process. A multifaceted strategy may offer an effective knowledge translation (KT) intervention to promote knowledge uptake and improve adherence in an effective walking program based on the Ottawa Panel Evidence Based Clinical Practice Guidelines among individuals with moderate osteoarthritis (OA). Methods A single-blind, randomized control trial was conducted. Patients with mild to moderate (OA) of the knee (n=222) were randomized to one of three KT groups: 1) Walking and Behavioural intervention (WB) (18 males, 57 females) which included the supervised community-based aerobic walking program combined with a behavioural intervention and an educational pamphlet on the benefits of walking for OA; 2) Walking intervention (W) (24 males, 57 females) wherein participants only received the supervised community-based aerobic walking program intervention and the educational pamphlet; 3) Self-directed control (C) (32 males, 52 females) wherein participants only received the educational pamphlet. One-way analyses of variance were used to test for differences in quality of life, adherence, confidence, and clinical outcomes among the study groups at each 3 month assessment during the 12-month intervention period and 6-month follow-up period. Results Short-term program adherence was greater in WB compared to C (p<0.012) after 3 months. No statistical significance (p> 0.05) was observed for long-term adherence (6 to 12 months), and total adherence between the three groups. The three knowledge translation strategies demonstrated equivalent long-term results for the implementation of a walking program for older individuals with moderate OA. Lower dropout rates as well as higher retention rates were observed for WB at 12 and 18 months. Conclusion The additional knowledge translation behavioural component facilitated the implementation of clinical practice guidelines on walking over a short-term period. More studies are needed to improve the long-term walking adherence or longer guidelines uptake on walking among participants with OA. Particular attention should be taken into account related to patient’s characteristic and preference. OA can be managed through the implementation of a walking program based on clinical practice guidelines in existing community-based walking clubs as well as at home with the minimal support of an exercise therapist or a trained volunteer. Trial Registration Current Controlled Trials IRSCTNO9193542 PMID:23061875
Segal, Ava D; Shofer, Jane B; Klute, Glenn K
2015-11-26
Maintaining balance while walking is challenging for lower limb amputees. The effect of prosthetic foot stiffness on recovery kinetics from an error in foot placement may inform prescription practice and lead to new interventions designed to improve balance. Ten unilateral transtibial amputees were fit with two prosthetic feet with different stiffness properties in random order. After a 3-week acclimation period, they returned to the lab for testing before switching feet. Twelve non-amputees also participated in a single data collection. While walking on an instrumented treadmill, we imposed a repeatable, unexpected medial or lateral disturbance in foot placement by releasing a burst of air at the ankle just before heel strike. Three-dimensional motion capture, ground reaction force and center of pressure (COP) data were collected for two steps prior, the disturbed step and three steps after the disturbance. During undisturbed walking, coronal ankle impulse was lower by 42% for amputees wearing a stiff compared to a compliant foot (p=0.017); however, across steps, both prosthetic recovery patterns were similar compared to the sound limb and non-amputees. Peak coronal hip moment was 15-20% lower for both foot types during undisturbed walking (p<0.001), with less change in response to the medial disturbance (p<0.001) compared to the sound limb and non-amputees. Amputee prosthetic COP excursion was unaffected by the disturbance (2.4% change) compared to the sound limb (59% change; p<0.001) and non-amputees (55% change; p<0.001). These findings imply that a prosthetic foot-ankle system able to contribute to ankle kinetics may improve walking balance among amputees. Published by Elsevier Ltd.
Thomas, J Graham; Bond, Dale S
2015-12-01
Just-in-time adaptive interventions (JITAIs) use mobile computers, sensors, and software analytics to automatically detect behavior and deliver tailored treatment. However, little is known about how JITAIs influence patterns of behavior or how best to design JITAIs for maximum effect. This study examined prompts and behavioral response to the B-MOBILE JITAI for reducing sedentary behavior (SB) in overweight/obese individuals. Thirty participants (83% women; 67% White, mean ± SD body mass index = 36.2 kg/m2) tested 3 conditions presented in a randomized counterbalanced order involving smartphone-based prompts for walking breaks of (a) 3 min after 30 SB min, (b) 6 min after 60 SB min, and (c) 12 min after 120 SB min. Participants carried the smartphone an average of 6.90 days during each 7-day condition, for an average of 14.94 hr per day. The 3- and 6-min conditions resulted in the greatest number of prompts, walking breaks, the best adherence to prompts, the greatest amount of daily time spent in walking breaks, and fastest adherence to prompts (ps < .01). Small but statistically significant decreases in the number of daily walking breaks, adherence to prompts, and minutes per day spent in walking breaks were observed as a function of the number of days spent in a condition (ps < .05). The B-MOBILE JITAI was effective in prompting breaks in sedentary behavior when it was most clinically relevant. Frequent prompts for small change may be an optimal strategy for shaping sedentary behavior, although more research is needed to determine how best to promote long-term adherence. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Thomas, J. Graham; Bond, Dale S.
2015-01-01
Objective Just-in-time adaptive interventions (JITAIs) use mobile computers, sensors, and software analytics to automatically detect behavior and deliver tailored treatment. However, little is known about how JITAIs influence patterns of behavior or how best to design JITAIs for maximum effect. Methods This study examined prompts and behavioral response to the B-MOBILE JITAI for reducing sedentary behavior (SB) in overweight/obese individuals. Thirty participants (83% women; 67% White, mean ± SD body mass index = 36.2 kg/m2) tested three conditions presented in a randomized counterbalanced order involving smartphone-based prompts for walking breaks of (1) 3-min after 30 SB min; (2) 6-min after 60 SB min; and (3) 12-min after 120 SB min. Results Participants carried the smartphone an average of 6.90 days during each 7-day condition, for an average of 14.94 hours per day. The 3- and 6-min conditions resulted in the greatest number of prompts, walking breaks, the best adherence to prompts, the greatest amount of daily time spent in walking breaks, and fastest adherence to prompts (ps < .01). Small but statistically significant decreases in the number of daily walking breaks, adherence to prompts, and minutes per day spent in walking breaks were observed as a function of the number of days spent in a condition (ps < .05). Conclusions The B-MOBILE JITAI was effective in prompting breaks in sedentary behavior when it is most clinically relevant. Frequent prompts for small change may be an optimal strategy for shaping sedentary behavior, although more research is needed to determine how best to promote long-term adherence. PMID:26651467
Random-walk approach to the d -dimensional disordered Lorentz gas
NASA Astrophysics Data System (ADS)
Adib, Artur B.
2008-02-01
A correlated random walk approach to diffusion is applied to the disordered nonoverlapping Lorentz gas. By invoking the Lu-Torquato theory for chord-length distributions in random media [J. Chem. Phys. 98, 6472 (1993)], an analytic expression for the diffusion constant in arbitrary number of dimensions d is obtained. The result corresponds to an Enskog-like correction to the Boltzmann prediction, being exact in the dilute limit, and better or nearly exact in comparison to renormalized kinetic theory predictions for all allowed densities in d=2,3 . Extensive numerical simulations were also performed to elucidate the role of the approximations involved.
NASA Astrophysics Data System (ADS)
Meirovitch, Hagai
1985-12-01
The scanning method proposed by us [J. Phys. A 15, L735 (1982); Macromolecules 18, 563 (1985)] for simulation of polymer chains is further developed and applied, for the first time, to a model with finite interactions. In addition to ``importance sampling,'' we remove the bias introduced by the scanning method with a procedure suggested recently by Schmidt [Phys. Rev. Lett. 51, 2175 (1983)]; this procedure has the advantage of enabling one to estimate the statistical error. We find these two procedures to be equally efficient. The model studied is an N-step random walk on a lattice, in which a random walk i has a statistical weight &, where p<1 is an attractive energy parameter and Mi is the number of distinct sites visited by walk i. This model, which corresponds to a model of random walks moving in a medium with randomly distributed static traps, has been solved analytically for N-->∞ for any dimension d by Donsker and Varadhan (DV) and by others.
Schauer, Michael; Mauritz, Karl-Heinz
2003-11-01
To demonstrate the effect of rhythmical auditory stimulation in a musical context for gait therapy in hemiparetic stroke patients, when the stimulation is played back measure by measure initiated by the patient's heel-strikes (musical motor feedback). Does this type of musical feedback improve walking more than a less specific gait therapy? The randomized controlled trial considered 23 registered stroke patients. Two groups were created by randomization: the control group received 15 sessions of conventional gait therapy and the test group received 15 therapy sessions with musical motor feedback. Inpatient rehabilitation hospital. Median post-stroke interval was 44 days and the patients were able to walk without technical aids with a speed of approximately 0.71 m/s. Gait velocity, step duration, gait symmetry, stride length and foot rollover path length (heel-on-toe-off distance). The test group showed more mean improvement than the control group: stride length increased by 18% versus 0%, symmetry deviation decreased by 58% versus 20%, walking speed increased by 27% versus 4% and rollover path length increased by 28% versus 11%. Musical motor feedback improves the stroke patient's walk in selected parameters more than conventional gait therapy. A fixed memory in the patient's mind about the song and its timing may stimulate the improvement of gait even without the presence of an external pacemaker.
Taveggia, Giovanni; Borboni, Alberto; Mulé, Chiara; Negrini, Stefano
2016-01-01
Robot gait training has the potential to increase the effectiveness of walking therapy. Clinical outcomes after robotic training are often not superior to conventional therapy. We evaluated the effectiveness of a robot training compared with a usual gait training physiotherapy during a standardized rehabilitation protocol in inpatient participants with poststroke hemiparesis. This was a randomized double-blind clinical trial in a postacute physical and rehabilitation medicine hospital. Twenty-eight patients, 39.3% women (72±6 years), with hemiparesis (<6 months after stroke) receiving a conventional treatment according to the Bobath approach were assigned randomly to an experimental or a control intervention of robot gait training to improve walking (five sessions a week for 5 weeks). Outcome measures included the 6-min walk test, the 10 m walk test, Functional Independence Measure, SF-36 physical functioning and the Tinetti scale. Outcomes were collected at baseline, immediately following the intervention period and 3 months following the end of the intervention. The experimental group showed a significant increase in functional independence and gait speed (10 m walk test) at the end of the treatment and follow-up, higher than the minimal detectable change. The control group showed a significant increase in the gait endurance (6-min walk test) at the follow-up, higher than the minimal detectable change. Both treatments were effective in the improvement of gait performances, although the statistical analysis of functional independence showed a significant improvement in the experimental group, indicating possible advantages during generic activities of daily living compared with overground treatment. PMID:26512928
Xu, Qun; Guo, Feng; Salem, Hassan M Abo; Chen, Hong; Huang, Xiaolin
2017-12-01
To investigate the effectiveness of mirror therapy combined with neuromuscular electrical stimulation in promoting motor recovery of the lower limbs and walking ability in patients suffering from foot drop after stroke. Randomized controlled study. Inpatient rehabilitation center of a teaching hospital. Sixty-nine patients with foot drop. Patients were randomly divided into three groups: control, mirror therapy, and mirror therapy + neuromuscular electrical stimulation. All groups received interventions for 0.5 hours/day and five days/week for four weeks. 10-Meter walk test, Brunnstrom stage of motor recovery of the lower limbs, Modified Ashworth Scale score of plantar flexor spasticity, and passive ankle joint dorsiflexion range of motion were assessed before and after the four-week period. After four weeks of intervention, Brunnstrom stage ( P = 0.04), 10-meter walk test ( P < 0.05), and passive range of motion ( P < 0.05) showed obvious improvements between patients in the mirror therapy and control groups. Patients in the mirror therapy + neuromuscular electrical stimulation group showed better results than those in the mirror therapy group in the 10-meter walk test ( P < 0.05). There was no significant difference in spasticity between patients in the two intervention groups. However, compared with patients in the control group, patients in the mirror therapy + neuromuscular electrical stimulation group showed a significant decrease in spasticity ( P < 0.001). Therapy combining mirror therapy and neuromuscular electrical stimulation may help improve walking ability and reduce spasticity in stroke patients with foot drop.
A random walk model for evaluating clinical trials involving serial observations.
Hopper, J L; Young, G P
1988-05-01
For clinical trials where the variable of interest is ordered and categorical (for example, disease severity, symptom scale), and where measurements are taken at intervals, it might be possible to achieve a greater discrimination between the efficacy of treatments by modelling each patient's progress as a stochastic process. The random walk is a simple, easily interpreted model that can be fitted by maximum likelihood using a maximization routine with inference based on standard likelihood theory. In general the model can allow for randomly censored data, incorporates measured prognostic factors, and inference is conditional on the (possibly non-random) allocation of patients. Tests of fit and of model assumptions are proposed, and application to two therapeutic trials of gastroenterological disorders are presented. The model gave measures of the rate of, and variability in, improvement for patients under different treatments. A small simulation study suggested that the model is more powerful than considering the difference between initial and final scores, even when applied to data generated by a mechanism other than the random walk model assumed in the analysis. It thus provides a useful additional statistical method for evaluating clinical trials.
DePaul, Vincent G; Wishart, Laurie R; Richardson, Julie; Lee, Timothy D; Thabane, Lehana
2011-10-21
Although task-oriented training has been shown to improve walking outcomes after stroke, it is not yet clear whether one task-oriented approach is superior to another. The purpose of this study is to compare the effectiveness of the Motor Learning Walking Program (MLWP), a varied overground walking task program consistent with key motor learning principles, to body-weight-supported treadmill training (BWSTT) in community-dwelling, ambulatory, adults within 1 year of stroke. A parallel, randomized controlled trial with stratification by baseline gait speed will be conducted. Allocation will be controlled by a central randomization service and participants will be allocated to the two active intervention groups (1:1) using a permuted block randomization process. Seventy participants will be assigned to one of two 15-session training programs. In MLWP, one physiotherapist will supervise practice of various overground walking tasks. Instructions, feedback, and guidance will be provided in a manner that facilitates self-evaluation and problem solving. In BWSTT, training will emphasize repetition of the normal gait cycle while supported over a treadmill, assisted by up to three physiotherapists. Outcomes will be assessed by a blinded assessor at baseline, post-intervention and at 2-month follow-up. The primary outcome will be post-intervention comfortable gait speed. Secondary outcomes include fast gait speed, walking endurance, balance self-efficacy, participation in community mobility, health-related quality of life, and goal attainment. Groups will be compared using analysis of covariance with baseline gait speed strata as the single covariate. Intention-to-treat analysis will be used. In order to direct clinicians, patients, and other health decision-makers, there is a need for a head-to-head comparison of different approaches to active, task-related walking training after stroke. We hypothesize that outcomes will be optimized through the application of a task-related training program that is consistent with key motor learning principles related to practice, guidance and feedback. ClinicalTrials.gov # NCT00561405.
2011-01-01
Background Although task-oriented training has been shown to improve walking outcomes after stroke, it is not yet clear whether one task-oriented approach is superior to another. The purpose of this study is to compare the effectiveness of the Motor Learning Walking Program (MLWP), a varied overground walking task program consistent with key motor learning principles, to body-weight-supported treadmill training (BWSTT) in community-dwelling, ambulatory, adults within 1 year of stroke. Methods/Design A parallel, randomized controlled trial with stratification by baseline gait speed will be conducted. Allocation will be controlled by a central randomization service and participants will be allocated to the two active intervention groups (1:1) using a permuted block randomization process. Seventy participants will be assigned to one of two 15-session training programs. In MLWP, one physiotherapist will supervise practice of various overground walking tasks. Instructions, feedback, and guidance will be provided in a manner that facilitates self-evaluation and problem solving. In BWSTT, training will emphasize repetition of the normal gait cycle while supported over a treadmill, assisted by up to three physiotherapists. Outcomes will be assessed by a blinded assessor at baseline, post-intervention and at 2-month follow-up. The primary outcome will be post-intervention comfortable gait speed. Secondary outcomes include fast gait speed, walking endurance, balance self-efficacy, participation in community mobility, health-related quality of life, and goal attainment. Groups will be compared using analysis of covariance with baseline gait speed strata as the single covariate. Intention-to-treat analysis will be used. Discussion In order to direct clinicians, patients, and other health decision-makers, there is a need for a head-to-head comparison of different approaches to active, task-related walking training after stroke. We hypothesize that outcomes will be optimized through the application of a task-related training program that is consistent with key motor learning principles related to practice, guidance and feedback. Trial Registration ClinicalTrials.gov # NCT00561405 PMID:22018267
Banck-Petersen, Anna; Olsen, Cecilie K; Djurhuus, Sissal S; Herrstedt, Anita; Thorsen-Streit, Sarah; Ried-Larsen, Mathias; Østerlind, Kell; Osterkamp, Jens; Krarup, Peter-Martin; Vistisen, Kirsten; Mosgaard, Camilla S; Pedersen, Bente K; Højman, Pernille; Christensen, Jesper F
2018-03-01
Low physical activity level is associated with poor prognosis in patients with colorectal cancer (CRC). To increase physical activity, technology-based platforms are emerging and provide intriguing opportunities to prescribe and monitor active lifestyle interventions. The "Interval Walking in Colorectal Cancer"(I-WALK-CRC) study explores the feasibility and efficacy a home-based interval-walking intervention delivered by a smart-phone application in order to improve cardio-metabolic health profile among CRC survivors. The aim of the present report is to describe the design, methods and recruitment results of the I-WALK-CRC study.Methods/Results: The I-WALK-CRC study is a randomized controlled trial designed to evaluate the feasibility and efficacy of a home-based interval walking intervention compared to a waiting-list control group for physiological and patient-reported outcomes. Patients who had completed surgery for local stage disease and patients who had completed surgery and any adjuvant chemotherapy for locally advanced stage disease were eligible for inclusion. Between October 1st , 2015, and February 1st , 2017, 136 inquiries were recorded; 83 patients were eligible for enrollment, and 42 patients accepted participation. Age and employment status were associated with participation, as participants were significantly younger (60.5 vs 70.8 years, P < 0.001) and more likely to be working (OR 5.04; 95%CI 1.96-12.98, P < 0.001) than non-participants. In the present study, recruitment of CRC survivors was feasible but we aim to better the recruitment rate in future studies. Further, the study clearly favored younger participants. The I-WALK-CRC study will provide important information regarding feasibility and efficacy of a home-based walking exercise program in CRC survivors.
Jaywant, Abhishek; Ellis, Terry D; Roy, Serge; Lin, Cheng-Chieh; Neargarder, Sandy; Cronin-Golomb, Alice
2016-05-01
To examine the feasibility and efficacy of a home-based gait observation intervention for improving walking in Parkinson disease (PD). Participants were randomly assigned to an intervention or control condition. A baseline walking assessment, a training period at home, and a posttraining assessment were conducted. The laboratory and participants' home and community environments. Nondemented individuals with PD (N=23) experiencing walking difficulty. In the gait observation (intervention) condition, participants viewed videos of healthy and parkinsonian gait. In the landscape observation (control) condition, participants viewed videos of moving water. These tasks were completed daily for 8 days. Spatiotemporal walking variables were assessed using accelerometers in the laboratory (baseline and posttraining assessments) and continuously at home during the training period. Variables included daily activity, walking speed, stride length, stride frequency, leg swing time, and gait asymmetry. Questionnaires including the 39-item Parkinson Disease Questionnaire (PDQ-39) were administered to determine self-reported change in walking, as well as feasibility. At posttraining assessment, only the gait observation group reported significantly improved mobility (PDQ-39). No improvements were seen in accelerometer-derived walking data. Participants found the at-home training tasks and accelerometer feasible to use. Participants found procedures feasible and reported improved mobility, suggesting that observational training holds promise in the rehabilitation of walking in PD. Observational training alone, however, may not be sufficient to enhance walking in PD. A more challenging and adaptive task, and the use of explicit perceptual learning and practice of actions, may be required to effect change. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Fields, Jo; Richardson, Alison; Hopkinson, Jane; Fenlon, Deborah
2016-10-01
Women taking aromatase inhibitors as treatment for breast cancer commonly experience joint pain and stiffness (aromatase inhibitor-associated arthralgia [AIAA]), which can cause problems with adherence. There is evidence that exercise might be helpful, and Nordic walking could reduce joint pain compared to normal walking. To determine the feasibility of a trial of Nordic walking as an exercise intervention for women with AIAA. A feasibility study was carried out in a sample of women with AIAA using a randomized control design. Women were randomized to exercise (six-week supervised group Nordic walking training once per week with an increasing independent element, followed by six weeks 4 × 30 minutes/week independent Nordic walking); or enhanced usual care. Data were collected on recruitment, retention, exercise adherence, safety, and acceptability. The Brief Pain Inventory, GP Physical Activity Questionnaire, and biopsychosocial measures were completed at baseline, six and 12 weeks. Forty of 159 eligible women were recruited and attrition was 10%. There was no increased lymphedema and no long-term or serious injury. Adherence was >90% for weekly supervised group Nordic walking, and during independent Nordic walking, >80% women managed one to two Nordic walking sessions per week. From baseline to study end point, overall activity levels increased and pain reduced in both the intervention and control groups. Our findings indicate that women with AIAA are prepared to take up Nordic walking, complete a six-week supervised course and maintain increased activity levels over a 12-week period with no adverse effects. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Cheng, Fang-Yu; Yang, Yea-Ru; Wu, Yih-Ru; Cheng, Shih-Jung; Wang, Ray-Yau
2017-10-01
The purpose of this study was to investigate the effects of curved-walking training (CWT) on curved-walking performance and freezing of gait (FOG) in people with Parkinson's disease (PD). Twenty-four PD subjects were recruited and randomly assigned to the CWT group or control exercise (CE) group and received 12 sessions of either CWT with a turning-based treadmill or general exercise training for 30 min followed by 10 min of over-ground walking in each session for 4-6 weeks. The primary outcomes included curved-walking performance and FOG. All measurements were assessed at baseline, after training, and at 1-month follow-up. Our results showed significant improvements in curved-walking performance (speed, p = 0.007; cadence, p = 0.003; step length, p < 0.001) and FOG, measured by a FOG questionnaire (p = 0.004). The secondary outcomes including straight-walking performance (speed, cadence and step length, p < 0.001), timed up and go test (p = 0.014), functional gait assessment (p < 0.001), Unified Parkinson's disease Rating Scale III (p = 0.001), and quality of life (p < 0.001) were also improved in the experimental group. We further noted that the improvements were maintained for at least one month after training (p < 0.05). A 12-session CWT program can improve curved-walking ability, FOG, and other measures of functional walking performance in individuals with PD. Most of the improvements were sustained for at least one month after training. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessing Walking Strategies Using Insole Pressure Sensors for Stroke Survivors.
Munoz-Organero, Mario; Parker, Jack; Powell, Lauren; Mawson, Susan
2016-10-01
Insole pressure sensors capture the different forces exercised over the different parts of the sole when performing tasks standing up such as walking. Using data analysis and machine learning techniques, common patterns and strategies from different users to achieve different tasks can be automatically extracted. In this paper, we present the results obtained for the automatic detection of different strategies used by stroke survivors when walking as integrated into an Information Communication Technology (ICT) enhanced Personalised Self-Management Rehabilitation System (PSMrS) for stroke rehabilitation. Fourteen stroke survivors and 10 healthy controls have participated in the experiment by walking six times a distance from chair to chair of approximately 10 m long. The Rivermead Mobility Index was used to assess the functional ability of each individual in the stroke survivor group. Several walking strategies are studied based on data gathered from insole pressure sensors and patterns found in stroke survivor patients are compared with average patterns found in healthy control users. A mechanism to automatically estimate a mobility index based on the similarity of the pressure patterns to a stereotyped stride is also used. Both data gathered from stroke survivors and healthy controls are used to evaluate the proposed mechanisms. The output of trained algorithms is applied to the PSMrS system to provide feedback on gait quality enabling stroke survivors to self-manage their rehabilitation.
Yang, Yong; Diez-Roux, Ana V
2017-09-01
Studies on how the interaction of psychological and environmental characteristics influences walking are limited, and the results are inconsistent. Our aim is to examine how the attitude toward walking and neighborhood environments interacts to influence walking. Cross-sectional phone and mail survey. Participants randomly sampled from 6 study sites including Los Angeles, Chicago, Baltimore, Minneapolis, Manhattan, and Bronx Counties in New York City, and Forsyth and Davidson Counties in North Carolina. The final sample consisted of 2621 persons from 2011 to 2012. Total minutes of walking for travel or leisure, attitude toward walking, and perceptions of the neighborhood environments were self-reported. Street Smart (SS) Walk Score (a measure of walkability derived from a variety of geographic data) was obtained for each residential location. Linear regression models adjusting for age, gender, race/ethnicity, education, and income. Attitude toward walking was positively associated with walking for both purposes. Walking for travel was significantly associated with SS Walk Score, whereas walking for leisure was not. The SS Walk Score and selected perceived environment characteristics were associated with walking in people with a very positive attitude toward walking but were not associated with walking in people with a less positive attitude. Attitudes toward walking and neighborhood environments interact to affect walking behavior.
Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D
2015-01-01
About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive-physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (-77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). Long-term multicomponent cognitive-physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning.
Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D
2015-01-01
Background About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive–physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Methods Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Results Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (−77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). Conclusion Long-term multicomponent cognitive–physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning. PMID:26604719
Continuous-time random walks with reset events. Historical background and new perspectives
NASA Astrophysics Data System (ADS)
Montero, Miquel; Masó-Puigdellosas, Axel; Villarroel, Javier
2017-09-01
In this paper, we consider a stochastic process that may experience random reset events which relocate the system to its starting position. We focus our attention on a one-dimensional, monotonic continuous-time random walk with a constant drift: the process moves in a fixed direction between the reset events, either by the effect of the random jumps, or by the action of a deterministic bias. However, the orientation of its motion is randomly determined after each restart. As a result of these alternating dynamics, interesting properties do emerge. General formulas for the propagator as well as for two extreme statistics, the survival probability and the mean first-passage time, are also derived. The rigor of these analytical results is verified by numerical estimations, for particular but illuminating examples.
Continuous-time random-walk model for financial distributions
NASA Astrophysics Data System (ADS)
Masoliver, Jaume; Montero, Miquel; Weiss, George H.
2003-02-01
We apply the formalism of the continuous-time random walk to the study of financial data. The entire distribution of prices can be obtained once two auxiliary densities are known. These are the probability densities for the pausing time between successive jumps and the corresponding probability density for the magnitude of a jump. We have applied the formalism to data on the U.S. dollar deutsche mark future exchange, finding good agreement between theory and the observed data.
Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing
2010-03-01
because only certain collections (partitioned by font type) of sequences are allowed to be in each position (e.g., Arial = position 0, Comic ...rigidity of short oligos and the shape of the polar charge. Oligo movement was modeled by a Brownian motion 3 dimensional random walk. The one...temperature, kB is Boltz he viscosity of the medium. The random walk motion is modeled by assuming the oligo is on a three dimensional lattice and may
NASA Technical Reports Server (NTRS)
Englert, G. W.
1971-01-01
A model of the random walk is formulated to allow a simple computing procedure to replace the difficult problem of solution of the Fokker-Planck equation. The step sizes and probabilities of taking steps in the various directions are expressed in terms of Fokker-Planck coefficients. Application is made to many particle systems with Coulomb interactions. The relaxation of a highly peaked velocity distribution of particles to equilibrium conditions is illustrated.
Ant-inspired density estimation via random walks
Musco, Cameron; Su, Hsin-Hao
2017-01-01
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks. PMID:28928146
Noise in two-color electronic distance meter measurements revisited
Langbein, J.
2004-01-01
Frequent, high-precision geodetic data have temporally correlated errors. Temporal correlations directly affect both the estimate of rate and its standard error; the rate of deformation is a key product from geodetic measurements made in tectonically active areas. Various models of temporally correlated errors are developed and these provide relations between the power spectral density and the data covariance matrix. These relations are applied to two-color electronic distance meter (EDM) measurements made frequently in California over the past 15-20 years. Previous analysis indicated that these data have significant random walk error. Analysis using the noise models developed here indicates that the random walk model is valid for about 30% of the data. A second 30% of the data can be better modeled with power law noise with a spectral index between 1 and 2, while another 30% of the data can be modeled with a combination of band-pass-filtered plus random walk noise. The remaining 10% of the data can be best modeled as a combination of band-pass-filtered plus power law noise. This band-pass-filtered noise is a product of an annual cycle that leaks into adjacent frequency bands. For time spans of more than 1 year these more complex noise models indicate that the precision in rate estimates is better than that inferred by just the simpler, random walk model of noise.
Central limit theorem for recurrent random walks on a strip with bounded potential
NASA Astrophysics Data System (ADS)
Dolgopyat, D.; Goldsheid, I.
2018-07-01
We prove that the recurrent random walk (RW) in random environment (RE) on a strip in bounded potential satisfies the central limit theorem (CLT). The key ingredients of the proof are the analysis of the invariant measure equation and construction of a linearly growing martingale for walks in bounded potential. Our main result implies a complete classification of recurrent i.i.d. RWRE on the strip. Namely the walk either exhibits the Sinai behaviour in the sense that converges, as , to a (random) limit (the Sinai law) or, it satisfies the CLT. Another application of our main result is the CLT for the quasiperiodic environments with Diophantine frequencies in the recurrent case. We complement this result by proving that in the transient case the CLT holds for all uniquely ergodic environments. We also investigate the algebraic structure of the environments satisfying the CLT. In particular, we show that there exists a collection of proper algebraic subvarieties in the space of transition probabilities, such that: • If RE is stationary and ergodic and the transition probabilities are con-centrated on one of subvarieties from our collection then the CLT holds. • If the environment is i.i.d then the above condition is also necessary forthe CLT. All these results are valid for one-dimensional RWRE with bounded jumps as a particular case of the strip model.
Distributed clone detection in static wireless sensor networks: random walk with network division.
Khan, Wazir Zada; Aalsalem, Mohammed Y; Saad, N M
2015-01-01
Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.
Leicht, Anthony; Crowther, Robert; Golledge, Jonathan
2015-05-18
This study examined the impact of regular supervised exercise on body fat, assessed via anthropometry, and eating patterns of peripheral arterial disease patients with intermittent claudication (IC). Body fat, eating patterns and walking ability were assessed in 11 healthy adults (Control) and age- and mass-matched IC patients undertaking usual care (n = 10; IC-Con) or supervised exercise (12-months; n = 10; IC-Ex). At entry, all groups exhibited similar body fat and eating patterns. Maximal walking ability was greatest for Control participants and similar for IC-Ex and IC-Con patients. Supervised exercise resulted in significantly greater improvements in maximal walking ability (IC-Ex 148%-170% vs. IC-Con 29%-52%) and smaller increases in body fat (IC-Ex -2.1%-1.4% vs. IC-Con 8.4%-10%). IC-Con patients exhibited significantly greater increases in body fat compared with Control at follow-up (8.4%-10% vs. -0.6%-1.4%). Eating patterns were similar for all groups at follow-up. The current study demonstrated that regular, supervised exercise significantly improved maximal walking ability and minimised increase in body fat amongst IC patients without changes in eating patterns. The study supports the use of supervised exercise to minimize cardiovascular risk amongst IC patients. Further studies are needed to examine the additional value of other lifestyle interventions such as diet modification.
Quantum walk on a chimera graph
NASA Astrophysics Data System (ADS)
Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.
2018-05-01
We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.
Non-linear continuous time random walk models★
NASA Astrophysics Data System (ADS)
Stage, Helena; Fedotov, Sergei
2017-11-01
A standard assumption of continuous time random walk (CTRW) processes is that there are no interactions between the random walkers, such that we obtain the celebrated linear fractional equation either for the probability density function of the walker at a certain position and time, or the mean number of walkers. The question arises how one can extend this equation to the non-linear case, where the random walkers interact. The aim of this work is to take into account this interaction under a mean-field approximation where the statistical properties of the random walker depend on the mean number of walkers. The implementation of these non-linear effects within the CTRW integral equations or fractional equations poses difficulties, leading to the alternative methodology we present in this work. We are concerned with non-linear effects which may either inhibit anomalous effects or induce them where they otherwise would not arise. Inhibition of these effects corresponds to a decrease in the waiting times of the random walkers, be this due to overcrowding, competition between walkers or an inherent carrying capacity of the system. Conversely, induced anomalous effects present longer waiting times and are consistent with symbiotic, collaborative or social walkers, or indirect pinpointing of favourable regions by their attractiveness. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Boyne, Pierce; Welge, Jeffrey; Kissela, Brett; Dunning, Kari
2017-03-01
To assess the influence of dosing parameters and patient characteristics on the efficacy of aerobic exercise (AEX) poststroke. A systematic review was conducted using PubMed, MEDLINE, Cumulative Index of Nursing and Allied Health Literature, Physiotherapy Evidence Database, and Academic Search Complete. Studies were selected that compared an AEX group with a nonaerobic control group among ambulatory persons with stroke. Extracted outcome data included peak oxygen consumption (V˙o 2 peak) during exercise testing, walking speed, and walking endurance (6-min walk test). Independent variables of interest were AEX mode (seated or walking), AEX intensity (moderate or vigorous), AEX volume (total hours), stroke chronicity, and baseline outcome scores. Significant between-study heterogeneity was confirmed for all outcomes. Pooled AEX effect size estimates (AEX group change minus control group change) from random effects models were V˙o 2 peak, 2.2mL⋅kg -1 ⋅min -1 (95% confidence interval [CI], 1.3-3.1mL⋅kg -1 ⋅min -1 ); walking speed, .06m/s (95% CI, .01-.11m/s); and 6-minute walk test distance, 29m (95% CI, 15-42m). In meta-regression, larger V˙o 2 peak effect sizes were significantly associated with higher AEX intensity and higher baseline V˙o 2 peak. Larger effect sizes for walking speed and the 6-minute walk test were significantly associated with a walking AEX mode. In contrast, seated AEX did not have a significant effect on walking outcomes. AEX significantly improves aerobic capacity poststroke, but may need to be task specific to affect walking speed and endurance. Higher AEX intensity is associated with better outcomes. Future randomized studies are needed to confirm these results. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Pilot study of a dog walking randomized intervention: effects of a focus on canine exercise.
Rhodes, Ryan E; Murray, Holly; Temple, Viviene A; Tuokko, Holly; Higgins, Joan Wharf
2012-05-01
The promotion of dog walking among owners who do not walk their dogs regularly may be a viable physical activity intervention aperture, yet research is very limited and no intervention studies have employed control groups. Therefore, the purpose of this pilot study was to examine the viability of dog walking for physical activity intervention using messages targeting canine exercise. Inactive dog owners (n=58) were randomized to either a standard control condition or the intervention (persuasive material about canine health from walking and a calendar to mark walks) after completing a baseline questionnaire package and wearing a pedometer for one week. Participants (standard condition n=28; intervention condition n=30) completed the six and 12 week follow-up questionnaire packages. Intention to treat analyses showed that both groups increased physical activity significantly across the 12 weeks (η(2)=0.09 to 0.21). The intervention group resulted in significantly higher step-counts compared to the control group (Δ 1823 steps) and showed significantly higher trajectories from baseline to 12 weeks in the self-reported physical activity measures (η(2)=0.11 to 0.27). The results are promising for the viability of increasing dog walking as a means for physical activity promotion and suggest that theoretical fidelity targeting canine exercise may be a helpful approach. Copyright © 2012 Elsevier Inc. All rights reserved.
Quantifying the dose-response of walking in reducing coronary heart disease risk: meta-analysis.
Zheng, Henry; Orsini, Nicola; Amin, Janaki; Wolk, Alicja; Nguyen, Van Thi Thuy; Ehrlich, Fred
2009-01-01
The evidence for the efficacy of walking in reducing the risk of and preventing coronary heart disease (CHD) is not completely understood. This meta-analysis aimed to quantify the dose-response relationship between walking and CHD risk reduction for both men and women in the general population. Studies on walking and CHD primary prevention between 1954 and 2007 were identified through Medline, SportDiscus and the Cochrane Database of Systematic Reviews. Random-effect meta-regression models were used to pool the relative risks from individual studies. A total of 11 prospective cohort studies and one randomized control trial study met the inclusion criteria, with 295,177 participants free of CHD at baseline and 7,094 cases at follow-up. The meta-analysis indicated that an increment of approximately 30 min of normal walking a day for 5 days a week was associated with 19% CHD risk reduction (95% CI = 14-23%; P-heterogeneity = 0.56; I (2) = 0%). We found no evidence of heterogeneity between subgroups of studies defined by gender (P = 0.67); age of the study population (P = 0.52); or follow-up duration (P = 0.77). The meta-analysis showed that the risk for developing CHD decreases as walking dose increases. Walking should be prescribed as an evidence-based effective exercise modality for CHD prevention in the general population.
Neuromuscular strategies for the transitions between level and hill surfaces during walking
Gottschall, Jinger S.; Nichols, T. Richard
2011-01-01
Despite continual fluctuations in walking surface properties, humans and animals smoothly transition between terrains in their natural surroundings. Walking transitions have the potential to influence dynamic balance in both the anterior–posterior and medial–lateral directions, thereby increasing fall risk and decreasing mobility. The goal of the current manuscript is to provide a review of the literature that pertains to the topic of surface slope transitions between level and hill surfaces, as well as report the recent findings of two experiments that focus on the neuromuscular strategies of surface slope transitions. Our results indicate that in anticipation of a change in surface slope, neuromuscular patterns during level walking prior to a hill are significantly different from the patterns during level walking without the future change in surface. Typically, the changes in muscle activity were due to co-contraction of opposing muscle groups and these changes correspond to modifications in head pitch. In addition, further experiments revealed that the neck proprioceptors may be an initial source of feedback for upcoming surface slope transitions. Together, these results illustrate that in order to safely traverse varying surfaces, transitions strides are functionally distinct from either level walking or hill walking independently. PMID:21502127
Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking.
Llewellyn, M; Yang, J F; Prochazka, A
1990-01-01
Hoffman (H) reflexes were elicited from the soleus (SOL) muscle while subjects walked on a treadmill and on a narrow beam (3.5 cm wide, raised 34 cm from the floor). The speed of walking on the treadmill was selected for each subject to match the background activation level of their SOL muscle during beam walking. The normal reciprocal activation pattern of the tibialis anterior and SOL muscles in treadmill walking was replaced by a pattern dominated by co-contraction on the beam. In addition, the step cycle duration was more variable and the time spent in the swing phase was reduced on the beam. The H-reflexes were highly modulated in both tasks, the amplitude being high in the stance phase and low in the swing phase. The H-reflex amplitude was on average 40% lower during beam walking than treadmill walking. The relationship between the H-reflex amplitude and the SOL EMG level was quantified by a regression line relating the two variables. The slope of this line was on average 41% lower in beam walking than treadmill walking. The lower H-reflex gain observed in this study and the high level of fusimotor drive observed in cats performing similar tasks suggest that the two mechanisms which control the excitability of this reflex pathway (i.e. fusimotor action and control of transmission at the muscle spindle to moto-neuron synapse) may be controlled independently.
Effect of multilayer high-compression bandaging on ankle range of motion and oxygen cost of walking
Roaldsen, K S; Elfving, B; Stanghelle, J K; Mattsson, E
2012-01-01
Objective To evaluate the effects of multilayer high-compression bandaging on ankle range of motion, oxygen consumption and subjective walking ability in healthy subjects. Method A volunteer sample of 22 healthy subjects (10 women and 12 men; aged 67 [63–83] years) were studied. The intervention included treadmill-walking at self-selected speed with and without multilayer high-compression bandaging (Proforeº), randomly selected. The primary outcome variables were ankle range of motion, oxygen consumption and subjective walking ability. Results Total ankle range of motion decreased 4% with compression. No change in oxygen cost of walking was observed. Less than half the subjects reported that walking-shoe comfort or walking distance was negatively affected. Conclusion Ankle range of motion decreased with compression but could probably be counteracted with a regular exercise programme. There were no indications that walking with compression was more exhausting than walking without. Appropriate walking shoes could seem important to secure gait efficiency when using compression garments. PMID:21810941
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufi, M; Asl, A Kamali; Geramifar, P
2015-06-15
Purpose: The objective of this study was to find the best seed localization parameters in random walk algorithm application to lung tumor delineation in Positron Emission Tomography (PET) images. Methods: PET images suffer from statistical noise and therefore tumor delineation in these images is a challenging task. Random walk algorithm, a graph based image segmentation technique, has reliable image noise robustness. Also its fast computation and fast editing characteristics make it powerful for clinical purposes. We implemented the random walk algorithm using MATLAB codes. The validation and verification of the algorithm have been done by 4D-NCAT phantom with spherical lungmore » lesions in different diameters from 20 to 90 mm (with incremental steps of 10 mm) and different tumor to background ratios of 4:1 and 8:1. STIR (Software for Tomographic Image Reconstruction) has been applied to reconstruct the phantom PET images with different pixel sizes of 2×2×2 and 4×4×4 mm{sup 3}. For seed localization, we selected pixels with different maximum Standardized Uptake Value (SUVmax) percentages, at least (70%, 80%, 90% and 100%) SUVmax for foreground seeds and up to (20% to 55%, 5% increment) SUVmax for background seeds. Also, for investigation of algorithm performance on clinical data, 19 patients with lung tumor were studied. The resulted contours from algorithm have been compared with nuclear medicine expert manual contouring as ground truth. Results: Phantom and clinical lesion segmentation have shown that the best segmentation results obtained by selecting the pixels with at least 70% SUVmax as foreground seeds and pixels up to 30% SUVmax as background seeds respectively. The mean Dice Similarity Coefficient of 94% ± 5% (83% ± 6%) and mean Hausdorff Distance of 1 (2) pixels have been obtained for phantom (clinical) study. Conclusion: The accurate results of random walk algorithm in PET image segmentation assure its application for radiation treatment planning and diagnosis.« less
Nonlocal operators, parabolic-type equations, and ultrametric random walks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacón-Cortes, L. F., E-mail: fchaconc@math.cinvestav.edu.mx; Zúñiga-Galindo, W. A., E-mail: wazuniga@math.cinvestav.edu.mx
2013-11-15
In this article, we introduce a new type of nonlocal operators and study the Cauchy problem for certain parabolic-type pseudodifferential equations naturally associated to these operators. Some of these equations are the p-adic master equations of certain models of complex systems introduced by Avetisov, V. A. and Bikulov, A. Kh., “On the ultrametricity of the fluctuation dynamicmobility of protein molecules,” Proc. Steklov Inst. Math. 265(1), 75–81 (2009) [Tr. Mat. Inst. Steklova 265, 82–89 (2009) (Izbrannye Voprosy Matematicheskoy Fiziki i p-adicheskogo Analiza) (in Russian)]; Avetisov, V. A., Bikulov, A. Kh., and Zubarev, A. P., “First passage time distribution and the numbermore » of returns for ultrametric random walks,” J. Phys. A 42(8), 085003 (2009); Avetisov, V. A., Bikulov, A. Kh., and Osipov, V. A., “p-adic models of ultrametric diffusion in the conformational dynamics of macromolecules,” Proc. Steklov Inst. Math. 245(2), 48–57 (2004) [Tr. Mat. Inst. Steklova 245, 55–64 (2004) (Izbrannye Voprosy Matematicheskoy Fiziki i p-adicheskogo Analiza) (in Russian)]; Avetisov, V. A., Bikulov, A. Kh., and Osipov, V. A., “p-adic description of characteristic relaxation in complex systems,” J. Phys. A 36(15), 4239–4246 (2003); Avetisov, V. A., Bikulov, A. H., Kozyrev, S. V., and Osipov, V. A., “p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A 35(2), 177–189 (2002); Avetisov, V. A., Bikulov, A. Kh., and Kozyrev, S. V., “Description of logarithmic relaxation by a model of a hierarchical random walk,” Dokl. Akad. Nauk 368(2), 164–167 (1999) (in Russian). The fundamental solutions of these parabolic-type equations are transition functions of random walks on the n-dimensional vector space over the field of p-adic numbers. We study some properties of these random walks, including the first passage time.« less
Simulating intrafraction prostate motion with a random walk model.
Pommer, Tobias; Oh, Jung Hun; Munck Af Rosenschöld, Per; Deasy, Joseph O
2017-01-01
Prostate motion during radiation therapy (ie, intrafraction motion) can cause unwanted loss of radiation dose to the prostate and increased dose to the surrounding organs at risk. A compact but general statistical description of this motion could be useful for simulation of radiation therapy delivery or margin calculations. We investigated whether prostate motion could be modeled with a random walk model. Prostate motion recorded during 548 radiation therapy fractions in 17 patients was analyzed and used for input in a random walk prostate motion model. The recorded motion was categorized on the basis of whether any transient excursions (ie, rapid prostate motion in the anterior and superior direction followed by a return) occurred in the trace and transient motion. This was separately modeled as a large step in the anterior/superior direction followed by a returning large step. Random walk simulations were conducted with and without added artificial transient motion using either motion data from all observed traces or only traces without transient excursions as model input, respectively. A general estimate of motion was derived with reasonable agreement between simulated and observed traces, especially during the first 5 minutes of the excursion-free simulations. Simulated and observed diffusion coefficients agreed within 0.03, 0.2 and 0.3 mm 2 /min in the left/right, superior/inferior, and anterior/posterior directions, respectively. A rapid increase in variance at the start of observed traces was difficult to reproduce and seemed to represent the patient's need to adjust before treatment. This could be estimated somewhat using artificial transient motion. Random walk modeling is feasible and recreated the characteristics of the observed prostate motion. Introducing artificial transient motion did not improve the overall agreement, although the first 30 seconds of the traces were better reproduced. The model provides a simple estimate of prostate motion during delivery of radiation therapy.
Why is walker-assisted gait metabolically expensive?
Priebe, Jonathon R; Kram, Rodger
2011-06-01
Walker-assisted gait is reported to be ∼200% more metabolically expensive than normal bipedal walking. However, previous studies compared different walking speeds. Here, we compared the metabolic power consumption and basic stride temporal-spatial parameters for 10 young, healthy adults walking without assistance and using 2-wheeled (2W), 4-wheeled (4W) and 4-footed (4F) walker devices, all at the same speed, 0.30m/s. We also measured the metabolic power demand for walking without any assistive device using a step-to gait at 0.30m/s, walking normally at 1.25m/s, and for repeated lifting of the 4F walker mimicking the lifting pattern used during 4F walker-assisted gait. Similar to previous studies, we found that the cost per distance walked was 217% greater with a 4F walker at 0.30m/s compared to unassisted, bipedal walking at 1.25m/s. Compared at the same speed, 0.30m/s, using a 4F walker was still 82%, 74%, and 55% energetically more expensive than walking unassisted, with a 4W walker and a 2W walker respectively. The sum of the metabolic cost of step-to walking plus the cost of lifting itself was equivalent to the cost of walking with a 4F walker. Thus, we deduce that the high cost of 4F walker assisted gait is due to three factors: the slow walking speed, the step-to gait pattern and the repeated lifting of the walker. Copyright © 2011 Elsevier B.V. All rights reserved.
History dependent quantum random walks as quantum lattice gas automata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakeel, Asif, E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu; Love, Peter J., E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu; Meyer, David A., E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu
Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of quantum walks in algorithmic applications. We show that several history dependent QRW can be identified as one-particle sectors of QLGA. This provides a unifying conceptual framework for these models in which the extra degrees of freedom required to store the historymore » information arise naturally as geometrical degrees of freedom on the lattice.« less
Scatterometry-based metrology for SAQP pitch walking using virtual reference
NASA Astrophysics Data System (ADS)
Kagalwala, Taher; Vaid, Alok; Mahendrakar, Sridhar; Lenahan, Michael; Fang, Fang; Isbester, Paul; Shifrin, Michael; Etzioni, Yoav; Cepler, Aron; Yellai, Naren; Dasari, Prasad; Bozdog, Cornel
2016-03-01
Advanced technology nodes, 10nm and beyond, employing multi-patterning techniques for pitch reduction pose new process and metrology challenges in maintaining consistent positioning of structural features. Self-Aligned Quadruple Patterning (SAQP) process is used to create the Fins in FinFET devices with pitch values well below optical lithography limits. The SAQP process bares compounding effects from successive Reactive Ion Etch (RIE) and spacer depositions. These processes induce a shift in the pitch value from one fin compared to another neighboring fin. This is known as pitch walking. Pitch walking affects device performance as well as later processes which work on an assumption that there is consistent spacing between fins. In SAQP there are 3 pitch walking parameters of interest, each linked to specific process steps in the flow. These pitch walking parameters are difficult to discriminate at a specific process step by singular evaluation technique or even with reference metrology such as Transmission Electron Microscopy (TEM). In this paper we will utilize a virtual reference to generate a scatterometry model to measure pitch walk for SAQP process flow.
NASA Astrophysics Data System (ADS)
Kagalwala, Taher; Vaid, Alok; Mahendrakar, Sridhar; Lenahan, Michael; Fang, Fang; Isbester, Paul; Shifrin, Michael; Etzioni, Yoav; Cepler, Aron; Yellai, Naren; Dasari, Prasad; Bozdog, Cornel
2016-10-01
Advanced technology nodes, 10 nm and beyond, employing multipatterning techniques for pitch reduction pose new process and metrology challenges in maintaining consistent positioning of structural features. A self-aligned quadruple patterning (SAQP) process is used to create the fins in FinFET devices with pitch values well below optical lithography limits. The SAQP process bears the compounding effects from successive reactive ion etch and spacer depositions. These processes induce a shift in the pitch value from one fin compared to another neighboring fin. This is known as pitch walking. Pitch walking affects device performance as well as later processes, which work on an assumption that there is consistent spacing between fins. In SAQP, there are three pitch walking parameters of interest, each linked to specific process steps in the flow. These pitch walking parameters are difficult to discriminate at a specific process step by singular evaluation technique or even with reference metrology, such as transmission electron microscopy. We will utilize a virtual reference to generate a scatterometry model to measure pitch walk for SAQP process flow.
Quantum Algorithms Based on Physical Processes
2013-12-03
quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of
Quantum Algorithms Based on Physical Processes
2013-12-02
quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of
Cott, Cheryl A; Dawson, Pamela; Sidani, Souraya; Wells, Donna
2002-01-01
The purpose of this study was to investigate the effects of a walking/talking program on residents' communication, ambulation, and level of function when there were two residents to one care provider (2:1). A randomized control trial design was used. Subjects were residents with Alzheimer disease in three geriatric long-term care facilities in Metropolitan Toronto. Residents who met the inclusion criteria were randomly assigned to one of three groups: walk-and-talk group (30 min, 5 times per week for 16 weeks, walking/talking in pairs), talk-only group (30 min, 5 times per week for 16 weeks, talk only in pairs), or no intervention. The outcome measures were the Functional Assessment of Communication Skills for Adults, the 2-min walk test, and London Psychogeriatric Rating Scale. Residents who received the walk-and-talk intervention did not demonstrate statistically significant differences in the outcome variables measured posttest when compared with residents who received the talk-only intervention or no intervention, even after controlling for individual differences. Variability in the outcomes measured posttest is explained by differences in the residents' level of cognitive impairment before the study rather than by study group membership. These findings are contradictory to those of previous studies.
Prakhinkit, Susaree; Suppapitiporn, Siriluck; Tanaka, Hirofumi; Suksom, Daroonwan
2014-05-01
The objectives of this study were to determine the effects of the novel Buddhism-based walking meditation (BWM) and the traditional walking exercise (TWE) on depression, functional fitness, and vascular reactivity. This was a randomized exercise intervention study. The study was conducted in a university hospital setting. Forty-five elderly participants aged 60-90 years with mild-to-moderate depressive symptoms were randomly allocated to the sedentary control, TWE, and BWM groups. The BWM program was based on aerobic walking exercise incorporating the Buddhist meditations performed 3 times/week for 12 weeks. Depression score, functional fitness, and endothelium-dependent vasodilation as measured by the flow-mediated dilation (FMD) were the outcome measures used. Muscle strength, flexibility, agility, dynamic balance, and cardiorespiratory endurance increased in both exercise groups (p<0.05). Depression score decreased (p<0.05) only in the BWM group. FMD improved (p<0.05) in both exercise groups. Significant reduction in plasma cholesterol, triglyceride, high-density lipoprotein cholesterol, and C-reactive protein were found in both exercise groups, whereas low-density lipoprotein cholesterol, cortisol, and interleukin-6 concentrations decreased only in the BWM group. Buddhist walking meditation was effective in reducing depression, improving functional fitness and vascular reactivity, and appears to confer greater overall improvements than the traditional walking program.
NASA Astrophysics Data System (ADS)
Machida, Manabu
2017-01-01
We consider the radiative transport equation in which the time derivative is replaced by the Caputo derivative. Such fractional-order derivatives are related to anomalous transport and anomalous diffusion. In this paper we describe how the time-fractional radiative transport equation is obtained from continuous-time random walk and see how the equation is related to the time-fractional diffusion equation in the asymptotic limit. Then we solve the equation with Legendre-polynomial expansion.
Superimposed Code Theoretic Analysis of Deoxyribonucleic Acid (DNA) Codes and DNA Computing
2010-01-01
partitioned by font type) of sequences are allowed to be in each position (e.g., Arial = position 0, Comic = position 1, etc. ) and within each collection...movement was modeled by a Brownian motion 3 dimensional random walk. The one dimensional diffusion coefficient D for the ellipsoid shape with 3...temperature, kB is Boltzmann’s constant, and η is the viscosity of the medium. The random walk motion is modeled by assuming the oligo is on a three
Coordinated Search for a Random Walk Target Motion
NASA Astrophysics Data System (ADS)
El-Hadidy, Mohamed Abd Allah; Abou-Gabal, Hamdy M.
This paper presents the cooperation between two searchers at the origin to find a Random Walk moving target on the real line. No information is not available about the target’s position all the time. Rather than finding the conditions that make the expected value of the first meeting time between one of the searchers and the target is finite, we show the existence of the optimal search strategy which minimizes this first meeting time. The effectiveness of this model is illustrated using a numerical example.
2006-09-01
Effect sizes are also shown for each randomization group (i.e., effect size from pretest to posttest ) and for the comparison of the two randomization...questions were answered. This study was designed to be a pilot study to quantify effect sizes of the effect of walking on quality of life...physical activity, body composition, and depending on inclusion criteria, estrogen metabolism. Second, this study was designed to assess the degree to
1992-12-01
suspect :mat, -n2 extent predict:.on cas jas ccsiziveiv crrei:=e amonc e v:arious models, :he fandom *.;aik, learn ha r ur e, i;<ea- variable and Bemis...Functions, Production Rate Adjustment Model, Learning Curve Model. Random Walk Model. Bemis Model. Evaluating Model Bias, Cost Prediction Bias. Cost...of four cost progress models--a random walk model, the tradiuonai learning curve model, a production rate model Ifixed-variable model). and a model
On Connected Diagrams and Cumulants of Erdős-Rényi Matrix Models
NASA Astrophysics Data System (ADS)
Khorunzhiy, O.
2008-08-01
Regarding the adjacency matrices of n-vertex graphs and related graph Laplacian we introduce two families of discrete matrix models constructed both with the help of the Erdős-Rényi ensemble of random graphs. Corresponding matrix sums represent the characteristic functions of the average number of walks and closed walks over the random graph. These sums can be considered as discrete analogues of the matrix integrals of random matrix theory. We study the diagram structure of the cumulant expansions of logarithms of these matrix sums and analyze the limiting expressions as n → ∞ in the cases of constant and vanishing edge probabilities.
Encounter success of free-ranging marine predator movements across a dynamic prey landscape.
Sims, David W; Witt, Matthew J; Richardson, Anthony J; Southall, Emily J; Metcalfe, Julian D
2006-05-22
Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of 'model' sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754 km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.
Nonlinear time series analysis of normal and pathological human walking
NASA Astrophysics Data System (ADS)
Dingwell, Jonathan B.; Cusumano, Joseph P.
2000-12-01
Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the walking patterns of all three subject groups were clearly distinguishable from linearly autocorrelated Gaussian noise. As a collateral benefit of the methodological approach taken in this study, some of the first steps at characterizing the underlying structure of human locomotor dynamics have been taken. Implications for understanding the neuromuscular control of locomotion are discussed.
McDermott, Mary M; Spring, Bonnie; Berger, Jeffrey S; Treat-Jacobson, Diane; Conte, Michael S; Creager, Mark A; Criqui, Michael H; Ferrucci, Luigi; Gornik, Heather L; Guralnik, Jack M; Hahn, Elizabeth A; Henke, Peter; Kibbe, Melina R; Kohlman-Trighoff, Debra; Li, Lingyu; Lloyd-Jones, Donald; McCarthy, Walter; Polonsky, Tamar S; Skelly, Christopher; Tian, Lu; Zhao, Lihui; Zhang, Dongxue; Rejeski, W Jack
2018-04-24
Clinical practice guidelines support home-based exercise for patients with peripheral artery disease (PAD), but no randomized trials have tested whether an exercise intervention without periodic medical center visits improves walking performance. To determine whether a home-based exercise intervention consisting of a wearable activity monitor and telephone coaching improves walking ability over 9 months in patients with PAD. Randomized clinical trial conducted at 3 US medical centers. Patients with PAD were randomized between June 18, 2015, and April 4, 2017, to home-based exercise vs usual care for 9 months. Final follow-up was on December 5, 2017. The exercise intervention group (n = 99) received 4 weekly medical center visits during the first month followed by 8 months of a wearable activity monitor and telephone coaching. The usual care group (n = 101) received no onsite sessions, active exercise, or coaching intervention. The primary outcome was change in 6-minute walk distance at 9-month follow-up (minimal clinically important difference [MCID], 20 m). Secondary outcomes included 9-month change in subcomponents of the Walking Impairment Questionnaire (WIQ) (0-100 score; 100, best), SF-36 physical functioning score, Patient-Reported Outcomes Measurement Information System (PROMIS) mobility questionnaire (higher = better; MCID, 2 points), PROMIS satisfaction with social roles questionnaire, PROMIS pain interference questionnaire (lower = better; MCID range, 3.5-4.5 points), and objectively measured physical activity. Among 200 randomized participants (mean [SD] age, 70.2 [10.4] years; 105 [52.5%] women), 182 (91%) completed 9-month follow-up. The mean change from baseline to 9-month follow-up in the 6-minute walk distance was 5.5 m in the intervention group vs 14.4 m in the usual care group (difference, -8.9 m; 95% CI, -26.0 to 8.2 m; P = .31). The exercise intervention worsened the PROMIS pain interference score, mean change from baseline to 9 months was 0.7 in the intervention group vs -2.8 in the usual care group (difference, 3.5; 95% CI, 1.3 to 5.8; P = .002). There were no significant between-group differences in the WIQ score, the SF-36 physical functioning score, or the PROMIS mobility or satisfaction with social roles scores. Among patients with PAD, a home-based exercise intervention consisting of a wearable activity monitor and telephone coaching, compared with usual care, did not improve walking performance at 9-month follow-up. These results do not support home-based exercise interventions of wearable devices and telephone counseling without periodic onsite visits to improve walking performance in patients with PAD. clinicaltrials.gov Identifier: NCT02462824.
3D exemplar-based random walks for tooth segmentation from cone-beam computed tomography images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Yuru, E-mail: peiyuru@cis.pku.edu.cn; Ai, Xin
Purpose: Tooth segmentation is an essential step in acquiring patient-specific dental geometries from cone-beam computed tomography (CBCT) images. Tooth segmentation from CBCT images is still a challenging task considering the comparatively low image quality caused by the limited radiation dose, as well as structural ambiguities from intercuspation and nearby alveolar bones. The goal of this paper is to present and discuss the latest accomplishments in semisupervised tooth segmentation with adaptive 3D shape constraints. Methods: The authors propose a 3D exemplar-based random walk method of tooth segmentation from CBCT images. The proposed method integrates semisupervised label propagation and regularization by 3Dmore » exemplar registration. To begin with, the pure random walk method is to get an initial segmentation of the teeth, which tends to be erroneous because of the structural ambiguity of CBCT images. And then, as an iterative refinement, the authors conduct a regularization by using 3D exemplar registration, as well as label propagation by random walks with soft constraints, to improve the tooth segmentation. In the first stage of the iteration, 3D exemplars with well-defined topologies are adapted to fit the tooth contours, which are obtained from the random walks based segmentation. The soft constraints on voxel labeling are defined by shape-based foreground dentine probability acquired by the exemplar registration, as well as the appearance-based probability from a support vector machine (SVM) classifier. In the second stage, the labels of the volume-of-interest (VOI) are updated by the random walks with soft constraints. The two stages are optimized iteratively. Instead of the one-shot label propagation in the VOI, an iterative refinement process can achieve a reliable tooth segmentation by virtue of exemplar-based random walks with adaptive soft constraints. Results: The proposed method was applied for tooth segmentation of twenty clinically captured CBCT images. Three metrics, including the Dice similarity coefficient (DSC), the Jaccard similarity coefficient (JSC), and the mean surface deviation (MSD), were used to quantitatively analyze the segmentation of anterior teeth including incisors and canines, premolars, and molars. The segmentation of the anterior teeth achieved a DSC up to 98%, a JSC of 97%, and an MSD of 0.11 mm compared with manual segmentation. For the premolars, the average values of DSC, JSC, and MSD were 98%, 96%, and 0.12 mm, respectively. The proposed method yielded a DSC of 95%, a JSC of 89%, and an MSD of 0.26 mm for molars. Aside from the interactive definition of label priors by the user, automatic tooth segmentation can be achieved in an average of 1.18 min. Conclusions: The proposed technique enables an efficient and reliable tooth segmentation from CBCT images. This study makes it clinically practical to segment teeth from CBCT images, thus facilitating pre- and interoperative uses of dental morphologies in maxillofacial and orthodontic treatments.« less
3D exemplar-based random walks for tooth segmentation from cone-beam computed tomography images.
Pei, Yuru; Ai, Xingsheng; Zha, Hongbin; Xu, Tianmin; Ma, Gengyu
2016-09-01
Tooth segmentation is an essential step in acquiring patient-specific dental geometries from cone-beam computed tomography (CBCT) images. Tooth segmentation from CBCT images is still a challenging task considering the comparatively low image quality caused by the limited radiation dose, as well as structural ambiguities from intercuspation and nearby alveolar bones. The goal of this paper is to present and discuss the latest accomplishments in semisupervised tooth segmentation with adaptive 3D shape constraints. The authors propose a 3D exemplar-based random walk method of tooth segmentation from CBCT images. The proposed method integrates semisupervised label propagation and regularization by 3D exemplar registration. To begin with, the pure random walk method is to get an initial segmentation of the teeth, which tends to be erroneous because of the structural ambiguity of CBCT images. And then, as an iterative refinement, the authors conduct a regularization by using 3D exemplar registration, as well as label propagation by random walks with soft constraints, to improve the tooth segmentation. In the first stage of the iteration, 3D exemplars with well-defined topologies are adapted to fit the tooth contours, which are obtained from the random walks based segmentation. The soft constraints on voxel labeling are defined by shape-based foreground dentine probability acquired by the exemplar registration, as well as the appearance-based probability from a support vector machine (SVM) classifier. In the second stage, the labels of the volume-of-interest (VOI) are updated by the random walks with soft constraints. The two stages are optimized iteratively. Instead of the one-shot label propagation in the VOI, an iterative refinement process can achieve a reliable tooth segmentation by virtue of exemplar-based random walks with adaptive soft constraints. The proposed method was applied for tooth segmentation of twenty clinically captured CBCT images. Three metrics, including the Dice similarity coefficient (DSC), the Jaccard similarity coefficient (JSC), and the mean surface deviation (MSD), were used to quantitatively analyze the segmentation of anterior teeth including incisors and canines, premolars, and molars. The segmentation of the anterior teeth achieved a DSC up to 98%, a JSC of 97%, and an MSD of 0.11 mm compared with manual segmentation. For the premolars, the average values of DSC, JSC, and MSD were 98%, 96%, and 0.12 mm, respectively. The proposed method yielded a DSC of 95%, a JSC of 89%, and an MSD of 0.26 mm for molars. Aside from the interactive definition of label priors by the user, automatic tooth segmentation can be achieved in an average of 1.18 min. The proposed technique enables an efficient and reliable tooth segmentation from CBCT images. This study makes it clinically practical to segment teeth from CBCT images, thus facilitating pre- and interoperative uses of dental morphologies in maxillofacial and orthodontic treatments.
Wu, Ming; Kim, Janis; Gaebler-Spira, Deborah J; Schmit, Brian D; Arora, Pooja
2017-11-01
To determine whether applying controlled resistance forces to the legs during the swing phase of gait may improve the efficacy of treadmill training as compared with applying controlled assistance forces in children with cerebral palsy (CP). Randomized controlled study. Research unit of a rehabilitation hospital. Children with spastic CP (N=23; mean age, 10.6y; range, 6-14y; Gross Motor Function Classification System levels, I-IV). Participants were randomly assigned to receive controlled assistance (n=11) or resistance (n=12) loads applied to the legs at the ankle. Participants underwent robotic treadmill training 3 times a week for 6 weeks (18 sessions). A controlled swing assistance/resistance load was applied to both legs starting from the toe-off to mid-swing phase of gait during training. Outcome measures consisted of overground walking speed, 6-minute walk distance, and Gross Motor Function Measure scores and were assessed pre and post 6 weeks of training and 8 weeks after the end of training. After 6 weeks of treadmill training in participants from the resistance training group, fast walking speed and 6-minute walk distance significantly improved (18% and 30% increases, respectively), and 6-minute walk distance was still significantly greater than that at baseline (35% increase) 8 weeks after the end of training. In contrast, overground gait speed and 6-minute walk distance had no significant changes after robotic assistance training. The results of the present study indicated that robotic resistance treadmill training is more effective than assistance training in improving locomotor function in children with CP. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
van Uffelen, Jannique G. Z.; Hopman-Rock, Marijke; van Mechelen, Willem
2007-01-01
Objectives To examine the effect of walking and vitamin B supplementation on quality-of-life (QoL) in community-dwelling adults with mild cognitive impairment. Methods One year, double-blind, placebo-controlled trial. Participants were randomized to: (1) twice-weekly, group-based, moderate-intensity walking program (n = 77) or a light-intensity placebo activity program (n = 75); and (2) daily vitamin B pills containing 5 mg folic acid, 0.4 mg B12, 50 mg B6 (n = 78) or placebo pills (n = 74). QoL was measured at baseline, after six and 12 months using the population-specific Dementia Quality-of-Life (D-QoL) to assess overall QoL and the generic Short-Form 12 mental and physical component scales (SF12-MCS and SF12-PCS) to assess health-related QoL. Results Baseline levels of QoL were relatively high. Modified intention-to-treat analyses revealed no positive main intervention effect of walking or vitamin supplementation. In both men and women, ratings of D-QoL-belonging and D-QoL-positive affect subscales improved with 0.003 (P = 0.04) and 0.002 points (P = 0.06) with each percent increase in attendance to the walking program. Only in men, SF12-MCS increased with 0.03 points with each percent increase in attendance (P = 0.08). Conclusion Several small but significant improvements in QoL were observed with increasing attendance to the walking program. No effect of vitamin B supplementation was observed. Trial Registration International Standard Randomized Controlled Trial Number Register, 19227688, http://www.controlled-trials.com/isrctn/. PMID:17616840
Kurz, Ilan; Gimmon, Yoav; Shapiro, Amir; Debi, Ronen; Snir, Yoram; Melzer, Itshak
2016-03-04
Falls are common among elderly, most of them occur while slipping or tripping during walking. We aimed to explore whether a training program that incorporates unexpected loss of balance during walking able to improve risk factors for falls. In a double-blind randomized controlled trial 53 community dwelling older adults (age 80.1±5.6 years), were recruited and randomly allocated to an intervention group (n = 27) or a control group (n = 26). The intervention group received 24 training sessions over 3 months that included unexpected perturbation of balance exercises during treadmill walking. The control group performed treadmill walking with no perturbations. The primary outcome measures were the voluntary step execution times, traditional postural sway parameters and Stabilogram-Diffusion Analysis. The secondary outcome measures were the fall efficacy Scale (FES), self-reported late life function (LLFDI), and Performance-Oriented Mobility Assessment (POMA). Compared to control, participation in intervention program that includes unexpected loss of balance during walking led to faster Voluntary Step Execution Times under single (p = 0.002; effect size [ES] =0.75) and dual task (p = 0.003; [ES] = 0.89) conditions; intervention group subjects showed improvement in Short-term Effective diffusion coefficients in the mediolateral direction of the Stabilogram-Diffusion Analysis under eyes closed conditions (p = 0.012, [ES] = 0.92). Compared to control there were no significant changes in FES, LLFDI, and POMA. An intervention program that includes unexpected loss of balance during walking can improve voluntary stepping times and balance control, both previously reported as risk factors for falls. This however, did not transferred to a change self-reported function and FES. ClinicalTrials.gov NCT01439451 .
Awad, Louis N.; Reisman, Darcy S.; Pohlig, Ryan T.; Binder-Macleod, Stuart A.
2015-01-01
Background Neurorehabilitation efforts have been limited in their ability to restore walking function after stroke. Recent work has demonstrated proof-of-concept for a Functional Electrical Stimulation (FES)-based combination therapy designed to improve poststroke walking by targeting deficits in paretic propulsion. Objectives To determine the effects on the energy cost of walking (EC) and long-distance walking ability of locomotor training that combines fast walking with FES to the paretic ankle musculature (FastFES). Methods Fifty participants >6 months poststroke were randomized to 12 weeks of gait training at self-selected speeds (SS), fast speeds (Fast), or FastFES. Participants’ 6-Minute Walk Test (6MWT) distance and EC at comfortable (EC-CWS) and fast (EC-Fast) walking speeds were measured pretraining, posttraining, and at a 3-month follow-up. A reduction in EC-CWS, independent of changes in speed, was the primary outcome. Also evaluated were group differences in the number of 6MWT responders and moderation by baseline speed. Results When compared with SS and Fast, FastFES produced larger reductions in EC (p’s ≤0.03). FastFES produced reductions of 24% and 19% in EC-CWS and EC-Fast (p’s <0.001), whereas neither Fast nor SS influenced EC. Between-group 6MWT differences were not observed; however, 73% of FastFES and 68% of Fast participants were responders, in contrast to 35% of SS participants. Conclusions Combining fast locomotor training with FES is an effective approach to reducing the high EC of persons poststroke. Surprisingly, differences in 6MWT gains were not observed between groups. Closer inspection of the 6MWT and EC relationship and elucidation of how reduced EC may influence walking-related disability is warranted. PMID:26621366
Kalron, Alon; Rosenblum, Uri; Frid, Lior; Achiron, Anat
2017-03-01
Evaluate the effects of a Pilates exercise programme on walking and balance in people with multiple sclerosis and compare this exercise approach to conventional physical therapy sessions. Randomized controlled trial. Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Israel. Forty-five people with multiple sclerosis, 29 females, mean age (SD) was 43.2 (11.6) years; mean Expanded Disability Status Scale (S.D) was 4.3 (1.3). Participants received 12 weekly training sessions of either Pilates ( n=22) or standardized physical therapy ( n=23) in an outpatient basis. Spatio-temporal parameters of walking and posturography parameters during static stance. Functional tests included the Time Up and Go Test, 2 and 6-minute walk test, Functional Reach Test, Berg Balance Scale and the Four Square Step Test. In addition, the following self-report forms included the Multiple Sclerosis Walking Scale and Modified Fatigue Impact Scale. At the termination, both groups had significantly increased their walking speed ( P=0.021) and mean step length ( P=0.023). According to the 2-minute and 6-minute walking tests, both groups at the end of the intervention program had increased their walking speed. Mean (SD) increase in the Pilates and physical therapy groups were 39.1 (78.3) and 25.3 (67.2) meters, respectively. There was no effect of group X time in all instrumented and clinical balance and gait measures. Pilates is a possible treatment option for people with multiple sclerosis in order to improve their walking and balance capabilities. However, this approach does not have any significant advantage over standardized physical therapy.
Effect of pretesting on intentions and behaviour: a pedometer and walking intervention.
Spence, John C; Burgess, Jenny; Rodgers, Wendy; Murray, Terra
2009-09-01
This study addressed the influence of pedometers and a pretest on walking intentions and behaviour. Using a Solomon four-group design, 63 female university students were randomly assigned to one of four conditions: pedometer and pretest (n = 16), pedometer and no pretest (n = 16), no pedometer and pretest (n = 15), no pedometer and no pretest (n = 16). The pretest conditions included questions on walking, intentions to walk 12,500 steps per day, and self-efficacy for walking 12,500 steps per day. In the pedometer conditions a Yamax Digi-Walker SW-650 pedometer was worn for one week. All participants completed posttest questions. While significant pretest x pedometer interactions would have indicated the presence of pretest sensitisation, no such interactions were observed for either intention or self-reported walking. Wearing pedometers reduced intentions for future walking and coping self-efficacy. However, after controlling for pretest self-reported walking, pedometer use resulted in more self-reported walking. We conclude that wearing a pedometer increased self-reported walking behaviour but that a pretest did not differentially influence walking intentions, behaviour, or self-efficacy.
Comparative Effectiveness of Two Walking Interventions on Participation, Step Counts, and Health.
Smith-McLallen, Aaron; Heller, Debbie; Vernisi, Kristin; Gulick, Diana; Cruz, Samantha; Snyder, Richard L
2017-03-01
To (1) compare the effects of two worksite-based walking interventions on employee participation rates; (2) compare average daily step counts between conditions, and; (3) examine the effects of increases in average daily step counts on biometric and psychologic outcomes. We conducted a cluster-randomized trial in which six employer groups were randomly selected and randomly assigned to condition. Four manufacturing worksites and two office-based worksite served as the setting. A total of 474 employees from six employer groups were included. A standard walking program was compared to an enhanced program that included incentives, feedback, competitive challenges, and monthly wellness workshops. Walking was measured by self-reported daily step counts. Survey measures and biometric screenings were administered at baseline and 3, 6, and 9 months after baseline. Analysis used linear mixed models with repeated measures. During 9 months, participants in the enhanced condition averaged 726 more steps per day compared with those in the standard condition (p < .001). A 1000-step increase in average daily steps was associated with significant weight loss for both men (-3.8 lbs.) and women (-2.1 lbs.), and reductions in body mass index (-0.41 men, -0.31 women). Higher step counts were also associated with improvements in mood, having more energy, and higher ratings of overall health. An enhanced walking program significantly increases participation rates and daily step counts, which were associated with weight loss and reductions in body mass index.
Stego on FPGA: An IWT Approach
Ramalingam, Balakrishnan
2014-01-01
A reconfigurable hardware architecture for the implementation of integer wavelet transform (IWT) based adaptive random image steganography algorithm is proposed. The Haar-IWT was used to separate the subbands namely, LL, LH, HL, and HH, from 8 × 8 pixel blocks and the encrypted secret data is hidden in the LH, HL, and HH blocks using Moore and Hilbert space filling curve (SFC) scan patterns. Either Moore or Hilbert SFC was chosen for hiding the encrypted data in LH, HL, and HH coefficients, whichever produces the lowest mean square error (MSE) and the highest peak signal-to-noise ratio (PSNR). The fixated random walk's verdict of all blocks is registered which is nothing but the furtive key. Our system took 1.6 µs for embedding the data in coefficient blocks and consumed 34% of the logic elements, 22% of the dedicated logic register, and 2% of the embedded multiplier on Cyclone II field programmable gate array (FPGA). PMID:24723794
INS/EKF-based stride length, height and direction intent detection for walking assistance robots.
Brescianini, Dario; Jung, Jun-Young; Jang, In-Hun; Park, Hyun Sub; Riener, Robert
2011-01-01
We propose an algorithm used to obtain the information on stride length, height difference, and direction based on user's intent during walking. For exoskeleton robots used to assist paraplegic patients' walking, this information is used to generate gait patterns by themselves in on-line. To obtain this information, we attach an inertial measurement unit(IMU) on crutches and apply an extended kalman filter-based error correction method to reduce the phenomena of drift due to bias of the IMU. The proposed method is verifed in real walking scenarios including walking, climbing up-stairs, and changing direction of walking with normal. © 2011 IEEE
Gharib, Nevein Mm; El-Maksoud, Gehan M Abd; Rezk-Allah, Soheir S
2011-10-01
To assess the effects of additional gait trainer assisted walking exercises on walking performance in children with hemiparetic cerebral palsy. A randomized controlled study. Paediatric physical therapy outpatient clinic. Thirty spastic hemiparetic cerebral palsied children of both sexes (10-13 years - 19 girls and 11 boys). Children were randomly assigned into two equal groups; experimental and control groups. Participants in both groups received a traditional physical therapy exercise programme. Those in the experimental group received additional gait trainer based walking exercises which aimed to improve walking performance. Treatment was provided three times per week for three successive months. Children received baseline and post-treatment assessments using Biodex Gait Trainer 2 assessment device to evaluate gait parameters including: average step length, walking speed, time on each foot (% of gait cycle) and ambulation index. Children in the experimental group showed a significant improvement as compared with those in the control group. The ambulation index was 75.53±7.36 (11.93 ± 2.89 change score) for the experimental group and 66.06 ± 5.48 (2.13 ± 4.43 change score) for the control group (t = 3.99 and P = 0.0001). Time of support for the affected side was 42.4 ± 3.37 (7 ± 2.20 change score) for the experimental group and 38.06 ± 4.63 (3.33 ± 6.25 change score) for the control group (t = 2.92 and P = 0.007). Also, there was a significant improvement in step length and walking speed in both groups. Gait trainer combined with traditional physiotherapy increase the chance of improving gait performance in children with spastic hemiparetic cerebral palsy.
Balemans, Astrid C J; van Wely, Leontien; Becher, Jules G; Dallmeijer, Annet J
2015-07-01
A vicious circle of decreased physical fitness, early fatigue, and low physical activity levels (PAL) is thought to affect children with cerebral palsy (CP). However, the relationship of changes in physical fitness to changes in PAL and fatigue is unclear. The objective of this study was to investigate the associations among changes in physical fitness, walking-related PAL, and fatigue in children with CP. This study was a secondary analysis of a randomized controlled trial with measurements at baseline, 6 months (after the intervention period), and 12 months. Twenty-four children with bilateral spastic CP and 22 with unilateral spastic CP, aged 7 to 13 years, all walking, participated in this study. Physical fitness was measured by aerobic capacity, anaerobic threshold, anaerobic capacity, and isometric and functional muscle strength. Walking-related PAL was measured using an ankle-worn activity monitor for 1 week. Fatigue was determined with the Pediatric Quality of Life (PedsQL) Multidimensional Fatigue Scale. Longitudinal associations were analyzed by random coefficient regression analysis. In children with bilateral CP, all fitness parameters showed a positive, significant association with walking-related PAL, whereas no associations between physical fitness and walking-related PAL were seen in children with unilateral CP. No clinically relevant association between physical fitness and fatigue was found. Although random coefficient regression analysis can be used to investigate longitudinal associations between parameters, a causal relationship cannot be determined. The actual direction of the association between physical fitness and walking-related PAL, therefore, remains inconclusive. Children with bilateral spastic CP might benefit from improved physical fitness to increase their PAL or vice versa, although this is not the case in children with unilateral CP. There appears to be no relationship between physical fitness and self-reported fatigue in children with CP. Interventions aimed at improving PAL may be differently targeted in children with either bilateral or unilateral CP. © 2015 American Physical Therapy Association.
Imam, Bita; Miller, William C; Finlayson, Heather C; Eng, Janice J; Payne, Michael Wc; Jarus, Tal; Goldsmith, Charles H; Mitchell, Ian M
2014-12-22
The number of older adults living with lower limb amputation (LLA) who require rehabilitation for improving their walking capacity and mobility is growing. Existing rehabilitation practices frequently fail to meet this demand. Nintendo Wii Fit may be a valuable tool to enable rehabilitation interventions. Based on pilot studies, we have developed "Wii.n.Walk", an in-home telehealth Wii Fit intervention targeted to improve walking capacity in older adults with LLA. The objective of this study is to determine whether the Wii.n.Walk intervention enhances walking capacity compared to an attention control group. This project is a multi-site (Vancouver BC, London ON), parallel, evaluator-blind randomized controlled trial. Participants include community-dwelling older adults over the age of 50 years with unilateral transtibial or transfemoral amputation. Participants will be stratified by site and block randomized in triplets to either the Wii.n.Walk intervention or an attention control group employing the Wii Big Brain cognitive software. This trial will include both supervised and unsupervised phases. During the supervised phase, both groups will receive 40-minute sessions of supervised group training three times per week for a duration of 4 weeks. Participants will complete the first week of the intervention in groups of three at their local rehabilitation center with a trainer. The remaining 3 weeks will take place at participants' homes using remote supervision by the trainer using Apple iPad technology. At the end of 4 weeks, the supervised period will end and the unsupervised period will begin. Participants will retain the Wii console and be encouraged to continue using the program for an additional 4 weeks' duration. The primary outcome measure will be the "Two-Minute Walk Test" to measure walking capacity. Outcome measures will be evaluated for all participants at baseline, after the end of both the supervised and unsupervised phases, and after 1-year follow up. Study staff have been hired and trained at both sites and recruitment is currently underway. No participants have been enrolled yet. Wii.n.Walk is a promising in-home telehealth intervention that may have useful applications for older adults with LLA who are discharged from rehabilitation or live in remote areas having limited or no access to existing rehabilitation programs. Clinicaltrial.gov NCT01942798; http://clinicaltrials.gov/ct2/show/NCT01942798 (Archived by WebCite at http://www.webcitation.org/6V0w8baKP).
Robot-assisted gait training in multiple sclerosis: a pilot randomized trial.
Beer, S; Aschbacher, B; Manoglou, D; Gamper, E; Kool, J; Kesselring, J
2008-03-01
To evaluate feasibility and perform an explanatory analysis of the efficacy of robot-assisted gait training (RAGT) in MS patients with severe walking disabilities (Expanded Disability Status Scale [EDSS] 6.0-7.5) in a pilot trial. Prospective, randomized, controlled clinical trial comparing RAGT with conventional walking training (CWT) in a group of stable MS patients (n = 35) during an inpatient rehabilitation stay, 15 sessions over three weeks. All patients participated additionally in a multimodal rehabilitation program. The primary outcome measure was walking velocity and secondary measures were 6-min-walking distance, stride length and knee-extensor strength. All tests were performed by an external blinded assessor at baseline after three weeks and at follow-up after six months. Additionally, Extended Barthel Index (EBI) at entry and discharge was assessed (not blinded), and acceptance/convenience of RAGT rated by patients (Visual Analogue Scale [VAS]) was recorded. Nineteen patients were randomly allocated to RAGT and 16 patients to CWT. Groups were comparable at baseline. There were 5 drop-outs (2 related directly to treatment) in the RAGT group and 1 in the CWT group, leaving 14 RAGT patients and 15 CWT patients for final analysis. Acceptance and convenience of RAGT as rated by patients were high. Effect sizes were moderate to large, although not significant, for walking velocity (0.700, 95% CI -0.089 to 1.489), walking distance (0.401, 95% CI - 0.370 to 1.172) and knee-extensor strength (right: 1.105, 95% CI 0.278 to 1.932, left 0.650, 95% CI -0.135 to 1.436) favouring RAGT. Prepost within-group analysis revealed an increase of walking velocity, walking distance and knee-extensor strength in the RAGT group, whereas in CWT group only walking velocity was improved. In both groups outcome values returned to baseline at follow-up after six months (n = 23). Robot-assisted gait training is feasible and may be an effective therapeutic option in MS patients with severe walking disabilities. Effect size calculation and prepost analysis suggest a higher benefit on walking velocity and knee-extensor strength by RAGT compared to CWT. Due to several limitations, however, our results should be regarded as preliminary. Post hoc power calculation showed that two groups of 106 patients are needed to demonstrate a significant moderate effect size of 0.4 after three weeks of RAGT. Thus, further studies with a larger number of patients are needed to investigate the impact of this new treatment option in MS patients.
Hollands, Kristen L; Pelton, Trudy A; Wimperis, Andrew; Whitham, Diane; Tan, Wei; Jowett, Sue; Sackley, Catherine M; Wing, Alan M; Tyson, Sarah F; Mathias, Jonathan; Hensman, Marianne; van Vliet, Paulette M
2015-01-01
Given the importance of vision in the control of walking and evidence indicating varied practice of walking improves mobility outcomes, this study sought to examine the feasibility and preliminary efficacy of varied walking practice in response to visual cues, for the rehabilitation of walking following stroke. This 3 arm parallel, multi-centre, assessor blind, randomised control trial was conducted within outpatient neurorehabilitation services. Community dwelling stroke survivors with walking speed <0.8m/s, lower limb paresis and no severe visual impairments. Over-ground visual cue training (O-VCT), Treadmill based visual cue training (T-VCT), and Usual care (UC) delivered by physiotherapists twice weekly for 8 weeks. Participants were randomised using computer generated random permutated balanced blocks of randomly varying size. Recruitment, retention, adherence, adverse events and mobility and balance were measured before randomisation, post-intervention and at four weeks follow-up. Fifty-six participants participated (18 T-VCT, 19 O-VCT, 19 UC). Thirty-four completed treatment and follow-up assessments. Of the participants that completed, adherence was good with 16 treatments provided over (median of) 8.4, 7.5 and 9 weeks for T-VCT, O-VCT and UC respectively. No adverse events were reported. Post-treatment improvements in walking speed, symmetry, balance and functional mobility were seen in all treatment arms. Outpatient based treadmill and over-ground walking adaptability practice using visual cues are feasible and may improve mobility and balance. Future studies should continue a carefully phased approach using identified methods to improve retention. Clinicaltrials.gov NCT01600391.
A Random Walk Approach to Query Informative Constraints for Clustering.
Abin, Ahmad Ali
2017-08-09
This paper presents a random walk approach to the problem of querying informative constraints for clustering. The proposed method is based on the properties of the commute time, that is the expected time taken for a random walk to travel between two nodes and return, on the adjacency graph of data. Commute time has the nice property of that, the more short paths connect two given nodes in a graph, the more similar those nodes are. Since computing the commute time takes the Laplacian eigenspectrum into account, we use this property in a recursive fashion to query informative constraints for clustering. At each recursion, the proposed method constructs the adjacency graph of data and utilizes the spectral properties of the commute time matrix to bipartition the adjacency graph. Thereafter, the proposed method benefits from the commute times distance on graph to query informative constraints between partitions. This process iterates for each partition until the stop condition becomes true. Experiments on real-world data show the efficiency of the proposed method for constraints selection.
Mean first passage time for random walk on dual structure of dendrimer
NASA Astrophysics Data System (ADS)
Li, Ling; Guan, Jihong; Zhou, Shuigeng
2014-12-01
The random walk approach has recently been widely employed to study the relations between the underlying structure and dynamic of complex systems. The mean first-passage time (MFPT) for random walks is a key index to evaluate the transport efficiency in a given system. In this paper we study analytically the MFPT in a dual structure of dendrimer network, Husimi cactus, which has different application background and different structure (contains loops) from dendrimer. By making use of the iterative construction, we explicitly determine both the partial mean first-passage time (PMFT, the average of MFPTs to a given target) and the global mean first-passage time (GMFT, the average of MFPTs over all couples of nodes) on Husimi cactus. The obtained closed-form results show that PMFPT and EMFPT follow different scaling with the network order, suggesting that the target location has essential influence on the transport efficiency. Finally, the impact that loop structure could bring is analyzed and discussed.
Wang, Guanglei; Wang, Pengyu; Han, Yechen; Liu, Xiuling; Li, Yan; Lu, Qian
2017-06-01
In recent years, optical coherence tomography (OCT) has developed into a popular coronary imaging technology at home and abroad. The segmentation of plaque regions in coronary OCT images has great significance for vulnerable plaque recognition and research. In this paper, a new algorithm based on K -means clustering and improved random walk is proposed and Semi-automated segmentation of calcified plaque, fibrotic plaque and lipid pool was achieved. And the weight function of random walk is improved. The distance between the edges of pixels in the image and the seed points is added to the definition of the weight function. It increases the weak edge weights and prevent over-segmentation. Based on the above methods, the OCT images of 9 coronary atherosclerotic patients were selected for plaque segmentation. By contrasting the doctor's manual segmentation results with this method, it was proved that this method had good robustness and accuracy. It is hoped that this method can be helpful for the clinical diagnosis of coronary heart disease.
NASA Astrophysics Data System (ADS)
Ingo, Carson; Sui, Yi; Chen, Yufen; Parrish, Todd; Webb, Andrew; Ronen, Itamar
2015-03-01
In this paper, we provide a context for the modeling approaches that have been developed to describe non-Gaussian diffusion behavior, which is ubiquitous in diffusion weighted magnetic resonance imaging of water in biological tissue. Subsequently, we focus on the formalism of the continuous time random walk theory to extract properties of subdiffusion and superdiffusion through novel simplifications of the Mittag-Leffler function. For the case of time-fractional subdiffusion, we compute the kurtosis for the Mittag-Leffler function, which provides both a connection and physical context to the much-used approach of diffusional kurtosis imaging. We provide Monte Carlo simulations to illustrate the concepts of anomalous diffusion as stochastic processes of the random walk. Finally, we demonstrate the clinical utility of the Mittag-Leffler function as a model to describe tissue microstructure through estimations of subdiffusion and kurtosis with diffusion MRI measurements in the brain of a chronic ischemic stroke patient.
The continuous time random walk, still trendy: fifty-year history, state of art and outlook
NASA Astrophysics Data System (ADS)
Kutner, Ryszard; Masoliver, Jaume
2017-03-01
In this article we demonstrate the very inspiring role of the continuous-time random walk (CTRW) formalism, the numerous modifications permitted by its flexibility, its various applications, and the promising perspectives in the various fields of knowledge. A short review of significant achievements and possibilities is given. However, this review is still far from completeness. We focused on a pivotal role of CTRWs mainly in anomalous stochastic processes discovered in physics and beyond. This article plays the role of an extended announcement of the Eur. Phys. J. B Special Issue [
Fific, Mario; Little, Daniel R; Nosofsky, Robert M
2010-04-01
We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli along a set of component dimensions. Those independent decisions are then combined via logical rules to determine the overall categorization response. The time course of the independent decisions is modeled via random-walk processes operating along individual dimensions. Alternative mental architectures are used as mechanisms for combining the independent decisions to implement the logical rules. We derive fundamental qualitative contrasts for distinguishing among the predictions of the rule models and major alternative models of classification RT. We also use the models to predict detailed RT-distribution data associated with individual stimuli in tasks of speeded perceptual classification. PsycINFO Database Record (c) 2010 APA, all rights reserved.
TemperSAT: A new efficient fair-sampling random k-SAT solver
NASA Astrophysics Data System (ADS)
Fang, Chao; Zhu, Zheng; Katzgraber, Helmut G.
The set membership problem is of great importance to many applications and, in particular, database searches for target groups. Recently, an approach to speed up set membership searches based on the NP-hard constraint-satisfaction problem (random k-SAT) has been developed. However, the bottleneck of the approach lies in finding the solution to a large SAT formula efficiently and, in particular, a large number of independent solutions is needed to reduce the probability of false positives. Unfortunately, traditional random k-SAT solvers such as WalkSAT are biased when seeking solutions to the Boolean formulas. By porting parallel tempering Monte Carlo to the sampling of binary optimization problems, we introduce a new algorithm (TemperSAT) whose performance is comparable to current state-of-the-art SAT solvers for large k with the added benefit that theoretically it can find many independent solutions quickly. We illustrate our results by comparing to the currently fastest implementation of WalkSAT, WalkSATlm.
Effective degrees of freedom of a random walk on a fractal.
Balankin, Alexander S
2015-12-01
We argue that a non-Markovian random walk on a fractal can be treated as a Markovian process in a fractional dimensional space with a suitable metric. This allows us to define the fractional dimensional space allied to the fractal as the ν-dimensional space F(ν) equipped with the metric induced by the fractal topology. The relation between the number of effective spatial degrees of freedom of walkers on the fractal (ν) and fractal dimensionalities is deduced. The intrinsic time of random walk in F(ν) is inferred. The Laplacian operator in F(ν) is constructed. This allows us to map physical problems on fractals into the corresponding problems in F(ν). In this way, essential features of physics on fractals are revealed. Particularly, subdiffusion on path-connected fractals is elucidated. The Coulomb potential of a point charge on a fractal embedded in the Euclidean space is derived. Intriguing attributes of some types of fractals are highlighted.
Gonzalez-Vazquez, J P; Anta, Juan A; Bisquert, Juan
2009-11-28
The random walk numerical simulation (RWNS) method is used to compute diffusion coefficients for hopping transport in a fully disordered medium at finite carrier concentrations. We use Miller-Abrahams jumping rates and an exponential distribution of energies to compute the hopping times in the random walk simulation. The computed diffusion coefficient shows an exponential dependence with respect to Fermi-level and Arrhenius behavior with respect to temperature. This result indicates that there is a well-defined transport level implicit to the system dynamics. To establish the origin of this transport level we construct histograms to monitor the energies of the most visited sites. In addition, we construct "corrected" histograms where backward moves are removed. Since these moves do not contribute to transport, these histograms provide a better estimation of the effective transport level energy. The analysis of this concept in connection with the Fermi-level dependence of the diffusion coefficient and the regime of interest for the functioning of dye-sensitised solar cells is thoroughly discussed.
Jeong, Yeon-Gyu; Jeong, Yeon-Jae; Koo, Jung-Wan
2017-06-01
The effects of an arm sling on the physiological costs of walking are not known. Even though a previous study reported that an arm sling can improve gait efficiency, its entrance criteria was only hemiparetic patients able to walk without walking aids independently. The aim of this study was to investigate the effect of shoulder support by an arm sling on gait efficiency in hemiplegic stroke patients using walking aids. Randomized crossover design. Rehabilitation department of a university hospital. A total of 57 hemiplegic patients with shoulder subluxation dependent on canes were grouped into single cane (N.=30) and quad cane groups (N.=27) as walking aids. All patients performed a walk with their own walking aid with and without an arm sling in randomized order, on the same day. We measured the energy cost and energy expenditure using a portable gas analyzer and heart rate during a 6-minutes Walk Test and a 10-m Walk Test. We analyzed all outcomes measures with and without an arm sling between the patients who were grouped according to their walking aids using 2-way repeated ANOVA. The energy cost (0.068±0.023 mL/kg/m) and oxygen expenditure (8.609±2.155 mL/kg/minutes) were lower with the arm sling (P<0.05) than without the arm sling (0.074±0.029 mL/kg/m, and 9.109±2.406 mL/kg/minutes, respectively), and the walking endurance (138.942±47.043 m) were longer (P<0.05) with the arm sling among the hemiplegic patients with single cane. Among the hemiplegic patients with a single cane, the walking endurance achieved with an arm sling significantly improved than those achieved without an arm sling, and the energy expenditure and energy cost was significantly lower. The hemiplegic arm support with an arm sling may be beneficial for gait efficiency in hemiplegic patients using a single cane, which lead to decreased oxygen use at a given speed.
Nordic Walking and chronic low back pain: design of a randomized clinical trial
Morsø, Lars; Hartvigsen, Jan; Puggaard, Lis; Manniche, Claus
2006-01-01
Background Low Back Pain is a major public health problem all over the western world. Active approaches including exercise in the treatment of low back pain results in better outcomes for patients, but it is not known exactly which types of back exercises are most beneficial or whether general physical activity provide similar benefits. Nordic Walking is a popular and fast growing type of exercise in Northern Europe. Initial studies have demonstrated that persons performing Nordic Walking are able to exercise longer and harder compared to normal walking thereby increasing their cardiovascular metabolism. Until now no studies have been performed to investigate whether Nordic Walking has beneficial effects in relation to low back pain. The primary aim of this study is to investigate whether supervised Nordic Walking can reduce pain and improve function in a population of chronic low back pain patients when compared to unsupervised Nordic Walking and advice to stay active. In addition we investigate whether there is an increase in the cardiovascular metabolism in persons performing supervised Nordic Walking compared to persons who are advised to stay active. Finally, we investigate whether there is a difference in compliance between persons receiving supervised Nordic Walking and persons doing unsupervised Nordic Walking. Methods One hundred and fifty patients with low back pain for at least eight weeks and referred to a specialized secondary sector outpatient back pain clinic are included in the study. After completion of the standard back centre treatment patients are randomized into one of three groups: A) Nordic Walking twice a week for eight weeks under supervision of a specially trained instructor; B) Unsupervised Nordic Walking for eight weeks after one training session with an instructor; C) A one hour motivational talk including advice to stay active. Outcome measures are pain, function, overall health, cardiovascular ability and activity level. Results No results available at this point. Discussion This study will investigate the effect of Nordic Walking on pain and function in a population of people with chronic LBP. Trial Registration registration # NCT00209820 PMID:17014731
Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.
Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P
2010-01-19
To guide development of robotic lower limb exoskeletons, it is necessary to understand how humans adapt to powered assistance. The purposes of this study were to quantify joint moments while healthy subjects adapted to a robotic ankle exoskeleton and to determine if the period of motor adaptation is dependent on the magnitude of robotic assistance. The pneumatically powered ankle exoskeleton provided plantar flexor torque controlled by the wearer's soleus electromyography (EMG). Eleven naïve individuals completed two 30-min sessions walking on a split-belt instrumented treadmill at 1.25m/s while wearing the ankle exoskeleton. After two sessions of practice, subjects reduced their soleus EMG activation by approximately 36% and walked with total ankle moment patterns similar to their unassisted gait (r(2)=0.98+/-0.02, THSD, p>0.05). They had substantially different ankle kinematic patterns compared to their unassisted gait (r(2)=0.79+/-0.12, THSD, p<0.05). Not all of the subjects reached a steady-state gait pattern within the two sessions, in contrast to a previous study using a weaker robotic ankle exoskeleton (Gordon and Ferris, 2007). Our results strongly suggest that humans aim for similar joint moment patterns when walking with robotic assistance rather than similar kinematic patterns. In addition, greater robotic assistance provided during initial use results in a longer adaptation process than lesser robotic assistance. Copyright 2009 Elsevier Ltd. All rights reserved.
The influence of panic on the efficiency of escape
NASA Astrophysics Data System (ADS)
Shen, Jia-Quan; Wang, Xu-Wen; Jiang, Luo-Luo
2018-02-01
Whenever we (such as pedestrians) perceive a high density or imminent danger in a confined space, we tend to be panic, which can lead to severe injuries even in the absence of real dangers. Although it is difficult to measure panics in real conditions, we introduced a simple model to study the collective behaviors in condition of fire with dense smoke. Owing to blocking the sight with dense smoke, pedestrians in this condition have two strategies to escape: random-walking or walking along the wall. When the pedestrians are in moderate panic that mean the two types of behaviors are mixed(random-walking and walking along the wall). Our simulation results show that moderate panic, meaning that two escape strategies are mixed, reduces the escape time. In addition, the results indicate that moderate panic can improve the efficiency of escape, this theory also can be useful in a real escape situation. We hope that our research provides the theoretical understanding of underlying mechanisms of panic escape in the condition of poor sight.
Continuous time random walk with local particle-particle interaction
NASA Astrophysics Data System (ADS)
Xu, Jianping; Jiang, Guancheng
2018-05-01
The continuous time random walk (CTRW) is often applied to the study of particle motion in disordered media. Yet most such applications do not allow for particle-particle (walker-walker) interaction. In this paper, we consider a CTRW with particle-particle interaction; however, for simplicity, we restrain the interaction to be local. The generalized Chapman-Kolmogorov equation is modified by introducing a perturbation function that fluctuates around 1, which models the effect of interaction. Subsequently, a time-fractional nonlinear advection-diffusion equation is derived from this walking system. Under the initial condition of condensed particles at the origin and the free-boundary condition, we numerically solve this equation with both attractive and repulsive particle-particle interactions. Moreover, a Monte Carlo simulation is devised to verify the results of the above numerical work. The equation and the simulation unanimously predict that this walking system converges to the conventional one in the long-time limit. However, for systems where the free-boundary condition and long-time limit are not simultaneously satisfied, this convergence does not hold.
ERIC Educational Resources Information Center
Huang, Liang; Chen, Peijie; Zhuang, Jie; Zhang, Yanxin; Walt, Sharon
2013-01-01
Purpose: This study aimed to investigate the influence of childhood obesity on energetic cost during normal walking and to determine if obese children choose a walking strategy optimizing their gait pattern. Method: Sixteen obese children with no functional abnormalities were matched by age and gender with 16 normal-weight children. All…
Rillich, Jan; Stevenson, Paul A.; Pflueger, Hans-Joachim
2013-01-01
Walking and flying in locusts are exemplary rhythmical behaviors generated by central pattern generators (CPG) that are tuned in intact animals by phasic sensory inputs. Although these two behaviors are mutually exclusive and controlled by independent CPGs, leg movements during flight can be coupled to the flight rhythm. To investigate potential central coupling between the underlying CPGs, we used the muscarinic agonist pilocarpine and the amines octopamine and tyramine to initiate fictive flight and walking in deafferented locust preparations. Our data illustrate that fictive walking is readily evoked by comparatively lower concentrations of pilocarpine, whereas higher concentrations are required to elicit fictive flight. Interestingly, fictive flight did not suppress fictive walking so that the two patterns were produced simultaneously. Frequently, leg motor units were temporally coupled to the flight rhythm, so that each spike in a step cycle volley occurred synchronously with wing motor units firing at flight rhythm frequency. Similarly, tyramine also induced fictive walking and flight, but mostly without any coupling between the two rhythms. Octopamine in contrast readily evoked fictive flight but generally failed to elicit fictive walking. Despite this, numerous leg motor units were recruited, whereby each was temporarily coupled to the flight rhythm. Our results support the notion that the CPGs for walking and flight are largely independent, but that coupling can be entrained by aminergic modulation. We speculate that octopamine biases the whole motor machinery of a locust to flight whereas tyramine primarily promotes walking. PMID:23671643
Balasubramanian, Chitralakshmi K.; Neptune, Richard R.; Kautz, Steven A.
2010-01-01
Background Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Methods Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and twenty healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Findings Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (p < .05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (p < .05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r = .596; p < .001), whereas step widths showed no relation to paretic weight support. Interpretation Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. PMID:20193972
Balasubramanian, Chitralakshmi K; Neptune, Richard R; Kautz, Steven A
2010-06-01
Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and 20 healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (P<.05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (P<.05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r=.596; P<.001), whereas step widths showed no relation to paretic weight support. Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Persistent random walk of cells involving anomalous effects and random death
NASA Astrophysics Data System (ADS)
Fedotov, Sergei; Tan, Abby; Zubarev, Andrey
2015-04-01
The purpose of this paper is to implement a random death process into a persistent random walk model which produces sub-ballistic superdiffusion (Lévy walk). We develop a stochastic two-velocity jump model of cell motility for which the switching rate depends upon the time which the cell has spent moving in one direction. It is assumed that the switching rate is a decreasing function of residence (running) time. This assumption leads to the power law for the velocity switching time distribution. This describes the anomalous persistence of cell motility: the longer the cell moves in one direction, the smaller the switching probability to another direction becomes. We derive master equations for the cell densities with the generalized switching terms involving the tempered fractional material derivatives. We show that the random death of cells has an important implication for the transport process through tempering of the superdiffusive process. In the long-time limit we write stationary master equations in terms of exponentially truncated fractional derivatives in which the rate of death plays the role of tempering of a Lévy jump distribution. We find the upper and lower bounds for the stationary profiles corresponding to the ballistic transport and diffusion with the death-rate-dependent diffusion coefficient. Monte Carlo simulations confirm these bounds.
NASA Astrophysics Data System (ADS)
Guex, Guillaume
2016-05-01
In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.
Prism adaptation in Parkinson disease: comparing reaching to walking and freezers to non-freezers.
Nemanich, Samuel T; Earhart, Gammon M
2015-08-01
Visuomotor adaptation to gaze-shifting prism glasses requires recalibration of the relationship between sensory input and motor output. Healthy individuals flexibly adapt movement patterns to many external perturbations; however, individuals with cerebellar damage do not adapt movements to the same extent. People with Parkinson disease (PD) adapt normally, but exhibit reduced after-effects, which are negative movement errors following the removal of the prism glasses and are indicative of true spatial realignment. Walking is particularly affected in PD, and many individuals experience freezing of gait (FOG), an episodic interruption in walking, that is thought to have a distinct pathophysiology. Here, we examined how individuals with PD with (PD + FOG) and without (PD - FOG) FOG, along with healthy older adults, adapted both reaching and walking patterns to prism glasses. Participants completed a visually guided reaching and walking task with and without rightward-shifting prism glasses. All groups adapted at similar rates during reaching and during walking. However, overall walking adaptation rates were slower compared to reaching rates. The PD - FOG group showed smaller after-effects, particularly during walking, compared to PD + FOG, independent of adaptation magnitude. While FOG did not appear to affect characteristics of prism adaptation, these results support the idea that the distinct neural processes governing visuomotor adaptation and storage are differentially affected by basal ganglia dysfunction in PD.
Unsupervised Metric Fusion Over Multiview Data by Graph Random Walk-Based Cross-View Diffusion.
Wang, Yang; Zhang, Wenjie; Wu, Lin; Lin, Xuemin; Zhao, Xiang
2017-01-01
Learning an ideal metric is crucial to many tasks in computer vision. Diverse feature representations may combat this problem from different aspects; as visual data objects described by multiple features can be decomposed into multiple views, thus often provide complementary information. In this paper, we propose a cross-view fusion algorithm that leads to a similarity metric for multiview data by systematically fusing multiple similarity measures. Unlike existing paradigms, we focus on learning distance measure by exploiting a graph structure of data samples, where an input similarity matrix can be improved through a propagation of graph random walk. In particular, we construct multiple graphs with each one corresponding to an individual view, and a cross-view fusion approach based on graph random walk is presented to derive an optimal distance measure by fusing multiple metrics. Our method is scalable to a large amount of data by enforcing sparsity through an anchor graph representation. To adaptively control the effects of different views, we dynamically learn view-specific coefficients, which are leveraged into graph random walk to balance multiviews. However, such a strategy may lead to an over-smooth similarity metric where affinities between dissimilar samples may be enlarged by excessively conducting cross-view fusion. Thus, we figure out a heuristic approach to controlling the iteration number in the fusion process in order to avoid over smoothness. Extensive experiments conducted on real-world data sets validate the effectiveness and efficiency of our approach.
Distributed Clone Detection in Static Wireless Sensor Networks: Random Walk with Network Division
Khan, Wazir Zada; Aalsalem, Mohammed Y.; Saad, N. M.
2015-01-01
Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads. PMID:25992913
Hong-Seng, Gan; Sayuti, Khairil Amir; Karim, Ahmad Helmy Abdul
2017-01-01
Existing knee cartilage segmentation methods have reported several technical drawbacks. In essence, graph cuts remains highly susceptible to image noise despite extended research interest; active shape model is often constraint by the selection of training data while shortest path have demonstrated shortcut problem in the presence of weak boundary, which is a common problem in medical images. The aims of this study is to investigate the capability of random walks as knee cartilage segmentation method. Experts would scribble on knee cartilage image to initialize random walks segmentation. Then, reproducibility of the method is assessed against manual segmentation by using Dice Similarity Index. The evaluation consists of normal cartilage and diseased cartilage sections which is divided into whole and single cartilage categories. A total of 15 normal images and 10 osteoarthritic images were included. The results showed that random walks method has demonstrated high reproducibility in both normal cartilage (observer 1: 0.83±0.028 and observer 2: 0.82±0.026) and osteoarthritic cartilage (observer 1: 0.80±0.069 and observer 2: 0.83±0.029). Besides, results from both experts were found to be consistent with each other, suggesting the inter-observer variation is insignificant (Normal: P=0.21; Diseased: P=0.15). The proposed segmentation model has overcame technical problems reported by existing semi-automated techniques and demonstrated highly reproducible and consistent results against manual segmentation method.
Robustness of the non-Markovian Alzheimer walk under stochastic perturbation
NASA Astrophysics Data System (ADS)
Cressoni, J. C.; da Silva, L. R.; Viswanathan, G. M.; da Silva, M. A. A.
2012-12-01
The elephant walk model originally proposed by Schütz and Trimper to investigate non-Markovian processes led to the investigation of a series of other random-walk models. Of these, the best known is the Alzheimer walk model, because it was the first model shown to have amnestically induced persistence —i.e. superdiffusion caused by loss of memory. Here we study the robustness of the Alzheimer walk by adding a memoryless stochastic perturbation. Surprisingly, the solution of the perturbed model can be formally reduced to the solutions of the unperturbed model. Specifically, we give an exact solution of the perturbed model by finding a surjective mapping to the unperturbed model.
A Spectral Analysis of Discrete-Time Quantum Walks Related to the Birth and Death Chains
NASA Astrophysics Data System (ADS)
Ho, Choon-Lin; Ide, Yusuke; Konno, Norio; Segawa, Etsuo; Takumi, Kentaro
2018-04-01
In this paper, we consider a spectral analysis of discrete time quantum walks on the path. For isospectral coin cases, we show that the time averaged distribution and stationary distributions of the quantum walks are described by the pair of eigenvalues of the coins as well as the eigenvalues and eigenvectors of the corresponding random walks which are usually referred as the birth and death chains. As an example of the results, we derive the time averaged distribution of so-called Szegedy's walk which is related to the Ehrenfest model. It is represented by Krawtchouk polynomials which is the eigenvectors of the model and includes the arcsine law.
Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial.
Picelli, Alessandro; Melotti, Camilla; Origano, Francesca; Waldner, Andreas; Fiaschi, Antonio; Santilli, Valter; Smania, Nicola
2012-05-01
. Gait impairment is a common cause of disability in Parkinson disease (PD). Electromechanical devices to assist stepping have been suggested as a potential intervention. . To evaluate whether a rehabilitation program of robot-assisted gait training (RAGT) is more effective than conventional physiotherapy to improve walking. . A total of 41 patients with PD were randomly assigned to 45-minute treatment sessions (12 in all), 3 days a week, for 4 consecutive weeks of either robotic stepper training (RST; n = 21) using the Gait Trainer or physiotherapy (PT; n = 20) with active joint mobilization and a modest amount of conventional gait training. Participants were evaluated before, immediately after, and 1 month after treatment. Primary outcomes were 10-m walking speed and distance walked in 6 minutes. . Baseline measures revealed no statistical differences between groups, but the PT group walked 0.12 m/s slower; 5 patients withdrew. A statistically significant improvement was found in favor of the RST group (walking speed 1.22 ± 0.19 m/s [P = .035]; distance 366.06 ± 78.54 m [P < .001]) compared with the PT group (0.98 ± 0.32 m/s; 280.11 ± 106.61 m). The RAGT mean speed increased by 0.13 m/s, which is probably not clinically important. Improvements were maintained 1 month later. . RAGT may improve aspects of walking ability in patients with PD. Future trials should compare robotic assistive training with treadmill or equal amounts of overground walking practice.
McArdle's disease: A differential diagnosis of idiopathic toe walking.
Pomarino, David; Martin, Stephan; Pomarino, Andrea; Morigeau, Stefanie; Biskup, Saskia
2018-06-01
Idiopathic toe walking (ITW) is a pathological gait pattern in which children walk on their tip toes with no orthopedic or neurological reason. Physiological characteristics of the gastrocnemius muscles, the Achilles tendon, and the foot of toe walkers differ from subjects with a plantigrade walking pattern. McArdle's disease is characterized by the inability to break down muscle glycogen. It is an autosomal-recessive condition, characterized by low exercise tolerance, muscular atrophy at the shoulder girdle, episodes of myoglobinuria after vigorous physical activities and the occurrence of the second wind phenomenon. The aim of this review is to present the case studies of two subjects who were originally diagnosed as idiopathic toe walkers, but were then found to have McArdle's disease. This review will describe some physical characteristics that distinguish McArdle´s disease from Idiopathic toe walkers.
Physical realizability of continuous-time quantum stochastic walks
NASA Astrophysics Data System (ADS)
Taketani, Bruno G.; Govia, Luke C. G.; Wilhelm, Frank K.
2018-05-01
Quantum walks are a promising methodology that can be used to both understand and implement quantum information processing tasks. The quantum stochastic walk is a recently developed framework that combines the concept of a quantum walk with that of a classical random walk, through open system evolution of a quantum system. Quantum stochastic walks have been shown to have applications in as far reaching fields as artificial intelligence. However, there are significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution and the physical assumptions underpinning them. We show that general direct implementations would require the complete solution of the underlying unitary dynamics and sophisticated reservoir engineering, thus weakening the benefits of experimental implementation.
Self-Trapping Self-Repelling Random Walks
NASA Astrophysics Data System (ADS)
Grassberger, Peter
2017-10-01
Although the title seems self-contradictory, it does not contain a misprint. The model we study is a seemingly minor modification of the "true self-avoiding walk" model of Amit, Parisi, and Peliti in two dimensions. The walks in it are self-repelling up to a characteristic time T* (which depends on various parameters), but spontaneously (i.e., without changing any control parameter) become self-trapping after that. For free walks, T* is astronomically large, but on finite lattices the transition is easily observable. In the self-trapped regime, walks are subdiffusive and intermittent, spending longer and longer times in small areas until they escape and move rapidly to a new area. In spite of this, these walks are extremely efficient in covering finite lattices, as measured by average cover times.
Vancini, Rodrigo Luiz; Rayes, Angeles Bonal Rosell; Lira, Claudio Andre Barbosa de; Sarro, Karine Jacon; Andrade, Marilia Santos
2017-12-01
To compare the effects of Pilates and walking on quality of life, depression, and anxiety levels. Sixty-three overweight/obese participants were randomly divided into: control (n = 20), walking (n = 21), and Pilates (n = 22) groups. Pilates and walking groups attended eight weeks of 60-minute exercise sessions three times per week. Quality of life, depression, and state- and trait-anxiety levels were evaluated before and after eight weeks of training. Scores of quality of life, depression, and trait-anxiety improved in the Pilates and walking groups. State-anxiety levels improved only in the walking group. Pilates and walking positively impact quality of life, depression and anxiety. The Pilates method could be used as an alternative to improve mood disorders in overweight/obese individuals.