A random effects meta-analysis model with Box-Cox transformation.
Yamaguchi, Yusuke; Maruo, Kazushi; Partlett, Christopher; Riley, Richard D
2017-07-19
In a random effects meta-analysis model, true treatment effects for each study are routinely assumed to follow a normal distribution. However, normality is a restrictive assumption and the misspecification of the random effects distribution may result in a misleading estimate of overall mean for the treatment effect, an inappropriate quantification of heterogeneity across studies and a wrongly symmetric prediction interval. We focus on problems caused by an inappropriate normality assumption of the random effects distribution, and propose a novel random effects meta-analysis model where a Box-Cox transformation is applied to the observed treatment effect estimates. The proposed model aims to normalise an overall distribution of observed treatment effect estimates, which is sum of the within-study sampling distributions and the random effects distribution. When sampling distributions are approximately normal, non-normality in the overall distribution will be mainly due to the random effects distribution, especially when the between-study variation is large relative to the within-study variation. The Box-Cox transformation addresses this flexibly according to the observed departure from normality. We use a Bayesian approach for estimating parameters in the proposed model, and suggest summarising the meta-analysis results by an overall median, an interquartile range and a prediction interval. The model can be applied for any kind of variables once the treatment effect estimate is defined from the variable. A simulation study suggested that when the overall distribution of treatment effect estimates are skewed, the overall mean and conventional I 2 from the normal random effects model could be inappropriate summaries, and the proposed model helped reduce this issue. We illustrated the proposed model using two examples, which revealed some important differences on summary results, heterogeneity measures and prediction intervals from the normal random effects model. The random effects meta-analysis with the Box-Cox transformation may be an important tool for examining robustness of traditional meta-analysis results against skewness on the observed treatment effect estimates. Further critical evaluation of the method is needed.
Evaluation of some random effects methodology applicable to bird ringing data
Burnham, K.P.; White, Gary C.
2002-01-01
Existing models for ring recovery and recapture data analysis treat temporal variations in annual survival probability (S) as fixed effects. Often there is no explainable structure to the temporal variation in S1,..., Sk; random effects can then be a useful model: Si = E(S) + ??i. Here, the temporal variation in survival probability is treated as random with average value E(??2) = ??2. This random effects model can now be fit in program MARK. Resultant inferences include point and interval estimation for process variation, ??2, estimation of E(S) and var (E??(S)) where the latter includes a component for ??2 as well as the traditional component for v??ar(S??\\S??). Furthermore, the random effects model leads to shrinkage estimates, Si, as improved (in mean square error) estimators of Si compared to the MLE, S??i, from the unrestricted time-effects model. Appropriate confidence intervals based on the Si are also provided. In addition, AIC has been generalized to random effects models. This paper presents results of a Monte Carlo evaluation of inference performance under the simple random effects model. Examined by simulation, under the simple one group Cormack-Jolly-Seber (CJS) model, are issues such as bias of ??s2, confidence interval coverage on ??2, coverage and mean square error comparisons for inference about Si based on shrinkage versus maximum likelihood estimators, and performance of AIC model selection over three models: Si ??? S (no effects), Si = E(S) + ??i (random effects), and S1,..., Sk (fixed effects). For the cases simulated, the random effects methods performed well and were uniformly better than fixed effects MLE for the Si.
Prediction models for clustered data: comparison of a random intercept and standard regression model
2013-01-01
Background When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Methods Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. Results The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. Conclusion The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters. PMID:23414436
Random effects coefficient of determination for mixed and meta-analysis models
Demidenko, Eugene; Sargent, James; Onega, Tracy
2011-01-01
The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, Rr2, that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If Rr2 is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of Rr2 apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects—the model can be estimated using the dummy variable approach. We derive explicit formulas for Rr2 in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine. PMID:23750070
Random effects coefficient of determination for mixed and meta-analysis models.
Demidenko, Eugene; Sargent, James; Onega, Tracy
2012-01-01
The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, [Formula: see text], that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If [Formula: see text] is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of [Formula: see text] apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects-the model can be estimated using the dummy variable approach. We derive explicit formulas for [Formula: see text] in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine.
Aguero-Valverde, Jonathan
2013-01-01
In recent years, complex statistical modeling approaches have being proposed to handle the unobserved heterogeneity and the excess of zeros frequently found in crash data, including random effects and zero inflated models. This research compares random effects, zero inflated, and zero inflated random effects models using a full Bayes hierarchical approach. The models are compared not just in terms of goodness-of-fit measures but also in terms of precision of posterior crash frequency estimates since the precision of these estimates is vital for ranking of sites for engineering improvement. Fixed-over-time random effects models are also compared to independent-over-time random effects models. For the crash dataset being analyzed, it was found that once the random effects are included in the zero inflated models, the probability of being in the zero state is drastically reduced, and the zero inflated models degenerate to their non zero inflated counterparts. Also by fixing the random effects over time the fit of the models and the precision of the crash frequency estimates are significantly increased. It was found that the rankings of the fixed-over-time random effects models are very consistent among them. In addition, the results show that by fixing the random effects over time, the standard errors of the crash frequency estimates are significantly reduced for the majority of the segments on the top of the ranking. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bouwmeester, Walter; Twisk, Jos W R; Kappen, Teus H; van Klei, Wilton A; Moons, Karel G M; Vergouwe, Yvonne
2013-02-15
When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters.
Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable
ERIC Educational Resources Information Center
du Toit, Stephen H. C.; Cudeck, Robert
2009-01-01
A method is presented for marginal maximum likelihood estimation of the nonlinear random coefficient model when the response function has some linear parameters. This is done by writing the marginal distribution of the repeated measures as a conditional distribution of the response given the nonlinear random effects. The resulting distribution…
Baird, Rachel; Maxwell, Scott E
2016-06-01
Time-varying predictors in multilevel models are a useful tool for longitudinal research, whether they are the research variable of interest or they are controlling for variance to allow greater power for other variables. However, standard recommendations to fix the effect of time-varying predictors may make an assumption that is unlikely to hold in reality and may influence results. A simulation study illustrates that treating the time-varying predictor as fixed may allow analyses to converge, but the analyses have poor coverage of the true fixed effect when the time-varying predictor has a random effect in reality. A second simulation study shows that treating the time-varying predictor as random may have poor convergence, except when allowing negative variance estimates. Although negative variance estimates are uninterpretable, results of the simulation show that estimates of the fixed effect of the time-varying predictor are as accurate for these cases as for cases with positive variance estimates, and that treating the time-varying predictor as random and allowing negative variance estimates performs well whether the time-varying predictor is fixed or random in reality. Because of the difficulty of interpreting negative variance estimates, 2 procedures are suggested for selection between fixed-effect and random-effect models: comparing between fixed-effect and constrained random-effect models with a likelihood ratio test or fitting a fixed-effect model when an unconstrained random-effect model produces negative variance estimates. The performance of these 2 procedures is compared. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Harrison, Xavier A
2015-01-01
Overdispersion is a common feature of models of biological data, but researchers often fail to model the excess variation driving the overdispersion, resulting in biased parameter estimates and standard errors. Quantifying and modeling overdispersion when it is present is therefore critical for robust biological inference. One means to account for overdispersion is to add an observation-level random effect (OLRE) to a model, where each data point receives a unique level of a random effect that can absorb the extra-parametric variation in the data. Although some studies have investigated the utility of OLRE to model overdispersion in Poisson count data, studies doing so for Binomial proportion data are scarce. Here I use a simulation approach to investigate the ability of both OLRE models and Beta-Binomial models to recover unbiased parameter estimates in mixed effects models of Binomial data under various degrees of overdispersion. In addition, as ecologists often fit random intercept terms to models when the random effect sample size is low (<5 levels), I investigate the performance of both model types under a range of random effect sample sizes when overdispersion is present. Simulation results revealed that the efficacy of OLRE depends on the process that generated the overdispersion; OLRE failed to cope with overdispersion generated from a Beta-Binomial mixture model, leading to biased slope and intercept estimates, but performed well for overdispersion generated by adding random noise to the linear predictor. Comparison of parameter estimates from an OLRE model with those from its corresponding Beta-Binomial model readily identified when OLRE were performing poorly due to disagreement between effect sizes, and this strategy should be employed whenever OLRE are used for Binomial data to assess their reliability. Beta-Binomial models performed well across all contexts, but showed a tendency to underestimate effect sizes when modelling non-Beta-Binomial data. Finally, both OLRE and Beta-Binomial models performed poorly when models contained <5 levels of the random intercept term, especially for estimating variance components, and this effect appeared independent of total sample size. These results suggest that OLRE are a useful tool for modelling overdispersion in Binomial data, but that they do not perform well in all circumstances and researchers should take care to verify the robustness of parameter estimates of OLRE models.
A Gompertzian model with random effects to cervical cancer growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazlan, Mazma Syahidatul Ayuni; Rosli, Norhayati
2015-05-15
In this paper, a Gompertzian model with random effects is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via maximum likehood estimation. We apply 4-stage Runge-Kutta (SRK4) for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of the cervical cancer growth. Low values of root mean-square error (RMSE) of Gompertzian model with random effect indicate good fits.
Handling Correlations between Covariates and Random Slopes in Multilevel Models
ERIC Educational Resources Information Center
Bates, Michael David; Castellano, Katherine E.; Rabe-Hesketh, Sophia; Skrondal, Anders
2014-01-01
This article discusses estimation of multilevel/hierarchical linear models that include cluster-level random intercepts and random slopes. Viewing the models as structural, the random intercepts and slopes represent the effects of omitted cluster-level covariates that may be correlated with included covariates. The resulting correlations between…
Application of Poisson random effect models for highway network screening.
Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer
2014-02-01
In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.
A spatial error model with continuous random effects and an application to growth convergence
NASA Astrophysics Data System (ADS)
Laurini, Márcio Poletti
2017-10-01
We propose a spatial error model with continuous random effects based on Matérn covariance functions and apply this model for the analysis of income convergence processes (β -convergence). The use of a model with continuous random effects permits a clearer visualization and interpretation of the spatial dependency patterns, avoids the problems of defining neighborhoods in spatial econometrics models, and allows projecting the spatial effects for every possible location in the continuous space, circumventing the existing aggregations in discrete lattice representations. We apply this model approach to analyze the economic growth of Brazilian municipalities between 1991 and 2010 using unconditional and conditional formulations and a spatiotemporal model of convergence. The results indicate that the estimated spatial random effects are consistent with the existence of income convergence clubs for Brazilian municipalities in this period.
Saville, Benjamin R.; Herring, Amy H.; Kaufman, Jay S.
2013-01-01
Racial/ethnic disparities in birthweight are a large source of differential morbidity and mortality worldwide and have remained largely unexplained in epidemiologic models. We assess the impact of maternal ancestry and census tract residence on infant birth weights in New York City and the modifying effects of race and nativity by incorporating random effects in a multilevel linear model. Evaluating the significance of these predictors involves the test of whether the variances of the random effects are equal to zero. This is problematic because the null hypothesis lies on the boundary of the parameter space. We generalize an approach for assessing random effects in the two-level linear model to a broader class of multilevel linear models by scaling the random effects to the residual variance and introducing parameters that control the relative contribution of the random effects. After integrating over the random effects and variance components, the resulting integrals needed to calculate the Bayes factor can be efficiently approximated with Laplace’s method. PMID:24082430
2012-01-01
Background Time-course gene expression data such as yeast cell cycle data may be periodically expressed. To cluster such data, currently used Fourier series approximations of periodic gene expressions have been found not to be sufficiently adequate to model the complexity of the time-course data, partly due to their ignoring the dependence between the expression measurements over time and the correlation among gene expression profiles. We further investigate the advantages and limitations of available models in the literature and propose a new mixture model with autoregressive random effects of the first order for the clustering of time-course gene-expression profiles. Some simulations and real examples are given to demonstrate the usefulness of the proposed models. Results We illustrate the applicability of our new model using synthetic and real time-course datasets. We show that our model outperforms existing models to provide more reliable and robust clustering of time-course data. Our model provides superior results when genetic profiles are correlated. It also gives comparable results when the correlation between the gene profiles is weak. In the applications to real time-course data, relevant clusters of coregulated genes are obtained, which are supported by gene-function annotation databases. Conclusions Our new model under our extension of the EMMIX-WIRE procedure is more reliable and robust for clustering time-course data because it adopts a random effects model that allows for the correlation among observations at different time points. It postulates gene-specific random effects with an autocorrelation variance structure that models coregulation within the clusters. The developed R package is flexible in its specification of the random effects through user-input parameters that enables improved modelling and consequent clustering of time-course data. PMID:23151154
2011-01-01
Background Logistic random effects models are a popular tool to analyze multilevel also called hierarchical data with a binary or ordinal outcome. Here, we aim to compare different statistical software implementations of these models. Methods We used individual patient data from 8509 patients in 231 centers with moderate and severe Traumatic Brain Injury (TBI) enrolled in eight Randomized Controlled Trials (RCTs) and three observational studies. We fitted logistic random effects regression models with the 5-point Glasgow Outcome Scale (GOS) as outcome, both dichotomized as well as ordinal, with center and/or trial as random effects, and as covariates age, motor score, pupil reactivity or trial. We then compared the implementations of frequentist and Bayesian methods to estimate the fixed and random effects. Frequentist approaches included R (lme4), Stata (GLLAMM), SAS (GLIMMIX and NLMIXED), MLwiN ([R]IGLS) and MIXOR, Bayesian approaches included WinBUGS, MLwiN (MCMC), R package MCMCglmm and SAS experimental procedure MCMC. Three data sets (the full data set and two sub-datasets) were analysed using basically two logistic random effects models with either one random effect for the center or two random effects for center and trial. For the ordinal outcome in the full data set also a proportional odds model with a random center effect was fitted. Results The packages gave similar parameter estimates for both the fixed and random effects and for the binary (and ordinal) models for the main study and when based on a relatively large number of level-1 (patient level) data compared to the number of level-2 (hospital level) data. However, when based on relatively sparse data set, i.e. when the numbers of level-1 and level-2 data units were about the same, the frequentist and Bayesian approaches showed somewhat different results. The software implementations differ considerably in flexibility, computation time, and usability. There are also differences in the availability of additional tools for model evaluation, such as diagnostic plots. The experimental SAS (version 9.2) procedure MCMC appeared to be inefficient. Conclusions On relatively large data sets, the different software implementations of logistic random effects regression models produced similar results. Thus, for a large data set there seems to be no explicit preference (of course if there is no preference from a philosophical point of view) for either a frequentist or Bayesian approach (if based on vague priors). The choice for a particular implementation may largely depend on the desired flexibility, and the usability of the package. For small data sets the random effects variances are difficult to estimate. In the frequentist approaches the MLE of this variance was often estimated zero with a standard error that is either zero or could not be determined, while for Bayesian methods the estimates could depend on the chosen "non-informative" prior of the variance parameter. The starting value for the variance parameter may be also critical for the convergence of the Markov chain. PMID:21605357
Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao
2016-07-12
In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved.
Baldi, F; Alencar, M M; Albuquerque, L G
2010-12-01
The objective of this work was to estimate covariance functions using random regression models on B-splines functions of animal age, for weights from birth to adult age in Canchim cattle. Data comprised 49,011 records on 2435 females. The model of analysis included fixed effects of contemporary groups, age of dam as quadratic covariable and the population mean trend taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were modelled through a step function with four classes. The direct and maternal additive genetic effects, and animal and maternal permanent environmental effects were included as random effects in the model. A total of seventeen analyses, considering linear, quadratic and cubic B-splines functions and up to seven knots, were carried out. B-spline functions of the same order were considered for all random effects. Random regression models on B-splines functions were compared to a random regression model on Legendre polynomials and with a multitrait model. Results from different models of analyses were compared using the REML form of the Akaike Information criterion and Schwarz' Bayesian Information criterion. In addition, the variance components and genetic parameters estimated for each random regression model were also used as criteria to choose the most adequate model to describe the covariance structure of the data. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most adequate to describe the covariance structure of the data. Random regression models using B-spline functions as base functions fitted the data better than Legendre polynomials, especially at mature ages, but higher number of parameters need to be estimated with B-splines functions. © 2010 Blackwell Verlag GmbH.
Boligon, A A; Baldi, F; Mercadante, M E Z; Lobo, R B; Pereira, R J; Albuquerque, L G
2011-06-28
We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age.
NASA Technical Reports Server (NTRS)
Bast, Callie C.; Boyce, Lola
1995-01-01
The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.
Li, Baoyue; Lingsma, Hester F; Steyerberg, Ewout W; Lesaffre, Emmanuel
2011-05-23
Logistic random effects models are a popular tool to analyze multilevel also called hierarchical data with a binary or ordinal outcome. Here, we aim to compare different statistical software implementations of these models. We used individual patient data from 8509 patients in 231 centers with moderate and severe Traumatic Brain Injury (TBI) enrolled in eight Randomized Controlled Trials (RCTs) and three observational studies. We fitted logistic random effects regression models with the 5-point Glasgow Outcome Scale (GOS) as outcome, both dichotomized as well as ordinal, with center and/or trial as random effects, and as covariates age, motor score, pupil reactivity or trial. We then compared the implementations of frequentist and Bayesian methods to estimate the fixed and random effects. Frequentist approaches included R (lme4), Stata (GLLAMM), SAS (GLIMMIX and NLMIXED), MLwiN ([R]IGLS) and MIXOR, Bayesian approaches included WinBUGS, MLwiN (MCMC), R package MCMCglmm and SAS experimental procedure MCMC.Three data sets (the full data set and two sub-datasets) were analysed using basically two logistic random effects models with either one random effect for the center or two random effects for center and trial. For the ordinal outcome in the full data set also a proportional odds model with a random center effect was fitted. The packages gave similar parameter estimates for both the fixed and random effects and for the binary (and ordinal) models for the main study and when based on a relatively large number of level-1 (patient level) data compared to the number of level-2 (hospital level) data. However, when based on relatively sparse data set, i.e. when the numbers of level-1 and level-2 data units were about the same, the frequentist and Bayesian approaches showed somewhat different results. The software implementations differ considerably in flexibility, computation time, and usability. There are also differences in the availability of additional tools for model evaluation, such as diagnostic plots. The experimental SAS (version 9.2) procedure MCMC appeared to be inefficient. On relatively large data sets, the different software implementations of logistic random effects regression models produced similar results. Thus, for a large data set there seems to be no explicit preference (of course if there is no preference from a philosophical point of view) for either a frequentist or Bayesian approach (if based on vague priors). The choice for a particular implementation may largely depend on the desired flexibility, and the usability of the package. For small data sets the random effects variances are difficult to estimate. In the frequentist approaches the MLE of this variance was often estimated zero with a standard error that is either zero or could not be determined, while for Bayesian methods the estimates could depend on the chosen "non-informative" prior of the variance parameter. The starting value for the variance parameter may be also critical for the convergence of the Markov chain.
Rosenblum, Michael; van der Laan, Mark J.
2010-01-01
Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation. PMID:20628636
Hierarchical model analysis of the Atlantic Flyway Breeding Waterfowl Survey
Sauer, John R.; Zimmerman, Guthrie S.; Klimstra, Jon D.; Link, William A.
2014-01-01
We used log-linear hierarchical models to analyze data from the Atlantic Flyway Breeding Waterfowl Survey. The survey has been conducted by state biologists each year since 1989 in the northeastern United States from Virginia north to New Hampshire and Vermont. Although yearly population estimates from the survey are used by the United States Fish and Wildlife Service for estimating regional waterfowl population status for mallards (Anas platyrhynchos), black ducks (Anas rubripes), wood ducks (Aix sponsa), and Canada geese (Branta canadensis), they are not routinely adjusted to control for time of day effects and other survey design issues. The hierarchical model analysis permits estimation of year effects and population change while accommodating the repeated sampling of plots and controlling for time of day effects in counting. We compared population estimates from the current stratified random sample analysis to population estimates from hierarchical models with alternative model structures that describe year to year changes as random year effects, a trend with random year effects, or year effects modeled as 1-year differences. Patterns of population change from the hierarchical model results generally were similar to the patterns described by stratified random sample estimates, but significant visibility differences occurred between twilight to midday counts in all species. Controlling for the effects of time of day resulted in larger population estimates for all species in the hierarchical model analysis relative to the stratified random sample analysis. The hierarchical models also provided a convenient means of estimating population trend as derived statistics from the analysis. We detected significant declines in mallard and American black ducks and significant increases in wood ducks and Canada geese, a trend that had not been significant for 3 of these 4 species in the prior analysis. We recommend using hierarchical models for analysis of the Atlantic Flyway Breeding Waterfowl Survey.
Disease Mapping of Zero-excessive Mesothelioma Data in Flanders
Neyens, Thomas; Lawson, Andrew B.; Kirby, Russell S.; Nuyts, Valerie; Watjou, Kevin; Aregay, Mehreteab; Carroll, Rachel; Nawrot, Tim S.; Faes, Christel
2016-01-01
Purpose To investigate the distribution of mesothelioma in Flanders using Bayesian disease mapping models that account for both an excess of zeros and overdispersion. Methods The numbers of newly diagnosed mesothelioma cases within all Flemish municipalities between 1999 and 2008 were obtained from the Belgian Cancer Registry. To deal with overdispersion, zero-inflation and geographical association, the hurdle combined model was proposed, which has three components: a Bernoulli zero-inflation mixture component to account for excess zeros, a gamma random effect to adjust for overdispersion and a normal conditional autoregressive random effect to attribute spatial association. This model was compared with other existing methods in literature. Results The results indicate that hurdle models with a random effects term accounting for extra-variance in the Bernoulli zero-inflation component fit the data better than hurdle models that do not take overdispersion in the occurrence of zeros into account. Furthermore, traditional models that do not take into account excessive zeros but contain at least one random effects term that models extra-variance in the counts have better fits compared to their hurdle counterparts. In other words, the extra-variability, due to an excess of zeros, can be accommodated by spatially structured and/or unstructured random effects in a Poisson model such that the hurdle mixture model is not necessary. Conclusions Models taking into account zero-inflation do not always provide better fits to data with excessive zeros than less complex models. In this study, a simple conditional autoregressive model identified a cluster in mesothelioma cases near a former asbestos processing plant (Kapelle-op-den-Bos). This observation is likely linked with historical local asbestos exposures. Future research will clarify this. PMID:27908590
ERIC Educational Resources Information Center
Conn, Vicki S.; Hafdahl, Adam R.; Cooper, Pamela S.; Ruppar, Todd M.; Mehr, David R.; Russell, Cynthia L.
2009-01-01
Purpose: This study investigated the effectiveness of interventions to improve medication adherence (MA) in older adults. Design and Methods: Meta-analysis was used to synthesize results of 33 published and unpublished randomized controlled trials. Random-effects models were used to estimate overall mean effect sizes (ESs) for MA, knowledge,…
NASA Technical Reports Server (NTRS)
Boyce, L.
1992-01-01
A probabilistic general material strength degradation model has been developed for structural components of aerospace propulsion systems subjected to diverse random effects. The model has been implemented in two FORTRAN programs, PROMISS (Probabilistic Material Strength Simulator) and PROMISC (Probabilistic Material Strength Calibrator). PROMISS calculates the random lifetime strength of an aerospace propulsion component due to as many as eighteen diverse random effects. Results are presented in the form of probability density functions and cumulative distribution functions of lifetime strength. PROMISC calibrates the model by calculating the values of empirical material constants.
Micro-Randomized Trials: An Experimental Design for Developing Just-in-Time Adaptive Interventions
Klasnja, Predrag; Hekler, Eric B.; Shiffman, Saul; Boruvka, Audrey; Almirall, Daniel; Tewari, Ambuj; Murphy, Susan A.
2015-01-01
Objective This paper presents an experimental design, the micro-randomized trial, developed to support optimization of just-in-time adaptive interventions (JITAIs). JITAIs are mHealth technologies that aim to deliver the right intervention components at the right times and locations to optimally support individuals’ health behaviors. Micro-randomized trials offer a way to optimize such interventions by enabling modeling of causal effects and time-varying effect moderation for individual intervention components within a JITAI. Methods The paper describes the micro-randomized trial design, enumerates research questions that this experimental design can help answer, and provides an overview of the data analyses that can be used to assess the causal effects of studied intervention components and investigate time-varying moderation of those effects. Results Micro-randomized trials enable causal modeling of proximal effects of the randomized intervention components and assessment of time-varying moderation of those effects. Conclusions Micro-randomized trials can help researchers understand whether their interventions are having intended effects, when and for whom they are effective, and what factors moderate the interventions’ effects, enabling creation of more effective JITAIs. PMID:26651463
An approximate generalized linear model with random effects for informative missing data.
Follmann, D; Wu, M
1995-03-01
This paper develops a class of models to deal with missing data from longitudinal studies. We assume that separate models for the primary response and missingness (e.g., number of missed visits) are linked by a common random parameter. Such models have been developed in the econometrics (Heckman, 1979, Econometrica 47, 153-161) and biostatistics (Wu and Carroll, 1988, Biometrics 44, 175-188) literature for a Gaussian primary response. We allow the primary response, conditional on the random parameter, to follow a generalized linear model and approximate the generalized linear model by conditioning on the data that describes missingness. The resultant approximation is a mixed generalized linear model with possibly heterogeneous random effects. An example is given to illustrate the approximate approach, and simulations are performed to critique the adequacy of the approximation for repeated binary data.
2014-01-01
Background Meta-regression is becoming increasingly used to model study level covariate effects. However this type of statistical analysis presents many difficulties and challenges. Here two methods for calculating confidence intervals for the magnitude of the residual between-study variance in random effects meta-regression models are developed. A further suggestion for calculating credible intervals using informative prior distributions for the residual between-study variance is presented. Methods Two recently proposed and, under the assumptions of the random effects model, exact methods for constructing confidence intervals for the between-study variance in random effects meta-analyses are extended to the meta-regression setting. The use of Generalised Cochran heterogeneity statistics is extended to the meta-regression setting and a Newton-Raphson procedure is developed to implement the Q profile method for meta-analysis and meta-regression. WinBUGS is used to implement informative priors for the residual between-study variance in the context of Bayesian meta-regressions. Results Results are obtained for two contrasting examples, where the first example involves a binary covariate and the second involves a continuous covariate. Intervals for the residual between-study variance are wide for both examples. Conclusions Statistical methods, and R computer software, are available to compute exact confidence intervals for the residual between-study variance under the random effects model for meta-regression. These frequentist methods are almost as easily implemented as their established counterparts for meta-analysis. Bayesian meta-regressions are also easily performed by analysts who are comfortable using WinBUGS. Estimates of the residual between-study variance in random effects meta-regressions should be routinely reported and accompanied by some measure of their uncertainty. Confidence and/or credible intervals are well-suited to this purpose. PMID:25196829
Parchebafieh, Samaneh; Gholizadeh, Leila; Lakdizaji, Sima; Ghiasvandiyan, Shahrzad; Davoodi, Arefeh
2014-01-01
This study examined the effectiveness of the clinical teaching associate (CTA) model to improve clinical learning outcomes in nursing students. Students were randomly allocated to either the CTA (n = 28) or traditional training group (n = 32), and their clinical knowledge, skills, and satisfaction with the learning experience were assessed and compared. The results showed that the CTA model was equally effective in improving clinical knowledge, skills, and satisfaction of nursing students.
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models
Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A.; Burgueño, Juan; Pérez-Rodríguez, Paulino; de los Campos, Gustavo
2016-01-01
The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects (u) that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model (u) plus an extra component, f, that captures random effects between environments that were not captured by the random effects u. We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u. PMID:27793970
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.
Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A; Burgueño, Juan; Pérez-Rodríguez, Paulino; de Los Campos, Gustavo
2017-01-05
The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text]. Copyright © 2017 Cuevas et al.
Mixed models approaches for joint modeling of different types of responses.
Ivanova, Anna; Molenberghs, Geert; Verbeke, Geert
2016-01-01
In many biomedical studies, one jointly collects longitudinal continuous, binary, and survival outcomes, possibly with some observations missing. Random-effects models, sometimes called shared-parameter models or frailty models, received a lot of attention. In such models, the corresponding variance components can be employed to capture the association between the various sequences. In some cases, random effects are considered common to various sequences, perhaps up to a scaling factor; in others, there are different but correlated random effects. Even though a variety of data types has been considered in the literature, less attention has been devoted to ordinal data. For univariate longitudinal or hierarchical data, the proportional odds mixed model (POMM) is an instance of the generalized linear mixed model (GLMM; Breslow and Clayton, 1993). Ordinal data are conveniently replaced by a parsimonious set of dummies, which in the longitudinal setting leads to a repeated set of dummies. When ordinal longitudinal data are part of a joint model, the complexity increases further. This is the setting considered in this paper. We formulate a random-effects based model that, in addition, allows for overdispersion. Using two case studies, it is shown that the combination of random effects to capture association with further correction for overdispersion can improve the model's fit considerably and that the resulting models allow to answer research questions that could not be addressed otherwise. Parameters can be estimated in a fairly straightforward way, using the SAS procedure NLMIXED.
Two Universality Classes for the Many-Body Localization Transition
NASA Astrophysics Data System (ADS)
Khemani, Vedika; Sheng, D. N.; Huse, David A.
2017-08-01
We provide a systematic comparison of the many-body localization (MBL) transition in spin chains with nonrandom quasiperiodic versus random fields. We find evidence suggesting that these belong to two separate universality classes: the first dominated by "intrinsic" intrasample randomness, and the second dominated by external intersample quenched randomness. We show that the effects of intersample quenched randomness are strongly growing, but not yet dominant, at the system sizes probed by exact-diagonalization studies on random models. Thus, the observed finite-size critical scaling collapses in such studies appear to be in a preasymptotic regime near the nonrandom universality class, but showing signs of the initial crossover towards the external-randomness-dominated universality class. Our results provide an explanation for why exact-diagonalization studies on random models see an apparent scaling near the transition while also obtaining finite-size scaling exponents that strongly violate Harris-Chayes bounds that apply to disorder-driven transitions. We also show that the MBL phase is more stable for the quasiperiodic model as compared to the random one, and the transition in the quasiperiodic model suffers less from certain finite-size effects.
Modeling Randomness in Judging Rating Scales with a Random-Effects Rating Scale Model
ERIC Educational Resources Information Center
Wang, Wen-Chung; Wilson, Mark; Shih, Ching-Lin
2006-01-01
This study presents the random-effects rating scale model (RE-RSM) which takes into account randomness in the thresholds over persons by treating them as random-effects and adding a random variable for each threshold in the rating scale model (RSM) (Andrich, 1978). The RE-RSM turns out to be a special case of the multidimensional random…
Studies in astronomical time series analysis: Modeling random processes in the time domain
NASA Technical Reports Server (NTRS)
Scargle, J. D.
1979-01-01
Random process models phased in the time domain are used to analyze astrophysical time series data produced by random processes. A moving average (MA) model represents the data as a sequence of pulses occurring randomly in time, with random amplitudes. An autoregressive (AR) model represents the correlations in the process in terms of a linear function of past values. The best AR model is determined from sampled data and transformed to an MA for interpretation. The randomness of the pulse amplitudes is maximized by a FORTRAN algorithm which is relatively stable numerically. Results of test cases are given to study the effects of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the optical light curve of the quasar 3C 273 is given.
Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry
2013-08-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.
Kim, Yoonsang; Emery, Sherry
2013-01-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415
Analyzing crash frequency in freeway tunnels: A correlated random parameters approach.
Hou, Qinzhong; Tarko, Andrew P; Meng, Xianghai
2018-02-01
The majority of past road safety studies focused on open road segments while only a few focused on tunnels. Moreover, the past tunnel studies produced some inconsistent results about the safety effects of the traffic patterns, the tunnel design, and the pavement conditions. The effects of these conditions therefore remain unknown, especially for freeway tunnels in China. The study presented in this paper investigated the safety effects of these various factors utilizing a four-year period (2009-2012) of data as well as three models: 1) a random effects negative binomial model (RENB), 2) an uncorrelated random parameters negative binomial model (URPNB), and 3) a correlated random parameters negative binomial model (CRPNB). Of these three, the results showed that the CRPNB model provided better goodness-of-fit and offered more insights into the factors that contribute to tunnel safety. The CRPNB was not only able to allocate the part of the otherwise unobserved heterogeneity to the individual model parameters but also was able to estimate the cross-correlations between these parameters. Furthermore, the study results showed that traffic volume, tunnel length, proportion of heavy trucks, curvature, and pavement rutting were associated with higher frequencies of traffic crashes, while the distance to the tunnel wall, distance to the adjacent tunnel, distress ratio, International Roughness Index (IRI), and friction coefficient were associated with lower crash frequencies. In addition, the effects of the heterogeneity of the proportion of heavy trucks, the curvature, the rutting depth, and the friction coefficient were identified and their inter-correlations were analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shteingart, Hanan; Loewenstein, Yonatan
2016-01-01
There is a long history of experiments in which participants are instructed to generate a long sequence of binary random numbers. The scope of this line of research has shifted over the years from identifying the basic psychological principles and/or the heuristics that lead to deviations from randomness, to one of predicting future choices. In this paper, we used generalized linear regression and the framework of Reinforcement Learning in order to address both points. In particular, we used logistic regression analysis in order to characterize the temporal sequence of participants' choices. Surprisingly, a population analysis indicated that the contribution of the most recent trial has only a weak effect on behavior, compared to more preceding trials, a result that seems irreconcilable with standard sequential effects that decay monotonously with the delay. However, when considering each participant separately, we found that the magnitudes of the sequential effect are a monotonous decreasing function of the delay, yet these individual sequential effects are largely averaged out in a population analysis because of heterogeneity. The substantial behavioral heterogeneity in this task is further demonstrated quantitatively by considering the predictive power of the model. We show that a heterogeneous model of sequential dependencies captures the structure available in random sequence generation. Finally, we show that the results of the logistic regression analysis can be interpreted in the framework of reinforcement learning, allowing us to compare the sequential effects in the random sequence generation task to those in an operant learning task. We show that in contrast to the random sequence generation task, sequential effects in operant learning are far more homogenous across the population. These results suggest that in the random sequence generation task, different participants adopt different cognitive strategies to suppress sequential dependencies when generating the "random" sequences.
Cai, Wenyan; Ji, Ying; Song, Xianping; Guo, Haoran; Han, Lei; Zhang, Feng; Liu, Xin; Zhang, Hengdong; Zhu, Baoli; Xu, Ming
2017-10-01
Correlation between exposure to glyphosate and sperm concentrations is important in reproductive toxicity risk assessment for male reproductive functions. Many studies have focused on reproductive toxicity on glyphosate, however, results are still controversial. We conducted a systematic review of epidemiological studies on the association between glyphosate exposure and sperm concentrations of rodents. The aim of this study is to explore the potential adverse effects of glyphosate on reproductive function of male rodents. Systematic and comprehensive literature search was performed in MEDLINE, TOXLINE, Embase, WANFANG and CNKI databases with different combinations of glyphosate exposure and sperm concentration. 8 studies were eventually identified and random-effect model was conducted. Heterogeneity among study results was calculated via chi-square tests. Ten independent experimental datasets from these eight studies were acquired to synthesize the random-effect model. A decrease in sperm concentrations was found with mean difference of sperm concentrations(MDsperm)=-2.774×10 6 /sperm/g/testis(95%CI=-0.969 to -4.579) in random-effect model after glyphosate exposure. There was also a significant decrease after fitting the random-effect model: MDsperm=-1.632×10 6 /sperm/g/testis (95%CI=-0.662 to -2.601). The results of meta-analysis support the hypothesis that glyphosate exposure decreased sperm concentration in rodents. Therefore, we conclude that glyphosate is toxic to male rodent's reproductive system. Copyright © 2017. Published by Elsevier B.V.
A Bayesian, generalized frailty model for comet assays.
Ghebretinsae, Aklilu Habteab; Faes, Christel; Molenberghs, Geert; De Boeck, Marlies; Geys, Helena
2013-05-01
This paper proposes a flexible modeling approach for so-called comet assay data regularly encountered in preclinical research. While such data consist of non-Gaussian outcomes in a multilevel hierarchical structure, traditional analyses typically completely or partly ignore this hierarchical nature by summarizing measurements within a cluster. Non-Gaussian outcomes are often modeled using exponential family models. This is true not only for binary and count data, but also for, example, time-to-event outcomes. Two important reasons for extending this family are for (1) the possible occurrence of overdispersion, meaning that the variability in the data may not be adequately described by the models, which often exhibit a prescribed mean-variance link, and (2) the accommodation of a hierarchical structure in the data, owing to clustering in the data. The first issue is dealt with through so-called overdispersion models. Clustering is often accommodated through the inclusion of random subject-specific effects. Though not always, one conventionally assumes such random effects to be normally distributed. In the case of time-to-event data, one encounters, for example, the gamma frailty model (Duchateau and Janssen, 2007 ). While both of these issues may occur simultaneously, models combining both are uncommon. Molenberghs et al. ( 2010 ) proposed a broad class of generalized linear models accommodating overdispersion and clustering through two separate sets of random effects. Here, we use this method to model data from a comet assay with a three-level hierarchical structure. Although a conjugate gamma random effect is used for the overdispersion random effect, both gamma and normal random effects are considered for the hierarchical random effect. Apart from model formulation, we place emphasis on Bayesian estimation. Our proposed method has an upper hand over the traditional analysis in that it (1) uses the appropriate distribution stipulated in the literature; (2) deals with the complete hierarchical nature; and (3) uses all information instead of summary measures. The fit of the model to the comet assay is compared against the background of more conventional model fits. Results indicate the toxicity of 1,2-dimethylhydrazine dihydrochloride at different dose levels (low, medium, and high).
Emprechtinger, Robert; Piso, Brigitte; Ringleb, Peter A
2017-03-01
Mechanical thrombectomy with stent retrievers is an effective treatment for patients with ischemic stroke. Results of recent meta-analyses report that the treatment is safe. However, the endpoints recurrent stroke, vasospasms, and subarachnoid hemorrhage have not been evaluated sufficiently. Hence, we extracted data on these outcomes from the five recent thrombectomy trials (MR CLEAN, ESCAPE, REVASCAT, SWIFT PRIME, and EXTEND IA published in 2015). Subsequently, we conducted meta-analyses for each outcome. We report the results of the fixed, as well as the random effects model. Three studies reported data on recurrent strokes. While the results did not reach statistical significance in the random effects model (despite a three times elevated risk), the fixed effects model revealed a significantly higher rate of recurrent strokes after thrombectomy. Four studies reported data on subarachnoid hemorrhage. The higher pooled rates in the intervention groups were statistically significant in both, the fixed and the random effects model. One study reported on vasospasms. We recorded 14 events in the intervention group and none in the control group. The efficacy of mechanical thrombectomy is not questioned, yet our results indicate an increased risk for recurrent strokes, subarachnoid hemorrhage, and vasospasms post-treatment. Therefore, we strongly recommend a thoroughly surveillance, concerning these adverse events in future clinical trials and routine registries.
A Bayesian ridge regression analysis of congestion's impact on urban expressway safety.
Shi, Qi; Abdel-Aty, Mohamed; Lee, Jaeyoung
2016-03-01
With the rapid growth of traffic in urban areas, concerns about congestion and traffic safety have been heightened. This study leveraged both Automatic Vehicle Identification (AVI) system and Microwave Vehicle Detection System (MVDS) installed on an expressway in Central Florida to explore how congestion impacts the crash occurrence in urban areas. Multiple congestion measures from the two systems were developed. To ensure more precise estimates of the congestion's effects, the traffic data were aggregated into peak and non-peak hours. Multicollinearity among traffic parameters was examined. The results showed the presence of multicollinearity especially during peak hours. As a response, ridge regression was introduced to cope with this issue. Poisson models with uncorrelated random effects, correlated random effects, and both correlated random effects and random parameters were constructed within the Bayesian framework. It was proven that correlated random effects could significantly enhance model performance. The random parameters model has similar goodness-of-fit compared with the model with only correlated random effects. However, by accounting for the unobserved heterogeneity, more variables were found to be significantly related to crash frequency. The models indicated that congestion increased crash frequency during peak hours while during non-peak hours it was not a major crash contributing factor. Using the random parameter model, the three congestion measures were compared. It was found that all congestion indicators had similar effects while Congestion Index (CI) derived from MVDS data was a better congestion indicator for safety analysis. Also, analyses showed that the segments with higher congestion intensity could not only increase property damage only (PDO) crashes, but also more severe crashes. In addition, the issues regarding the necessity to incorporate specific congestion indicator for congestion's effects on safety and to take care of the multicollinearity between explanatory variables were also discussed. By including a specific congestion indicator, the model performance significantly improved. When comparing models with and without ridge regression, the magnitude of the coefficients was altered in the existence of multicollinearity. These conclusions suggest that the use of appropriate congestion measure and consideration of multicolilnearity among the variables would improve the models and our understanding about the effects of congestion on traffic safety. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of uncertainty in the adjustment of fundamental constants
NASA Astrophysics Data System (ADS)
Bodnar, Olha; Elster, Clemens; Fischer, Joachim; Possolo, Antonio; Toman, Blaza
2016-02-01
Combining multiple measurement results for the same quantity is an important task in metrology and in many other areas. Examples include the determination of fundamental constants, the calculation of reference values in interlaboratory comparisons, or the meta-analysis of clinical studies. However, neither the GUM nor its supplements give any guidance for this task. Various approaches are applied such as weighted least-squares in conjunction with the Birge ratio or random effects models. While the former approach, which is based on a location-scale model, is particularly popular in metrology, the latter represents a standard tool used in statistics for meta-analysis. We investigate the reliability and robustness of the location-scale model and the random effects model with particular focus on resulting coverage or credible intervals. The interval estimates are obtained by adopting a Bayesian point of view in conjunction with a non-informative prior that is determined by a currently favored principle for selecting non-informative priors. Both approaches are compared by applying them to simulated data as well as to data for the Planck constant and the Newtonian constant of gravitation. Our results suggest that the proposed Bayesian inference based on the random effects model is more reliable and less sensitive to model misspecifications than the approach based on the location-scale model.
Liu, Xian; Engel, Charles C
2012-12-20
Researchers often encounter longitudinal health data characterized with three or more ordinal or nominal categories. Random-effects multinomial logit models are generally applied to account for potential lack of independence inherent in such clustered data. When parameter estimates are used to describe longitudinal processes, however, random effects, both between and within individuals, need to be retransformed for correctly predicting outcome probabilities. This study attempts to go beyond existing work by developing a retransformation method that derives longitudinal growth trajectories of unbiased health probabilities. We estimated variances of the predicted probabilities by using the delta method. Additionally, we transformed the covariates' regression coefficients on the multinomial logit function, not substantively meaningful, to the conditional effects on the predicted probabilities. The empirical illustration uses the longitudinal data from the Asset and Health Dynamics among the Oldest Old. Our analysis compared three sets of the predicted probabilities of three health states at six time points, obtained from, respectively, the retransformation method, the best linear unbiased prediction, and the fixed-effects approach. The results demonstrate that neglect of retransforming random errors in the random-effects multinomial logit model results in severely biased longitudinal trajectories of health probabilities as well as overestimated effects of covariates on the probabilities. Copyright © 2012 John Wiley & Sons, Ltd.
Wang, Wei; Griswold, Michael E
2016-11-30
The random effect Tobit model is a regression model that accommodates both left- and/or right-censoring and within-cluster dependence of the outcome variable. Regression coefficients of random effect Tobit models have conditional interpretations on a constructed latent dependent variable and do not provide inference of overall exposure effects on the original outcome scale. Marginalized random effects model (MREM) permits likelihood-based estimation of marginal mean parameters for the clustered data. For random effect Tobit models, we extend the MREM to marginalize over both the random effects and the normal space and boundary components of the censored response to estimate overall exposure effects at population level. We also extend the 'Average Predicted Value' method to estimate the model-predicted marginal means for each person under different exposure status in a designated reference group by integrating over the random effects and then use the calculated difference to assess the overall exposure effect. The maximum likelihood estimation is proposed utilizing a quasi-Newton optimization algorithm with Gauss-Hermite quadrature to approximate the integration of the random effects. We use these methods to carefully analyze two real datasets. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Elmore, K. L.
2016-12-01
The Metorological Phenomemna Identification NeartheGround (mPING) project is an example of a crowd-sourced, citizen science effort to gather data of sufficeint quality and quantity needed by new post processing methods that use machine learning. Transportation and infrastructure are particularly sensitive to precipitation type in winter weather. We extract attributes from operational numerical forecast models and use them in a random forest to generate forecast winter precipitation types. We find that random forests applied to forecast soundings are effective at generating skillful forecasts of surface ptype with consideralbly more skill than the current algorithms, especuially for ice pellets and freezing rain. We also find that three very different forecast models yuield similar overall results, showing that random forests are able to extract essentially equivalent information from different forecast models. We also show that the random forest for each model, and each profile type is unique to the particular forecast model and that the random forests developed using a particular model suffer significant degradation when given attributes derived from a different model. This implies that no single algorithm can perform well across all forecast models. Clearly, random forests extract information unavailable to "physically based" methods because the physical information in the models does not appear as we expect. One intersting result is that results from the classic "warm nose" sounding profile are, by far, the most sensitive to the particular forecast model, but this profile is also the one for which random forests are most skillful. Finally, a method for calibrarting probabilties for each different ptype using multinomial logistic regression is shown.
Soares, Marta O.; Palmer, Stephen; Ades, Anthony E.; Harrison, David; Shankar-Hari, Manu; Rowan, Kathy M.
2015-01-01
Cost-effectiveness analysis (CEA) models are routinely used to inform health care policy. Key model inputs include relative effectiveness of competing treatments, typically informed by meta-analysis. Heterogeneity is ubiquitous in meta-analysis, and random effects models are usually used when there is variability in effects across studies. In the absence of observed treatment effect modifiers, various summaries from the random effects distribution (random effects mean, predictive distribution, random effects distribution, or study-specific estimate [shrunken or independent of other studies]) can be used depending on the relationship between the setting for the decision (population characteristics, treatment definitions, and other contextual factors) and the included studies. If covariates have been measured that could potentially explain the heterogeneity, then these can be included in a meta-regression model. We describe how covariates can be included in a network meta-analysis model and how the output from such an analysis can be used in a CEA model. We outline a model selection procedure to help choose between competing models and stress the importance of clinical input. We illustrate the approach with a health technology assessment of intravenous immunoglobulin for the management of adult patients with severe sepsis in an intensive care setting, which exemplifies how risk of bias information can be incorporated into CEA models. We show that the results of the CEA and value-of-information analyses are sensitive to the model and highlight the importance of sensitivity analyses when conducting CEA in the presence of heterogeneity. The methods presented extend naturally to heterogeneity in other model inputs, such as baseline risk. PMID:25712447
Welton, Nicky J; Soares, Marta O; Palmer, Stephen; Ades, Anthony E; Harrison, David; Shankar-Hari, Manu; Rowan, Kathy M
2015-07-01
Cost-effectiveness analysis (CEA) models are routinely used to inform health care policy. Key model inputs include relative effectiveness of competing treatments, typically informed by meta-analysis. Heterogeneity is ubiquitous in meta-analysis, and random effects models are usually used when there is variability in effects across studies. In the absence of observed treatment effect modifiers, various summaries from the random effects distribution (random effects mean, predictive distribution, random effects distribution, or study-specific estimate [shrunken or independent of other studies]) can be used depending on the relationship between the setting for the decision (population characteristics, treatment definitions, and other contextual factors) and the included studies. If covariates have been measured that could potentially explain the heterogeneity, then these can be included in a meta-regression model. We describe how covariates can be included in a network meta-analysis model and how the output from such an analysis can be used in a CEA model. We outline a model selection procedure to help choose between competing models and stress the importance of clinical input. We illustrate the approach with a health technology assessment of intravenous immunoglobulin for the management of adult patients with severe sepsis in an intensive care setting, which exemplifies how risk of bias information can be incorporated into CEA models. We show that the results of the CEA and value-of-information analyses are sensitive to the model and highlight the importance of sensitivity analyses when conducting CEA in the presence of heterogeneity. The methods presented extend naturally to heterogeneity in other model inputs, such as baseline risk. © The Author(s) 2015.
Disease mapping of zero-excessive mesothelioma data in Flanders.
Neyens, Thomas; Lawson, Andrew B; Kirby, Russell S; Nuyts, Valerie; Watjou, Kevin; Aregay, Mehreteab; Carroll, Rachel; Nawrot, Tim S; Faes, Christel
2017-01-01
To investigate the distribution of mesothelioma in Flanders using Bayesian disease mapping models that account for both an excess of zeros and overdispersion. The numbers of newly diagnosed mesothelioma cases within all Flemish municipalities between 1999 and 2008 were obtained from the Belgian Cancer Registry. To deal with overdispersion, zero inflation, and geographical association, the hurdle combined model was proposed, which has three components: a Bernoulli zero-inflation mixture component to account for excess zeros, a gamma random effect to adjust for overdispersion, and a normal conditional autoregressive random effect to attribute spatial association. This model was compared with other existing methods in literature. The results indicate that hurdle models with a random effects term accounting for extra variance in the Bernoulli zero-inflation component fit the data better than hurdle models that do not take overdispersion in the occurrence of zeros into account. Furthermore, traditional models that do not take into account excessive zeros but contain at least one random effects term that models extra variance in the counts have better fits compared to their hurdle counterparts. In other words, the extra variability, due to an excess of zeros, can be accommodated by spatially structured and/or unstructured random effects in a Poisson model such that the hurdle mixture model is not necessary. Models taking into account zero inflation do not always provide better fits to data with excessive zeros than less complex models. In this study, a simple conditional autoregressive model identified a cluster in mesothelioma cases near a former asbestos processing plant (Kapelle-op-den-Bos). This observation is likely linked with historical local asbestos exposures. Future research will clarify this. Copyright © 2016 Elsevier Inc. All rights reserved.
Venkataraman, Narayan; Ulfarsson, Gudmundur F; Shankar, Venky N
2013-10-01
A nine-year (1999-2007) continuous panel of crash histories on interstates in Washington State, USA, was used to estimate random parameter negative binomial (RPNB) models for various aggregations of crashes. A total of 21 different models were assessed in terms of four ways to aggregate crashes, by: (a) severity, (b) number of vehicles involved, (c) crash type, and by (d) location characteristics. The models within these aggregations include specifications for all severities (property damage only, possible injury, evident injury, disabling injury, and fatality), number of vehicles involved (one-vehicle to five-or-more-vehicle), crash type (sideswipe, same direction, overturn, head-on, fixed object, rear-end, and other), and location types (urban interchange, rural interchange, urban non-interchange, rural non-interchange). A total of 1153 directional road segments comprising of the seven Washington State interstates were analyzed, yielding statistical models of crash frequency based on 10,377 observations. These results suggest that in general there was a significant improvement in log-likelihood when using RPNB compared to a fixed parameter negative binomial baseline model. Heterogeneity effects are most noticeable for lighting type, road curvature, and traffic volume (ADT). Median lighting or right-side lighting are linked to increased crash frequencies in many models for more than half of the road segments compared to both-sides lighting. Both-sides lighting thereby appears to generally lead to a safety improvement. Traffic volume has a random parameter but the effect is always toward increasing crash frequencies as expected. However that the effect is random shows that the effect of traffic volume on crash frequency is complex and varies by road segment. The number of lanes has a random parameter effect only in the interchange type models. The results show that road segment-specific insights into crash frequency occurrence can lead to improved design policy and project prioritization. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modeling and Predicting the Stress Relaxation of Composites with Short and Randomly Oriented Fibers
Obaid, Numaira; Sain, Mohini
2017-01-01
The addition of short fibers has been experimentally observed to slow the stress relaxation of viscoelastic polymers, producing a change in the relaxation time constant. Our recent study attributed this effect of fibers on stress relaxation behavior to the interfacial shear stress transfer at the fiber-matrix interface. This model explained the effect of fiber addition on stress relaxation without the need to postulate structural changes at the interface. In our previous study, we developed an analytical model for the effect of fully aligned short fibers, and the model predictions were successfully compared to finite element simulations. However, in most industrial applications of short-fiber composites, fibers are not aligned, and hence it is necessary to examine the time dependence of viscoelastic polymers containing randomly oriented short fibers. In this study, we propose an analytical model to predict the stress relaxation behavior of short-fiber composites where the fibers are randomly oriented. The model predictions were compared to results obtained from Monte Carlo finite element simulations, and good agreement between the two was observed. The analytical model provides an excellent tool to accurately predict the stress relaxation behavior of randomly oriented short-fiber composites. PMID:29053601
NASA Technical Reports Server (NTRS)
Kester, DO; Bontekoe, Tj. Romke
1994-01-01
In order to make the best high resolution images of IRAS data it is necessary to incorporate any knowledge about the instrument into a model: the IRAS model. This is necessary since every remaining systematic effect will be amplified by any high resolution technique into spurious artifacts in the images. The search for random noise is in fact the never-ending quest for better quality results, and can only be obtained by better models. The Dutch high-resolution effort has resulted in HIRAS which drives the MEMSYS5 algorithm. It is specifically designed for IRAS image construction. A detailed description of HIRAS with many results is in preparation. In this paper we emphasize many of the instrumental effects incorporated in the IRAS model, including our improved 100 micron IRAS response functions.
Moerbeek, Mirjam; van Schie, Sander
2016-07-11
The number of clusters in a cluster randomized trial is often low. It is therefore likely random assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard error bias and on power to detect treatment effects. The consequences of covariance imbalance in unadjusted and adjusted linear mixed models are investigated by means of a simulation study. The factors in this study are the degree of imbalance, the covariate effect size, the cluster size and the intraclass correlation coefficient. The covariate is binary and measured at the cluster level; the outcome is continuous and measured at the individual level. The results show covariate imbalance results in negligible parameter bias and small standard error bias in adjusted linear mixed models. Ignoring the possibility of covariate imbalance while calculating the sample size at the cluster level may result in a loss in power of at most 25 % in the adjusted linear mixed model. The results are more severe for the unadjusted linear mixed model: parameter biases up to 100 % and standard error biases up to 200 % may be observed. Power levels based on the unadjusted linear mixed model are often too low. The consequences are most severe for large clusters and/or small intraclass correlation coefficients since then the required number of clusters to achieve a desired power level is smallest. The possibility of covariate imbalance should be taken into account while calculating the sample size of a cluster randomized trial. Otherwise more sophisticated methods to randomize clusters to treatments should be used, such as stratification or balance algorithms. All relevant covariates should be carefully identified, be actually measured and included in the statistical model to avoid severe levels of parameter and standard error bias and insufficient power levels.
Empirical likelihood inference in randomized clinical trials.
Zhang, Biao
2017-01-01
In individually randomized controlled trials, in addition to the primary outcome, information is often available on a number of covariates prior to randomization. This information is frequently utilized to undertake adjustment for baseline characteristics in order to increase precision of the estimation of average treatment effects; such adjustment is usually performed via covariate adjustment in outcome regression models. Although the use of covariate adjustment is widely seen as desirable for making treatment effect estimates more precise and the corresponding hypothesis tests more powerful, there are considerable concerns that objective inference in randomized clinical trials can potentially be compromised. In this paper, we study an empirical likelihood approach to covariate adjustment and propose two unbiased estimating functions that automatically decouple evaluation of average treatment effects from regression modeling of covariate-outcome relationships. The resulting empirical likelihood estimator of the average treatment effect is as efficient as the existing efficient adjusted estimators 1 when separate treatment-specific working regression models are correctly specified, yet are at least as efficient as the existing efficient adjusted estimators 1 for any given treatment-specific working regression models whether or not they coincide with the true treatment-specific covariate-outcome relationships. We present a simulation study to compare the finite sample performance of various methods along with some results on analysis of a data set from an HIV clinical trial. The simulation results indicate that the proposed empirical likelihood approach is more efficient and powerful than its competitors when the working covariate-outcome relationships by treatment status are misspecified.
Analytical connection between thresholds and immunization strategies of SIS model in random networks
NASA Astrophysics Data System (ADS)
Zhou, Ming-Yang; Xiong, Wen-Man; Liao, Hao; Wang, Tong; Wei, Zong-Wen; Fu, Zhong-Qian
2018-05-01
Devising effective strategies for hindering the propagation of viruses and protecting the population against epidemics is critical for public security and health. Despite a number of studies based on the susceptible-infected-susceptible (SIS) model devoted to this topic, we still lack a general framework to compare different immunization strategies in completely random networks. Here, we address this problem by suggesting a novel method based on heterogeneous mean-field theory for the SIS model. Our method builds the relationship between the thresholds and different immunization strategies in completely random networks. Besides, we provide an analytical argument that the targeted large-degree strategy achieves the best performance in random networks with arbitrary degree distribution. Moreover, the experimental results demonstrate the effectiveness of the proposed method in both artificial and real-world networks.
Stochastic analysis of a pulse-type prey-predator model
NASA Astrophysics Data System (ADS)
Wu, Y.; Zhu, W. Q.
2008-04-01
A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.
Stochastic analysis of a pulse-type prey-predator model.
Wu, Y; Zhu, W Q
2008-04-01
A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.
Random forests as cumulative effects models: A case study of lakes and rivers in Muskoka, Canada.
Jones, F Chris; Plewes, Rachel; Murison, Lorna; MacDougall, Mark J; Sinclair, Sarah; Davies, Christie; Bailey, John L; Richardson, Murray; Gunn, John
2017-10-01
Cumulative effects assessment (CEA) - a type of environmental appraisal - lacks effective methods for modeling cumulative effects, evaluating indicators of ecosystem condition, and exploring the likely outcomes of development scenarios. Random forests are an extension of classification and regression trees, which model response variables by recursive partitioning. Random forests were used to model a series of candidate ecological indicators that described lakes and rivers from a case study watershed (The Muskoka River Watershed, Canada). Suitability of the candidate indicators for use in cumulative effects assessment and watershed monitoring was assessed according to how well they could be predicted from natural habitat features and how sensitive they were to human land-use. The best models explained 75% of the variation in a multivariate descriptor of lake benthic-macroinvertebrate community structure, and 76% of the variation in the conductivity of river water. Similar results were obtained by cross-validation. Several candidate indicators detected a simulated doubling of urban land-use in their catchments, and a few were able to detect a simulated doubling of agricultural land-use. The paper demonstrates that random forests can be used to describe the combined and singular effects of multiple stressors and natural environmental factors, and furthermore, that random forests can be used to evaluate the performance of monitoring indicators. The numerical methods presented are applicable to any ecosystem and indicator type, and therefore represent a step forward for CEA. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Zero-inflated count models for longitudinal measurements with heterogeneous random effects.
Zhu, Huirong; Luo, Sheng; DeSantis, Stacia M
2017-08-01
Longitudinal zero-inflated count data arise frequently in substance use research when assessing the effects of behavioral and pharmacological interventions. Zero-inflated count models (e.g. zero-inflated Poisson or zero-inflated negative binomial) with random effects have been developed to analyze this type of data. In random effects zero-inflated count models, the random effects covariance matrix is typically assumed to be homogeneous (constant across subjects). However, in many situations this matrix may be heterogeneous (differ by measured covariates). In this paper, we extend zero-inflated count models to account for random effects heterogeneity by modeling their variance as a function of covariates. We show via simulation that ignoring intervention and covariate-specific heterogeneity can produce biased estimates of covariate and random effect estimates. Moreover, those biased estimates can be rectified by correctly modeling the random effects covariance structure. The methodological development is motivated by and applied to the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study, the largest clinical trial of alcohol dependence performed in United States with 1383 individuals.
Xing, Haifeng; Hou, Bo; Lin, Zhihui; Guo, Meifeng
2017-10-13
MEMS (Micro Electro Mechanical System) gyroscopes have been widely applied to various fields, but MEMS gyroscope random drift has nonlinear and non-stationary characteristics. It has attracted much attention to model and compensate the random drift because it can improve the precision of inertial devices. This paper has proposed to use wavelet filtering to reduce noise in the original data of MEMS gyroscopes, then reconstruct the random drift data with PSR (phase space reconstruction), and establish the model for the reconstructed data by LSSVM (least squares support vector machine), of which the parameters were optimized using CPSO (chaotic particle swarm optimization). Comparing the effect of modeling the MEMS gyroscope random drift with BP-ANN (back propagation artificial neural network) and the proposed method, the results showed that the latter had a better prediction accuracy. Using the compensation of three groups of MEMS gyroscope random drift data, the standard deviation of three groups of experimental data dropped from 0.00354°/s, 0.00412°/s, and 0.00328°/s to 0.00065°/s, 0.00072°/s and 0.00061°/s, respectively, which demonstrated that the proposed method can reduce the influence of MEMS gyroscope random drift and verified the effectiveness of this method for modeling MEMS gyroscope random drift.
Xu, Chonggang; Gertner, George
2013-01-01
Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements. PMID:24143037
Xu, Chonggang; Gertner, George
2011-01-01
Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements.
NASA Astrophysics Data System (ADS)
Kwon, Sungchul; Kim, Jin Min
2015-01-01
For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the effects of random initial conditions on the dynamical scaling behavior of an order parameter. In the FE Manna model, the density ρ of total particles is conserved, and an absorbing phase transition occurs at ρc as ρ varies. In this work, we show that, for a given ρ , random initial distributions of particles lead to the domain structure in which domains with particle densities higher and lower than ρc alternate with each other. In the domain structure, the dominant length scale is the average domain length, which increases via the coalescence of adjacent domains. At ρc, the domain structure slows down the decay of an order parameter and also causes anomalous finite-size effects, i.e., power-law decay followed by an exponential one before the quasisteady state. As a result, the interplay of particle conservation and random initial conditions causes the domain structure, which is the origin of the anomalous dynamical scaling behaviors for random initial conditions.
NASA Astrophysics Data System (ADS)
Olekhno, N. A.; Beltukov, Y. M.
2018-05-01
Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-dielectric and other two-component nanocomposites. In the present work, the spectral properties of resonances in random networks are studied within the framework of the random matrix theory. We have shown that the appropriate ensemble of random matrices for the considered problem is the Jacobi ensemble (the MANOVA ensemble). The obtained analytical expressions for the density of states in such resonant networks show a good agreement with the results of numerical simulations in a wide range of metal filling fractions 0
Using structural equation modeling for network meta-analysis.
Tu, Yu-Kang; Wu, Yun-Chun
2017-07-14
Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison. SEM provides a very flexible framework for univariate and multivariate meta-analysis, and its potential as a powerful tool for advanced meta-analysis is still to be explored.
Functional mixed effects spectral analysis
KRAFTY, ROBERT T.; HALL, MARTICA; GUO, WENSHENG
2011-01-01
SUMMARY In many experiments, time series data can be collected from multiple units and multiple time series segments can be collected from the same unit. This article introduces a mixed effects Cramér spectral representation which can be used to model the effects of design covariates on the second-order power spectrum while accounting for potential correlations among the time series segments collected from the same unit. The transfer function is composed of a deterministic component to account for the population-average effects and a random component to account for the unit-specific deviations. The resulting log-spectrum has a functional mixed effects representation where both the fixed effects and random effects are functions in the frequency domain. It is shown that, when the replicate-specific spectra are smooth, the log-periodograms converge to a functional mixed effects model. A data-driven iterative estimation procedure is offered for the periodic smoothing spline estimation of the fixed effects, penalized estimation of the functional covariance of the random effects, and unit-specific random effects prediction via the best linear unbiased predictor. PMID:26855437
Effective pore-scale dispersion upscaling with a correlated continuous time random walk approach
NASA Astrophysics Data System (ADS)
Le Borgne, T.; Bolster, D.; Dentz, M.; de Anna, P.; Tartakovsky, A.
2011-12-01
We investigate the upscaling of dispersion from a pore-scale analysis of Lagrangian velocities. A key challenge in the upscaling procedure is to relate the temporal evolution of spreading to the pore-scale velocity field properties. We test the hypothesis that one can represent Lagrangian velocities at the pore scale as a Markov process in space. The resulting effective transport model is a continuous time random walk (CTRW) characterized by a correlated random time increment, here denoted as correlated CTRW. We consider a simplified sinusoidal wavy channel model as well as a more complex heterogeneous pore space. For both systems, the predictions of the correlated CTRW model, with parameters defined from the velocity field properties (both distribution and correlation), are found to be in good agreement with results from direct pore-scale simulations over preasymptotic and asymptotic times. In this framework, the nontrivial dependence of dispersion on the pore boundary fluctuations is shown to be related to the competition between distribution and correlation effects. In particular, explicit inclusion of spatial velocity correlation in the effective CTRW model is found to be important to represent incomplete mixing in the pore throats.
NASA Astrophysics Data System (ADS)
Schießl, Stefan P.; Rother, Marcel; Lüttgens, Jan; Zaumseil, Jana
2017-11-01
The field-effect mobility is an important figure of merit for semiconductors such as random networks of single-walled carbon nanotubes (SWNTs). However, owing to their network properties and quantum capacitance, the standard models for field-effect transistors cannot be applied without modifications. Several different methods are used to determine the mobility with often very different results. We fabricated and characterized field-effect transistors with different polymer-sorted, semiconducting SWNT network densities ranging from low (≈6 μm-1) to densely packed quasi-monolayers (≈26 μm-1) with a maximum on-conductance of 0.24 μS μm-1 and compared four different techniques to evaluate the field-effect mobility. We demonstrate the limits and requirements for each method with regard to device layout and carrier accumulation. We find that techniques that take into account the measured capacitance on the active device give the most reliable mobility values. Finally, we compare our experimental results to a random-resistor-network model.
Quantum random walks on congested lattices and the effect of dephasing.
Motes, Keith R; Gilchrist, Alexei; Rohde, Peter P
2016-01-27
We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled on lattices that contain static defects which reverse the walker's direction. We implement a dephasing process after each step which allows us to smoothly interpolate between classical and quantum random walks as well as study the effect of dephasing on the quantum walk. Our key results show that a quantum walker escapes a finite boundary dramatically faster than a classical walker and that this advantage remains in the presence of heavily congested lattices.
A random wave model for the Aharonov-Bohm effect
NASA Astrophysics Data System (ADS)
Houston, Alexander J. H.; Gradhand, Martin; Dennis, Mark R.
2017-05-01
We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) is responsible for the topological phase associated with the Aharonov-Bohm effect. Analytical expressions are found for the vortex number and topological charge densities as functions of distance from the flux point. Comparison is made with the distribution of vortices in the isotropic random wave model. The results indicate that as the flux approaches half-integer values, a vortex with the same sign as the fractional part of the flux is attracted to the flux point, merging with it in the limit of half-integer flux. We construct a statistical model of the neighbourhood of the flux point to study how this vortex-flux merger occurs in more detail. Other features of the Aharonov-Bohm vortex distribution are also explored.
Neil, Jordan M.; Strekalova, Yulia A.; Sarge, Melanie A.
2017-01-01
Abstract Background: Improving informed consent to participate in randomized clinical trials (RCTs) is a key challenge in cancer communication. The current study examines strategies for enhancing randomization comprehension among patients with diverse levels of health literacy and identifies cognitive and affective predictors of intentions to participate in cancer RCTs. Methods: Using a post-test-only experimental design, cancer patients (n = 500) were randomly assigned to receive one of three message conditions for explaining randomization (ie, plain language condition, gambling metaphor, benign metaphor) or a control message. All statistical tests were two-sided. Results: Health literacy was a statistically significant moderator of randomization comprehension (P = .03). Among participants with the lowest levels of health literacy, the benign metaphor resulted in greater comprehension of randomization as compared with plain language (P = .04) and control (P = .004) messages. Among participants with the highest levels of health literacy, the gambling metaphor resulted in greater randomization comprehension as compared with the benign metaphor (P = .04). A serial mediation model showed a statistically significant negative indirect effect of comprehension on behavioral intention through personal relevance of RCTs and anxiety associated with participation in RCTs (P < .001). Conclusions: The effectiveness of metaphors for explaining randomization depends on health literacy, with a benign metaphor being particularly effective for patients at the lower end of the health literacy spectrum. The theoretical model demonstrates the cognitive and affective predictors of behavioral intention to participate in cancer RCTs and offers guidance on how future research should employ communication strategies to improve the informed consent processes. PMID:27794035
Should multiple imputation be the method of choice for handling missing data in randomized trials?
Sullivan, Thomas R; White, Ian R; Salter, Amy B; Ryan, Philip; Lee, Katherine J
2016-01-01
The use of multiple imputation has increased markedly in recent years, and journal reviewers may expect to see multiple imputation used to handle missing data. However in randomized trials, where treatment group is always observed and independent of baseline covariates, other approaches may be preferable. Using data simulation we evaluated multiple imputation, performed both overall and separately by randomized group, across a range of commonly encountered scenarios. We considered both missing outcome and missing baseline data, with missing outcome data induced under missing at random mechanisms. Provided the analysis model was correctly specified, multiple imputation produced unbiased treatment effect estimates, but alternative unbiased approaches were often more efficient. When the analysis model overlooked an interaction effect involving randomized group, multiple imputation produced biased estimates of the average treatment effect when applied to missing outcome data, unless imputation was performed separately by randomized group. Based on these results, we conclude that multiple imputation should not be seen as the only acceptable way to handle missing data in randomized trials. In settings where multiple imputation is adopted, we recommend that imputation is carried out separately by randomized group. PMID:28034175
Should multiple imputation be the method of choice for handling missing data in randomized trials?
Sullivan, Thomas R; White, Ian R; Salter, Amy B; Ryan, Philip; Lee, Katherine J
2016-01-01
The use of multiple imputation has increased markedly in recent years, and journal reviewers may expect to see multiple imputation used to handle missing data. However in randomized trials, where treatment group is always observed and independent of baseline covariates, other approaches may be preferable. Using data simulation we evaluated multiple imputation, performed both overall and separately by randomized group, across a range of commonly encountered scenarios. We considered both missing outcome and missing baseline data, with missing outcome data induced under missing at random mechanisms. Provided the analysis model was correctly specified, multiple imputation produced unbiased treatment effect estimates, but alternative unbiased approaches were often more efficient. When the analysis model overlooked an interaction effect involving randomized group, multiple imputation produced biased estimates of the average treatment effect when applied to missing outcome data, unless imputation was performed separately by randomized group. Based on these results, we conclude that multiple imputation should not be seen as the only acceptable way to handle missing data in randomized trials. In settings where multiple imputation is adopted, we recommend that imputation is carried out separately by randomized group.
Multilevel covariance regression with correlated random effects in the mean and variance structure.
Quintero, Adrian; Lesaffre, Emmanuel
2017-09-01
Multivariate regression methods generally assume a constant covariance matrix for the observations. In case a heteroscedastic model is needed, the parametric and nonparametric covariance regression approaches can be restrictive in the literature. We propose a multilevel regression model for the mean and covariance structure, including random intercepts in both components and allowing for correlation between them. The implied conditional covariance function can be different across clusters as a result of the random effect in the variance structure. In addition, allowing for correlation between the random intercepts in the mean and covariance makes the model convenient for skewedly distributed responses. Furthermore, it permits us to analyse directly the relation between the mean response level and the variability in each cluster. Parameter estimation is carried out via Gibbs sampling. We compare the performance of our model to other covariance modelling approaches in a simulation study. Finally, the proposed model is applied to the RN4CAST dataset to identify the variables that impact burnout of nurses in Belgium. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rigorous control conditions diminish treatment effects in weight loss randomized controlled trials
Dawson, John A.; Kaiser, Kathryn A.; Affuso, Olivia; Cutter, Gary R.; Allison, David B.
2015-01-01
Background It has not been established whether control conditions with large weight losses (WLs) diminish expected treatment effects in WL or prevention of weight gain (PWG) randomized controlled trials (RCTs). Subjects/Methods We performed a meta-analysis of 239 WL/PWG RCTs that include a control group and at least one treatment group. A maximum likelihood meta-analysis framework is used in order to model and understand the relationship between treatment effects and control group outcomes. Results Under the informed model, an increase in control group WL of one kilogram corresponds with an expected shrinkage of the treatment effect by 0.309 kg [95% CI (−0.480, −0.138), p = 0.00081]; this result is robust against violations of the model assumptions. Conclusions We find that control conditions with large weight losses diminish expected treatment effects. Our investigation may be helpful to clinicians as they design future WL/PWG studies. PMID:26449419
Exits in order: How crowding affects particle lifetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penington, Catherine J.; Simpson, Matthew J.; Baker, Ruth E.
2016-06-28
Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents inmore » a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked.« less
Two new methods to fit models for network meta-analysis with random inconsistency effects.
Law, Martin; Jackson, Dan; Turner, Rebecca; Rhodes, Kirsty; Viechtbauer, Wolfgang
2016-07-28
Meta-analysis is a valuable tool for combining evidence from multiple studies. Network meta-analysis is becoming more widely used as a means to compare multiple treatments in the same analysis. However, a network meta-analysis may exhibit inconsistency, whereby the treatment effect estimates do not agree across all trial designs, even after taking between-study heterogeneity into account. We propose two new estimation methods for network meta-analysis models with random inconsistency effects. The model we consider is an extension of the conventional random-effects model for meta-analysis to the network meta-analysis setting and allows for potential inconsistency using random inconsistency effects. Our first new estimation method uses a Bayesian framework with empirically-based prior distributions for both the heterogeneity and the inconsistency variances. We fit the model using importance sampling and thereby avoid some of the difficulties that might be associated with using Markov Chain Monte Carlo (MCMC). However, we confirm the accuracy of our importance sampling method by comparing the results to those obtained using MCMC as the gold standard. The second new estimation method we describe uses a likelihood-based approach, implemented in the metafor package, which can be used to obtain (restricted) maximum-likelihood estimates of the model parameters and profile likelihood confidence intervals of the variance components. We illustrate the application of the methods using two contrasting examples. The first uses all-cause mortality as an outcome, and shows little evidence of between-study heterogeneity or inconsistency. The second uses "ear discharge" as an outcome, and exhibits substantial between-study heterogeneity and inconsistency. Both new estimation methods give results similar to those obtained using MCMC. The extent of heterogeneity and inconsistency should be assessed and reported in any network meta-analysis. Our two new methods can be used to fit models for network meta-analysis with random inconsistency effects. They are easily implemented using the accompanying R code in the Additional file 1. Using these estimation methods, the extent of inconsistency can be assessed and reported.
Yan, Jingrong; Yin, Ming; Dreyer, ZoAnn E; Scheurer, Michael E; Kamdar, Kala; Wei, Qingyi; Okcu, M Fatih
2012-04-01
Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms have been implicated in childhood acute lymphoblastic leukemia (ALL) risk, but previously published studies were inconsistent and recent meta-analyses were not adequate. In a meta-analysis of 21 publications with 4,706 cases and 7,414 controls, we used more stringent inclusion method and summarized data on associations between MTHFR C677T and A1298C polymorphisms and childhood ALL risk. We found an overall association between 677T variant genotypes and reduced childhood ALL risk. Specifically, in the dominant genetic model, an association was found in a fixed-effect (TT + CT vs. CC: OR = 0.92; 95% CI = 0.85-0.99) but not random-effect model, whereas such an association was observed in both homozygote genetic model (TT vs. CC: OR = 0.80; 95% CI = 0.70-0.93 by fixed effects and OR = 0.78; 95% CI = 0.65-0.93 by random effects) and recessive genetic model (TT vs. CC + CT: OR = 0.83; 95% CI = 0.72-0.95 by fixed effects and OR = 0.84; 95% CI = 0.73-0.97 by random effects). These associations were also observed in subgroups by ethnicity: for Asians in all models except for the dominant genetic model by random effect and for Caucasians in all models except for the recessive genetic model. However, the A1298C polymorphism did not appear to have an effect on childhood ALL risk. These results suggest that the MTHFR C677T, but not A1298C, polymorphism is a potential biomarker for childhood ALL risk. Copyright © 2011 Wiley Periodicals, Inc.
Pu, Jie; Fang, Di; Wilson, Jeffrey R
2017-02-03
The analysis of correlated binary data is commonly addressed through the use of conditional models with random effects included in the systematic component as opposed to generalized estimating equations (GEE) models that addressed the random component. Since the joint distribution of the observations is usually unknown, the conditional distribution is a natural approach. Our objective was to compare the fit of different binary models for correlated data in Tabaco use. We advocate that the joint modeling of the mean and dispersion may be at times just as adequate. We assessed the ability of these models to account for the intraclass correlation. In so doing, we concentrated on fitting logistic regression models to address smoking behaviors. Frequentist and Bayes' hierarchical models were used to predict conditional probabilities, and the joint modeling (GLM and GAM) models were used to predict marginal probabilities. These models were fitted to National Longitudinal Study of Adolescent to Adult Health (Add Health) data for Tabaco use. We found that people were less likely to smoke if they had higher income, high school or higher education and religious. Individuals were more likely to smoke if they had abused drug or alcohol, spent more time on TV and video games, and been arrested. Moreover, individuals who drank alcohol early in life were more likely to be a regular smoker. Children who experienced mistreatment from their parents were more likely to use Tabaco regularly. The joint modeling of the mean and dispersion models offered a flexible and meaningful method of addressing the intraclass correlation. They do not require one to identify random effects nor distinguish from one level of the hierarchy to the other. Moreover, once one can identify the significant random effects, one can obtain similar results to the random coefficient models. We found that the set of marginal models accounting for extravariation through the additional dispersion submodel produced similar results with regards to inferences and predictions. Moreover, both marginal and conditional models demonstrated similar predictive power.
Random Testing and Model Checking: Building a Common Framework for Nondeterministic Exploration
NASA Technical Reports Server (NTRS)
Groce, Alex; Joshi, Rajeev
2008-01-01
Two popular forms of dynamic analysis, random testing and explicit-state software model checking, are perhaps best viewed as search strategies for exploring the state spaces introduced by nondeterminism in program inputs. We present an approach that enables this nondeterminism to be expressed in the SPIN model checker's PROMELA language, and then lets users generate either model checkers or random testers from a single harness for a tested C program. Our approach makes it easy to compare model checking and random testing for models with precisely the same input ranges and probabilities and allows us to mix random testing with model checking's exhaustive exploration of non-determinism. The PROMELA language, as intended in its design, serves as a convenient notation for expressing nondeterminism and mixing random choices with nondeterministic choices. We present and discuss a comparison of random testing and model checking. The results derive from using our framework to test a C program with an effectively infinite state space, a module in JPL's next Mars rover mission. More generally, we show how the ability of the SPIN model checker to call C code can be used to extend SPIN's features, and hope to inspire others to use the same methods to implement dynamic analyses that can make use of efficient state storage, matching, and backtracking.
Sunspot random walk and 22-year variation
Love, Jeffrey J.; Rigler, E. Joshua
2012-01-01
We examine two stochastic models for consistency with observed long-term secular trends in sunspot number and a faint, but semi-persistent, 22-yr signal: (1) a null hypothesis, a simple one-parameter random-walk model of sunspot-number cycle-to-cycle change, and, (2) an alternative hypothesis, a two-parameter random-walk model with an imposed 22-yr alternating amplitude. The observed secular trend in sunspots, seen from solar cycle 5 to 23, would not be an unlikely result of the accumulation of multiple random-walk steps. Statistical tests show that a 22-yr signal can be resolved in historical sunspot data; that is, the probability is low that it would be realized from random data. On the other hand, the 22-yr signal has a small amplitude compared to random variation, and so it has a relatively small effect on sunspot predictions. Many published predictions for cycle 24 sunspots fall within the dispersion of previous cycle-to-cycle sunspot differences. The probability is low that the Sun will, with the accumulation of random steps over the next few cycles, walk down to a Dalton-like minimum. Our models support published interpretations of sunspot secular variation and 22-yr variation resulting from cycle-to-cycle accumulation of dynamo-generated magnetic energy.
Quantum random walks on congested lattices and the effect of dephasing
Motes, Keith R.; Gilchrist, Alexei; Rohde, Peter P.
2016-01-01
We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled on lattices that contain static defects which reverse the walker’s direction. We implement a dephasing process after each step which allows us to smoothly interpolate between classical and quantum random walks as well as study the effect of dephasing on the quantum walk. Our key results show that a quantum walker escapes a finite boundary dramatically faster than a classical walker and that this advantage remains in the presence of heavily congested lattices. PMID:26812924
Likelihood-Based Random-Effect Meta-Analysis of Binary Events.
Amatya, Anup; Bhaumik, Dulal K; Normand, Sharon-Lise; Greenhouse, Joel; Kaizar, Eloise; Neelon, Brian; Gibbons, Robert D
2015-01-01
Meta-analysis has been used extensively for evaluation of efficacy and safety of medical interventions. Its advantages and utilities are well known. However, recent studies have raised questions about the accuracy of the commonly used moment-based meta-analytic methods in general and for rare binary outcomes in particular. The issue is further complicated for studies with heterogeneous effect sizes. Likelihood-based mixed-effects modeling provides an alternative to moment-based methods such as inverse-variance weighted fixed- and random-effects estimators. In this article, we compare and contrast different mixed-effect modeling strategies in the context of meta-analysis. Their performance in estimation and testing of overall effect and heterogeneity are evaluated when combining results from studies with a binary outcome. Models that allow heterogeneity in both baseline rate and treatment effect across studies have low type I and type II error rates, and their estimates are the least biased among the models considered.
NASA Astrophysics Data System (ADS)
Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F.; Blackstock, David T.
2002-01-01
Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere.
Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F; Blackstock, David T
2002-01-01
Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere.
Borquis, Rusbel Raul Aspilcueta; Neto, Francisco Ribeiro de Araujo; Baldi, Fernando; Hurtado-Lugo, Naudin; de Camargo, Gregório M F; Muñoz-Berrocal, Milthon; Tonhati, Humberto
2013-09-01
In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Hong; Hou, Rui; Yi, Lei; Meng, Juan; Pan, Zhisong; Zhou, Yuhuan
2016-07-01
The accurate identification of encrypted data stream helps to regulate illegal data, detect network attacks and protect users' information. In this paper, a novel encrypted data stream identification algorithm is introduced. The proposed method is based on randomness characteristics of encrypted data stream. We use a l1-norm regularized logistic regression to improve sparse representation of randomness features and Fuzzy Gaussian Mixture Model (FGMM) to improve identification accuracy. Experimental results demonstrate that the method can be adopted as an effective technique for encrypted data stream identification.
Non-steroidal anti-inflammatory drugs for the common cold.
Kim, Soo Young; Chang, Yoon-Jung; Cho, Hye Min; Hwang, Ye-Won; Moon, Yoo Sun
2015-09-21
Non-steroidal anti-inflammatory drugs (NSAIDs) have been widely used for the treatment of pain and fever associated with the common cold. To determine the effects of NSAIDs versus placebo (and other treatments) on signs and symptoms of the common cold, and to determine any adverse effects of NSAIDs in people with the common cold. We searched CENTRAL (2015, Issue 4, April), (January 1966 to April week 3, 2015), EMBASE (January 1980 to April 2015), CINAHL (January 1982 to April 2015) and ProQuest Digital Dissertations (January 1938 to April 2015). Randomised controlled trials (RCTs) of NSAIDS in adults or children with the common cold. Four review authors extracted data. We subdivided trials into placebo-controlled RCTs and head-to-head comparisons of NSAIDs. We extracted and summarised data on global analgesic effects (such as reduction of headache and myalgia), non-analgesic effects (such as reduction of nasal symptoms, cough, sputum and sneezing) and side effects. We expressed dichotomous outcomes as risk ratios (RR) with 95% confidence intervals (CI) and continuous data as mean differences (MD) or standardised mean differences (SMD). We pooled data using the fixed-effect and random-effects models. We included nine RCTs with 1069 participants, describing 37 comparisons: six were NSAIDs versus placebo and three were NSAIDs versus NSAIDs. The overall risk of bias in the included studies was mixed. In a pooled analysis, NSAIDs did not significantly reduce the total symptom score (SMD -0.40, 95% CI -1.03 to 0.24, three studies, random-effects model), or duration of colds (MD -0.23, 95% CI -1.75 to 1.29, two studies, random-effects model). For respiratory symptoms, cough did not improve (SMD -0.05, 95% CI -0.66 to 0.56, two studies, random-effects model) but the sneezing score significantly improved (SMD -0.44, 95% CI -0.75 to -0.12, two studies, random-effects model). For outcomes related to the analgesic effects of NSAIDs (headache, ear pain, and muscle and joint pain) the treatment produced significant benefits. The risk of adverse effects was not high with NSAIDs (RR 2.94, 95% CI 0.51 to 17.03, two studies, random-effects model) but it is difficult to conclude that such drugs are no different from placebo. The quality of the evidence may be estimated as 'moderate' because of imprecision. The major limitations of this review are that the results of the studies are quite diverse and the number of studies for one result is quite small. NSAIDs are somewhat effective in relieving the discomfort caused by a cold but there is no clear evidence of their effect in easing respiratory symptoms. The balance of benefit and harms needs to be considered when using NSAIDs for colds.
NASA Astrophysics Data System (ADS)
Luo, D. M.; Xie, Y.; Su, X. R.; Zhou, Y. L.
2018-01-01
Based on the four classical models of Mooney-Rivlin (M-R), Yeoh, Ogden and Neo-Hookean (N-H) model, a strain energy constitutive equation with large deformation for rubber composites reinforced with random ceramic particles is proposed from the angle of continuum mechanics theory in this paper. By decoupling the interaction between matrix and random particles, the strain energy of each phase is obtained to derive the explicit constitutive equation for rubber composites. The tests results of uni-axial tensile, pure shear and equal bi-axial tensile are simulated by the non-linear finite element method on the ANSYS platform. The results from finite element method are compared with those from experiment, and the material parameters are determined by fitting the results from different test conditions, and the influence of radius of random ceramic particles on the effective mechanical properties are analyzed.
Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.
2013-01-01
In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.
A model study of aggregates composed of spherical soot monomers with an acentric carbon shell
NASA Astrophysics Data System (ADS)
Luo, Jie; Zhang, Yongming; Zhang, Qixing
2018-01-01
Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.
General Framework for Effect Sizes in Cluster Randomized Experiments
ERIC Educational Resources Information Center
VanHoudnos, Nathan
2016-01-01
Cluster randomized experiments are ubiquitous in modern education research. Although a variety of modeling approaches are used to analyze these data, perhaps the most common methodology is a normal mixed effects model where some effects, such as the treatment effect, are regarded as fixed, and others, such as the effect of group random assignment…
Micro and macro benefits of random investments in financial markets
NASA Astrophysics Data System (ADS)
Biondo, A. E.; Pluchino, A.; Rapisarda, A.
2014-10-01
In this paper, making use of recent statistical physics techniques and models, we address the specific role of randomness in financial markets, both at the micro and the macro level. In particular, we review some recent results obtained about the effectiveness of random strategies of investment, compared with some of the most used trading strategies for forecasting the behaviour of real financial indexes. We also push forward our analysis by means of a self-organised criticality model, able to simulate financial avalanches in trading communities with different network topologies, where a Pareto-like power law behaviour of wealth spontaneously emerges. In this context, we present new findings and suggestions for policies based on the effects that random strategies can have in terms of reduction of dangerous financial extreme events, i.e. bubbles and crashes.
Xing, Dongyuan; Huang, Yangxin; Chen, Henian; Zhu, Yiliang; Dagne, Getachew A; Baldwin, Julie
2017-08-01
Semicontinuous data featured with an excessive proportion of zeros and right-skewed continuous positive values arise frequently in practice. One example would be the substance abuse/dependence symptoms data for which a substantial proportion of subjects investigated may report zero. Two-part mixed-effects models have been developed to analyze repeated measures of semicontinuous data from longitudinal studies. In this paper, we propose a flexible two-part mixed-effects model with skew distributions for correlated semicontinuous alcohol data under the framework of a Bayesian approach. The proposed model specification consists of two mixed-effects models linked by the correlated random effects: (i) a model on the occurrence of positive values using a generalized logistic mixed-effects model (Part I); and (ii) a model on the intensity of positive values using a linear mixed-effects model where the model errors follow skew distributions including skew- t and skew-normal distributions (Part II). The proposed method is illustrated with an alcohol abuse/dependence symptoms data from a longitudinal observational study, and the analytic results are reported by comparing potential models under different random-effects structures. Simulation studies are conducted to assess the performance of the proposed models and method.
Role of Statistical Random-Effects Linear Models in Personalized Medicine.
Diaz, Francisco J; Yeh, Hung-Wen; de Leon, Jose
2012-03-01
Some empirical studies and recent developments in pharmacokinetic theory suggest that statistical random-effects linear models are valuable tools that allow describing simultaneously patient populations as a whole and patients as individuals. This remarkable characteristic indicates that these models may be useful in the development of personalized medicine, which aims at finding treatment regimes that are appropriate for particular patients, not just appropriate for the average patient. In fact, published developments show that random-effects linear models may provide a solid theoretical framework for drug dosage individualization in chronic diseases. In particular, individualized dosages computed with these models by means of an empirical Bayesian approach may produce better results than dosages computed with some methods routinely used in therapeutic drug monitoring. This is further supported by published empirical and theoretical findings that show that random effects linear models may provide accurate representations of phase III and IV steady-state pharmacokinetic data, and may be useful for dosage computations. These models have applications in the design of clinical algorithms for drug dosage individualization in chronic diseases; in the computation of dose correction factors; computation of the minimum number of blood samples from a patient that are necessary for calculating an optimal individualized drug dosage in therapeutic drug monitoring; measure of the clinical importance of clinical, demographic, environmental or genetic covariates; study of drug-drug interactions in clinical settings; the implementation of computational tools for web-site-based evidence farming; design of pharmacogenomic studies; and in the development of a pharmacological theory of dosage individualization.
ERIC Educational Resources Information Center
Vardeman, Stephen B.; Wendelberger, Joanne R.
2005-01-01
There is a little-known but very simple generalization of the standard result that for uncorrelated random variables with common mean [mu] and variance [sigma][superscript 2], the expected value of the sample variance is [sigma][superscript 2]. The generalization justifies the use of the usual standard error of the sample mean in possibly…
[Critical of the additive model of the randomized controlled trial].
Boussageon, Rémy; Gueyffier, François; Bejan-Angoulvant, Theodora; Felden-Dominiak, Géraldine
2008-01-01
Randomized, double-blind, placebo-controlled clinical trials are currently the best way to demonstrate the clinical effectiveness of drugs. Its methodology relies on the method of difference (John Stuart Mill), through which the observed difference between two groups (drug vs placebo) can be attributed to the pharmacological effect of the drug being tested. However, this additive model can be questioned in the event of statistical interactions between the pharmacological and the placebo effects. Evidence in different domains has shown that the placebo effect can influence the effect of the active principle. This article evaluates the methodological, clinical and epistemological consequences of this phenomenon. Topics treated include extrapolating results, accounting for heterogeneous results, demonstrating the existence of several factors in the placebo effect, the necessity to take these factors into account for given symptoms or pathologies, as well as the problem of the "specific" effect.
Aynekulu, Ermias; Pitkänen, Sari; Packalen, Petteri
2016-01-01
It has been suggested that above-ground biomass (AGB) inventories should include tree height (H), in addition to diameter (D). As H is a difficult variable to measure, H-D models are commonly used to predict H. We tested a number of approaches for H-D modelling, including additive terms which increased the complexity of the model, and observed how differences in tree-level predictions of H propagated to plot-level AGB estimations. We were especially interested in detecting whether the choice of method can lead to bias. The compared approaches listed in the order of increasing complexity were: (B0) AGB estimations from D-only; (B1) involving also H obtained from a fixed-effects H-D model; (B2) involving also species; (B3) including also between-plot variability as random effects; and (B4) involving multilevel nested random effects for grouping plots in clusters. In light of the results, the modelling approach affected the AGB estimation significantly in some cases, although differences were negligible for some of the alternatives. The most important differences were found between including H or not in the AGB estimation. We observed that AGB predictions without H information were very sensitive to the environmental stress parameter (E), which can induce a critical bias. Regarding the H-D modelling, the most relevant effect was found when species was included as an additive term. We presented a two-step methodology, which succeeded in identifying the species for which the general H-D relation was relevant to modify. Based on the results, our final choice was the single-level mixed-effects model (B3), which accounts for the species but also for the plot random effects reflecting site-specific factors such as soil properties and degree of disturbance. PMID:27367857
NASA Astrophysics Data System (ADS)
Smith, Lyndon N.; Smith, Melvyn L.
2000-10-01
Particulate materials undergo processing in many industries, and therefore there are significant commercial motivators for attaining improvements in the flow and packing behavior of powders. This can be achieved by modeling the effects of particle size, friction, and most importantly, particle shape or morphology. The method presented here for simulating powders employs a random number generator to construct a model of a random particle by combining a sphere with a number of smaller spheres. The resulting 3D model particle has a nodular type of morphology, which is similar to that exhibited by the atomized powders that are used in the bulk of powder metallurgy (PM) manufacture. The irregularity of the model particles is dependent upon vision system data gathered from microscopic analysis of real powder particles. A methodology is proposed whereby randomly generated model particles of various sized and irregularities can be combined in a random packing simulation. The proposed Monte Carlo technique would allow incorporation of the effects of gravity, wall friction, and inter-particle friction. The improvements in simulation realism that this method is expected to provide would prove useful for controlling powder production, and for predicting die fill behavior during the production of PM parts.
Feasibility of quasi-random band model in evaluating atmospheric radiance
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Mirakhur, N.
1980-01-01
The use of the quasi-random band model in evaluating upwelling atmospheric radiation is investigated. The spectral transmittance and total band adsorptance are evaluated for selected molecular bands by using the line by line model, quasi-random band model, exponential sum fit method, and empirical correlations, and these are compared with the available experimental results. The atmospheric transmittance and upwelling radiance were calculated by using the line by line and quasi random band models and were compared with the results of an existing program called LOWTRAN. The results obtained by the exponential sum fit and empirical relations were not in good agreement with experimental results and their use cannot be justified for atmospheric studies. The line by line model was found to be the best model for atmospheric applications, but it is not practical because of high computational costs. The results of the quasi random band model compare well with the line by line and experimental results. The use of the quasi random band model is recommended for evaluation of the atmospheric radiation.
Parda, Natalia; Stępień, Małgorzata; Zakrzewska, Karolina; Madaliński, Kazimierz; Kołakowska, Agnieszka; Godzik, Paulina; Rosińska, Magdalena
2016-01-01
Objectives Response rate in public health programmes may be a limiting factor. It is important to first consider their delivery and acceptability for the target. This study aimed at determining individual and unit-related factors associated with increased odds of non-response based on hepatitis C virus screening in primary healthcare. Design Primary healthcare units (PHCUs) were extracted from the Register of Health Care Centres. Each of the PHCUs was to enrol adult patients selected on a random basis. Data on the recruitment of PHCUs and patients were analysed. Multilevel modelling was applied to investigate individual and unit-related factors associated with non-response. Multilevel logistic model was developed with fixed effects and only a random intercept for the unit. Preliminary analysis included a random effect for unit and each of the individual or PHCU covariates separately. For each of the PHCU covariates, we applied a two-level model with individual covariates, unit random effect and a single fixed effect of this unit covariate. Setting This study was conducted in primary care units in selected provinces in Poland. Participants A total of 242 PHCUs and 24 480 adults were invited. Of them, 44 PHCUs and 20 939 patients agreed to participate. Both PHCUs and patients were randomly selected. Results Data on 44 PHCUs and 24 480 patients were analysed. PHCU-level factors and recruitment strategies were important predictors of non-response. Unit random effect was significant in all models. Larger and private units reported higher non-response rates, while for those with a history of running public health programmes the odds of non-response was lower. Proactive recruitment, more working hours devoted to the project and patient resulted in higher acceptance of the project. Higher number of personnel had no such effect. Conclusions Prior to the implementation of public health programme, several factors that could hinder its execution should be addressed. PMID:27927665
A framework for understanding cancer comparative effectiveness research data needs
Carpenter, William R; Meyer, Anne-Marie; Abernethy, Amy P.; Stürmer, Til; Kosorok, Michael R.
2012-01-01
Objective Randomized controlled trials remain the gold standard for evaluating cancer intervention efficacy. Randomized trials are not always feasible, practical, or timely, and often don’t adequately reflect patient heterogeneity and real-world clinical practice. Comparative effectiveness research can leverage secondary data to help fill knowledge gaps randomized trials leave unaddressed; however, comparative effectiveness research also faces shortcomings. The goal of this project was to develop a new model and inform an evolving framework articulating cancer comparative effectiveness research data needs. Study Design and Setting We examined prevalent models and conducted semi-structured discussions with 76 clinicians and comparative effectiveness research researchers affiliated with the Agency for Healthcare Research and Quality’s cancer comparative effectiveness research programs. Results A new model was iteratively developed, and presents cancer comparative effectiveness research and important measures in a patient-centered, longitudinal chronic care model better-reflecting contemporary cancer care in the context of the cancer care continuum, rather than a single-episode, acute-care perspective. Conclusion Immediately relevant for federally-funded comparative effectiveness research programs, the model informs an evolving framework articulating cancer comparative effectiveness research data needs, including evolutionary enhancements to registries and epidemiologic research data systems. We discuss elements of contemporary clinical practice, methodology improvements, and related needs affecting comparative effectiveness research’s ability to yield findings clinicians, policymakers, and stakeholders can confidently act on. PMID:23017633
Gorobets, Yu I; Gorobets, O Yu
2015-01-01
The statistical model is proposed in this paper for description of orientation of trajectories of unicellular diamagnetic organisms in a magnetic field. The statistical parameter such as the effective energy is calculated on basis of this model. The resulting effective energy is the statistical characteristics of trajectories of diamagnetic microorganisms in a magnetic field connected with their metabolism. The statistical model is applicable for the case when the energy of the thermal motion of bacteria is negligible in comparison with their energy in a magnetic field and the bacteria manifest the significant "active random movement", i.e. there is the randomizing motion of the bacteria of non thermal nature, for example, movement of bacteria by means of flagellum. The energy of the randomizing active self-motion of bacteria is characterized by the new statistical parameter for biological objects. The parameter replaces the energy of the randomizing thermal motion in calculation of the statistical distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bayesian dynamic modeling of time series of dengue disease case counts.
Martínez-Bello, Daniel Adyro; López-Quílez, Antonio; Torres-Prieto, Alexander
2017-07-01
The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model's short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health.
Krieger, Janice L; Neil, Jordan M; Strekalova, Yulia A; Sarge, Melanie A
2017-03-01
Improving informed consent to participate in randomized clinical trials (RCTs) is a key challenge in cancer communication. The current study examines strategies for enhancing randomization comprehension among patients with diverse levels of health literacy and identifies cognitive and affective predictors of intentions to participate in cancer RCTs. Using a post-test-only experimental design, cancer patients (n = 500) were randomly assigned to receive one of three message conditions for explaining randomization (ie, plain language condition, gambling metaphor, benign metaphor) or a control message. All statistical tests were two-sided. Health literacy was a statistically significant moderator of randomization comprehension (P = .03). Among participants with the lowest levels of health literacy, the benign metaphor resulted in greater comprehension of randomization as compared with plain language (P = .04) and control (P = .004) messages. Among participants with the highest levels of health literacy, the gambling metaphor resulted in greater randomization comprehension as compared with the benign metaphor (P = .04). A serial mediation model showed a statistically significant negative indirect effect of comprehension on behavioral intention through personal relevance of RCTs and anxiety associated with participation in RCTs (P < .001). The effectiveness of metaphors for explaining randomization depends on health literacy, with a benign metaphor being particularly effective for patients at the lower end of the health literacy spectrum. The theoretical model demonstrates the cognitive and affective predictors of behavioral intention to participate in cancer RCTs and offers guidance on how future research should employ communication strategies to improve the informed consent processes. © The Author 2016. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Lü, Hui; Shangguan, Wen-Bin; Yu, Dejie
2017-09-01
Automotive brake systems are always subjected to various types of uncertainties and two types of random-fuzzy uncertainties may exist in the brakes. In this paper, a unified approach is proposed for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties. In the proposed approach, two uncertainty analysis models with mixed variables are introduced to model the random-fuzzy uncertainties. The first one is the random and fuzzy model, in which random variables and fuzzy variables exist simultaneously and independently. The second one is the fuzzy random model, in which uncertain parameters are all treated as random variables while their distribution parameters are expressed as fuzzy numbers. Firstly, the fuzziness is discretized by using α-cut technique and the two uncertainty analysis models are simplified into random-interval models. Afterwards, by temporarily neglecting interval uncertainties, the random-interval models are degraded into random models, in which the expectations, variances, reliability indexes and reliability probabilities of system stability functions are calculated. And then, by reconsidering the interval uncertainties, the bounds of the expectations, variances, reliability indexes and reliability probabilities are computed based on Taylor series expansion. Finally, by recomposing the analysis results at each α-cut level, the fuzzy reliability indexes and probabilities can be obtained, by which the brake squeal instability can be evaluated. The proposed approach gives a general framework to deal with both types of random-fuzzy uncertainties that may exist in the brakes and its effectiveness is demonstrated by numerical examples. It will be a valuable supplement to the systematic study of brake squeal considering uncertainty.
Accounting for heterogeneity in meta-analysis using a multiplicative model-an empirical study.
Mawdsley, David; Higgins, Julian P T; Sutton, Alex J; Abrams, Keith R
2017-03-01
In meta-analysis, the random-effects model is often used to account for heterogeneity. The model assumes that heterogeneity has an additive effect on the variance of effect sizes. An alternative model, which assumes multiplicative heterogeneity, has been little used in the medical statistics community, but is widely used by particle physicists. In this paper, we compare the two models using a random sample of 448 meta-analyses drawn from the Cochrane Database of Systematic Reviews. In general, differences in goodness of fit are modest. The multiplicative model tends to give results that are closer to the null, with a narrower confidence interval. Both approaches make different assumptions about the outcome of the meta-analysis. In our opinion, the selection of the more appropriate model will often be guided by whether the multiplicative model's assumption of a single effect size is plausible. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun
2017-08-01
Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2 = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.
Model Selection with the Linear Mixed Model for Longitudinal Data
ERIC Educational Resources Information Center
Ryoo, Ji Hoon
2011-01-01
Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…
ERIC Educational Resources Information Center
Wang, Wen-Chung; Liu, Chen-Wei; Wu, Shiu-Lien
2013-01-01
The random-threshold generalized unfolding model (RTGUM) was developed by treating the thresholds in the generalized unfolding model as random effects rather than fixed effects to account for the subjective nature of the selection of categories in Likert items. The parameters of the new model can be estimated with the JAGS (Just Another Gibbs…
Aggregate and Individual Replication Probability within an Explicit Model of the Research Process
ERIC Educational Resources Information Center
Miller, Jeff; Schwarz, Wolf
2011-01-01
We study a model of the research process in which the true effect size, the replication jitter due to changes in experimental procedure, and the statistical error of effect size measurement are all normally distributed random variables. Within this model, we analyze the probability of successfully replicating an initial experimental result by…
Eaves, Lindon J.; Maes, Hermine; Silberg, Judy L.
2015-01-01
We tested two models to identify the genetic and environmental processes underlying longitudinal changes in depression among adolescents. The first assumes that observed changes in covariance structure result from the unfolding of inherent, random individual differences in the overall levels and rates of change in depression over time (random growth curves). The second assumes that observed changes are due to time-specific random effects (innovations) accumulating over time (autoregressive effects). We found little evidence of age-specific genetic effects or persistent genetic innovations. Instead, genetic effects are consistent with a gradual unfolding in the liability to depression and rates of change with increasing age. Likewise, the environment also creates significant individual differences in overall levels of depression and rates of change. However, there are also time-specific environmental experiences that persist with fidelity. The implications of these differing genetic and environmental mechanisms in the etiology of depression are considered. PMID:25894924
Gillespie, Nathan A; Eaves, Lindon J; Maes, Hermine; Silberg, Judy L
2015-07-01
We tested two models to identify the genetic and environmental processes underlying longitudinal changes in depression among adolescents. The first assumes that observed changes in covariance structure result from the unfolding of inherent, random individual differences in the overall levels and rates of change in depression over time (random growth curves). The second assumes that observed changes are due to time-specific random effects (innovations) accumulating over time (autoregressive effects). We found little evidence of age-specific genetic effects or persistent genetic innovations. Instead, genetic effects are consistent with a gradual unfolding in the liability to depression and rates of change with increasing age. Likewise, the environment also creates significant individual differences in overall levels of depression and rates of change. However, there are also time-specific environmental experiences that persist with fidelity. The implications of these differing genetic and environmental mechanisms in the etiology of depression are considered.
Selenium and Preeclampsia: a Systematic Review and Meta-analysis.
Xu, Min; Guo, Dan; Gu, Hao; Zhang, Li; Lv, Shuyan
2016-06-01
Conflicting results exist between selenium concentration and preeclampsia. The role of selenium in the development of preeclampsia is unclear. We conducted a meta-analysis to compare the blood selenium level in patients with preeclampsia and healthy pregnant women, and to determine the effectiveness of selenium supplementation in preventing preeclampsia. We searched PubMed, ScienceDirect, the Cochrane Library, and relevant references for English language literature up to November 25, 2014. Mean difference from observational studies and relative risk from randomized controlled trials were meta-analyzed by a random-effect model. Thirteen observational studies with 1515 participants and 3 randomized controlled trials with 439 participants were included in the meta-analysis. Using a random-effect model, a statistically significant difference in blood selenium concentration of -6.47 μg/l (95 % confidence interval (CI) -11.24 to -1.7, p = 0.008) was seen after comparing the mean difference of observational studies. In randomized controlled trials, using a random-effect model, the relative risk for preeclampsia was 0.28 (0.09 to 0.84) for selenium supplementation (p = 0.02). Evidence from observational studies indicates an inverse association of blood selenium level and the risk of preeclampsia. Supplementation with selenium significantly reduces the incidence of preeclampsia. However, more prospective clinical trials are required to assess the association between selenium supplementation and preeclampsia and to determine the dose, beginning time, and duration of selenium supplementation.
Janssen, Dirk P
2012-03-01
Psychologists, psycholinguists, and other researchers using language stimuli have been struggling for more than 30 years with the problem of how to analyze experimental data that contain two crossed random effects (items and participants). The classical analysis of variance does not apply; alternatives have been proposed but have failed to catch on, and a statistically unsatisfactory procedure of using two approximations (known as F(1) and F(2)) has become the standard. A simple and elegant solution using mixed model analysis has been available for 15 years, and recent improvements in statistical software have made mixed models analysis widely available. The aim of this article is to increase the use of mixed models by giving a concise practical introduction and by giving clear directions for undertaking the analysis in the most popular statistical packages. The article also introduces the DJMIXED: add-on package for SPSS, which makes entering the models and reporting their results as straightforward as possible.
Crash Frequency Analysis Using Hurdle Models with Random Effects Considering Short-Term Panel Data
Chen, Feng; Ma, Xiaoxiang; Chen, Suren; Yang, Lin
2016-01-01
Random effect panel data hurdle models are established to research the daily crash frequency on a mountainous section of highway I-70 in Colorado. Road Weather Information System (RWIS) real-time traffic and weather and road surface conditions are merged into the models incorporating road characteristics. The random effect hurdle negative binomial (REHNB) model is developed to study the daily crash frequency along with three other competing models. The proposed model considers the serial correlation of observations, the unbalanced panel-data structure, and dominating zeroes. Based on several statistical tests, the REHNB model is identified as the most appropriate one among four candidate models for a typical mountainous highway. The results show that: (1) the presence of over-dispersion in the short-term crash frequency data is due to both excess zeros and unobserved heterogeneity in the crash data; and (2) the REHNB model is suitable for this type of data. Moreover, time-varying variables including weather conditions, road surface conditions and traffic conditions are found to play importation roles in crash frequency. Besides the methodological advancements, the proposed technology bears great potential for engineering applications to develop short-term crash frequency models by utilizing detailed data from field monitoring data such as RWIS, which is becoming more accessible around the world. PMID:27792209
Analysis on pseudo excitation of random vibration for structure of time flight counter
NASA Astrophysics Data System (ADS)
Wu, Qiong; Li, Dapeng
2015-03-01
Traditional computing method is inefficient for getting key dynamical parameters of complicated structure. Pseudo Excitation Method(PEM) is an effective method for calculation of random vibration. Due to complicated and coupling random vibration in rocket or shuttle launching, the new staging white noise mathematical model is deduced according to the practical launch environment. This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC). The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level. Considering stiffness of fixture structure, the random vibration experiments are conducted in three directions to compare with the revised PEM. The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained. The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results. The maximum error is within 9%. The reasons of errors are analyzed to improve reliability of calculation. This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching.
Effective Perron-Frobenius eigenvalue for a correlated random map
NASA Astrophysics Data System (ADS)
Pool, Roman R.; Cáceres, Manuel O.
2010-09-01
We investigate the evolution of random positive linear maps with various type of disorder by analytic perturbation and direct simulation. Our theoretical result indicates that the statistics of a random linear map can be successfully described for long time by the mean-value vector state. The growth rate can be characterized by an effective Perron-Frobenius eigenvalue that strongly depends on the type of correlation between the elements of the projection matrix. We apply this approach to an age-structured population dynamics model. We show that the asymptotic mean-value vector state characterizes the population growth rate when the age-structured model has random vital parameters. In this case our approach reveals the nontrivial dependence of the effective growth rate with cross correlations. The problem was reduced to the calculation of the smallest positive root of a secular polynomial, which can be obtained by perturbations in terms of Green’s function diagrammatic technique built with noncommutative cumulants for arbitrary n -point correlations.
ERIC Educational Resources Information Center
Cheung, Mike W.-L.; Cheung, Shu Fai
2016-01-01
Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…
Modeling pattern in collections of parameters
Link, W.A.
1999-01-01
Wildlife management is increasingly guided by analyses of large and complex datasets. The description of such datasets often requires a large number of parameters, among which certain patterns might be discernible. For example, one may consider a long-term study producing estimates of annual survival rates; of interest is the question whether these rates have declined through time. Several statistical methods exist for examining pattern in collections of parameters. Here, I argue for the superiority of 'random effects models' in which parameters are regarded as random variables, with distributions governed by 'hyperparameters' describing the patterns of interest. Unfortunately, implementation of random effects models is sometimes difficult. Ultrastructural models, in which the postulated pattern is built into the parameter structure of the original data analysis, are approximations to random effects models. However, this approximation is not completely satisfactory: failure to account for natural variation among parameters can lead to overstatement of the evidence for pattern among parameters. I describe quasi-likelihood methods that can be used to improve the approximation of random effects models by ultrastructural models.
Petrinco, Michele; Pagano, Eva; Desideri, Alessandro; Bigi, Riccardo; Ghidina, Marco; Ferrando, Alberto; Cortigiani, Lauro; Merletti, Franco; Gregori, Dario
2009-01-01
Several methodological problems arise when health outcomes and resource utilization are collected at different sites. To avoid misleading conclusions in multi-center economic evaluations the center effect needs to be taken into adequate consideration. The aim of this article is to compare several models, which make use of a different amount of information about the enrolling center. To model the association of total medical costs with the levels of two sets of covariates, one at patient and one at center level, we considered four statistical models, based on the Gamma model in the class of the Generalized Linear Models with a log link, which use different amount of information on the enrolling centers. Models were applied to Cost of Strategies after Myocardial Infarction data, an international randomized trial on costs of uncomplicated acute myocardial infarction (AMI). The simple center effect adjustment based on a single random effect results in a more conservative estimation of the parameters as compared with approaches which make use of deeper information on the centers characteristics. This study shows, with reference to a real multicenter trial, that center information cannot be neglected and should be collected and inserted in the analysis, better in combination with one or more random effect, taking into account in this way also the heterogeneity among centers because of unobserved centers characteristics.
Cappella, Elise; Hamre, Bridget K; Kim, Ha Yeon; Henry, David B; Frazier, Stacy L; Atkins, Marc S; Schoenwald, Sonja K
2012-08-01
To examine effects of a teacher consultation and coaching program delivered by school and community mental health professionals on change in observed classroom interactions and child functioning across one school year. Thirty-six classrooms within 5 urban elementary schools (87% Latino, 11% Black) were randomly assigned to intervention (training + consultation/coaching) and control (training only) conditions. Classroom and child outcomes (n = 364; 43% girls) were assessed in the fall and spring. Random effects regression models showed main effects of intervention on teacher-student relationship closeness, academic self-concept, and peer victimization. Results of multiple regression models showed levels of observed teacher emotional support in the fall moderated intervention impact on emotional support at the end of the school year. Results suggest teacher consultation and coaching can be integrated within existing mental health activities in urban schools and impact classroom effectiveness and child adaptation across multiple domains. © 2012 American Psychological Association
Mixed models, linear dependency, and identification in age-period-cohort models.
O'Brien, Robert M
2017-07-20
This paper examines the identification problem in age-period-cohort models that use either linear or categorically coded ages, periods, and cohorts or combinations of these parameterizations. These models are not identified using the traditional fixed effect regression model approach because of a linear dependency between the ages, periods, and cohorts. However, these models can be identified if the researcher introduces a single just identifying constraint on the model coefficients. The problem with such constraints is that the results can differ substantially depending on the constraint chosen. Somewhat surprisingly, age-period-cohort models that specify one or more of ages and/or periods and/or cohorts as random effects are identified. This is the case without introducing an additional constraint. I label this identification as statistical model identification and show how statistical model identification comes about in mixed models and why which effects are treated as fixed and which are treated as random can substantially change the estimates of the age, period, and cohort effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Spreading in online social networks: the role of social reinforcement.
Zheng, Muhua; Lü, Linyuan; Zhao, Ming
2013-07-01
Some epidemic spreading models are usually applied to analyze the propagation of opinions or news. However, the dynamics of epidemic spreading and information or behavior spreading are essentially different in many aspects. Centola's experiments [Science 329, 1194 (2010)] on behavior spreading in online social networks showed that the spreading is faster and broader in regular networks than in random networks. This result contradicts with the former understanding that random networks are preferable for spreading than regular networks. To describe the spreading in online social networks, a unknown-known-approved-exhausted four-status model was proposed, which emphasizes the effect of social reinforcement and assumes that the redundant signals can improve the probability of approval (i.e., the spreading rate). Performing the model on regular and random networks, it is found that our model can well explain the results of Centola's experiments on behavior spreading and some former studies on information spreading in different parameter space. The effects of average degree and network size on behavior spreading process are further analyzed. The results again show the importance of social reinforcement and are accordant with Centola's anticipation that increasing the network size or decreasing the average degree will enlarge the difference of the density of final approved nodes between regular and random networks. Our work complements the former studies on spreading dynamics, especially the spreading in online social networks where the information usually requires individuals' confirmations before being transmitted to others.
NASA Astrophysics Data System (ADS)
Méndez-Bermúdez, J. A.; Gopar, Victor A.; Varga, Imre
2010-09-01
We study numerically scattering and transport statistical properties of the one-dimensional Anderson model at the metal-insulator transition described by the power-law banded random matrix (PBRM) model at criticality. Within a scattering approach to electronic transport, we concentrate on the case of a small number of single-channel attached leads. We observe a smooth crossover from localized to delocalized behavior in the average-scattering matrix elements, the conductance probability distribution, the variance of the conductance, and the shot noise power by varying b (the effective bandwidth of the PBRM model) from small (b≪1) to large (b>1) values. We contrast our results with analytic random matrix theory predictions which are expected to be recovered in the limit b→∞ . We also compare our results for the PBRM model with those for the three-dimensional (3D) Anderson model at criticality, finding that the PBRM model with bɛ[0.2,0.4] reproduces well the scattering and transport properties of the 3D Anderson model.
A dynamic spatio-temporal model for spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.
2017-01-01
Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.
Rovadoscki, Gregori A; Petrini, Juliana; Ramirez-Diaz, Johanna; Pertile, Simone F N; Pertille, Fábio; Salvian, Mayara; Iung, Laiza H S; Rodriguez, Mary Ana P; Zampar, Aline; Gaya, Leila G; Carvalho, Rachel S B; Coelho, Antonio A D; Savino, Vicente J M; Coutinho, Luiz L; Mourão, Gerson B
2016-09-01
Repeated measures from the same individual have been analyzed by using repeatability and finite dimension models under univariate or multivariate analyses. However, in the last decade, the use of random regression models for genetic studies with longitudinal data have become more common. Thus, the aim of this research was to estimate genetic parameters for body weight of four experimental chicken lines by using univariate random regression models. Body weight data from hatching to 84 days of age (n = 34,730) from four experimental free-range chicken lines (7P, Caipirão da ESALQ, Caipirinha da ESALQ and Carijó Barbado) were used. The analysis model included the fixed effects of contemporary group (gender and rearing system), fixed regression coefficients for age at measurement, and random regression coefficients for permanent environmental effects and additive genetic effects. Heterogeneous variances for residual effects were considered, and one residual variance was assigned for each of six subclasses of age at measurement. Random regression curves were modeled by using Legendre polynomials of the second and third orders, with the best model chosen based on the Akaike Information Criterion, Bayesian Information Criterion, and restricted maximum likelihood. Multivariate analyses under the same animal mixed model were also performed for the validation of the random regression models. The Legendre polynomials of second order were better for describing the growth curves of the lines studied. Moderate to high heritabilities (h(2) = 0.15 to 0.98) were estimated for body weight between one and 84 days of age, suggesting that selection for body weight at all ages can be used as a selection criteria. Genetic correlations among body weight records obtained through multivariate analyses ranged from 0.18 to 0.96, 0.12 to 0.89, 0.06 to 0.96, and 0.28 to 0.96 in 7P, Caipirão da ESALQ, Caipirinha da ESALQ, and Carijó Barbado chicken lines, respectively. Results indicate that genetic gain for body weight can be achieved by selection. Also, selection for body weight at 42 days of age can be maintained as a selection criterion. © 2016 Poultry Science Association Inc.
Network meta-analysis of disconnected networks: How dangerous are random baseline treatment effects?
Béliveau, Audrey; Goring, Sarah; Platt, Robert W; Gustafson, Paul
2017-12-01
In network meta-analysis, the use of fixed baseline treatment effects (a priori independent) in a contrast-based approach is regularly preferred to the use of random baseline treatment effects (a priori dependent). That is because, often, there is not a need to model baseline treatment effects, which carry the risk of model misspecification. However, in disconnected networks, fixed baseline treatment effects do not work (unless extra assumptions are made), as there is not enough information in the data to update the prior distribution on the contrasts between disconnected treatments. In this paper, we investigate to what extent the use of random baseline treatment effects is dangerous in disconnected networks. We take 2 publicly available datasets of connected networks and disconnect them in multiple ways. We then compare the results of treatment comparisons obtained from a Bayesian contrast-based analysis of each disconnected network using random normally distributed and exchangeable baseline treatment effects to those obtained from a Bayesian contrast-based analysis of their initial connected network using fixed baseline treatment effects. For the 2 datasets considered, we found that the use of random baseline treatment effects in disconnected networks was appropriate. Because those datasets were not cherry-picked, there should be other disconnected networks that would benefit from being analyzed using random baseline treatment effects. However, there is also a risk for the normality and exchangeability assumption to be inappropriate in other datasets even though we have not observed this situation in our case study. We provide code, so other datasets can be investigated. Copyright © 2017 John Wiley & Sons, Ltd.
Cappella, Elise; Hamre, Bridget K.; Kim, Ha Yeon; Henry, David B.; Frazier, Stacy L.; Atkins, Marc S.; Schoenwald, Sonja K.
2012-01-01
Objective To examine effects of a teacher consultation and coaching program delivered by school and community mental health professionals on change in observed classroom interactions and child functioning across one school year. Method Thirty-six classrooms within five urban elementary schools (87% Latino, 11% Black) were randomly assigned to intervention (training + consultation/coaching) and control (training only) conditions. Classroom and child outcomes (n = 364; 43% girls) were assessed in the fall and spring. Results Random effects regression models showed main effects of intervention on teacher-student relationship closeness, academic self-concept, and peer victimization. Results of multiple regression models showed levels of observed teacher emotional support in the fall moderated intervention impact on emotional support at the end of the school year. Conclusions Results suggest teacher consultation and coaching can be integrated within existing mental health activities in urban schools and impact classroom effectiveness and child adaptation across multiple domains. PMID:22428941
Role of Statistical Random-Effects Linear Models in Personalized Medicine
Diaz, Francisco J; Yeh, Hung-Wen; de Leon, Jose
2012-01-01
Some empirical studies and recent developments in pharmacokinetic theory suggest that statistical random-effects linear models are valuable tools that allow describing simultaneously patient populations as a whole and patients as individuals. This remarkable characteristic indicates that these models may be useful in the development of personalized medicine, which aims at finding treatment regimes that are appropriate for particular patients, not just appropriate for the average patient. In fact, published developments show that random-effects linear models may provide a solid theoretical framework for drug dosage individualization in chronic diseases. In particular, individualized dosages computed with these models by means of an empirical Bayesian approach may produce better results than dosages computed with some methods routinely used in therapeutic drug monitoring. This is further supported by published empirical and theoretical findings that show that random effects linear models may provide accurate representations of phase III and IV steady-state pharmacokinetic data, and may be useful for dosage computations. These models have applications in the design of clinical algorithms for drug dosage individualization in chronic diseases; in the computation of dose correction factors; computation of the minimum number of blood samples from a patient that are necessary for calculating an optimal individualized drug dosage in therapeutic drug monitoring; measure of the clinical importance of clinical, demographic, environmental or genetic covariates; study of drug-drug interactions in clinical settings; the implementation of computational tools for web-site-based evidence farming; design of pharmacogenomic studies; and in the development of a pharmacological theory of dosage individualization. PMID:23467392
Meta-analysis of diagnostic test data: a bivariate Bayesian modeling approach.
Verde, Pablo E
2010-12-30
In the last decades, the amount of published results on clinical diagnostic tests has expanded very rapidly. The counterpart to this development has been the formal evaluation and synthesis of diagnostic results. However, published results present substantial heterogeneity and they can be regarded as so far removed from the classical domain of meta-analysis, that they can provide a rather severe test of classical statistical methods. Recently, bivariate random effects meta-analytic methods, which model the pairs of sensitivities and specificities, have been presented from the classical point of view. In this work a bivariate Bayesian modeling approach is presented. This approach substantially extends the scope of classical bivariate methods by allowing the structural distribution of the random effects to depend on multiple sources of variability. Meta-analysis is summarized by the predictive posterior distributions for sensitivity and specificity. This new approach allows, also, to perform substantial model checking, model diagnostic and model selection. Statistical computations are implemented in the public domain statistical software (WinBUGS and R) and illustrated with real data examples. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Dong, Zhen; Wang, Jianjun; Zhou, Xin
2017-05-01
Antifreeze proteins (AFPs) are the key biomolecules that protect many species from suffering the extreme conditions. Their unique properties of antifreezing provide the potential of a wide range of applications. Inspired by the present experimental approaches of creating an antifreeze surface by coating AFPs, here we present a two-dimensional random-field lattice Ising model to study the effect of AFPs on heterogeneous ice nucleation. The model shows that both the size and the free-energy effect of individual AFPs and their surface coverage dominate the antifreeze capacity of an AFP-coated surface. The simulation results are consistent with the recent experiments qualitatively, revealing the origin of the surprisingly low antifreeze capacity of an AFP-coated surface when the coverage is not particularly high as shown in experiment. These results will hopefully deepen our understanding of the antifreeze effects and thus be potentially useful for designing novel antifreeze coating materials based on biomolecules.
Random diffusion and leverage effect in financial markets.
Perelló, Josep; Masoliver, Jaume
2003-03-01
We prove that Brownian market models with random diffusion coefficients provide an exact measure of the leverage effect [J-P. Bouchaud et al., Phys. Rev. Lett. 87, 228701 (2001)]. This empirical fact asserts that past returns are anticorrelated with future diffusion coefficient. Several models with random diffusion have been suggested but without a quantitative study of the leverage effect. Our analysis lets us to fully estimate all parameters involved and allows a deeper study of correlated random diffusion models that may have practical implications for many aspects of financial markets.
Child-Centered Play Therapy in the Schools: Review and Meta-Analysis
ERIC Educational Resources Information Center
Ray, Dee C.; Armstrong, Stephen A.; Balkin, Richard S.; Jayne, Kimberly M.
2015-01-01
The authors conducted a meta-analysis and systematic review that examined 23 studies evaluating the effectiveness of child centered play therapy (CCPT) conducted in elementary schools. Meta-analysis results were explored using a random effects model for mean difference and mean gain effect size estimates. Results revealed statistically significant…
Studies in astronomical time series analysis. I - Modeling random processes in the time domain
NASA Technical Reports Server (NTRS)
Scargle, J. D.
1981-01-01
Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.
NASA Astrophysics Data System (ADS)
Widyaningsih, Yekti; Saefuddin, Asep; Notodiputro, Khairil A.; Wigena, Aji H.
2012-05-01
The objective of this research is to build a nested generalized linear mixed model using an ordinal response variable with some covariates. There are three main jobs in this paper, i.e. parameters estimation procedure, simulation, and implementation of the model for the real data. At the part of parameters estimation procedure, concepts of threshold, nested random effect, and computational algorithm are described. The simulations data are built for 3 conditions to know the effect of different parameter values of random effect distributions. The last job is the implementation of the model for the data about poverty in 9 districts of Java Island. The districts are Kuningan, Karawang, and Majalengka chose randomly in West Java; Temanggung, Boyolali, and Cilacap from Central Java; and Blitar, Ngawi, and Jember from East Java. The covariates in this model are province, number of bad nutrition cases, number of farmer families, and number of health personnel. In this modeling, all covariates are grouped as ordinal scale. Unit observation in this research is sub-district (kecamatan) nested in district, and districts (kabupaten) are nested in province. For the result of simulation, ARB (Absolute Relative Bias) and RRMSE (Relative Root of mean square errors) scale is used. They show that prov parameters have the highest bias, but more stable RRMSE in all conditions. The simulation design needs to be improved by adding other condition, such as higher correlation between covariates. Furthermore, as the result of the model implementation for the data, only number of farmer family and number of medical personnel have significant contributions to the level of poverty in Central Java and East Java province, and only district 2 (Karawang) of province 1 (West Java) has different random effect from the others. The source of the data is PODES (Potensi Desa) 2008 from BPS (Badan Pusat Statistik).
Unifying model for random matrix theory in arbitrary space dimensions
NASA Astrophysics Data System (ADS)
Cicuta, Giovanni M.; Krausser, Johannes; Milkus, Rico; Zaccone, Alessio
2018-03-01
A sparse random block matrix model suggested by the Hessian matrix used in the study of elastic vibrational modes of amorphous solids is presented and analyzed. By evaluating some moments, benchmarked against numerics, differences in the eigenvalue spectrum of this model in different limits of space dimension d , and for arbitrary values of the lattice coordination number Z , are shown and discussed. As a function of these two parameters (and their ratio Z /d ), the most studied models in random matrix theory (Erdos-Renyi graphs, effective medium, and replicas) can be reproduced in the various limits of block dimensionality d . Remarkably, the Marchenko-Pastur spectral density (which is recovered by replica calculations for the Laplacian matrix) is reproduced exactly in the limit of infinite size of the blocks, or d →∞ , which clarifies the physical meaning of space dimension in these models. We feel that the approximate results for d =3 provided by our method may have many potential applications in the future, from the vibrational spectrum of glasses and elastic networks to wave localization, disordered conductors, random resistor networks, and random walks.
Costello, Fintan; Watts, Paul
2016-01-01
A standard assumption in much of current psychology is that people do not reason about probability using the rules of probability theory but instead use various heuristics or "rules of thumb," which can produce systematic reasoning biases. In Costello and Watts (2014), we showed that a number of these biases can be explained by a model where people reason according to probability theory but are subject to random noise. More importantly, that model also predicted agreement with probability theory for certain expressions that cancel the effects of random noise: Experimental results strongly confirmed this prediction, showing that probabilistic reasoning is simultaneously systematically biased and "surprisingly rational." In their commentaries on that paper, both Crupi and Tentori (2016) and Nilsson, Juslin, and Winman (2016) point to various experimental results that, they suggest, our model cannot explain. In this reply, we show that our probability theory plus noise model can in fact explain every one of the results identified by these authors. This gives a degree of additional support to the view that people's probability judgments embody the rational rules of probability theory and that biases in those judgments can be explained as simply effects of random noise. (c) 2015 APA, all rights reserved).
Kaye, T.N.; Pyke, David A.
2003-01-01
Population viability analysis is an important tool for conservation biologists, and matrix models that incorporate stochasticity are commonly used for this purpose. However, stochastic simulations may require assumptions about the distribution of matrix parameters, and modelers often select a statistical distribution that seems reasonable without sufficient data to test its fit. We used data from long-term (5a??10 year) studies with 27 populations of five perennial plant species to compare seven methods of incorporating environmental stochasticity. We estimated stochastic population growth rate (a measure of viability) using a matrix-selection method, in which whole observed matrices were selected at random at each time step of the model. In addition, we drew matrix elements (transition probabilities) at random using various statistical distributions: beta, truncated-gamma, truncated-normal, triangular, uniform, or discontinuous/observed. Recruitment rates were held constant at their observed mean values. Two methods of constraining stage-specific survival to a??100% were also compared. Different methods of incorporating stochasticity and constraining matrix column sums interacted in their effects and resulted in different estimates of stochastic growth rate (differing by up to 16%). Modelers should be aware that when constraining stage-specific survival to 100%, different methods may introduce different levels of bias in transition element means, and when this happens, different distributions for generating random transition elements may result in different viability estimates. There was no species effect on the results and the growth rates derived from all methods were highly correlated with one another. We conclude that the absolute value of population viability estimates is sensitive to model assumptions, but the relative ranking of populations (and management treatments) is robust. Furthermore, these results are applicable to a range of perennial plants and possibly other life histories.
NASA Astrophysics Data System (ADS)
Hadjiagapiou, Ioannis A.; Velonakis, Ioannis N.
2018-07-01
The Sherrington-Kirkpatrick Ising spin glass model, in the presence of a random magnetic field, is investigated within the framework of the one-step replica symmetry breaking. The two random variables (exchange integral interaction Jij and random magnetic field hi) are drawn from a joint Gaussian probability density function characterized by a correlation coefficient ρ, assuming positive and negative values. The thermodynamic properties, the three different phase diagrams and system's parameters are computed with respect to the natural parameters of the joint Gaussian probability density function at non-zero and zero temperatures. The low temperature negative entropy controversy, a result of the replica symmetry approach, has been partly remedied in the current study, leading to a less negative result. In addition, the present system possesses two successive spin glass phase transitions with characteristic temperatures.
Semiparametric Bayesian classification with longitudinal markers
De la Cruz-Mesía, Rolando; Quintana, Fernando A.; Müller, Peter
2013-01-01
Summary We analyse data from a study involving 173 pregnant women. The data are observed values of the β human chorionic gonadotropin hormone measured during the first 80 days of gestational age, including from one up to six longitudinal responses for each woman. The main objective in this study is to predict normal versus abnormal pregnancy outcomes from data that are available at the early stages of pregnancy. We achieve the desired classification with a semiparametric hierarchical model. Specifically, we consider a Dirichlet process mixture prior for the distribution of the random effects in each group. The unknown random-effects distributions are allowed to vary across groups but are made dependent by using a design vector to select different features of a single underlying random probability measure. The resulting model is an extension of the dependent Dirichlet process model, with an additional probability model for group classification. The model is shown to perform better than an alternative model which is based on independent Dirichlet processes for the groups. Relevant posterior distributions are summarized by using Markov chain Monte Carlo methods. PMID:24368871
Meta-analysis in evidence-based healthcare: a paradigm shift away from random effects is overdue.
Doi, Suhail A R; Furuya-Kanamori, Luis; Thalib, Lukman; Barendregt, Jan J
2017-12-01
Each year up to 20 000 systematic reviews and meta-analyses are published whose results influence healthcare decisions, thus making the robustness and reliability of meta-analytic methods one of the world's top clinical and public health priorities. The evidence synthesis makes use of either fixed-effect or random-effects statistical methods. The fixed-effect method has largely been replaced by the random-effects method as heterogeneity of study effects led to poor error estimation. However, despite the widespread use and acceptance of the random-effects method to correct this, it too remains unsatisfactory and continues to suffer from defective error estimation, posing a serious threat to decision-making in evidence-based clinical and public health practice. We discuss here the problem with the random-effects approach and demonstrate that there exist better estimators under the fixed-effect model framework that can achieve optimal error estimation. We argue for an urgent return to the earlier framework with updates that address these problems and conclude that doing so can markedly improve the reliability of meta-analytical findings and thus decision-making in healthcare.
Testing homogeneity in Weibull-regression models.
Bolfarine, Heleno; Valença, Dione M
2005-10-01
In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.
NASA Astrophysics Data System (ADS)
Majumdar, Arun K.; Land, Phillip; Siegenthaler, John
2014-10-01
New results for characterizing laser intensity fluctuation statistics of a laser beam transmitted through a random air-water interface relevant to underwater communications are presented. A laboratory watertank experiment is described to investigate the beam wandering effects of the transmitted beam. Preliminary results from the experiment provide information about histograms of the probability density functions of intensity fluctuations for different wind speeds measured by a CMOS camera for the transmitted beam. Angular displacements of the centroids of the fluctuating laser beam generates the beam wander effects. This research develops a probabilistic model for optical propagation at the random air-water interface for a transmission case under different wind speed conditions. Preliminary results for bit-error-rate (BER) estimates as a function of fade margin for an on-off keying (OOK) optical communication through the air-water interface are presented for a communication system where a random air-water interface is a part of the communication channel.
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.
1983-01-01
Based on the works of Ruze (1966) and Vu (1969), a novel mathematical model has been developed to determine efficiently the average power pattern degradations caused by random surface errors. In this model, both nonuniform root mean square (rms) surface errors and nonuniform illumination functions are employed. In addition, the model incorporates the dependence on F/D in the construction of the solution. The mathematical foundation of the model rests on the assumption that in each prescribed annular region of the antenna, the geometrical rms surface value is known. It is shown that closed-form expressions can then be derived, which result in a very efficient computational method for the average power pattern. Detailed parametric studies are performed with these expressions to determine the effects of different random errors and illumination tapers on parameters such as gain loss and sidelobe levels. The results clearly demonstrate that as sidelobe levels decrease, their dependence on the surface rms/wavelength becomes much stronger and, for a specified tolerance level, a considerably smaller rms/wavelength is required to maintain the low sidelobes within the required bounds.
Random trinomial tree models and vanilla options
NASA Astrophysics Data System (ADS)
Ganikhodjaev, Nasir; Bayram, Kamola
2013-09-01
In this paper we introduce and study random trinomial model. The usual trinomial model is prescribed by triple of numbers (u, d, m). We call the triple (u, d, m) an environment of the trinomial model. A triple (Un, Dn, Mn), where {Un}, {Dn} and {Mn} are the sequences of independent, identically distributed random variables with 0 < Dn < 1 < Un and Mn = 1 for all n, is called a random environment and trinomial tree model with random environment is called random trinomial model. The random trinomial model is considered to produce more accurate results than the random binomial model or usual trinomial model.
Random parameter models for accident prediction on two-lane undivided highways in India.
Dinu, R R; Veeraragavan, A
2011-02-01
Generalized linear modeling (GLM), with the assumption of Poisson or negative binomial error structure, has been widely employed in road accident modeling. A number of explanatory variables related to traffic, road geometry, and environment that contribute to accident occurrence have been identified and accident prediction models have been proposed. The accident prediction models reported in literature largely employ the fixed parameter modeling approach, where the magnitude of influence of an explanatory variable is considered to be fixed for any observation in the population. Similar models have been proposed for Indian highways too, which include additional variables representing traffic composition. The mixed traffic on Indian highways comes with a lot of variability within, ranging from difference in vehicle types to variability in driver behavior. This could result in variability in the effect of explanatory variables on accidents across locations. Random parameter models, which can capture some of such variability, are expected to be more appropriate for the Indian situation. The present study is an attempt to employ random parameter modeling for accident prediction on two-lane undivided rural highways in India. Three years of accident history, from nearly 200 km of highway segments, is used to calibrate and validate the models. The results of the analysis suggest that the model coefficients for traffic volume, proportion of cars, motorized two-wheelers and trucks in traffic, and driveway density and horizontal and vertical curvatures are randomly distributed across locations. The paper is concluded with a discussion on modeling results and the limitations of the present study. Copyright © 2010 Elsevier Ltd. All rights reserved.
Analog model for quantum gravity effects: phonons in random fluids.
Krein, G; Menezes, G; Svaiter, N F
2010-09-24
We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.
A Portuguese value set for the SF-6D.
Ferreira, Lara N; Ferreira, Pedro L; Pereira, Luis N; Brazier, John; Rowen, Donna
2010-08-01
The SF-6D is a preference-based measure of health derived from the SF-36 that can be used for cost-effectiveness analysis using cost-per-quality adjusted life-year analysis. This study seeks to estimate a system weight for the SF-6D for Portugal and to compare the results with the UK system weights. A sample of 55 health states defined by the SF-6D has been valued by a representative random sample of the Portuguese population, stratified by sex and age (n = 140), using the Standard Gamble (SG). Several models are estimated at both the individual and aggregate levels for predicting health-state valuations. Models with main effects, with interaction effects and with the constant forced to unity are presented. Random effects (RE) models are estimated using generalized least squares (GLS) regressions. Generalized estimation equations (GEE) are used to estimate RE models with the constant forced to unity. Estimations at the individual level were performed using 630 health-state valuations. Alternative functional forms are considered to account for the skewed distribution of health-state valuations. The models are analyzed in terms of their coefficients, overall fit, and the ability for predicting the SG-values. The RE models estimated using GLS and through GEE produce significant coefficients, which are robust across model specification. However, there are concerns regarding some inconsistent estimates, and so parsimonious consistent models were estimated. There is evidence of under prediction in some states assigned to poor health. The results are consistent with the UK results. The models estimated provide preference-based quality of life weights for the Portuguese population when health status data have been collected using the SF-36. Although the sample was randomly drowned findings should be treated with caution, given the small sample size, even knowing that they have been estimated at the individual level.
Influence of evolution on the stability of ecological communities.
Loeuille, Nicolas
2010-12-01
In randomly assembled communities, diversity is known to have a destabilizing effect. Evolution may affect this result, but our theoretical knowledge of its role is mostly limited to models of small food webs. In the present article, I introduce evolution in a two-species Lotka-Volterra model in which I vary the interaction type and the cost constraining evolution. Regardless of the cost type, evolution tends to stabilize the dynamics more often in trophic interactions than for mutualism or competition. I then use simulations to study the effect of evolution in larger communities that contain all interaction types. Results suggest that evolution usually stabilizes the dynamics. This stabilizing effect is stronger when evolution affects trophic interactions, but happens for all interaction types. Stabilization decreases with diversity and evolution becomes destabilizing in very diverse communities. This suggests that evolution may not counteract the destabilizing effect of diversity observed in random communities. © 2010 Blackwell Publishing Ltd/CNRS.
Two-dimensional Ising model on random lattices with constant coordination number
NASA Astrophysics Data System (ADS)
Schrauth, Manuel; Richter, Julian A. J.; Portela, Jefferson S. E.
2018-02-01
We study the two-dimensional Ising model on networks with quenched topological (connectivity) disorder. In particular, we construct random lattices of constant coordination number and perform large-scale Monte Carlo simulations in order to obtain critical exponents using finite-size scaling relations. We find disorder-dependent effective critical exponents, similar to diluted models, showing thus no clear universal behavior. Considering the very recent results for the two-dimensional Ising model on proximity graphs and the coordination number correlation analysis suggested by Barghathi and Vojta [Phys. Rev. Lett. 113, 120602 (2014), 10.1103/PhysRevLett.113.120602], our results indicate that the planarity and connectedness of the lattice play an important role on deciding whether the phase transition is stable against quenched topological disorder.
Rigorously testing multialternative decision field theory against random utility models.
Berkowitsch, Nicolas A J; Scheibehenne, Benjamin; Rieskamp, Jörg
2014-06-01
Cognitive models of decision making aim to explain the process underlying observed choices. Here, we test a sequential sampling model of decision making, multialternative decision field theory (MDFT; Roe, Busemeyer, & Townsend, 2001), on empirical grounds and compare it against 2 established random utility models of choice: the probit and the logit model. Using a within-subject experimental design, participants in 2 studies repeatedly choose among sets of options (consumer products) described on several attributes. The results of Study 1 showed that all models predicted participants' choices equally well. In Study 2, in which the choice sets were explicitly designed to distinguish the models, MDFT had an advantage in predicting the observed choices. Study 2 further revealed the occurrence of multiple context effects within single participants, indicating an interdependent evaluation of choice options and correlations between different context effects. In sum, the results indicate that sequential sampling models can provide relevant insights into the cognitive process underlying preferential choices and thus can lead to better choice predictions. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Zi, Bin; Zhou, Bin
2016-07-01
For the prediction of dynamic response field of the luffing system of an automobile crane (LSOAAC) with random and interval parameters, a hybrid uncertain model is introduced. In the hybrid uncertain model, the parameters with certain probability distribution are modeled as random variables, whereas, the parameters with lower and upper bounds are modeled as interval variables instead of given precise values. Based on the hybrid uncertain model, the hybrid uncertain dynamic response equilibrium equation, in which different random and interval parameters are simultaneously included in input and output terms, is constructed. Then a modified hybrid uncertain analysis method (MHUAM) is proposed. In the MHUAM, based on random interval perturbation method, the first-order Taylor series expansion and the first-order Neumann series, the dynamic response expression of the LSOAAC is developed. Moreover, the mathematical characteristics of extrema of bounds of dynamic response are determined by random interval moment method and monotonic analysis technique. Compared with the hybrid Monte Carlo method (HMCM) and interval perturbation method (IPM), numerical results show the feasibility and efficiency of the MHUAM for solving the hybrid LSOAAC problems. The effects of different uncertain models and parameters on the LSOAAC response field are also investigated deeply, and numerical results indicate that the impact made by the randomness in the thrust of the luffing cylinder F is larger than that made by the gravity of the weight in suspension Q . In addition, the impact made by the uncertainty in the displacement between the lower end of the lifting arm and the luffing cylinder a is larger than that made by the length of the lifting arm L .
NASA Technical Reports Server (NTRS)
Bast, Callie Corinne Scheidt
1994-01-01
This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.
Network meta-analysis, electrical networks and graph theory.
Rücker, Gerta
2012-12-01
Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.
Ahn, Jaeil; Morita, Satoshi; Wang, Wenyi; Yuan, Ying
2017-01-01
Analyzing longitudinal dyadic data is a challenging task due to the complicated correlations from repeated measurements and within-dyad interdependence, as well as potentially informative (or non-ignorable) missing data. We propose a dyadic shared-parameter model to analyze longitudinal dyadic data with ordinal outcomes and informative intermittent missing data and dropouts. We model the longitudinal measurement process using a proportional odds model, which accommodates the within-dyad interdependence using the concept of the actor-partner interdependence effects, as well as dyad-specific random effects. We model informative dropouts and intermittent missing data using a transition model, which shares the same set of random effects as the longitudinal measurement model. We evaluate the performance of the proposed method through extensive simulation studies. As our approach relies on some untestable assumptions on the missing data mechanism, we perform sensitivity analyses to evaluate how the analysis results change when the missing data mechanism is misspecified. We demonstrate our method using a longitudinal dyadic study of metastatic breast cancer.
The Effect of Realistic Versus Imaginary Aggressive Models of Children's Interpersonal Play
ERIC Educational Resources Information Center
Hapkiewicz, Walter G.; Stone, Robert D.
1974-01-01
One hundred eighty elementary school children were randomly assigned to same sex pairs and randomly assigned to one of three treatment groups: real-life aggressive film, aggressive cartoon, or nonaggressive film. Results reveal that boys who viewed the realistic aggressive film were significantly more aggressive in play than boys who viewed the…
Improved estimation of random vibration loads in launch vehicles
NASA Technical Reports Server (NTRS)
Mehta, R.; Erwin, E.; Suryanarayan, S.; Krishna, Murali M. R.
1993-01-01
Random vibration induced load is an important component of the total design load environment for payload and launch vehicle components and their support structures. The current approach to random vibration load estimation is based, particularly at the preliminary design stage, on the use of Miles' equation which assumes a single degree-of-freedom (DOF) system and white noise excitation. This paper examines the implications of the use of multi-DOF system models and response calculation based on numerical integration using the actual excitation spectra for random vibration load estimation. The analytical study presented considers a two-DOF system and brings out the effects of modal mass, damping and frequency ratios on the random vibration load factor. The results indicate that load estimates based on the Miles' equation can be significantly different from the more accurate estimates based on multi-DOF models.
Norrie, John; Davidson, Kate; Tata, Philip; Gumley, Andrew
2013-09-01
We investigated the treatment effects reported from a high-quality randomized controlled trial of cognitive behavioural therapy (CBT) for 106 people with borderline personality disorder attending community-based clinics in the UK National Health Service - the BOSCOT trial. Specifically, we examined whether the amount of therapy and therapist competence had an impact on our primary outcome, the number of suicidal acts, using instrumental variables regression modelling. Randomized controlled trial. Participants from across three sites (London, Glasgow, and Ayrshire/Arran) were randomized equally to CBT for personality disorders (CBTpd) plus Treatment as Usual or to Treatment as Usual. Treatment as Usual varied between sites and individuals, but was consistent with routine treatment in the UK National Health Service at the time. CBTpd comprised an average 16 sessions (range 0-35) over 12 months. We used instrumental variable regression modelling to estimate the impact of quantity and quality of therapy received (recording activities and behaviours that took place after randomization) on number of suicidal acts and inpatient psychiatric hospitalization. A total of 101 participants provided full outcome data at 2 years post randomization. The previously reported intention-to-treat (ITT) results showed on average a reduction of 0.91 (95% confidence interval 0.15-1.67) suicidal acts over 2 years for those randomized to CBT. By incorporating the influence of quantity of therapy and therapist competence, we show that this estimate of the effect of CBTpd could be approximately two to three times greater for those receiving the right amount of therapy from a competent therapist. Trials should routinely control for and collect data on both quantity of therapy and therapist competence, which can be used, via instrumental variable regression modelling, to estimate treatment effects for optimal delivery of therapy. Such estimates complement rather than replace the ITT results, which are properly the principal analysis results from such trials. © 2013 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Ganjeh-Ghazvini, Mostafa; Masihi, Mohsen; Ghaedi, Mojtaba
2014-07-01
Fluid flow modeling in porous media has many applications in waste treatment, hydrology and petroleum engineering. In any geological model, flow behavior is controlled by multiple properties. These properties must be known in advance of common flow simulations. When uncertainties are present, deterministic modeling often produces poor results. Percolation and Random Walk (RW) methods have recently been used in flow modeling. Their stochastic basis is useful in dealing with uncertainty problems. They are also useful in finding the relationship between porous media descriptions and flow behavior. This paper employs a simple methodology based on random walk and percolation techniques. The method is applied to a well-defined model reservoir in which the breakthrough time distributions are estimated. The results of this method and the conventional simulation are then compared. The effect of the net to gross ratio on the breakthrough time distribution is studied in terms of Shannon entropy. Use of the entropy plot allows one to assign the appropriate net to gross ratio to any porous medium.
NASA Astrophysics Data System (ADS)
Abid, Najmul; Mirkhalaf, Mohammad; Barthelat, Francois
2018-03-01
Natural materials such as nacre, collagen, and spider silk are composed of staggered stiff and strong inclusions in a softer matrix. This type of hybrid microstructure results in remarkable combinations of stiffness, strength, and toughness and it now inspires novel classes of high-performance composites. However, the analytical and numerical approaches used to predict and optimize the mechanics of staggered composites often neglect statistical variations and inhomogeneities, which may have significant impacts on modulus, strength, and toughness. Here we present an analysis of localization using small representative volume elements (RVEs) and large scale statistical volume elements (SVEs) based on the discrete element method (DEM). DEM is an efficient numerical method which enabled the evaluation of more than 10,000 microstructures in this study, each including about 5,000 inclusions. The models explore the combined effects of statistics, inclusion arrangement, and interface properties. We find that statistical variations have a negative effect on all properties, in particular on the ductility and energy absorption because randomness precipitates the localization of deformations. However, the results also show that the negative effects of random microstructures can be offset by interfaces with large strain at failure accompanied by strain hardening. More specifically, this quantitative study reveals an optimal range of interface properties where the interfaces are the most effective at delaying localization. These findings show how carefully designed interfaces in bioinspired staggered composites can offset the negative effects of microstructural randomness, which is inherent to most current fabrication methods.
NASA Astrophysics Data System (ADS)
Li, Hui; Hong, Lu-Yao; Zhou, Qing; Yu, Hai-Jie
2015-08-01
The business failure of numerous companies results in financial crises. The high social costs associated with such crises have made people to search for effective tools for business risk prediction, among which, support vector machine is very effective. Several modelling means, including single-technique modelling, hybrid modelling, and ensemble modelling, have been suggested in forecasting business risk with support vector machine. However, existing literature seldom focuses on the general modelling frame for business risk prediction, and seldom investigates performance differences among different modelling means. We reviewed researches on forecasting business risk with support vector machine, proposed the general assisted prediction modelling frame with hybridisation and ensemble (APMF-WHAE), and finally, investigated the use of principal components analysis, support vector machine, random sampling, and group decision, under the general frame in forecasting business risk. Under the APMF-WHAE frame with support vector machine as the base predictive model, four specific predictive models were produced, namely, pure support vector machine, a hybrid support vector machine involved with principal components analysis, a support vector machine ensemble involved with random sampling and group decision, and an ensemble of hybrid support vector machine using group decision to integrate various hybrid support vector machines on variables produced from principle components analysis and samples from random sampling. The experimental results indicate that hybrid support vector machine and ensemble of hybrid support vector machines were able to produce dominating performance than pure support vector machine and support vector machine ensemble.
A Structural Modeling Approach to a Multilevel Random Coefficients Model.
ERIC Educational Resources Information Center
Rovine, Michael J.; Molenaar, Peter C. M.
2000-01-01
Presents a method for estimating the random coefficients model using covariance structure modeling and allowing one to estimate both fixed and random effects. The method is applied to real and simulated data, including marriage data from J. Belsky and M. Rovine (1990). (SLD)
Hosseinpour, Mehdi; Yahaya, Ahmad Shukri; Sadullah, Ahmad Farhan
2014-01-01
Head-on crashes are among the most severe collision types and of great concern to road safety authorities. Therefore, it justifies more efforts to reduce both the frequency and severity of this collision type. To this end, it is necessary to first identify factors associating with the crash occurrence. This can be done by developing crash prediction models that relate crash outcomes to a set of contributing factors. This study intends to identify the factors affecting both the frequency and severity of head-on crashes that occurred on 448 segments of five federal roads in Malaysia. Data on road characteristics and crash history were collected on the study segments during a 4-year period between 2007 and 2010. The frequency of head-on crashes were fitted by developing and comparing seven count-data models including Poisson, standard negative binomial (NB), random-effect negative binomial, hurdle Poisson, hurdle negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models. To model crash severity, a random-effect generalized ordered probit model (REGOPM) was used given a head-on crash had occurred. With respect to the crash frequency, the random-effect negative binomial (RENB) model was found to outperform the other models according to goodness of fit measures. Based on the results of the model, the variables horizontal curvature, terrain type, heavy-vehicle traffic, and access points were found to be positively related to the frequency of head-on crashes, while posted speed limit and shoulder width decreased the crash frequency. With regard to the crash severity, the results of REGOPM showed that horizontal curvature, paved shoulder width, terrain type, and side friction were associated with more severe crashes, whereas land use, access points, and presence of median reduced the probability of severe crashes. Based on the results of this study, some potential countermeasures were proposed to minimize the risk of head-on crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Condensation of helium in aerogel and athermal dynamics of the random-field Ising model.
Aubry, Geoffroy J; Bonnet, Fabien; Melich, Mathieu; Guyon, Laurent; Spathis, Panayotis; Despetis, Florence; Wolf, Pierre-Etienne
2014-08-22
High resolution measurements reveal that condensation isotherms of (4)He in high porosity silica aerogel become discontinuous below a critical temperature. We show that this behavior does not correspond to an equilibrium phase transition modified by the disorder induced by the aerogel structure, but to the disorder-driven critical point predicted for the athermal out-of-equilibrium dynamics of the random-field Ising model. Our results evidence the key role of nonequilibrium effects in the phase transitions of disordered systems.
Covariance functions for body weight from birth to maturity in Nellore cows.
Boligon, A A; Mercadante, M E Z; Forni, S; Lôbo, R B; Albuquerque, L G
2010-03-01
The objective of this study was to estimate (co)variance functions using random regression models on Legendre polynomials for the analysis of repeated measures of BW from birth to adult age. A total of 82,064 records from 8,145 females were analyzed. Different models were compared. The models included additive direct and maternal effects, and animal and maternal permanent environmental effects as random terms. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of animal age (cubic regression) were considered as random covariables. Eight models with polynomials of third to sixth order were used to describe additive direct and maternal effects, and animal and maternal permanent environmental effects. Residual effects were modeled using 1 (i.e., assuming homogeneity of variances across all ages) or 5 age classes. The model with 5 classes was the best to describe the trajectory of residuals along the growth curve. The model including fourth- and sixth-order polynomials for additive direct and animal permanent environmental effects, respectively, and third-order polynomials for maternal genetic and maternal permanent environmental effects were the best. Estimates of (co)variance obtained with the multi-trait and random regression models were similar. Direct heritability estimates obtained with the random regression models followed a trend similar to that obtained with the multi-trait model. The largest estimates of maternal heritability were those of BW taken close to 240 d of age. In general, estimates of correlation between BW from birth to 8 yr of age decreased with increasing distance between ages.
Sá, Michel Pompeu B O; Ferraz, Paulo E; Escobar, Rodrigo R; Martins, Wendell N; Nunes, Eliobas O; Vasconcelos, Frederico P; Lima, Ricardo C
2012-11-01
The aim of this study was to assess the efficacy of a prophylactic intra-aortic balloon pump (IABP) in high-risk patients undergoing coronary artery bypass graft surgery. MEDLINE, EMBASE, CENTRAL/CCTR, SciELO, LILACS, Google Scholar, and reference lists of relevant articles were searched. We included only randomized controlled trials. Assessments for eligibility, relevance, and study validity and data extraction were performed in duplicate using prespecified criteria. Meta-analysis was carried out using fixed-effect and random-effect models. Seven publications fulfilled our eligibility criteria. There was no important statistical heterogeneity or publication bias among included studies. In total, 177 patients received prophylactic IABP and 168 did not. Overall relative risk (RR) for hospital mortality in patients treated with prophylactic IABP was 0.255 [95% confidence interval (CI), 0.122-0.533; P<0.001; same results for both effect models]. Pooled RR for postoperative low cardiac output syndrome was 0.206 (95% CI, 0.109-0.389; P<0.001) for the fixed-effect model and 0.219 (95% CI, 0.095-0.504; P<0.001) for the random-effect model. Patients treated with prophylactic IABP presented an overall difference in means for length of intensive care unit stay and hospital stay, which was lower than that in the control group (P<0.001 for both effect models). Only 7.4% (13/177) of patients who received prophylactic IABP developed complications at an insertion site, with no IABP-related death. This meta-analysis supports the use of prophylactic IABP in high-risk patients to reduce hospital mortality. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Prey should hide more randomly when a predator attacks more persistently.
Gal, Shmuel; Alpern, Steve; Casas, Jérôme
2015-12-06
When being searched for and then (if found) pursued by a predator, a prey animal has a choice between choosing very randomly among hiding locations so as to be hard to find or alternatively choosing a location from which it is more likely to successfully flee if found. That is, the prey can choose to be hard to find or hard to catch, if found. In our model, capture of prey requires both finding it and successfully pursuing it. We model this dilemma as a zero-sum repeated game between predator and prey, with the eventual capture probability as the pay-off to the predator. We find that the more random hiding strategy is better when the chances of repeated pursuit, which are known to be related to area topography, are high. Our results extend earlier results of Gal and Casas, where there was at most only a single pursuit. In that model, hiding randomly was preferred by the prey when the predator has only a few looks. Thus, our new multistage model shows that the effect of more potential looks is opposite. Our results can be viewed as a generalization of search games to the repeated game context and are in accordance with observed escape behaviour of different animals. © 2015 The Author(s).
Prey should hide more randomly when a predator attacks more persistently
Gal, Shmuel; Alpern, Steve; Casas, Jérôme
2015-01-01
When being searched for and then (if found) pursued by a predator, a prey animal has a choice between choosing very randomly among hiding locations so as to be hard to find or alternatively choosing a location from which it is more likely to successfully flee if found. That is, the prey can choose to be hard to find or hard to catch, if found. In our model, capture of prey requires both finding it and successfully pursuing it. We model this dilemma as a zero-sum repeated game between predator and prey, with the eventual capture probability as the pay-off to the predator. We find that the more random hiding strategy is better when the chances of repeated pursuit, which are known to be related to area topography, are high. Our results extend earlier results of Gal and Casas, where there was at most only a single pursuit. In that model, hiding randomly was preferred by the prey when the predator has only a few looks. Thus, our new multistage model shows that the effect of more potential looks is opposite. Our results can be viewed as a generalization of search games to the repeated game context and are in accordance with observed escape behaviour of different animals. PMID:26631332
Walters, K
2009-06-01
Colonic stem cells are thought to reside towards the base of crypts of the colon, but their numbers and proliferation mechanisms are not well characterized. A defining property of stem cells is that they are able to divide asymmetrically, but it is not known whether they always divide asymmetrically (immortal model) or whether there are occasional symmetrical divisions (stochastic model). By measuring diversity of methylation patterns in colon crypt samples, a recent study found evidence in favour of the stochastic model, assuming random segregation of stem cell DNA strands during cell division. Here, the effect of preferential segregation of the template strand is considered to be consistent with the 'immortal strand hypothesis', and explore the effect on conclusions of previously published results. For a sample of crypts, it is shown how, under the immortal model, to calculate mean and variance of the number of unique methylation patterns allowing for non-random strand segregation and compare them with those observed. The calculated mean and variance are consistent with an immortal model that incorporates non-random strand segregation for a range of stem cell numbers and levels of preferential strand segregation. Allowing for preferential strand segregation considerably alters previously published conclusions relating to stem cell numbers and turnover mechanisms. Evidence in favour of the stochastic model may not be as strong as previously thought.
Fitting and Calibrating a Multilevel Mixed-Effects Stem Taper Model for Maritime Pine in NW Spain
Arias-Rodil, Manuel; Castedo-Dorado, Fernando; Cámara-Obregón, Asunción; Diéguez-Aranda, Ulises
2015-01-01
Stem taper data are usually hierarchical (several measurements per tree, and several trees per plot), making application of a multilevel mixed-effects modelling approach essential. However, correlation between trees in the same plot/stand has often been ignored in previous studies. Fitting and calibration of a variable-exponent stem taper function were conducted using data from 420 trees felled in even-aged maritime pine (Pinus pinaster Ait.) stands in NW Spain. In the fitting step, the tree level explained much more variability than the plot level, and therefore calibration at plot level was omitted. Several stem heights were evaluated for measurement of the additional diameter needed for calibration at tree level. Calibration with an additional diameter measured at between 40 and 60% of total tree height showed the greatest improvement in volume and diameter predictions. If additional diameter measurement is not available, the fixed-effects model fitted by the ordinary least squares technique should be used. Finally, we also evaluated how the expansion of parameters with random effects affects the stem taper prediction, as we consider this a key question when applying the mixed-effects modelling approach to taper equations. The results showed that correlation between random effects should be taken into account when assessing the influence of random effects in stem taper prediction. PMID:26630156
A Mixed Effects Randomized Item Response Model
ERIC Educational Resources Information Center
Fox, J.-P.; Wyrick, Cheryl
2008-01-01
The randomized response technique ensures that individual item responses, denoted as true item responses, are randomized before observing them and so-called randomized item responses are observed. A relationship is specified between randomized item response data and true item response data. True item response data are modeled with a (non)linear…
Ghiglietti, Andrea; Scarale, Maria Giovanna; Miceli, Rosalba; Ieva, Francesca; Mariani, Luigi; Gavazzi, Cecilia; Paganoni, Anna Maria; Edefonti, Valeria
2018-03-22
Recently, response-adaptive designs have been proposed in randomized clinical trials to achieve ethical and/or cost advantages by using sequential accrual information collected during the trial to dynamically update the probabilities of treatment assignments. In this context, urn models-where the probability to assign patients to treatments is interpreted as the proportion of balls of different colors available in a virtual urn-have been used as response-adaptive randomization rules. We propose the use of Randomly Reinforced Urn (RRU) models in a simulation study based on a published randomized clinical trial on the efficacy of home enteral nutrition in cancer patients after major gastrointestinal surgery. We compare results with the RRU design with those previously published with the non-adaptive approach. We also provide a code written with the R software to implement the RRU design in practice. In detail, we simulate 10,000 trials based on the RRU model in three set-ups of different total sample sizes. We report information on the number of patients allocated to the inferior treatment and on the empirical power of the t-test for the treatment coefficient in the ANOVA model. We carry out a sensitivity analysis to assess the effect of different urn compositions. For each sample size, in approximately 75% of the simulation runs, the number of patients allocated to the inferior treatment by the RRU design is lower, as compared to the non-adaptive design. The empirical power of the t-test for the treatment effect is similar in the two designs.
Comparative analysis of used car price evaluation models
NASA Astrophysics Data System (ADS)
Chen, Chuancan; Hao, Lulu; Xu, Cong
2017-05-01
An accurate used car price evaluation is a catalyst for the healthy development of used car market. Data mining has been applied to predict used car price in several articles. However, little is studied on the comparison of using different algorithms in used car price estimation. This paper collects more than 100,000 used car dealing records throughout China to do empirical analysis on a thorough comparison of two algorithms: linear regression and random forest. These two algorithms are used to predict used car price in three different models: model for a certain car make, model for a certain car series and universal model. Results show that random forest has a stable but not ideal effect in price evaluation model for a certain car make, but it shows great advantage in the universal model compared with linear regression. This indicates that random forest is an optimal algorithm when handling complex models with a large number of variables and samples, yet it shows no obvious advantage when coping with simple models with less variables.
Genetic Parameter Estimates for Metabolizing Two Common Pharmaceuticals in Swine.
Howard, Jeremy T; Ashwell, Melissa S; Baynes, Ronald E; Brooks, James D; Yeatts, James L; Maltecca, Christian
2018-01-01
In livestock, the regulation of drugs used to treat livestock has received increased attention and it is currently unknown how much of the phenotypic variation in drug metabolism is due to the genetics of an animal. Therefore, the objective of the study was to determine the amount of phenotypic variation in fenbendazole and flunixin meglumine drug metabolism due to genetics. The population consisted of crossbred female and castrated male nursery pigs ( n = 198) that were sired by boars represented by four breeds. The animals were spread across nine batches. Drugs were administered intravenously and blood collected a minimum of 10 times over a 48 h period. Genetic parameters for the parent drug and metabolite concentration within each drug were estimated based on pharmacokinetics (PK) parameters or concentrations across time utilizing a random regression model. The PK parameters were estimated using a non-compartmental analysis. The PK model included fixed effects of sex and breed of sire along with random sire and batch effects. The random regression model utilized Legendre polynomials and included a fixed population concentration curve, sex, and breed of sire effects along with a random sire deviation from the population curve and batch effect. The sire effect included the intercept for all models except for the fenbendazole metabolite (i.e., intercept and slope). The mean heritability across PK parameters for the fenbendazole and flunixin meglumine parent drug (metabolite) was 0.15 (0.18) and 0.31 (0.40), respectively. For the parent drug (metabolite), the mean heritability across time was 0.27 (0.60) and 0.14 (0.44) for fenbendazole and flunixin meglumine, respectively. The errors surrounding the heritability estimates for the random regression model were smaller compared to estimates obtained from PK parameters. Across both the PK and plasma drug concentration across model, a moderate heritability was estimated. The model that utilized the plasma drug concentration across time resulted in estimates with a smaller standard error compared to models that utilized PK parameters. The current study found a low to moderate proportion of the phenotypic variation in metabolizing fenbendazole and flunixin meglumine that was explained by genetics in the current study.
Genetic Parameter Estimates for Metabolizing Two Common Pharmaceuticals in Swine
Howard, Jeremy T.; Ashwell, Melissa S.; Baynes, Ronald E.; Brooks, James D.; Yeatts, James L.; Maltecca, Christian
2018-01-01
In livestock, the regulation of drugs used to treat livestock has received increased attention and it is currently unknown how much of the phenotypic variation in drug metabolism is due to the genetics of an animal. Therefore, the objective of the study was to determine the amount of phenotypic variation in fenbendazole and flunixin meglumine drug metabolism due to genetics. The population consisted of crossbred female and castrated male nursery pigs (n = 198) that were sired by boars represented by four breeds. The animals were spread across nine batches. Drugs were administered intravenously and blood collected a minimum of 10 times over a 48 h period. Genetic parameters for the parent drug and metabolite concentration within each drug were estimated based on pharmacokinetics (PK) parameters or concentrations across time utilizing a random regression model. The PK parameters were estimated using a non-compartmental analysis. The PK model included fixed effects of sex and breed of sire along with random sire and batch effects. The random regression model utilized Legendre polynomials and included a fixed population concentration curve, sex, and breed of sire effects along with a random sire deviation from the population curve and batch effect. The sire effect included the intercept for all models except for the fenbendazole metabolite (i.e., intercept and slope). The mean heritability across PK parameters for the fenbendazole and flunixin meglumine parent drug (metabolite) was 0.15 (0.18) and 0.31 (0.40), respectively. For the parent drug (metabolite), the mean heritability across time was 0.27 (0.60) and 0.14 (0.44) for fenbendazole and flunixin meglumine, respectively. The errors surrounding the heritability estimates for the random regression model were smaller compared to estimates obtained from PK parameters. Across both the PK and plasma drug concentration across model, a moderate heritability was estimated. The model that utilized the plasma drug concentration across time resulted in estimates with a smaller standard error compared to models that utilized PK parameters. The current study found a low to moderate proportion of the phenotypic variation in metabolizing fenbendazole and flunixin meglumine that was explained by genetics in the current study. PMID:29487615
Detecting a periodic signal in the terrestrial cratering record
NASA Technical Reports Server (NTRS)
Grieve, Richard A. F.; Rupert, James D.; Goodacre, Alan K.; Sharpton, Virgil L.
1988-01-01
A time-series analysis of model periodic data, where the period and phase are known, has been performed in order to investigate whether a significant period can be detected consistently from a mix of random and periodic impacts. Special attention is given to the effect of age uncertainties and random ages in the detection of a periodic signal. An equivalent analysis is performed with observed data on crater ages and compared with the model data, and the effects of the temporal distribution of crater ages on the results from the time-series analysis are studied. Evidence for a consistent 30-m.y. period is found to be weak.
Effects of ignition location models on the burn patterns of simulated wildfires
Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.
2011-01-01
Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.
Mallinckrodt, C H; Lin, Q; Molenberghs, M
2013-01-01
The objective of this research was to demonstrate a framework for drawing inference from sensitivity analyses of incomplete longitudinal clinical trial data via a re-analysis of data from a confirmatory clinical trial in depression. A likelihood-based approach that assumed missing at random (MAR) was the primary analysis. Robustness to departure from MAR was assessed by comparing the primary result to those from a series of analyses that employed varying missing not at random (MNAR) assumptions (selection models, pattern mixture models and shared parameter models) and to MAR methods that used inclusive models. The key sensitivity analysis used multiple imputation assuming that after dropout the trajectory of drug-treated patients was that of placebo treated patients with a similar outcome history (placebo multiple imputation). This result was used as the worst reasonable case to define the lower limit of plausible values for the treatment contrast. The endpoint contrast from the primary analysis was - 2.79 (p = .013). In placebo multiple imputation, the result was - 2.17. Results from the other sensitivity analyses ranged from - 2.21 to - 3.87 and were symmetrically distributed around the primary result. Hence, no clear evidence of bias from missing not at random data was found. In the worst reasonable case scenario, the treatment effect was 80% of the magnitude of the primary result. Therefore, it was concluded that a treatment effect existed. The structured sensitivity framework of using a worst reasonable case result based on a controlled imputation approach with transparent and debatable assumptions supplemented a series of plausible alternative models under varying assumptions was useful in this specific situation and holds promise as a generally useful framework. Copyright © 2012 John Wiley & Sons, Ltd.
Spatiotemporal and random parameter panel data models of traffic crash fatalities in Vietnam.
Truong, Long T; Kieu, Le-Minh; Vu, Tuan A
2016-09-01
This paper investigates factors associated with traffic crash fatalities in 63 provinces of Vietnam during the period from 2012 to 2014. Random effect negative binomial (RENB) and random parameter negative binomial (RPNB) panel data models are adopted to consider spatial heterogeneity across provinces. In addition, a spatiotemporal model with conditional autoregressive priors (ST-CAR) is utilised to account for spatiotemporal autocorrelation in the data. The statistical comparison indicates the ST-CAR model outperforms the RENB and RPNB models. Estimation results provide several significant findings. For example, traffic crash fatalities tend to be higher in provinces with greater numbers of level crossings. Passenger distance travelled and road lengths are also positively associated with fatalities. However, hospital densities are negatively associated with fatalities. The safety impact of the national highway 1A, the main transport corridor of the country, is also highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bayesian dynamic modeling of time series of dengue disease case counts
López-Quílez, Antonio; Torres-Prieto, Alexander
2017-01-01
The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model’s short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health. PMID:28671941
Evidence synthesis for medical decision making and the appropriate use of quality scores.
Doi, Suhail A R
2014-09-01
Meta-analyses today continue to be run using conventional random-effects models that ignore tangible information from studies such as the quality of the studies involved, despite the expectation that results of better quality studies reflect more valid results. Previous research has suggested that quality scores derived from such quality appraisals are unlikely to be useful in meta-analysis, because they would produce biased estimates of effects that are unlikely to be offset by a variance reduction within the studied models. However, previous discussions took place in the context of such scores viewed in terms of their ability to maximize their association with both the magnitude and direction of bias. In this review, another look is taken at this concept, this time asserting that probabilistic bias quantification is not possible or even required of quality scores when used in meta-analysis for redistribution of weights. The use of such a model is contrasted with the conventional random effects model of meta-analysis to demonstrate why the latter is inadequate in the face of a properly specified quality score weighting method. © 2014 Marshfield Clinic.
Tobacco Town: Computational Modeling of Policy Options to Reduce Tobacco Retailer Density
Luke, Douglas A.; Hammond, Ross A.; Combs, Todd; Sorg, Amy; Kasman, Matt; Mack-Crane, Austen; Ribisl, Kurt M.; Henriksen, Lisa
2017-01-01
Objectives To identify the behavioral mechanisms and effects of tobacco control policies designed to reduce tobacco retailer density. Methods We developed the Tobacco Town agent-based simulation model to examine 4 types of retailer reduction policies: (1) random retailer reduction, (2) restriction by type of retailer, (3) limiting proximity of retailers to schools, and (4) limiting proximity of retailers to each other. The model examined the effects of these policies alone and in combination across 4 different types of towns, defined by 2 levels of population density (urban vs suburban) and 2 levels of income (higher vs lower). Results Model results indicated that reduction of retailer density has the potential to decrease accessibility of tobacco products by driving up search and purchase costs. Policy effects varied by town type: proximity policies worked better in dense, urban towns whereas retailer type and random retailer reduction worked better in less-dense, suburban settings. Conclusions Comprehensive retailer density reduction policies have excellent potential to reduce the public health burden of tobacco use in communities. PMID:28398792
The use of propensity scores to assess the generalizability of results from randomized trials
Stuart, Elizabeth A.; Cole, Stephen R.; Bradshaw, Catherine P.; Leaf, Philip J.
2014-01-01
Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: Will the program be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or “external validity,” of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify, or weight the control group outcomes to the population, assessing how well the propensity score-adjusted outcomes track the outcomes actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. This paper lays out these ideas, discusses the assumptions underlying the approach, and illustrates the metrics using data on the evaluation of a schoolwide prevention program called Positive Behavioral Interventions and Supports. PMID:24926156
Yang, Ke; Wu, Jiandong; Xu, Guoqing; Xie, Dongxue; Peretz-Soroka, Hagit; Santos, Susy; Alexander, Murray; Zhu, Ling; Zhang, Michael; Liu, Yong; Lin, Francis
2017-04-18
Chemotaxis is a classic mechanism for guiding cell migration and an important topic in both fundamental cell biology and health sciences. Neutrophils are a widely used model to study eukaryotic cell migration and neutrophil chemotaxis itself can lead to protective or harmful immune actions to the body. While much has been learnt from past research about how neutrophils effectively navigate through a chemoattractant gradient, many interesting questions remain unclear. For example, while it is tempting to model neutrophil chemotaxis using the well-established biased random walk theory, the experimental proof was challenged by the cell's highly persistent migrating nature. A special experimental design is required to test the key predictions from the random walk model. Another question that has interested the cell migration community for decades concerns the existence of chemotactic memory and its underlying mechanism. Although chemotactic memory has been suggested in various studies, a clear quantitative experimental demonstration will improve our understanding of the migratory memory effect. Motivated by these questions, we developed a microfluidic cell migration assay (so-called dual-docking chip or D 2 -Chip) that can test both the biased random walk model and the memory effect for neutrophil chemotaxis on a single chip enabled by multi-region gradient generation and dual-region cell alignment. Our results provide experimental support for the biased random walk model and chemotactic memory for neutrophil chemotaxis. Quantitative data analyses provide new insights into neutrophil chemotaxis and memory by making connections to entropic disorder, cell morphology and oscillating migratory response.
Norrie, John; Davidson, Kate; Tata, Philip; Gumley, Andrew
2013-01-01
Objectives We investigated the treatment effects reported from a high-quality randomized controlled trial of cognitive behavioural therapy (CBT) for 106 people with borderline personality disorder attending community-based clinics in the UK National Health Service – the BOSCOT trial. Specifically, we examined whether the amount of therapy and therapist competence had an impact on our primary outcome, the number of suicidal acts†, using instrumental variables regression modelling. Design Randomized controlled trial. Participants from across three sites (London, Glasgow, and Ayrshire/Arran) were randomized equally to CBT for personality disorders (CBTpd) plus Treatment as Usual or to Treatment as Usual. Treatment as Usual varied between sites and individuals, but was consistent with routine treatment in the UK National Health Service at the time. CBTpd comprised an average 16 sessions (range 0–35) over 12 months. Method We used instrumental variable regression modelling to estimate the impact of quantity and quality of therapy received (recording activities and behaviours that took place after randomization) on number of suicidal acts and inpatient psychiatric hospitalization. Results A total of 101 participants provided full outcome data at 2 years post randomization. The previously reported intention-to-treat (ITT) results showed on average a reduction of 0.91 (95% confidence interval 0.15–1.67) suicidal acts over 2 years for those randomized to CBT. By incorporating the influence of quantity of therapy and therapist competence, we show that this estimate of the effect of CBTpd could be approximately two to three times greater for those receiving the right amount of therapy from a competent therapist. Conclusions Trials should routinely control for and collect data on both quantity of therapy and therapist competence, which can be used, via instrumental variable regression modelling, to estimate treatment effects for optimal delivery of therapy. Such estimates complement rather than replace the ITT results, which are properly the principal analysis results from such trials. Practitioner points Assessing the impact of the quantity and quality of therapy (competence of therapists) is complex. More competent therapists, trained in CBTpd, may significantly reduce the number of suicidal act in patients with borderline personality disorder. PMID:23420622
2011-01-01
Background Clinical researchers have often preferred to use a fixed effects model for the primary interpretation of a meta-analysis. Heterogeneity is usually assessed via the well known Q and I2 statistics, along with the random effects estimate they imply. In recent years, alternative methods for quantifying heterogeneity have been proposed, that are based on a 'generalised' Q statistic. Methods We review 18 IPD meta-analyses of RCTs into treatments for cancer, in order to quantify the amount of heterogeneity present and also to discuss practical methods for explaining heterogeneity. Results Differing results were obtained when the standard Q and I2 statistics were used to test for the presence of heterogeneity. The two meta-analyses with the largest amount of heterogeneity were investigated further, and on inspection the straightforward application of a random effects model was not deemed appropriate. Compared to the standard Q statistic, the generalised Q statistic provided a more accurate platform for estimating the amount of heterogeneity in the 18 meta-analyses. Conclusions Explaining heterogeneity via the pre-specification of trial subgroups, graphical diagnostic tools and sensitivity analyses produced a more desirable outcome than an automatic application of the random effects model. Generalised Q statistic methods for quantifying and adjusting for heterogeneity should be incorporated as standard into statistical software. Software is provided to help achieve this aim. PMID:21473747
Generalizing Evidence From Randomized Clinical Trials to Target Populations
Cole, Stephen R.; Stuart, Elizabeth A.
2010-01-01
Properly planned and conducted randomized clinical trials remain susceptible to a lack of external validity. The authors illustrate a model-based method to standardize observed trial results to a specified target population using a seminal human immunodeficiency virus (HIV) treatment trial, and they provide Monte Carlo simulation evidence supporting the method. The example trial enrolled 1,156 HIV-infected adult men and women in the United States in 1996, randomly assigned 577 to a highly active antiretroviral therapy and 579 to a largely ineffective combination therapy, and followed participants for 52 weeks. The target population was US people infected with HIV in 2006, as estimated by the Centers for Disease Control and Prevention. Results from the trial apply, albeit muted by 12%, to the target population, under the assumption that the authors have measured and correctly modeled the determinants of selection that reflect heterogeneity in the treatment effect. In simulations with a heterogeneous treatment effect, a conventional intent-to-treat estimate was biased with poor confidence limit coverage, but the proposed estimate was largely unbiased with appropriate confidence limit coverage. The proposed method standardizes observed trial results to a specified target population and thereby provides information regarding the generalizability of trial results. PMID:20547574
Turbulence and fire-spotting effects into wild-land fire simulators
NASA Astrophysics Data System (ADS)
Kaur, Inderpreet; Mentrelli, Andrea; Bosseur, Frédéric; Filippi, Jean-Baptiste; Pagnini, Gianni
2016-10-01
This paper presents a mathematical approach to model the effects and the role of phenomena with random nature such as turbulence and fire-spotting into the existing wildfire simulators. The formulation proposes that the propagation of the fire-front is the sum of a drifting component (obtained from an existing wildfire simulator without turbulence and fire-spotting) and a random fluctuating component. The modelling of the random effects is embodied in a probability density function accounting for the fluctuations around the fire perimeter which is given by the drifting component. In past, this formulation has been applied to include these random effects into a wildfire simulator based on an Eulerian moving interface method, namely the Level Set Method (LSM), but in this paper the same formulation is adapted for a wildfire simulator based on a Lagrangian front tracking technique, namely the Discrete Event System Specification (DEVS). The main highlight of the present study is the comparison of the performance of a Lagrangian and an Eulerian moving interface method when applied to wild-land fire propagation. Simple idealised numerical experiments are used to investigate the potential applicability of the proposed formulation to DEVS and to compare its behaviour with respect to the LSM. The results show that DEVS based wildfire propagation model qualitatively improves its performance (e.g., reproducing flank and back fire, increase in fire spread due to pre-heating of the fuel by hot air and firebrands, fire propagation across no fuel zones, secondary fire generation, ...) when random effects are included according to the present formulation. The performance of DEVS and LSM based wildfire models is comparable and the only differences which arise among the two are due to the differences in the geometrical construction of the direction of propagation. Though the results presented here are devoid of any validation exercise and provide only a proof of concept, they show a strong inclination towards an intended operational use. The existing LSM or DEVS based operational simulators like WRF-SFIRE and ForeFire respectively can serve as an ideal basis for the same.
NASA Astrophysics Data System (ADS)
Li, Zheng-Yan; Xie, Zheng-Wei; Chen, Tong; Ouyang, Qi
2009-12-01
Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states.
Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.
2015-01-01
Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.
Estimating safety effects of pavement management factors utilizing Bayesian random effect models.
Jiang, Ximiao; Huang, Baoshan; Zaretzki, Russell L; Richards, Stephen; Yan, Xuedong
2013-01-01
Previous studies of pavement management factors that relate to the occurrence of traffic-related crashes are rare. Traditional research has mostly employed summary statistics of bidirectional pavement quality measurements in extended longitudinal road segments over a long time period, which may cause a loss of important information and result in biased parameter estimates. The research presented in this article focuses on crash risk of roadways with overall fair to good pavement quality. Real-time and location-specific data were employed to estimate the effects of pavement management factors on the occurrence of crashes. This research is based on the crash data and corresponding pavement quality data for the Tennessee state route highways from 2004 to 2009. The potential temporal and spatial correlations among observations caused by unobserved factors were considered. Overall 6 models were built accounting for no correlation, temporal correlation only, and both the temporal and spatial correlations. These models included Poisson, negative binomial (NB), one random effect Poisson and negative binomial (OREP, ORENB), and two random effect Poisson and negative binomial (TREP, TRENB) models. The Bayesian method was employed to construct these models. The inference is based on the posterior distribution from the Markov chain Monte Carlo (MCMC) simulation. These models were compared using the deviance information criterion. Analysis of the posterior distribution of parameter coefficients indicates that the pavement management factors indexed by Present Serviceability Index (PSI) and Pavement Distress Index (PDI) had significant impacts on the occurrence of crashes, whereas the variable rutting depth was not significant. Among other factors, lane width, median width, type of terrain, and posted speed limit were significant in affecting crash frequency. The findings of this study indicate that a reduction in pavement roughness would reduce the likelihood of traffic-related crashes. Hence, maintaining a low level of pavement roughness is strongly suggested. In addition, the results suggested that the temporal correlation among observations was significant and that the ORENB model outperformed all other models.
Complex networks: Effect of subtle changes in nature of randomness
NASA Astrophysics Data System (ADS)
Goswami, Sanchari; Biswas, Soham; Sen, Parongama
2011-03-01
In two different classes of network models, namely, the Watts Strogatz type and the Euclidean type, subtle changes have been introduced in the randomness. In the Watts Strogatz type network, rewiring has been done in different ways and although the qualitative results remain the same, finite differences in the exponents are observed. In the Euclidean type networks, where at least one finite phase transition occurs, two models differing in a similar way have been considered. The results show a possible shift in one of the phase transition points but no change in the values of the exponents. The WS and Euclidean type models are equivalent for extreme values of the parameters; we compare their behaviour for intermediate values.
Fitting milk production curves through nonlinear mixed models.
Piccardi, Monica; Macchiavelli, Raúl; Funes, Ariel Capitaine; Bó, Gabriel A; Balzarini, Mónica
2017-05-01
The aim of this work was to fit and compare three non-linear models (Wood, Milkbot and diphasic) to model lactation curves from two approaches: with and without cow random effect. Knowing the behaviour of lactation curves is critical for decision-making in a dairy farm. Knowledge of the model of milk production progress along each lactation is necessary not only at the mean population level (dairy farm), but also at individual level (cow-lactation). The fits were made in a group of high production and reproduction dairy farms; in first and third lactations in cool seasons. A total of 2167 complete lactations were involved, of which 984 were first-lactations and the remaining ones, third lactations (19 382 milk yield tests). PROC NLMIXED in SAS was used to make the fits and estimate the model parameters. The diphasic model resulted to be computationally complex and barely practical. Regarding the classical Wood and MilkBot models, although the information criteria suggest the selection of MilkBot, the differences in the estimation of production indicators did not show a significant improvement. The Wood model was found to be a good option for fitting the expected value of lactation curves. Furthermore, the three models fitted better when the subject (cow) random effect was considered, which is related to magnitude of production. The random effect improved the predictive potential of the models, but it did not have a significant effect on the production indicators derived from the lactation curves, such as milk yield and days in milk to peak.
Stochastic climate dynamics: Stochastic parametrizations and their global effects
NASA Astrophysics Data System (ADS)
Ghil, Michael
2010-05-01
A well-known difficulty in modeling the atmosphere and oceans' general circulation is the limited, albeit increasing resolution possible in the numerical solution of the governing partial differential equations. While the mass, energy and momentum of an individual cloud, in the atmosphere, or convection chimney, in the oceans, is negligible, their combined effects over long times are not. Until recently, small, subgrid-scale processes were represented in general circulation models (GCMs) by deterministic "parametrizations." While A. Arakawa and associates had realized over three decades ago the conceptual need for ensembles of clouds in such parametrizations, it is only very recently that truly stochastic parametrizations have been introduced into GCMs and weather prediction models. These parametrizations essentially transform a deterministic autonomous system into a non-autonomous one, subject to random forcing. To study systematically the long-term effects of such a forcing has to rely on theory of random dynamical systems (RDS). This theory allows one to consider the detailed geometric structure of the random attractors associated with nonlinear, stochastically perturbed systems. These attractors extend the concept of strange attractors from autonomous dynamical systems to non-autonomous systems with random forcing. To illustrate the essence of the theory, its concepts and methods, we carry out a high-resolution numerical study of two "toy" models in their respective phase spaces. This study allows one to obtain a good approximation of their global random attractors, as well as of the time-dependent invariant measures supported by these attractors. The first of the two models studied herein is the Arnol'd family of circle maps in the presence of noise. The maps' fine-grained, resonant landscape --- associated with Arnol'd tongues --- is smoothed by the noise, thus permitting a comparison with the observable aspects of the "Devil's staircase" that arises in modeling the El Nino-Southern Oscillation (ENSO). These results are confirmed by studying a "French garden" that is obtained by smoothing a "Devil's quarry." Such a quarry results from coupling two circle maps, and random forcing leads to a smoothed version thereof. We thus suspect that stochastic parametrizations will stabilize the sensitive dependence on parameters that has been noticed in the development of GCMs. This talk represents joint work with Mickael D. Chekroun, D. Kondrashov, Eric Simonnet and I. Zaliapin. Several other talks and posters complement the results presented here and provide further insights into RDS theory and its application to the geosciences.
Modelling heat transfer during flow through a random packed bed of spheres
NASA Astrophysics Data System (ADS)
Burström, Per E. C.; Frishfelds, Vilnis; Ljung, Anna-Lena; Lundström, T. Staffan; Marjavaara, B. Daniel
2018-04-01
Heat transfer in a random packed bed of monosized iron ore pellets is modelled with both a discrete three-dimensional system of spheres and a continuous Computational Fluid Dynamics (CFD) model. Results show a good agreement between the two models for average values over a cross section of the bed for an even temperature profiles at the inlet. The advantage with the discrete model is that it captures local effects such as decreased heat transfer in sections with low speed. The disadvantage is that it is computationally heavy for larger systems of pellets. If averaged values are sufficient, the CFD model is an attractive alternative that is easy to couple to the physics up- and downstream the packed bed. The good agreement between the discrete and continuous model furthermore indicates that the discrete model may be used also on non-Stokian flow in the transitional region between laminar and turbulent flow, as turbulent effects show little influence of the overall heat transfer rates in the continuous model.
Experiments in randomly agitated granular assemblies close to the jamming transition
NASA Astrophysics Data System (ADS)
Caballero, Gabriel; Lindner, Anke; Ovarlez, Guillaume; Reydellet, Guillaume; Lanuza, José; Clément, Eric
2004-11-01
We present the results obtained for two experiments on randomly agitated granular assemblies using a novel way of shaking. First we discuss the transport properties of a 2D model system undergoing classical shaking that show the importance of large scale dynamics for this type of agitation and offer a local view of the microscopic motions of a grain. We then develop a new way of vibrating the system allowing for random accelerations smaller than gravity. Using this method we study the evolution of the free surface as well as results from a light scattering method for a 3D model system. The final aim of these experiments is to investigate the ideas of effective temperature on the one hand as a function of inherent states and on the other hand using fluctuation dissipation relations.
Experiments in randomly agitated granular assemblies close to the jamming transition
NASA Astrophysics Data System (ADS)
Caballero, Gabriel; Lindner, Anke; Ovarlez, Guillaume; Reydellet, Guillaume; Lanuza, José; Clément, Eric
2004-03-01
We present the results obtained for two experiments on randomly agitated granular assemblies using a novel way of shaking. First we discuss the transport properties of a 2D model system undergoing classical shaking that show the importance of large scale dynamics for this type of agitation and offer a local view of the microscopic motions of a grain. We then develop a new way of vibrating the system allowing for random accelerations smaller than gravity. Using this method we study the evolution of the free surface as well as results from a light scattering method for a 3D model system. The final aim of these experiments is to investigate the ideas of effective temperature on the one hand as a function of inherent states and on the other hand using fluctuation dissipation relations.
Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.
Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine
2010-09-01
Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.
Liu, Da -Jiang; Evans, James W.
2015-04-02
We explore simple lattice-gas reaction models for CO-oxidation on 1D and 2D periodic arrays of surface adsorption sites. The models are motivated by studies of CO-oxidation on RuO 2(110) at high-pressures. Although adspecies interactions are neglected, the effective absence of adspecies diffusion results in kinetically-induced spatial correlations. A transition occurs from a random mainly CO-populated steady-state at high CO-partial pressure p CO, to a strongly-correlated near-O-covered steady-state for low p CO as noted. In addition, we identify a second transition to a random near-O-covered steady-state at very low p CO.
Yen, A M-F; Liou, H-H; Lin, H-L; Chen, T H-H
2006-01-01
The study aimed to develop a predictive model to deal with data fraught with heterogeneity that cannot be explained by sampling variation or measured covariates. The random-effect Poisson regression model was first proposed to deal with over-dispersion for data fraught with heterogeneity after making allowance for measured covariates. Bayesian acyclic graphic model in conjunction with Markov Chain Monte Carlo (MCMC) technique was then applied to estimate the parameters of both relevant covariates and random effect. Predictive distribution was then generated to compare the predicted with the observed for the Bayesian model with and without random effect. Data from repeated measurement of episodes among 44 patients with intractable epilepsy were used as an illustration. The application of Poisson regression without taking heterogeneity into account to epilepsy data yielded a large value of heterogeneity (heterogeneity factor = 17.90, deviance = 1485, degree of freedom (df) = 83). After taking the random effect into account, the value of heterogeneity factor was greatly reduced (heterogeneity factor = 0.52, deviance = 42.5, df = 81). The Pearson chi2 for the comparison between the expected seizure frequencies and the observed ones at two and three months of the model with and without random effect were 34.27 (p = 1.00) and 1799.90 (p < 0.0001), respectively. The Bayesian acyclic model using the MCMC method was demonstrated to have great potential for disease prediction while data show over-dispersion attributed either to correlated property or to subject-to-subject variability.
Application of random effects to the study of resource selection by animals
Gillies, C.S.; Hebblewhite, M.; Nielsen, S.E.; Krawchuk, M.A.; Aldridge, Cameron L.; Frair, J.L.; Saher, D.J.; Stevens, C.E.; Jerde, C.L.
2006-01-01
1. Resource selection estimated by logistic regression is used increasingly in studies to identify critical resources for animal populations and to predict species occurrence.2. Most frequently, individual animals are monitored and pooled to estimate population-level effects without regard to group or individual-level variation. Pooling assumes that both observations and their errors are independent, and resource selection is constant given individual variation in resource availability.3. Although researchers have identified ways to minimize autocorrelation, variation between individuals caused by differences in selection or available resources, including functional responses in resource selection, have not been well addressed.4. Here we review random-effects models and their application to resource selection modelling to overcome these common limitations. We present a simple case study of an analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky Mountains with and without random effects.5. Both categorical and continuous variables in the grizzly bear model differed in interpretation, both in statistical significance and coefficient sign, depending on how a random effect was included. We used a simulation approach to clarify the application of random effects under three common situations for telemetry studies: (a) discrepancies in sample sizes among individuals; (b) differences among individuals in selection where availability is constant; and (c) differences in availability with and without a functional response in resource selection.6. We found that random intercepts accounted for unbalanced sample designs, and models with random intercepts and coefficients improved model fit given the variation in selection among individuals and functional responses in selection. Our empirical example and simulations demonstrate how including random effects in resource selection models can aid interpretation and address difficult assumptions limiting their generality. This approach will allow researchers to appropriately estimate marginal (population) and conditional (individual) responses, and account for complex grouping, unbalanced sample designs and autocorrelation.
Application of random effects to the study of resource selection by animals.
Gillies, Cameron S; Hebblewhite, Mark; Nielsen, Scott E; Krawchuk, Meg A; Aldridge, Cameron L; Frair, Jacqueline L; Saher, D Joanne; Stevens, Cameron E; Jerde, Christopher L
2006-07-01
1. Resource selection estimated by logistic regression is used increasingly in studies to identify critical resources for animal populations and to predict species occurrence. 2. Most frequently, individual animals are monitored and pooled to estimate population-level effects without regard to group or individual-level variation. Pooling assumes that both observations and their errors are independent, and resource selection is constant given individual variation in resource availability. 3. Although researchers have identified ways to minimize autocorrelation, variation between individuals caused by differences in selection or available resources, including functional responses in resource selection, have not been well addressed. 4. Here we review random-effects models and their application to resource selection modelling to overcome these common limitations. We present a simple case study of an analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky Mountains with and without random effects. 5. Both categorical and continuous variables in the grizzly bear model differed in interpretation, both in statistical significance and coefficient sign, depending on how a random effect was included. We used a simulation approach to clarify the application of random effects under three common situations for telemetry studies: (a) discrepancies in sample sizes among individuals; (b) differences among individuals in selection where availability is constant; and (c) differences in availability with and without a functional response in resource selection. 6. We found that random intercepts accounted for unbalanced sample designs, and models with random intercepts and coefficients improved model fit given the variation in selection among individuals and functional responses in selection. Our empirical example and simulations demonstrate how including random effects in resource selection models can aid interpretation and address difficult assumptions limiting their generality. This approach will allow researchers to appropriately estimate marginal (population) and conditional (individual) responses, and account for complex grouping, unbalanced sample designs and autocorrelation.
Bi-dimensional null model analysis of presence-absence binary matrices.
Strona, Giovanni; Ulrich, Werner; Gotelli, Nicholas J
2018-01-01
Comparing the structure of presence/absence (i.e., binary) matrices with those of randomized counterparts is a common practice in ecology. However, differences in the randomization procedures (null models) can affect the results of the comparisons, leading matrix structural patterns to appear either "random" or not. Subjectivity in the choice of one particular null model over another makes it often advisable to compare the results obtained using several different approaches. Yet, available algorithms to randomize binary matrices differ substantially in respect to the constraints they impose on the discrepancy between observed and randomized row and column marginal totals, which complicates the interpretation of contrasting patterns. This calls for new strategies both to explore intermediate scenarios of restrictiveness in-between extreme constraint assumptions, and to properly synthesize the resulting information. Here we introduce a new modeling framework based on a flexible matrix randomization algorithm (named the "Tuning Peg" algorithm) that addresses both issues. The algorithm consists of a modified swap procedure in which the discrepancy between the row and column marginal totals of the target matrix and those of its randomized counterpart can be "tuned" in a continuous way by two parameters (controlling, respectively, row and column discrepancy). We show how combining the Tuning Peg with a wise random walk procedure makes it possible to explore the complete null space embraced by existing algorithms. This exploration allows researchers to visualize matrix structural patterns in an innovative bi-dimensional landscape of significance/effect size. We demonstrate the rational and potential of our approach with a set of simulated and real matrices, showing how the simultaneous investigation of a comprehensive and continuous portion of the null space can be extremely informative, and possibly key to resolving longstanding debates in the analysis of ecological matrices. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Yüksel, Yusuf
2018-05-01
We propose an atomistic model and present Monte Carlo simulation results regarding the influence of FM/AF interface structure on the hysteresis mechanism and exchange bias behavior for a spin valve type FM/FM/AF magnetic junction. We simulate perfectly flat and roughened interface structures both with uncompensated interfacial AF moments. In order to simulate rough interface effect, we introduce the concept of random exchange anisotropy field induced at the interface, and acting on the interface AF spins. Our results yield that different types of the random field distributions of anisotropy field may lead to different behavior of exchange bias.
NASA Astrophysics Data System (ADS)
Cho, Yi Je; Lee, Wook Jin; Park, Yong Ho
2014-11-01
Aspects of numerical results from computational experiments on representative volume element (RVE) problems using finite element analyses are discussed. Two different boundary conditions (BCs) are examined and compared numerically for volume elements with different sizes, where tests have been performed on the uniaxial tensile deformation of random particle reinforced composites. Structural heterogeneities near model boundaries such as the free-edges of particle/matrix interfaces significantly influenced the overall numerical solutions, producing force and displacement fluctuations along the boundaries. Interestingly, this effect was shown to be limited to surface regions within a certain distance of the boundaries, while the interior of the model showed almost identical strain fields regardless of the applied BCs. Also, the thickness of the BC-affected regions remained constant with varying volume element sizes in the models. When the volume element size was large enough compared to the thickness of the BC-affected regions, the structural response of most of the model was found to be almost independent of the applied BC such that the apparent properties converged to the effective properties. Finally, the mechanism that leads a RVE model for random heterogeneous materials to be representative is discussed in terms of the size of the volume element and the thickness of the BC-affected region.
Carter, Barry L; Clarke, William; Ardery, Gail; Weber, Cynthia A; James, Paul A; Vander Weg, Mark; Chrischilles, Elizabeth A; Vaughn, Thomas; Egan, Brent M
2010-07-01
Numerous studies have demonstrated the value of team-based care to improve blood pressure (BP) control, but there is limited information on whether these models would be adopted in diverse populations. The purpose of this study was to evaluate whether a collaborative model between physicians and pharmacists can improve BP control in multiple primary care medical offices with diverse geographic and patient characteristics and whether long-term BP control can be sustained. This study is a randomized prospective trial in 27 primary care offices first stratified by the percentage of underrepresented minorities and the level of clinical pharmacy services within the office. Each office is then randomized to either a 9- or 24-month intervention or a control group. Patients will be enrolled in this study until 2012. The results of this study should provide information on whether this model can be implemented in large numbers of diverse offices, if it is effective in diverse populations, and whether BP control can be sustained long term. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00935077.
Polymer diffusion in quenched disorder: A renormalization group approach
NASA Astrophysics Data System (ADS)
Ebert, Ute
1996-01-01
We study the diffusion of polymers through quenched short-range correlated random media by renormalization group (RG) methods, which allow us to derive universal predictions in the limit of long chains and weak disorder. We take local quenched random potentials with second moment v and the excluded-volume interaction u of the chain segments into account. We show that our model contains the relevant features of polymer diffusion in random media in the RG sense if we focus on the local entropic effects rather than on the topological constraints of a quenched random medium. The dynamic generating functional and the general structure of its perturbation expansion in u and v are derived. The distribution functions for the center-of-mass motion and the internal modes of one chain and for the correlation of the center of mass motions of two chains are calculated to one-loop order. The results allow for sufficient cross-checks to have trust in the one-loop renormalizability of the model. The general structure as well as the one-loop results of the integrated RG flow of the parameters are discussed. Universal results can be found for the effective static interaction w≔u-v≥0 and for small effective disorder couplingbar v(l) on the intermediate length scale l. As a first physical prediction from our analysis, we determine the general nonlinear scaling form of the chain diffusion constant and evaluate it explicitly as[Figure not available: see fulltext.] forbar v(l) ≪ 1.
Source-Independent Quantum Random Number Generation
NASA Astrophysics Data System (ADS)
Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng
2016-01-01
Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .
Cure fraction model with random effects for regional variation in cancer survival.
Seppä, Karri; Hakulinen, Timo; Kim, Hyon-Jung; Läärä, Esa
2010-11-30
Assessing regional differences in the survival of cancer patients is important but difficult when separate regions are small or sparsely populated. In this paper, we apply a mixture cure fraction model with random effects to cause-specific survival data of female breast cancer patients collected by the population-based Finnish Cancer Registry. Two sets of random effects were used to capture the regional variation in the cure fraction and in the survival of the non-cured patients, respectively. This hierarchical model was implemented in a Bayesian framework using a Metropolis-within-Gibbs algorithm. To avoid poor mixing of the Markov chain, when the variance of either set of random effects was close to zero, posterior simulations were based on a parameter-expanded model with tailor-made proposal distributions in Metropolis steps. The random effects allowed the fitting of the cure fraction model to the sparse regional data and the estimation of the regional variation in 10-year cause-specific breast cancer survival with a parsimonious number of parameters. Before 1986, the capital of Finland clearly stood out from the rest, but since then all the 21 hospital districts have achieved approximately the same level of survival. Copyright © 2010 John Wiley & Sons, Ltd.
Jiao, Can; Wang, Ting; Liu, Jianxin; Wu, Huanjie; Cui, Fang; Peng, Xiaozhe
2017-01-01
The influences of peer relationships on adolescent subjective well-being were investigated within the framework of social network analysis, using exponential random graph models as a methodological tool. The participants in the study were 1,279 students (678 boys and 601 girls) from nine junior middle schools in Shenzhen, China. The initial stage of the research used a peer nomination questionnaire and a subjective well-being scale (used in previous studies) to collect data on the peer relationship networks and the subjective well-being of the students. Exponential random graph models were then used to explore the relationships between students with the aim of clarifying the character of the peer relationship networks and the influence of peer relationships on subjective well being. The results showed that all the adolescent peer relationship networks in our investigation had positive reciprocal effects, positive transitivity effects and negative expansiveness effects. However, none of the relationship networks had obvious receiver effects or leaders. The adolescents in partial peer relationship networks presented similar levels of subjective well-being on three dimensions (satisfaction with life, positive affects and negative affects) though not all network friends presented these similarities. The study shows that peer networks can affect an individual's subjective well-being. However, whether similarities among adolescents are the result of social influences or social choices needs further exploration, including longitudinal studies that investigate the potential processes of subjective well-being similarities among adolescents.
Jiao, Can; Wang, Ting; Liu, Jianxin; Wu, Huanjie; Cui, Fang; Peng, Xiaozhe
2017-01-01
The influences of peer relationships on adolescent subjective well-being were investigated within the framework of social network analysis, using exponential random graph models as a methodological tool. The participants in the study were 1,279 students (678 boys and 601 girls) from nine junior middle schools in Shenzhen, China. The initial stage of the research used a peer nomination questionnaire and a subjective well-being scale (used in previous studies) to collect data on the peer relationship networks and the subjective well-being of the students. Exponential random graph models were then used to explore the relationships between students with the aim of clarifying the character of the peer relationship networks and the influence of peer relationships on subjective well being. The results showed that all the adolescent peer relationship networks in our investigation had positive reciprocal effects, positive transitivity effects and negative expansiveness effects. However, none of the relationship networks had obvious receiver effects or leaders. The adolescents in partial peer relationship networks presented similar levels of subjective well-being on three dimensions (satisfaction with life, positive affects and negative affects) though not all network friends presented these similarities. The study shows that peer networks can affect an individual’s subjective well-being. However, whether similarities among adolescents are the result of social influences or social choices needs further exploration, including longitudinal studies that investigate the potential processes of subjective well-being similarities among adolescents. PMID:28450845
ERIC Educational Resources Information Center
Aydin, Burak; Leite, Walter L.; Algina, James
2016-01-01
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
NASA Astrophysics Data System (ADS)
Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan
2017-06-01
Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.
Ruscito, Ilary; Darb-Esfahani, Silvia; Kulbe, Hagen; Bellati, Filippo; Zizzari, Ilaria Grazia; Rahimi Koshkaki, Hassan; Napoletano, Chiara; Caserta, Donatella; Rughetti, Aurelia; Kessler, Mirjana; Sehouli, Jalid; Nuti, Marianna; Braicu, Elena Ioana
2018-05-10
To investigate the association of cancer stem cell biomarker aldehyde dehydrogenase-1 (ALDH1) with ovarian cancer patients' prognosis and clinico-pathological characteristics. The electronic searches were performed in January 2018 through the databases PubMed, MEDLINE and Scopus by searching the terms: "ovarian cancer" AND "immunohistochemistry" AND ["aldehyde dehydrogenase-1" OR "ALDH1" OR "cancer stem cell"]. Studies evaluating the impact of ALDH1 expression on ovarian cancer survival and clinico-pathological variables were selected. 233 studies were retrieved. Thirteen studies including 1885 patients met all selection criteria. ALDH1-high expression was found to be significantly associated with poor 5-year OS (OR = 3.46; 95% CI: 1.61-7.42; P = 0.001, random effects model) and 5-year PFS (OR = 2.14; 95% CI: 1.11-4.13; P = 0.02, random effects model) in ovarian cancer patients. No correlation between ALDH1 expression and tumor histology (OR = 0.60; 95% CI: 0.36-1.02; P = 0.06, random effects model), FIGO Stage (OR = 0.65; 95% CI: 0.33-1.30; P = 0.22, random effects model), tumor grading (OR = 0.76; 95% CI: 0.40-1.45; P = 0.41, random effects model) lymph nodal status (OR = 2.05; 95% CI: 0.81-5.18; P = 0.13, random effects model) or patients' age at diagnosis (OR = 0.83; 95% CI: 0.54-1.29; P = 0.41, fixed effects model) was identified. Basing on the available evidence, this meta-analysis showed that high levels of ALDH1 expression correlate with worse OS and PFS in ovarian cancer patients. Copyright © 2018. Published by Elsevier Inc.
Anarkooli, Alireza Jafari; Hosseinpour, Mehdi; Kardar, Adele
2017-09-01
Rollover crashes are responsible for a notable number of serious injuries and fatalities; hence, they are of great concern to transportation officials and safety researchers. However, only few published studies have analyzed the factors associated with severity outcomes of rollover crashes. This research has two objectives. The first objective is to investigate the effects of various factors, of which some have been rarely reported in the existing studies, on the injury severities of single-vehicle (SV) rollover crashes based on six-year crash data collected on the Malaysian federal roads. A random-effects generalized ordered probit (REGOP) model is employed in this study to analyze injury severity patterns caused by rollover crashes. The second objective is to examine the performance of the proposed approach, REGOP, for modeling rollover injury severity outcomes. To this end, a mixed logit (MXL) model is also fitted in this study because of its popularity in injury severity modeling. Regarding the effects of the explanatory variables on the injury severity of rollover crashes, the results reveal that factors including dark without supplemental lighting, rainy weather condition, light truck vehicles (e.g., sport utility vehicles, vans), heavy vehicles (e.g., bus, truck), improper overtaking, vehicle age, traffic volume and composition, number of travel lanes, speed limit, undulating terrain, presence of central median, and unsafe roadside conditions are positively associated with more severe SV rollover crashes. On the other hand, unpaved shoulder width, area type, driver occupation, and number of access points are found as the significant variables decreasing the probability of being killed or severely injured (i.e., KSI) in rollover crashes. Land use and side friction are significant and positively associated only with slight injury category. These findings provide valuable insights into the causes and factors affecting the injury severity patterns of rollover crashes, and thus can help develop effective countermeasures to reduce the severity of rollover crashes. The model comparison results show that the REGOP model is found to outperform the MXL model in terms of goodness-of-fit measures, and also is significantly superior to other extensions of ordered probit models, including generalized ordered probit and random-effects ordered probit (REOP) models. As a result, this research introduces REGOP as a promising tool for future research focusing on crash injury severity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neelon, Brian; Chang, Howard H; Ling, Qiang; Hastings, Nicole S
2016-12-01
Motivated by a study exploring spatiotemporal trends in emergency department use, we develop a class of two-part hurdle models for the analysis of zero-inflated areal count data. The models consist of two components-one for the probability of any emergency department use and one for the number of emergency department visits given use. Through a hierarchical structure, the models incorporate both patient- and region-level predictors, as well as spatially and temporally correlated random effects for each model component. The random effects are assigned multivariate conditionally autoregressive priors, which induce dependence between the components and provide spatial and temporal smoothing across adjacent spatial units and time periods, resulting in improved inferences. To accommodate potential overdispersion, we consider a range of parametric specifications for the positive counts, including truncated negative binomial and generalized Poisson distributions. We adopt a Bayesian inferential approach, and posterior computation is handled conveniently within standard Bayesian software. Our results indicate that the negative binomial and generalized Poisson hurdle models vastly outperform the Poisson hurdle model, demonstrating that overdispersed hurdle models provide a useful approach to analyzing zero-inflated spatiotemporal data. © The Author(s) 2014.
Parda, Natalia; Stępień, Małgorzata; Zakrzewska, Karolina; Madaliński, Kazimierz; Kołakowska, Agnieszka; Godzik, Paulina; Rosińska, Magdalena
2016-12-07
Response rate in public health programmes may be a limiting factor. It is important to first consider their delivery and acceptability for the target. This study aimed at determining individual and unit-related factors associated with increased odds of non-response based on hepatitis C virus screening in primary healthcare. Primary healthcare units (PHCUs) were extracted from the Register of Health Care Centres. Each of the PHCUs was to enrol adult patients selected on a random basis. Data on the recruitment of PHCUs and patients were analysed. Multilevel modelling was applied to investigate individual and unit-related factors associated with non-response. Multilevel logistic model was developed with fixed effects and only a random intercept for the unit. Preliminary analysis included a random effect for unit and each of the individual or PHCU covariates separately. For each of the PHCU covariates, we applied a two-level model with individual covariates, unit random effect and a single fixed effect of this unit covariate. This study was conducted in primary care units in selected provinces in Poland. A total of 242 PHCUs and 24 480 adults were invited. Of them, 44 PHCUs and 20 939 patients agreed to participate. Both PHCUs and patients were randomly selected. Data on 44 PHCUs and 24 480 patients were analysed. PHCU-level factors and recruitment strategies were important predictors of non-response. Unit random effect was significant in all models. Larger and private units reported higher non-response rates, while for those with a history of running public health programmes the odds of non-response was lower. Proactive recruitment, more working hours devoted to the project and patient resulted in higher acceptance of the project. Higher number of personnel had no such effect. Prior to the implementation of public health programme, several factors that could hinder its execution should be addressed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Andridge, Rebecca. R.
2011-01-01
In cluster randomized trials (CRTs), identifiable clusters rather than individuals are randomized to study groups. Resulting data often consist of a small number of clusters with correlated observations within a treatment group. Missing data often present a problem in the analysis of such trials, and multiple imputation (MI) has been used to create complete data sets, enabling subsequent analysis with well-established analysis methods for CRTs. We discuss strategies for accounting for clustering when multiply imputing a missing continuous outcome, focusing on estimation of the variance of group means as used in an adjusted t-test or ANOVA. These analysis procedures are congenial to (can be derived from) a mixed effects imputation model; however, this imputation procedure is not yet available in commercial statistical software. An alternative approach that is readily available and has been used in recent studies is to include fixed effects for cluster, but the impact of using this convenient method has not been studied. We show that under this imputation model the MI variance estimator is positively biased and that smaller ICCs lead to larger overestimation of the MI variance. Analytical expressions for the bias of the variance estimator are derived in the case of data missing completely at random (MCAR), and cases in which data are missing at random (MAR) are illustrated through simulation. Finally, various imputation methods are applied to data from the Detroit Middle School Asthma Project, a recent school-based CRT, and differences in inference are compared. PMID:21259309
Ferrer, Assumpta; Formiga, Francesc; Sanz, Héctor; de Vries, Oscar J; Badia, Teresa; Pujol, Ramón
2014-01-01
Background The purpose of this study was to assess the effectiveness of a multifactorial intervention to reduce falls among the oldest-old people, including individuals with cognitive impairment or comorbidities. Methods A randomized, single-blind, parallel-group clinical trial was conducted from January 2009 to December 2010 in seven primary health care centers in Baix Llobregat (Barcelona). Of 696 referred people who were born in 1924, 328 were randomized to an intervention group or a control group. The intervention model used an algorithm and was multifaceted for both patients and their primary care providers. Primary outcomes were risk of falling and time until falls. Data analyses were by intention-to-treat. Results Sixty-five (39.6%) subjects in the intervention group and 48 (29.3%) in the control group fell during follow-up. The difference in the risk of falls was not significant (relative risk 1.28, 95% confidence interval [CI] 0.94–1.75). Cox regression models with time from randomization to the first fall were not significant. Cox models for recurrent falls showed that intervention had a negative effect (hazard ratio [HR] 1.46, 95% CI 1.03–2.09) and that functional impairment (HR 1.42, 95% CI 0.97–2.12), previous falls (HR 1.09, 95% CI 0.74–1.60), and cognitive impairment (HR 1.08, 95% CI 0.72–1.60) had no effect on the assessment. Conclusion This multifactorial intervention among octogenarians, including individuals with cognitive impairment or comorbidities, did not result in a reduction in falls. A history of previous falls, disability, and cognitive impairment had no effect on the program among the community-dwelling subjects in this study. PMID:24596458
Bignardi, A B; El Faro, L; Cardoso, V L; Machado, P F; Albuquerque, L G
2009-09-01
The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.
ERIC Educational Resources Information Center
Goodwin, Amanda P.; Gilbert, Jennifer K.; Cho, Sun-Joo; Kearns, Devin M.
2014-01-01
The current study models reader, item, and word contributions to the lexical representations of 39 morphologically complex words for 172 middle school students using a crossed random-effects item response model with multiple outcomes. We report 3 findings. First, results suggest that lexical representations can be characterized by separate but…
Song, X X; Zhao, Q; Tao, T; Zhou, C M; Diwan, V K; Xu, B
2018-05-30
Records of absenteeism from primary schools are valuable data for infectious diseases surveillance. However, the analysis of the absenteeism is complicated by the data features of clustering at zero, non-independence and overdispersion. This study aimed to generate an appropriate model to handle the absenteeism data collected in a European Commission granted project for infectious disease surveillance in rural China and to evaluate the validity and timeliness of the resulting model for early warnings of infectious disease outbreak. Four steps were taken: (1) building a 'well-fitting' model by the zero-inflated Poisson model with random effects (ZIP-RE) using the absenteeism data from the first implementation year; (2) applying the resulting model to predict the 'expected' number of absenteeism events in the second implementation year; (3) computing the differences between the observations and the expected values (O-E values) to generate an alternative series of data; (4) evaluating the early warning validity and timeliness of the observational data and model-based O-E values via the EARS-3C algorithms with regard to the detection of real cluster events. The results indicate that ZIP-RE and its corresponding O-E values could improve the detection of aberrations, reduce the false-positive signals and are applicable to the zero-inflated data.
Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.
Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less
Chan, Jennifer S K
2016-05-01
Dropouts are common in longitudinal study. If the dropout probability depends on the missing observations at or after dropout, this type of dropout is called informative (or nonignorable) dropout (ID). Failure to accommodate such dropout mechanism into the model will bias the parameter estimates. We propose a conditional autoregressive model for longitudinal binary data with an ID model such that the probabilities of positive outcomes as well as the drop-out indicator in each occasion are logit linear in some covariates and outcomes. This model adopting a marginal model for outcomes and a conditional model for dropouts is called a selection model. To allow for the heterogeneity and clustering effects, the outcome model is extended to incorporate mixture and random effects. Lastly, the model is further extended to a novel model that models the outcome and dropout jointly such that their dependency is formulated through an odds ratio function. Parameters are estimated by a Bayesian approach implemented using the user-friendly Bayesian software WinBUGS. A methadone clinic dataset is analyzed to illustrate the proposed models. Result shows that the treatment time effect is still significant but weaker after allowing for an ID process in the data. Finally the effect of drop-out on parameter estimates is evaluated through simulation studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Random regression analyses using B-spline functions to model growth of Nellore cattle.
Boligon, A A; Mercadante, M E Z; Lôbo, R B; Baldi, F; Albuquerque, L G
2012-02-01
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Sampling large random knots in a confined space
NASA Astrophysics Data System (ADS)
Arsuaga, J.; Blackstone, T.; Diao, Y.; Hinson, K.; Karadayi, E.; Saito, M.
2007-09-01
DNA knots formed under extreme conditions of condensation, as in bacteriophage P4, are difficult to analyze experimentally and theoretically. In this paper, we propose to use the uniform random polygon model as a supplementary method to the existing methods for generating random knots in confinement. The uniform random polygon model allows us to sample knots with large crossing numbers and also to generate large diagrammatically prime knot diagrams. We show numerically that uniform random polygons sample knots with large minimum crossing numbers and certain complicated knot invariants (as those observed experimentally). We do this in terms of the knot determinants or colorings. Our numerical results suggest that the average determinant of a uniform random polygon of n vertices grows faster than O(e^{n^2}) . We also investigate the complexity of prime knot diagrams. We show rigorously that the probability that a randomly selected 2D uniform random polygon of n vertices is almost diagrammatically prime goes to 1 as n goes to infinity. Furthermore, the average number of crossings in such a diagram is at the order of O(n2). Therefore, the two-dimensional uniform random polygons offer an effective way in sampling large (prime) knots, which can be useful in various applications.
ERIC Educational Resources Information Center
Huang, Hung-Yu; Wang, Wen-Chung
2014-01-01
The DINA (deterministic input, noisy, and gate) model has been widely used in cognitive diagnosis tests and in the process of test development. The outcomes known as slip and guess are included in the DINA model function representing the responses to the items. This study aimed to extend the DINA model by using the random-effect approach to allow…
USDA-ARS?s Scientific Manuscript database
False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises t...
Bolton, Paul A.; Annan, Jeannie; Kaysen, Debra; Robinette, Katie; Cetinoglu, Talita; Wachter, Karin; Bass, Judith K.
2014-01-01
Objectives. We evaluated changes in social capital following group-based cognitive processing therapy (CPT) for female survivors of sexual violence. Methods. We compared CPT with individual support in a cluster-randomized trial in villages in South Kivu province, Democratic Republic of the Congo. Local psychosocial assistants delivered the interventions from April through July 2011. We evaluated differences between CPT and individual support conditions for structural social capital (i.e., time spent with nonkin social network, group membership and participation, and the size of financial and instrumental support networks) and emotional support seeking. We analyzed intervention effects with longitudinal random effects models. Results. We obtained small to medium effect size differences for 2 study outcomes. Women in the CPT villages increased group membership and participation at 6-month follow-up and emotional support seeking after the intervention compared with women in the individual support villages. Conclusions. Results support the efficacy of group CPT to increase dimensions of social capital among survivors of sexual violence in a low-income conflict-affected context. PMID:25033113
Measuring the effects of heterogeneity on distributed systems
NASA Technical Reports Server (NTRS)
El-Toweissy, Mohamed; Zeineldine, Osman; Mukkamala, Ravi
1991-01-01
Distributed computer systems in daily use are becoming more and more heterogeneous. Currently, much of the design and analysis studies of such systems assume homogeneity. This assumption of homogeneity has been mainly driven by the resulting simplicity in modeling and analysis. A simulation study is presented which investigated the effects of heterogeneity on scheduling algorithms for hard real time distributed systems. In contrast to previous results which indicate that random scheduling may be as good as a more complex scheduler, this algorithm is shown to be consistently better than a random scheduler. This conclusion is more prevalent at high workloads as well as at high levels of heterogeneity.
Ganapolskii, E M; Eremenko, Z E; Tarasov, Yu V
2009-04-01
The influence of random axially homogeneous surface roughness on spectral properties of dielectric resonators of circular disk form is studied both theoretically and experimentally. To solve the equations governing the dynamics of electromagnetic fields, the method of eigenmode separation is applied previously developed with reference to inhomogeneous systems subject to arbitrary external static potential. We prove theoretically that it is the gradient mechanism of wave-surface scattering that is highly responsible for nondissipative loss in the resonator. The influence of side-boundary inhomogeneities on the resonator spectrum is shown to be described in terms of effective renormalization of mode wave numbers jointly with azimuth indices in the characteristic equation. To study experimentally the effect of inhomogeneities on the resonator spectrum, the method of modeling in the millimeter wave range is applied. As a model object, we use a dielectric disk resonator (DDR) fitted with external inhomogeneities randomly arranged at its side boundary. Experimental results show good agreement with theoretical predictions as regards the predominance of the gradient scattering mechanism. It is shown theoretically and confirmed in the experiment that TM oscillations in the DDR are less affected by surface inhomogeneities than TE oscillations with the same azimuth indices. The DDR model chosen for our study as well as characteristic equations obtained thereupon enable one to calculate both the eigenfrequencies and the Q factors of resonance spectral lines to fairly good accuracy. The results of calculations agree well with obtained experimental data.
The estimation of branching curves in the presence of subject-specific random effects.
Elmi, Angelo; Ratcliffe, Sarah J; Guo, Wensheng
2014-12-20
Branching curves are a technique for modeling curves that change trajectory at a change (branching) point. Currently, the estimation framework is limited to independent data, and smoothing splines are used for estimation. This article aims to extend the branching curve framework to the longitudinal data setting where the branching point varies by subject. If the branching point is modeled as a random effect, then the longitudinal branching curve framework is a semiparametric nonlinear mixed effects model. Given existing issues with using random effects within a smoothing spline, we express the model as a B-spline based semiparametric nonlinear mixed effects model. Simple, clever smoothness constraints are enforced on the B-splines at the change point. The method is applied to Women's Health data where we model the shape of the labor curve (cervical dilation measured longitudinally) before and after treatment with oxytocin (a labor stimulant). Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Koran, John J., Jr.; Koran, Mary Lou
In a study designed to explore the effects of teacher anxiety and modeling on acquisition of a science teaching skill and concomitant student performance, 69 preservice secondary teachers and 295 eighth grade students were randomly assigned to microteaching sessions. Prior to microteaching, teachers were given an anxiety test, then randomly assigned to one of three treatments; a transcript model, a protocol model, or a control condition. Subsequently both teacher and student performance was assessed using written and behavioral measures. Analysis of variance indicated that subjects in the two modeling treatments significantly exceeded performance of control group subjects on all measures of the dependent variable, with the protocol model being generally superior to the transcript model. The differential effects of the modeling treatments were further reflected in student performance. Regression analysis of aptitude-treatment interactions indicated that teacher anxiety scores interacted significantly with instructional treatments, with high anxiety teachers performing best in the protocol modeling treatment. Again, this interaction was reflected in student performance, where students taught by highly anxious teachers performed significantly better when their teachers had received the protocol model. These results were discussed in terms of teacher concerns and a memory model of the effects of anxiety on performance.
Causal mediation analysis for longitudinal data with exogenous exposure
Bind, M.-A. C.; Vanderweele, T. J.; Coull, B. A.; Schwartz, J. D.
2016-01-01
Mediation analysis is a valuable approach to examine pathways in epidemiological research. Prospective cohort studies are often conducted to study biological mechanisms and often collect longitudinal measurements on each participant. Mediation formulae for longitudinal data have been developed. Here, we formalize the natural direct and indirect effects using a causal framework with potential outcomes that allows for an interaction between the exposure and the mediator. To allow different types of longitudinal measures of the mediator and outcome, we assume two generalized mixed-effects models for both the mediator and the outcome. The model for the mediator has subject-specific random intercepts and random exposure slopes for each cluster, and the outcome model has random intercepts and random slopes for the exposure, the mediator, and their interaction. We also expand our approach to settings with multiple mediators and derive the mediated effects, jointly through all mediators. Our method requires the absence of time-varying confounding with respect to the exposure and the mediator. This assumption is achieved in settings with exogenous exposure and mediator, especially when exposure and mediator are not affected by variables measured at earlier time points. We apply the methodology to data from the Normative Aging Study and estimate the direct and indirect effects, via DNA methylation, of air pollution, and temperature on intercellular adhesion molecule 1 (ICAM-1) protein levels. Our results suggest that air pollution and temperature have a direct effect on ICAM-1 protein levels (i.e. not through a change in ICAM-1 DNA methylation) and that temperature has an indirect effect via a change in ICAM-1 DNA methylation. PMID:26272993
Counseling Outcomes from 1990 to 2008 for School-Age Youth with Depression: A Meta-Analysis
ERIC Educational Resources Information Center
Erford, Bradley T.; Erford, Breann M.; Lattanzi, Gina; Weller, Janet; Schein, Hallie; Wolf, Emily; Hughes, Meredith; Darrow, Jenna; Savin-Murphy, Janet; Peacock, Elizabeth
2011-01-01
Clinical trials exploring the effectiveness of counseling and psychotherapy in treatment of depression in school-age youth composed this meta-analysis. Results were synthesized using a random effects model for mean difference and mean gain effect size estimates. No effects of moderating variables were evident. Counseling and psychotherapy are…
Visible digital watermarking system using perceptual models
NASA Astrophysics Data System (ADS)
Cheng, Qiang; Huang, Thomas S.
2001-03-01
This paper presents a visible watermarking system using perceptual models. %how and why A watermark image is overlaid translucently onto a primary image, for the purposes of immediate claim of copyright, instantaneous recognition of owner or creator, or deterrence to piracy of digital images or video. %perceptual The watermark is modulated by exploiting combined DCT-domain and DWT-domain perceptual models. % so that the watermark is visually uniform. The resulting watermarked image is visually pleasing and unobtrusive. The location, size and strength of the watermark vary randomly with the underlying image. The randomization makes the automatic removal of the watermark difficult even though the algorithm is known publicly but the key to the random sequence generator. The experiments demonstrate that the watermarked images have pleasant visual effect and strong robustness. The watermarking system can be used in copyright notification and protection.
Sonic boom interaction with turbulence
NASA Technical Reports Server (NTRS)
Rusak, Zvi; Giddings, Thomas E.
1994-01-01
A recently developed transonic small-disturbance model is used to analyze the interactions of random disturbances with a weak shock. The model equation has an extended form of the classic small-disturbance equation for unsteady transonic aerodynamics. It shows that diffraction effects, nonlinear steepening effects, focusing and caustic effects and random induced vorticity fluctuations interact simultaneously to determine the development of the shock wave in space and time and the pressure field behind it. A finite-difference algorithm to solve the mixed-type elliptic hyperbolic flows around the shock wave is presented. Numerical calculations of shock wave interactions with various deterministic vorticity and temperature disturbances result in complicate shock wave structures and describe peaked as well as rounded pressure signatures behind the shock front, as were recorded in experiments of sonic booms running through atmospheric turbulence.
Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
Liu, Wenfen
2017-01-01
Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. PMID:29312447
Magnetic field line random walk in models and simulations of reduced magnetohydrodynamic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, A. P.; Ruffolo, D.; Oughton, S.
2013-12-10
The random walk of magnetic field lines is examined numerically and analytically in the context of reduced magnetohydrodynamic (RMHD) turbulence, which provides a useful description of plasmas dominated by a strong mean field, such as in the solar corona. A recently developed non-perturbative theory of magnetic field line diffusion is compared with the diffusion coefficients obtained by accurate numerical tracing of magnetic field lines for both synthetic models and direct numerical simulations of RMHD. Statistical analysis of an ensemble of trajectories confirms the applicability of the theory, which very closely matches the numerical field line diffusion coefficient as a functionmore » of distance z along the mean magnetic field for a wide range of the Kubo number R. This theory employs Corrsin's independence hypothesis, sometimes thought to be valid only at low R. However, the results demonstrate that it works well up to R = 10, both for a synthetic RMHD model and an RMHD simulation. The numerical results from the RMHD simulation are compared with and without phase randomization, demonstrating a clear effect of coherent structures on the field line random walk for a very low Kubo number.« less
Light propagation in Swiss-cheese cosmologies
NASA Astrophysics Data System (ADS)
Szybka, Sebastian J.
2011-08-01
We study the effect of inhomogeneities on light propagation. The Sachs equations are solved numerically in the Swiss-cheese models with inhomogeneities modeled by the Lemaître-Tolman solutions. Our results imply that, within the models we study, inhomogeneities may partially mimic the accelerated expansion of the Universe provided the light propagates through regions with lower than the average density. The effect of inhomogeneities is small and full randomization of the photons’ trajectories reduces it to an insignificant level.
Tobacco Town: Computational Modeling of Policy Options to Reduce Tobacco Retailer Density.
Luke, Douglas A; Hammond, Ross A; Combs, Todd; Sorg, Amy; Kasman, Matt; Mack-Crane, Austen; Ribisl, Kurt M; Henriksen, Lisa
2017-05-01
To identify the behavioral mechanisms and effects of tobacco control policies designed to reduce tobacco retailer density. We developed the Tobacco Town agent-based simulation model to examine 4 types of retailer reduction policies: (1) random retailer reduction, (2) restriction by type of retailer, (3) limiting proximity of retailers to schools, and (4) limiting proximity of retailers to each other. The model examined the effects of these policies alone and in combination across 4 different types of towns, defined by 2 levels of population density (urban vs suburban) and 2 levels of income (higher vs lower). Model results indicated that reduction of retailer density has the potential to decrease accessibility of tobacco products by driving up search and purchase costs. Policy effects varied by town type: proximity policies worked better in dense, urban towns whereas retailer type and random retailer reduction worked better in less-dense, suburban settings. Comprehensive retailer density reduction policies have excellent potential to reduce the public health burden of tobacco use in communities.
Pillemer, Karl; Meador, Rhoda; Henderson, Charles; Robison, Julie; Hegeman, Carol; Graham, Edwin; Schultz, Leslie
2008-07-01
This article reports on a randomized, controlled intervention study designed to reduce employee turnover by creating a retention specialist position in nursing homes. We collected data three times over a 1-year period in 30 nursing homes, sampled in stratified random manner from facilities in New York State and Connecticut and randomly assigned to treatment and control conditions. Staff outcomes were measured through certified nursing assistant interviews, and turnover rates were measured over the course of the year. In the intervention condition, a staff member was selected to be the facility retention specialist, who would advocate for and implement programs to improve staff retention and commitment throughout the facility. Retention specialists received an intensive 3-day training in retention leadership and in a number of evidence-based retention programs. Ongoing support was provided throughout the project. Treatment facilities experienced significant declines in turnover rates compared to control facilities. As predicted, we found positive effects on certified nursing assistant assessments of the quality of retention efforts and of care provided in the facility; we did not find effects for job satisfaction or stress. The study provides evidence for the effectiveness of the retention specialist model. Findings from a detailed process evaluation suggest modifications of the program that may increase program effects.
ERIC Educational Resources Information Center
Beretvas, S. Natasha; Murphy, Daniel L.
2013-01-01
The authors assessed correct model identification rates of Akaike's information criterion (AIC), corrected criterion (AICC), consistent AIC (CAIC), Hannon and Quinn's information criterion (HQIC), and Bayesian information criterion (BIC) for selecting among cross-classified random effects models. Performance of default values for the 5…
ERIC Educational Resources Information Center
Sheridan, Susan M.; Witte, Amanda L.; Holmes, Shannon R.; Coutts, Michael J.; Dent, Amy L.; Kunz, Gina M.; Wu, ChaoRong
2017-01-01
The results of a large-scale randomized controlled trial of Conjoint Behavioral Consultation (CBC) on student outcomes and teacher-parent relationships in rural schools are presented. CBC is an indirect service delivery model that addresses concerns shared by teachers and parents about students. In the present study, the intervention was aimed at…
ERIC Educational Resources Information Center
Clarke, Paul; Crawford, Claire; Steele, Fiona; Vignoles, Anna
2015-01-01
The use of fixed (FE) and random effects (RE) in two-level hierarchical linear regression is discussed in the context of education research. We compare the robustness of FE models with the modelling flexibility and potential efficiency of those from RE models. We argue that the two should be seen as complementary approaches. We then compare both…
NASA Astrophysics Data System (ADS)
Liang, Yingjie; Chen, Wen
2018-04-01
The mean squared displacement (MSD) of the traditional ultraslow diffusion is a logarithmic function of time. Recently, the continuous time random walk model is employed to characterize this ultraslow diffusion dynamics by connecting the heavy-tailed logarithmic function and its variation as the asymptotical waiting time density. In this study we investigate the limiting waiting time density of a general ultraslow diffusion model via the inverse Mittag-Leffler function, whose special case includes the traditional logarithmic ultraslow diffusion model. The MSD of the general ultraslow diffusion model is analytically derived as an inverse Mittag-Leffler function, and is observed to increase even more slowly than that of the logarithmic function model. The occurrence of very long waiting time in the case of the inverse Mittag-Leffler function has the largest probability compared with the power law model and the logarithmic function model. The Monte Carlo simulations of one dimensional sample path of a single particle are also performed. The results show that the inverse Mittag-Leffler waiting time density is effective in depicting the general ultraslow random motion.
Asymptotic Effect of Misspecification in the Random Part of the Multilevel Model
ERIC Educational Resources Information Center
Berkhof, Johannes; Kampen, Jarl Kennard
2004-01-01
The authors examine the asymptotic effect of omitting a random coefficient in the multilevel model and derive expressions for the change in (a) the variance components estimator and (b) the estimated variance of the fixed effects estimator. They apply the method of moments, which yields a closed form expression for the omission effect. In…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emanuel, A.E.
1991-03-01
This article presents a preliminary analysis of the effect of randomly varying harmonic voltages on the temperature rise of squirrel-cage motors. The stochastic process of random variations of harmonic voltages is defined by means of simple statistics (mean, standard deviation, type of distribution). Computational models based on a first-order approximation of the motor losses and on the Monte Carlo method yield results which prove that equipment with large thermal time-constant is capable of withstanding for a short period of time larger distortions than THD = 5%.
Random electric field instabilities of relaxor ferroelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arce-Gamboa, Jose R.; Guzman-Verri, Gian G.
Relaxor ferroelectrics are complex oxide materials which are rather unique to study the effects of compositional disorder on phase transitions. Here, we study the effects of quenched cubic random electric fields on the lattice instabilities that lead to a ferroelectric transition and show that, within a microscopic model and a statistical mechanical solution, even weak compositional disorder can prohibit the development of long-range order and that a random field state with anisotropic and power-law correlations of polarization emerges from the combined effect of their characteristic dipole forces and their inherent charge disorder. As a result, we compare and reproduce severalmore » key experimental observations in the well-studied relaxor PbMg 1/3Nb 2/3O 3–PbTiO 3.« less
Random electric field instabilities of relaxor ferroelectrics
Arce-Gamboa, Jose R.; Guzman-Verri, Gian G.
2017-06-13
Relaxor ferroelectrics are complex oxide materials which are rather unique to study the effects of compositional disorder on phase transitions. Here, we study the effects of quenched cubic random electric fields on the lattice instabilities that lead to a ferroelectric transition and show that, within a microscopic model and a statistical mechanical solution, even weak compositional disorder can prohibit the development of long-range order and that a random field state with anisotropic and power-law correlations of polarization emerges from the combined effect of their characteristic dipole forces and their inherent charge disorder. As a result, we compare and reproduce severalmore » key experimental observations in the well-studied relaxor PbMg 1/3Nb 2/3O 3–PbTiO 3.« less
Reactive Power Pricing Model Considering the Randomness of Wind Power Output
NASA Astrophysics Data System (ADS)
Dai, Zhong; Wu, Zhou
2018-01-01
With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.
Improved Neural Networks with Random Weights for Short-Term Load Forecasting
Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo
2015-01-01
An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting. PMID:26629825
Improved Neural Networks with Random Weights for Short-Term Load Forecasting.
Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo
2015-01-01
An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting.
Methods for Synthesizing Findings on Moderation Effects Across Multiple Randomized Trials
Brown, C Hendricks; Sloboda, Zili; Faggiano, Fabrizio; Teasdale, Brent; Keller, Ferdinand; Burkhart, Gregor; Vigna-Taglianti, Federica; Howe, George; Masyn, Katherine; Wang, Wei; Muthén, Bengt; Stephens, Peggy; Grey, Scott; Perrino, Tatiana
2011-01-01
This paper presents new methods for synthesizing results from subgroup and moderation analyses across different randomized trials. We demonstrate that such a synthesis generally results in additional power to detect significant moderation findings above what one would find in a single trial. Three general methods for conducting synthesis analyses are discussed, with two methods, integrative data analysis, and parallel analyses, sharing a large advantage over traditional methods available in meta-analysis. We present a broad class of analytic models to examine moderation effects across trials that can be used to assess their overall effect and explain sources of heterogeneity, and present ways to disentangle differences across trials due to individual differences, contextual level differences, intervention, and trial design. PMID:21360061
Methods for synthesizing findings on moderation effects across multiple randomized trials.
Brown, C Hendricks; Sloboda, Zili; Faggiano, Fabrizio; Teasdale, Brent; Keller, Ferdinand; Burkhart, Gregor; Vigna-Taglianti, Federica; Howe, George; Masyn, Katherine; Wang, Wei; Muthén, Bengt; Stephens, Peggy; Grey, Scott; Perrino, Tatiana
2013-04-01
This paper presents new methods for synthesizing results from subgroup and moderation analyses across different randomized trials. We demonstrate that such a synthesis generally results in additional power to detect significant moderation findings above what one would find in a single trial. Three general methods for conducting synthesis analyses are discussed, with two methods, integrative data analysis and parallel analyses, sharing a large advantage over traditional methods available in meta-analysis. We present a broad class of analytic models to examine moderation effects across trials that can be used to assess their overall effect and explain sources of heterogeneity, and present ways to disentangle differences across trials due to individual differences, contextual level differences, intervention, and trial design.
Ensari, Ipek; Greenlee, Tina A; Motl, Robert W; Petruzzello, Steven J
2015-08-01
One prominent and well-cited meta-analysis published nearly 25 years ago reported that an acute or single bout of exercise reduced state anxiety by approximately ¼ standard deviation. We conducted a meta-analysis of randomized controlled trials (RCTs) published after that meta-analysis for updating our understanding of the acute effects of exercise on state anxiety. We searched PubMed, EBSCOHost, Medline, PsycINFO, ERIC, and ScienceDirect for RCTs of acute exercise and state anxiety as an outcome. There were 36 RCTs that met inclusion criteria and yielded data for effect size (ES) generation (Cohen's d). An overall ES was calculated using a random effects model and expressed as Hedge's g. The weighted mean ES was small (Hedge's g = 0.16, standard error (SE) = 0.06), but statistically significant (P < 0.05), and indicated that a single bout of exercise resulted in an improvement in state anxiety compared with control. The overall ES was heterogeneous and post hoc, exploratory analyses using both random- and fixed-effects models identified several variables as moderators including sample age, sex and health status, baseline activity levels, exercise intensity, modality and control condition, randomization, overall study quality, and the anxiety measure (P < 0.05). The cumulative evidence from high quality studies indicates that acute bouts of exercise can yield a small reduction in state anxiety. The research is still plagued by floor effects associated with recruiting persons with normal or lower levels of state anxiety, and this should be overcome in subsequent trials. © 2015 Wiley Periodicals, Inc.
Random regression models using different functions to model milk flow in dairy cows.
Laureano, M M M; Bignardi, A B; El Faro, L; Cardoso, V L; Tonhati, H; Albuquerque, L G
2014-09-12
We analyzed 75,555 test-day milk flow records from 2175 primiparous Holstein cows that calved between 1997 and 2005. Milk flow was obtained by dividing the mean milk yield (kg) of the 3 daily milking by the total milking time (min) and was expressed as kg/min. Milk flow was grouped into 43 weekly classes. The analyses were performed using a single-trait Random Regression Models that included direct additive genetic, permanent environmental, and residual random effects. In addition, the contemporary group and linear and quadratic effects of cow age at calving were included as fixed effects. Fourth-order orthogonal Legendre polynomial of days in milk was used to model the mean trend in milk flow. The additive genetic and permanent environmental covariance functions were estimated using random regression Legendre polynomials and B-spline functions of days in milk. The model using a third-order Legendre polynomial for additive genetic effects and a sixth-order polynomial for permanent environmental effects, which contained 7 residual classes, proved to be the most adequate to describe variations in milk flow, and was also the most parsimonious. The heritability in milk flow estimated by the most parsimonious model was of moderate to high magnitude.
Effects of Blended Instructional Models on Math Performance
ERIC Educational Resources Information Center
Bottge, Brian A.; Ma, Xin; Gassaway, Linda; Toland, Michael D.; Butler, Mark; Cho, Sun-Joo
2014-01-01
A pretest-posttest cluster-randomized trial involving 31 middle schools and 335 students with disabilities tested the effects of combining explicit and anchored instruction on fraction computation and problem solving. Results of standardized and researcher-developed tests showed that students who were taught with the blended units outscored…
Or, Calvin K L; Tao, Da
2014-05-01
To assess whether the use of consumer health information technologies (CHITs) improves outcomes in the patient self-management of diabetes. The evidence from randomized controlled trials (RCTs) on the effects of CHITs on patient outcomes was analyzed using either meta-analysis or a narrative synthesis approach. A systematic search of seven electronic databases was conducted to identify relevant reports of RCTs for the analysis. In the meta-analyses, standardized mean differences in patient outcomes were calculated and random-effects models were applied in cases where the heterogeneity of the results was moderate or high, otherwise fixed-effects models were used. Sixty-two studies, representing 67 RCTs, met the inclusion criteria. The results of the meta-analyses showed that the use of CHITs was associated with significant reductions in HbA1c, blood pressure, total cholesterol, and triglycerides levels when compared with the usual care. The findings from the narrative synthesis indicated that only a small proportion of the trials reported positive effects of CHITs on patient outcomes. The use of CHITs in supporting diabetes self-management appears to have potential benefits for patients' self-management of diabetes. However, the effectiveness of the technologies in improving patient outcomes still awaits confirmation in future studies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Record statistics of a strongly correlated time series: random walks and Lévy flights
NASA Astrophysics Data System (ADS)
Godrèche, Claude; Majumdar, Satya N.; Schehr, Grégory
2017-08-01
We review recent advances on the record statistics of strongly correlated time series, whose entries denote the positions of a random walk or a Lévy flight on a line. After a brief survey of the theory of records for independent and identically distributed random variables, we focus on random walks. During the last few years, it was indeed realized that random walks are a very useful ‘laboratory’ to test the effects of correlations on the record statistics. We start with the simple one-dimensional random walk with symmetric jumps (both continuous and discrete) and discuss in detail the statistics of the number of records, as well as of the ages of the records, i.e. the lapses of time between two successive record breaking events. Then we review the results that were obtained for a wide variety of random walk models, including random walks with a linear drift, continuous time random walks, constrained random walks (like the random walk bridge) and the case of multiple independent random walkers. Finally, we discuss further observables related to records, like the record increments, as well as some questions raised by physical applications of record statistics, like the effects of measurement error and noise.
Scott, JoAnna M; deCamp, Allan; Juraska, Michal; Fay, Michael P; Gilbert, Peter B
2017-04-01
Stepped wedge designs are increasingly commonplace and advantageous for cluster randomized trials when it is both unethical to assign placebo, and it is logistically difficult to allocate an intervention simultaneously to many clusters. We study marginal mean models fit with generalized estimating equations for assessing treatment effectiveness in stepped wedge cluster randomized trials. This approach has advantages over the more commonly used mixed models that (1) the population-average parameters have an important interpretation for public health applications and (2) they avoid untestable assumptions on latent variable distributions and avoid parametric assumptions about error distributions, therefore, providing more robust evidence on treatment effects. However, cluster randomized trials typically have a small number of clusters, rendering the standard generalized estimating equation sandwich variance estimator biased and highly variable and hence yielding incorrect inferences. We study the usual asymptotic generalized estimating equation inferences (i.e., using sandwich variance estimators and asymptotic normality) and four small-sample corrections to generalized estimating equation for stepped wedge cluster randomized trials and for parallel cluster randomized trials as a comparison. We show by simulation that the small-sample corrections provide improvement, with one correction appearing to provide at least nominal coverage even with only 10 clusters per group. These results demonstrate the viability of the marginal mean approach for both stepped wedge and parallel cluster randomized trials. We also study the comparative performance of the corrected methods for stepped wedge and parallel designs, and describe how the methods can accommodate interval censoring of individual failure times and incorporate semiparametric efficient estimators.
Spread of information and infection on finite random networks
NASA Astrophysics Data System (ADS)
Isham, Valerie; Kaczmarska, Joanna; Nekovee, Maziar
2011-04-01
The modeling of epidemic-like processes on random networks has received considerable attention in recent years. While these processes are inherently stochastic, most previous work has been focused on deterministic models that ignore important fluctuations that may persist even in the infinite network size limit. In a previous paper, for a class of epidemic and rumor processes, we derived approximate models for the full probability distribution of the final size of the epidemic, as opposed to only mean values. In this paper we examine via direct simulations the adequacy of the approximate model to describe stochastic epidemics and rumors on several random network topologies: homogeneous networks, Erdös-Rényi (ER) random graphs, Barabasi-Albert scale-free networks, and random geometric graphs. We find that the approximate model is reasonably accurate in predicting the probability of spread. However, the position of the threshold and the conditional mean of the final size for processes near the threshold are not well described by the approximate model even in the case of homogeneous networks. We attribute this failure to the presence of other structural properties beyond degree-degree correlations, and in particular clustering, which are present in any finite network but are not incorporated in the approximate model. In order to test this “hypothesis” we perform additional simulations on a set of ER random graphs where degree-degree correlations and clustering are separately and independently introduced using recently proposed algorithms from the literature. Our results show that even strong degree-degree correlations have only weak effects on the position of the threshold and the conditional mean of the final size. On the other hand, the introduction of clustering greatly affects both the position of the threshold and the conditional mean. Similar analysis for the Barabasi-Albert scale-free network confirms the significance of clustering on the dynamics of rumor spread. For this network, though, with its highly skewed degree distribution, the addition of positive correlation had a much stronger effect on the final size distribution than was found for the simple random graph.
Nixon, R M; Duffy, S W; Fender, G R; Day, N E; Prevost, T C
2001-06-30
The Anglia menorrhagia education study tests the effectiveness of an education package for the treatment of menorrhagia given to doctors at a primary care level. General practices were randomized to receive or not receive the package. It is hoped that this intervention will reduce the proportion of women suffering from menorrhagia that are referred to hospital. Data are available on the treatment and referral of women in the practices in the education and control groups, both pre- and post-intervention. We define and demonstrate a random effects logistic regression model that includes pre-intervention data for calculating the effectiveness of the intervention. Copyright 2001 John Wiley & Sons, Ltd.
Milliren, Carly E.; Evans, Clare R.; Subramanian, S. V.; Richmond, Tracy K.
2015-01-01
Objectives. Although schools and neighborhoods influence health, little is known about their relative importance, or the influence of one context after the influence of the other has been taken into account. We simultaneously examined the influence of each setting on depression among adolescents. Methods. Analyzing data from wave 1 (1994–1995) of the National Longitudinal Study of Adolescent Health, we used cross-classified multilevel modeling to examine between-level variation and individual-, school-, and neighborhood-level predictors of adolescent depressive symptoms. Also, we compared the results of our cross-classified multilevel models (CCMMs) with those of a multilevel model wherein either school or neighborhood was excluded. Results. In CCMMs, the school-level random effect was significant and more than 3 times the neighborhood-level random effect, even after individual-level characteristics had been taken into account. Individual-level indicators (e.g., race/ethnicity, socioeconomic status) were associated with depressive symptoms, but there was no association with either school- or neighborhood-level fixed effects. The between-level variance in depressive symptoms was driven largely by schools as opposed to neighborhoods. Conclusions. Schools appear to be more salient than neighborhoods in explaining variation in depressive symptoms. Future work incorporating cross-classified multilevel modeling is needed to understand the relative effects of schools and neighborhoods. PMID:25713969
NASA Technical Reports Server (NTRS)
Bast, Callie C.; Boyce, Lola
1995-01-01
This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.
Modeling Growth in Electronic Learning Environments Using a Longitudinal Random Item Response Model
ERIC Educational Resources Information Center
Kadengye, Damazo T.; Ceulemans, Eva; Van Den Noortgate, Wim
2015-01-01
In educational environments, monitoring persons' progress over time may help teachers to evaluate the effectiveness of their teaching procedures. Electronic learning environments are increasingly being used as part of formal education and resulting datasets can be used to understand and to improve the environment. This study presents…
Nonlinear probabilistic finite element models of laminated composite shells
NASA Technical Reports Server (NTRS)
Engelstad, S. P.; Reddy, J. N.
1993-01-01
A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian finite element formulation, employing a degenerated 3-D laminated composite shell with the full Green-Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed and results are presented in the form of mean and variance of the structural response. The effects of material nonlinearity are included through the use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and micromechanics-level random variables can be selected, the latter by means of the Aboudi micromechanics model. A number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.
Dynamic analysis of a pumped-storage hydropower plant with random power load
NASA Astrophysics Data System (ADS)
Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia
2018-02-01
This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.
Kim, Su Ran; Lee, Hye Won; Jun, Ji Hee; Ko, Byoung-Seob
2017-03-01
Gan Mai Da Zao (GMDZ) decoction is widely used for the treatment of various diseases of the internal organ and of the central nervous system. The aim of this study is to investigate the effects of GMDZ decoction on neuropsychiatric disorders in an animal model. We searched seven databases for randomized animal studies published until April 2015: Pubmed, four Korean databases (DBpia, Oriental Medicine Advanced Searching Integrated System, Korean Studies Information Service System, and Research Information Sharing Service), and one Chinese database (China National Knowledge Infrastructure). The randomized animal studies were included if the effects of GMDZ decoction were tested on neuropsychiatric disorders. All articles were read in full and extracted predefined criteria by two independent reviewers. From a total of 258 hits, six randomized controlled animal studies were included. Five studies used a Sprague Dawley rat model for acute psychological stress, post-traumatic stress disorders, and unpredictable mild stress depression whereas one study used a Kunming mouse model for prenatal depression. The results of the studies showed that GMDZ decoction improved the related outcomes. Regardless of the dose and concentration used, GMDZ decoction significantly improved neuropsychiatric disease-related outcomes in animal models. However, additional systematic and extensive studies should be conducted to establish a strong conclusion.
Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J; Munch, Stephan; Skaug, Hans J
2014-09-01
The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and L∞ (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish.
Odegård, J; Jensen, J; Madsen, P; Gianola, D; Klemetsdal, G; Heringstad, B
2003-11-01
The distribution of somatic cell scores could be regarded as a mixture of at least two components depending on a cow's udder health status. A heteroscedastic two-component Bayesian normal mixture model with random effects was developed and implemented via Gibbs sampling. The model was evaluated using datasets consisting of simulated somatic cell score records. Somatic cell score was simulated as a mixture representing two alternative udder health statuses ("healthy" or "diseased"). Animals were assigned randomly to the two components according to the probability of group membership (Pm). Random effects (additive genetic and permanent environment), when included, had identical distributions across mixture components. Posterior probabilities of putative mastitis were estimated for all observations, and model adequacy was evaluated using measures of sensitivity, specificity, and posterior probability of misclassification. Fitting different residual variances in the two mixture components caused some bias in estimation of parameters. When the components were difficult to disentangle, so were their residual variances, causing bias in estimation of Pm and of location parameters of the two underlying distributions. When all variance components were identical across mixture components, the mixture model analyses returned parameter estimates essentially without bias and with a high degree of precision. Including random effects in the model increased the probability of correct classification substantially. No sizable differences in probability of correct classification were found between models in which a single cow effect (ignoring relationships) was fitted and models where this effect was split into genetic and permanent environmental components, utilizing relationship information. When genetic and permanent environmental effects were fitted, the between-replicate variance of estimates of posterior means was smaller because the model accounted for random genetic drift.
Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect
NASA Astrophysics Data System (ADS)
Xu, H. L.; He, L.; An, D.
2017-11-01
The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.
Wang, Weidong; Wang, Fang; Fan, Feng; Sedas, Ana Cristina; Wang, Jian
2017-04-01
The aim of this study is to identify and assess evidence related to the efficacy of mind-body interventions on irritable bowel syndrome (IBS) in the Chinese population. Drawn from Chinese databases, nine RCTs and three Q-E studies were included in the systematic review. The methodological quality of RCTs was evaluated based on the following criteria: adequate sequence generation, allocation concealment, blinding, completeness of outcome data, selective reporting, and other potential biases. For continuous variables, the effect size (ES) was determined by calculating the standardized mean difference between groups. For dichotomous variables, the ES was determined by calculating the risk ratio (RR) between groups. Given the heterogeneity between the trials and the small number of studies included, both random effects and fixed effects models were used. The inverse variance method was used for pooling. Statistical analyses were performed using Review Manager version 5.0. The total number of papers identified was 710: 462 from English language databases and 248 from Chinese language databases. Twelve studies met our eligibility criteria. Among the studies selected, three were Q-E studies the rest RCTs. Two studies described the randomization process. None of the studies reported allocation concealment nor blinding. Seven studies reported no dropouts. One of the studies mentioned the total amount of dropouts; though the reason for dropping out was not referenced. The other four studies did not clearly report dropouts. With the exception of three studies, there was inadequate information to determine biased reporting for the majority; the level of risk for bias in these studies is unclear. Finally, six meta-analyses were performed. One was conducted with four randomized controlled trials (RCTs) that used cure rate as outcome measures to evaluate gastrointestinal (GI) symptoms, which suggested that mind-body interventions were effective in improving GI symptoms (random effects model: RR = 1.08; 95 % CI 1.01 to 1.17; fixed effects model: RR = 1.07; 95 % CI 1.01 to 1.12). The remaining five were conducted in three RCTs, which suggested that mind-body interventions were effective in improving several aspects of quality of life, including interference with activity (random effects and fixed effects models: SMD = 0.64; 95 % CI 0.41 to 0.86), body image (random effects model: SMD = 0.36; 95 % CI 0.06 to 0.67; fixed effects model: SMD = 0.33; 95 % CI 0.11 to 0.55), health worry (random effects and fixed effects models: SMD = 0.67; 95 % CI 0.44 to 0.90), food avoidance (random effects and fixed effects models: SMD = 0.45; 95 % CI 0.23 to 0.68), and social reaction (random effects model: SMD = 0.79; 95 % CI 0.47 to 1.12; fixed effects model: SMD = 0.78; 95 % CI 0.55 to 1.01), as measured by Irritable Bowel Syndrome Quality of Life Questionnaire ( IBS-QOL). Mind-body interventions may have the potential to improve GI symptoms in Chinese patients with IBS. The improvement of GI symptoms was also accompanied with the improvement of various outcomes, including depression, anxiety, and quality of life, just to mention a few. However, the published studies generally had significant methodological limitations. Future clinical trials with rigorous research design are needed in this field. More studies focusing on the mind-body interventions originated in China, such as tai chi and qi gong should be encouraged.
2012-01-01
Background With the current focus on personalized medicine, patient/subject level inference is often of key interest in translational research. As a result, random effects models (REM) are becoming popular for patient level inference. However, for very large data sets that are characterized by large sample size, it can be difficult to fit REM using commonly available statistical software such as SAS since they require inordinate amounts of computer time and memory allocations beyond what are available preventing model convergence. For example, in a retrospective cohort study of over 800,000 Veterans with type 2 diabetes with longitudinal data over 5 years, fitting REM via generalized linear mixed modeling using currently available standard procedures in SAS (e.g. PROC GLIMMIX) was very difficult and same problems exist in Stata’s gllamm or R’s lme packages. Thus, this study proposes and assesses the performance of a meta regression approach and makes comparison with methods based on sampling of the full data. Data We use both simulated and real data from a national cohort of Veterans with type 2 diabetes (n=890,394) which was created by linking multiple patient and administrative files resulting in a cohort with longitudinal data collected over 5 years. Methods and results The outcome of interest was mean annual HbA1c measured over a 5 years period. Using this outcome, we compared parameter estimates from the proposed random effects meta regression (REMR) with estimates based on simple random sampling and VISN (Veterans Integrated Service Networks) based stratified sampling of the full data. Our results indicate that REMR provides parameter estimates that are less likely to be biased with tighter confidence intervals when the VISN level estimates are homogenous. Conclusion When the interest is to fit REM in repeated measures data with very large sample size, REMR can be used as a good alternative. It leads to reasonable inference for both Gaussian and non-Gaussian responses if parameter estimates are homogeneous across VISNs. PMID:23095325
NASA Technical Reports Server (NTRS)
Duda, David P.; Minnis, Patrick
2009-01-01
Straightforward application of the Schmidt-Appleman contrail formation criteria to diagnose persistent contrail occurrence from numerical weather prediction data is hindered by significant bias errors in the upper tropospheric humidity. Logistic models of contrail occurrence have been proposed to overcome this problem, but basic questions remain about how random measurement error may affect their accuracy. A set of 5000 synthetic contrail observations is created to study the effects of random error in these probabilistic models. The simulated observations are based on distributions of temperature, humidity, and vertical velocity derived from Advanced Regional Prediction System (ARPS) weather analyses. The logistic models created from the simulated observations were evaluated using two common statistical measures of model accuracy, the percent correct (PC) and the Hanssen-Kuipers discriminant (HKD). To convert the probabilistic results of the logistic models into a dichotomous yes/no choice suitable for the statistical measures, two critical probability thresholds are considered. The HKD scores are higher when the climatological frequency of contrail occurrence is used as the critical threshold, while the PC scores are higher when the critical probability threshold is 0.5. For both thresholds, typical random errors in temperature, relative humidity, and vertical velocity are found to be small enough to allow for accurate logistic models of contrail occurrence. The accuracy of the models developed from synthetic data is over 85 percent for both the prediction of contrail occurrence and non-occurrence, although in practice, larger errors would be anticipated.
Generating synthetic wave climates for coastal modelling: a linear mixed modelling approach
NASA Astrophysics Data System (ADS)
Thomas, C.; Lark, R. M.
2013-12-01
Numerical coastline morphological evolution models require wave climate properties to drive morphological change through time. Wave climate properties (typically wave height, period and direction) may be temporally fixed, culled from real wave buoy data, or allowed to vary in some way defined by a Gaussian or other pdf. However, to examine sensitivity of coastline morphologies to wave climate change, it seems desirable to be able to modify wave climate time series from a current to some new state along a trajectory, but in a way consistent with, or initially conditioned by, the properties of existing data, or to generate fully synthetic data sets with realistic time series properties. For example, mean or significant wave height time series may have underlying periodicities, as revealed in numerous analyses of wave data. Our motivation is to develop a simple methodology to generate synthetic wave climate time series that can change in some stochastic way through time. We wish to use such time series in a coastline evolution model to test sensitivities of coastal landforms to changes in wave climate over decadal and centennial scales. We have worked initially on time series of significant wave height, based on data from a Waverider III buoy located off the coast of Yorkshire, England. The statistical framework for the simulation is the linear mixed model. The target variable, perhaps after transformation (Box-Cox), is modelled as a multivariate Gaussian, the mean modelled as a function of a fixed effect, and two random components, one of which is independently and identically distributed (iid) and the second of which is temporally correlated. The model was fitted to the data by likelihood methods. We considered the option of a periodic mean, the period either fixed (e.g. at 12 months) or estimated from the data. We considered two possible correlation structures for the second random effect. In one the correlation decays exponentially with time. In the second (spherical) model, it cuts off at a temporal range. Having fitted the model, multiple realisations were generated; the random effects were simulated by specifying a covariance matrix for the simulated values, with the estimated parameters. The Cholesky factorisation of the covariance matrix was computed and realizations of the random component of the model generated by pre-multiplying a vector of iid standard Gaussian variables by the lower triangular factor. The resulting random variate was added to the mean value computed from the fixed effects, and the result back-transformed to the original scale of the measurement. Realistic simulations result from approach described above. Background exploratory data analysis was undertaken on 20-day sets of 30-minute buoy data, selected from days 5-24 of months January, April, July, October, 2011, to elucidate daily to weekly variations, and to keep numerical analysis tractable computationally. Work remains to be undertaken to develop suitable models for synthetic directional data. We suggest that the general principles of the method will have applications in other geomorphological modelling endeavours requiring time series of stochastically variable environmental parameters.
Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun
2016-10-06
Comparative analysis of protein-protein interaction (PPI) networks provides an effective means of detecting conserved functional network modules across different species. Such modules typically consist of orthologous proteins with conserved interactions, which can be exploited to computationally predict the modules through network comparison. In this work, we propose a novel probabilistic framework for comparing PPI networks and effectively predicting the correspondence between proteins, represented as network nodes, that belong to conserved functional modules across the given PPI networks. The basic idea is to estimate the steady-state network flow between nodes that belong to different PPI networks based on a Markov random walk model. The random walker is designed to make random moves to adjacent nodes within a PPI network as well as cross-network moves between potential orthologous nodes with high sequence similarity. Based on this Markov random walk model, we estimate the steady-state network flow - or the long-term relative frequency of the transitions that the random walker makes - between nodes in different PPI networks, which can be used as a probabilistic score measuring their potential correspondence. Subsequently, the estimated scores can be used for detecting orthologous proteins in conserved functional modules through network alignment. Through evaluations based on multiple real PPI networks, we demonstrate that the proposed scheme leads to improved alignment results that are biologically more meaningful at reduced computational cost, outperforming the current state-of-the-art algorithms. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/CUFID .
Prediction of the structure of fuel sprays in gas turbine combustors
NASA Technical Reports Server (NTRS)
Shuen, J. S.
1985-01-01
The structure of fuel sprays in a combustion chamber is theoretically investigated using computer models of current interest. Three representative spray models are considered: (1) a locally homogeneous flow (LHF) model, which assumes infinitely fast interphase transport rates; (2) a deterministic separated flow (DSF) model, which considers finite rates of interphase transport but ignores effects of droplet/turbulence interactions; and (3) a stochastic separated flow (SSF) model, which considers droplet/turbulence interactions using random sampling for turbulence properties in conjunction with random-walk computations for droplet motion and transport. Two flow conditions are studied to investigate the influence of swirl on droplet life histories and the effects of droplet/turbulence interactions on flow properties. Comparison of computed results with the experimental data show that general features of the flow structure can be predicted with reasonable accuracy using the two separated flow models. In contrast, the LHF model overpredicts the rate of development of the flow. While the SSF model provides better agreement with measurements than the DSF model, definitive evaluation of the significance of droplet/turbulence interaction is not achieved due to uncertainties in the spray initial conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, William J.; Eliseeva, Ekaterina A.; Mendell, Mark J.
Dampness and mold have been shown in qualitative reviews to be associated with a variety of adverse respiratory health effects, including respiratory tract infections. Several published meta-analyses have provided quantitative summaries for some of these associations, but not for respiratory infections. Demonstrating a causal relationship between dampness-related agents, which are preventable exposures, and respiratory tract infections would suggest important new public health strategies. We report the results of quantitative meta-analyses of published studies that examined the association of dampness or mold in homes with respiratory infections and bronchitis. For primary studies meeting eligibility criteria, we transformed reported odds ratios (ORs)more » and confidence intervals (CIs) to the log scale. Both fixed and random effects models were applied to the log ORs and their variances. Most studies contained multiple estimated ORs. Models accounted for the correlation between multiple results within the studies analyzed. One set of analyses was performed with all eligible studies, and another set restricted to studies that controlled for age, gender, smoking, and socioeconomic status. Subgroups of studies were assessed to explore heterogeneity. Funnel plots were used to assess publication bias. The resulting summary estimates of ORs from random effects models based on all studies ranged from 1.38 to 1.50, with 95% CIs excluding the null in all cases. Use of different analysis models and restricting analyses based on control of multiple confounding variables changed findings only slightly. ORs (95% CIs) from random effects models using studies adjusting for major confounding variables were, for bronchitis, 1.45 (1.32-1.59); for respiratory infections, 1.44 (1.31-1.59); for respiratory infections excluding nonspecific upper respiratory infections, 1.50 (1.32-1.70), and for respiratory infections in children or infants, 1.48 (1.33-1.65). Little effect of publication bias was evident. Estimated attributable risk proportions ranged from 8% to 20%. Residential dampness and mold are associated with substantial and statistically significant increases in both respiratory infections and bronchitis. If these associations were confirmed as causal, effective control of dampness and mold in buildings would prevent a substantial proportion of respiratory infections.« less
A simple method for assessing occupational exposure via the one-way random effects model.
Krishnamoorthy, K; Mathew, Thomas; Peng, Jie
2016-11-01
A one-way random effects model is postulated for the log-transformed shift-long personal exposure measurements, where the random effect in the model represents an effect due to the worker. Simple closed-form confidence intervals are proposed for the relevant parameters of interest using the method of variance estimates recovery (MOVER). The performance of the confidence bounds is evaluated and compared with those based on the generalized confidence interval approach. Comparison studies indicate that the proposed MOVER confidence bounds are better than the generalized confidence bounds for the overall mean exposure and an upper percentile of the exposure distribution. The proposed methods are illustrated using a few examples involving industrial hygiene data.
Random Matrix Approach to Quantum Adiabatic Evolution Algorithms
NASA Technical Reports Server (NTRS)
Boulatov, Alexei; Smelyanskiy, Vadier N.
2004-01-01
We analyze the power of quantum adiabatic evolution algorithms (Q-QA) for solving random NP-hard optimization problems within a theoretical framework based on the random matrix theory (RMT). We present two types of the driven RMT models. In the first model, the driving Hamiltonian is represented by Brownian motion in the matrix space. We use the Brownian motion model to obtain a description of multiple avoided crossing phenomena. We show that the failure mechanism of the QAA is due to the interaction of the ground state with the "cloud" formed by all the excited states, confirming that in the driven RMT models. the Landau-Zener mechanism of dissipation is not important. We show that the QAEA has a finite probability of success in a certain range of parameters. implying the polynomial complexity of the algorithm. The second model corresponds to the standard QAEA with the problem Hamiltonian taken from the Gaussian Unitary RMT ensemble (GUE). We show that the level dynamics in this model can be mapped onto the dynamics in the Brownian motion model. However, the driven RMT model always leads to the exponential complexity of the algorithm due to the presence of the long-range intertemporal correlations of the eigenvalues. Our results indicate that the weakness of effective transitions is the leading effect that can make the Markovian type QAEA successful.
ERIC Educational Resources Information Center
Moreno, Mario; Harwell, Michael; Guzey, S. Selcen; Phillips, Alison; Moore, Tamara J.
2016-01-01
Hierarchical linear models have become a familiar method for accounting for a hierarchical data structure in studies of science and mathematics achievement. This paper illustrates the use of cross-classified random effects models (CCREMs), which are likely less familiar. The defining characteristic of CCREMs is a hierarchical data structure…
Time-varying SMART design and data analysis methods for evaluating adaptive intervention effects.
Dai, Tianjiao; Shete, Sanjay
2016-08-30
In a standard two-stage SMART design, the intermediate response to the first-stage intervention is measured at a fixed time point for all participants. Subsequently, responders and non-responders are re-randomized and the final outcome of interest is measured at the end of the study. To reduce the side effects and costs associated with first-stage interventions in a SMART design, we proposed a novel time-varying SMART design in which individuals are re-randomized to the second-stage interventions as soon as a pre-fixed intermediate response is observed. With this strategy, the duration of the first-stage intervention will vary. We developed a time-varying mixed effects model and a joint model that allows for modeling the outcomes of interest (intermediate and final) and the random durations of the first-stage interventions simultaneously. The joint model borrows strength from the survival sub-model in which the duration of the first-stage intervention (i.e., time to response to the first-stage intervention) is modeled. We performed a simulation study to evaluate the statistical properties of these models. Our simulation results showed that the two modeling approaches were both able to provide good estimations of the means of the final outcomes of all the embedded interventions in a SMART. However, the joint modeling approach was more accurate for estimating the coefficients of first-stage interventions and time of the intervention. We conclude that the joint modeling approach provides more accurate parameter estimates and a higher estimated coverage probability than the single time-varying mixed effects model, and we recommend the joint model for analyzing data generated from time-varying SMART designs. In addition, we showed that the proposed time-varying SMART design is cost-efficient and equally effective in selecting the optimal embedded adaptive intervention as the standard SMART design.
ERIC Educational Resources Information Center
Bauer, Daniel J.; Preacher, Kristopher J.; Gil, Karen M.
2006-01-01
The authors propose new procedures for evaluating direct, indirect, and total effects in multilevel models when all relevant variables are measured at Level 1 and all effects are random. Formulas are provided for the mean and variance of the indirect and total effects and for the sampling variances of the average indirect and total effects.…
Molas, Marek; Lesaffre, Emmanuel
2008-12-30
Discrete bounded outcome scores (BOS), i.e. discrete measurements that are restricted on a finite interval, often occur in practice. Examples are compliance measures, quality of life measures, etc. In this paper we examine three related random effects approaches to analyze longitudinal studies with a BOS as response: (1) a linear mixed effects (LM) model applied to a logistic transformed modified BOS; (2) a model assuming that the discrete BOS is a coarsened version of a latent random variable, which after a logistic-normal transformation, satisfies an LM model; and (3) a random effects probit model. We consider also the extension whereby the variability of the BOS is allowed to depend on covariates. The methods are contrasted using a simulation study and on a longitudinal project, which documents stroke rehabilitation in four European countries using measures of motor and functional recovery. Copyright 2008 John Wiley & Sons, Ltd.
Analysis of longwave radiation for the Earth-atmosphere system
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Venuru, C. S.; Subramanian, S. V.
1983-01-01
Accurate radiative transfer models are used to determine the upwelling atmospheric radiance and net radiative flux in the entire longwave spectral range. The validity of the quasi-random band model is established by comparing the results of this model with those of line-by-line formulations and with available theoretical and experimental results. Existing radiative transfer models and computer codes are modified to include various surface and atmospheric effects (surface reflection, nonequilibrium radiation, and cloud effects). The program is used to evaluate the radiative flux in clear atmosphere, provide sensitivity analysis of upwelling radiance in the presence of clouds, and determine the effects of various climatological parameters on the upwelling radiation and anisotropic function. Homogeneous and nonhomogeneous gas emissivities can also be evaluated under different conditions.
NASA Astrophysics Data System (ADS)
Sun, Dongliang; Huang, Guangtuan; Jiang, Juncheng; Zhang, Mingguang; Wang, Zhirong
2013-04-01
Overpressure is one important cause of domino effect in accidents of chemical process equipments. Some models considering propagation probability and threshold values of the domino effect caused by overpressure have been proposed in previous study. In order to prove the rationality and validity of the models reported in the reference, two boundary values of three damage degrees reported were considered as random variables respectively in the interval [0, 100%]. Based on the overpressure data for damage to the equipment and the damage state, and the calculation method reported in the references, the mean square errors of the four categories of damage probability models of overpressure were calculated with random boundary values, and then a relationship of mean square error vs. the two boundary value was obtained, the minimum of mean square error was obtained, compared with the result of the present work, mean square error decreases by about 3%. Therefore, the error was in the acceptable range of engineering applications, the models reported can be considered reasonable and valid.
Robust, Adaptive Functional Regression in Functional Mixed Model Framework.
Zhu, Hongxiao; Brown, Philip J; Morris, Jeffrey S
2011-09-01
Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets.
Robust, Adaptive Functional Regression in Functional Mixed Model Framework
Zhu, Hongxiao; Brown, Philip J.; Morris, Jeffrey S.
2012-01-01
Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets. PMID:22308015
Scale of reference bias and the evolution of health.
Groot, Wim
2003-09-01
The analysis of subjective measures of well-being-such as self-reports by individuals about their health status is frequently hampered by the problem of scale of reference bias. A particular form of scale of reference bias is age norming. In this study we corrected for scale of reference bias by allowing for individual specific effects in an equation on subjective health. A random effects ordered response model was used to analyze scale of reference bias in self-reported health measures. The results indicate that if we do not control for unobservable individual specific effects, the response to a subjective health state measure suffers from age norming. Age norming can be controlled for by a random effects estimation technique using longitudinal data. Further, estimates are presented on the rate of depreciation of health. Finally, simulations of life expectancy indicate that the estimated model provides a reasonably good fit of the true life expectancy.
Qin, Lan
2016-01-01
Objective: This meta-analysis was performed to compare radioiodine therapy with antithyroid drugs in terms of clinical outcomes, including development or worsening of ophthalmopathy, hyperthyroid cure rate, hypothyroidism, relapse rate and adverse events. Methods: Randomized controlled trials (RCTs) published in PubMed, Embase, Web of Science, SinoMed and National Knowledge Infrastructure, China, were systematically reviewed to compare the effects of radioiodine therapy with antithyroid drugs in patients with Graves' disease. Results were expressed as risk ratio with 95% confidence intervals (CIs) and weighted mean differences with 95% CIs. Pooled estimates were performed using a fixed-effects model or random-effects model, depending on the heterogeneity among studies. Results: 17 RCTs involving 4024 patients met the inclusion criteria and were included. Results showed that radioiodine treatment has increased risk in new ophthalmopathy, development or worsening of ophthalmopathy and hypothyroidism. Whereas, compared with antithyroid drugs, radioiodine treatment seems to have a higher hyperthyroid cure rate, lower recurrence rate and lower incidence of adverse events. Conclusion: Radioiodine therapy is associated with a higher hyperthyroid cure rate and lower relapse rate compared with antithyroid drugs. However, it also increases the risk of ophthalmopathy and hypothyroidism. Advances in knowledge: Considering that antithyroid drug treatment can be associated with unsatisfactory control of hyperthyroidism, we would recommend radioiodine therapy as the treatment of choice for patients with Graves' disease. PMID:27266544
Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method
NASA Astrophysics Data System (ADS)
Shamsoddini, A.; Aboodi, M. R.; Karami, J.
2017-09-01
Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.
Snow Crystal Orientation Effects on the Scattering of Passive Microwave Radiation
NASA Technical Reports Server (NTRS)
Foster, J. L.; Barton, J. S.; Chang, A. T. C.; Hall, D. K.
1999-01-01
For this study, consideration is given to the role crystal orientation plays in scattering and absorbing microwave radiation. A discrete dipole scattering model is used to measure the passive microwave radiation, at two polarizations (horizontal and vertical), scattered by snow crystals oriented in random and non random positions, having various sizes (ranging between 1 micrometers to 10,000 micrometers in radius), and shapes (including spheroids, cylinders, hexagons). The model results demonstrate that for the crystal sizes typically found in a snowpack, crystal orientation is insignificant compared to crystal size in terms of scattering microwave energy in the 8,100 gm (37 GHz) region of the spectrum. Therefore, the assumption used in radiative transfer approaches, where snow crystals are modeled as randomly oriented spheres, is adequate to account for the transfer of microwave energy emanating from the ground and passing through a snowpack.
Elephant random walks and their connection to Pólya-type urns
NASA Astrophysics Data System (ADS)
Baur, Erich; Bertoin, Jean
2016-11-01
In this paper, we explain the connection between the elephant random walk (ERW) and an urn model à la Pólya and derive functional limit theorems for the former. The ERW model was introduced in [Phys. Rev. E 70, 045101 (2004), 10.1103/PhysRevE.70.045101] to study memory effects in a highly non-Markovian setting. More specifically, the ERW is a one-dimensional discrete-time random walk with a complete memory of its past. The influence of the memory is measured in terms of a memory parameter p between zero and one. In the past years, a considerable effort has been undertaken to understand the large-scale behavior of the ERW, depending on the choice of p . Here, we use known results on urns to explicitly solve the ERW in all memory regimes. The method works as well for ERWs in higher dimensions and is widely applicable to related models.
Rational group decision making: A random field Ising model at T = 0
NASA Astrophysics Data System (ADS)
Galam, Serge
1997-02-01
A modified version of a finite random field Ising ferromagnetic model in an external magnetic field at zero temperature is presented to describe group decision making. Fields may have a non-zero average. A postulate of minimum inter-individual conflicts is assumed. Interactions then produce a group polarization along one very choice which is however randomly selected. A small external social pressure is shown to have a drastic effect on the polarization. Individual bias related to personal backgrounds, cultural values and past experiences are introduced via quenched local competing fields. They are shown to be instrumental in generating a larger spectrum of collective new choices beyond initial ones. In particular, compromise is found to results from the existence of individual competing bias. Conflict is shown to weaken group polarization. The model yields new psychosociological insights about consensus and compromise in groups.
Bayesian Modeling for Identification and Estimation of the Learning Effects of Pointing Tasks
NASA Astrophysics Data System (ADS)
Kyo, Koki
Recently, in the field of human-computer interaction, a model containing the systematic factor and human factor has been proposed to evaluate the performance of the input devices of a computer. This is called the SH-model. In this paper, in order to extend the range of application of the SH-model, we propose some new models based on the Box-Cox transformation and apply a Bayesian modeling method for identification and estimation of the learning effects of pointing tasks. We consider the parameters describing the learning effect as random variables and introduce smoothness priors for them. Illustrative results show that the newly-proposed models work well.
Huang, Keng-Yen; Nakigudde, Janet; Rhule, Dana; Gumikiriza-Onoria, Joy Louise; Abura, Gloria; Kolawole, Bukky; Ndyanabangi, Sheila; Kim, Sharon; Seidman, Edward; Ogedegbe, Gbenga; Brotman, Laurie Miller
2017-11-01
Children in Sub-Saharan Africa (SSA) are burdened by significant unmet mental health needs. Despite the successes of numerous school-based interventions for promoting child mental health, most evidence-based interventions (EBIs) are not available in SSA. This study investigated the implementation quality and effectiveness of one component of an EBI from a developed country (USA) in a SSA country (Uganda). The EBI component, Professional Development, was provided by trained Ugandan mental health professionals to Ugandan primary school teachers. It included large-group experiential training and small-group coaching to introduce and support a range of evidence-based practices (EBPs) to create nurturing and predictable classroom experiences. The study was guided by the Consolidated Framework for Implementation Research, the Teacher Training Implementation Model, and the RE-AIM evaluation framework. Effectiveness outcomes were studied using a cluster randomized design, in which 10 schools were randomized to intervention and wait-list control conditions. A total of 79 early childhood teachers participated. Teacher knowledge and the use of EBPs were assessed at baseline and immediately post-intervention (4-5 months later). A sample of 154 parents was randomly selected to report on child behavior at baseline and post-intervention. Linear mixed effect modeling was applied to examine effectiveness outcomes. Findings support the feasibility of training Ugandan mental health professionals to provide Professional Development for Ugandan teachers. Professional Development was delivered with high levels of fidelity and resulted in improved teacher EBP knowledge and the use of EBPs in the classroom, and child social competence.
Bakbergenuly, Ilyas; Morgenthaler, Stephan
2016-01-01
We study bias arising as a result of nonlinear transformations of random variables in random or mixed effects models and its effect on inference in group‐level studies or in meta‐analysis. The findings are illustrated on the example of overdispersed binomial distributions, where we demonstrate considerable biases arising from standard log‐odds and arcsine transformations of the estimated probability p^, both for single‐group studies and in combining results from several groups or studies in meta‐analysis. Our simulations confirm that these biases are linear in ρ, for small values of ρ, the intracluster correlation coefficient. These biases do not depend on the sample sizes or the number of studies K in a meta‐analysis and result in abysmal coverage of the combined effect for large K. We also propose bias‐correction for the arcsine transformation. Our simulations demonstrate that this bias‐correction works well for small values of the intraclass correlation. The methods are applied to two examples of meta‐analyses of prevalence. PMID:27192062
NASA Astrophysics Data System (ADS)
Müller, Tobias M.; Gurevich, Boris
2005-04-01
An important dissipation mechanism for waves in randomly inhomogeneous poroelastic media is the effect of wave-induced fluid flow. In the framework of Biot's theory of poroelasticity, this mechanism can be understood as scattering from fast into slow compressional waves. To describe this conversion scattering effect in poroelastic random media, the dynamic characteristics of the coherent wavefield using the theory of statistical wave propagation are analyzed. In particular, the method of statistical smoothing is applied to Biot's equations of poroelasticity. Within the accuracy of the first-order statistical smoothing an effective wave number of the coherent field, which accounts for the effect of wave-induced flow, is derived. This wave number is complex and involves an integral over the correlation function of the medium's fluctuations. It is shown that the known one-dimensional (1-D) result can be obtained as a special case of the present 3-D theory. The expression for the effective wave number allows to derive a model for elastic attenuation and dispersion due to wave-induced fluid flow. These wavefield attributes are analyzed in a companion paper. .
Diagnostics of Robust Growth Curve Modeling Using Student's "t" Distribution
ERIC Educational Resources Information Center
Tong, Xin; Zhang, Zhiyong
2012-01-01
Growth curve models with different types of distributions of random effects and of intraindividual measurement errors for robust analysis are compared. After demonstrating the influence of distribution specification on parameter estimation, 3 methods for diagnosing the distributions for both random effects and intraindividual measurement errors…
The Impact of Five Missing Data Treatments on a Cross-Classified Random Effects Model
ERIC Educational Resources Information Center
Hoelzle, Braden R.
2012-01-01
The present study compared the performance of five missing data treatment methods within a Cross-Classified Random Effects Model environment under various levels and patterns of missing data given a specified sample size. Prior research has shown the varying effect of missing data treatment options within the context of numerous statistical…
Estimation of genetic parameters for milk yield in Murrah buffaloes by Bayesian inference.
Breda, F C; Albuquerque, L G; Euclydes, R F; Bignardi, A B; Baldi, F; Torres, R A; Barbosa, L; Tonhati, H
2010-02-01
Random regression models were used to estimate genetic parameters for test-day milk yield in Murrah buffaloes using Bayesian inference. Data comprised 17,935 test-day milk records from 1,433 buffaloes. Twelve models were tested using different combinations of third-, fourth-, fifth-, sixth-, and seventh-order orthogonal polynomials of weeks of lactation for additive genetic and permanent environmental effects. All models included the fixed effects of contemporary group, number of daily milkings and age of cow at calving as covariate (linear and quadratic effect). In addition, residual variances were considered to be heterogeneous with 6 classes of variance. Models were selected based on the residual mean square error, weighted average of residual variance estimates, and estimates of variance components, heritabilities, correlations, eigenvalues, and eigenfunctions. Results indicated that changes in the order of fit for additive genetic and permanent environmental random effects influenced the estimation of genetic parameters. Heritability estimates ranged from 0.19 to 0.31. Genetic correlation estimates were close to unity between adjacent test-day records, but decreased gradually as the interval between test-days increased. Results from mean squared error and weighted averages of residual variance estimates suggested that a model considering sixth- and seventh-order Legendre polynomials for additive and permanent environmental effects, respectively, and 6 classes for residual variances, provided the best fit. Nevertheless, this model presented the largest degree of complexity. A more parsimonious model, with fourth- and sixth-order polynomials, respectively, for these same effects, yielded very similar genetic parameter estimates. Therefore, this last model is recommended for routine applications. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Causal mediation analysis for longitudinal data with exogenous exposure.
Bind, M-A C; Vanderweele, T J; Coull, B A; Schwartz, J D
2016-01-01
Mediation analysis is a valuable approach to examine pathways in epidemiological research. Prospective cohort studies are often conducted to study biological mechanisms and often collect longitudinal measurements on each participant. Mediation formulae for longitudinal data have been developed. Here, we formalize the natural direct and indirect effects using a causal framework with potential outcomes that allows for an interaction between the exposure and the mediator. To allow different types of longitudinal measures of the mediator and outcome, we assume two generalized mixed-effects models for both the mediator and the outcome. The model for the mediator has subject-specific random intercepts and random exposure slopes for each cluster, and the outcome model has random intercepts and random slopes for the exposure, the mediator, and their interaction. We also expand our approach to settings with multiple mediators and derive the mediated effects, jointly through all mediators. Our method requires the absence of time-varying confounding with respect to the exposure and the mediator. This assumption is achieved in settings with exogenous exposure and mediator, especially when exposure and mediator are not affected by variables measured at earlier time points. We apply the methodology to data from the Normative Aging Study and estimate the direct and indirect effects, via DNA methylation, of air pollution, and temperature on intercellular adhesion molecule 1 (ICAM-1) protein levels. Our results suggest that air pollution and temperature have a direct effect on ICAM-1 protein levels (i.e. not through a change in ICAM-1 DNA methylation) and that temperature has an indirect effect via a change in ICAM-1 DNA methylation. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Model selection for logistic regression models
NASA Astrophysics Data System (ADS)
Duller, Christine
2012-09-01
Model selection for logistic regression models decides which of some given potential regressors have an effect and hence should be included in the final model. The second interesting question is whether a certain factor is heterogeneous among some subsets, i.e. whether the model should include a random intercept or not. In this paper these questions will be answered with classical as well as with Bayesian methods. The application show some results of recent research projects in medicine and business administration.
Mikulich-Gilbertson, Susan K; Wagner, Brandie D; Grunwald, Gary K; Riggs, Paula D; Zerbe, Gary O
2018-01-01
Medical research is often designed to investigate changes in a collection of response variables that are measured repeatedly on the same subjects. The multivariate generalized linear mixed model (MGLMM) can be used to evaluate random coefficient associations (e.g. simple correlations, partial regression coefficients) among outcomes that may be non-normal and differently distributed by specifying a multivariate normal distribution for their random effects and then evaluating the latent relationship between them. Empirical Bayes predictors are readily available for each subject from any mixed model and are observable and hence, plotable. Here, we evaluate whether second-stage association analyses of empirical Bayes predictors from a MGLMM, provide a good approximation and visual representation of these latent association analyses using medical examples and simulations. Additionally, we compare these results with association analyses of empirical Bayes predictors generated from separate mixed models for each outcome, a procedure that could circumvent computational problems that arise when the dimension of the joint covariance matrix of random effects is large and prohibits estimation of latent associations. As has been shown in other analytic contexts, the p-values for all second-stage coefficients that were determined by naively assuming normality of empirical Bayes predictors provide a good approximation to p-values determined via permutation analysis. Analyzing outcomes that are interrelated with separate models in the first stage and then associating the resulting empirical Bayes predictors in a second stage results in different mean and covariance parameter estimates from the maximum likelihood estimates generated by a MGLMM. The potential for erroneous inference from using results from these separate models increases as the magnitude of the association among the outcomes increases. Thus if computable, scatterplots of the conditionally independent empirical Bayes predictors from a MGLMM are always preferable to scatterplots of empirical Bayes predictors generated by separate models, unless the true association between outcomes is zero.
Dietary interventions to prevent and manage diabetes in worksite settings: a meta-analysis
Shrestha, Archana; Karmacharya, Biraj Man; Khudyakov, Polyna; Weber, Mary Beth; Spiegelman, Donna
2017-01-01
Objectives: The translation of lifestyle intervention to improve glucose tolerance into the workplace has been rare. The objective of this meta-analysis is to summarize the evidence for the effectiveness of dietary interventions in worksite settings on lowering blood sugar levels. Methods: We searched for studies in PubMed, Embase, Econlit, Ovid, Cochrane, Web of Science, and Cumulative Index to Nursing and Allied Health Literature. Search terms were as follows: (1) Exposure-based: nutrition/diet/dietary intervention/health promotion/primary prevention/health behavior/health education/food /program evaluation; (2) Outcome-based: diabetes/hyperglycemia/glucose/HbA1c/glycated hemoglobin; and (3) Setting-based: workplace/worksite/occupational/industry/job/employee. We manually searched review articles and reference lists of articles identified from 1969 to December 2016. We tested for between-studies heterogeneity and calculated the pooled effect sizes for changes in HbA1c (%) and fasting glucose (mg/dl) using random effect models for meta-analysis in 2016. Results: A total of 17 articles out of 1663 initially selected articles were included in the meta-analysis. With a random-effects model, worksite dietary interventions led to a pooled -0.18% (95% CI, -0.29 to -0.06; P<0.001) difference in HbA1c. With the random-effects model, the interventions resulted in 2.60 mg/dl lower fasting glucose with borderline significance (95% CI: -5.27 to 0.08, P=0.06). In the multivariate meta-regression model, the interventions with high percent of female participants and that used the intervention directly delivered to individuals, rather the environment changes, were associated with more effective interventions. Conclusion: Workplace dietary interventions can improve HbA1c. The effects were larger for the interventions with greater number of female participants and with individual-level interventions. PMID:29187673
Liu, Xiaolei; Huang, Meng; Fan, Bin; Buckler, Edward S.; Zhang, Zhiwu
2016-01-01
False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days. PMID:26828793
Wang, Junqi; Qin, Lan
2016-06-27
This meta-analysis was performed to compare radioiodine therapy with antithyroid drugs in terms of clinical outcomes, including development or worsening of ophthalmopathy, hyperthyroid cure rate, hypothyroidism, relapse rate and adverse events. Randomized controlled trials (RCTs) published in PubMed, Embase, Web of Science, SinoMed and National Knowledge Infrastructure, China, were systematically reviewed to compare the effects of radioiodine therapy with antithyroid drugs in patients with Graves' disease. Results were expressed as risk ratio with 95% confidence intervals (CIs) and weighted mean differences with 95% CIs. Pooled estimates were performed using a fixed-effects model or random-effects model, depending on the heterogeneity among studies. 17 RCTs involving 4024 patients met the inclusion criteria and were included. Results showed that radioiodine treatment has increased risk in new ophthalmopathy, development or worsening of ophthalmopathy and hypothyroidism. Whereas, compared with antithyroid drugs, radioiodine treatment seems to have a higher hyperthyroid cure rate, lower recurrence rate and lower incidence of adverse events. Radioiodine therapy is associated with a higher hyperthyroid cure rate and lower relapse rate compared with antithyroid drugs. However, it also increases the risk of ophthalmopathy and hypothyroidism. Considering that antithyroid drug treatment can be associated with unsatisfactory control of hyperthyroidism, we would recommend radioiodine therapy as the treatment of choice for patients with Graves' disease.
[Effects of work-related medical rehabilitation in patients with musculoskeletal disorders].
Streibelt, M; Hansmeier, T; Müller-Fahrnow, W
2006-06-01
A work-related orientation within medical rehabilitation represents concepts with a stronger focus on the patient's individual vocational requirements and is based on different vocationally-orientated strategies of treatment. "Medical Occupational Orientation" ("Medizinisch-berufliche Orientierung", MBO), the model of Klinik Niedersachsen in Bad Nenndorf, places Functional Capacity Evaluation according to Susan Isernhagen (EFL) at the centre of rehabilitation diagnostics and therapy. This study investigates the effects of the MBO model relative to activities and vocational participation of patients with musculoskeletal disorders faced with vocational problems and on management at the interface between medical and vocational rehabilitation. Presented are findings of a randomized follow-up study aimed at evaluating the MBO model. A total of 494 patients of LVA Westfalen, a regional insurance agency, took part. A need for MBO was diagnosed for 222 patients. These patients were randomly assigned either to the MBO model of treatment (experimental group --> U[+]) or to the conventional medical treatment (control group --> K[+]). Patients without a need for MBO (U[-], K[-]) were treated likewise. The written questionings took place at the beginning (t (1)) and end of rehabilitation (t (2)), as well as six (t (3)) and twelve months (t (4)) after the patients' discharge. Currently, the results are based on the 6-month follow-up. Concerning the activities, an MBO-related effect in the experimental group (U[+]) has been found for the Pain Disability Index (PDI), effect sizes being d (u+) = 0.82; d (k+) = 0.17. The risk of unemployment six months after rehabilitation is decreased for MBO(+) patients who participated in the MBO model. In addition, the clinic can make effective prognosis concerning subsequent participation in vocational rehabilitation for both experimental groups (U[+], U[-]). Established for the first time in a randomized controlled trial, the findings presented show that patients with musculoskeletal disorders who are faced with particular vocational problems will achieve significantly better results concerning activities and vocational reintegration if their medical rehabilitation had been based upon an EFL-centred MBO approach.
NASA Astrophysics Data System (ADS)
Yang, X.; Zhu, P.; Gu, Y.; Xu, Z.
2015-12-01
Small scale heterogeneities of subsurface medium can be characterized conveniently and effectively using a few simple random medium parameters (RMP), such as autocorrelation length, angle and roughness factor, etc. The estimation of these parameters is significant in both oil reservoir prediction and metallic mine exploration. Poor accuracy and low stability existed in current estimation approaches limit the application of random medium theory in seismic exploration. This study focuses on improving the accuracy and stability of RMP estimation from post-stacked seismic data and its application in the seismic inversion. Experiment and theory analysis indicate that, although the autocorrelation of random medium is related to those of corresponding post-stacked seismic data, the relationship is obviously affected by the seismic dominant frequency, the autocorrelation length, roughness factor and so on. Also the error of calculation of autocorrelation in the case of finite and discrete model decreases the accuracy. In order to improve the precision of estimation of RMP, we design two improved approaches. Firstly, we apply region growing algorithm, which often used in image processing, to reduce the influence of noise in the autocorrelation calculated by the power spectrum method. Secondly, the orientation of autocorrelation is used as a new constraint in the estimation algorithm. The numerical experiments proved that it is feasible. In addition, in post-stack seismic inversion of random medium, the estimated RMP may be used to constrain inverse procedure and to construct the initial model. The experiment results indicate that taking inversed model as random medium and using relatively accurate estimated RMP to construct initial model can get better inversion result, which contained more details conformed to the actual underground medium.
ERIC Educational Resources Information Center
Clements, Douglas H.; Sarama, Julie; Wolfe, Christopher B.; Spitler, Mary Elaine
2013-01-01
Using a cluster randomized trial design, we evaluated the persistence of effects of a research-based model for scaling up educational interventions. The model was implemented in 42 schools in two city districts serving low-resource communities, randomly assigned to three conditions. In pre-kindergarten, the two experimental interventions were…
Kernodle, Michael W; McKethan, Robert N; Rabinowitz, Erik
2008-10-01
Traditional and virtual modeling were compared during learning of a multiple degree-of-freedom skill (fly casting) to assess the effect of the presence or absence of an authority figure on observational learning via virtual modeling. Participants were randomly assigned to one of four groups: Virtual Modeling with an authority figure present (VM-A) (n = 16), Virtual Modeling without an authority figure (VM-NA) (n = 16), Traditional Instruction (n = 17), and Control (n = 19). Results showed significant between-group differences on Form and Skill Acquisition scores. Except for one instance, all three learning procedures resulted in significant learning of fly casting. Virtual modeling with or without an authority figure present was as effective as traditional instruction; however, learning without an authority figure was less effective with regard to Accuracy scores.
Low-order black-box models for control system design in large power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamwa, I.; Trudel, G.; Gerin-Lajoie, L.
1996-02-01
The paper studies two multi-input multi-output (MIMO) procedures for the identification of low-order state-space models of power systems, by probing the network in open loop with low-energy pulses or random signals. Although such data may result from actual measurements, the development assumes simulated responses from a transient stability program, hence benefiting from the existing large base of stability models. While pulse data is processed using the eigensystem realization algorithm, the analysis of random responses is done by means of subspace identification methods. On a prototype Hydro-Quebec power system, including SVCs, DC lines, series compensation, and more than 1,100 buses, itmore » is verified that the two approaches are equivalent only when strict requirements are imposed on the pulse length and magnitude. The 10th-order equivalent models derived by random-signal probing allow for effective tuning of decentralized power system stabilizers (PSSs) able to damp both local and very slow inter-area modes.« less
Low-order black-box models for control system design in large power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamwa, I.; Trudel, G.; Gerin-Lajoie, L.
1995-12-31
The paper studies two multi-input multi-output (MIMO) procedures for the identification of low-order state-space models of power systems, by probing the network in open loop with low-energy pulses or random signals. Although such data may result from actual measurements, the development assumes simulated responses from a transient stability program, hence benefiting form the existing large base of stability models. While pulse data is processed using the eigensystem realization algorithm, the analysis of random responses is done by means of subspace identification methods. On a prototype Hydro-Quebec power system, including SVCs, DC lines, series compensation, and more than 1,100 buses, itmore » is verified that the two approaches are equivalent only when strict requirements are imposed on the pulse length and magnitude. The 10th-order equivalent models derived by random-signal probing allow for effective tuning of decentralized power system stabilizers (PSSs) able to damp both local and very slow inter-area modes.« less
Islam, Samantha; Brown, Joshua
2017-11-01
The research described in this paper explored the factors contributing to the injury severity resulting from the motorcycle at-fault accidents in rural and urban areas in Alabama. Given the occurrence of a motorcycle at-fault crash, random parameter logit models of injury severity (with possible outcomes of fatal, major, minor, and possible or no injury) were estimated. The estimated models identified a variety of statistically significant factors influencing the injury severities resulting from motorcycle at-fault crashes. According to these models, some variables were found to be significant only in one model (rural or urban) but not in the other one. For example, variables such as clear weather, young motorcyclists, and roadway without light were found significant only in the rural model. On the other hand, variables such as older female motorcyclists, horizontal curve and at intersection were found significant only in the urban model. In addition, some variables (such as, motorcyclists under influence of alcohol, non-usage of helmet, high speed roadways, etc.) were found significant in both models. Also, estimation findings showed that two parameters (clear weather and roadway without light) in the rural model and one parameter (on weekend) in the urban model could be modeled as random parameters indicating their varying influences on the injury severity due to unobserved effects. Based on the results obtained, this paper discusses the effects of different variables on injury severities resulting from rural and urban motorcycle at-fault crashes and their possible explanations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diaz, Francisco J; Berg, Michel J; Krebill, Ron; Welty, Timothy; Gidal, Barry E; Alloway, Rita; Privitera, Michael
2013-12-01
Due to concern and debate in the epilepsy medical community and to the current interest of the US Food and Drug Administration (FDA) in revising approaches to the approval of generic drugs, the FDA is currently supporting ongoing bioequivalence studies of antiepileptic drugs, the EQUIGEN studies. During the design of these crossover studies, the researchers could not find commercial or non-commercial statistical software that quickly allowed computation of sample sizes for their designs, particularly software implementing the FDA requirement of using random-effects linear models for the analyses of bioequivalence studies. This article presents tables for sample-size evaluations of average bioequivalence studies based on the two crossover designs used in the EQUIGEN studies: the four-period, two-sequence, two-formulation design, and the six-period, three-sequence, three-formulation design. Sample-size computations assume that random-effects linear models are used in bioequivalence analyses with crossover designs. Random-effects linear models have been traditionally viewed by many pharmacologists and clinical researchers as just mathematical devices to analyze repeated-measures data. In contrast, a modern view of these models attributes an important mathematical role in theoretical formulations in personalized medicine to them, because these models not only have parameters that represent average patients, but also have parameters that represent individual patients. Moreover, the notation and language of random-effects linear models have evolved over the years. Thus, another goal of this article is to provide a presentation of the statistical modeling of data from bioequivalence studies that highlights the modern view of these models, with special emphasis on power analyses and sample-size computations.
HOMAIE RAD, Enayatollah; HADIAN, Mohamad; GHOLAMPOOR, Hanie
2014-01-01
Abstract Background Skilled labor force is very important in economic growth. Workers become skilled when they are healthy and able to be educated and work. In this study, we estimated the effects of health indicators on labor supply. We used labor force participation rate as the indicator of labor supply. We categorized this indicator into 2 indicators of female and male labor force participation rates and compared the results of each estimate with the other. Methods This study was done in eastern Mediterranean countries between 1995 and 2011. We used a panel cointegration approach for estimating the models. We used Pesaran cross sectional dependency, Pesaran unit root test, and Westerlund panel cointegration for this issue. At the end, after confirmation of having random effect models, we estimated them with random effects. Results Increasing the fertility rate decreased the female labor supply, but increased the male labor supply. However, public health expenditures increased the female labor supply, but decreased the male labor supply because of substitution effects. Similar results were found regarding urbanization. Gross domestic product had a positive relationship with female labor supply, but not with male labor supply. Besides, out of pocket health expenditures had a negative relationship with male labor supply, but no significant relationships with female labor supply. Conclusion The effects of the health variables were more severe in the female labor supply model compared to the male model. Countries must pay attention to women’s health more and more to change the labor supply. PMID:26060746
Critical Behavior of the Annealed Ising Model on Random Regular Graphs
NASA Astrophysics Data System (ADS)
Can, Van Hao
2017-11-01
In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121-161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by n^{3/4} converges to a specific random variable, with n the number of vertices of random regular graphs.
The Role of Prostatitis in Prostate Cancer: Meta-Analysis
Yunxia, Zhang; Zhu, Hong; Liu, Junjiang; Pumill, Chris
2013-01-01
Objective Use systematic review methods to quantify the association between prostatitis and prostate cancer, under both fixed and random effects model. Evidence Acquisition Case control studies of prostate cancer with information on prostatitis history. All studies published between 1990-2012, were collected to calculate a pooled odds ratio. Selection criteria: the selection criteria are as follows: human case control studies; published from May 1990 to July 2012; containing number of prostatitis, and prostate cancer cases. Evidence Synthesis In total, 20 case control studies were included. A significant association between prostatitis and prostate cancer was found, under both fixed effect model (pooled OR=1.50, 95%CI: 1.39-1.62), and random effects model (OR=1.64, 95%CI: 1.36-1.98). Personal interview based case control studies showed a high level of association (fixed effect model: pooled OR=1.59, 95%CI: 1.47-1.73, random effects model: pooled OR= 1.87, 95%CI: 1.52-2.29), compared with clinical based studies (fixed effect model: pooled OR=1.05, 95%CI: 0.86-1.28, random effects model: pooled OR= 0.98, 95%CI: 0.67-1.45). Additionally, pooled ORs, were calculated for each decade. In a fixed effect model: 1990’s: OR=1.58, 95% CI: 1.35-1.84; 2000’s: OR=1.59, 95% CI: 1.40-1.79; 2010’s: OR=1.37, 95% CI: 1.22-1.56. In a random effects model: 1990’s: OR=1.98, 95% CI: 1.08-3.62; 2000’s: OR=1.64, 95% CI: 1.23-2.19; 2010’s: OR=1.34, 95% CI: 1.03-1.73. Finally a meta-analysis stratified by each country was conducted. In fixed effect models, U.S: pooled OR =1.45, 95%CI: 1.34-1.57; China: pooled OR =4.67, 95%CI: 3.08-7.07; Cuba: pooled OR =1.43, 95%CI: 1.00-2.04; Italy: pooled OR =0.61, 95%CI: 0.13-2.90. In random effects model, U.S: pooled OR=1.50, 95%CI: 1.25-1.80; China: pooled OR =4.67, 95%CI: 3.08-7.07; Cuba: pooled OR =1.43, 95%CI: 1.00-2.04; Italy: pooled OR =0.61, 95%CI: 0.13-2.90.CONCLUSIONS: the present meta-analysis provides the statistical evidence that the association between prostatitis and prostate cancer is significant. PMID:24391995
NASA Astrophysics Data System (ADS)
Eliazar, Iddo I.; Shlesinger, Michael F.
2012-01-01
We introduce and explore a Stochastic Flow Cascade (SFC) model: A general statistical model for the unidirectional flow through a tandem array of heterogeneous filters. Examples include the flow of: (i) liquid through heterogeneous porous layers; (ii) shocks through tandem shot noise systems; (iii) signals through tandem communication filters. The SFC model combines together the Langevin equation, convolution filters and moving averages, and Poissonian randomizations. A comprehensive analysis of the SFC model is carried out, yielding closed-form results. Lévy laws are shown to universally emerge from the SFC model, and characterize both heavy tailed retention times (Noah effect) and long-ranged correlations (Joseph effect).
Marginal and Random Intercepts Models for Longitudinal Binary Data With Examples From Criminology.
Long, Jeffrey D; Loeber, Rolf; Farrington, David P
2009-01-01
Two models for the analysis of longitudinal binary data are discussed: the marginal model and the random intercepts model. In contrast to the linear mixed model (LMM), the two models for binary data are not subsumed under a single hierarchical model. The marginal model provides group-level information whereas the random intercepts model provides individual-level information including information about heterogeneity of growth. It is shown how a type of numerical averaging can be used with the random intercepts model to obtain group-level information, thus approximating individual and marginal aspects of the LMM. The types of inferences associated with each model are illustrated with longitudinal criminal offending data based on N = 506 males followed over a 22-year period. Violent offending indexed by official records and self-report were analyzed, with the marginal model estimated using generalized estimating equations and the random intercepts model estimated using maximum likelihood. The results show that the numerical averaging based on the random intercepts can produce prediction curves almost identical to those obtained directly from the marginal model parameter estimates. The results provide a basis for contrasting the models and the estimation procedures and key features are discussed to aid in selecting a method for empirical analysis.
Effect of signal jitter on the spectrum of rotor impulsive noise
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.
1987-01-01
The effect of randomness or jitter of the acoustic waveform on the spectrum of rotor impulsive noise is studied because of its importance for data interpretation. An acoustic waveform train is modelled representing rotor impulsive noise. The amplitude, shape, and period between occurrences of individual pulses are allowed to be randomized assuming normal probability distributions. Results, in terms of the standard deviations of the variable quantities, are given for the autospectrum as well as special processed spectra designed to separate harmonic and broadband rotor noise components. Consideration is given to the effect of accuracy in triggering or keying to a rotor one per revolution signal. An example is given showing the resultant spectral smearing at the high frequencies due to the pulse signal period variability.
Effect of signal jitter on the spectrum of rotor impulsive noise
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.
1988-01-01
The effect of randomness or jitter of the acoustic waveform on the spectrum of rotor impulsive noise is studied because of its importance for data interpretation. An acoustic waveform train is modeled representing rotor impulsive noise. The amplitude, shape, and period between occurrences of individual pulses are allowed to be randomized assuming normal probability distributions. Results, in terms of the standard deviations of the variable quantities, are given for the autospectrum as well as special processed spectra designed to separate harmonic and broadband rotor noise components. Consideration is given to the effect of accuracy in triggering or keying to a rotor one per revolution signal. An example is given showing the resultant spectral smearing at the high frequencies due to the pulse signal period variability.
Photoinduced random molecular reorientation by nonradiative energy relaxation: An experimental test
NASA Astrophysics Data System (ADS)
Manzo, C.; Paparo, D.; Marrucci, L.
2004-11-01
By measuring the time-resolved fluorescence depolarization as a function of light excitation wavelength we address the question of a possible photoinduced orientational randomization of amino-anthraquinone dyes in liquid solutions. We find no significant dependence within the experimental uncertainties of both the initial molecule anisotropy and of the subsequent rotational diffusion dynamics on the photon energy. This indicates that this effect, if present, must be very small. A simple model of photoinduced local heating and corresponding enhanced rotational diffusion is in accordance with this result. This null result rules out some recent proposals that photoinduced local heating may contribute significantly to molecular reorientation effects in different materials. A small but statistically significant effect of photon energy is instead found in the excited-state lifetime of the dye.
On the effect of acoustic coupling on random and harmonic plate vibrations
NASA Technical Reports Server (NTRS)
Frendi, A.; Robinson, J. H.
1993-01-01
The effect of acoustic coupling on random and harmonic plate vibrations is studied using two numerical models. In the coupled model, the plate response is obtained by integration of the nonlinear plate equation coupled with the nonlinear Euler equations for the surrounding acoustic fluid. In the uncoupled model, the nonlinear plate equation with an equivalent linear viscous damping term is integrated to obtain the response of the plate subject to the same excitation field. For a low-level, narrow-band excitation, the two models predict the same plate response spectra. As the excitation level is increased, the response power spectrum predicted by the uncoupled model becomes broader and more shifted towards the high frequencies than that obtained by the coupled model. In addition, the difference in response between the coupled and uncoupled models at high frequencies becomes larger. When a high intensity harmonic excitation is used, causing a nonlinear plate response, both models predict the same frequency content of the response. However, the level of the harmonics and subharmonics are higher for the uncoupled model. Comparisons to earlier experimental and numerical results show that acoustic coupling has a significant effect on the plate response at high excitation levels. Its absence in previous models may explain the discrepancy between predicted and measured responses.
Bajard, Agathe; Chabaud, Sylvie; Cornu, Catherine; Castellan, Anne-Charlotte; Malik, Salma; Kurbatova, Polina; Volpert, Vitaly; Eymard, Nathalie; Kassai, Behrouz; Nony, Patrice
2016-01-01
The main objective of our work was to compare different randomized clinical trial (RCT) experimental designs in terms of power, accuracy of the estimation of treatment effect, and number of patients receiving active treatment using in silico simulations. A virtual population of patients was simulated and randomized in potential clinical trials. Treatment effect was modeled using a dose-effect relation for quantitative or qualitative outcomes. Different experimental designs were considered, and performances between designs were compared. One thousand clinical trials were simulated for each design based on an example of modeled disease. According to simulation results, the number of patients needed to reach 80% power was 50 for crossover, 60 for parallel or randomized withdrawal, 65 for drop the loser (DL), and 70 for early escape or play the winner (PW). For a given sample size, each design had its own advantage: low duration (parallel, early escape), high statistical power and precision (crossover), and higher number of patients receiving the active treatment (PW and DL). Our approach can help to identify the best experimental design, population, and outcome for future RCTs. This may be particularly useful for drug development in rare diseases, theragnostic approaches, or personalized medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
Statistical mapping of count survey data
Royle, J. Andrew; Link, W.A.; Sauer, J.R.; Scott, J. Michael; Heglund, Patricia J.; Morrison, Michael L.; Haufler, Jonathan B.; Wall, William A.
2002-01-01
We apply a Poisson mixed model to the problem of mapping (or predicting) bird relative abundance from counts collected from the North American Breeding Bird Survey (BBS). The model expresses the logarithm of the Poisson mean as a sum of a fixed term (which may depend on habitat variables) and a random effect which accounts for remaining unexplained variation. The random effect is assumed to be spatially correlated, thus providing a more general model than the traditional Poisson regression approach. Consequently, the model is capable of improved prediction when data are autocorrelated. Moreover, formulation of the mapping problem in terms of a statistical model facilitates a wide variety of inference problems which are cumbersome or even impossible using standard methods of mapping. For example, assessment of prediction uncertainty, including the formal comparison of predictions at different locations, or through time, using the model-based prediction variance is straightforward under the Poisson model (not so with many nominally model-free methods). Also, ecologists may generally be interested in quantifying the response of a species to particular habitat covariates or other landscape attributes. Proper accounting for the uncertainty in these estimated effects is crucially dependent on specification of a meaningful statistical model. Finally, the model may be used to aid in sampling design, by modifying the existing sampling plan in a manner which minimizes some variance-based criterion. Model fitting under this model is carried out using a simulation technique known as Markov Chain Monte Carlo. Application of the model is illustrated using Mourning Dove (Zenaida macroura) counts from Pennsylvania BBS routes. We produce both a model-based map depicting relative abundance, and the corresponding map of prediction uncertainty. We briefly address the issue of spatial sampling design under this model. Finally, we close with some discussion of mapping in relation to habitat structure. Although our models were fit in the absence of habitat information, the resulting predictions show a strong inverse relation with a map of forest cover in the state, as expected. Consequently, the results suggest that the correlated random effect in the model is broadly representing ecological variation, and that BBS data may be generally useful for studying bird-habitat relationships, even in the presence of observer errors and other widely recognized deficiencies of the BBS.
Odegård, J; Klemetsdal, G; Heringstad, B
2005-04-01
Several selection criteria for reducing incidence of mastitis were developed from a random regression sire model for test-day somatic cell score (SCS). For comparison, sire transmitting abilities were also predicted based on a cross-sectional model for lactation mean SCS. Only first-crop daughters were used in genetic evaluation of SCS, and the different selection criteria were compared based on their correlation with incidence of clinical mastitis in second-crop daughters (measured as mean daughter deviations). Selection criteria were predicted based on both complete and reduced first-crop daughter groups (261 or 65 daughters per sire, respectively). For complete daughter groups, predicted transmitting abilities at around 30 d in milk showed the best predictive ability for incidence of clinical mastitis, closely followed by average predicted transmitting abilities over the entire lactation. Both of these criteria were derived from the random regression model. These selection criteria improved accuracy of selection by approximately 2% relative to a cross-sectional model. However, for reduced daughter groups, the cross-sectional model yielded increased predictive ability compared with the selection criteria based on the random regression model. This result may be explained by the cross-sectional model being more robust, i.e., less sensitive to precision of (co)variance components estimates and effects of data structure.
Effect of cinnamon on glucose control and lipid parameters.
Baker, William L; Gutierrez-Williams, Gabriela; White, C Michael; Kluger, Jeffrey; Coleman, Craig I
2008-01-01
To perform a meta-analysis of randomized controlled trials of cinnamon to better characterize its impact on glucose and plasma lipids. A systematic literature search through July 2007 was conducted to identify randomized placebo-controlled trials of cinnamon that reported data on A1C, fasting blood glucose (FBG), or lipid parameters. The mean change in each study end point from baseline was treated as a continuous variable, and the weighted mean difference was calculated as the difference between the mean value in the treatment and control groups. A random-effects model was used. Five prospective randomized controlled trials (n = 282) were identified. Upon meta-analysis, the use of cinnamon did not significantly alter A1C, FBG, or lipid parameters. Subgroup and sensitivity analyses did not significantly change the results. Cinnamon does not appear to improve A1C, FBG, or lipid parameters in patients with type 1 or type 2 diabetes.
Hierarchical Bayesian spatial models for alcohol availability, drug "hot spots" and violent crime.
Zhu, Li; Gorman, Dennis M; Horel, Scott
2006-12-07
Ecologic studies have shown a relationship between alcohol outlet densities, illicit drug use and violence. The present study examined this relationship in the City of Houston, Texas, using a sample of 439 census tracts. Neighborhood sociostructural covariates, alcohol outlet density, drug crime density and violent crime data were collected for the year 2000, and analyzed using hierarchical Bayesian models. Model selection was accomplished by applying the Deviance Information Criterion. The counts of violent crime in each census tract were modelled as having a conditional Poisson distribution. Four neighbourhood explanatory variables were identified using principal component analysis. The best fitted model was selected as the one considering both unstructured and spatial dependence random effects. The results showed that drug-law violation explained a greater amount of variance in violent crime rates than alcohol outlet densities. The relative risk for drug-law violation was 2.49 and that for alcohol outlet density was 1.16. Of the neighbourhood sociostructural covariates, males of age 15 to 24 showed an effect on violence, with a 16% decrease in relative risk for each increase the size of its standard deviation. Both unstructured heterogeneity random effect and spatial dependence need to be included in the model. The analysis presented suggests that activity around illicit drug markets is more strongly associated with violent crime than is alcohol outlet density. Unique among the ecological studies in this field, the present study not only shows the direction and magnitude of impact of neighbourhood sociostructural covariates as well as alcohol and illicit drug activities in a neighbourhood, it also reveals the importance of applying hierarchical Bayesian models in this research field as both spatial dependence and heterogeneity random effects need to be considered simultaneously.
Pharmacoeconomic evidence of bosentan for pulmonary arterial hypertension.
Strange, Geoff; Keogh, Anne; Dalton, Brad; Gabbay, Eli
2011-06-01
In this article, we review randomized controlled trials, open-label trials and pharmacoeconomic models of bosentan for the management of patients with pulmonary arterial hypertension. Bosentan consistently improves WHO functional class and quality of life, slows clinical worsening and is associated with improved survival compared with historical treatment. Although head-to-head trials are scarce, data directly comparing bosentan with sildenafil indicate no clinically significant differences between treatments as measured by the 6-min walk distance alone. Compared with historical care, bosentan treatment, over a 15-30-year period, increases the number of quality-adjusted life years (3.49 years). Economic modeling suggests that the cost-effectiveness of bosentan is similar to that of ambrisentan (US$43,725-57,778 per quality-adjusted life year), not as cost effective as sildenafil (at 20 mg three-times daily) and more cost effective than iloprost. More randomized controlled trials of longer duration are required to confirm the results from these economic models.
Meta-analysis: Smectite in the treatment of acute infectious diarrhoea in children.
Szajewska, H; Dziechciarz, P; Mrukowicz, J
2006-01-15
Although not currently recommended, dioctahedral smectite (smectite) is commonly used to treat acute infectious diarrhoea in many countries. To evaluate systematically the effectiveness of smectite in treating acute infectious diarrhoea in children. Using medical subject headings and free-language terms, the following electronic databases were searched for studies relevant to acute infectious diarrhoea and smectite: MEDLINE, EMBASE, CINAHL and The Cochrane Library; additional references were obtained from reviewed articles. Only randomized-controlled trials were included. Nine randomized-controlled trials (1238 participants) met the inclusion criteria. Combined data from six randomized-controlled trials showed that smectite significantly reduced the duration of diarrhoea compared with placebo. The pooled weighted mean difference was (-22.7 h, 95% CI: -24.8 to -20.6) with a fixed model and remained significant in a random effect model (-24.4 h, 95% CI: -29.8 to -19.1). The chance of cure on intervention day 3 was significantly increased in the smectite vs. the control group (RR 1.64, 95% CI: 1.36-1.98; number needed to treat 4, 95% CI: 3-5). Adverse effects were similar in both groups. Smectite may be a useful adjunct to rehydration therapy in treating acute paediatric gastroenteritis. However, the results of this meta-analysis should be interpreted with caution as most of the included studies had important limitations. Cost-effectiveness analyses should be undertaken before routine pharmacological therapy with smectite is recommended.
Liu, Dan; Liu, Xuejun; Wu, Yiguang
2018-04-24
This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN) and a continuous pairwise Conditional Random Field (CRF) model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.
The Bayesian group lasso for confounded spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.
2017-01-01
Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.
Wave-induced fluid flow in random porous media: Attenuation and dispersion of elastic waves
NASA Astrophysics Data System (ADS)
Müller, Tobias M.; Gurevich, Boris
2005-05-01
A detailed analysis of the relationship between elastic waves in inhomogeneous, porous media and the effect of wave-induced fluid flow is presented. Based on the results of the poroelastic first-order statistical smoothing approximation applied to Biot's equations of poroelasticity, a model for elastic wave attenuation and dispersion due to wave-induced fluid flow in 3-D randomly inhomogeneous poroelastic media is developed. Attenuation and dispersion depend on linear combinations of the spatial correlations of the fluctuating poroelastic parameters. The observed frequency dependence is typical for a relaxation phenomenon. Further, the analytic properties of attenuation and dispersion are analyzed. It is shown that the low-frequency asymptote of the attenuation coefficient of a plane compressional wave is proportional to the square of frequency. At high frequencies the attenuation coefficient becomes proportional to the square root of frequency. A comparison with the 1-D theory shows that attenuation is of the same order but slightly larger in 3-D random media. Several modeling choices of the approach including the effect of cross correlations between fluid and solid phase properties are demonstrated. The potential application of the results to real porous materials is discussed. .
Effective Stochastic Model for Reactive Transport
NASA Astrophysics Data System (ADS)
Tartakovsky, A. M.; Zheng, B.; Barajas-Solano, D. A.
2017-12-01
We propose an effective stochastic advection-diffusion-reaction (SADR) model. Unlike traditional advection-dispersion-reaction models, the SADR model describes mechanical and diffusive mixing as two separate processes. In the SADR model, the mechanical mixing is driven by random advective velocity with the variance given by the coefficient of mechanical dispersion. The diffusive mixing is modeled as a fickian diffusion with the effective diffusion coefficient. Both coefficients are given in terms of Peclet number (Pe) and the coefficient of molecular diffusion. We use the experimental results of to demonstrate that for transport and bimolecular reactions in porous media the SADR model is significantly more accurate than the traditional dispersion model, which overestimates the mass of the reaction product by as much as 25%.
Solving large test-day models by iteration on data and preconditioned conjugate gradient.
Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A
1999-12-01
A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm.
Ding, Xiangyan; Li, Feilong; Zhao, Youxuan; Xu, Yongmei; Hu, Ning; Cao, Peng; Deng, Mingxi
2018-04-23
This paper investigates the propagation of Rayleigh surface waves in structures with randomly distributed surface micro-cracks using numerical simulations. The results revealed a significant ultrasonic nonlinear effect caused by the surface micro-cracks, which is mainly represented by a second harmonic with even more distinct third/quadruple harmonics. Based on statistical analysis from the numerous results of random micro-crack models, it is clearly found that the acoustic nonlinear parameter increases linearly with micro-crack density, the proportion of surface cracks, the size of micro-crack zone, and the excitation frequency. This study theoretically reveals that nonlinear Rayleigh surface waves are feasible for use in quantitatively identifying the physical characteristics of surface micro-cracks in structures.
Ding, Xiangyan; Li, Feilong; Xu, Yongmei; Cao, Peng; Deng, Mingxi
2018-01-01
This paper investigates the propagation of Rayleigh surface waves in structures with randomly distributed surface micro-cracks using numerical simulations. The results revealed a significant ultrasonic nonlinear effect caused by the surface micro-cracks, which is mainly represented by a second harmonic with even more distinct third/quadruple harmonics. Based on statistical analysis from the numerous results of random micro-crack models, it is clearly found that the acoustic nonlinear parameter increases linearly with micro-crack density, the proportion of surface cracks, the size of micro-crack zone, and the excitation frequency. This study theoretically reveals that nonlinear Rayleigh surface waves are feasible for use in quantitatively identifying the physical characteristics of surface micro-cracks in structures. PMID:29690580
Rosenblat, Joshua D; Kakar, Ron
2016-01-01
Background: Cognitive dysfunction is often present in major depressive disorder (MDD). Several clinical trials have noted a pro-cognitive effect of antidepressants in MDD. The objective of the current systematic review and meta-analysis was to assess the pooled efficacy of antidepressants on various domains of cognition in MDD. Methods: Trials published prior to April 15, 2015, were identified through searching the Cochrane Central Register of Controlled Trials, PubMed, Embase, PsychINFO, Clinicaltrials.gov, and relevant review articles. Data from randomized clinical trials assessing the cognitive effects of antidepressants were pooled to determine standard mean differences (SMD) using a random-effects model. Results: Nine placebo-controlled randomized trials (2 550 participants) evaluating the cognitive effects of vortioxetine (n = 728), duloxetine (n = 714), paroxetine (n = 23), citalopram (n = 84), phenelzine (n = 28), nortryptiline (n = 32), and sertraline (n = 49) were identified. Antidepressants had a positive effect on psychomotor speed (SMD 0.16; 95% confidence interval [CI] 0.05–0.27; I2 = 46%) and delayed recall (SMD 0.24; 95% CI 0.15–0.34; I2 = 0%). The effect on cognitive control and executive function did not reach statistical significance. Of note, after removal of vortioxetine from the analysis, statistical significance was lost for psychomotor speed. Eight head-to-head randomized trials comparing the effects of selective serotonin reuptake inhibitors (SSRIs; n = 371), selective serotonin and norepinephrine reuptake inhibitors (SNRIs; n = 25), tricyclic antidepressants (TCAs; n = 138), and norepinephrine and dopamine reuptake inhibitors (NDRIs; n = 46) were identified. No statistically significant difference in cognitive effects was found when pooling results from head-to-head trials of SSRIs, SNRIs, TCAs, and NDRIs. Significant limitations were the heterogeneity of results, limited number of studies, and small sample sizes. Conclusions: Available evidence suggests that antidepressants have a significant positive effect on psychomotor speed and delayed recall. PMID:26209859
Reducing RANS Model Error Using Random Forest
NASA Astrophysics Data System (ADS)
Wang, Jian-Xun; Wu, Jin-Long; Xiao, Heng; Ling, Julia
2016-11-01
Reynolds-Averaged Navier-Stokes (RANS) models are still the work-horse tools in the turbulence modeling of industrial flows. However, the model discrepancy due to the inadequacy of modeled Reynolds stresses largely diminishes the reliability of simulation results. In this work we use a physics-informed machine learning approach to improve the RANS modeled Reynolds stresses and propagate them to obtain the mean velocity field. Specifically, the functional forms of Reynolds stress discrepancies with respect to mean flow features are trained based on an offline database of flows with similar characteristics. The random forest model is used to predict Reynolds stress discrepancies in new flows. Then the improved Reynolds stresses are propagated to the velocity field via RANS equations. The effects of expanding the feature space through the use of a complete basis of Galilean tensor invariants are also studied. The flow in a square duct, which is challenging for standard RANS models, is investigated to demonstrate the merit of the proposed approach. The results show that both the Reynolds stresses and the propagated velocity field are improved over the baseline RANS predictions. SAND Number: SAND2016-7437 A
Littlejohn, B P; Riley, D G; Welsh, T H; Randel, R D; Willard, S T; Vann, R C
2018-05-12
The objective was to estimate genetic parameters of temperament in beef cattle across an age continuum. The population consisted predominantly of Brahman-British crossbred cattle. Temperament was quantified by: 1) pen score (PS), the reaction of a calf to a single experienced evaluator on a scale of 1 to 5 (1 = calm, 5 = excitable); 2) exit velocity (EV), the rate (m/sec) at which a calf traveled 1.83 m upon exiting a squeeze chute; and 3) temperament score (TS), the numerical average of PS and EV. Covariates included days of age and proportion of Bos indicus in the calf and dam. Random regression models included the fixed effects determined from the repeated measures models, except for calf age. Likelihood ratio tests were used to determine the most appropriate random structures. In repeated measures models, the proportion of Bos indicus in the calf was positively related with each calf temperament trait (0.41 ± 0.20, 0.85 ± 0.21, and 0.57 ± 0.18 for PS, EV, and TS, respectively; P < 0.01). There was an effect of contemporary group (combinations of season, year of birth, and management group) and dam age (P < 0.001) in all models. From repeated records analyses, estimates of heritability (h2) were 0.34 ± 0.04, 0.31 ± 0.04, and 0.39 ± 0.04, while estimates of permanent environmental variance as a proportion of the phenotypic variance (c2) were 0.30 ± 0.04, 0.31 ± 0.03, and 0.34 ± 0.04 for PS, EV, and TS, respectively. Quadratic additive genetic random regressions on Legendre polynomials of age were significant for all traits. Quadratic permanent environmental random regressions were significant for PS and TS, but linear permanent environmental random regressions were significant for EV. Random regression results suggested that these components change across the age dimension of these data. There appeared to be an increasing influence of permanent environmental effects and decreasing influence of additive genetic effects corresponding to increasing calf age for EV, and to a lesser extent for TS. Inherited temperament may be overcome by accumulating environmental stimuli with increases in age, especially after weaning.
The threshold of a stochastic avian-human influenza epidemic model with psychological effect
NASA Astrophysics Data System (ADS)
Zhang, Fengrong; Zhang, Xinhong
2018-02-01
In this paper, a stochastic avian-human influenza epidemic model with psychological effect in human population and saturation effect within avian population is investigated. This model describes the transmission of avian influenza among avian population and human population in random environments. For stochastic avian-only system, persistence in the mean and extinction of the infected avian population are studied. For the avian-human influenza epidemic system, sufficient conditions for the existence of an ergodic stationary distribution are obtained. Furthermore, a threshold of this stochastic model which determines the outcome of the disease is obtained. Finally, numerical simulations are given to support the theoretical results.
An uncertainty model of acoustic metamaterials with random parameters
NASA Astrophysics Data System (ADS)
He, Z. C.; Hu, J. Y.; Li, Eric
2018-01-01
Acoustic metamaterials (AMs) are man-made composite materials. However, the random uncertainties are unavoidable in the application of AMs due to manufacturing and material errors which lead to the variance of the physical responses of AMs. In this paper, an uncertainty model based on the change of variable perturbation stochastic finite element method (CVPS-FEM) is formulated to predict the probability density functions of physical responses of AMs with random parameters. Three types of physical responses including the band structure, mode shapes and frequency response function of AMs are studied in the uncertainty model, which is of great interest in the design of AMs. In this computation, the physical responses of stochastic AMs are expressed as linear functions of the pre-defined random parameters by using the first-order Taylor series expansion and perturbation technique. Then, based on the linear function relationships of parameters and responses, the probability density functions of the responses can be calculated by the change-of-variable technique. Three numerical examples are employed to demonstrate the effectiveness of the CVPS-FEM for stochastic AMs, and the results are validated by Monte Carlo method successfully.
Ebrahimi, Hossein; Sadeghi, Mahdi; Amanpour, Farzaneh; Vahedi, Hamid
2016-04-01
Diabetes education is a major subject in achieving optimal glycemic control. Effective empowerment approach can be beneficial for improving patients' health. The aim of this study was to evaluate the effect of empowerment model on indicators of metabolic control in patients with type 2 diabetes. a randomized controlled trial of 103 patients with type 2 diabetes were randomly assigned to either the intervention (empowerment approach training) or the control group (conventional training) 2014. Empowerment approach training were performed for the experimental group for eight weeks. Data collection tool included demographic information form and indicators of metabolic control checklist. Analysis was performed by one-way analysis of variance, chi-square test, paired t-test, independent t-test and multiple linear regression. Before the intervention, two groups were homogeneous in terms of demographic variables, glycosylated hemoglobin (HbA1C), and other indicators of metabolic control. After the intervention, average HbA1C and other metabolic indicators except for LDL showed significant differences in the experimental group compared to the control group. study results indicated the positive effects of applying the empowerment model on the metabolic control indicators. Therefore, applying this model is recommended to nurses and the relevant authorities in order to improve clinical outcomes in diabetic patients. Copyright © 2015 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
Sachdeva, Aarti; Nagpal, Jitender
2009-01-01
To evaluate the effect of fermented milk-based probiotic preparations on Helicobacter pylori eradication. Systematic review of randomized controlled trials. Electronic databases and hand search of reviews, bibliographies of books and abstracts and proceedings of international conferences. Included trials had to be randomized or quasi-randomized and controlled, using fermented milk-based probiotics in the intervention group, treating Helicobacter-infected patients and evaluating improvement or eradication of H. pylori as an outcome. The search identified 10 eligible randomized controlled trials. Data were available for 963 patients, of whom 498 were in the treatment group and 465 in the control group. The pooled odds ratio (studies n=9) for eradication by intention-to-treat analysis in the treatment versus control group was 1.91 (1.38-2.67; P<0.0001) using the fixed effects model; test for heterogeneity (Cochran's Q=5.44; P=0.488). The pooled risk difference was 0.10 (95% CI 0.05-0.15; P<0.0001) by the fixed effects model (Cochran's Q=13.41; P=0.144). The pooled odds ratio for the number of patients with any adverse effect was 0.51 (95% CI 0.10-2.57; P=0.41; random effects model; heterogeneity by Cochran's Q=68.5; P<0.0001). Fermented milk-based probiotic preparations improve H. pylori eradication rates by approximately 5-15%, whereas the effect on adverse effects is heterogeneous.
Interpretable inference on the mixed effect model with the Box-Cox transformation.
Maruo, K; Yamaguchi, Y; Noma, H; Gosho, M
2017-07-10
We derived results for inference on parameters of the marginal model of the mixed effect model with the Box-Cox transformation based on the asymptotic theory approach. We also provided a robust variance estimator of the maximum likelihood estimator of the parameters of this model in consideration of the model misspecifications. Using these results, we developed an inference procedure for the difference of the model median between treatment groups at the specified occasion in the context of mixed effects models for repeated measures analysis for randomized clinical trials, which provided interpretable estimates of the treatment effect. From simulation studies, it was shown that our proposed method controlled type I error of the statistical test for the model median difference in almost all the situations and had moderate or high performance for power compared with the existing methods. We illustrated our method with cluster of differentiation 4 (CD4) data in an AIDS clinical trial, where the interpretability of the analysis results based on our proposed method is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J.; Munch, Stephan; Skaug, Hans J.
2014-01-01
The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish. PMID:25211603
2011-01-01
Introduction Zinc plays an important role in cellular growth, cellular differentiation and metabolism. The results of previous meta-analyses evaluating effect of zinc supplementation on linear growth are inconsistent. We have updated and evaluated the available evidence according to Grading of Recommendations, Assessment, Development and Evaluation (GRADE) criteria and tried to explain the difference in results of the previous reviews. Methods A literature search was done on PubMed, Cochrane Library, IZiNCG database and WHO regional data bases using different terms for zinc and linear growth (height). Data were abstracted in a standardized form. Data were analyzed in two ways i.e. weighted mean difference (effect size) and pooled mean difference for absolute increment in length in centimeters. Random effect models were used for these pooled estimates. We have given our recommendations for effectiveness of zinc supplementation in the form of absolute increment in length (cm) in zinc supplemented group compared to control for input to Live Saves Tool (LiST). Results There were thirty six studies assessing the effect of zinc supplementation on linear growth in children < 5 years from developing countries. In eleven of these studies, zinc was given in combination with other micronutrients (iron, vitamin A, etc). The final effect size after pooling all the data sets (zinc ± iron etc) showed a significant positive effect of zinc supplementation on linear growth [Effect size: 0.13 (95% CI 0.04, 0.21), random model] in the developing countries. A subgroup analysis by excluding those data sets where zinc was supplemented in combination with iron showed a more pronounced effect of zinc supplementation on linear growth [Weighed mean difference 0.19 (95 % CI 0.08, 0.30), random model]. A subgroup analysis from studies that reported actual increase in length (cm) showed that a dose of 10 mg zinc/day for duration of 24 weeks led to a net a gain of 0.37 (±0.25) cm in zinc supplemented group compared to placebo. This estimate is recommended for inclusion in Lives Saved Tool (LiST) model. Conclusions Zinc supplementation has a significant positive effect on linear growth, especially when administered alone, and should be included in national strategies to reduce stunting in children < 5 years of age in developing countries. PMID:21501440
Hanrahan, Nancy P.; Wu, Evan; Kelly, Deena; Aiken, Linda H.; Blank, Michael B.
2011-01-01
Individuals with serious mental illness have greater risk for contracting HIV, multiple morbidities, and die 25 years younger than the general population. This high need and high cost subgroup face unique barriers to accessing required health care in the current health care system. The effectiveness of an advanced practice nurse model of care management was assessed in a four-year random controlled trial. Results are reported in this paper. In a four-year random controlled trial, a total of 238 community-dwelling individuals with HIV and serious mental illness (SMI) were randomly assigned to an intervention group (n=128) or to a control group (n=110). Over 12 months, the intervention group received care management from advanced practice psychiatric nurse, and the control group received usual care. The intervention group showed significant improvement in depression (P=.012) and the physical component of health-related quality of life (P=.03) from baseline to 12 months. The advanced practice psychiatric nurse intervention is a model of care that holds promise for a higher quality of care and outcomes for this vulnerable population. PMID:21935499
Performance of Random Effects Model Estimators under Complex Sampling Designs
ERIC Educational Resources Information Center
Jia, Yue; Stokes, Lynne; Harris, Ian; Wang, Yan
2011-01-01
In this article, we consider estimation of parameters of random effects models from samples collected via complex multistage designs. Incorporation of sampling weights is one way to reduce estimation bias due to unequal probabilities of selection. Several weighting methods have been proposed in the literature for estimating the parameters of…
Estimation of Complex Generalized Linear Mixed Models for Measurement and Growth
ERIC Educational Resources Information Center
Jeon, Minjeong
2012-01-01
Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…
A 3-states magnetic model of binary decisions in sociophysics
NASA Astrophysics Data System (ADS)
Fernandez, Miguel A.; Korutcheva, Elka; de la Rubia, F. Javier
2016-11-01
We study a diluted Blume-Capel model of 3-states sites as an attempt to understand how some social processes as cooperation or organization happen. For this aim, we study the effect of the complex network topology on the equilibrium properties of the model, by focusing on three different substrates: random graph, Watts-Strogatz and Newman substrates. Our computer simulations are in good agreement with the corresponding analytical results.
David, Ingrid; Garreau, Hervé; Balmisse, Elodie; Billon, Yvon; Canario, Laurianne
2017-01-20
Some genetic studies need to take into account correlations between traits that are repeatedly measured over time. Multiple-trait random regression models are commonly used to analyze repeated traits but suffer from several major drawbacks. In the present study, we developed a multiple-trait extension of the structured antedependence model (SAD) to overcome this issue and validated its usefulness by modeling the association between litter size (LS) and average birth weight (ABW) over parities in pigs and rabbits. The single-trait SAD model assumes that a random effect at time [Formula: see text] can be explained by the previous values of the random effect (i.e. at previous times). The proposed multiple-trait extension of the SAD model consists in adding a cross-antedependence parameter to the single-trait SAD model. This model can be easily fitted using ASReml and the OWN Fortran program that we have developed. In comparison with the random regression model, we used our multiple-trait SAD model to analyze the LS and ABW of 4345 litters from 1817 Large White sows and 8706 litters from 2286 L-1777 does over a maximum of five successive parities. For both species, the multiple-trait SAD fitted the data better than the random regression model. The difference between AIC of the two models (AIC_random regression-AIC_SAD) were equal to 7 and 227 for pigs and rabbits, respectively. A similar pattern of heritability and correlation estimates was obtained for both species. Heritabilities were lower for LS (ranging from 0.09 to 0.29) than for ABW (ranging from 0.23 to 0.39). The general trend was a decrease of the genetic correlation for a given trait between more distant parities. Estimates of genetic correlations between LS and ABW were negative and ranged from -0.03 to -0.52 across parities. No correlation was observed between the permanent environmental effects, except between the permanent environmental effects of LS and ABW of the same parity, for which the estimate of the correlation was strongly negative (ranging from -0.57 to -0.67). We demonstrated that application of our multiple-trait SAD model is feasible for studying several traits with repeated measurements and showed that it provided a better fit to the data than the random regression model.
Bayesian Sensitivity Analysis of Statistical Models with Missing Data
ZHU, HONGTU; IBRAHIM, JOSEPH G.; TANG, NIANSHENG
2013-01-01
Methods for handling missing data depend strongly on the mechanism that generated the missing values, such as missing completely at random (MCAR) or missing at random (MAR), as well as other distributional and modeling assumptions at various stages. It is well known that the resulting estimates and tests may be sensitive to these assumptions as well as to outlying observations. In this paper, we introduce various perturbations to modeling assumptions and individual observations, and then develop a formal sensitivity analysis to assess these perturbations in the Bayesian analysis of statistical models with missing data. We develop a geometric framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure of these perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and quantify the effect of various perturbations to statistical models. We use the proposed sensitivity analysis procedure to systematically investigate the tenability of the non-ignorable missing at random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a dataset is analyzed to illustrate the use of our diagnostic measures. PMID:24753718
MoghaddamHosseini, Vahideh; Nazarzadeh, Milad; Jahanfar, Shayesteh
2017-11-07
Fear of childbirth is a problematic mental health issue during pregnancy. But, effective interventions to reduce this problem are not well understood. To examine effective interventions for reducing fear of childbirth. The Cochrane Central Register of Controlled Trials, PubMed, Embase and PsycINFO were searched since inception till September 2017 without any restriction. Randomised controlled trials and quasi-randomised controlled trials comparing interventions for treatment of fear of childbirth were included. The standardized mean differences were pooled using random and fixed effect models. The heterogeneity was determined using the Cochran's test and I 2 index and was further explored in meta-regression model and subgroup analyses. Ten studies inclusive of 3984 participants were included in the meta-analysis (2 quasi-randomized and 8 randomized clinical trials). Eight studies investigated education and two studies investigated hypnosis-based intervention. The pooled standardized mean differences of fear for the education intervention and hypnosis group in comparison with control group were -0.46 (95% CI -0.73 to -0.19) and -0.22 (95% CI -0.34 to -0.10), respectively. Both types of interventions were effective in reducing fear of childbirth; however our pooled results revealed that educational interventions may reduce fear with double the effect of hypnosis. Further large scale randomized clinical trials and individual patient data meta-analysis are warranted for assessing the association. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
Ding, Liang; Zhang, Yongqi; Wang, Zhiqing; Huang, Jiejie; Fang, Yitian
2014-12-01
Co-gasification of coal char and biomass char was conducted to investigate the interactions between them. And random pore model (RPM) and modified random pore model (MRPM) were applied to describe the gasification behaviors of the samples. The results show that inhibiting effect was observed during co-gasification of corn stalk char with Hulunbeier lignite coal char, while synergistic effects were observed during co-gasification of corn stalk char with Shenmu bituminous coal char and Jincheng anthracite coal char. The inhibiting effect was attributed to the intimate contact and comparable gasification rate between biomass char and coal char, and the loss of the active form of potassium caused by the formation of KAlSiO4, which was proved to be inactive during gasification. While the synergistic effect was caused by the high potassium content of biomass char and the significant difference of reaction rate between coal char and biomass char during gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Polynomial order selection in random regression models via penalizing adaptively the likelihood.
Corrales, J D; Munilla, S; Cantet, R J C
2015-08-01
Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, 'penalizing adaptively the likelihood' (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60,513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the 'true' model was within the set of candidates. © 2015 Blackwell Verlag GmbH.
Statistical analysis of effective singular values in matrix rank determination
NASA Technical Reports Server (NTRS)
Konstantinides, Konstantinos; Yao, Kung
1988-01-01
A major problem in using SVD (singular-value decomposition) as a tool in determining the effective rank of a perturbed matrix is that of distinguishing between significantly small and significantly large singular values to the end, conference regions are derived for the perturbed singular values of matrices with noisy observation data. The analysis is based on the theories of perturbations of singular values and statistical significance test. Threshold bounds for perturbation due to finite-precision and i.i.d. random models are evaluated. In random models, the threshold bounds depend on the dimension of the matrix, the noisy variance, and predefined statistical level of significance. Results applied to the problem of determining the effective order of a linear autoregressive system from the approximate rank of a sample autocorrelation matrix are considered. Various numerical examples illustrating the usefulness of these bounds and comparisons to other previously known approaches are given.
Genus Topology of Structure in the Sloan Digital Sky Survey: Model Testing
NASA Astrophysics Data System (ADS)
Gott, J. Richard, III; Hambrick, D. Clay; Vogeley, Michael S.; Kim, Juhan; Park, Changbom; Choi, Yun-Young; Cen, Renyue; Ostriker, Jeremiah P.; Nagamine, Kentaro
2008-03-01
We measure the three-dimensional topology of large-scale structure in the Sloan Digital Sky Survey (SDSS). This allows the genus statistic to be measured with unprecedented statistical accuracy. The sample size is now sufficiently large to allow the topology to be an important tool for testing galaxy formation models. For comparison, we make mock SDSS samples using several state-of-the-art N-body simulations: the Millennium run of Springel et al. (10 billion particles), the Kim & Park CDM models (1.1 billion particles), and the Cen & Ostriker hydrodynamic code models (8.6 billion cell hydro mesh). Each of these simulations uses a different method for modeling galaxy formation. The SDSS data show a genus curve that is broadly characteristic of that produced by Gaussian random-phase initial conditions. Thus, the data strongly support the standard model of inflation where Gaussian random-phase initial conditions are produced by random quantum fluctuations in the early universe. But on top of this general shape there are measurable differences produced by nonlinear gravitational effects and biasing connected with galaxy formation. The N-body simulations have been tuned to reproduce the power spectrum and multiplicity function but not topology, so topology is an acid test for these models. The data show a "meatball" shift (only partly due to the Sloan Great Wall of galaxies) that differs at the 2.5 σ level from the results of the Millenium run and the Kim & Park dark halo models, even including the effects of cosmic variance.
Particulate air pollution and panel studies in children: a systematic review
Ward, D; Ayres, J
2004-01-01
Aims: To systematically review the results of such studies in children, estimate summary measures of effect, and investigate potential sources of heterogeneity. Methods: Studies were identified by searching electronic databases to June 2002, including those where outcomes and particulate level measurements were made at least daily for ⩾8 weeks, and analysed using an appropriate regression model. Study results were compared using forest plots, and fixed and random effects summary effect estimates obtained. Publication bias was considered using a funnel plot. Results: Twenty two studies were identified, all except two reporting PM10 (24 hour mean) >50 µg.m-3. Reported effects of PM10 on PEF were widely spread and smaller than those for PM2.5 (fixed effects summary: -0.012 v -0.063 l.min-1 per µg.m-3 rise). A similar pattern was evident for symptoms. Random effects models produced larger estimates. Overall, in between-study comparisons, panels of children with diagnosed asthma or pre-existing respiratory symptoms appeared less affected by PM10 levels than those without, and effect estimates were larger where studies were conducted in higher ozone conditions. Larger PM10 effect estimates were obtained from studies using generalised estimating equations to model autocorrelation and where results were derived by pooling subject specific regression coefficients. A funnel plot of PM10 results for PEF was markedly asymmetrical. Conclusions: The majority of identified studies indicate an adverse effect of particulate air pollution that is greater for PM2.5 than PM10. However, results show considerable heterogeneity and there is evidence consistent with publication bias, so limited confidence may be placed on summary estimates of effect. The possibility of interaction between particle and ozone effects merits further investigation, as does variability due to analytical differences that alter the interpretation of final estimates. PMID:15031404
Summer School Effects in a Randomized Field Trial
ERIC Educational Resources Information Center
Zvoch, Keith; Stevens, Joseph J.
2013-01-01
This field-based randomized trial examined the effect of assignment to and participation in summer school for two moderately at-risk samples of struggling readers. Application of multiple regression models to difference scores capturing the change in summer reading fluency revealed that kindergarten students randomly assigned to summer school…
Dietary interventions to prevent and manage diabetes in worksite settings: a meta-analysis.
Shrestha, Archana; Karmacharya, Biraj Man; Khudyakov, Polyna; Weber, Mary Beth; Spiegelman, Donna
2018-01-25
The translation of lifestyle intervention to improve glucose tolerance into the workplace has been rare. The objective of this meta-analysis is to summarize the evidence for the effectiveness of dietary interventions in worksite settings on lowering blood sugar levels. We searched for studies in PubMed, Embase, Econlit, Ovid, Cochrane, Web of Science, and Cumulative Index to Nursing and Allied Health Literature. Search terms were as follows: (1) Exposure-based: nutrition/diet/dietary intervention/health promotion/primary prevention/health behavior/health education/food /program evaluation; (2) Outcome-based: diabetes/hyperglycemia/glucose/HbA1c/glycated hemoglobin; and (3) Setting-based: workplace/worksite/occupational/industry/job/employee. We manually searched review articles and reference lists of articles identified from 1969 to December 2016. We tested for between-studies heterogeneity and calculated the pooled effect sizes for changes in HbA1c (%) and fasting glucose (mg/dl) using random effect models for meta-analysis in 2016. A total of 17 articles out of 1663 initially selected articles were included in the meta-analysis. With a random-effects model, worksite dietary interventions led to a pooled -0.18% (95% CI, -0.29 to -0.06; P<0.001) difference in HbA1c. With the random-effects model, the interventions resulted in 2.60 mg/dl lower fasting glucose with borderline significance (95% CI: -5.27 to 0.08, P=0.06). In the multivariate meta-regression model, the interventions with high percent of female participants and that used the intervention directly delivered to individuals, rather the environment changes, were associated with more effective interventions. Workplace dietary interventions can improve HbA1c. The effects were larger for the interventions with greater number of female participants and with individual-level interventions.
A qualitative assessment of a random process proposed as an atmospheric turbulence model
NASA Technical Reports Server (NTRS)
Sidwell, K.
1977-01-01
A random process is formed by the product of two Gaussian processes and the sum of that product with a third Gaussian process. The resulting total random process is interpreted as the sum of an amplitude modulated process and a slowly varying, random mean value. The properties of the process are examined, including an interpretation of the process in terms of the physical structure of atmospheric motions. The inclusion of the mean value variation gives an improved representation of the properties of atmospheric motions, since the resulting process can account for the differences in the statistical properties of atmospheric velocity components and their gradients. The application of the process to atmospheric turbulence problems, including the response of aircraft dynamic systems, is examined. The effects of the mean value variation upon aircraft loads are small in most cases, but can be important in the measurement and interpretation of atmospheric turbulence data.
Cherkasov, Artem; Hilpert, Kai; Jenssen, Håvard; Fjell, Christopher D; Waldbrook, Matt; Mullaly, Sarah C; Volkmer, Rudolf; Hancock, Robert E W
2009-01-16
Increased multiple antibiotic resistance in the face of declining antibiotic discovery is one of society's most pressing health issues. Antimicrobial peptides represent a promising new class of antibiotics. Here we ask whether it is possible to make small broad spectrum peptides employing minimal assumptions, by capitalizing on accumulating chemical biology information. Using peptide array technology, two large random 9-amino-acid peptide libraries were iteratively created using the amino acid composition of the most active peptides. The resultant data was used together with Artificial Neural Networks, a powerful machine learning technique, to create quantitative in silico models of antibiotic activity. On the basis of random testing, these models proved remarkably effective in predicting the activity of 100,000 virtual peptides. The best peptides, representing the top quartile of predicted activities, were effective against a broad array of multidrug-resistant "Superbugs" with activities that were equal to or better than four highly used conventional antibiotics, more effective than the most advanced clinical candidate antimicrobial peptide, and protective against Staphylococcus aureus infections in animal models.
Bourlier, Christophe
2006-08-20
The emissivity from a stationary random rough surface is derived by taking into account the multiple reflections and the shadowing effect. The model is applied to the ocean surface. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In particular, the emissivity with zero, single, and double reflections are analytically calculated, and each contribution is studied numerically by considering a 1D sea surface observed in the near infrared band. The model is also compared with results computed from a Monte Carlo ray-tracing method.
Su, Dejun; Zhou, Junmin; Kelley, Megan S; Michaud, Tzeyu L; Siahpush, Mohammad; Kim, Jungyoon; Wilson, Fernando; Stimpson, Jim P; Pagán, José A
2016-06-01
To assess the overall effect of telemedicine on diabetes management and to identify features of telemedicine interventions that are associated with better diabetes management outcomes. Hedges's g was estimated as the summary measure of mean difference in HbA1c between patients with diabetes who went through telemedicine care and those who went through conventional, non-telemedicine care using a random-effects model. Q statistics were calculated to assess if the effect of telemedicine on diabetes management differs by types of diabetes, age groups of patients, duration of intervention, and primary telemedicine approaches used. The analysis included 55 randomized controlled trials with a total of 9258 patients with diabetes, out of which 4607 were randomized to telemedicine groups and 4651 to conventional, non-telemedicine care groups. The results favored telemedicine over conventional care (Hedges's g=-0.48, p<0.001) in diabetes management. The beneficial effect of telemedicine were more pronounced among patients with type 2 diabetes (Hedges's g=-0.63, p<0.001) than among those with type 1 diabetes (Hedges's g=-0.27, p=0.027) (Q=4.25, p=0.04). Compared to conventional care, telemedicine is more effective in improving treatment outcomes for diabetes patients, especially for those with type 2 diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Individualizing drug dosage with longitudinal data.
Zhu, Xiaolu; Qu, Annie
2016-10-30
We propose a two-step procedure to personalize drug dosage over time under the framework of a log-linear mixed-effect model. We model patients' heterogeneity using subject-specific random effects, which are treated as the realizations of an unspecified stochastic process. We extend the conditional quadratic inference function to estimate both fixed-effect coefficients and individual random effects on a longitudinal training data sample in the first step and propose an adaptive procedure to estimate new patients' random effects and provide dosage recommendations for new patients in the second step. An advantage of our approach is that we do not impose any distribution assumption on estimating random effects. Moreover, the new approach can accommodate more general time-varying covariates corresponding to random effects. We show in theory and numerical studies that the proposed method is more efficient compared with existing approaches, especially when covariates are time varying. In addition, a real data example of a clozapine study confirms that our two-step procedure leads to more accurate drug dosage recommendations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Random network model of electrical conduction in two-phase rock
NASA Astrophysics Data System (ADS)
Fuji-ta, Kiyoshi; Seki, Masayuki; Ichiki, Masahiro
2018-05-01
We developed a cell-type lattice model to clarify the interconnected conductivity mechanism of two-phase rock. We quantified electrical conduction networks in rock and evaluated electrical conductivity models of the two-phase interaction. Considering the existence ratio of conductive and resistive cells in the model, we generated natural matrix cells simulating a natural mineral distribution pattern, using Mersenne Twister random numbers. The most important and prominent feature of the model simulation is a drastic increase in the pseudo-conductivity index for conductor ratio R > 0.22. This index in the model increased from 10-4 to 100 between R = 0.22 and 0.9, a change of four orders of magnitude. We compared our model responses with results from previous model studies. Although the pseudo-conductivity computed by the model differs slightly from that of the previous model, model responses can account for the conductivity change. Our modeling is thus effective for quantitatively estimating the degree of interconnection of rock and minerals.
ERIC Educational Resources Information Center
Gutierrez, Daniel; Conley, Abigail H.; Young, Mark
2016-01-01
The authors examined whether Jyoti meditation (JM), a spiritually based meditation (Singh, 2012), influenced student counselors' (N = 60) level of stress and emotional intelligence (EI). Results from a randomized controlled trial and growth curve analysis provided a multilevel model in which JM reduced stress and EI moderated the effect.
Puttarajappa, Chethan; Wijkstrom, Martin; Ganoza, Armando; Lopez, Roberto; Tevar, Amit
2018-01-01
Background Recent studies have reported a significant decrease in wound problems and hospital stay in obese patients undergoing renal transplantation by robotic-assisted minimally invasive techniques with no difference in graft function. Objective Due to the lack of cost-benefit studies on the use of robotic-assisted renal transplantation versus open surgical procedure, the primary aim of our study is to develop a Markov model to analyze the cost-benefit of robotic surgery versus open traditional surgery in obese patients in need of a renal transplant. Methods Electronic searches will be conducted to identify studies comparing open renal transplantation versus robotic-assisted renal transplantation. Costs associated with the two surgical techniques will incorporate the expenses of the resources used for the operations. A decision analysis model will be developed to simulate a randomized controlled trial comparing three interventional arms: (1) continuation of renal replacement therapy for patients who are considered non-suitable candidates for renal transplantation due to obesity, (2) transplant recipients undergoing open transplant surgery, and (3) transplant patients undergoing robotic-assisted renal transplantation. TreeAge Pro 2017 R1 TreeAge Software, Williamstown, MA, USA) will be used to create a Markov model and microsimulation will be used to compare costs and benefits for the two competing surgical interventions. Results The model will simulate a randomized controlled trial of adult obese patients affected by end-stage renal disease undergoing renal transplantation. The absorbing state of the model will be patients' death from any cause. By choosing death as the absorbing state, we will be able simulate the population of renal transplant recipients from the day of their randomization to transplant surgery or continuation on renal replacement therapy to their death and perform sensitivity analysis around patients' age at the time of randomization to determine if age is a critical variable for cost-benefit analysis or cost-effectiveness analysis comparing renal replacement therapy, robotic-assisted surgery or open renal transplant surgery. After running the model, one of the three competing strategies will result as the most cost-beneficial or cost-effective under common circumstances. To assess the robustness of the results of the model, a multivariable probabilistic sensitivity analysis will be performed by modifying the mean values and confidence intervals of key parameters with the main intent of assessing if the winning strategy is sensitive to rigorous and plausible variations of those values. Conclusions After running the model, one of the three competing strategies will result as the most cost-beneficial or cost-effective under common circumstances. To assess the robustness of the results of the model, a multivariable probabilistic sensitivity analysis will be performed by modifying the mean values and confidence intervals of key parameters with the main intent of assessing if the winning strategy is sensitive to rigorous and plausible variations of those values. PMID:29519780
Wynn, Jonathan K.; Green, Michael F.; Sprock, Joyce; Light, Gregory A.; Widmark, Clifford; Reist, Christopher; Erhart, Stephen; Marder, Stephen R.; Mintz, Jim; Braff, David L.
2009-01-01
Prepulse inhibition (PPI), whereby the startle eyeblink response is inhibited by a relatively weak non-startling stimulus preceding the powerful startle eliciting stimulus, is a measure of sensorimotor gating and has been shown to be deficient in schizophrenia patients. There is considerable interest in whether conventional and/or atypical antipsychotic medications can “normalize” PPI deficits in schizophrenia patients. 51 schizophrenia patients participated in a randomized, double-blind controlled trial on the effects of three commonly-prescribed antipsychotic medications (risperidone, olanzapine, or haloperidol) on PPI, startle habituation, and startle reactivity. Patients were tested at baseline, Week 4 and Week 8. Mixed model regression analyses revealed that olanzapine significantly improved PPI from Week 4 to Week 8, and that at Week 8 patients receiving olanzapine produced significantly greater PPI than those receiving risperidone, but not haloperidol. There were no effects of medication on startle habituation or startle reactivity. These results support the conclusion that olanzapine effectively increased PPI in schizophrenia patients, but that risperidone and haloperidol had no such effects. The results are discussed in terms of animal models, neural substrates, and treatment implications. PMID:17662577
NASA Astrophysics Data System (ADS)
Makahinda, T.
2018-02-01
The purpose of this research is to find out the effect of learning model based on technology and assessment technique toward thermodynamic achievement by controlling students intelligence. This research is an experimental research. The sample is taken through cluster random sampling with the total respondent of 80 students. The result of the research shows that the result of learning of thermodynamics of students who taught the learning model of environmental utilization is higher than the learning result of student thermodynamics taught by simulation animation, after controlling student intelligence. There is influence of student interaction, and the subject between models of technology-based learning with assessment technique to student learning result of Thermodynamics, after controlling student intelligence. Based on the finding in the lecture then should be used a thermodynamic model of the learning environment with the use of project assessment technique.
Goedhart, Paul W; van der Voet, Hilko; Baldacchino, Ferdinando; Arpaia, Salvatore
2014-04-01
Genetic modification of plants may result in unintended effects causing potentially adverse effects on the environment. A comparative safety assessment is therefore required by authorities, such as the European Food Safety Authority, in which the genetically modified plant is compared with its conventional counterpart. Part of the environmental risk assessment is a comparative field experiment in which the effect on non-target organisms is compared. Statistical analysis of such trials come in two flavors: difference testing and equivalence testing. It is important to know the statistical properties of these, for example, the power to detect environmental change of a given magnitude, before the start of an experiment. Such prospective power analysis can best be studied by means of a statistical simulation model. This paper describes a general framework for simulating data typically encountered in environmental risk assessment of genetically modified plants. The simulation model, available as Supplementary Material, can be used to generate count data having different statistical distributions possibly with excess-zeros. In addition the model employs completely randomized or randomized block experiments, can be used to simulate single or multiple trials across environments, enables genotype by environment interaction by adding random variety effects, and finally includes repeated measures in time following a constant, linear or quadratic pattern in time possibly with some form of autocorrelation. The model also allows to add a set of reference varieties to the GM plants and its comparator to assess the natural variation which can then be used to set limits of concern for equivalence testing. The different count distributions are described in some detail and some examples of how to use the simulation model to study various aspects, including a prospective power analysis, are provided.
Goedhart, Paul W; van der Voet, Hilko; Baldacchino, Ferdinando; Arpaia, Salvatore
2014-01-01
Genetic modification of plants may result in unintended effects causing potentially adverse effects on the environment. A comparative safety assessment is therefore required by authorities, such as the European Food Safety Authority, in which the genetically modified plant is compared with its conventional counterpart. Part of the environmental risk assessment is a comparative field experiment in which the effect on non-target organisms is compared. Statistical analysis of such trials come in two flavors: difference testing and equivalence testing. It is important to know the statistical properties of these, for example, the power to detect environmental change of a given magnitude, before the start of an experiment. Such prospective power analysis can best be studied by means of a statistical simulation model. This paper describes a general framework for simulating data typically encountered in environmental risk assessment of genetically modified plants. The simulation model, available as Supplementary Material, can be used to generate count data having different statistical distributions possibly with excess-zeros. In addition the model employs completely randomized or randomized block experiments, can be used to simulate single or multiple trials across environments, enables genotype by environment interaction by adding random variety effects, and finally includes repeated measures in time following a constant, linear or quadratic pattern in time possibly with some form of autocorrelation. The model also allows to add a set of reference varieties to the GM plants and its comparator to assess the natural variation which can then be used to set limits of concern for equivalence testing. The different count distributions are described in some detail and some examples of how to use the simulation model to study various aspects, including a prospective power analysis, are provided. PMID:24834325
NASA Astrophysics Data System (ADS)
Li, Lan; Zheng, Huai; Yuan, Chao; Hu, Run; Luo, Xiaobing
2016-12-01
The silicone/phosphor composite is widely used in light emitting diode (LED) packaging. The composite thermal properties, especially the effective thermal conductivity, strongly influence the LED performance. In this paper, a lattice Boltzmann model was presented to predict the silicone/phosphor composite effective thermal conductivity. Based on the present lattice Boltzmann model, a random generation method was established to describe the phosphor particle distribution in composite. Benchmarks were conducted by comparing the simulation results with theoretical solutions for simple cases. Then the model was applied to analyze the effective thermal conductivity of the silicone/phosphor composite and its size effect. The deviations between simulation and experimental results are <7 %, when the phosphor volume fraction varies from 0.038 to 0.45. The simulation results also indicate that effective thermal conductivity of the composite with larger particles is higher than that with small particles at the same volume fraction. While mixing these two sizes of phosphor particles provides an extra enhancement for the effective thermal conductivity.
Random-effects meta-analysis: the number of studies matters.
Guolo, Annamaria; Varin, Cristiano
2017-06-01
This paper investigates the impact of the number of studies on meta-analysis and meta-regression within the random-effects model framework. It is frequently neglected that inference in random-effects models requires a substantial number of studies included in meta-analysis to guarantee reliable conclusions. Several authors warn about the risk of inaccurate results of the traditional DerSimonian and Laird approach especially in the common case of meta-analysis involving a limited number of studies. This paper presents a selection of likelihood and non-likelihood methods for inference in meta-analysis proposed to overcome the limitations of the DerSimonian and Laird procedure, with a focus on the effect of the number of studies. The applicability and the performance of the methods are investigated in terms of Type I error rates and empirical power to detect effects, according to scenarios of practical interest. Simulation studies and applications to real meta-analyses highlight that it is not possible to identify an approach uniformly superior to alternatives. The overall recommendation is to avoid the DerSimonian and Laird method when the number of meta-analysis studies is modest and prefer a more comprehensive procedure that compares alternative inferential approaches. R code for meta-analysis according to all of the inferential methods examined in the paper is provided.
Comparative effectiveness research in cancer with observational data.
Giordano, Sharon H
2015-01-01
Observational studies are increasingly being used for comparative effectiveness research. These studies can have the greatest impact when randomized trials are not feasible or when randomized studies have not included the population or outcomes of interest. However, careful attention must be paid to study design to minimize the likelihood of selection biases. Analytic techniques, such as multivariable regression modeling, propensity score analysis, and instrumental variable analysis, also can also be used to help address confounding. Oncology has many existing large and clinically rich observational databases that can be used for comparative effectiveness research. With careful study design, observational studies can produce valid results to assess the benefits and harms of a treatment or intervention in representative real-world populations.
Edwards, S J; Lind, T; Lundell, L
2006-09-01
No randomized controlled trial has compared all the licensed standard dose proton pump inhibitors in the healing of reflux oesophagitis. To compare the effectiveness of esomeprazole with licensed standard dose proton pump inhibitors for healing of reflux oesophagitis (i.e. lansoprazole 30 mg, omeprazole 20 mg, pantoprazole 40 mg and rabeprazole 20 mg). Systematic review of CENTRAL, BIOSIS, EMBASE and MEDLINE for randomized controlled trials in patients with reflux oesophagitis. Searching was completed in February 2005. Data on endoscopic healing rates at 4 and 8 weeks were extracted and re-analysed if not analysed by intention-to-treat. Meta-analysis was conducted using a fixed effects model. Of 133 papers identified in the literature search, six were of sufficient quality to be included in the analysis. No studies were identified comparing rabeprazole with esomeprazole. A meta-analysis of healing rates of esomeprazole 40 mg compared with standard dose proton pump inhibitors gave the following results: at 4 weeks [relative risk (RR) 0.92; 95% CI: 0.90, 0.94; P < 0.00001], and 8 weeks (RR 0.95; 95% CI: 0.94, 0.97; P < 0.00001). Publication bias did not have a significant impact on the results. The results were robust to changes in the inclusion/exclusion criteria and using a random effects model. Esomeprazole consistently demonstrates higher healing rates when compared with standard dose proton pump inhibitors.
Bohmanova, J; Miglior, F; Jamrozik, J; Misztal, I; Sullivan, P G
2008-09-01
A random regression model with both random and fixed regressions fitted by Legendre polynomials of order 4 was compared with 3 alternative models fitting linear splines with 4, 5, or 6 knots. The effects common for all models were a herd-test-date effect, fixed regressions on days in milk (DIM) nested within region-age-season of calving class, and random regressions for additive genetic and permanent environmental effects. Data were test-day milk, fat and protein yields, and SCS recorded from 5 to 365 DIM during the first 3 lactations of Canadian Holstein cows. A random sample of 50 herds consisting of 96,756 test-day records was generated to estimate variance components within a Bayesian framework via Gibbs sampling. Two sets of genetic evaluations were subsequently carried out to investigate performance of the 4 models. Models were compared by graphical inspection of variance functions, goodness of fit, error of prediction of breeding values, and stability of estimated breeding values. Models with splines gave lower estimates of variances at extremes of lactations than the model with Legendre polynomials. Differences among models in goodness of fit measured by percentages of squared bias, correlations between predicted and observed records, and residual variances were small. The deviance information criterion favored the spline model with 6 knots. Smaller error of prediction and higher stability of estimated breeding values were achieved by using spline models with 5 and 6 knots compared with the model with Legendre polynomials. In general, the spline model with 6 knots had the best overall performance based upon the considered model comparison criteria.
Wyman, Peter A.; Brown, C Hendricks; Inman, Jeff; Cross, Wendi; Schmeelk-Cone, Karen; Guo, Jing; Pena, Juan B.
2009-01-01
Gatekeeper-training programs, designed to increase identification and referral of suicidal individuals, are widespread but largely untested. A group-based randomized trial with 32 schools examined impact of QPR (Question, Persuade, Refer) training on a stratified random sample of 249 staff with one-year average follow-up. To test QPR impact, we introduced and contrasted two models of gatekeeper-training effects in a population: Gatekeeper Surveillance and Gatekeeper Communication. Intent-to-treat analyses showed that training increased self-reported knowledge (ES 0.41) and appraisals of efficacy (ES 1.22) and service access (ES 1.07). Training effects varied dramatically. Appraisals increased most for staff with lowest baseline appraisals, and suicide identification behaviors increased most for staff already communicating with students about suicide and distress. Consistent with the Communication model, increased knowledge and appraisals were not sufficient to increase suicide identification behaviors. Also consistent with the Communication model were results from 2,059 8th and 10th graders surveyed showing that fewer with prior suicide attempts endorsed talking to adults about distress. Skill training for staff serving as ‘natural-gatekeepers’ plus interventions that modify students’ help-seeking behaviors are recommended to supplement universal gatekeeper training. PMID:18229988
High-Throughput Analysis of Ovarian Cycle Disruption by Mixtures of Aromatase Inhibitors
Golbamaki-Bakhtyari, Nazanin; Kovarich, Simona; Tebby, Cleo; Gabb, Henry A.; Lemazurier, Emmanuel
2017-01-01
Background: Combining computational toxicology with ExpoCast exposure estimates and ToxCast™ assay data gives us access to predictions of human health risks stemming from exposures to chemical mixtures. Objectives: We explored, through mathematical modeling and simulations, the size of potential effects of random mixtures of aromatase inhibitors on the dynamics of women's menstrual cycles. Methods: We simulated random exposures to millions of potential mixtures of 86 aromatase inhibitors. A pharmacokinetic model of intake and disposition of the chemicals predicted their internal concentration as a function of time (up to 2 y). A ToxCast™ aromatase assay provided concentration–inhibition relationships for each chemical. The resulting total aromatase inhibition was input to a mathematical model of the hormonal hypothalamus–pituitary–ovarian control of ovulation in women. Results: Above 10% inhibition of estradiol synthesis by aromatase inhibitors, noticeable (eventually reversible) effects on ovulation were predicted. Exposures to individual chemicals never led to such effects. In our best estimate, ∼10% of the combined exposures simulated had mild to catastrophic impacts on ovulation. A lower bound on that figure, obtained using an optimistic exposure scenario, was 0.3%. Conclusions: These results demonstrate the possibility to predict large-scale mixture effects for endocrine disrupters with a predictive toxicology approach that is suitable for high-throughput ranking and risk assessment. The size of the effects predicted is consistent with an increased risk of infertility in women from everyday exposures to our chemical environment. https://doi.org/10.1289/EHP742 PMID:28886606
Baseline adjustments for binary data in repeated cross-sectional cluster randomized trials.
Nixon, R M; Thompson, S G
2003-09-15
Analysis of covariance models, which adjust for a baseline covariate, are often used to compare treatment groups in a controlled trial in which individuals are randomized. Such analysis adjusts for any baseline imbalance and usually increases the precision of the treatment effect estimate. We assess the value of such adjustments in the context of a cluster randomized trial with repeated cross-sectional design and a binary outcome. In such a design, a new sample of individuals is taken from the clusters at each measurement occasion, so that baseline adjustment has to be at the cluster level. Logistic regression models are used to analyse the data, with cluster level random effects to allow for different outcome probabilities in each cluster. We compare the estimated treatment effect and its precision in models that incorporate a covariate measuring the cluster level probabilities at baseline and those that do not. In two data sets, taken from a cluster randomized trial in the treatment of menorrhagia, the value of baseline adjustment is only evident when the number of subjects per cluster is large. We assess the generalizability of these findings by undertaking a simulation study, and find that increased precision of the treatment effect requires both large cluster sizes and substantial heterogeneity between clusters at baseline, but baseline imbalance arising by chance in a randomized study can always be effectively adjusted for. Copyright 2003 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sulistianingsih, E.; Kiftiah, M.; Rosadi, D.; Wahyuni, H.
2017-04-01
Gross Domestic Product (GDP) is an indicator of economic growth in a region. GDP is a panel data, which consists of cross-section and time series data. Meanwhile, panel regression is a tool which can be utilised to analyse panel data. There are three models in panel regression, namely Common Effect Model (CEM), Fixed Effect Model (FEM) and Random Effect Model (REM). The models will be chosen based on results of Chow Test, Hausman Test and Lagrange Multiplier Test. This research analyses palm oil about production, export, and government consumption to five district GDP are in West Kalimantan, namely Sanggau, Sintang, Sambas, Ketapang and Bengkayang by panel regression. Based on the results of analyses, it concluded that REM, which adjusted-determination-coefficient is 0,823, is the best model in this case. Also, according to the result, only Export and Government Consumption that influence GDP of the districts.
Vuilleumier, Pascal H.; Besson, Marie; Desmeules, Jules; Arendt-Nielsen, Lars; Curatolo, Michele
2013-01-01
Background and Aims Compounds that act on GABA-receptors produce anti-hyperalgesia in animal models, but little is known on their effects in humans. The aim of this study was to explore the potential usefulness of GABA-agonism for the control of pain in humans. Two agonists at the benzodiazepine-binding site of GABAA-receptors (clobazam and clonazepam) were studied using multiple experimental pain tests. Positive results would support further investigation of GABA agonism for the control of clinical pain. Methods In a randomized double-blind crossover design, 16 healthy male volunteers received clobazam 20 mg, clonazepam 1 mg and tolterodine 1 mg (active placebo). The area of static hyperalgesia after intradermal capsaicin injection was the primary endpoint. Secondary endpoints were: area of dynamic hyperalgesia, response to von Frey hair stimulation, pressure pain thresholds, conditioned pain modulation, cutaneous and intramuscular electrical pain thresholds (1, 5 and 20 repeated stimulation), and pain during cuff algometry. Results For the primary endpoint, an increase in the area of static hyperalgesia was observed after administration of placebo (p<0.001), but not after clobazam and clonazepam. Results suggestive for an anti-hyperalgesic effect of the benzodiazepines were obtained with all three intramuscular pain models and with cuff algometry. No effect could be detected with the other pain models employed. Conclusions Collectively, the results are suggestive for a possible anti-hyperalgesic effect of drugs acting at the GABAA-receptors in humans, particularly in models of secondary hyperalgesia and deep pain. The findings are not conclusive, but support further clinical research on pain modulation by GABAergic drugs. Because of the partial results, future research should focus on compounds acting selectively on subunits of the GABA complex, which may allow the achievement of higher receptor occupancy than unselective drugs. Our data also provide information on the most suitable experimental models for future investigation of GABAergic compounds. Trial Registration ClinicalTrials.gov NCT01011036 PMID:23554851
NASA Astrophysics Data System (ADS)
Lewis, M. A.; McKenzie, H.; Merrill, E.
2010-12-01
In this talk I will outline first passage time analysis for animals undertaking complex movement patterns, and will demonstrate how first passage time can be used to derive functional responses in predator prey systems. The result is a new approach to understanding type III functional responses based on a random walk model. I will extend the analysis to heterogeneous environments to assess the effects of linear features on functional responses in wolves and elk using GPS tracking data.
A unifying framework for marginalized random intercept models of correlated binary outcomes
Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian M.
2013-01-01
We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood-based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data with exchangeable correlation structures. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized random intercept models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts. PMID:25342871
Rivera, Margarita; Locke, Adam E.; Corre, Tanguy; Czamara, Darina; Wolf, Christiane; Ching-Lopez, Ana; Milaneschi, Yuri; Kloiber, Stefan; Cohen-Woods, Sara; Rucker, James; Aitchison, Katherine J.; Bergmann, Sven; Boomsma, Dorret I.; Craddock, Nick; Gill, Michael; Holsboer, Florian; Hottenga, Jouke-Jan; Korszun, Ania; Kutalik, Zoltan; Lucae, Susanne; Maier, Wolfgang; Mors, Ole; Müller-Myhsok, Bertram; Owen, Michael J.; Penninx, Brenda W. J. H.; Preisig, Martin; Rice, John; Rietschel, Marcella; Tozzi, Federica; Uher, Rudolf; Vollenweider, Peter; Waeber, Gerard; Willemsen, Gonneke; Craig, Ian W.; Farmer, Anne E.; Lewis, Cathryn M.; Breen, Gerome; McGuffin, Peter
2017-01-01
Background Depression and obesity are highly prevalent, and major impacts on public health frequently co-occur. Recently, we reported that having depression moderates the effect of the FTO gene, suggesting its implication in the association between depression and obesity. Aims To confirm these findings by investigating the FTO polymorphism rs9939609 in new cohorts, and subsequently in a meta-analysis. Method The sample consists of 6902 individuals with depression and 6799 controls from three replication cohorts and two original discovery cohorts. Linear regression models were performed to test for association between rs9939609 and body mass index (BMI), and for the interaction between rs9939609 and depression status for an effect on BMI. Fixed and random effects meta-analyses were performed using METASOFT. Results In the replication cohorts, we observed a significant interaction between FTO, BMI and depression with fixed effects meta-analysis (β = 0.12, P = 2.7 × 10−4) and with the Han/Eskin random effects method (P = 1.4 × 10−7) but not with traditional random effects (β = 0.1, P = 0.35). When combined with the discovery cohorts, random effects meta-analysis also supports the interaction (β = 0.12, P = 0.027) being highly significant based on the Han/Eskin model (P = 6.9 × 10−8). On average, carriers of the risk allele who have depression have a 2.2% higher BMI for each risk allele, over and above the main effect of FTO. Conclusions This meta-analysis provides additional support for a significant interaction between FTO, depression and BMI, indicating that depression increases the effect of FTO on BMI. The findings provide a useful starting point in understanding the biological mechanism involved in the association between obesity and depression. PMID:28642257
Pugliese, Laura; Woodriff, Molly; Crowley, Olga; Lam, Vivian; Sohn, Jeremy; Bradley, Scott
2016-03-16
Rising rates of smartphone ownership highlight opportunities for improved mobile application usage in clinical trials. While current methods call for device provisioning, the "bring your own device" (BYOD) model permits participants to use personal phones allowing for improved patient engagement and lowered operational costs. However, more evidence is needed to demonstrate the BYOD model's feasibility in research settings. To assess if CentrosHealth, a mobile application designed to support trial compliance, produces different outcomes in medication adherence and application engagement when distributed through study-provisioned devices compared to the BYOD model. 87 participants were randomly selected to use the mobile application or no intervention for a 28-day pilot study at a 2:1 randomization ratio (2 intervention: 1 control) and asked to consume a twice-daily probiotic supplement. The application users were further randomized into two groups: receiving the application on a personal "BYOD" or study-provided smartphone. In-depth interviews were performed in a randomly-selected subset of the intervention group (five BYOD and five study-provided smartphone users). The BYOD subgroup showed significantly greater engagement than study-provided phone users, as shown by higher application use frequency and duration over the study period. The BYOD subgroup also demonstrated a significant effect of engagement on medication adherence for number of application sessions (unstandardized regression coefficient beta=0.0006, p=0.02) and time spent therein (beta=0.00001, p=0.03). Study-provided phone users showed higher initial adherence rates, but greater decline (5.7%) than BYOD users (0.9%) over the study period. In-depth interviews revealed that participants preferred the BYOD model over using study-provided devices. Results indicate that the BYOD model is feasible in health research settings and improves participant experience, calling for further BYOD model validity assessment. Although group differences in medication adherence decline were insignificant, the greater trend of decline in provisioned device users warrants further investigation to determine if trends reach significance over time. Significantly higher application engagement rates and effect of engagement on medication adherence in the BYOD subgroup similarly imply that greater application engagement may correlate to better medication adherence over time.
Bolland, Mark J.; Grey, Andrew; Gamble, Greg D.; Reid, Ian R.
2015-01-01
Background Observational studies (OS) and randomized controlled trials (RCTs) often report discordant results. In the Women’s Health Initiative Calcium and Vitamin D (WHI CaD) RCT, women were randomly assigned to CaD or placebo, but were permitted to use personal calcium and vitamin D supplements, creating a unique opportunity to compare results from randomized and observational analyses within the same study. Methods WHI CaD was a 7-year RCT of 1g calcium/400IU vitamin D daily in 36,282 post-menopausal women. We assessed the effects of CaD on cardiovascular events, death, cancer and fracture in a randomized design- comparing CaD with placebo in 43% of women not using personal calcium or vitamin D supplements- and in a observational design- comparing women in the placebo group (44%) using personal calcium and vitamin D supplements with non-users. Incidence was assessed using Cox proportional hazards models, and results from the two study designs deemed concordant if the absolute difference in hazard ratios was ≤0.15. We also compared results from WHI CaD to those from the WHI Observational Study(WHI OS), which used similar methodology for analyses and recruited from the same population. Results In WHI CaD, for myocardial infarction and stroke, results of unadjusted and 6/8 covariate-controlled observational analyses (age-adjusted, multivariate-adjusted, propensity-adjusted, propensity-matched) were not concordant with the randomized design results. For death, hip and total fracture, colorectal and total cancer, unadjusted and covariate-controlled observational results were concordant with randomized results. For breast cancer, unadjusted and age-adjusted observational results were concordant with randomized results, but only 1/3 other covariate-controlled observational results were concordant with randomized results. Multivariate-adjusted results from WHI OS were concordant with randomized WHI CaD results for only 4/8 endpoints. Conclusions Results of randomized analyses in WHI CaD were concordant with observational analyses for 5/8 endpoints in WHI CaD and 4/8 endpoints in WHI OS. PMID:26440516
KiVa Anti-Bullying Program in Italy: Evidence of Effectiveness in a Randomized Control Trial.
Nocentini, Annalaura; Menesini, Ersilia
2016-11-01
The present study aims to evaluate the effectiveness of the KiVa anti-bullying program in Italy through a randomized control trial of students in grades 4 and 6. The sample involved 2042 students (51 % female; grade 4, mean age = 8.85; ds = 0.43; grade 6, mean age = 10.93; ds = 0.50); 13 comprehensive schools were randomly assigned into intervention (KiVa) or control (usual school provision) conditions. Different outcomes (bullying, victimization, pro-bullying attitudes, pro-victim attitudes, empathy toward victims), analyses (longitudinal mixed model with multiple-item scales; longitudinal prevalence of bullies and victims using Olweus' single question), and estimates of effectiveness (Cohen's d; odds ratios) were considered in order to compare the Italian results with those from other countries. Multilevel models showed that KiVa reduced bullying and victimization and increased pro-victim attitudes and empathy toward the victim in grade 4, with effect sizes from 0.24 to 0.40. In grade 6, KiVa reduced bullying, victimization, and pro-bullying attitudes; the effects were smaller as compared to grade 4, yet significant (d ≥ 0.20). Finally, using Olweus dichotomous definition of bullies and victims, results showed that the odds of being a victim were 1.93 times higher for a control student than for a KiVa student in grade 4. Overall, the findings provide evidence of the effectiveness of the program in Italy; the discussion will focus on factors that influenced successfully the transportability of the KiVa program in Italy.
Firm-Related Training Tracks: A Random Effects Ordered Probit Model
ERIC Educational Resources Information Center
Groot, Wim; van den Brink, Henriette Maassen
2003-01-01
A random effects ordered response model of training is estimated to analyze the existence of training tracks and time varying coefficients in training frequency. Two waves of a Dutch panel survey of workers are used covering the period 1992-1996. The amount of training received by workers increased during the period 1994-1996 compared to…
ERIC Educational Resources Information Center
Jia, Yue; Stokes, Lynne; Harris, Ian; Wang, Yan
2011-01-01
Estimation of parameters of random effects models from samples collected via complex multistage designs is considered. One way to reduce estimation bias due to unequal probabilities of selection is to incorporate sampling weights. Many researchers have been proposed various weighting methods (Korn, & Graubard, 2003; Pfeffermann, Skinner,…
A comparison of methods for estimating the random effects distribution of a linear mixed model.
Ghidey, Wendimagegn; Lesaffre, Emmanuel; Verbeke, Geert
2010-12-01
This article reviews various recently suggested approaches to estimate the random effects distribution in a linear mixed model, i.e. (1) the smoothing by roughening approach of Shen and Louis,(1) (2) the semi-non-parametric approach of Zhang and Davidian,(2) (3) the heterogeneity model of Verbeke and Lesaffre( 3) and (4) a flexible approach of Ghidey et al. (4) These four approaches are compared via an extensive simulation study. We conclude that for the considered cases, the approach of Ghidey et al. (4) often shows to have the smallest integrated mean squared error for estimating the random effects distribution. An analysis of a longitudinal dental data set illustrates the performance of the methods in a practical example.
Gene–Environment Correlation: Difficulties and a Natural Experiment–Based Strategy
Li, Jiang; Liu, Hexuan; Guo, Guang
2013-01-01
Objectives. We explored how gene–environment correlations can result in endogenous models, how natural experiments can protect against this threat, and if unbiased estimates from natural experiments are generalizable to other contexts. Methods. We compared a natural experiment, the College Roommate Study, which measured genes and behaviors of college students and their randomly assigned roommates in a southern public university, with observational data from the National Longitudinal Study of Adolescent Health in 2008. We predicted exposure to exercising peers using genetic markers and estimated environmental effects on alcohol consumption. A mixed-linear model estimated an alcohol consumption variance that was attributable to genetic markers and across peer environments. Results. Peer exercise environment was associated with respondent genotype in observational data, but not in the natural experiment. The effects of peer drinking and presence of a general gene–environment interaction were similar between data sets. Conclusions. Natural experiments, like random roommate assignment, could protect against potential bias introduced by gene–environment correlations. When combined with representative observational data, unbiased and generalizable causal effects could be estimated. PMID:23927502
2014-01-01
Background Robotic-assisted laparoscopy is popularly performed for colorectal disease. The objective of this meta-analysis was to compare the safety and efficacy of robotic-assisted colorectal surgery (RCS) and laparoscopic colorectal surgery (LCS) for colorectal disease based on randomized controlled trial studies. Methods Literature searches of electronic databases (Pubmed, Web of Science, and Cochrane Library) were performed to identify randomized controlled trial studies that compared the clinical or oncologic outcomes of RCS and LCS. This meta-analysis was performed using the Review Manager (RevMan) software (version 5.2) that is provided by the Cochrane Collaboration. The data used were mean differences and odds ratios for continuous and dichotomous variables, respectively. Fixed-effects or random-effects models were adopted according to heterogeneity. Results Four randomized controlled trial studies were identified for this meta-analysis. In total, 110 patients underwent RCS, and 116 patients underwent LCS. The results revealed that estimated blood losses (EBLs), conversion rates and times to the recovery of bowel function were significantly reduced following RCS compared with LCS. There were no significant differences in complication rates, lengths of hospital stays, proximal margins, distal margins or harvested lymph nodes between the two techniques. Conclusions RCS is a promising technique and is a safe and effective alternative to LCS for colorectal surgery. The advantages of RCS include reduced EBLs, lower conversion rates and shorter times to the recovery of bowel function. Further studies are required to define the financial effects of RCS and the effects of RCS on long-term oncologic outcomes. PMID:24767102
Bignardi, A B; El Faro, L; Torres Júnior, R A A; Cardoso, V L; Machado, P F; Albuquerque, L G
2011-10-31
We analyzed 152,145 test-day records from 7317 first lactations of Holstein cows recorded from 1995 to 2003. Our objective was to model variations in test-day milk yield during the first lactation of Holstein cows by random regression model (RRM), using various functions in order to obtain adequate and parsimonious models for the estimation of genetic parameters. Test-day milk yields were grouped into weekly classes of days in milk, ranging from 1 to 44 weeks. The contemporary groups were defined as herd-test-day. The analyses were performed using a single-trait RRM, including the direct additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. The mean trend of milk yield was modeled with a fourth-order orthogonal Legendre polynomial. The additive genetic and permanent environmental covariance functions were estimated by random regression on two parametric functions, Ali and Schaeffer and Wilmink, and on B-spline functions of days in milk. The covariance components and the genetic parameters were estimated by the restricted maximum likelihood method. Results from RRM parametric and B-spline functions were compared to RRM on Legendre polynomials and with a multi-trait analysis, using the same data set. Heritability estimates presented similar trends during mid-lactation (13 to 31 weeks) and between week 37 and the end of lactation, for all RRM. Heritabilities obtained by multi-trait analysis were of a lower magnitude than those estimated by RRM. The RRMs with a higher number of parameters were more useful to describe the genetic variation of test-day milk yield throughout the lactation. RRM using B-spline and Legendre polynomials as base functions appears to be the most adequate to describe the covariance structure of the data.
Bolland, Mark J; Grey, Andrew; Gamble, Greg D; Reid, Ian R
2015-01-01
Observational studies (OS) and randomized controlled trials (RCTs) often report discordant results. In the Women's Health Initiative Calcium and Vitamin D (WHI CaD) RCT, women were randomly assigned to CaD or placebo, but were permitted to use personal calcium and vitamin D supplements, creating a unique opportunity to compare results from randomized and observational analyses within the same study. WHI CaD was a 7-year RCT of 1g calcium/400IU vitamin D daily in 36,282 post-menopausal women. We assessed the effects of CaD on cardiovascular events, death, cancer and fracture in a randomized design- comparing CaD with placebo in 43% of women not using personal calcium or vitamin D supplements- and in a observational design- comparing women in the placebo group (44%) using personal calcium and vitamin D supplements with non-users. Incidence was assessed using Cox proportional hazards models, and results from the two study designs deemed concordant if the absolute difference in hazard ratios was ≤0.15. We also compared results from WHI CaD to those from the WHI Observational Study(WHI OS), which used similar methodology for analyses and recruited from the same population. In WHI CaD, for myocardial infarction and stroke, results of unadjusted and 6/8 covariate-controlled observational analyses (age-adjusted, multivariate-adjusted, propensity-adjusted, propensity-matched) were not concordant with the randomized design results. For death, hip and total fracture, colorectal and total cancer, unadjusted and covariate-controlled observational results were concordant with randomized results. For breast cancer, unadjusted and age-adjusted observational results were concordant with randomized results, but only 1/3 other covariate-controlled observational results were concordant with randomized results. Multivariate-adjusted results from WHI OS were concordant with randomized WHI CaD results for only 4/8 endpoints. Results of randomized analyses in WHI CaD were concordant with observational analyses for 5/8 endpoints in WHI CaD and 4/8 endpoints in WHI OS.
Bakbergenuly, Ilyas; Kulinskaya, Elena; Morgenthaler, Stephan
2016-07-01
We study bias arising as a result of nonlinear transformations of random variables in random or mixed effects models and its effect on inference in group-level studies or in meta-analysis. The findings are illustrated on the example of overdispersed binomial distributions, where we demonstrate considerable biases arising from standard log-odds and arcsine transformations of the estimated probability p̂, both for single-group studies and in combining results from several groups or studies in meta-analysis. Our simulations confirm that these biases are linear in ρ, for small values of ρ, the intracluster correlation coefficient. These biases do not depend on the sample sizes or the number of studies K in a meta-analysis and result in abysmal coverage of the combined effect for large K. We also propose bias-correction for the arcsine transformation. Our simulations demonstrate that this bias-correction works well for small values of the intraclass correlation. The methods are applied to two examples of meta-analyses of prevalence. © 2016 The Authors. Biometrical Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.
A meta-analysis of Th2 pathway genetic variants and risk for allergic rhinitis.
Bunyavanich, Supinda; Shargorodsky, Josef; Celedón, Juan C
2011-06-01
There is a significant genetic contribution to allergic rhinitis (AR). Genetic association studies for AR have been performed, but varying results make it challenging to decipher the overall potential effect of specific variants. The Th2 pathway plays an important role in the immunological development of AR. We performed meta-analyses of genetic association studies of variants in Th2 pathway genes and AR. PubMed and Phenopedia were searched by double extraction for original studies on Th2 pathway-related genetic polymorphisms and their associations with AR. A meta-analysis was conducted on each genetic polymorphism with data meeting our predetermined selection criteria. Analyses were performed using both fixed and random effects models, with stratification by age group, ethnicity, and AR definition where appropriate. Heterogeneity and publication bias were assessed. Six independent studies analyzing three candidate polymorphisms and involving a total of 1596 cases and 2892 controls met our inclusion criteria. Overall, the A allele of IL13 single nucleotide polymorphism (SNP) rs20541 was associated with increased odds of AR (estimated OR=1.2; 95% CI 1.1-1.3, p-value 0.004 in fixed effects model, 95% CI 1.0-1.5, p-value 0.056 in random effects model). The A allele of rs20541 was associated with increased odds of AR in mixed age groups using both fixed effects and random effects modeling. IL13 SNP rs1800925 and IL4R SNP 1801275 did not demonstrate overall associations with AR. We conclude that there is evidence for an overall association between IL13 SNP rs20541 and increased risk of AR, especially in mixed-age populations. © 2011 John Wiley & Sons A/S.
A random rule model of surface growth
NASA Astrophysics Data System (ADS)
Mello, Bernardo A.
2015-02-01
Stochastic models of surface growth are usually based on randomly choosing a substrate site to perform iterative steps, as in the etching model, Mello et al. (2001) [5]. In this paper I modify the etching model to perform sequential, instead of random, substrate scan. The randomicity is introduced not in the site selection but in the choice of the rule to be followed in each site. The change positively affects the study of dynamic and asymptotic properties, by reducing the finite size effect and the short-time anomaly and by increasing the saturation time. It also has computational benefits: better use of the cache memory and the possibility of parallel implementation.
Zhang, Peng; Luo, Dandan; Li, Pengfei; Sharpsten, Lucie; Medeiros, Felipe A.
2015-01-01
Glaucoma is a progressive disease due to damage in the optic nerve with associated functional losses. Although the relationship between structural and functional progression in glaucoma is well established, there is disagreement on how this association evolves over time. In addressing this issue, we propose a new class of non-Gaussian linear-mixed models to estimate the correlations among subject-specific effects in multivariate longitudinal studies with a skewed distribution of random effects, to be used in a study of glaucoma. This class provides an efficient estimation of subject-specific effects by modeling the skewed random effects through the log-gamma distribution. It also provides more reliable estimates of the correlations between the random effects. To validate the log-gamma assumption against the usual normality assumption of the random effects, we propose a lack-of-fit test using the profile likelihood function of the shape parameter. We apply this method to data from a prospective observation study, the Diagnostic Innovations in Glaucoma Study, to present a statistically significant association between structural and functional change rates that leads to a better understanding of the progression of glaucoma over time. PMID:26075565
Bias and inference from misspecified mixed-effect models in stepped wedge trial analysis.
Thompson, Jennifer A; Fielding, Katherine L; Davey, Calum; Aiken, Alexander M; Hargreaves, James R; Hayes, Richard J
2017-10-15
Many stepped wedge trials (SWTs) are analysed by using a mixed-effect model with a random intercept and fixed effects for the intervention and time periods (referred to here as the standard model). However, it is not known whether this model is robust to misspecification. We simulated SWTs with three groups of clusters and two time periods; one group received the intervention during the first period and two groups in the second period. We simulated period and intervention effects that were either common-to-all or varied-between clusters. Data were analysed with the standard model or with additional random effects for period effect or intervention effect. In a second simulation study, we explored the weight given to within-cluster comparisons by simulating a larger intervention effect in the group of the trial that experienced both the control and intervention conditions and applying the three analysis models described previously. Across 500 simulations, we computed bias and confidence interval coverage of the estimated intervention effect. We found up to 50% bias in intervention effect estimates when period or intervention effects varied between clusters and were treated as fixed effects in the analysis. All misspecified models showed undercoverage of 95% confidence intervals, particularly the standard model. A large weight was given to within-cluster comparisons in the standard model. In the SWTs simulated here, mixed-effect models were highly sensitive to departures from the model assumptions, which can be explained by the high dependence on within-cluster comparisons. Trialists should consider including a random effect for time period in their SWT analysis model. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Bias and inference from misspecified mixed‐effect models in stepped wedge trial analysis
Fielding, Katherine L.; Davey, Calum; Aiken, Alexander M.; Hargreaves, James R.; Hayes, Richard J.
2017-01-01
Many stepped wedge trials (SWTs) are analysed by using a mixed‐effect model with a random intercept and fixed effects for the intervention and time periods (referred to here as the standard model). However, it is not known whether this model is robust to misspecification. We simulated SWTs with three groups of clusters and two time periods; one group received the intervention during the first period and two groups in the second period. We simulated period and intervention effects that were either common‐to‐all or varied‐between clusters. Data were analysed with the standard model or with additional random effects for period effect or intervention effect. In a second simulation study, we explored the weight given to within‐cluster comparisons by simulating a larger intervention effect in the group of the trial that experienced both the control and intervention conditions and applying the three analysis models described previously. Across 500 simulations, we computed bias and confidence interval coverage of the estimated intervention effect. We found up to 50% bias in intervention effect estimates when period or intervention effects varied between clusters and were treated as fixed effects in the analysis. All misspecified models showed undercoverage of 95% confidence intervals, particularly the standard model. A large weight was given to within‐cluster comparisons in the standard model. In the SWTs simulated here, mixed‐effect models were highly sensitive to departures from the model assumptions, which can be explained by the high dependence on within‐cluster comparisons. Trialists should consider including a random effect for time period in their SWT analysis model. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28556355
The effect of creative problem solving on students’ mathematical adaptive reasoning
NASA Astrophysics Data System (ADS)
Muin, A.; Hanifah, S. H.; Diwidian, F.
2018-01-01
This research was conducted to analyse the effect of creative problem solving (CPS) learning model on the students’ mathematical adaptive reasoning. The method used in this study was a quasi-experimental with randomized post-test only control group design. Samples were taken as many as two classes by cluster random sampling technique consisting of experimental class (CPS) as many as 40 students and control class (conventional) as many as 40 students. Based on the result of hypothesis testing with the t-test at the significance level of 5%, it was obtained that significance level of 0.0000 is less than α = 0.05. This shows that the students’ mathematical adaptive reasoning skills who were taught by CPS model were higher than the students’ mathematical adaptive reasoning skills of those who were taught by conventional model. The result of this research showed that the most prominent aspect of adaptive reasoning that could be developed through a CPS was inductive intuitive. Two aspects of adaptive reasoning, which were inductive intuitive and deductive intuitive, were mostly balanced. The different between inductive intuitive and deductive intuitive aspect was not too big. CPS model can develop student mathematical adaptive reasoning skills. CPS model can facilitate development of mathematical adaptive reasoning skills thoroughly.
Rubin, Ilan N; Ellner, Stephen P; Kessler, André; Morrell, Kimberly A
2015-09-01
1. Plant induced resistance to herbivory affects the spatial distribution of herbivores, as well as their performance. In recent years, theories regarding the benefit to plants of induced resistance have shifted from ideas of optimal resource allocation towards a more eclectic set of theories that consider spatial and temporal plant variability and the spatial distribution of herbivores among plants. However, consensus is lacking on whether induced resistance causes increased herbivore aggregation or increased evenness, as both trends have been experimentally documented. 2. We created a spatial individual-based model that can describe many plant-herbivore systems with induced resistance, in order to analyse how different aspects of induced resistance might affect herbivore distribution, and the total damage to a plant population, during a growing season. 3. We analyse the specific effects on herbivore aggregation of informed herbivore movement (preferential movement to less-damaged plants) and of information transfer between plants about herbivore attacks, in order to identify mechanisms driving both aggregation and evenness. We also investigate how the resulting herbivore distributions affect the total damage to plants and aggregation of damage. 4. Even, random and aggregated herbivore distributions can all occur in our model with induced resistance. Highest levels of aggregation occurred in the models with informed herbivore movement, and the most even distributions occurred when the average number of herbivores per plant was low. With constitutive resistance, only random distributions occur. Damage to plants was spatially correlated, unless plants recover very quickly from damage; herbivore spatial autocorrelation was always weak. 5. Our model and results provide a simple explanation for the apparent conflict between experimental results, indicating that both increased aggregation and increased evenness of herbivores can result from induced resistance. We demonstrate that information transfer from plants to herbivores, and from plants to neighbouring plants, can both be major factors in determining non-random herbivore distributions. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.; Barua, A.; Zhou, M., E-mail: min.zhou@me.gatech.edu
2014-05-07
Accounting for the combined effect of multiple sources of stochasticity in material attributes, we develop an approach that computationally predicts the probability of ignition of polymer-bonded explosives (PBXs) under impact loading. The probabilistic nature of the specific ignition processes is assumed to arise from two sources of stochasticity. The first source involves random variations in material microstructural morphology; the second source involves random fluctuations in grain-binder interfacial bonding strength. The effect of the first source of stochasticity is analyzed with multiple sets of statistically similar microstructures and constant interfacial bonding strength. Subsequently, each of the microstructures in the multiple setsmore » is assigned multiple instantiations of randomly varying grain-binder interfacial strengths to analyze the effect of the second source of stochasticity. Critical hotspot size-temperature states reaching the threshold for ignition are calculated through finite element simulations that explicitly account for microstructure and bulk and interfacial dissipation to quantify the time to criticality (t{sub c}) of individual samples, allowing the probability distribution of the time to criticality that results from each source of stochastic variation for a material to be analyzed. Two probability superposition models are considered to combine the effects of the multiple sources of stochasticity. The first is a parallel and series combination model, and the second is a nested probability function model. Results show that the nested Weibull distribution provides an accurate description of the combined ignition probability. The approach developed here represents a general framework for analyzing the stochasticity in the material behavior that arises out of multiple types of uncertainty associated with the structure, design, synthesis and processing of materials.« less
NASA Astrophysics Data System (ADS)
Goudarzi, Nasser
2016-04-01
In this work, two new and powerful chemometrics methods are applied for the modeling and prediction of the 19F chemical shift values of some fluorinated organic compounds. The radial basis function-partial least square (RBF-PLS) and random forest (RF) are employed to construct the models to predict the 19F chemical shifts. In this study, we didn't used from any variable selection method and RF method can be used as variable selection and modeling technique. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. The root-mean-square errors of prediction (RMSEP) for the training set and the prediction set for the RBF-PLS and RF models were 44.70, 23.86, 29.77, and 23.69, respectively. Also, the correlation coefficients of the prediction set for the RBF-PLS and RF models were 0.8684 and 0.9313, respectively. The results obtained reveal that the RF model can be used as a powerful chemometrics tool for the quantitative structure-property relationship (QSPR) studies.
Cost-Effectiveness of Integrating Tobacco Cessation Into Post-Traumatic Stress Disorder Treatment
Jeffers, Abra; Smith, Mark W.; Chow, Bruce K.; McFall, Miles; Saxon, Andrew J.
2016-01-01
Abstract Introduction: We examined the cost-effectiveness of smoking cessation integrated with treatment for post-traumatic stress disorder (PTSD). Methods: Smoking veterans receiving care for PTSD ( N = 943) were randomized to care integrated with smoking cessation versus referral to a smoking cessation clinic. Smoking cessation services, health care cost and utilization, quality of life, and biochemically-verified abstinence from cigarettes were assessed over 18-months of follow-up. Clinical outcomes were combined with literature on changes in smoking status and the effect of smoking on health care cost, mortality, and quality of life in a Markov model of cost-effectiveness over a lifetime horizon. We discounted cost and outcomes at 3% per year and report costs in 2010 US dollars. Results: The mean of smoking cessation services cost was $1286 in those randomized to integrated care and $551 in those receiving standard care ( P < .001). There were no significant differences in the cost of mental health services or other care. After 12 months, prolonged biochemically verified abstinence was observed in 8.9% of those randomized to integrated care and 4.5% of those randomized to standard care ( P = .004). The model projected that Integrated Care added $836 in lifetime cost and generated 0.0259 quality adjusted life years (QALYs), an incremental cost-effectiveness ratio of $32 257 per QALY. It was 86.0% likely to be cost-effective compared to a threshold of $100 000/QALY. Conclusions: Smoking cessation integrated with treatment for PTSD was cost-effective, within a broad confidence region, but less cost-effective than most other smoking cessation programs reported in the literature. PMID:25943761
Effects of ignoring baseline on modeling transitions from intact cognition to dementia.
Yu, Lei; Tyas, Suzanne L; Snowdon, David A; Kryscio, Richard J
2009-07-01
This paper evaluates the effect of ignoring baseline when modeling transitions from intact cognition to dementia with mild cognitive impairment (MCI) and global impairment (GI) as intervening cognitive states. Transitions among states are modeled by a discrete-time Markov chain having three transient (intact cognition, MCI, and GI) and two competing absorbing states (death and dementia). Transition probabilities depend on two covariates, age and the presence/absence of an apolipoprotein E-epsilon4 allele, through a multinomial logistic model with shared random effects. Results are illustrated with an application to the Nun Study, a cohort of 678 participants 75+ years of age at baseline and followed longitudinally with up to ten cognitive assessments per nun.
Susceptible-infected-recovered epidemics in random networks with population awareness
NASA Astrophysics Data System (ADS)
Wu, Qingchu; Chen, Shufang
2017-10-01
The influence of epidemic information-based awareness on the spread of infectious diseases on networks cannot be ignored. Within the effective degree modeling framework, we discuss the susceptible-infected-recovered model in complex networks with general awareness and general degree distribution. By performing the linear stability analysis, the conditions of epidemic outbreak can be deduced and the results of the previous research can be further expanded. Results show that the local awareness can suppress significantly the epidemic spreading on complex networks via raising the epidemic threshold and such effects are closely related to the formulation of awareness functions. In addition, our results suggest that the recovered information-based awareness has no effect on the critical condition of epidemic outbreak.
Barnett, Paul G.; Wong, Wynnie; Jeffers, Abra; Hall, Sharon M.; Prochaska, Judith J.
2016-01-01
Objective We examined the cost-effectiveness of smoking cessation treatment for psychiatric inpatients. Method Smokers, regardless of intention to quit, were recruited during psychiatric hospitalization and randomized to receive stage-based smoking cessation services or usual aftercare. Smoking cessation services, quality of life, and biochemically-verified abstinence from cigarettes were assessed during 18-months of follow-up. Trial findings were combined with literature on changes in smoking status and the age and gender adjusted effect of smoking on health care cost, mortality, and quality of life in a Markov model of cost-effectiveness during a lifetime horizon. Results Among 223 smokers randomized between 2006 and 2008, the mean cost of smoking cessation services was $189 in the experimental treatment group and $37 in the usual care condition (p < 0.001). At the end of follow-up, 18.75% of the experimental group was abstinent from cigarettes, compared to 6.80% abstinence in the usual care group (p <0.05). The model projected that the intervention added $43 in lifetime cost and generated 0.101 additional Quality Adjusted Life Years (QALYs), an incremental cost-effectiveness ratio of $428 per QALY. Probabilistic sensitivity analysis found the experimental intervention was cost-effective against the acceptance criteria of $50,000/QALY in 99.0% of the replicates. Conclusions A cessation intervention for smokers identified in psychiatric hospitalization did not result in higher mental health care costs in the short-run and was highly cost-effective over the long-term. The stage-based intervention was a feasible and cost-effective way of addressing the high smoking prevalence in persons with serious mental illness. PMID:26528651
Põder, Endel
2011-02-16
Dot lattices are very simple multi-stable images where the dots can be perceived as being grouped in different ways. The probabilities of grouping along different orientations as dependent on inter-dot distances along these orientations can be predicted by a simple quantitative model. L. Bleumers, P. De Graef, K. Verfaillie, and J. Wagemans (2008) found that for peripheral presentation, this model should be combined with random guesses on a proportion of trials. The present study shows that the probability of random responses decreases with decreasing ambiguity of lattices and is different for bi-stable and tri-stable lattices. With central presentation, similar effects can be produced by adding positional noise to the dots. The results suggest that different levels of internal positional noise might explain the differences between peripheral and central proximity grouping.
On the apparent insignificance of the randomness of flexible joints on large space truss dynamics
NASA Technical Reports Server (NTRS)
Koch, R. M.; Klosner, J. M.
1993-01-01
Deployable periodic large space structures have been shown to exhibit high dynamic sensitivity to period-breaking imperfections and uncertainties. These can be brought on by manufacturing or assembly errors, structural imperfections, as well as nonlinear and/or nonconservative joint behavior. In addition, the necessity of precise pointing and position capability can require the consideration of these usually negligible and unknown parametric uncertainties and their effect on the overall dynamic response of large space structures. This work describes the use of a new design approach for the global dynamic solution of beam-like periodic space structures possessing parametric uncertainties. Specifically, the effect of random flexible joints on the free vibrations of simply-supported periodic large space trusses is considered. The formulation is a hybrid approach in terms of an extended Timoshenko beam continuum model, Monte Carlo simulation scheme, and first-order perturbation methods. The mean and mean-square response statistics for a variety of free random vibration problems are derived for various input random joint stiffness probability distributions. The results of this effort show that, although joint flexibility has a substantial effect on the modal dynamic response of periodic large space trusses, the effect of any reasonable uncertainty or randomness associated with these joint flexibilities is insignificant.
NASA Astrophysics Data System (ADS)
Radgolchin, Moeen; Moeenfard, Hamid
2018-02-01
The construction of self-powered micro-electro-mechanical units by converting the mechanical energy of the systems into electrical power has attracted much attention in recent years. While power harvesting from deterministic external excitations is state of the art, it has been much more difficult to derive mathematical models for scavenging electrical energy from ambient random vibrations, due to the stochastic nature of the excitations. The current research concerns analytical modeling of micro-bridge energy harvesters based on random vibration theory. Since classical elasticity fails to accurately predict the mechanical behavior of micro-structures, strain gradient theory is employed as a powerful tool to increase the accuracy of the random vibration modeling of the micro-harvester. Equations of motion of the system in the time domain are derived using the Lagrange approach. These are then utilized to determine the frequency and impulse responses of the structure. Assuming the energy harvester to be subjected to a combination of broadband and limited-band random support motion and transverse loading, closed-form expressions for mean, mean square, correlation and spectral density of the output power are derived. The suggested formulation is further exploited to investigate the effect of the different design parameters, including the geometric properties of the structure as well as the properties of the electrical circuit on the resulting power. Furthermore, the effect of length scale parameters on the harvested energy is investigated in detail. It is observed that the predictions of classical and even simple size-dependent theories (such as couple stress) appreciably differ from the findings of strain gradient theory on the basis of random vibration. This study presents a first-time modeling of micro-scale harvesters under stochastic excitations using a size-dependent approach and can be considered as a reliable foundation for future research in the field of micro/nano harvesters subjected to non-deterministic loads.
Chirombo, James; Lowe, Rachel; Kazembe, Lawrence
2014-01-01
Background After years of implementing Roll Back Malaria (RBM) interventions, the changing landscape of malaria in terms of risk factors and spatial pattern has not been fully investigated. This paper uses the 2010 malaria indicator survey data to investigate if known malaria risk factors remain relevant after many years of interventions. Methods We adopted a structured additive logistic regression model that allowed for spatial correlation, to more realistically estimate malaria risk factors. Our model included child and household level covariates, as well as climatic and environmental factors. Continuous variables were modelled by assuming second order random walk priors, while spatial correlation was specified as a Markov random field prior, with fixed effects assigned diffuse priors. Inference was fully Bayesian resulting in an under five malaria risk map for Malawi. Results Malaria risk increased with increasing age of the child. With respect to socio-economic factors, the greater the household wealth, the lower the malaria prevalence. A general decline in malaria risk was observed as altitude increased. Minimum temperatures and average total rainfall in the three months preceding the survey did not show a strong association with disease risk. Conclusions The structured additive regression model offered a flexible extension to standard regression models by enabling simultaneous modelling of possible nonlinear effects of continuous covariates, spatial correlation and heterogeneity, while estimating usual fixed effects of categorical and continuous observed variables. Our results confirmed that malaria epidemiology is a complex interaction of biotic and abiotic factors, both at the individual, household and community level and that risk factors are still relevant many years after extensive implementation of RBM activities. PMID:24991915
Tharwat, Alaa; Moemen, Yasmine S; Hassanien, Aboul Ella
2016-12-09
Measuring toxicity is one of the main steps in drug development. Hence, there is a high demand for computational models to predict the toxicity effects of the potential drugs. In this study, we used a dataset, which consists of four toxicity effects:mutagenic, tumorigenic, irritant and reproductive effects. The proposed model consists of three phases. In the first phase, rough set-based methods are used to select the most discriminative features for reducing the classification time and improving the classification performance. Due to the imbalanced class distribution, in the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique are used to solve the problem of imbalanced datasets. ITerative Sampling (ITS) method is proposed to avoid the limitations of those methods. ITS method has two steps. The first step (sampling step) iteratively modifies the prior distribution of the minority and majority classes. In the second step, a data cleaning method is used to remove the overlapping that is produced from the first step. In the third phase, Bagging classifier is used to classify an unknown drug into toxic or non-toxic. The experimental results proved that the proposed model performed well in classifying the unknown samples according to all toxic effects in the imbalanced datasets.
Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.
Szolnoki, Attila; Perc, Matjaž
2016-12-05
Global, population-wide oscillations in models of cyclic dominance may result in the collapse of biodiversity due to the accidental extinction of one species in the loop. Previous research has shown that such oscillations can emerge if the interaction network has small-world properties, and more generally, because of long-range interactions among individuals or because of mobility. But although these features are all common in nature, global oscillations are rarely observed in actual biological systems. This begets the question what is the missing ingredient that would prevent local oscillations to synchronize across the population to form global oscillations. Here we show that, although heterogeneous species-specific invasion rates fail to have a noticeable impact on species coexistence, randomness in site-specific invasion rates successfully hinders the emergence of global oscillations and thus preserves biodiversity. Our model takes into account that the environment is often not uniform but rather spatially heterogeneous, which may influence the success of microscopic dynamics locally. This prevents the synchronization of locally emerging oscillations, and ultimately results in a phenomenon where one type of randomness is used to mitigate the adverse effects of other types of randomness in the system.
NASA Astrophysics Data System (ADS)
Szolnoki, Attila; Perc, Matjaž
2016-12-01
Global, population-wide oscillations in models of cyclic dominance may result in the collapse of biodiversity due to the accidental extinction of one species in the loop. Previous research has shown that such oscillations can emerge if the interaction network has small-world properties, and more generally, because of long-range interactions among individuals or because of mobility. But although these features are all common in nature, global oscillations are rarely observed in actual biological systems. This begets the question what is the missing ingredient that would prevent local oscillations to synchronize across the population to form global oscillations. Here we show that, although heterogeneous species-specific invasion rates fail to have a noticeable impact on species coexistence, randomness in site-specific invasion rates successfully hinders the emergence of global oscillations and thus preserves biodiversity. Our model takes into account that the environment is often not uniform but rather spatially heterogeneous, which may influence the success of microscopic dynamics locally. This prevents the synchronization of locally emerging oscillations, and ultimately results in a phenomenon where one type of randomness is used to mitigate the adverse effects of other types of randomness in the system.
[How to fit and interpret multilevel models using SPSS].
Pardo, Antonio; Ruiz, Miguel A; San Martín, Rafael
2007-05-01
Hierarchic or multilevel models are used to analyse data when cases belong to known groups and sample units are selected both from the individual level and from the group level. In this work, the multilevel models most commonly discussed in the statistic literature are described, explaining how to fit these models using the SPSS program (any version as of the 11 th ) and how to interpret the outcomes of the analysis. Five particular models are described, fitted, and interpreted: (1) one-way analysis of variance with random effects, (2) regression analysis with means-as-outcomes, (3) one-way analysis of covariance with random effects, (4) regression analysis with random coefficients, and (5) regression analysis with means- and slopes-as-outcomes. All models are explained, trying to make them understandable to researchers in health and behaviour sciences.
Influences of system uncertainties on the numerical transfer path analysis of engine systems
NASA Astrophysics Data System (ADS)
Acri, A.; Nijman, E.; Acri, A.; Offner, G.
2017-10-01
Practical mechanical systems operate with some degree of uncertainty. In numerical models uncertainties can result from poorly known or variable parameters, from geometrical approximation, from discretization or numerical errors, from uncertain inputs or from rapidly changing forcing that can be best described in a stochastic framework. Recently, random matrix theory was introduced to take parameter uncertainties into account in numerical modeling problems. In particular in this paper, Wishart random matrix theory is applied on a multi-body dynamic system to generate random variations of the properties of system components. Multi-body dynamics is a powerful numerical tool largely implemented during the design of new engines. In this paper the influence of model parameter variability on the results obtained from the multi-body simulation of engine dynamics is investigated. The aim is to define a methodology to properly assess and rank system sources when dealing with uncertainties. Particular attention is paid to the influence of these uncertainties on the analysis and the assessment of the different engine vibration sources. Examples of the effects of different levels of uncertainties are illustrated by means of examples using a representative numerical powertrain model. A numerical transfer path analysis, based on system dynamic substructuring, is used to derive and assess the internal engine vibration sources. The results obtained from this analysis are used to derive correlations between parameter uncertainties and statistical distribution of results. The derived statistical information can be used to advance the knowledge of the multi-body analysis and the assessment of system sources when uncertainties in model parameters are considered.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Pates, Carl S., III
1994-01-01
A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.
Trevizol, Alisson Paulino; Shiozawa, Pedro; Cook, Ian A; Sato, Isa Albuquerque; Kaku, Caio Barbosa; Guimarães, Fernanda Bs; Sachdev, Perminder; Sarkhel, Sujit; Cordeiro, Quirino
2016-12-01
Transcranial magnetic stimulation (TMS) is a promising noninvasive brain stimulation intervention. Transcranial magnetic stimulation has been proposed for obsessive-compulsive disorder (OCD) with auspicious results. To assess the efficacy of TMS for OCD in randomized clinical trials (RCTs). Systematic review using MEDLINE and EMBASE from the first RCT available until March 11, 2016. The main outcome was the Hedges g for continuous scores for Yale-Brown Obsessive Compulsive Scale in a random-effects model. Heterogeneity was evaluated with the I and the χ test. Publication bias was evaluated using the Begg funnel plot. Metaregression was performed using the random-effects model modified by Knapp and Hartung. We included 15 RCTs (n = 483), most had small-to-modest sample sizes. Comparing active versus sham TMS, active stimulation was significantly superior for OCD symptoms (Hedges g = 0.45; 95% confidence interval, 0.2-0.71). The funnel plot showed that the risk of publication bias was low and between-study heterogeneity was low (I = 43%, P = 0.039 for the χ test). Metaregression showed no particular influence of any variable on the results. Transcranial magnetic stimulation active was superior to sham stimulation for the amelioration of OCD symptoms. Trials had moderate heterogeneity results, despite different protocols of stimulation used. Further RCTs with larger sample sizes are fundamentally needed to clarify the precise impact of TMS in OCD symptoms.
Modelling wildland fire propagation by tracking random fronts
NASA Astrophysics Data System (ADS)
Pagnini, G.; Mentrelli, A.
2013-11-01
Wildland fire propagation is studied in literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternative each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay and an infinite support, while the level-set method, which is a front tracking technique, generates a sharp function with a finite support. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random character that are extremely important in wildland fire propagation. As a consequence the fire front gets a random character, too. Hence a tracking method for random fronts is needed. In particular, the level-set contourn is here randomized accordingly to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterizing role proper to the level-set approach. The resulting model emerges to be suitable to simulate effects due to turbulent convection as fire flank and backing fire, the faster fire spread because of the actions by hot air pre-heating and by ember landing, and also the fire overcoming a firebreak zone that is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation it follows a correction for the rate of spread formula due to the mean jump-length of firebrands in the downwind direction for the leeward sector of the fireline contour.
Selapa, N W; Nephawe, K A; Maiwashe, A; Norris, D
2012-02-08
The aim of this study was to estimate genetic parameters for body weights of individually fed beef bulls measured at centralized testing stations in South Africa using random regression models. Weekly body weights of Bonsmara bulls (N = 2919) tested between 1999 and 2003 were available for the analyses. The model included a fixed regression of the body weights on fourth-order orthogonal Legendre polynomials of the actual days on test (7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, and 84) for starting age and contemporary group effects. Random regressions on fourth-order orthogonal Legendre polynomials of the actual days on test were included for additive genetic effects and additional uncorrelated random effects of the weaning-herd-year and the permanent environment of the animal. Residual effects were assumed to be independently distributed with heterogeneous variance for each test day. Variance ratios for additive genetic, permanent environment and weaning-herd-year for weekly body weights at different test days ranged from 0.26 to 0.29, 0.37 to 0.44 and 0.26 to 0.34, respectively. The weaning-herd-year was found to have a significant effect on the variation of body weights of bulls despite a 28-day adjustment period. Genetic correlations amongst body weights at different test days were high, ranging from 0.89 to 1.00. Heritability estimates were comparable to literature using multivariate models. Therefore, random regression model could be applied in the genetic evaluation of body weight of individually fed beef bulls in South Africa.
Kahan, Brennan C; Harhay, Michael O
2015-12-01
Adjustment for center in multicenter trials is recommended when there are between-center differences or when randomization has been stratified by center. However, common methods of analysis (such as fixed-effects, Mantel-Haenszel, or stratified Cox models) often require a large number of patients or events per center to perform well. We reviewed 206 multicenter randomized trials published in four general medical journals to assess the average number of patients and events per center and determine whether appropriate methods of analysis were used in trials with few patients or events per center. The median number of events per center/treatment arm combination for trials using a binary or survival outcome was 3 (interquartile range, 1-10). Sixteen percent of trials had less than 1 event per center/treatment combination, 50% fewer than 3, and 63% fewer than 5. Of the trials which adjusted for center using a method of analysis which requires a large number of events per center, 6% had less than 1 event per center-treatment combination, 25% fewer than 3, and 50% fewer than 5. Methods of analysis that allow for few events per center, such as random-effects models or generalized estimating equations (GEEs), were rarely used. Many multicenter trials contain few events per center. Adjustment for center using random-effects models or GEE with model-based (non-robust) standard errors may be beneficial in these scenarios. Copyright © 2015 Elsevier Inc. All rights reserved.
Bennett, Kathryn; Manassis, Katharina; Walter, Stephen D.; Cheung, Amy; Wilansky-Traynor, Pamela; Diaz-Granados, Natalia; Duda, Stephanie; Rice, Maureen; Baer, Susan; Barrett, Paula; Bodden, Denise; Cobham, Vanessa E.; Dadds, Mark R.; Flannery-Schroeder, Ellen; Ginsburg, Golda; Heyne, David; Hudson, Jennifer L.; Kendall, Philip C.; Liber, Juliette; Warner, Carrie Masia; Mendlowitz, Sandra; Nauta, Maaike H.; Rapee, Ronald M.; Silverman, Wendy; Siqueland, Lynne; Spence, Susan H.; Utens, Elisabeth; Wood, Jeffrey J.
2015-01-01
Background Investigations of age effects on youth anxiety outcomes in randomized trials (RCTs) of cognitive behavior therapy (CBT) have failed to yield a clear result due to inadequate statistical power and methodologic weaknesses. We conducted an individual patient data metaanalysis to address this gap. Question Does age moderate CBT effect size, measured by a clinically and statistically significant interaction between age and CBT exposure? Methods All English language RCTs of CBT for anxiety in 6–19 year olds were identified using systematic review methods. Investigators of eligible trials were invited to submit their individual patient data. The anxiety disorder interview schedule (ADIS) primary diagnosis severity score was the primary outcome. Age effects were investigated using multilevel modeling to account for study level data clustering and random effects. Results Data from 17 of 23 eligible trials were obtained (74%); 16 studies and 1,171 (78%) cases were available for the analysis. No interaction between age and CBT exposure was found in a model containing age, sex, ADIS baseline severity score, and comorbid depression diagnosis (power ≥ 80%). Sensitivity analyses, including modeling age as both a categorical and continuous variable, revealed this result was robust. Conclusions Adolescents who receive CBT in efficacy research studies show benefits comparable to younger children. However, CBT protocol modifications routinely carried out by expert trial therapists may explain these findings. Adolescent CBT protocols are needed to facilitate the transportability of efficacy research effects to usual care settings where therapists may have less opportunity for CBT training and expertise development. PMID:23658135
CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS
Shpitser, Ilya; Tchetgen, Eric Tchetgen
2017-01-01
Identifying causal parameters from observational data is fraught with subtleties due to the issues of selection bias and confounding. In addition, more complex questions of interest, such as effects of treatment on the treated and mediated effects may not always be identified even in data where treatment assignment is known and under investigator control, or may be identified under one causal model but not another. Increasingly complex effects of interest, coupled with a diversity of causal models in use resulted in a fragmented view of identification. This fragmentation makes it unnecessarily difficult to determine if a given parameter is identified (and in what model), and what assumptions must hold for this to be the case. This, in turn, complicates the development of estimation theory and sensitivity analysis procedures. In this paper, we give a unifying view of a large class of causal effects of interest, including novel effects not previously considered, in terms of a hierarchy of interventions, and show that identification theory for this large class reduces to an identification theory of random variables under interventions from this hierarchy. Moreover, we show that one type of intervention in the hierarchy is naturally associated with queries identified under the Finest Fully Randomized Causally Interpretable Structure Tree Graph (FFRCISTG) model of Robins (via the extended g-formula), and another is naturally associated with queries identified under the Non-Parametric Structural Equation Model with Independent Errors (NPSEM-IE) of Pearl, via a more general functional we call the edge g-formula. Our results motivate the study of estimation theory for the edge g-formula, since we show it arises both in mediation analysis, and in settings where treatment assignment has unobserved causes, such as models associated with Pearl’s front-door criterion. PMID:28919652
CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS.
Shpitser, Ilya; Tchetgen, Eric Tchetgen
2016-12-01
Identifying causal parameters from observational data is fraught with subtleties due to the issues of selection bias and confounding. In addition, more complex questions of interest, such as effects of treatment on the treated and mediated effects may not always be identified even in data where treatment assignment is known and under investigator control, or may be identified under one causal model but not another. Increasingly complex effects of interest, coupled with a diversity of causal models in use resulted in a fragmented view of identification. This fragmentation makes it unnecessarily difficult to determine if a given parameter is identified (and in what model), and what assumptions must hold for this to be the case. This, in turn, complicates the development of estimation theory and sensitivity analysis procedures. In this paper, we give a unifying view of a large class of causal effects of interest, including novel effects not previously considered, in terms of a hierarchy of interventions, and show that identification theory for this large class reduces to an identification theory of random variables under interventions from this hierarchy. Moreover, we show that one type of intervention in the hierarchy is naturally associated with queries identified under the Finest Fully Randomized Causally Interpretable Structure Tree Graph (FFRCISTG) model of Robins (via the extended g-formula), and another is naturally associated with queries identified under the Non-Parametric Structural Equation Model with Independent Errors (NPSEM-IE) of Pearl, via a more general functional we call the edge g-formula. Our results motivate the study of estimation theory for the edge g-formula, since we show it arises both in mediation analysis, and in settings where treatment assignment has unobserved causes, such as models associated with Pearl's front-door criterion.
Zhou, Ling-Mei; Xu, Jia-Ying; Rao, Chun-Ping; Han, Shufen; Wan, Zhongxiao; Qin, Li-Qiang
2015-01-01
Whey supplementation is beneficial for human health, possibly by reducing the circulating C-reactive protein (CRP) level, a sensitive marker of inflammation. Thus, a meta-analysis of randomized controlled trials was conducted to evaluate their relationship. A systematic literature search was conducted in July, 2014, to identify eligible studies. Either a fixed-effects model or a random-effects model was used to calculate pooled effects. The meta-analysis results of nine trials showed a slight, but no significant, reduction of 0.42 mg/L (95% CI −0.96, 0.13) in CRP level with the supplementation of whey protein and its derivates. Relatively high heterogeneity across studies was observed. Subgroup analyses showed that whey significantly lowered CRP by 0.72 mg/L (95% CI −0.97, −0.47) among trials with a daily whey dose ≥20 g/day and by 0.67 mg/L (95% CI −1.21, −0.14) among trials with baseline CRP ≥3 mg/L. Meta-regression analysis revealed that the baseline CRP level was a potential effect modifier of whey supplementation in reducing CRP. In conclusion, our meta-analysis did not find sufficient evidence that whey and its derivates elicited a beneficial effect in reducing circulating CRP. However, they may significantly reduce CRP among participants with highly supplemental doses or increased baseline CRP levels. PMID:25671415
Do diabetes group visits lead to lower medical care charges?
Clancy, Dawn E; Dismuke, Clara E; Magruder, Kathryn Marley; Simpson, Kit N; Bradford, David
2008-01-01
To evaluate whether attending diabetes group visits (GVs) leads to lower medical care charges for inadequately insured patients with type 2 diabetes mellitus (DM). Randomized controlled clinical trial. Data were abstracted from financial records for 186 patients with uncontrolled type 2 DM randomized to receive care in GVs or usual care for 12 months. Mann-Whitney tests for differences of means for outpatient visits (primary and specialty care), emergency department (ED) visits, and inpatient stays were performed. Separate charge models were developed for primary and specialty outpatient visits. Because GV adherence is potentially dependent on unobserved patient characteristics, treatment effect models of outpatient charges and specialty care visits were estimated using maximum likelihood methods. Mann-Whitney test results indicated that GV patients had reduced ED and total charges but more outpatient charges than usual care patients. Ordinary least squares estimations confirmed that GVs increased outpatient visit charges; however, controlling for endogeneity by estimating a treatment effect model of outpatient visit charges showed that GVs statistically significantly reduced outpatient charges (P <.001). Estimation of a separate treatment effect model of specialty care visits confirmed that GV effects on outpatient visit charges occurred via a reduction in specialty care visits. After controlling for endogeneity via estimation of a treatment effect model, GVs statistically significantly reduced outpatient visit charges. Estimation of a separate treatment effect model of specialty care visits indicated that GVs likely substitute for more expensive specialty care visits.
ERIC Educational Resources Information Center
Hedeker, Donald; And Others
1996-01-01
Methods are proposed and described for estimating the degree to which relations among variables vary at the individual level. As an example, M. Fishbein and I. Ajzen's theory of reasoned action is examined. This article illustrates the use of empirical Bayes methods based on a random-effects regression model to estimate individual influences…
ERIC Educational Resources Information Center
Bloom, Howard S.; Raudenbush, Stephen W.; Weiss, Michael J.; Porter, Kristin
2017-01-01
The present article considers a fundamental question in evaluation research: "By how much do program effects vary across sites?" The article first presents a theoretical model of cross-site impact variation and a related estimation model with a random treatment coefficient and fixed site-specific intercepts. This approach eliminates…
Zhang, Kejiang; Achari, Gopal; Li, Hua
2009-11-03
Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability-possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.
Sequential change detection and monitoring of temporal trends in random-effects meta-analysis.
Dogo, Samson Henry; Clark, Allan; Kulinskaya, Elena
2017-06-01
Temporal changes in magnitude of effect sizes reported in many areas of research are a threat to the credibility of the results and conclusions of meta-analysis. Numerous sequential methods for meta-analysis have been proposed to detect changes and monitor trends in effect sizes so that meta-analysis can be updated when necessary and interpreted based on the time it was conducted. The difficulties of sequential meta-analysis under the random-effects model are caused by dependencies in increments introduced by the estimation of the heterogeneity parameter τ 2 . In this paper, we propose the use of a retrospective cumulative sum (CUSUM)-type test with bootstrap critical values. This method allows retrospective analysis of the past trajectory of cumulative effects in random-effects meta-analysis and its visualization on a chart similar to CUSUM chart. Simulation results show that the new method demonstrates good control of Type I error regardless of the number or size of the studies and the amount of heterogeneity. Application of the new method is illustrated on two examples of medical meta-analyses. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.
Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.
Aguero-Valverde, Jonathan
2013-10-01
Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Saakian, David B.
2012-03-01
We map the Markov-switching multifractal model (MSM) onto the random energy model (REM). The MSM is, like the REM, an exactly solvable model in one-dimensional space with nontrivial correlation functions. According to our results, four different statistical physics phases are possible in random walks with multifractal behavior. We also introduce the continuous branching version of the model, calculate the moments, and prove multiscaling behavior. Different phases have different multiscaling properties.
Fluid Physics in a Fluctuating Acceleration Environment
NASA Technical Reports Server (NTRS)
Thomson, J. Ross; Drolet, Francois; Vinals, Jorge
1996-01-01
We summarize several aspects of an ongoing investigation of the effects that stochastic residual accelerations (g-jitter) onboard spacecraft can have on experiments conducted in a microgravity environment. The residual acceleration field is modeled as a narrow band noise, characterized by three independent parameters: intensity (g(exp 2)), dominant angular frequency Omega, and characteristic correlation time tau. Realistic values for these parameters are obtained from an analysis of acceleration data corresponding to the SL-J mission, as recorded by the SAMS instruments. We then use the model to address the random motion of a solid particle suspended in an incompressible fluid subjected to such random accelerations. As an extension, the effect of jitter on coarsening of a solid-liquid mixture is briefly discussed, and corrections to diffusion controlled coarsening evaluated. We conclude that jitter will not be significant in the experiment 'Coarsening of solid-liquid mixtures' to be conducted in microgravity. Finally, modifications to the location of onset of instability in systems driven by a random force are discussed by extending the standard reduction to the center manifold to the stochastic case. Results pertaining to time-modulated oscillatory convection are briefly discussed.
Modeling for Ultrasonic Health Monitoring of Foams with Embedded Sensors
NASA Technical Reports Server (NTRS)
Wang, L.; Rokhlin, S. I.; Rokhlin, Stanislav, I.
2005-01-01
In this report analytical and numerical methods are proposed to estimate the effective elastic properties of regular and random open-cell foams. The methods are based on the principle of minimum energy and on structural beam models. The analytical solutions are obtained using symbolic processing software. The microstructure of the random foam is simulated using Voronoi tessellation together with a rate-dependent random close-packing algorithm. The statistics of the geometrical properties of random foams corresponding to different packing fractions have been studied. The effects of the packing fraction on elastic properties of the foams have been investigated by decomposing the compliance into bending and axial compliance components. It is shown that the bending compliance increases and the axial compliance decreases when the packing fraction increases. Keywords: Foam; Elastic properties; Finite element; Randomness
Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
NASA Astrophysics Data System (ADS)
Galelli, S.; Castelletti, A.
2013-02-01
Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modeling. In this paper we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modeling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalization property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally very efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analyzed on two real-world case studies (Marina catchment (Singapore) and Canning River (Western Australia)) representing two different morphoclimatic contexts comparatively with other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.
Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
NASA Astrophysics Data System (ADS)
Galelli, S.; Castelletti, A.
2013-07-01
Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modelling. In this paper, we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modelling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalisation property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analysed on two real-world case studies - Marina catchment (Singapore) and Canning River (Western Australia) - representing two different morphoclimatic contexts. The evaluation is performed against other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.
2017-09-01
In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.
Extending existing structural identifiability analysis methods to mixed-effects models.
Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D
2018-01-01
The concept of structural identifiability for state-space models is expanded to cover mixed-effects state-space models. Two methods applicable for the analytical study of the structural identifiability of mixed-effects models are presented. The two methods are based on previously established techniques for non-mixed-effects models; namely the Taylor series expansion and the input-output form approach. By generating an exhaustive summary, and by assuming an infinite number of subjects, functions of random variables can be derived which in turn determine the distribution of the system's observation function(s). By considering the uniqueness of the analytical statistical moments of the derived functions of the random variables, the structural identifiability of the corresponding mixed-effects model can be determined. The two methods are applied to a set of examples of mixed-effects models to illustrate how they work in practice. Copyright © 2017 Elsevier Inc. All rights reserved.
Huynh-Tran, V H; Gilbert, H; David, I
2017-11-01
The objective of the present study was to compare a random regression model, usually used in genetic analyses of longitudinal data, with the structured antedependence (SAD) model to study the longitudinal feed conversion ratio (FCR) in growing Large White pigs and to propose criteria for animal selection when used for genetic evaluation. The study was based on data from 11,790 weekly FCR measures collected on 1,186 Large White male growing pigs. Random regression (RR) using orthogonal polynomial Legendre and SAD models was used to estimate genetic parameters and predict FCR-based EBV for each of the 10 wk of the test. The results demonstrated that the best SAD model (1 order of antedependence of degree 2 and a polynomial of degree 2 for the innovation variance for the genetic and permanent environmental effects, i.e., 12 parameters) provided a better fit for the data than RR with a quadratic function for the genetic and permanent environmental effects (13 parameters), with Bayesian information criteria values of -10,060 and -9,838, respectively. Heritabilities with the SAD model were higher than those of RR over the first 7 wk of the test. Genetic correlations between weeks were higher than 0.68 for short intervals between weeks and decreased to 0.08 for the SAD model and -0.39 for RR for the longest intervals. These differences in genetic parameters showed that, contrary to the RR approach, the SAD model does not suffer from border effect problems and can handle genetic correlations that tend to 0. Summarized breeding values were proposed for each approach as linear combinations of the individual weekly EBV weighted by the coefficients of the first or second eigenvector computed from the genetic covariance matrix of the additive genetic effects. These summarized breeding values isolated EBV trajectories over time, capturing either the average general value or the slope of the trajectory. Finally, applying the SAD model over a reduced period of time suggested that similar selection choices would result from the use of the records from the first 8 wk of the test. To conclude, the SAD model performed well for the genetic evaluation of longitudinal phenotypes.
Jarnevich, Catherine S.; Talbert, Marian; Morisette, Jeffrey T.; Aldridge, Cameron L.; Brown, Cynthia; Kumar, Sunil; Manier, Daniel; Talbert, Colin; Holcombe, Tracy R.
2017-01-01
Evaluating the conditions where a species can persist is an important question in ecology both to understand tolerances of organisms and to predict distributions across landscapes. Presence data combined with background or pseudo-absence locations are commonly used with species distribution modeling to develop these relationships. However, there is not a standard method to generate background or pseudo-absence locations, and method choice affects model outcomes. We evaluated combinations of both model algorithms (simple and complex generalized linear models, multivariate adaptive regression splines, Maxent, boosted regression trees, and random forest) and background methods (random, minimum convex polygon, and continuous and binary kernel density estimator (KDE)) to assess the sensitivity of model outcomes to choices made. We evaluated six questions related to model results, including five beyond the common comparison of model accuracy assessment metrics (biological interpretability of response curves, cross-validation robustness, independent data accuracy and robustness, and prediction consistency). For our case study with cheatgrass in the western US, random forest was least sensitive to background choice and the binary KDE method was least sensitive to model algorithm choice. While this outcome may not hold for other locations or species, the methods we used can be implemented to help determine appropriate methodologies for particular research questions.
Modeling Grade IV Gas Emboli using a Limited Failure Population Model with Random Effects
NASA Technical Reports Server (NTRS)
Thompson, Laura A.; Conkin, Johnny; Chhikara, Raj S.; Powell, Michael R.
2002-01-01
Venous gas emboli (VGE) (gas bubbles in venous blood) are associated with an increased risk of decompression sickness (DCS) in hypobaric environments. A high grade of VGE can be a precursor to serious DCS. In this paper, we model time to Grade IV VGE considering a subset of individuals assumed to be immune from experiencing VGE. Our data contain monitoring test results from subjects undergoing up to 13 denitrogenation test procedures prior to exposure to a hypobaric environment. The onset time of Grade IV VGE is recorded as contained within certain time intervals. We fit a parametric (lognormal) mixture survival model to the interval-and right-censored data to account for the possibility of a subset of "cured" individuals who are immune to the event. Our model contains random subject effects to account for correlations between repeated measurements on a single individual. Model assessments and cross-validation indicate that this limited failure population mixture model is an improvement over a model that does not account for the potential of a fraction of cured individuals. We also evaluated some alternative mixture models. Predictions from the best fitted mixture model indicate that the actual process is reasonably approximated by a limited failure population model.
Hochhauser, M; Weiss, P L; Gal, E
2018-01-01
Adolescents with autism spectrum disorder (ASD) have particular difficulty in negotiating conflict. A randomized control trial (RCT) was carried out to determine whether the negotiation strategies of adolescents with ASD would be enhanced via a 6-week intervention based on a video modeling application. Adolescents with ASD, aged 12-18 years, were randomly divided into an intervention group (n = 36) and a non-treatment control group (n = 25). Participants' negotiating strategies prior to and following the intervention were measured using the Five Factor Negotiation Scale (FFNS; Nakkula & Nikitopoulos, 1999) and the ConflicTalk questionnaire (Kimsey & Fuller, 2003). The results suggest that video modeling is an effective intervention for improving and maintaining conflict negotiation strategies of adolescents with ASD.
Kalman filter data assimilation: targeting observations and parameter estimation.
Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex
2014-06-01
This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.
Kalman filter data assimilation: Targeting observations and parameter estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellsky, Thomas, E-mail: bellskyt@asu.edu; Kostelich, Eric J.; Mahalov, Alex
2014-06-15
This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly locatedmore » observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.« less
Snyder, Frank; Flay, Brian; Vuchinich, Samuel; Acock, Alan; Washburn, Isaac; Beets, Michael; Li, Kin-Kit
2010-01-01
This paper reports the effects of a comprehensive elementary school-based social-emotional and character education program on school-level achievement, absenteeism, and disciplinary outcomes utilizing a matched-pair, cluster randomized, controlled design. The Positive Action Hawai'i trial included 20 racially/ethnically diverse schools (mean enrollment = 544) and was conducted from the 2002-03 through the 2005-06 academic years. Using school-level archival data, analyses comparing change from baseline (2002) to one-year post trial (2007) revealed that intervention schools scored 9.8% better on the TerraNova (2 nd ed.) test for reading and 8.8% on math; 20.7% better in Hawai'i Content and Performance Standards scores for reading and 51.4% better in math; and that intervention schools reported 15.2% lower absenteeism and fewer suspensions (72.6%) and retentions (72.7%). Overall, effect sizes were moderate to large (range 0.5-1.1) for all of the examined outcomes. Sensitivity analyses using permutation models and random-intercept growth curve models substantiated results. The results provide evidence that a comprehensive school-based program, specifically developed to target student behavior and character, can positively influence school-level achievement, attendance, and disciplinary outcomes concurrently.
Random walks with shape prior for cochlea segmentation in ex vivo μCT.
Ruiz Pujadas, Esmeralda; Kjer, Hans Martin; Piella, Gemma; Ceresa, Mario; González Ballester, Miguel Angel
2016-09-01
Cochlear implantation is a safe and effective surgical procedure to restore hearing in deaf patients. However, the level of restoration achieved may vary due to differences in anatomy, implant type and surgical access. In order to reduce the variability of the surgical outcomes, we previously proposed the use of a high-resolution model built from [Formula: see text] images and then adapted to patient-specific clinical CT scans. As the accuracy of the model is dependent on the precision of the original segmentation, it is extremely important to have accurate [Formula: see text] segmentation algorithms. We propose a new framework for cochlea segmentation in ex vivo [Formula: see text] images using random walks where a distance-based shape prior is combined with a region term estimated by a Gaussian mixture model. The prior is also weighted by a confidence map to adjust its influence according to the strength of the image contour. Random walks is performed iteratively, and the prior mask is aligned in every iteration. We tested the proposed approach in ten [Formula: see text] data sets and compared it with other random walks-based segmentation techniques such as guided random walks (Eslami et al. in Med Image Anal 17(2):236-253, 2013) and constrained random walks (Li et al. in Advances in image and video technology. Springer, Berlin, pp 215-226, 2012). Our approach demonstrated higher accuracy results due to the probability density model constituted by the region term and shape prior information weighed by a confidence map. The weighted combination of the distance-based shape prior with a region term into random walks provides accurate segmentations of the cochlea. The experiments suggest that the proposed approach is robust for cochlea segmentation.
Are genetically robust regulatory networks dynamically different from random ones?
NASA Astrophysics Data System (ADS)
Sevim, Volkan; Rikvold, Per Arne
We study a genetic regulatory network model developed to demonstrate that genetic robustness can evolve through stabilizing selection for optimal phenotypes. We report preliminary results on whether such selection could result in a reorganization of the state space of the system. For the chosen parameters, the evolution moves the system slightly toward the more ordered part of the phase diagram. We also find that strong memory effects cause the Derrida annealed approximation to give erroneous predictions about the model's phase diagram.
Effect of random errors in planar PIV data on pressure estimation in vortex dominated flows
NASA Astrophysics Data System (ADS)
McClure, Jeffrey; Yarusevych, Serhiy
2015-11-01
The sensitivity of pressure estimation techniques from Particle Image Velocimetry (PIV) measurements to random errors in measured velocity data is investigated using the flow over a circular cylinder as a test case. Direct numerical simulations are performed for ReD = 100, 300 and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A range of random errors typical for PIV measurements is applied to synthetic PIV data extracted from numerical results. A parametric study is then performed using a number of common pressure estimation techniques. Optimal temporal and spatial resolutions are derived based on the sensitivity of the estimated pressure fields to the simulated random error in velocity measurements, and the results are compared to an optimization model derived from error propagation theory. It is shown that the reductions in spatial and temporal scales at higher Reynolds numbers leads to notable changes in the optimal pressure evaluation parameters. The effect of smaller scale wake structures is also quantified. The errors in the estimated pressure fields are shown to depend significantly on the pressure estimation technique employed. The results are used to provide recommendations for the use of pressure and force estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.
MIXOR: a computer program for mixed-effects ordinal regression analysis.
Hedeker, D; Gibbons, R D
1996-03-01
MIXOR provides maximum marginal likelihood estimates for mixed-effects ordinal probit, logistic, and complementary log-log regression models. These models can be used for analysis of dichotomous and ordinal outcomes from either a clustered or longitudinal design. For clustered data, the mixed-effects model assumes that data within clusters are dependent. The degree of dependency is jointly estimated with the usual model parameters, thus adjusting for dependence resulting from clustering of the data. Similarly, for longitudinal data, the mixed-effects approach can allow for individual-varying intercepts and slopes across time, and can estimate the degree to which these time-related effects vary in the population of individuals. MIXOR uses marginal maximum likelihood estimation, utilizing a Fisher-scoring solution. For the scoring solution, the Cholesky factor of the random-effects variance-covariance matrix is estimated, along with the effects of model covariates. Examples illustrating usage and features of MIXOR are provided.
NASA Astrophysics Data System (ADS)
Shi, Jing; Shi, Yunli; Tan, Jian; Zhu, Lei; Li, Hu
2018-02-01
Traditional power forecasting models cannot efficiently take various factors into account, neither to identify the relation factors. In this paper, the mutual information in information theory and the artificial intelligence random forests algorithm are introduced into the medium and long-term electricity demand prediction. Mutual information can identify the high relation factors based on the value of average mutual information between a variety of variables and electricity demand, different industries may be highly associated with different variables. The random forests algorithm was used for building the different industries forecasting models according to the different correlation factors. The data of electricity consumption in Jiangsu Province is taken as a practical example, and the above methods are compared with the methods without regard to mutual information and the industries. The simulation results show that the above method is scientific, effective, and can provide higher prediction accuracy.
NASA Astrophysics Data System (ADS)
Banerji, Anirban; Magarkar, Aniket
2012-09-01
We feel happy when web browsing operations provide us with necessary information; otherwise, we feel bitter. How to measure this happiness (or bitterness)? How does the profile of happiness grow and decay during the course of web browsing? We propose a probabilistic framework that models the evolution of user satisfaction, on top of his/her continuous frustration at not finding the required information. It is found that the cumulative satisfaction profile of a web-searching individual can be modeled effectively as the sum of a random number of random terms, where each term is a mutually independent random variable, originating from ‘memoryless’ Poisson flow. Evolution of satisfaction over the entire time interval of a user’s browsing was modeled using auto-correlation analysis. A utilitarian marker, a magnitude of greater than unity of which describes happy web-searching operations, and an empirical limit that connects user’s satisfaction with his frustration level-are proposed too. The presence of pertinent information in the very first page of a website and magnitude of the decay parameter of user satisfaction (frustration, irritation etc.) are found to be two key aspects that dominate the web user’s psychology. The proposed model employed different combinations of decay parameter, searching time and number of helpful websites. The obtained results are found to match the results from three real-life case studies.
Optimization Of Mean-Semivariance-Skewness Portfolio Selection Model In Fuzzy Random Environment
NASA Astrophysics Data System (ADS)
Chatterjee, Amitava; Bhattacharyya, Rupak; Mukherjee, Supratim; Kar, Samarjit
2010-10-01
The purpose of the paper is to construct a mean-semivariance-skewness portfolio selection model in fuzzy random environment. The objective is to maximize the skewness with predefined maximum risk tolerance and minimum expected return. Here the security returns in the objectives and constraints are assumed to be fuzzy random variables in nature and then the vagueness of the fuzzy random variables in the objectives and constraints are transformed into fuzzy variables which are similar to trapezoidal numbers. The newly formed fuzzy model is then converted into a deterministic optimization model. The feasibility and effectiveness of the proposed method is verified by numerical example extracted from Bombay Stock Exchange (BSE). The exact parameters of fuzzy membership function and probability density function are obtained through fuzzy random simulating the past dates.
Vuilleumier, Pascal H; Besson, Marie; Desmeules, Jules; Arendt-Nielsen, Lars; Curatolo, Michele
2013-01-01
Compounds that act on GABA-receptors produce anti-hyperalgesia in animal models, but little is known on their effects in humans. The aim of this study was to explore the potential usefulness of GABA-agonism for the control of pain in humans. Two agonists at the benzodiazepine-binding site of GABAA-receptors (clobazam and clonazepam) were studied using multiple experimental pain tests. Positive results would support further investigation of GABA agonism for the control of clinical pain. In a randomized double-blind crossover design, 16 healthy male volunteers received clobazam 20 mg, clonazepam 1 mg and tolterodine 1 mg (active placebo). The area of static hyperalgesia after intradermal capsaicin injection was the primary endpoint. Secondary endpoints were: area of dynamic hyperalgesia, response to von Frey hair stimulation, pressure pain thresholds, conditioned pain modulation, cutaneous and intramuscular electrical pain thresholds (1, 5 and 20 repeated stimulation), and pain during cuff algometry. For the primary endpoint, an increase in the area of static hyperalgesia was observed after administration of placebo (p<0.001), but not after clobazam and clonazepam. Results suggestive for an anti-hyperalgesic effect of the benzodiazepines were obtained with all three intramuscular pain models and with cuff algometry. No effect could be detected with the other pain models employed. Collectively, the results are suggestive for a possible anti-hyperalgesic effect of drugs acting at the GABAA-receptors in humans, particularly in models of secondary hyperalgesia and deep pain. The findings are not conclusive, but support further clinical research on pain modulation by GABAergic drugs. Because of the partial results, future research should focus on compounds acting selectively on subunits of the GABA complex, which may allow the achievement of higher receptor occupancy than unselective drugs. Our data also provide information on the most suitable experimental models for future investigation of GABAergic compounds. ClinicalTrials.gov NCT01011036.
Analyzing Multiple Outcomes in Clinical Research Using Multivariate Multilevel Models
Baldwin, Scott A.; Imel, Zac E.; Braithwaite, Scott R.; Atkins, David C.
2014-01-01
Objective Multilevel models have become a standard data analysis approach in intervention research. Although the vast majority of intervention studies involve multiple outcome measures, few studies use multivariate analysis methods. The authors discuss multivariate extensions to the multilevel model that can be used by psychotherapy researchers. Method and Results Using simulated longitudinal treatment data, the authors show how multivariate models extend common univariate growth models and how the multivariate model can be used to examine multivariate hypotheses involving fixed effects (e.g., does the size of the treatment effect differ across outcomes?) and random effects (e.g., is change in one outcome related to change in the other?). An online supplemental appendix provides annotated computer code and simulated example data for implementing a multivariate model. Conclusions Multivariate multilevel models are flexible, powerful models that can enhance clinical research. PMID:24491071
Convergence in High Probability of the Quantum Diffusion in a Random Band Matrix Model
NASA Astrophysics Data System (ADS)
Margarint, Vlad
2018-06-01
We consider Hermitian random band matrices H in d ≥slant 1 dimensions. The matrix elements H_{xy}, indexed by x, y \\in Λ \\subset Z^d, are independent, uniformly distributed random variable if |x-y| is less than the band width W, and zero otherwise. We update the previous results of the converge of quantum diffusion in a random band matrix model from convergence of the expectation to convergence in high probability. The result is uniformly in the size |Λ| of the matrix.
A Methodology for Multihazards Load Combinations of Earthquake and Heavy Trucks for Bridges
Wang, Xu; Sun, Baitao
2014-01-01
Issues of load combinations of earthquakes and heavy trucks are important contents in multihazards bridge design. Current load resistance factor design (LRFD) specifications usually treat extreme hazards alone and have no probabilistic basis in extreme load combinations. Earthquake load and heavy truck load are considered as random processes with respective characteristics, and the maximum combined load is not the simple superimposition of their maximum loads. Traditional Ferry Borges-Castaneda model that considers load lasting duration and occurrence probability well describes random process converting to random variables and load combinations, but this model has strict constraint in time interval selection to obtain precise results. Turkstra's rule considers one load reaching its maximum value in bridge's service life combined with another load with its instantaneous value (or mean value), which looks more rational, but the results are generally unconservative. Therefore, a modified model is presented here considering both advantages of Ferry Borges-Castaneda's model and Turkstra's rule. The modified model is based on conditional probability, which can convert random process to random variables relatively easily and consider the nonmaximum factor in load combinations. Earthquake load and heavy truck load combinations are employed to illustrate the model. Finally, the results of a numerical simulation are used to verify the feasibility and rationality of the model. PMID:24883347
Random walks based multi-image segmentation: Quasiconvexity results and GPU-based solutions
Collins, Maxwell D.; Xu, Jia; Grady, Leo; Singh, Vikas
2012-01-01
We recast the Cosegmentation problem using Random Walker (RW) segmentation as the core segmentation algorithm, rather than the traditional MRF approach adopted in the literature so far. Our formulation is similar to previous approaches in the sense that it also permits Cosegmentation constraints (which impose consistency between the extracted objects from ≥ 2 images) using a nonparametric model. However, several previous nonparametric cosegmentation methods have the serious limitation that they require adding one auxiliary node (or variable) for every pair of pixels that are similar (which effectively limits such methods to describing only those objects that have high entropy appearance models). In contrast, our proposed model completely eliminates this restrictive dependence –the resulting improvements are quite significant. Our model further allows an optimization scheme exploiting quasiconvexity for model-based segmentation with no dependence on the scale of the segmented foreground. Finally, we show that the optimization can be expressed in terms of linear algebra operations on sparse matrices which are easily mapped to GPU architecture. We provide a highly specialized CUDA library for Cosegmentation exploiting this special structure, and report experimental results showing these advantages. PMID:25278742
Tangen, C M; Koch, G G
1999-03-01
In the randomized clinical trial setting, controlling for covariates is expected to produce variance reduction for the treatment parameter estimate and to adjust for random imbalances of covariates between the treatment groups. However, for the logistic regression model, variance reduction is not obviously obtained. This can lead to concerns about the assumptions of the logistic model. We introduce a complementary nonparametric method for covariate adjustment. It provides results that are usually compatible with expectations for analysis of covariance. The only assumptions required are based on randomization and sampling arguments. The resulting treatment parameter is a (unconditional) population average log-odds ratio that has been adjusted for random imbalance of covariates. Data from a randomized clinical trial are used to compare results from the traditional maximum likelihood logistic method with those from the nonparametric logistic method. We examine treatment parameter estimates, corresponding standard errors, and significance levels in models with and without covariate adjustment. In addition, we discuss differences between unconditional population average treatment parameters and conditional subpopulation average treatment parameters. Additional features of the nonparametric method, including stratified (multicenter) and multivariate (multivisit) analyses, are illustrated. Extensions of this methodology to the proportional odds model are also made.
NASA Astrophysics Data System (ADS)
Engeland, Kolbjorn; Steinsland, Ingelin
2016-04-01
The aim of this study is to investigate how the inclusion of uncertainties in inputs and observed streamflow influence the parameter estimation, streamflow predictions and model evaluation. In particular we wanted to answer the following research questions: • What is the effect of including a random error in the precipitation and temperature inputs? • What is the effect of decreased information about precipitation by excluding the nearest precipitation station? • What is the effect of the uncertainty in streamflow observations? • What is the effect of reduced information about the true streamflow by using a rating curve where the measurement of the highest and lowest streamflow is excluded when estimating the rating curve? To answer these questions, we designed a set of calibration experiments and evaluation strategies. We used the elevation distributed HBV model operating on daily time steps combined with a Bayesian formulation and the MCMC routine Dream for parameter inference. The uncertainties in inputs was represented by creating ensembles of precipitation and temperature. The precipitation ensemble were created using a meta-gaussian random field approach. The temperature ensembles were created using a 3D Bayesian kriging with random sampling of the temperature laps rate. The streamflow ensembles were generated by a Bayesian multi-segment rating curve model. Precipitation and temperatures were randomly sampled for every day, whereas the streamflow ensembles were generated from rating curve ensembles, and the same rating curve was always used for the whole time series in a calibration or evaluation run. We chose a catchment with a meteorological station measuring precipitation and temperature, and a rating curve of relatively high quality. This allowed us to investigate and further test the effect of having less information on precipitation and streamflow during model calibration, predictions and evaluation. The results showed that including uncertainty in the precipitation and temperature input has a negligible effect on the posterior distribution of parameters and for the Nash-Sutcliffe (NS) efficiency for the predicted flows, while the reliability and the continuous rank probability score (CRPS) improves. Reduced information in precipitation input resulted in a and a shift in the water balance parameter Pcorr, a model producing smoother streamflow predictions giving poorer NS and CRPS, but higher reliability. The effect of calibrating the hydrological model using wrong rating curves is mainly seen as variability in the water balance parameter Pcorr. When evaluating predictions obtained using a wrong rating curve, the evaluation scores varies depending on the true rating curve. Generally, the best evaluation scores were not achieved for the rating curve used for calibration, but for a rating curves giving low variance in streamflow observations. Reduced information in streamflow influenced the water balance parameter Pcorr, and increased the spread in evaluation scores giving both better and worse scores. This case study shows that estimating the water balance is challenging since both precipitation inputs and streamflow observations have pronounced systematic component in their uncertainties.
Revisiting crash spatial heterogeneity: A Bayesian spatially varying coefficients approach.
Xu, Pengpeng; Huang, Helai; Dong, Ni; Wong, S C
2017-01-01
This study was performed to investigate the spatially varying relationships between crash frequency and related risk factors. A Bayesian spatially varying coefficients model was elaborately introduced as a methodological alternative to simultaneously account for the unstructured and spatially structured heterogeneity of the regression coefficients in predicting crash frequencies. The proposed method was appealing in that the parameters were modeled via a conditional autoregressive prior distribution, which involved a single set of random effects and a spatial correlation parameter with extreme values corresponding to pure unstructured or pure spatially correlated random effects. A case study using a three-year crash dataset from the Hillsborough County, Florida, was conducted to illustrate the proposed model. Empirical analysis confirmed the presence of both unstructured and spatially correlated variations in the effects of contributory factors on severe crash occurrences. The findings also suggested that ignoring spatially structured heterogeneity may result in biased parameter estimates and incorrect inferences, while assuming the regression coefficients to be spatially clustered only is probably subject to the issue of over-smoothness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors
NASA Astrophysics Data System (ADS)
Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay
2017-11-01
Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α , the appropriate FRCG model has the effective range d =b2/N =α2/N , for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.
Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors.
Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay
2017-11-01
Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.
Myers, Kathleen; Stoep, Ann Vander; Zhou, Chuan; McCarty, Carolyn A.; Katon, Wayne
2015-01-01
Objective To test the effectiveness of a telehealth service delivery model for the treatment of children with attention-deficit/hyperactivity disorder (ADHD) that provided pharmacological treatment and caregiver behavior training. Method The Children’s ADHD Telemental Health Treatment Study (CATTS) was a randomized controlled trial with 223 children referred by 88 primary care providers (PCPs) in 7 communities. Children randomized to the experimental telehealth service model received 6 sessions over 22 weeks of combined pharmacotherapy, delivered by child psychiatrists through videoconferencing, and caregiver behavior training, provided in person by community therapists who were supervised remotely. Children randomized to the control service delivery model received treatment with their PCPs augmented with a telepsychiatry consultation. Outcomes were diagnostic criteria for ADHD and oppositional defiant disorder (ODD) and role performance on the Vanderbilt ADHD Rating Scale (VADRS) completed by caregivers (VADRS-Caregivers) and teachers (VADRS-Teachers) and impairment on the Columbia Impairment Scale-Parent Version (CIS-P). Measures were completed at 5 assessments over 25 weeks. Results Children in both service models improved. Children assigned to the telehealth service model improved significantly more than children in the augmented primary care arm for VADRS-Caregiver criteria for inattention (χ2[4]=19.47, p<.001), hyperactivity (χ2[4]=11.91, p=0.02), combined ADHD (χ2[4]=14.90, p=0.005), ODD (χ2[4]=10.05, p=0.04), and VADRS-Caregiver role performance (χ2 [4]=12.40, p=0.01) and CIS-P impairment (χ2[4]=20.52, p<.001). For the VADRS-Teacher diagnostic criteria, children in the telehealth service model had significantly more improvement in hyperactivity (χ2[4]=11.28, p=0.02) and combined ADHD (χ2[4]=9.72, p=0.045). Conclusion The CATTS trial demonstrated the effectiveness of a telehealth service model to treat ADHD in communities with limited access to specialty mental health services. Clinical trial registration information Children’s Attention Deficit Disorder With Hyperactivity (ADHD) Telemental Health Treatment Study; http://clinicaltrials.gov; NCT00830700. PMID:25791143
Do little interactions get lost in dark random forests?
Wright, Marvin N; Ziegler, Andreas; König, Inke R
2016-03-31
Random forests have often been claimed to uncover interaction effects. However, if and how interaction effects can be differentiated from marginal effects remains unclear. In extensive simulation studies, we investigate whether random forest variable importance measures capture or detect gene-gene interactions. With capturing interactions, we define the ability to identify a variable that acts through an interaction with another one, while detection is the ability to identify an interaction effect as such. Of the single importance measures, the Gini importance captured interaction effects in most of the simulated scenarios, however, they were masked by marginal effects in other variables. With the permutation importance, the proportion of captured interactions was lower in all cases. Pairwise importance measures performed about equal, with a slight advantage for the joint variable importance method. However, the overall fraction of detected interactions was low. In almost all scenarios the detection fraction in a model with only marginal effects was larger than in a model with an interaction effect only. Random forests are generally capable of capturing gene-gene interactions, but current variable importance measures are unable to detect them as interactions. In most of the cases, interactions are masked by marginal effects and interactions cannot be differentiated from marginal effects. Consequently, caution is warranted when claiming that random forests uncover interactions.
Single realization stochastic FDTD for weak scattering waves in biological random media.
Tan, Tengmeng; Taflove, Allen; Backman, Vadim
2013-02-01
This paper introduces an iterative scheme to overcome the unresolved issues presented in S-FDTD (stochastic finite-difference time-domain) for obtaining ensemble average field values recently reported by Smith and Furse in an attempt to replace the brute force multiple-realization also known as Monte-Carlo approach with a single-realization scheme. Our formulation is particularly useful for studying light interactions with biological cells and tissues having sub-wavelength scale features. Numerical results demonstrate that such a small scale variation can be effectively modeled with a random medium problem which when simulated with the proposed S-FDTD indeed produces a very accurate result.
Single realization stochastic FDTD for weak scattering waves in biological random media
Tan, Tengmeng; Taflove, Allen; Backman, Vadim
2015-01-01
This paper introduces an iterative scheme to overcome the unresolved issues presented in S-FDTD (stochastic finite-difference time-domain) for obtaining ensemble average field values recently reported by Smith and Furse in an attempt to replace the brute force multiple-realization also known as Monte-Carlo approach with a single-realization scheme. Our formulation is particularly useful for studying light interactions with biological cells and tissues having sub-wavelength scale features. Numerical results demonstrate that such a small scale variation can be effectively modeled with a random medium problem which when simulated with the proposed S-FDTD indeed produces a very accurate result. PMID:27158153
NASA Astrophysics Data System (ADS)
Kim, Yup; Cho, Minsoo; Yook, Soon-Hyung
2011-10-01
We study the effects of the underlying topologies on a single feature perturbation imposed to the Axelrod model of consensus formation. From the numerical simulations we show that there are successive updates which are similar to avalanches in many self-organized criticality systems when a perturbation is imposed. We find that the distribution of avalanche size satisfies the finite-size scaling (FSS) ansatz on two-dimensional lattices and random networks. However, on scale-free networks with the degree exponent γ≤3 we show that the avalanche size distribution does not satisfy the FSS ansatz. The results indicate that the disordered configurations on two-dimensional lattices or on random networks are still stable against the perturbation in the limit N (network size) →∞. However, on scale-free networks with γ≤3 the perturbation always drives the disordered phase into an ordered phase. The possible relationship between the properties of phase transition of the Axelrod model and the avalanche distribution is also discussed.
NASA Astrophysics Data System (ADS)
Libera, A.; de Barros, F.; Riva, M.; Guadagnini, A.
2016-12-01
Managing contaminated groundwater systems is an arduous task for multiple reasons. First, subsurface hydraulic properties are heterogeneous and the high costs associated with site characterization leads to data scarcity (therefore, model predictions are uncertain). Second, it is common for water agencies to schedule groundwater extraction through a temporal sequence of pumping rates to maximize the benefits to anthropogenic activities and minimize the environmental footprint of the withdrawal operations. The temporal variability in pumping rates and aquifer heterogeneity affect dilution rates of contaminant plumes and chemical concentration breakthrough curves (BTCs) at the well. While contaminant transport under steady-state pumping is widely studied, the manner in which a given time-varying pumping schedule affects contaminant plume behavior is tackled only marginally. At the same time, most studies focus on the impact of Gaussian random hydraulic conductivity (K) fields on transport. Here, we systematically analyze the significance of the random space function (RSF) model characterizing K in the presence of distinct pumping operations on the uncertainty of the concentration BTC at the operating well. We juxtapose Monte Carlo based numerical results associated with two models: (a) a recently proposed Generalized Sub-Gaussian model which allows capturing non-Gaussian statistical scaling features of RSFs such as hydraulic conductivity, and (b) the commonly used Gaussian field approximation. Our novel results include an appraisal of the coupled effect of (a) the model employed to depict the random spatial variability of K and (b) transient flow regime, as induced by a temporally varying pumping schedule, on the concentration BTC at the operating well. We systematically quantify the sensitivity of the uncertainty in the contaminant BTC to the RSF model adopted for K (non-Gaussian or Gaussian) in the presence of diverse well pumping schedules. Results contribute to determine conditions under which any of these two key factors prevails on the other.
ERIC Educational Resources Information Center
Reike, Dennis; Schwarz, Wolf
2016-01-01
The time required to determine the larger of 2 digits decreases with their numerical distance, and, for a given distance, increases with their magnitude (Moyer & Landauer, 1967). One detailed quantitative framework to account for these effects is provided by random walk models. These chronometric models describe how number-related noisy…
Financial Data Analysis by means of Coupled Continuous-Time Random Walk in Rachev-Rűschendorf Model
NASA Astrophysics Data System (ADS)
Jurlewicz, A.; Wyłomańska, A.; Żebrowski, P.
2008-09-01
We adapt the continuous-time random walk formalism to describe asset price evolution. We expand the idea proposed by Rachev and Rűschendorf who analyzed the binomial pricing model in the discrete time with randomization of the number of price changes. As a result, in the framework of the proposed model we obtain a mixture of the Gaussian and a generalized arcsine laws as the limiting distribution of log-returns. Moreover, we derive an European-call-option price that is an extension of the Black-Scholes formula. We apply the obtained theoretical results to model actual financial data and try to show that the continuous-time random walk offers alternative tools to deal with several complex issues of financial markets.
A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications
Austin, Peter C.
2017-01-01
Summary Data that have a multilevel structure occur frequently across a range of disciplines, including epidemiology, health services research, public health, education and sociology. We describe three families of regression models for the analysis of multilevel survival data. First, Cox proportional hazards models with mixed effects incorporate cluster-specific random effects that modify the baseline hazard function. Second, piecewise exponential survival models partition the duration of follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is constant within each interval. This is equivalent to a Poisson regression model that incorporates the duration of exposure within each interval. By incorporating cluster-specific random effects, generalised linear mixed models can be used to analyse these data. Third, after partitioning the duration of follow-up into mutually exclusive intervals, one can use discrete time survival models that use a complementary log–log generalised linear model to model the occurrence of the outcome of interest within each interval. Random effects can be incorporated to account for within-cluster homogeneity in outcomes. We illustrate the application of these methods using data consisting of patients hospitalised with a heart attack. We illustrate the application of these methods using three statistical programming languages (R, SAS and Stata). PMID:29307954
A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications.
Austin, Peter C
2017-08-01
Data that have a multilevel structure occur frequently across a range of disciplines, including epidemiology, health services research, public health, education and sociology. We describe three families of regression models for the analysis of multilevel survival data. First, Cox proportional hazards models with mixed effects incorporate cluster-specific random effects that modify the baseline hazard function. Second, piecewise exponential survival models partition the duration of follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is constant within each interval. This is equivalent to a Poisson regression model that incorporates the duration of exposure within each interval. By incorporating cluster-specific random effects, generalised linear mixed models can be used to analyse these data. Third, after partitioning the duration of follow-up into mutually exclusive intervals, one can use discrete time survival models that use a complementary log-log generalised linear model to model the occurrence of the outcome of interest within each interval. Random effects can be incorporated to account for within-cluster homogeneity in outcomes. We illustrate the application of these methods using data consisting of patients hospitalised with a heart attack. We illustrate the application of these methods using three statistical programming languages (R, SAS and Stata).
Davey, Calum; Aiken, Alexander M; Hayes, Richard J; Hargreaves, James R
2015-01-01
Introduction: Helminth (worm) infections cause morbidity among poor communities worldwide. An influential study conducted in Kenya in 1998–99 reported that a school-based drug-and-educational intervention had benefits for worm infections and school attendance. Methods: In this statistical replication, we re-analysed data from this cluster quasi-randomized stepped-wedge trial, specifying two co-primary outcomes: school attendance and examination performance. We estimated intention-to-treat effects using year-stratified cluster-summary analysis and observation-level random-effects regression, and combined both years with a random-effects model accounting for year. The participants were not blinded to allocation status, and other interventions were concurrently conducted in a sub-set of schools. A protocol guiding outcome data collection was not available. Results: Quasi-randomization resulted in three similar groups of 25 schools. There was a substantial amount of missing data. In year-stratified cluster-summary analysis, there was no clear evidence for improvement in either school attendance or examination performance. In year-stratified regression models, there was some evidence of improvement in school attendance [adjusted odds ratios (aOR): year 1: 1.48, 95% confidence interval (CI) 0.88–2.52, P = 0.147; year 2: 1.23, 95% CI 1.01–1.51, P = 0.044], but not examination performance (adjusted differences: year 1: −0.135, 95% CI −0.323–0.054, P = 0.161; year 2: −0.017, 95% CI −0.201–0.166, P = 0.854). When both years were combined, there was strong evidence of an effect on attendance (aOR 1.82, 95% CI 1.74–1.91, P < 0.001), but not examination performance (adjusted difference −0.121, 95% CI −0.293–0.052, P = 0.169). Conclusions: The evidence supporting an improvement in school attendance differed by analysis method. This, and various other important limitations of the data, caution against over-interpretation of the results. We find that the study provides some evidence, but with high risk of bias, that a school-based drug-treatment and health-education intervention improved school attendance and no evidence of effect on examination performance. PMID:26203171
Does rational selection of training and test sets improve the outcome of QSAR modeling?
Martin, Todd M; Harten, Paul; Young, Douglas M; Muratov, Eugene N; Golbraikh, Alexander; Zhu, Hao; Tropsha, Alexander
2012-10-22
Prior to using a quantitative structure activity relationship (QSAR) model for external predictions, its predictive power should be established and validated. In the absence of a true external data set, the best way to validate the predictive ability of a model is to perform its statistical external validation. In statistical external validation, the overall data set is divided into training and test sets. Commonly, this splitting is performed using random division. Rational splitting methods can divide data sets into training and test sets in an intelligent fashion. The purpose of this study was to determine whether rational division methods lead to more predictive models compared to random division. A special data splitting procedure was used to facilitate the comparison between random and rational division methods. For each toxicity end point, the overall data set was divided into a modeling set (80% of the overall set) and an external evaluation set (20% of the overall set) using random division. The modeling set was then subdivided into a training set (80% of the modeling set) and a test set (20% of the modeling set) using rational division methods and by using random division. The Kennard-Stone, minimal test set dissimilarity, and sphere exclusion algorithms were used as the rational division methods. The hierarchical clustering, random forest, and k-nearest neighbor (kNN) methods were used to develop QSAR models based on the training sets. For kNN QSAR, multiple training and test sets were generated, and multiple QSAR models were built. The results of this study indicate that models based on rational division methods generate better statistical results for the test sets than models based on random division, but the predictive power of both types of models are comparable.
Modelling nematode movement using time-fractional dynamics.
Hapca, Simona; Crawford, John W; MacMillan, Keith; Wilson, Mike J; Young, Iain M
2007-09-07
We use a correlated random walk model in two dimensions to simulate the movement of the slug parasitic nematode Phasmarhabditis hermaphrodita in homogeneous environments. The model incorporates the observed statistical distributions of turning angle and speed derived from time-lapse studies of individual nematode trails. We identify strong temporal correlations between the turning angles and speed that preclude the case of a simple random walk in which successive steps are independent. These correlated random walks are appropriately modelled using an anomalous diffusion model, more precisely using a fractional sub-diffusion model for which the associated stochastic process is characterised by strong memory effects in the probability density function.
ERIC Educational Resources Information Center
Cho, Sun-Joo; Preacher, Kristopher J.; Bottge, Brian A.
2015-01-01
Multilevel modeling (MLM) is frequently used to detect group differences, such as an intervention effect in a pre-test--post-test cluster-randomized design. Group differences on the post-test scores are detected by controlling for pre-test scores as a proxy variable for unobserved factors that predict future attributes. The pre-test and post-test…
Jaffa, Miran A; Gebregziabher, Mulugeta; Jaffa, Ayad A
2015-06-14
Renal transplant patients are mandated to have continuous assessment of their kidney function over time to monitor disease progression determined by changes in blood urea nitrogen (BUN), serum creatinine (Cr), and estimated glomerular filtration rate (eGFR). Multivariate analysis of these outcomes that aims at identifying the differential factors that affect disease progression is of great clinical significance. Thus our study aims at demonstrating the application of different joint modeling approaches with random coefficients on a cohort of renal transplant patients and presenting a comparison of their performance through a pseudo-simulation study. The objective of this comparison is to identify the model with best performance and to determine whether accuracy compensates for complexity in the different multivariate joint models. We propose a novel application of multivariate Generalized Linear Mixed Models (mGLMM) to analyze multiple longitudinal kidney function outcomes collected over 3 years on a cohort of 110 renal transplantation patients. The correlated outcomes BUN, Cr, and eGFR and the effect of various covariates such patient's gender, age and race on these markers was determined holistically using different mGLMMs. The performance of the various mGLMMs that encompass shared random intercept (SHRI), shared random intercept and slope (SHRIS), separate random intercept (SPRI) and separate random intercept and slope (SPRIS) was assessed to identify the one that has the best fit and most accurate estimates. A bootstrap pseudo-simulation study was conducted to gauge the tradeoff between the complexity and accuracy of the models. Accuracy was determined using two measures; the mean of the differences between the estimates of the bootstrapped datasets and the true beta obtained from the application of each model on the renal dataset, and the mean of the square of these differences. The results showed that SPRI provided most accurate estimates and did not exhibit any computational or convergence problem. Higher accuracy was demonstrated when the level of complexity increased from shared random coefficient models to the separate random coefficient alternatives with SPRI showing to have the best fit and most accurate estimates.
Flay, Brian R.; Vuchinich, Samuel; Snyder, Frank J.; Acock, Alan; Li, Kin-Kit; Burns, Kate; Washburn, Isaac J.; Durlak, Joseph
2009-01-01
Objectives. We assessed the effectiveness of a 5-year trial of a comprehensive school-based program designed to prevent substance use, violent behaviors, and sexual activity among elementary-school students. Methods. We used a matched-pair, cluster-randomized, controlled design, with 10 intervention schools and 10 control schools. Fifth-graders (N = 1714) self-reported on lifetime substance use, violence, and voluntary sexual activity. Teachers of participant students reported on student (N = 1225) substance use and violence. Results. Two-level random-effects count models (with students nested within schools) indicated that student-reported substance use (rate ratio [RR] = 0.41; 90% confidence interval [CI] = 0.25, 0.66) and violence (RR = 0.42; 90% CI = 0.24, 0.73) were significantly lower for students attending intervention schools. A 2-level random-effects binary model indicated that sexual activity was lower (odds ratio = 0.24; 90% CI = 0.08, 0.66) for intervention students. Teacher reports substantiated the effects seen for student-reported data. Dose-response analyses indicated that students exposed to the program for at least 3 years had significantly lower rates of all negative behaviors. Conclusions. Risk-related behaviors were substantially reduced for students who participated in the program, providing evidence that a comprehensive school-based program can have a strong beneficial effect on student behavior. PMID:19542037
Universal statistics of vortex tangles in three-dimensional random waves
NASA Astrophysics Data System (ADS)
Taylor, Alexander J.
2018-02-01
The tangled nodal lines (wave vortices) in random, three-dimensional wavefields are studied as an exemplar of a fractal loop soup. Their statistics are a three-dimensional counterpart to the characteristic random behaviour of nodal domains in quantum chaos, but in three dimensions the filaments can wind around one another to give distinctly different large scale behaviours. By tracing numerically the structure of the vortices, their conformations are shown to follow recent analytical predictions for random vortex tangles with periodic boundaries, where the local disorder of the model ‘averages out’ to produce large scale power law scaling relations whose universality classes do not depend on the local physics. These results explain previous numerical measurements in terms of an explicit effect of the periodic boundaries, where the statistics of the vortices are strongly affected by the large scale connectedness of the system even at arbitrarily high energies. The statistics are investigated primarily for static (monochromatic) wavefields, but the analytical results are further shown to directly describe the reconnection statistics of vortices evolving in certain dynamic systems, or occurring during random perturbations of the static configuration.
Methods to assess an exercise intervention trial based on 3-level functional data.
Li, Haocheng; Kozey Keadle, Sarah; Staudenmayer, John; Assaad, Houssein; Huang, Jianhua Z; Carroll, Raymond J
2015-10-01
Motivated by data recording the effects of an exercise intervention on subjects' physical activity over time, we develop a model to assess the effects of a treatment when the data are functional with 3 levels (subjects, weeks and days in our application) and possibly incomplete. We develop a model with 3-level mean structure effects, all stratified by treatment and subject random effects, including a general subject effect and nested effects for the 3 levels. The mean and random structures are specified as smooth curves measured at various time points. The association structure of the 3-level data is induced through the random curves, which are summarized using a few important principal components. We use penalized splines to model the mean curves and the principal component curves, and cast the proposed model into a mixed effects model framework for model fitting, prediction and inference. We develop an algorithm to fit the model iteratively with the Expectation/Conditional Maximization Either (ECME) version of the EM algorithm and eigenvalue decompositions. Selection of the number of principal components and handling incomplete data issues are incorporated into the algorithm. The performance of the Wald-type hypothesis test is also discussed. The method is applied to the physical activity data and evaluated empirically by a simulation study. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Hamzalouh, L.; Ismail, M. T.; Rahman, R. A.
2017-09-01
In this paper, spatial panel models were used and the method for selecting the best model amongst the spatial fixed effects model and the spatial random effects model to estimate the fitting model by using the robust Hausman test for analysis of the exports pattern of the Common Market for Eastern and Southern African (COMESA) countries. And examine the effects of the interactions of the economic statistic of explanatory variables on the exports of the COMESA. Results indicated that the spatial Durbin model with fixed effects specification should be tested and considered in most cases of this study. After that, the direct and indirect effects among COMESA regions were assessed, and the role of indirect spatial effects in estimating exports was empirically demonstrated. Regarding originality and research value, and to the best of the authors’ knowledge, this is the first attempt to examine exports between COMESA and its member countries through spatial panel models using XSMLE, which is a new command for spatial analysis using STATA.
Biases and power for groups comparison on subjective health measurements.
Hamel, Jean-François; Hardouin, Jean-Benoit; Le Neel, Tanguy; Kubis, Gildas; Roquelaure, Yves; Sébille, Véronique
2012-01-01
Subjective health measurements are increasingly used in clinical research, particularly for patient groups comparisons. Two main types of analytical strategies can be used for such data: so-called classical test theory (CTT), relying on observed scores and models coming from Item Response Theory (IRT) relying on a response model relating the items responses to a latent parameter, often called latent trait. Whether IRT or CTT would be the most appropriate method to compare two independent groups of patients on a patient reported outcomes measurement remains unknown and was investigated using simulations. For CTT-based analyses, groups comparison was performed using t-test on the scores. For IRT-based analyses, several methods were compared, according to whether the Rasch model was considered with random effects or with fixed effects, and the group effect was included as a covariate or not. Individual latent traits values were estimated using either a deterministic method or by stochastic approaches. Latent traits were then compared with a t-test. Finally, a two-steps method was performed to compare the latent trait distributions, and a Wald test was performed to test the group effect in the Rasch model including group covariates. The only unbiased IRT-based method was the group covariate Wald's test, performed on the random effects Rasch model. This model displayed the highest observed power, which was similar to the power using the score t-test. These results need to be extended to the case frequently encountered in practice where data are missing and possibly informative.
Multilevel structural equation models for assessing moderation within and across levels of analysis.
Preacher, Kristopher J; Zhang, Zhen; Zyphur, Michael J
2016-06-01
Social scientists are increasingly interested in multilevel hypotheses, data, and statistical models as well as moderation or interactions among predictors. The result is a focus on hypotheses and tests of multilevel moderation within and across levels of analysis. Unfortunately, existing approaches to multilevel moderation have a variety of shortcomings, including conflated effects across levels of analysis and bias due to using observed cluster averages instead of latent variables (i.e., "random intercepts") to represent higher-level constructs. To overcome these problems and elucidate the nature of multilevel moderation effects, we introduce a multilevel structural equation modeling (MSEM) logic that clarifies the nature of the problems with existing practices and remedies them with latent variable interactions. This remedy uses random coefficients and/or latent moderated structural equations (LMS) for unbiased tests of multilevel moderation. We describe our approach and provide an example using the publicly available High School and Beyond data with Mplus syntax in Appendix. Our MSEM method eliminates problems of conflated multilevel effects and reduces bias in parameter estimates while offering a coherent framework for conceptualizing and testing multilevel moderation effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Rakhshan, Mahnaz; Kordshooli, Khadijeh Rahimi; Ghadakpoor, Soraya
2015-01-01
Background: Cardiovascular diseases are the most prevalent disorders in developed countries and heart failure is the major one among them. This disease is caused by numerous factors and one of the most considerable risk factors is unhealthy lifestyle. So the aim of this research was to study the effect of family-center empowerment model on the lifestyle of heart failure patients. Methods: This is a randomized controlled clinical trial on 70 heart failure patients referring to Hazrate Fatemeh heart clinic in Shiraz. After convenience sampling the patients were divided into two control and intervention groups using block randomization Method. The intervention based on family-center empowerment model was performed during 5 sessions. Research tools are lifestyle and demographic information questionnaires. Results: Both intervention and control groups were similar regarding their demographic information (P>0.001). Before the intervention on lifestyle, all measures of the two groups were equal (P>0.001) but after the intervention; statistically significant differences were reported in all dimensions of lifestyle, the total lifestyle score in the intervention group was 70.09±16.38 and in the control group -6.03±16.36 (P<0.001). Conclusion: Performing the family-center empowerment model for heart failure patients is practically possible, leading to improvement or refinement of their and their families’ lifestyle. Trial Registration Number: IRCT 2014072018468N3 PMID:26448952
Jansa, Václav
2017-01-01
Height to crown base (HCB) of a tree is an important variable often included as a predictor in various forest models that serve as the fundamental tools for decision-making in forestry. We developed spatially explicit and spatially inexplicit mixed-effects HCB models using measurements from a total 19,404 trees of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) on the permanent sample plots that are located across the Czech Republic. Variables describing site quality, stand density or competition, and species mixing effects were included into the HCB model with use of dominant height (HDOM), basal area of trees larger in diameters than a subject tree (BAL- spatially inexplicit measure) or Hegyi’s competition index (HCI—spatially explicit measure), and basal area proportion of a species of interest (BAPOR), respectively. The parameters describing sample plot-level random effects were included into the HCB model by applying the mixed-effects modelling approach. Among several functional forms evaluated, the logistic function was found most suited to our data. The HCB model for Norway spruce was tested against the data originated from different inventory designs, but model for European beech was tested using partitioned dataset (a part of the main dataset). The variance heteroscedasticity in the residuals was substantially reduced through inclusion of a power variance function into the HCB model. The results showed that spatially explicit model described significantly a larger part of the HCB variations [R2adj = 0.86 (spruce), 0.85 (beech)] than its spatially inexplicit counterpart [R2adj = 0.84 (spruce), 0.83 (beech)]. The HCB increased with increasing competitive interactions described by tree-centered competition measure: BAL or HCI, and species mixing effects described by BAPOR. A test of the mixed-effects HCB model with the random effects estimated using at least four trees per sample plot in the validation data confirmed that the model was precise enough for the prediction of HCB for a range of site quality, tree size, stand density, and stand structure. We therefore recommend measuring of HCB on four randomly selected trees of a species of interest on each sample plot for localizing the mixed-effects model and predicting HCB of the remaining trees on the plot. Growth simulations can be made from the data that lack the values for either crown ratio or HCB using the HCB models. PMID:29049391
Efficient mitigation strategies for epidemics in rural regions.
Scoglio, Caterina; Schumm, Walter; Schumm, Phillip; Easton, Todd; Roy Chowdhury, Sohini; Sydney, Ali; Youssef, Mina
2010-07-13
Containing an epidemic at its origin is the most desirable mitigation. Epidemics have often originated in rural areas, with rural communities among the first affected. Disease dynamics in rural regions have received limited attention, and results of general studies cannot be directly applied since population densities and human mobility factors are very different in rural regions from those in cities. We create a network model of a rural community in Kansas, USA, by collecting data on the contact patterns and computing rates of contact among a sampled population. We model the impact of different mitigation strategies detecting closely connected groups of people and frequently visited locations. Within those groups and locations, we compare the effectiveness of random and targeted vaccinations using a Susceptible-Exposed-Infected-Recovered compartmental model on the contact network. Our simulations show that the targeted vaccinations of only 10% of the sampled population reduced the size of the epidemic by 34.5%. Additionally, if 10% of the population visiting one of the most popular locations is randomly vaccinated, the epidemic size is reduced by 19%. Our results suggest a new implementation of a highly effective strategy for targeted vaccinations through the use of popular locations in rural communities.
Prediction of the effect of formulation on the toxicity of chemicals.
Mistry, Pritesh; Neagu, Daniel; Sanchez-Ruiz, Antonio; Trundle, Paul R; Vessey, Jonathan D; Gosling, John Paul
2017-01-01
Two approaches for the prediction of which of two vehicles will result in lower toxicity for anticancer agents are presented. Machine-learning models are developed using decision tree, random forest and partial least squares methodologies and statistical evidence is presented to demonstrate that they represent valid models. Separately, a clustering method is presented that allows the ordering of vehicles by the toxicity they show for chemically-related compounds.
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.; Chiang, T.; Badgley, R. H.
1973-01-01
The random vibration response of a gas bearing rotor support system has been experimentally and analytically investigated in the amplitude and frequency domains. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10 KWe turbogenerator had previously been subjected in the laboratory to external random vibrations, and the response data recorded on magnetic tape. This data has now been experimentally analyzed for amplitude distribution and magnetic tape. This data has now been experimentally analyzed for amplitude distribution and frequency content. The results of the power spectral density analysis indicate strong vibration responses for the major rotor-bearing system components at frequencies which correspond closely to their resonant frequencies obtained under periodic vibration testing. The results of amplitude analysis indicate an increasing shift towards non-Gaussian distributions as the input level of external vibrations is raised. Analysis of axial random vibration response of the BRU was performed by using a linear three-mass model. Power spectral densities, the root-mean-square value of the thrust bearing surface contact were calculated for specified input random excitation.
ERIC Educational Resources Information Center
Hendra, Richard; Dillman, Keri-Nicole; Hamilton, Gayle; Lundquist, Erika; Martinson, Karin; Wavelet, Melissa
2010-01-01
This report summarizes the final impact results for the national Employment Retention and Advancement (ERA) project. This project tested, using a random assignment design, the effectiveness of numerous programs intended to promote steady work and career advancement. All the programs targeted current and former welfare recipients and other low-wage…
Industrial water pollution, water environment treatment, and health risks in China.
Wang, Qing; Yang, Zhiming
2016-11-01
The negative health effects of water pollution remain a major source of morbidity and mortality in China. The Chinese government is making great efforts to strengthen water environment treatment; however, no studies have evaluated the effects of water treatment on human health by water pollution in China. This study evaluated the association between water pollution and health outcomes, and determined the extent to which environmental regulations on water pollution may lead to health benefits. Data were extracted from the 2011 and 2013 China Health and Retirement Longitudinal Study (CHARLS). Random effects model and random effects Logit model were applied to study the relationship between health and water pollution, while a Mediator model was used to estimate the effects of environmental water treatment on health outcomes by the intensity of water pollution. Unsurprisingly, water pollution was negatively associated with health outcomes, and the common pollutants in industrial wastewater had differential impacts on health outcomes. The effects were stronger for low-income respondents. Water environment treatment led to improved health outcomes among Chinese people. Reduced water pollution mediated the associations between water environment treatment and health outcomes. The results of this study offer compelling evidence to support treatment of water pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.