Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.
Ozmutlu, H. Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204
Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.
Yang, Shengxiang
2008-01-01
In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.
NASA Astrophysics Data System (ADS)
Rochman, Auliya Noor; Prasetyo, Hari; Nugroho, Munajat Tri
2017-06-01
Vehicle Routing Problem (VRP) often occurs when the manufacturers need to distribute their product to some customers/outlets. The distribution process is typically restricted by the capacity of the vehicle and the working hours at the distributor. This type of VRP is also known as Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). A Biased Random Key Genetic Algorithm (BRKGA) was designed and coded in MATLAB to solve the CVRPTW case of soft drink distribution. The standard BRKGA was then modified by applying chromosome insertion into the initial population and defining chromosome gender for parent undergoing crossover operation. The performance of the established algorithms was then compared to a heuristic procedure for solving a soft drink distribution. Some findings are revealed (1) the total distribution cost of BRKGA with insertion (BRKGA-I) results in a cost saving of 39% compared to the total cost of heuristic method, (2) BRKGA with the gender selection (BRKGA-GS) could further improve the performance of the heuristic method. However, the BRKGA-GS tends to yield worse results compared to that obtained from the standard BRKGA.
Comparison of genetic algorithm methods for fuel management optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1995-12-31
The CIGARO system was developed for genetic algorithm fuel management optimization. Tests are performed to find the best fuel location swap mutation operator probability and to compare genetic algorithm to a truly random search method. Tests showed the fuel swap probability should be between 0% and 10%, and a 50% definitely hampered the optimization. The genetic algorithm performed significantly better than the random search method, which did not even satisfy the peak normalized power constraint.
NASA Astrophysics Data System (ADS)
Inoue, Hisaki; Gen, Mitsuo
The logistics model used in this study is 3-stage model employed by an automobile company, which aims to solve traffic problems at a total minimum cost. Recently, research on the metaheuristics method has advanced as an approximate means for solving optimization problems like this model. These problems can be solved using various methods such as the genetic algorithm (GA), simulated annealing, and tabu search. GA is superior in robustness and adjustability toward a change in the structure of these problems. However, GA has a disadvantage in that it has a slightly inefficient search performance because it carries out a multi-point search. A hybrid GA that combines another method is attracting considerable attention since it can compensate for a fault to a partial solution that early convergence gives a bad influence on a result. In this study, we propose a novel hybrid random key-based GA(h-rkGA) that combines local search and parameter tuning of crossover rate and mutation rate; h-rkGA is an improved version of the random key-based GA (rk-GA). We attempted comparative experiments with spanning tree-based GA, priority based GA and random key-based GA. Further, we attempted comparative experiments with “h-GA by only local search” and “h-GA by only parameter tuning”. We reported the effectiveness of the proposed method on the basis of the results of these experiments.
An improved genetic algorithm and its application in the TSP problem
NASA Astrophysics Data System (ADS)
Li, Zheng; Qin, Jinlei
2011-12-01
Concept and research actuality of genetic algorithm are introduced in detail in the paper. Under this condition, the simple genetic algorithm and an improved algorithm are described and applied in an example of TSP problem, where the advantage of genetic algorithm is adequately shown in solving the NP-hard problem. In addition, based on partial matching crossover operator, the crossover operator method is improved into extended crossover operator in order to advance the efficiency when solving the TSP. In the extended crossover method, crossover operator can be performed between random positions of two random individuals, which will not be restricted by the position of chromosome. Finally, the nine-city TSP is solved using the improved genetic algorithm with extended crossover method, the efficiency of whose solution process is much higher, besides, the solving speed of the optimal solution is much faster.
Comparison of genetic algorithms with conjugate gradient methods
NASA Technical Reports Server (NTRS)
Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.
1972-01-01
Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.
NASA Astrophysics Data System (ADS)
Garcia-Santiago, C. A.; Del Ser, J.; Upton, C.; Quilligan, F.; Gil-Lopez, S.; Salcedo-Sanz, S.
2015-11-01
When seeking near-optimal solutions for complex scheduling problems, meta-heuristics demonstrate good performance with affordable computational effort. This has resulted in a gravitation towards these approaches when researching industrial use-cases such as energy-efficient production planning. However, much of the previous research makes assumptions about softer constraints that affect planning strategies and about how human planners interact with the algorithm in a live production environment. This article describes a job-shop problem that focuses on minimizing energy consumption across a production facility of shared resources. The application scenario is based on real facilities made available by the Irish Center for Manufacturing Research. The formulated problem is tackled via harmony search heuristics with random keys encoding. Simulation results are compared to a genetic algorithm, a simulated annealing approach and a first-come-first-served scheduling. The superior performance obtained by the proposed scheduler paves the way towards its practical implementation over industrial production chains.
A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.
Li, Bin-Bin; Wang, Ling
2007-06-01
This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA.
NASA Astrophysics Data System (ADS)
Adya Zizwan, Putra; Zarlis, Muhammad; Budhiarti Nababan, Erna
2017-12-01
The determination of Centroid on K-Means Algorithm directly affects the quality of the clustering results. Determination of centroid by using random numbers has many weaknesses. The GenClust algorithm that combines the use of Genetic Algorithms and K-Means uses a genetic algorithm to determine the centroid of each cluster. The use of the GenClust algorithm uses 50% chromosomes obtained through deterministic calculations and 50% is obtained from the generation of random numbers. This study will modify the use of the GenClust algorithm in which the chromosomes used are 100% obtained through deterministic calculations. The results of this study resulted in performance comparisons expressed in Mean Square Error influenced by centroid determination on K-Means method by using GenClust method, modified GenClust method and also classic K-Means.
[Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].
Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V
2014-01-01
Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.
Cluster ensemble based on Random Forests for genetic data.
Alhusain, Luluah; Hafez, Alaaeldin M
2017-01-01
Clustering plays a crucial role in several application domains, such as bioinformatics. In bioinformatics, clustering has been extensively used as an approach for detecting interesting patterns in genetic data. One application is population structure analysis, which aims to group individuals into subpopulations based on shared genetic variations, such as single nucleotide polymorphisms. Advances in DNA sequencing technology have facilitated the obtainment of genetic datasets with exceptional sizes. Genetic data usually contain hundreds of thousands of genetic markers genotyped for thousands of individuals, making an efficient means for handling such data desirable. Random Forests (RFs) has emerged as an efficient algorithm capable of handling high-dimensional data. RFs provides a proximity measure that can capture different levels of co-occurring relationships between variables. RFs has been widely considered a supervised learning method, although it can be converted into an unsupervised learning method. Therefore, RF-derived proximity measure combined with a clustering technique may be well suited for determining the underlying structure of unlabeled data. This paper proposes, RFcluE, a cluster ensemble approach for determining the underlying structure of genetic data based on RFs. The approach comprises a cluster ensemble framework to combine multiple runs of RF clustering. Experiments were conducted on high-dimensional, real genetic dataset to evaluate the proposed approach. The experiments included an examination of the impact of parameter changes, comparing RFcluE performance against other clustering methods, and an assessment of the relationship between the diversity and quality of the ensemble and its effect on RFcluE performance. This paper proposes, RFcluE, a cluster ensemble approach based on RF clustering to address the problem of population structure analysis and demonstrate the effectiveness of the approach. The paper also illustrates that applying a cluster ensemble approach, combining multiple RF clusterings, produces more robust and higher-quality results as a consequence of feeding the ensemble with diverse views of high-dimensional genetic data obtained through bagging and random subspace, the two key features of the RF algorithm.
A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm
NASA Astrophysics Data System (ADS)
Thirer, Nonel
2013-05-01
With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.
Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N
2015-04-28
Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.
An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks.
Yoon, Yourim; Kim, Yong-Hyuk
2013-10-01
Sensor networks have a lot of applications such as battlefield surveillance, environmental monitoring, and industrial diagnostics. Coverage is one of the most important performance metrics for sensor networks since it reflects how well a sensor field is monitored. In this paper, we introduce the maximum coverage deployment problem in wireless sensor networks and analyze the properties of the problem and its solution space. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and therefore, we need a more intelligent way for sensor deployment. We found that the phenotype space of the problem is a quotient space of the genotype space in a mathematical view. Based on this property, we propose an efficient genetic algorithm using a novel normalization method. A Monte Carlo method is adopted to design an efficient evaluation function, and its computation time is decreased without loss of solution quality using a method that starts from a small number of random samples and gradually increases the number for subsequent generations. The proposed genetic algorithms could be further improved by combining with a well-designed local search. The performance of the proposed genetic algorithm is shown by a comparative experimental study. When compared with random deployment and existing methods, our genetic algorithm was not only about twice faster, but also showed significant performance improvement in quality.
Truss Optimization for a Manned Nuclear Electric Space Vehicle using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Benford, Andrew; Tinker, Michael L.
2004-01-01
The purpose of this paper is to utilize the genetic algorithm (GA) optimization method for structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search technique that mirrors biological adaptation. To verify the GA capabilities, other traditional optimization methods were used to generate results for comparison to the GA results, first for simple two-dimensional structures, and then for full-scale three-dimensional truss designs.
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Zhang, Aidi; Zheng, Fen; Gong, Lihua
2014-10-01
The existing ways to encrypt images based on compressive sensing usually treat the whole measurement matrix as the key, which renders the key too large to distribute and memorize or store. To solve this problem, a new image compression-encryption hybrid algorithm is proposed to realize compression and encryption simultaneously, where the key is easily distributed, stored or memorized. The input image is divided into 4 blocks to compress and encrypt, then the pixels of the two adjacent blocks are exchanged randomly by random matrices. The measurement matrices in compressive sensing are constructed by utilizing the circulant matrices and controlling the original row vectors of the circulant matrices with logistic map. And the random matrices used in random pixel exchanging are bound with the measurement matrices. Simulation results verify the effectiveness, security of the proposed algorithm and the acceptable compression performance.
Selecting materialized views using random algorithm
NASA Astrophysics Data System (ADS)
Zhou, Lijuan; Hao, Zhongxiao; Liu, Chi
2007-04-01
The data warehouse is a repository of information collected from multiple possibly heterogeneous autonomous distributed databases. The information stored at the data warehouse is in form of views referred to as materialized views. The selection of the materialized views is one of the most important decisions in designing a data warehouse. Materialized views are stored in the data warehouse for the purpose of efficiently implementing on-line analytical processing queries. The first issue for the user to consider is query response time. So in this paper, we develop algorithms to select a set of views to materialize in data warehouse in order to minimize the total view maintenance cost under the constraint of a given query response time. We call it query_cost view_ selection problem. First, cost graph and cost model of query_cost view_ selection problem are presented. Second, the methods for selecting materialized views by using random algorithms are presented. The genetic algorithm is applied to the materialized views selection problem. But with the development of genetic process, the legal solution produced become more and more difficult, so a lot of solutions are eliminated and producing time of the solutions is lengthened in genetic algorithm. Therefore, improved algorithm has been presented in this paper, which is the combination of simulated annealing algorithm and genetic algorithm for the purpose of solving the query cost view selection problem. Finally, in order to test the function and efficiency of our algorithms experiment simulation is adopted. The experiments show that the given methods can provide near-optimal solutions in limited time and works better in practical cases. Randomized algorithms will become invaluable tools for data warehouse evolution.
[Application of genetic algorithm in blending technology for extractions of Cortex Fraxini].
Yang, Ming; Zhou, Yinmin; Chen, Jialei; Yu, Minying; Shi, Xiufeng; Gu, Xijun
2009-10-01
To explore the feasibility of genetic algorithm (GA) on multiple objective blending technology for extractions of Cortex Fraxini. According to that the optimization objective was the combination of fingerprint similarity and the root-mean-square error of multiple key constituents, a new multiple objective optimization model of 10 batches extractions of Cortex Fraxini was built. The blending coefficient was obtained by genetic algorithm. The quality of 10 batches extractions of Cortex Fraxini that after blending was evaluated with the finger print similarity and root-mean-square error as indexes. The quality of 10 batches extractions of Cortex Fraxini that after blending was well improved. Comparing with the fingerprint of the control sample, the similarity was up, but the degree of variation is down. The relative deviation of the key constituents was less than 10%. It is proved that genetic algorithm works well on multiple objective blending technology for extractions of Cortex Fraxini. This method can be a reference to control the quality of extractions of Cortex Fraxini. Genetic algorithm in blending technology for extractions of Chinese medicines is advisable.
NASA Astrophysics Data System (ADS)
Apdilah, D.; Harahap, M. K.; Khairina, N.; Husein, A. M.; Harahap, M.
2018-04-01
One Time Pad algorithm always requires a pairing of the key for plaintext. If the length of keys less than a length of the plaintext, the key will be repeated until the length of the plaintext same with the length of the key. In this research, we use Linear Congruential Generator and Quadratic Congruential Generator for generating a random number. One Time Pad use a random number as a key for encryption and decryption process. Key will generate the first letter from the plaintext, we compare these two algorithms in terms of time speed encryption, and the result is a combination of OTP with LCG faster than the combination of OTP with QCG.
NASA Astrophysics Data System (ADS)
Kota, Sujatha; Padmanabhuni, Venkata Nageswara Rao; Budda, Kishor; K, Sruthi
2018-05-01
Elliptic Curve Cryptography (ECC) uses two keys private key and public key and is considered as a public key cryptographic algorithm that is used for both authentication of a person and confidentiality of data. Either one of the keys is used in encryption and other in decryption depending on usage. Private key is used in encryption by the user and public key is used to identify user in the case of authentication. Similarly, the sender encrypts with the private key and the public key is used to decrypt the message in case of confidentiality. Choosing the private key is always an issue in all public key Cryptographic Algorithms such as RSA, ECC. If tiny values are chosen in random the security of the complete algorithm becomes an issue. Since the Public key is computed based on the Private Key, if they are not chosen optimally they generate infinity values. The proposed Modified Elliptic Curve Cryptography uses selection in either of the choices; the first option is by using Particle Swarm Optimization and the second option is by using Cuckoo Search Algorithm for randomly choosing the values. The proposed algorithms are developed and tested using sample database and both are found to be secured and reliable. The test results prove that the private key is chosen optimally not repetitive or tiny and the computations in public key will not reach infinity.
Novel image encryption algorithm based on multiple-parameter discrete fractional random transform
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Dong, Taiji; Wu, Jianhua
2010-08-01
A new method of digital image encryption is presented by utilizing a new multiple-parameter discrete fractional random transform. Image encryption and decryption are performed based on the index additivity and multiple parameters of the multiple-parameter fractional random transform. The plaintext and ciphertext are respectively in the spatial domain and in the fractional domain determined by the encryption keys. The proposed algorithm can resist statistic analyses effectively. The computer simulation results show that the proposed encryption algorithm is sensitive to the multiple keys, and that it has considerable robustness, noise immunity and security.
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed
NASA Technical Reports Server (NTRS)
Rakoczy, John; Steincamp, James; Taylor, Jaime
2003-01-01
A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.
NASA Astrophysics Data System (ADS)
Nurdiyanto, Heri; Rahim, Robbi; Wulan, Nur
2017-12-01
Symmetric type cryptography algorithm is known many weaknesses in encryption process compared with asymmetric type algorithm, symmetric stream cipher are algorithm that works on XOR process between plaintext and key, to improve the security of symmetric stream cipher algorithm done improvisation by using Triple Transposition Key which developed from Transposition Cipher and also use Base64 algorithm for encryption ending process, and from experiment the ciphertext that produced good enough and very random.
Hollister, Brittany M; Restrepo, Nicole A; Farber-Eger, Eric; Crawford, Dana C; Aldrich, Melinda C; Non, Amy
2017-01-01
Socioeconomic status (SES) is a fundamental contributor to health, and a key factor underlying racial disparities in disease. However, SES data are rarely included in genetic studies due in part to the difficultly of collecting these data when studies were not originally designed for that purpose. The emergence of large clinic-based biobanks linked to electronic health records (EHRs) provides research access to large patient populations with longitudinal phenotype data captured in structured fields as billing codes, procedure codes, and prescriptions. SES data however, are often not explicitly recorded in structured fields, but rather recorded in the free text of clinical notes and communications. The content and completeness of these data vary widely by practitioner. To enable gene-environment studies that consider SES as an exposure, we sought to extract SES variables from racial/ethnic minority adult patients (n=9,977) in BioVU, the Vanderbilt University Medical Center biorepository linked to de-identified EHRs. We developed several measures of SES using information available within the de-identified EHR, including broad categories of occupation, education, insurance status, and homelessness. Two hundred patients were randomly selected for manual review to develop a set of seven algorithms for extracting SES information from de-identified EHRs. The algorithms consist of 15 categories of information, with 830 unique search terms. SES data extracted from manual review of 50 randomly selected records were compared to data produced by the algorithm, resulting in positive predictive values of 80.0% (education), 85.4% (occupation), 87.5% (unemployment), 63.6% (retirement), 23.1% (uninsured), 81.8% (Medicaid), and 33.3% (homelessness), suggesting some categories of SES data are easier to extract in this EHR than others. The SES data extraction approach developed here will enable future EHR-based genetic studies to integrate SES information into statistical analyses. Ultimately, incorporation of measures of SES into genetic studies will help elucidate the impact of the social environment on disease risk and outcomes.
Chen, Peng; Li, Jinyan
2010-05-17
Prediction of long-range inter-residue contacts is an important topic in bioinformatics research. It is helpful for determining protein structures, understanding protein foldings, and therefore advancing the annotation of protein functions. In this paper, we propose a novel ensemble of genetic algorithm classifiers (GaCs) to address the long-range contact prediction problem. Our method is based on the key idea called sequence profile centers (SPCs). Each SPC is the average sequence profiles of residue pairs belonging to the same contact class or non-contact class. GaCs train on multiple but different pairs of long-range contact data (positive data) and long-range non-contact data (negative data). The negative data sets, having roughly the same sizes as the positive ones, are constructed by random sampling over the original imbalanced negative data. As a result, about 21.5% long-range contacts are correctly predicted. We also found that the ensemble of GaCs indeed makes an accuracy improvement by around 5.6% over the single GaC. Classifiers with the use of sequence profile centers may advance the long-range contact prediction. In line with this approach, key structural features in proteins would be determined with high efficiency and accuracy.
NASA Astrophysics Data System (ADS)
Prasetyo, H.; Alfatsani, M. A.; Fauza, G.
2018-05-01
The main issue in vehicle routing problem (VRP) is finding the shortest route of product distribution from the depot to outlets to minimize total cost of distribution. Capacitated Closed Vehicle Routing Problem with Time Windows (CCVRPTW) is one of the variants of VRP that accommodates vehicle capacity and distribution period. Since the main problem of CCVRPTW is considered a non-polynomial hard (NP-hard) problem, it requires an efficient and effective algorithm to solve the problem. This study was aimed to develop Biased Random Key Genetic Algorithm (BRKGA) that is combined with local search to solve the problem of CCVRPTW. The algorithm design was then coded by MATLAB. Using numerical test, optimum algorithm parameters were set and compared with the heuristic method and Standard BRKGA to solve a case study on soft drink distribution. Results showed that BRKGA combined with local search resulted in lower total distribution cost compared with the heuristic method. Moreover, the developed algorithm was found to be successful in increasing the performance of Standard BRKGA.
Air data system optimization using a genetic algorithm
NASA Technical Reports Server (NTRS)
Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III
1992-01-01
An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.
Ma, Li; Fan, Suohai
2017-03-14
The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization. We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability. The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.
A multiobjective hybrid genetic algorithm for the capacitated multipoint network design problem.
Lo, C C; Chang, W H
2000-01-01
The capacitated multipoint network design problem (CMNDP) is NP-complete. In this paper, a hybrid genetic algorithm for CMNDP is proposed. The multiobjective hybrid genetic algorithm (MOHGA) differs from other genetic algorithms (GAs) mainly in its selection procedure. The concept of subpopulation is used in MOHGA. Four subpopulations are generated according to the elitism reservation strategy, the shifting Prufer vector, the stochastic universal sampling, and the complete random method, respectively. Mixing these four subpopulations produces the next generation population. The MOHGA can effectively search the feasible solution space due to population diversity. The MOHGA has been applied to CMNDP. By examining computational and analytical results, we notice that the MOHGA can find most nondominated solutions and is much more effective and efficient than other multiobjective GAs.
Random search optimization based on genetic algorithm and discriminant function
NASA Technical Reports Server (NTRS)
Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.
1990-01-01
The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.
NASA Astrophysics Data System (ADS)
Wang, Hongfeng; Fu, Yaping; Huang, Min; Wang, Junwei
2016-03-01
The operation process design is one of the key issues in the manufacturing and service sectors. As a typical operation process, the scheduling with consideration of the deteriorating effect has been widely studied; however, the current literature only studied single function requirement and rarely considered the multiple function requirements which are critical for a real-world scheduling process. In this article, two function requirements are involved in the design of a scheduling process with consideration of the deteriorating effect and then formulated into two objectives of a mathematical programming model. A novel multiobjective evolutionary algorithm is proposed to solve this model with combination of three strategies, i.e. a multiple population scheme, a rule-based local search method and an elitist preserve strategy. To validate the proposed model and algorithm, a series of randomly-generated instances are tested and the experimental results indicate that the model is effective and the proposed algorithm can achieve the satisfactory performance which outperforms the other state-of-the-art multiobjective evolutionary algorithms, such as nondominated sorting genetic algorithm II and multiobjective evolutionary algorithm based on decomposition, on all the test instances.
NASA Astrophysics Data System (ADS)
Aksoy, A.; Lee, J. H.; Kitanidis, P. K.
2016-12-01
Heterogeneity in hydraulic conductivity (K) impacts the transport and fate of contaminants in subsurface as well as design and operation of managed aquifer recharge (MAR) systems. Recently, improvements in computational resources and availability of big data through electrical resistivity tomography (ERT) and remote sensing have provided opportunities to better characterize the subsurface. Yet, there is need to improve prediction and evaluation methods in order to obtain information from field measurements for better field characterization. In this study, genetic algorithm optimization, which has been widely used in optimal aquifer remediation designs, was used to determine the spatial distribution of K. A hypothetical 2 km by 2 km aquifer was considered. A genetic algorithm library, PGAPack, was linked with a fast Fourier transform based random field generator as well as a groundwater flow and contaminant transport simulation model (BIO2D-KE). The objective of the optimization model was to minimize the total squared error between measured and predicted field values. It was assumed measured K values were available through ERT. Performance of genetic algorithm in predicting the distribution of K was tested for different cases. In the first one, it was assumed that observed K values were evaluated using the random field generator only as the forward model. In the second case, as well as K-values obtained through ERT, measured head values were incorporated into evaluation in which BIO2D-KE and random field generator were used as the forward models. Lastly, tracer concentrations were used as additional information in the optimization model. Initial results indicated enhanced performance when random field generator and BIO2D-KE are used in combination in predicting the spatial distribution in K.
A novel image encryption algorithm based on chaos maps with Markov properties
NASA Astrophysics Data System (ADS)
Liu, Quan; Li, Pei-yue; Zhang, Ming-chao; Sui, Yong-xin; Yang, Huai-jiang
2015-02-01
In order to construct high complexity, secure and low cost image encryption algorithm, a class of chaos with Markov properties was researched and such algorithm was also proposed. The kind of chaos has higher complexity than the Logistic map and Tent map, which keeps the uniformity and low autocorrelation. An improved couple map lattice based on the chaos with Markov properties is also employed to cover the phase space of the chaos and enlarge the key space, which has better performance than the original one. A novel image encryption algorithm is constructed on the new couple map lattice, which is used as a key stream generator. A true random number is used to disturb the key which can dynamically change the permutation matrix and the key stream. From the experiments, it is known that the key stream can pass SP800-22 test. The novel image encryption can resist CPA and CCA attack and differential attack. The algorithm is sensitive to the initial key and can change the distribution the pixel values of the image. The correlation of the adjacent pixels can also be eliminated. When compared with the algorithm based on Logistic map, it has higher complexity and better uniformity, which is nearer to the true random number. It is also efficient to realize which showed its value in common use.
The PX-EM algorithm for fast stable fitting of Henderson's mixed model
Foulley, Jean-Louis; Van Dyk, David A
2000-01-01
This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence) are obtained for PX-EM relative to the basic EM algorithm in the random regression. PMID:14736399
Genetic Algorithms to Optimizatize Lecturer Assessment's Criteria
NASA Astrophysics Data System (ADS)
Jollyta, Deny; Johan; Hajjah, Alyauma
2017-12-01
The lecturer assessment criteria is used as a measurement of the lecturer's performance in a college environment. To determine the value for a criteriais complicated and often leads to doubt. The absence of a standard valuefor each assessment criteria will affect the final results of the assessment and become less presentational data for the leader of college in taking various policies relate to reward and punishment. The Genetic Algorithm comes as an algorithm capable of solving non-linear problems. Using chromosomes in the random initial population, one of the presentations is binary, evaluates the fitness function and uses crossover genetic operator and mutation to obtain the desired crossbreed. It aims to obtain the most optimum criteria values in terms of the fitness function of each chromosome. The training results show that Genetic Algorithm able to produce the optimal values of lecturer assessment criteria so that can be usedby the college as a standard value for lecturer assessment criteria.
A New Quantum Gray-Scale Image Encoding Scheme
NASA Astrophysics Data System (ADS)
Naseri, Mosayeb; Abdolmaleky, Mona; Parandin, Fariborz; Fatahi, Negin; Farouk, Ahmed; Nazari, Reza
2018-02-01
In this paper, a new quantum images encoding scheme is proposed. The proposed scheme mainly consists of four different encoding algorithms. The idea behind of the scheme is a binary key generated randomly for each pixel of the original image. Afterwards, the employed encoding algorithm is selected corresponding to the qubit pair of the generated randomized binary key. The security analysis of the proposed scheme proved its enhancement through both randomization of the generated binary image key and altering the gray-scale value of the image pixels using the qubits of randomized binary key. The simulation of the proposed scheme assures that the final encoded image could not be recognized visually. Moreover, the histogram diagram of encoded image is flatter than the original one. The Shannon entropies of the final encoded images are significantly higher than the original one, which indicates that the attacker can not gain any information about the encoded images. Supported by Kermanshah Branch, Islamic Azad University, Kermanshah, IRAN
Urbanowicz, Ryan J; Kiralis, Jeff; Sinnott-Armstrong, Nicholas A; Heberling, Tamra; Fisher, Jonathan M; Moore, Jason H
2012-10-01
Geneticists who look beyond single locus disease associations require additional strategies for the detection of complex multi-locus effects. Epistasis, a multi-locus masking effect, presents a particular challenge, and has been the target of bioinformatic development. Thorough evaluation of new algorithms calls for simulation studies in which known disease models are sought. To date, the best methods for generating simulated multi-locus epistatic models rely on genetic algorithms. However, such methods are computationally expensive, difficult to adapt to multiple objectives, and unlikely to yield models with a precise form of epistasis which we refer to as pure and strict. Purely and strictly epistatic models constitute the worst-case in terms of detecting disease associations, since such associations may only be observed if all n-loci are included in the disease model. This makes them an attractive gold standard for simulation studies considering complex multi-locus effects. We introduce GAMETES, a user-friendly software package and algorithm which generates complex biallelic single nucleotide polymorphism (SNP) disease models for simulation studies. GAMETES rapidly and precisely generates random, pure, strict n-locus models with specified genetic constraints. These constraints include heritability, minor allele frequencies of the SNPs, and population prevalence. GAMETES also includes a simple dataset simulation strategy which may be utilized to rapidly generate an archive of simulated datasets for given genetic models. We highlight the utility and limitations of GAMETES with an example simulation study using MDR, an algorithm designed to detect epistasis. GAMETES is a fast, flexible, and precise tool for generating complex n-locus models with random architectures. While GAMETES has a limited ability to generate models with higher heritabilities, it is proficient at generating the lower heritability models typically used in simulation studies evaluating new algorithms. In addition, the GAMETES modeling strategy may be flexibly combined with any dataset simulation strategy. Beyond dataset simulation, GAMETES could be employed to pursue theoretical characterization of genetic models and epistasis.
An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves
Sun, Yuanyuan; Chen, Lina; Xu, Rudan; Kong, Ruiqing
2014-01-01
Image encryption is an important and effective technique to protect image security. In this paper, a novel image encryption algorithm combining Julia sets and Hilbert curves is proposed. The algorithm utilizes Julia sets’ parameters to generate a random sequence as the initial keys and gets the final encryption keys by scrambling the initial keys through the Hilbert curve. The final cipher image is obtained by modulo arithmetic and diffuse operation. In this method, it needs only a few parameters for the key generation, which greatly reduces the storage space. Moreover, because of the Julia sets’ properties, such as infiniteness and chaotic characteristics, the keys have high sensitivity even to a tiny perturbation. The experimental results indicate that the algorithm has large key space, good statistical property, high sensitivity for the keys, and effective resistance to the chosen-plaintext attack. PMID:24404181
System Design under Uncertainty: Evolutionary Optimization of the Gravity Probe-B Spacecraft
NASA Technical Reports Server (NTRS)
Pullen, Samuel P.; Parkinson, Bradford W.
1994-01-01
This paper discusses the application of evolutionary random-search algorithms (Simulated Annealing and Genetic Algorithms) to the problem of spacecraft design under performance uncertainty. Traditionally, spacecraft performance uncertainty has been measured by reliability. Published algorithms for reliability optimization are seldom used in practice because they oversimplify reality. The algorithm developed here uses random-search optimization to allow us to model the problem more realistically. Monte Carlo simulations are used to evaluate the objective function for each trial design solution. These methods have been applied to the Gravity Probe-B (GP-B) spacecraft being developed at Stanford University for launch in 1999, Results of the algorithm developed here for GP-13 are shown, and their implications for design optimization by evolutionary algorithms are discussed.
Design and implementation of encrypted and decrypted file system based on USBKey and hardware code
NASA Astrophysics Data System (ADS)
Wu, Kehe; Zhang, Yakun; Cui, Wenchao; Jiang, Ting
2017-05-01
To protect the privacy of sensitive data, an encrypted and decrypted file system based on USBKey and hardware code is designed and implemented in this paper. This system uses USBKey and hardware code to authenticate a user. We use random key to encrypt file with symmetric encryption algorithm and USBKey to encrypt random key with asymmetric encryption algorithm. At the same time, we use the MD5 algorithm to calculate the hash of file to verify its integrity. Experiment results show that large files can be encrypted and decrypted in a very short time. The system has high efficiency and ensures the security of documents.
2014-01-01
In the current practice, to determine the safety factor of a slope with two-dimensional circular potential failure surface, one of the searching methods for the critical slip surface is Genetic Algorithm (GA), while the method to calculate the slope safety factor is Fellenius' slices method. However GA needs to be validated with more numeric tests, while Fellenius' slices method is just an approximate method like finite element method. This paper proposed a new method to determine the minimum slope safety factor which is the determination of slope safety factor with analytical solution and searching critical slip surface with Genetic-Traversal Random Method. The analytical solution is more accurate than Fellenius' slices method. The Genetic-Traversal Random Method uses random pick to utilize mutation. A computer automatic search program is developed for the Genetic-Traversal Random Method. After comparison with other methods like slope/w software, results indicate that the Genetic-Traversal Random Search Method can give very low safety factor which is about half of the other methods. However the obtained minimum safety factor with Genetic-Traversal Random Search Method is very close to the lower bound solutions of slope safety factor given by the Ansys software. PMID:24782679
On factoring RSA modulus using random-restart hill-climbing algorithm and Pollard’s rho algorithm
NASA Astrophysics Data System (ADS)
Budiman, M. A.; Rachmawati, D.
2017-12-01
The security of the widely-used RSA public key cryptography algorithm depends on the difficulty of factoring a big integer into two large prime numbers. For many years, the integer factorization problem has been intensively and extensively studied in the field of number theory. As a result, a lot of deterministic algorithms such as Euler’s algorithm, Kraitchik’s, and variants of Pollard’s algorithms have been researched comprehensively. Our study takes a rather uncommon approach: rather than making use of intensive number theories, we attempt to factorize RSA modulus n by using random-restart hill-climbing algorithm, which belongs the class of metaheuristic algorithms. The factorization time of RSA moduli with different lengths is recorded and compared with the factorization time of Pollard’s rho algorithm, which is a deterministic algorithm. Our experimental results indicates that while random-restart hill-climbing algorithm is an acceptable candidate to factorize smaller RSA moduli, the factorization speed is much slower than that of Pollard’s rho algorithm.
Genetic Algorithm Design of a 3D Printed Heat Sink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tong; Ozpineci, Burak; Ayers, Curtis William
2016-01-01
In this paper, a genetic algorithm- (GA-) based approach is discussed for designing heat sinks based on total heat generation and dissipation for a pre-specified size andshape. This approach combines random iteration processesand genetic algorithms with finite element analysis (FEA) to design the optimized heat sink. With an approach that prefers survival of the fittest , a more powerful heat sink can bedesigned which can cool power electronics more efficiently. Some of the resulting designs can only be 3D printed due totheir complexity. In addition to describing the methodology, this paper also includes comparisons of different cases to evaluate themore » performance of the newly designed heat sinkcompared to commercially available heat sinks.« less
Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
Chen, C.; Xia, J.; Liu, J.; Feng, G.
2006-01-01
Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.
2015-01-01
Color is one of the most prominent features of an image and used in many skin and face detection applications. Color space transformation is widely used by researchers to improve face and skin detection performance. Despite the substantial research efforts in this area, choosing a proper color space in terms of skin and face classification performance which can address issues like illumination variations, various camera characteristics and diversity in skin color tones has remained an open issue. This research proposes a new three-dimensional hybrid color space termed SKN by employing the Genetic Algorithm heuristic and Principal Component Analysis to find the optimal representation of human skin color in over seventeen existing color spaces. Genetic Algorithm heuristic is used to find the optimal color component combination setup in terms of skin detection accuracy while the Principal Component Analysis projects the optimal Genetic Algorithm solution to a less complex dimension. Pixel wise skin detection was used to evaluate the performance of the proposed color space. We have employed four classifiers including Random Forest, Naïve Bayes, Support Vector Machine and Multilayer Perceptron in order to generate the human skin color predictive model. The proposed color space was compared to some existing color spaces and shows superior results in terms of pixel-wise skin detection accuracy. Experimental results show that by using Random Forest classifier, the proposed SKN color space obtained an average F-score and True Positive Rate of 0.953 and False Positive Rate of 0.0482 which outperformed the existing color spaces in terms of pixel wise skin detection accuracy. The results also indicate that among the classifiers used in this study, Random Forest is the most suitable classifier for pixel wise skin detection applications. PMID:26267377
Spacecraft Attitude Maneuver Planning Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Kornfeld, Richard P.
2004-01-01
A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.
NASA Astrophysics Data System (ADS)
Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing
2016-08-01
A novel image encryption system based on double random phase encoding (DRPE) and RSA public-key algorithm is proposed. The main characteristic of the system is that each encryption process produces a new decryption key (even for the same plaintext), thus the encryption system conforms to the feature of the one-time pad (OTP) cryptography. The other characteristic of the system is the use of fingerprint key. Only with the rightful authorization will the true decryption be obtained, otherwise the decryption will result in noisy images. So the proposed system can be used to determine whether the ciphertext is falsified by attackers. In addition, the system conforms to the basic agreement of asymmetric cryptosystem (ACS) due to the combination with the RSA public-key algorithm. The simulation results show that the encryption scheme has high robustness against the existing attacks.
Knowledge Guided Evolutionary Algorithms in Financial Investing
ERIC Educational Resources Information Center
Wimmer, Hayden
2013-01-01
A large body of literature exists on evolutionary computing, genetic algorithms, decision trees, codified knowledge, and knowledge management systems; however, the intersection of these computing topics has not been widely researched. Moving through the set of all possible solutions--or traversing the search space--at random exhibits no control…
Ullah, Saleem; Groen, Thomas A; Schlerf, Martin; Skidmore, Andrew K; Nieuwenhuis, Willem; Vaiphasa, Chaichoke
2012-01-01
Genetic variation between various plant species determines differences in their physio-chemical makeup and ultimately in their hyperspectral emissivity signatures. The hyperspectral emissivity signatures, on the one hand, account for the subtle physio-chemical changes in the vegetation, but on the other hand, highlight the problem of high dimensionality. The aim of this paper is to investigate the performance of genetic algorithms coupled with the spectral angle mapper (SAM) to identify a meaningful subset of wavebands sensitive enough to discriminate thirteen broadleaved vegetation species from the laboratory measured hyperspectral emissivities. The performance was evaluated using an overall classification accuracy and Jeffries Matusita distance. For the multiple plant species, the targeted bands based on genetic algorithms resulted in a high overall classification accuracy (90%). Concentrating on the pairwise comparison results, the selected wavebands based on genetic algorithms resulted in higher Jeffries Matusita (J-M) distances than randomly selected wavebands did. This study concludes that targeted wavebands from leaf emissivity spectra are able to discriminate vegetation species.
Optimization of Contrast Detection Power with Probabilistic Behavioral Information
Cordes, Dietmar; Herzmann, Grit; Nandy, Rajesh; Curran, Tim
2012-01-01
Recent progress in the experimental design for event-related fMRI experiments made it possible to find the optimal stimulus sequence for maximum contrast detection power using a genetic algorithm. In this study, a novel algorithm is proposed for optimization of contrast detection power by including probabilistic behavioral information, based on pilot data, in the genetic algorithm. As a particular application, a recognition memory task is studied and the design matrix optimized for contrasts involving the familiarity of individual items (pictures of objects) and the recollection of qualitative information associated with the items (left/right orientation). Optimization of contrast efficiency is a complicated issue whenever subjects’ responses are not deterministic but probabilistic. Contrast efficiencies are not predictable unless behavioral responses are included in the design optimization. However, available software for design optimization does not include options for probabilistic behavioral constraints. If the anticipated behavioral responses are included in the optimization algorithm, the design is optimal for the assumed behavioral responses, and the resulting contrast efficiency is greater than what either a block design or a random design can achieve. Furthermore, improvements of contrast detection power depend strongly on the behavioral probabilities, the perceived randomness, and the contrast of interest. The present genetic algorithm can be applied to any case in which fMRI contrasts are dependent on probabilistic responses that can be estimated from pilot data. PMID:22326984
Comparison of Structural Optimization Techniques for a Nuclear Electric Space Vehicle
NASA Technical Reports Server (NTRS)
Benford, Andrew
2003-01-01
The purpose of this paper is to utilize the optimization method of genetic algorithms (GA) for truss design on a nuclear propulsion vehicle. Genetic Algorithms are a guided, random search that mirrors Darwin s theory of natural selection and survival of the fittest. To verify the GA s capabilities, other traditional optimization methods were used to compare the results obtained by the GA's, first on simple 2-D structures, and eventually on full-scale 3-D truss designs.
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems
Cao, Leilei; Xu, Lihong; Goodman, Erik D.
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.
Cao, Leilei; Xu, Lihong; Goodman, Erik D
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.
DNA Cryptography and Deep Learning using Genetic Algorithm with NW algorithm for Key Generation.
Kalsi, Shruti; Kaur, Harleen; Chang, Victor
2017-12-05
Cryptography is not only a science of applying complex mathematics and logic to design strong methods to hide data called as encryption, but also to retrieve the original data back, called decryption. The purpose of cryptography is to transmit a message between a sender and receiver such that an eavesdropper is unable to comprehend it. To accomplish this, not only we need a strong algorithm, but a strong key and a strong concept for encryption and decryption process. We have introduced a concept of DNA Deep Learning Cryptography which is defined as a technique of concealing data in terms of DNA sequence and deep learning. In the cryptographic technique, each alphabet of a letter is converted into a different combination of the four bases, namely; Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), which make up the human deoxyribonucleic acid (DNA). Actual implementations with the DNA don't exceed laboratory level and are expensive. To bring DNA computing on a digital level, easy and effective algorithms are proposed in this paper. In proposed work we have introduced firstly, a method and its implementation for key generation based on the theory of natural selection using Genetic Algorithm with Needleman-Wunsch (NW) algorithm and Secondly, a method for implementation of encryption and decryption based on DNA computing using biological operations Transcription, Translation, DNA Sequencing and Deep Learning.
Genetic algorithms applied to the scheduling of the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Sponsler, Jeffrey L.
1989-01-01
A prototype system employing a genetic algorithm (GA) has been developed to support the scheduling of the Hubble Space Telescope. A non-standard knowledge structure is used and appropriate genetic operators have been created. Several different crossover styles (random point selection, evolving points, and smart point selection) are tested and the best GA is compared with a neural network (NN) based optimizer. The smart crossover operator produces the best results and the GA system is able to evolve complete schedules using it. The GA is not as time-efficient as the NN system and the NN solutions tend to be better.
Optimization of fiber grating couplers on SOI using advanced search algorithms.
Wohlfeil, Benjamin; Zimmermann, Lars; Petermann, Klaus
2014-06-01
A one-dimensional fiber grating coupler is derived from a waveguide with random etches using implementations of particle swarm and genetic algorithms. The resulting gratings yield a theoretical coupling efficiency of up to 1.1 dB and prompt clear design rules for the layout of highly efficient fiber grating couplers.
NASA Astrophysics Data System (ADS)
Kiyohara, Shin; Mizoguchi, Teruyasu
2018-03-01
Grain boundary segregation of dopants plays a crucial role in materials properties. To investigate the dopant segregation behavior at the grain boundary, an enormous number of combinations have to be considered in the segregation of multiple dopants at the complex grain boundary structures. Here, two data mining techniques, the random-forests regression and the genetic algorithm, were applied to determine stable segregation sites at grain boundaries efficiently. Using the random-forests method, a predictive model was constructed from 2% of the segregation configurations and it has been shown that this model could determine the stable segregation configurations. Furthermore, the genetic algorithm also successfully determined the most stable segregation configuration with great efficiency. We demonstrate that these approaches are quite effective to investigate the dopant segregation behaviors at grain boundaries.
Selecting Random Distributed Elements for HIFU using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zhou, Yufeng
2011-09-01
As an effective and noninvasive therapeutic modality for tumor treatment, high-intensity focused ultrasound (HIFU) has attracted attention from both physicians and patients. New generations of HIFU systems with the ability to electrically steer the HIFU focus using phased array transducers have been under development. The presence of side and grating lobes may cause undesired thermal accumulation at the interface of the coupling medium (i.e. water) and skin, or in the intervening tissue. Although sparse randomly distributed piston elements could reduce the amplitude of grating lobes, there are theoretically no grating lobes with the use of concave elements in the new phased array HIFU. A new HIFU transmission strategy is proposed in this study, firing a number of but not all elements for a certain period and then changing to another group for the next firing sequence. The advantages are: 1) the asymmetric position of active elements may reduce the side lobes, and 2) each element has some resting time during the entire HIFU ablation (up to several hours for some clinical applications) so that the decreasing efficiency of the transducer due to thermal accumulation is minimized. Genetic algorithm was used for selecting randomly distributed elements in a HIFU array. Amplitudes of the first side lobes at the focal plane were used as the fitness value in the optimization. Overall, it is suggested that the proposed new strategy could reduce the side lobe and the consequent side-effects, and the genetic algorithm is effective in selecting those randomly distributed elements in a HIFU array.
Simultaneous transmission for an encrypted image and a double random-phase encryption key
NASA Astrophysics Data System (ADS)
Yuan, Sheng; Zhou, Xin; Li, Da-Hai; Zhou, Ding-Fu
2007-06-01
We propose a method to simultaneously transmit double random-phase encryption key and an encrypted image by making use of the fact that an acceptable decryption result can be obtained when only partial data of the encrypted image have been taken in the decryption process. First, the original image data are encoded as an encrypted image by a double random-phase encryption technique. Second, a double random-phase encryption key is encoded as an encoded key by the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. Then the amplitude of the encrypted image is modulated by the encoded key to form what we call an encoded image. Finally, the encoded image that carries both the encrypted image and the encoded key is delivered to the receiver. Based on such a method, the receiver can have an acceptable result and secure transmission can be guaranteed by the RSA cipher system.
Simultaneous transmission for an encrypted image and a double random-phase encryption key.
Yuan, Sheng; Zhou, Xin; Li, Da-hai; Zhou, Ding-fu
2007-06-20
We propose a method to simultaneously transmit double random-phase encryption key and an encrypted image by making use of the fact that an acceptable decryption result can be obtained when only partial data of the encrypted image have been taken in the decryption process. First, the original image data are encoded as an encrypted image by a double random-phase encryption technique. Second, a double random-phase encryption key is encoded as an encoded key by the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. Then the amplitude of the encrypted image is modulated by the encoded key to form what we call an encoded image. Finally, the encoded image that carries both the encrypted image and the encoded key is delivered to the receiver. Based on such a method, the receiver can have an acceptable result and secure transmission can be guaranteed by the RSA cipher system.
Tashima, Hideaki; Takeda, Masafumi; Suzuki, Hiroyuki; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki
2010-06-21
We have shown that the application of double random phase encoding (DRPE) to biometrics enables the use of biometrics as cipher keys for binary data encryption. However, DRPE is reported to be vulnerable to known-plaintext attacks (KPAs) using a phase recovery algorithm. In this study, we investigated the vulnerability of DRPE using fingerprints as cipher keys to the KPAs. By means of computational experiments, we estimated the encryption key and restored the fingerprint image using the estimated key. Further, we propose a method for avoiding the KPA on the DRPE that employs the phase retrieval algorithm. The proposed method makes the amplitude component of the encrypted image constant in order to prevent the amplitude component of the encrypted image from being used as a clue for phase retrieval. Computational experiments showed that the proposed method not only avoids revealing the cipher key and the fingerprint but also serves as a sufficiently accurate verification system.
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongjun; Cheng, Weixing; Yu, Li Hua
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
NASA Astrophysics Data System (ADS)
Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert
2018-05-01
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
Li, Yongjun; Cheng, Weixing; Yu, Li Hua; ...
2018-05-29
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less
Key management of the double random-phase-encoding method using public-key encryption
NASA Astrophysics Data System (ADS)
Saini, Nirmala; Sinha, Aloka
2010-03-01
Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.
NASA Astrophysics Data System (ADS)
Sheng, Lizeng
The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 1021 ˜ 1056 candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures.
NASA Astrophysics Data System (ADS)
Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun
2018-07-01
Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya Shankar; McCulloch, Richard Chet James
In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the mostmore » improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.« less
Distributed query plan generation using multiobjective genetic algorithm.
Panicker, Shina; Kumar, T V Vijay
2014-01-01
A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability.
Distributed Query Plan Generation Using Multiobjective Genetic Algorithm
Panicker, Shina; Vijay Kumar, T. V.
2014-01-01
A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513
NASA Astrophysics Data System (ADS)
Mousavi, Monireh Sadat; Ashrafi, Khosro; Motlagh, Majid Shafie Pour; Niksokhan, Mohhamad Hosein; Vosoughifar, HamidReza
2018-02-01
In this study, coupled method for simulation of flow pattern based on computational methods for fluid dynamics with optimization technique using genetic algorithms is presented to determine the optimal location and number of sensors in an enclosed residential complex parking in Tehran. The main objective of this research is costs reduction and maximum coverage with regard to distribution of existing concentrations in different scenarios. In this study, considering all the different scenarios for simulation of pollution distribution using CFD simulations has been challenging due to extent of parking and number of cars available. To solve this problem, some scenarios have been selected based on random method. Then, maximum concentrations of scenarios are chosen for performing optimization. CFD simulation outputs are inserted as input in the optimization model using genetic algorithm. The obtained results stated optimal number and location of sensors.
NASA Astrophysics Data System (ADS)
Rachmawati, D.; Budiman, M. A.; Siburian, W. S. E.
2018-05-01
On the process of exchanging files, security is indispensable to avoid the theft of data. Cryptography is one of the sciences used to secure the data by way of encoding. Fast Data Encipherment Algorithm (FEAL) is a block cipher symmetric cryptographic algorithms. Therefore, the file which wants to protect is encrypted and decrypted using the algorithm FEAL. To optimize the security of the data, session key that is utilized in the algorithm FEAL encoded with the Goldwasser-Micali algorithm, which is an asymmetric cryptographic algorithm and using probabilistic concept. In the encryption process, the key was converted into binary form. The selection of values of x that randomly causes the results of the cipher key is different for each binary value. The concept of symmetry and asymmetry algorithm merger called Hybrid Cryptosystem. The use of the algorithm FEAL and Goldwasser-Micali can restore the message to its original form and the algorithm FEAL time required for encryption and decryption is directly proportional to the length of the message. However, on Goldwasser- Micali algorithm, the length of the message is not directly proportional to the time of encryption and decryption.
Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes
2013-01-01
Motivation Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. Results We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. Availability The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana. PMID:24564704
Wang, Yue; Goh, Wilson; Wong, Limsoon; Montana, Giovanni
2013-01-01
Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana.
Genetic Algorithm Application in Optimization of Wireless Sensor Networks
Norouzi, Ali; Zaim, A. Halim
2014-01-01
There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235
NASA Astrophysics Data System (ADS)
Bera, Debajyoti
2015-06-01
One of the early achievements of quantum computing was demonstrated by Deutsch and Jozsa (Proc R Soc Lond A Math Phys Sci 439(1907):553, 1992) regarding classification of a particular type of Boolean functions. Their solution demonstrated an exponential speedup compared to classical approaches to the same problem; however, their solution was the only known quantum algorithm for that specific problem so far. This paper demonstrates another quantum algorithm for the same problem, with the same exponential advantage compared to classical algorithms. The novelty of this algorithm is the use of quantum amplitude amplification, a technique that is the key component of another celebrated quantum algorithm developed by Grover (Proceedings of the twenty-eighth annual ACM symposium on theory of computing, ACM Press, New York, 1996). A lower bound for randomized (classical) algorithms is also presented which establishes a sound gap between the effectiveness of our quantum algorithm and that of any randomized algorithm with similar efficiency.
Vandecasteele, Frederik P J; Hess, Thomas F; Crawford, Ronald L
2007-07-01
The functioning of natural microbial ecosystems is determined by biotic interactions, which are in turn influenced by abiotic environmental conditions. Direct experimental manipulation of such conditions can be used to purposefully drive ecosystems toward exhibiting desirable functions. When a set of environmental conditions can be manipulated to be present at a discrete number of levels, finding the right combination of conditions to obtain the optimal desired effect becomes a typical combinatorial optimisation problem. Genetic algorithms are a class of robust and flexible search and optimisation techniques from the field of computer science that may be very suitable for such a task. To verify this idea, datasets containing growth levels of the total microbial community of four different natural microbial ecosystems in response to all possible combinations of a set of five chemical supplements were obtained. Subsequently, the ability of a genetic algorithm to search this parameter space for combinations of supplements driving the microbial communities to high levels of growth was compared to that of a random search, a local search, and a hill-climbing algorithm, three intuitive alternative optimisation approaches. The results indicate that a genetic algorithm is very suitable for driving microbial ecosystems in desirable directions, which opens opportunities for both fundamental ecological research and industrial applications.
NASA Astrophysics Data System (ADS)
Manzanares-Filho, N.; Albuquerque, R. B. F.; Sousa, B. S.; Santos, L. G. C.
2018-06-01
This article presents a comparative study of some versions of the controlled random search algorithm (CRSA) in global optimization problems. The basic CRSA, originally proposed by Price in 1977 and improved by Ali et al. in 1997, is taken as a starting point. Then, some new modifications are proposed to improve the efficiency and reliability of this global optimization technique. The performance of the algorithms is assessed using traditional benchmark test problems commonly invoked in the literature. This comparative study points out the key features of the modified algorithm. Finally, a comparison is also made in a practical engineering application, namely the inverse aerofoil shape design.
Threshold matrix for digital halftoning by genetic algorithm optimization
NASA Astrophysics Data System (ADS)
Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero
1998-10-01
Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.
Optimizing Constrained Single Period Problem under Random Fuzzy Demand
NASA Astrophysics Data System (ADS)
Taleizadeh, Ata Allah; Shavandi, Hassan; Riazi, Afshin
2008-09-01
In this paper, we consider the multi-product multi-constraint newsboy problem with random fuzzy demands and total discount. The demand of the products is often stochastic in the real word but the estimation of the parameters of distribution function may be done by fuzzy manner. So an appropriate option to modeling the demand of products is using the random fuzzy variable. The objective function of proposed model is to maximize the expected profit of newsboy. We consider the constraints such as warehouse space and restriction on quantity order for products, and restriction on budget. We also consider the batch size for products order. Finally we introduce a random fuzzy multi-product multi-constraint newsboy problem (RFM-PM-CNP) and it is changed to a multi-objective mixed integer nonlinear programming model. Furthermore, a hybrid intelligent algorithm based on genetic algorithm, Pareto and TOPSIS is presented for the developed model. Finally an illustrative example is presented to show the performance of the developed model and algorithm.
NASA Astrophysics Data System (ADS)
Phan, Duoc T.; Lim, James B. P.; Sha, Wei; Siew, Calvin Y. M.; Tanyimboh, Tiku T.; Issa, Honar K.; Mohammad, Fouad A.
2013-04-01
Cold-formed steel portal frames are a popular form of construction for low-rise commercial, light industrial and agricultural buildings with spans of up to 20 m. In this article, a real-coded genetic algorithm is described that is used to minimize the cost of the main frame of such buildings. The key decision variables considered in this proposed algorithm consist of both the spacing and pitch of the frame as continuous variables, as well as the discrete section sizes. A routine taking the structural analysis and frame design for cold-formed steel sections is embedded into a genetic algorithm. The results show that the real-coded genetic algorithm handles effectively the mixture of design variables, with high robustness and consistency in achieving the optimum solution. All wind load combinations according to Australian code are considered in this research. Results for frames with knee braces are also included, for which the optimization achieved even larger savings in cost.
Recourse-based facility-location problems in hybrid uncertain environment.
Wang, Shuming; Watada, Junzo; Pedrycz, Witold
2010-08-01
The objective of this paper is to study facility-location problems in the presence of a hybrid uncertain environment involving both randomness and fuzziness. A two-stage fuzzy-random facility-location model with recourse (FR-FLMR) is developed in which both the demands and costs are assumed to be fuzzy-random variables. The bounds of the optimal objective value of the two-stage FR-FLMR are derived. As, in general, the fuzzy-random parameters of the FR-FLMR can be regarded as continuous fuzzy-random variables with an infinite number of realizations, the computation of the recourse requires solving infinite second-stage programming problems. Owing to this requirement, the recourse function cannot be determined analytically, and, hence, the model cannot benefit from the use of techniques of classical mathematical programming. In order to solve the location problems of this nature, we first develop a technique of fuzzy-random simulation to compute the recourse function. The convergence of such simulation scenarios is discussed. In the sequel, we propose a hybrid mutation-based binary ant-colony optimization (MBACO) approach to the two-stage FR-FLMR, which comprises the fuzzy-random simulation and the simplex algorithm. A numerical experiment illustrates the application of the hybrid MBACO algorithm. The comparison shows that the hybrid MBACO finds better solutions than the one using other discrete metaheuristic algorithms, such as binary particle-swarm optimization, genetic algorithm, and tabu search.
NASA Astrophysics Data System (ADS)
Abdeh-Kolahchi, A.; Satish, M.; Datta, B.
2004-05-01
A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.
JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms
NASA Technical Reports Server (NTRS)
Globus, Al; Langhirt, Eric; Livny, Miron; Ramamurthy, Ravishankar; Soloman, Marvin; Traugott, Steve
2000-01-01
A genetic algorithm code, JavaGenes, was written in Java and used to evolve pharmaceutical drug molecules and digital circuits. JavaGenes was run under the Condor cycle-scavenging batch system managing 100-170 desktop SGI workstations. Genetic algorithms mimic biological evolution by evolving solutions to problems using crossover and mutation. While most genetic algorithms evolve strings or trees, JavaGenes evolves graphs representing (currently) molecules and circuits. Java was chosen as the implementation language because the genetic algorithm requires random splitting and recombining of graphs, a complex data structure manipulation with ample opportunities for memory leaks, loose pointers, out-of-bound indices, and other hard to find bugs. Java garbage-collection memory management, lack of pointer arithmetic, and array-bounds index checking prevents these bugs from occurring, substantially reducing development time. While a run-time performance penalty must be paid, the only unacceptable performance we encountered was using standard Java serialization to checkpoint and restart the code. This was fixed by a two-day implementation of custom checkpointing. JavaGenes is minimally integrated with Condor; in other words, JavaGenes must do its own checkpointing and I/O redirection. A prototype Java-aware version of Condor was developed using standard Java serialization for checkpointing. For the prototype to be useful, standard Java serialization must be significantly optimized. JavaGenes is approximately 8700 lines of code and a few thousand JavaGenes jobs have been run. Most jobs ran for a few days. Results include proof that genetic algorithms can evolve directed and undirected graphs, development of a novel crossover operator for graphs, a paper in the journal Nanotechnology, and another paper in preparation.
Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm
Bossard, Jeremy A.; Lin, Lan; Werner, Douglas H.
2016-01-01
Ordered and chaotic superlattices have been identified in Nature that give rise to a variety of colours reflected by the skin of various organisms. In particular, organisms such as silvery fish possess superlattices that reflect a broad range of light from the visible to the UV. Such superlattices have previously been identified as ‘chaotic’, but we propose that apparent ‘chaotic’ natural structures, which have been previously modelled as completely random structures, should have an underlying fractal geometry. Fractal geometry, often described as the geometry of Nature, can be used to mimic structures found in Nature, but deterministic fractals produce structures that are too ‘perfect’ to appear natural. Introducing variability into fractals produces structures that appear more natural. We suggest that the ‘chaotic’ (purely random) superlattices identified in Nature are more accurately modelled by multi-generator fractals. Furthermore, we introduce fractal random Cantor bars as a candidate for generating both ordered and ‘chaotic’ superlattices, such as the ones found in silvery fish. A genetic algorithm is used to evolve optimal fractal random Cantor bars with multiple generators targeting several desired optical functions in the mid-infrared and the near-infrared. We present optimized superlattices demonstrating broadband reflection as well as single and multiple pass bands in the near-infrared regime. PMID:26763335
Digital Sound Encryption with Logistic Map and Number Theoretic Transform
NASA Astrophysics Data System (ADS)
Satria, Yudi; Gabe Rizky, P. H.; Suryadi, MT
2018-03-01
Digital sound security has limits on encrypting in Frequency Domain. Number Theoretic Transform based on field (GF 2521 – 1) improve and solve that problem. The algorithm for this sound encryption is based on combination of Chaos function and Number Theoretic Transform. The Chaos function that used in this paper is Logistic Map. The trials and the simulations are conducted by using 5 different digital sound files data tester in Wave File Extension Format and simulated at least 100 times each. The key stream resulted is random with verified by 15 NIST’s randomness test. The key space formed is very big which more than 10469. The processing speed of algorithm for encryption is slightly affected by Number Theoretic Transform.
On-board autonomous attitude maneuver planning for planetary spacecraft using genetic algorithms
NASA Technical Reports Server (NTRS)
Kornfeld, Richard P.
2003-01-01
A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This paper presents an approach for attitude path planning that makes full use of a priori constraint knowledge and is computationally tractable enough to be executed on-board a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used 'as is' or as an initial solution to initialize additional deterministic optimization algorithms. A number of example simulations are presented including the case examples of a generic Europa Orbiter spacecraft in cruise as well as in orbit around Europa. The search times are typically on the order of minutes, thus demonstrating the viability of the presented approach. The results are applicable to all future deep space missions where greater spacecraft autonomy is required. In addition, onboard autonomous attitude planning greatly facilitates navigation and science observation planning, benefiting thus all missions to planet Earth as well.
Use of a genetic algorithm to improve the rail profile on Stockholm underground
NASA Astrophysics Data System (ADS)
Persson, Ingemar; Nilsson, Rickard; Bik, Ulf; Lundgren, Magnus; Iwnicki, Simon
2010-12-01
In this paper, a genetic algorithm optimisation method has been used to develop an improved rail profile for Stockholm underground. An inverted penalty index based on a number of key performance parameters was generated as a fitness function and vehicle dynamics simulations were carried out with the multibody simulation package Gensys. The effectiveness of each profile produced by the genetic algorithm was assessed using the roulette wheel method. The method has been applied to the rail profile on the Stockholm underground, where problems with rolling contact fatigue on wheels and rails are currently managed by grinding. From a starting point of the original BV50 and the UIC60 rail profiles, an optimised rail profile with some shoulder relief has been produced. The optimised profile seems similar to measured rail profiles on the Stockholm underground network and although initial grinding is required, maintenance of the profile will probably not require further grinding.
Yang, Yu; Fritzsching, Keith J; Hong, Mei
2013-11-01
A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative merit of these assignments. Our approach is modeled after the recently introduced Monte-Carlo simulated-annealing (MC/SA) protocol, with the key difference that NSGA-II simultaneously optimizes multiple assignment objectives instead of searching for possible assignments based on a single composite score. The multiple objectives include maximizing the number of consistently assigned peaks between multiple spectra ("good connections"), maximizing the number of used peaks, minimizing the number of inconsistently assigned peaks between spectra ("bad connections"), and minimizing the number of assigned peaks that have no matching peaks in the other spectra ("edges"). Using six SSNMR protein chemical shift datasets with varying levels of imperfection that was introduced by peak deletion, random chemical shift changes, and manual peak picking of spectra with moderately broad linewidths, we show that the NSGA-II algorithm produces a large number of valid and good assignments rapidly. For high-quality chemical shift peak lists, NSGA-II and MC/SA perform similarly well. However, when the peak lists contain many missing peaks that are uncorrelated between different spectra and have chemical shift deviations between spectra, the modified NSGA-II produces a larger number of valid solutions than MC/SA, and is more effective at distinguishing good from mediocre assignments by avoiding the hazard of suboptimal weighting factors for the various objectives. These two advantages, namely diversity and better evaluation, lead to a higher probability of predicting the correct assignment for a larger number of residues. On the other hand, when there are multiple equally good assignments that are significantly different from each other, the modified NSGA-II is less efficient than MC/SA in finding all the solutions. This problem is solved by a combined NSGA-II/MC algorithm, which appears to have the advantages of both NSGA-II and MC/SA. This combination algorithm is robust for the three most difficult chemical shift datasets examined here and is expected to give the highest-quality de novo assignment of challenging protein NMR spectra.
Inversion of particle-size distribution from angular light-scattering data with genetic algorithms.
Ye, M; Wang, S; Lu, Y; Hu, T; Zhu, Z; Xu, Y
1999-04-20
A stochastic inverse technique based on a genetic algorithm (GA) to invert particle-size distribution from angular light-scattering data is developed. This inverse technique is independent of any given a priori information of particle-size distribution. Numerical tests show that this technique can be successfully applied to inverse problems with high stability in the presence of random noise and low susceptibility to the shape of distributions. It has also been shown that the GA-based inverse technique is more efficient in use of computing time than the inverse Monte Carlo method recently developed by Ligon et al. [Appl. Opt. 35, 4297 (1996)].
On multiple crack identification by ultrasonic scanning
NASA Astrophysics Data System (ADS)
Brigante, M.; Sumbatyan, M. A.
2018-04-01
The present work develops an approach which reduces operator equations arising in the engineering problems to the problem of minimizing the discrepancy functional. For this minimization, an algorithm of random global search is proposed, which is allied to some genetic algorithms. The efficiency of the method is demonstrated by the solving problem of simultaneous identification of several linear cracks forming an array in an elastic medium by using the circular Ultrasonic scanning.
Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty
2017-12-01
Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.
Shaping asteroid models using genetic evolution (SAGE)
NASA Astrophysics Data System (ADS)
Bartczak, P.; Dudziński, G.
2018-02-01
In this work, we present SAGE (shaping asteroid models using genetic evolution), an asteroid modelling algorithm based solely on photometric lightcurve data. It produces non-convex shapes, orientations of the rotation axes and rotational periods of asteroids. The main concept behind a genetic evolution algorithm is to produce random populations of shapes and spin-axis orientations by mutating a seed shape and iterating the process until it converges to a stable global minimum. We tested SAGE on five artificial shapes. We also modelled asteroids 433 Eros and 9 Metis, since ground truth observations for them exist, allowing us to validate the models. We compared the derived shape of Eros with the NEAR Shoemaker model and that of Metis with adaptive optics and stellar occultation observations since other models from various inversion methods were available for Metis.
Ensemble of Chaotic and Naive Approaches for Performance Enhancement in Video Encryption.
Chandrasekaran, Jeyamala; Thiruvengadam, S J
2015-01-01
Owing to the growth of high performance network technologies, multimedia applications over the Internet are increasing exponentially. Applications like video conferencing, video-on-demand, and pay-per-view depend upon encryption algorithms for providing confidentiality. Video communication is characterized by distinct features such as large volume, high redundancy between adjacent frames, video codec compliance, syntax compliance, and application specific requirements. Naive approaches for video encryption encrypt the entire video stream with conventional text based cryptographic algorithms. Although naive approaches are the most secure for video encryption, the computational cost associated with them is very high. This research work aims at enhancing the speed of naive approaches through chaos based S-box design. Chaotic equations are popularly known for randomness, extreme sensitivity to initial conditions, and ergodicity. The proposed methodology employs two-dimensional discrete Henon map for (i) generation of dynamic and key-dependent S-box that could be integrated with symmetric algorithms like Blowfish and Data Encryption Standard (DES) and (ii) generation of one-time keys for simple substitution ciphers. The proposed design is tested for randomness, nonlinearity, avalanche effect, bit independence criterion, and key sensitivity. Experimental results confirm that chaos based S-box design and key generation significantly reduce the computational cost of video encryption with no compromise in security.
Ensemble of Chaotic and Naive Approaches for Performance Enhancement in Video Encryption
Chandrasekaran, Jeyamala; Thiruvengadam, S. J.
2015-01-01
Owing to the growth of high performance network technologies, multimedia applications over the Internet are increasing exponentially. Applications like video conferencing, video-on-demand, and pay-per-view depend upon encryption algorithms for providing confidentiality. Video communication is characterized by distinct features such as large volume, high redundancy between adjacent frames, video codec compliance, syntax compliance, and application specific requirements. Naive approaches for video encryption encrypt the entire video stream with conventional text based cryptographic algorithms. Although naive approaches are the most secure for video encryption, the computational cost associated with them is very high. This research work aims at enhancing the speed of naive approaches through chaos based S-box design. Chaotic equations are popularly known for randomness, extreme sensitivity to initial conditions, and ergodicity. The proposed methodology employs two-dimensional discrete Henon map for (i) generation of dynamic and key-dependent S-box that could be integrated with symmetric algorithms like Blowfish and Data Encryption Standard (DES) and (ii) generation of one-time keys for simple substitution ciphers. The proposed design is tested for randomness, nonlinearity, avalanche effect, bit independence criterion, and key sensitivity. Experimental results confirm that chaos based S-box design and key generation significantly reduce the computational cost of video encryption with no compromise in security. PMID:26550603
A Parallel Genetic Algorithm for Automated Electronic Circuit Design
NASA Technical Reports Server (NTRS)
Long, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris
2000-01-01
Parallelized versions of genetic algorithms (GAs) are popular primarily for three reasons: the GA is an inherently parallel algorithm, typical GA applications are very compute intensive, and powerful computing platforms, especially Beowulf-style computing clusters, are becoming more affordable and easier to implement. In addition, the low communication bandwidth required allows the use of inexpensive networking hardware such as standard office ethernet. In this paper we describe a parallel GA and its use in automated high-level circuit design. Genetic algorithms are a type of trial-and-error search technique that are guided by principles of Darwinian evolution. Just as the genetic material of two living organisms can intermix to produce offspring that are better adapted to their environment, GAs expose genetic material, frequently strings of 1s and Os, to the forces of artificial evolution: selection, mutation, recombination, etc. GAs start with a pool of randomly-generated candidate solutions which are then tested and scored with respect to their utility. Solutions are then bred by probabilistically selecting high quality parents and recombining their genetic representations to produce offspring solutions. Offspring are typically subjected to a small amount of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide variety of problems in many fields, including chemistry, biology, and many engineering disciplines. There are many styles of parallelism used in implementing parallel GAs. One such method is called the master-slave or processor farm approach. In this technique, slave nodes are used solely to compute fitness evaluations (the most time consuming part). The master processor collects fitness scores from the nodes and performs the genetic operators (selection, reproduction, variation, etc.). Because of dependency issues in the GA, it is possible to have idle processors. However, as long as the load at each processing node is similar, the processors are kept busy nearly all of the time. In applying GAs to circuit design, a suitable genetic representation 'is that of a circuit-construction program. We discuss one such circuit-construction programming language and show how evolution can generate useful analog circuit designs. This language has the desirable property that virtually all sets of combinations of primitives result in valid circuit graphs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. Using a parallel genetic algorithm and circuit simulation software, we present experimental results as applied to three analog filter and two amplifier design tasks. For example, a figure shows an 85 dB amplifier design evolved by our system, and another figure shows the performance of that circuit (gain and frequency response). In all tasks, our system is able to generate circuits that achieve the target specifications.
Optimal sensor placement for spatial lattice structure based on genetic algorithms
NASA Astrophysics Data System (ADS)
Liu, Wei; Gao, Wei-cheng; Sun, Yi; Xu, Min-jian
2008-10-01
Optimal sensor placement technique plays a key role in structural health monitoring of spatial lattice structures. This paper considers the problem of locating sensors on a spatial lattice structure with the aim of maximizing the data information so that structural dynamic behavior can be fully characterized. Based on the criterion of optimal sensor placement for modal test, an improved genetic algorithm is introduced to find the optimal placement of sensors. The modal strain energy (MSE) and the modal assurance criterion (MAC) have been taken as the fitness function, respectively, so that three placement designs were produced. The decimal two-dimension array coding method instead of binary coding method is proposed to code the solution. Forced mutation operator is introduced when the identical genes appear via the crossover procedure. A computational simulation of a 12-bay plain truss model has been implemented to demonstrate the feasibility of the three optimal algorithms above. The obtained optimal sensor placements using the improved genetic algorithm are compared with those gained by exiting genetic algorithm using the binary coding method. Further the comparison criterion based on the mean square error between the finite element method (FEM) mode shapes and the Guyan expansion mode shapes identified by data-driven stochastic subspace identification (SSI-DATA) method are employed to demonstrate the advantage of the different fitness function. The results showed that some innovations in genetic algorithm proposed in this paper can enlarge the genes storage and improve the convergence of the algorithm. More importantly, the three optimal sensor placement methods can all provide the reliable results and identify the vibration characteristics of the 12-bay plain truss model accurately.
Genetic Algorithms and Their Application to the Protein Folding Problem
1993-12-01
and symbolic methods, random methods such as Monte Carlo simulation and simulated annealing, distance geometry, and molecular dynamics. Many of these...calculated energies with those obtained using the molecular simulation software package called CHARMm. 10 9) Test both the simple and parallel simpie genetic...homology-based, and simplification techniques. 3.21 Molecular Dynamics. Perhaps the most natural approach is to actually simulate the folding process. This
NETWORK ASSISTED ANALYSIS TO REVEAL THE GENETIC BASIS OF AUTISM1
Liu, Li; Lei, Jing; Roeder, Kathryn
2016-01-01
While studies show that autism is highly heritable, the nature of the genetic basis of this disorder remains illusive. Based on the idea that highly correlated genes are functionally interrelated and more likely to affect risk, we develop a novel statistical tool to find more potentially autism risk genes by combining the genetic association scores with gene co-expression in specific brain regions and periods of development. The gene dependence network is estimated using a novel partial neighborhood selection (PNS) algorithm, where node specific properties are incorporated into network estimation for improved statistical and computational efficiency. Then we adopt a hidden Markov random field (HMRF) model to combine the estimated network and the genetic association scores in a systematic manner. The proposed modeling framework can be naturally extended to incorporate additional structural information concerning the dependence between genes. Using currently available genetic association data from whole exome sequencing studies and brain gene expression levels, the proposed algorithm successfully identified 333 genes that plausibly affect autism risk. PMID:27134692
Key-Generation Algorithms for Linear Piece In Hand Matrix Method
NASA Astrophysics Data System (ADS)
Tadaki, Kohtaro; Tsujii, Shigeo
The linear Piece In Hand (PH, for short) matrix method with random variables was proposed in our former work. It is a general prescription which can be applicable to any type of multivariate public-key cryptosystems for the purpose of enhancing their security. Actually, we showed, in an experimental manner, that the linear PH matrix method with random variables can certainly enhance the security of HFE against the Gröbner basis attack, where HFE is one of the major variants of multivariate public-key cryptosystems. In 1998 Patarin, Goubin, and Courtois introduced the plus method as a general prescription which aims to enhance the security of any given MPKC, just like the linear PH matrix method with random variables. In this paper we prove the equivalence between the plus method and the primitive linear PH matrix method, which is introduced by our previous work to explain the notion of the PH matrix method in general in an illustrative manner and not for a practical use to enhance the security of any given MPKC. Based on this equivalence, we show that the linear PH matrix method with random variables has the substantial advantage over the plus method with respect to the security enhancement. In the linear PH matrix method with random variables, the three matrices, including the PH matrix, play a central role in the secret-key and public-key. In this paper, we clarify how to generate these matrices and thus present two probabilistic polynomial-time algorithms to generate these matrices. In particular, the second one has a concise form, and is obtained as a byproduct of the proof of the equivalence between the plus method and the primitive linear PH matrix method.
Using a Genetic Algorithm to Design Nuclear Electric Spacecraft
NASA Technical Reports Server (NTRS)
Pannell, William P.
2003-01-01
The basic approach to to design nuclear electric spacecraft is to generate a group of candidate designs, see how "fit" the design are, and carry best design forward to the next generation. Some designs eliminated, some randomly modified and carried forward.
Cascade phenomenon against subsequent failures in complex networks
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng
2018-06-01
Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.
NASA Astrophysics Data System (ADS)
Dharmaseelan, Anoop; Adistambha, Keyne D.
2015-05-01
Fuel cost accounts for 40 percent of the operating cost of an airline. Fuel cost can be minimized by planning a flight on optimized routes. The routes can be optimized by searching best connections based on the cost function defined by the airline. The most common algorithm that used to optimize route search is Dijkstra's. Dijkstra's algorithm produces a static result and the time taken for the search is relatively long. This paper experiments a new algorithm to optimize route search which combines the principle of simulated annealing and genetic algorithm. The experimental results of route search, presented are shown to be computationally fast and accurate compared with timings from generic algorithm. The new algorithm is optimal for random routing feature that is highly sought by many regional operators.
Genetic evolutionary taboo search for optimal marker placement in infrared patient setup
NASA Astrophysics Data System (ADS)
Riboldi, M.; Baroni, G.; Spadea, M. F.; Tagaste, B.; Garibaldi, C.; Cambria, R.; Orecchia, R.; Pedotti, A.
2007-09-01
In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process.
Vriamont, Nicolas; Govaerts, Bernadette; Grenouillet, Pierre; de Bellefon, Claude; Riant, Olivier
2009-06-15
A library of catalysts was designed for asymmetric-hydrogen transfer to acetophenone. At first, the whole library was submitted to evaluation using high-throughput experiments (HTE). The catalysts were listed in ascending order, with respect to their performance, and best catalysts were identified. In the second step, various simulated evolution experiments, based on a genetic algorithm, were applied to this library. A small part of the library, called the mother generation (G0), thus evolved from generation to generation. The goal was to use our collection of HTE data to adjust the parameters of the genetic algorithm, in order to obtain a maximum of the best catalysts within a minimal number of generations. It was namely found that simulated evolution's results depended on the selection of G0 and that a random G0 should be preferred. We also demonstrated that it was possible to get 5 to 6 of the ten best catalysts while investigating only 10 % of the library. Moreover, we developed a double algorithm making this result still achievable if the evolution started with one of the worst G0.
Mukherjee, Shubhabrata; Walter, Stefan; Kauwe, John S.K.; Saykin, Andrew J.; Bennett, David A.; Larson, Eric B.; Crane, Paul K.; Glymour, M. Maria
2015-01-01
Observational research shows that higher body mass index (BMI) increases Alzheimer’s disease (AD) risk, but it is unclear whether this association is causal. We applied genetic variants that predict BMI in Mendelian Randomization analyses, an approach that is not biased by reverse causation or confounding, to evaluate whether higher BMI increases AD risk. We evaluated individual level data from the AD Genetics Consortium (ADGC: 10,079 AD cases and 9,613 controls), the Health and Retirement Study (HRS: 8,403 participants with algorithm-predicted dementia status) and published associations from the Genetic and Environmental Risk for AD consortium (GERAD1: 3,177 AD cases and 7,277 controls). No evidence from individual SNPs or polygenic scores indicated BMI increased AD risk. Mendelian Randomization effect estimates per BMI point (95% confidence intervals) were: ADGC OR=0.95 (0.90, 1.01); HRS OR=1.00 (0.75, 1.32); GERAD1 OR=0.96 (0.87, 1.07). One subscore (cellular processes not otherwise specified) unexpectedly predicted lower AD risk. PMID:26079416
Evaluation of algorithms used to order markers on genetic maps.
Mollinari, M; Margarido, G R A; Vencovsky, R; Garcia, A A F
2009-12-01
When building genetic maps, it is necessary to choose from several marker ordering algorithms and criteria, and the choice is not always simple. In this study, we evaluate the efficiency of algorithms try (TRY), seriation (SER), rapid chain delineation (RCD), recombination counting and ordering (RECORD) and unidirectional growth (UG), as well as the criteria PARF (product of adjacent recombination fractions), SARF (sum of adjacent recombination fractions), SALOD (sum of adjacent LOD scores) and LHMC (likelihood through hidden Markov chains), used with the RIPPLE algorithm for error verification, in the construction of genetic linkage maps. A linkage map of a hypothetical diploid and monoecious plant species was simulated containing one linkage group and 21 markers with fixed distance of 3 cM between them. In all, 700 F(2) populations were randomly simulated with 100 and 400 individuals with different combinations of dominant and co-dominant markers, as well as 10 and 20% of missing data. The simulations showed that, in the presence of co-dominant markers only, any combination of algorithm and criteria may be used, even for a reduced population size. In the case of a smaller proportion of dominant markers, any of the algorithms and criteria (except SALOD) investigated may be used. In the presence of high proportions of dominant markers and smaller samples (around 100), the probability of repulsion linkage increases between them and, in this case, use of the algorithms TRY and SER associated to RIPPLE with criterion LHMC would provide better results.
Scope of Gradient and Genetic Algorithms in Multivariable Function Optimization
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali; Sen, S. K.
2007-01-01
Global optimization of a multivariable function - constrained by bounds specified on each variable and also unconstrained - is an important problem with several real world applications. Deterministic methods such as the gradient algorithms as well as the randomized methods such as the genetic algorithms may be employed to solve these problems. In fact, there are optimization problems where a genetic algorithm/an evolutionary approach is preferable at least from the quality (accuracy) of the results point of view. From cost (complexity) point of view, both gradient and genetic approaches are usually polynomial-time; there are no serious differences in this regard, i.e., the computational complexity point of view. However, for certain types of problems, such as those with unacceptably erroneous numerical partial derivatives and those with physically amplified analytical partial derivatives whose numerical evaluation involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better choice. We have presented here the pros and cons of both the approaches so that the concerned reader/user can decide which approach is most suited for the problem at hand. Also for the function which is known in a tabular form, instead of an analytical form, as is often the case in an experimental environment, we attempt to provide an insight into the approaches focusing our attention toward accuracy. Such an insight will help one to decide which method, out of several available methods, should be employed to obtain the best (least error) output. *
A Novel Color Image Encryption Algorithm Based on Quantum Chaos Sequence
NASA Astrophysics Data System (ADS)
Liu, Hui; Jin, Cong
2017-03-01
In this paper, a novel algorithm of image encryption based on quantum chaotic is proposed. The keystreams are generated by the two-dimensional logistic map as initial conditions and parameters. And then general Arnold scrambling algorithm with keys is exploited to permute the pixels of color components. In diffusion process, a novel encryption algorithm, folding algorithm, is proposed to modify the value of diffused pixels. In order to get the high randomness and complexity, the two-dimensional logistic map and quantum chaotic map are coupled with nearest-neighboring coupled-map lattices. Theoretical analyses and computer simulations confirm that the proposed algorithm has high level of security.
Optical image encryption by random shifting in fractional Fourier domains
NASA Astrophysics Data System (ADS)
Hennelly, B.; Sheridan, J. T.
2003-02-01
A number of methods have recently been proposed in the literature for the encryption of two-dimensional information by use of optical systems based on the fractional Fourier transform. Typically, these methods require random phase screen keys for decrypting the data, which must be stored at the receiver and must be carefully aligned with the received encrypted data. A new technique based on a random shifting, or jigsaw, algorithm is proposed. This method does not require the use of phase keys. The image is encrypted by juxtaposition of sections of the image in fractional Fourier domains. The new method has been compared with existing methods and shows comparable or superior robustness to blind decryption. Optical implementation is discussed, and the sensitivity of the various encryption keys to blind decryption is examined.
Application of genetic algorithms to tuning fuzzy control systems
NASA Technical Reports Server (NTRS)
Espy, Todd; Vombrack, Endre; Aldridge, Jack
1993-01-01
Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
Ternary alloy material prediction using genetic algorithm and cluster expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chong
2015-12-01
This thesis summarizes our study on the crystal structures prediction of Fe-V-Si system using genetic algorithm and cluster expansion. Our goal is to explore and look for new stable compounds. We started from the current ten known experimental phases, and calculated formation energies of those compounds using density functional theory (DFT) package, namely, VASP. The convex hull was generated based on the DFT calculations of the experimental known phases. Then we did random search on some metal rich (Fe and V) compositions and found that the lowest energy structures were body centered cube (bcc) underlying lattice, under which we didmore » our computational systematic searches using genetic algorithm and cluster expansion. Among hundreds of the searched compositions, thirteen were selected and DFT formation energies were obtained by VASP. The stability checking of those thirteen compounds was done in reference to the experimental convex hull. We found that the composition, 24-8-16, i.e., Fe 3VSi 2 is a new stable phase and it can be very inspiring to the future experiments.« less
Full glowworm swarm optimization algorithm for whole-set orders scheduling in single machine.
Yu, Zhang; Yang, Xiaomei
2013-01-01
By analyzing the characteristics of whole-set orders problem and combining the theory of glowworm swarm optimization, a new glowworm swarm optimization algorithm for scheduling is proposed. A new hybrid-encoding schema combining with two-dimensional encoding and random-key encoding is given. In order to enhance the capability of optimal searching and speed up the convergence rate, the dynamical changed step strategy is integrated into this algorithm. Furthermore, experimental results prove its feasibility and efficiency.
Fuel management optimization using genetic algorithms and code independence
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1994-12-31
Fuel management optimization is a hard problem for traditional optimization techniques. Loading pattern optimization is a large combinatorial problem without analytical derivative information. Therefore, methods designed for continuous functions, such as linear programming, do not always work well. Genetic algorithms (GAs) address these problems and, therefore, appear ideal for fuel management optimization. They do not require derivative information and work well with combinatorial. functions. The GAs are a stochastic method based on concepts from biological genetics. They take a group of candidate solutions, called the population, and use selection, crossover, and mutation operators to create the next generation of bettermore » solutions. The selection operator is a {open_quotes}survival-of-the-fittest{close_quotes} operation and chooses the solutions for the next generation. The crossover operator is analogous to biological mating, where children inherit a mixture of traits from their parents, and the mutation operator makes small random changes to the solutions.« less
Genetic attack on neural cryptography.
Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka; Kanter, Ido
2006-03-01
Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.
Genetic attack on neural cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka
2006-03-15
Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold formore » the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.« less
Genetic attack on neural cryptography
NASA Astrophysics Data System (ADS)
Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka; Kanter, Ido
2006-03-01
Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.
NASA Astrophysics Data System (ADS)
Meng, X. F.; Peng, X.; Cai, L. Z.; Li, A. M.; Gao, Z.; Wang, Y. R.
2009-08-01
A hybrid cryptosystem is proposed, in which one image is encrypted to two interferograms with the aid of double random-phase encoding (DRPE) and two-step phase-shifting interferometry (2-PSI), then three pairs of public-private keys are utilized to encode and decode the session keys (geometrical parameters, the second random-phase mask) and interferograms. In the stage of decryption, the ciphered image can be decrypted by wavefront reconstruction, inverse Fresnel diffraction, and real amplitude normalization. This approach can successfully solve the problem of key management and dispatch, resulting in increased security strength. The feasibility of the proposed cryptosystem and its robustness against some types of attack are verified and analyzed by computer simulations.
NASA Astrophysics Data System (ADS)
Qiu, J. P.; Niu, D. X.
Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA.
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA. PMID:26167171
Strategies for informed sample size reduction in adaptive controlled clinical trials
NASA Astrophysics Data System (ADS)
Arandjelović, Ognjen
2017-12-01
Clinical trial adaptation refers to any adjustment of the trial protocol after the onset of the trial. The main goal is to make the process of introducing new medical interventions to patients more efficient. The principal challenge, which is an outstanding research problem, is to be found in the question of how adaptation should be performed so as to minimize the chance of distorting the outcome of the trial. In this paper, we propose a novel method for achieving this. Unlike most of the previously published work, our approach focuses on trial adaptation by sample size adjustment, i.e. by reducing the number of trial participants in a statistically informed manner. Our key idea is to select the sample subset for removal in a manner which minimizes the associated loss of information. We formalize this notion and describe three algorithms which approach the problem in different ways, respectively, using (i) repeated random draws, (ii) a genetic algorithm, and (iii) what we term pair-wise sample compatibilities. Experiments on simulated data demonstrate the effectiveness of all three approaches, with a consistently superior performance exhibited by the pair-wise sample compatibilities-based method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hymel, Ross
The Public Key (PK) FPGA software performs asymmetric authentication using the 163-bit Elliptic Curve Digital Signature Algorithm (ECDSA) on an embedded FPGA platform. A digital signature is created on user-supplied data, and communication with a host system is performed via a Serial Peripheral Interface (SPI) bus. Software includes all components necessary for signing, including custom random number generator for key creation and SHA-256 for data hashing.
NASA Astrophysics Data System (ADS)
Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli
2015-12-01
A color image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and two-coupled logistic map in gyrator transform domain. First, the color plaintext image is decomposed into red, green and blue components, which are scrambled individually by three random sequences generated by using the two-dimensional Sine logistic modulation map. Second, each scrambled component is encrypted into a real-valued function with stationary white noise distribution in the iterative amplitude-phase retrieval process in the gyrator transform domain, and then three obtained functions are considered as red, green and blue channels to form the color ciphertext image. Obviously, the ciphertext image is real-valued function and more convenient for storing and transmitting. In the encryption and decryption processes, the chaotic random phase mask generated based on logistic map is employed as the phase key, which means that only the initial values are used as private key and the cryptosystem has high convenience on key management. Meanwhile, the security of the cryptosystem is enhanced greatly because of high sensitivity of the private keys. Simulation results are presented to prove the security and robustness of the proposed scheme.
Phase-only asymmetric optical cryptosystem based on random modulus decomposition
NASA Astrophysics Data System (ADS)
Xu, Hongfeng; Xu, Wenhui; Wang, Shuaihua; Wu, Shaofan
2018-06-01
We propose a phase-only asymmetric optical cryptosystem based on random modulus decomposition (RMD). The cryptosystem is presented for effectively improving the capacity to resist various attacks, including the attack of iterative algorithms. On the one hand, RMD and phase encoding are combined to remove the constraints that can be used in the attacking process. On the other hand, the security keys (geometrical parameters) introduced by Fresnel transform can increase the key variety and enlarge the key space simultaneously. Numerical simulation results demonstrate the strong feasibility, security and robustness of the proposed cryptosystem. This cryptosystem will open up many new opportunities in the application fields of optical encryption and authentication.
Optimal Refueling Pattern Search for a CANDU Reactor Using a Genetic Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quang Binh, DO; Gyuhong, ROH; Hangbok, CHOI
2006-07-01
This paper presents the results from the application of genetic algorithms to a refueling optimization of a Canada deuterium uranium (CANDU) reactor. This work aims at making a mathematical model of the refueling optimization problem including the objective function and constraints and developing a method based on genetic algorithms to solve the problem. The model of the optimization problem and the proposed method comply with the key features of the refueling strategy of the CANDU reactor which adopts an on-power refueling operation. In this study, a genetic algorithm combined with an elitism strategy was used to automatically search for themore » refueling patterns. The objective of the optimization was to maximize the discharge burn-up of the refueling bundles, minimize the maximum channel power, or minimize the maximum change in the zone controller unit (ZCU) water levels. A combination of these objectives was also investigated. The constraints include the discharge burn-up, maximum channel power, maximum bundle power, channel power peaking factor and the ZCU water level. A refueling pattern that represents the refueling rate and channels was coded by a one-dimensional binary chromosome, which is a string of binary numbers 0 and 1. A computer program was developed in FORTRAN 90 running on an HP 9000 workstation to conduct the search for the optimal refueling patterns for a CANDU reactor at the equilibrium state. The results showed that it was possible to apply genetic algorithms to automatically search for the refueling channels of the CANDU reactor. The optimal refueling patterns were compared with the solutions obtained from the AUTOREFUEL program and the results were consistent with each other. (authors)« less
NASA Astrophysics Data System (ADS)
Eladj, Said; bansir, fateh; ouadfeul, sid Ali
2016-04-01
The application of genetic algorithm starts with an initial population of chromosomes representing a "model space". Chromosome chains are preferentially Reproduced based on Their fitness Compared to the total population. However, a good chromosome has a Greater opportunity to Produce offspring Compared To other chromosomes in the population. The advantage of the combination HGA / SAA is the use of a global search approach on a large population of local maxima to Improve Significantly the performance of the method. To define the parameters of the Hybrid Genetic Algorithm Steepest Ascent Auto Statics (HGA / SAA) job, we Evaluated by testing in the first stage of "Steepest Ascent," the optimal parameters related to the data used. 1- The number of iterations "Number of hill climbing iteration" is equal to 40 iterations. This parameter defines the participation of the algorithm "SA", in this hybrid approach. 2- The minimum eigenvalue for SA '= 0.8. This is linked to the quality of data and S / N ratio. To find an implementation performance of hybrid genetic algorithms in the inversion for estimating of the residual static corrections, tests Were Performed to determine the number of generation of HGA / SAA. Using the values of residual static corrections already calculated by the Approaches "SAA and CSAA" learning has Proved very effective in the building of the cross-correlation table. To determine the optimal number of generation, we Conducted a series of tests ranging from [10 to 200] generations. The application on real seismic data in southern Algeria allowed us to judge the performance and capacity of the inversion with this hybrid method "HGA / SAA". This experience Clarified the influence of the corrections quality estimated from "SAA / CSAA" and the optimum number of generation hybrid genetic algorithm "HGA" required to have a satisfactory performance. Twenty (20) generations Were enough to Improve continuity and resolution of seismic horizons. This Will allow us to achieve a more accurate structural interpretation Key words: Hybrid Genetic Algorithm, number of generations, model space, local maxima, Number of hill climbing iteration, Minimum eigenvalue, cross-correlation table
New Secure E-mail System Based on Bio-Chaos Key Generation and Modified AES Algorithm
NASA Astrophysics Data System (ADS)
Hoomod, Haider K.; Radi, A. M.
2018-05-01
The E-mail messages exchanged between sender’s Mailbox and recipient’s Mailbox over the open systems and insecure Networks. These messages may be vulnerable to eavesdropping and itself poses a real threat to the privacy and data integrity from unauthorized persons. The E-mail Security includes the following properties (Confidentiality, Authentication, Message integrity). We need a safe encryption algorithm to encrypt Email messages such as the algorithm Advanced Encryption Standard (AES) or Data Encryption Standard DES, as well as biometric recognition and chaotic system. The proposed E-mail system security uses modified AES algorithm and uses secret key-bio-chaos that consist of biometric (Fingerprint) and chaotic system (Lu and Lorenz). This modification makes the proposed system more sensitive and random. The execution time for both encryption and decryption of the proposed system is much less from original AES, in addition to being compatible with all Mail Servers.
NASA Astrophysics Data System (ADS)
Zou, Zhen-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-04-01
At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.
2007-03-01
Quadrature QPSK Quadrature Phase-Shift Keying RV Random Variable SHAC Single-Hop-Observation Auto- Correlation SINR Signal-to-Interference...The fast Fourier transform ( FFT ) accumulation method and the strip spectral correlation algorithm subdivide the support region in the bi-frequency...diamond shapes, while the strip spectral correlation algorithm subdivides the region into strips. Each strip covers a number of the FFT accumulation
Applications of random forest feature selection for fine-scale genetic population assignment.
Sylvester, Emma V A; Bentzen, Paul; Bradbury, Ian R; Clément, Marie; Pearce, Jon; Horne, John; Beiko, Robert G
2018-02-01
Genetic population assignment used to inform wildlife management and conservation efforts requires panels of highly informative genetic markers and sensitive assignment tests. We explored the utility of machine-learning algorithms (random forest, regularized random forest and guided regularized random forest) compared with F ST ranking for selection of single nucleotide polymorphisms (SNP) for fine-scale population assignment. We applied these methods to an unpublished SNP data set for Atlantic salmon ( Salmo salar ) and a published SNP data set for Alaskan Chinook salmon ( Oncorhynchus tshawytscha ). In each species, we identified the minimum panel size required to obtain a self-assignment accuracy of at least 90% using each method to create panels of 50-700 markers Panels of SNPs identified using random forest-based methods performed up to 7.8 and 11.2 percentage points better than F ST -selected panels of similar size for the Atlantic salmon and Chinook salmon data, respectively. Self-assignment accuracy ≥90% was obtained with panels of 670 and 384 SNPs for each data set, respectively, a level of accuracy never reached for these species using F ST -selected panels. Our results demonstrate a role for machine-learning approaches in marker selection across large genomic data sets to improve assignment for management and conservation of exploited populations.
Optical image hiding based on computational ghost imaging
NASA Astrophysics Data System (ADS)
Wang, Le; Zhao, Shengmei; Cheng, Weiwen; Gong, Longyan; Chen, Hanwu
2016-05-01
Imaging hiding schemes play important roles in now big data times. They provide copyright protections of digital images. In the paper, we propose a novel image hiding scheme based on computational ghost imaging to have strong robustness and high security. The watermark is encrypted with the configuration of a computational ghost imaging system, and the random speckle patterns compose a secret key. Least significant bit algorithm is adopted to embed the watermark and both the second-order correlation algorithm and the compressed sensing (CS) algorithm are used to extract the watermark. The experimental and simulation results show that the authorized users can get the watermark with the secret key. The watermark image could not be retrieved when the eavesdropping ratio is less than 45% with the second-order correlation algorithm, whereas it is less than 20% with the TVAL3 CS reconstructed algorithm. In addition, the proposed scheme is robust against the 'salt and pepper' noise and image cropping degradations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne F. Boyer; Gurdeep S. Hura
2005-09-01
The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized taskmore » orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,« less
Comparison of algorithms for the detection of cancer-drivers at sub-gene resolution
Porta-Pardo, Eduard; Kamburov, Atanas; Tamborero, David; Pons, Tirso; Grases, Daniela; Valencia, Alfonso; Lopez-Bigas, Nuria; Getz, Gad; Godzik, Adam
2018-01-01
Understanding genetic events that lead to cancer initiation and progression remains one of the biggest challenges in cancer biology. Traditionally most algorithms for cancer driver identification look for genes that have more mutations than expected from the average background mutation rate. However, there is now a wide variety of methods that look for non-random distribution of mutations within proteins as a signal they have a driving role in cancer. Here we classify and review the progress of such sub-gene resolution algorithms, compare their findings on four distinct cancer datasets from The Cancer Genome Atlas and discuss how predictions from these algorithms can be interpreted in the emerging paradigms that challenge the simple dichotomy between driver and passenger genes. PMID:28714987
NASA Astrophysics Data System (ADS)
Hayrapetyan, David B.; Hovhannisyan, Levon; Mantashyan, Paytsar A.
2013-04-01
The analysis of complex spectra is an actual problem for modern science. The work is devoted to the creation of a software package, which analyzes spectrum in the different formats, possesses by dynamic knowledge database and self-study mechanism, performs automated analysis of the spectra compound based on knowledge database by application of certain algorithms. In the software package as searching systems, hyper-spherical random search algorithms, gradient algorithms and genetic searching algorithms were used. The analysis of Raman and IR spectrum of diamond-like carbon (DLC) samples were performed by elaborated program. After processing the data, the program immediately displays all the calculated parameters of DLC.
Exponential H ∞ Synchronization of Chaotic Cryptosystems Using an Improved Genetic Algorithm
Hsiao, Feng-Hsiag
2015-01-01
This paper presents a systematic design methodology for neural-network- (NN-) based secure communications in multiple time-delay chaotic (MTDC) systems with optimal H ∞ performance and cryptography. On the basis of the Improved Genetic Algorithm (IGA), which is demonstrated to have better performance than that of a traditional GA, a model-based fuzzy controller is then synthesized to stabilize the MTDC systems. A fuzzy controller is synthesized to not only realize the exponential synchronization, but also achieve optimal H ∞ performance by minimizing the disturbance attenuation level. Furthermore, the error of the recovered message is stated by using the n-shift cipher and key. Finally, a numerical example with simulations is given to demonstrate the effectiveness of our approach. PMID:26366432
Do bioclimate variables improve performance of climate envelope models?
Watling, James I.; Romañach, Stephanie S.; Bucklin, David N.; Speroterra, Carolina; Brandt, Laura A.; Pearlstine, Leonard G.; Mazzotti, Frank J.
2012-01-01
Climate envelope models are widely used to forecast potential effects of climate change on species distributions. A key issue in climate envelope modeling is the selection of predictor variables that most directly influence species. To determine whether model performance and spatial predictions were related to the selection of predictor variables, we compared models using bioclimate variables with models constructed from monthly climate data for twelve terrestrial vertebrate species in the southeastern USA using two different algorithms (random forests or generalized linear models), and two model selection techniques (using uncorrelated predictors or a subset of user-defined biologically relevant predictor variables). There were no differences in performance between models created with bioclimate or monthly variables, but one metric of model performance was significantly greater using the random forest algorithm compared with generalized linear models. Spatial predictions between maps using bioclimate and monthly variables were very consistent using the random forest algorithm with uncorrelated predictors, whereas we observed greater variability in predictions using generalized linear models.
NASA Astrophysics Data System (ADS)
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-29
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.
Xu, Xiao-Feng; Wang, Yan; Wang, Yan-Yan; Song, Ming; Xiao, Wen-Gang; Bai, Yun
2016-09-02
Genetic diseases represent a significant public health challenge in China that will need to be addressed by a correspondingly large number of professional genetic counselors. However, neither an official training program for genetic counseling, nor formal board certification, was available in China before 2015. In 2009, a genetic counseling training program based on role-playing was implemented as a pilot study at the Third Military Medical University to train third-year medical students. Questionnaires on participant attitudes to the program and role-playing were randomly administered to 324 students after they had finished their training. Pre- and post-training instructional tests, focusing on 42 key components of genetic counseling, were administered randomly to 200 participants to assess mastery of each component. Finally, scores in final examinations of 578 participants from 2009 to 2011 were compared to scores obtained by 614 non-participating students from 2006 to 2008 to further assess program efficacy. Both the training program and the instructional strategy of role-playing were accepted by most participants. Students believed that role-playing improved their practice of genetic counseling and medical genetics, enhanced their communication skills, and would likely contribute to future professional performance. The average understanding of 40 of the key points in genetic counseling was significantly improved, and most students approached excellent levels of mastery. Scores in final examinations and the percentages of students scoring above 90 were also significantly elevated. Role-playing is a feasible and effective instructional strategy for training genetic counselors in China as well as in other developing countries.
Hu, Chen; Steingrimsson, Jon Arni
2018-01-01
A crucial component of making individualized treatment decisions is to accurately predict each patient's disease risk. In clinical oncology, disease risks are often measured through time-to-event data, such as overall survival and progression/recurrence-free survival, and are often subject to censoring. Risk prediction models based on recursive partitioning methods are becoming increasingly popular largely due to their ability to handle nonlinear relationships, higher-order interactions, and/or high-dimensional covariates. The most popular recursive partitioning methods are versions of the Classification and Regression Tree (CART) algorithm, which builds a simple interpretable tree structured model. With the aim of increasing prediction accuracy, the random forest algorithm averages multiple CART trees, creating a flexible risk prediction model. Risk prediction models used in clinical oncology commonly use both traditional demographic and tumor pathological factors as well as high-dimensional genetic markers and treatment parameters from multimodality treatments. In this article, we describe the most commonly used extensions of the CART and random forest algorithms to right-censored outcomes. We focus on how they differ from the methods for noncensored outcomes, and how the different splitting rules and methods for cost-complexity pruning impact these algorithms. We demonstrate these algorithms by analyzing a randomized Phase III clinical trial of breast cancer. We also conduct Monte Carlo simulations to compare the prediction accuracy of survival forests with more commonly used regression models under various scenarios. These simulation studies aim to evaluate how sensitive the prediction accuracy is to the underlying model specifications, the choice of tuning parameters, and the degrees of missing covariates.
A Modified Artificial Bee Colony Algorithm for p-Center Problems
Yurtkuran, Alkın
2014-01-01
The objective of the p-center problem is to locate p-centers on a network such that the maximum of the distances from each node to its nearest center is minimized. The artificial bee colony algorithm is a swarm-based meta-heuristic algorithm that mimics the foraging behavior of honey bee colonies. This study proposes a modified ABC algorithm that benefits from a variety of search strategies to balance exploration and exploitation. Moreover, random key-based coding schemes are used to solve the p-center problem effectively. The proposed algorithm is compared to state-of-the-art techniques using different benchmark problems, and computational results reveal that the proposed approach is very efficient. PMID:24616648
Weight optimization of plane truss using genetic algorithm
NASA Astrophysics Data System (ADS)
Neeraja, D.; Kamireddy, Thejesh; Santosh Kumar, Potnuru; Simha Reddy, Vijay
2017-11-01
Optimization of structure on basis of weight has many practical benefits in every engineering field. The efficiency is proportionally related to its weight and hence weight optimization gains prime importance. Considering the field of civil engineering, weight optimized structural elements are economical and easier to transport to the site. In this study, genetic optimization algorithm for weight optimization of steel truss considering its shape, size and topology aspects has been developed in MATLAB. Material strength and Buckling stability have been adopted from IS 800-2007 code of construction steel. The constraints considered in the present study are fabrication, basic nodes, displacements, and compatibility. Genetic programming is a natural selection search technique intended to combine good solutions to a problem from many generations to improve the results. All solutions are generated randomly and represented individually by a binary string with similarities of natural chromosomes, and hence it is termed as genetic programming. The outcome of the study is a MATLAB program, which can optimise a steel truss and display the optimised topology along with element shapes, deflections, and stress results.
Atkinson, Jonathan A; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E; Griffiths, Marcus; Wells, Darren M
2017-10-01
Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. © The Authors 2017. Published by Oxford University Press.
Atkinson, Jonathan A.; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E.; Griffiths, Marcus
2017-01-01
Abstract Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. PMID:29020748
Probabilistic pathway construction.
Yousofshahi, Mona; Lee, Kyongbum; Hassoun, Soha
2011-07-01
Expression of novel synthesis pathways in host organisms amenable to genetic manipulations has emerged as an attractive metabolic engineering strategy to overproduce natural products, biofuels, biopolymers and other commercially useful metabolites. We present a pathway construction algorithm for identifying viable synthesis pathways compatible with balanced cell growth. Rather than exhaustive exploration, we investigate probabilistic selection of reactions to construct the pathways. Three different selection schemes are investigated for the selection of reactions: high metabolite connectivity, low connectivity and uniformly random. For all case studies, which involved a diverse set of target metabolites, the uniformly random selection scheme resulted in the highest average maximum yield. When compared to an exhaustive search enumerating all possible reaction routes, our probabilistic algorithm returned nearly identical distributions of yields, while requiring far less computing time (minutes vs. years). The pathways identified by our algorithm have previously been confirmed in the literature as viable, high-yield synthesis routes. Prospectively, our algorithm could facilitate the design of novel, non-native synthesis routes by efficiently exploring the diversity of biochemical transformations in nature. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chai, Xiu-Li; Gan, Zhi-Hua; Lu, Yang; Zhang, Miao-Hui; Chen, Yi-Ran
2016-10-01
Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional (4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes, and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203094 and 61305042), the Natural Science Foundation of the United States (Grant Nos. CNS-1253424 and ECCS-1202225), the Science and Technology Foundation of Henan Province, China (Grant No. 152102210048), the Foundation and Frontier Project of Henan Province, China (Grant No. 162300410196), the Natural Science Foundation of Educational Committee of Henan Province, China (Grant No. 14A413015), and the Research Foundation of Henan University, China (Grant No. xxjc20140006).
A simple approach to nonlinear estimation of physical systems
Christakos, G.
1988-01-01
Recursive algorithms for estimating the states of nonlinear physical systems are developed. This requires some key hypotheses regarding the structure of the underlying processes. Members of this class of random processes have several desirable properties for the nonlinear estimation of random signals. An assumption is made about the form of the estimator, which may then take account of a wide range of applications. Under the above assumption, the estimation algorithm is mathematically suboptimal but effective and computationally attractive. It may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. To link theory with practice, some numerical results for a simulated system are presented, in which the responses from the proposed and the extended Kalman algorithms are compared. ?? 1988.
Randomized algorithms for high quality treatment planning in volumetric modulated arc therapy
NASA Astrophysics Data System (ADS)
Yang, Yu; Dong, Bin; Wen, Zaiwen
2017-02-01
In recent years, volumetric modulated arc therapy (VMAT) has been becoming a more and more important radiation technique widely used in clinical application for cancer treatment. One of the key problems in VMAT is treatment plan optimization, which is complicated due to the constraints imposed by the involved equipments. In this paper, we consider a model with four major constraints: the bound on the beam intensity, an upper bound on the rate of the change of the beam intensity, the moving speed of leaves of the multi-leaf collimator (MLC) and its directional-convexity. We solve the model by a two-stage algorithm: performing minimization with respect to the shapes of the aperture and the beam intensities alternatively. Specifically, the shapes of the aperture are obtained by a greedy algorithm whose performance is enhanced by random sampling in the leaf pairs with a decremental rate. The beam intensity is optimized using a gradient projection method with non-monotonic line search. We further improve the proposed algorithm by an incremental random importance sampling of the voxels to reduce the computational cost of the energy functional. Numerical simulations on two clinical cancer date sets demonstrate that our method is highly competitive to the state-of-the-art algorithms in terms of both computational time and quality of treatment planning.
Enhancing speech recognition using improved particle swarm optimization based hidden Markov model.
Selvaraj, Lokesh; Ganesan, Balakrishnan
2014-01-01
Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO) is suggested. The suggested methodology contains four stages, namely, (i) denoising, (ii) feature mining (iii), vector quantization, and (iv) IPSO based hidden Markov model (HMM) technique (IP-HMM). At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC), mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy.
Dual Key Speech Encryption Algorithm Based Underdetermined BSS
Zhao, Huan; Chen, Zuo; Zhang, Xixiang
2014-01-01
When the number of the mixed signals is less than that of the source signals, the underdetermined blind source separation (BSS) is a significant difficult problem. Due to the fact that the great amount data of speech communications and real-time communication has been required, we utilize the intractability of the underdetermined BSS problem to present a dual key speech encryption method. The original speech is mixed with dual key signals which consist of random key signals (one-time pad) generated by secret seed and chaotic signals generated from chaotic system. In the decryption process, approximate calculation is used to recover the original speech signals. The proposed algorithm for speech signals encryption can resist traditional attacks against the encryption system, and owing to approximate calculation, decryption becomes faster and more accurate. It is demonstrated that the proposed method has high level of security and can recover the original signals quickly and efficiently yet maintaining excellent audio quality. PMID:24955430
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
Bi-dimensional null model analysis of presence-absence binary matrices.
Strona, Giovanni; Ulrich, Werner; Gotelli, Nicholas J
2018-01-01
Comparing the structure of presence/absence (i.e., binary) matrices with those of randomized counterparts is a common practice in ecology. However, differences in the randomization procedures (null models) can affect the results of the comparisons, leading matrix structural patterns to appear either "random" or not. Subjectivity in the choice of one particular null model over another makes it often advisable to compare the results obtained using several different approaches. Yet, available algorithms to randomize binary matrices differ substantially in respect to the constraints they impose on the discrepancy between observed and randomized row and column marginal totals, which complicates the interpretation of contrasting patterns. This calls for new strategies both to explore intermediate scenarios of restrictiveness in-between extreme constraint assumptions, and to properly synthesize the resulting information. Here we introduce a new modeling framework based on a flexible matrix randomization algorithm (named the "Tuning Peg" algorithm) that addresses both issues. The algorithm consists of a modified swap procedure in which the discrepancy between the row and column marginal totals of the target matrix and those of its randomized counterpart can be "tuned" in a continuous way by two parameters (controlling, respectively, row and column discrepancy). We show how combining the Tuning Peg with a wise random walk procedure makes it possible to explore the complete null space embraced by existing algorithms. This exploration allows researchers to visualize matrix structural patterns in an innovative bi-dimensional landscape of significance/effect size. We demonstrate the rational and potential of our approach with a set of simulated and real matrices, showing how the simultaneous investigation of a comprehensive and continuous portion of the null space can be extremely informative, and possibly key to resolving longstanding debates in the analysis of ecological matrices. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.
A hybrid artificial bee colony algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Alqattan, Zakaria N.; Abdullah, Rosni
2015-02-01
Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).
Brain tumor segmentation in 3D MRIs using an improved Markov random field model
NASA Astrophysics Data System (ADS)
Yousefi, Sahar; Azmi, Reza; Zahedi, Morteza
2011-10-01
Markov Random Field (MRF) models have been recently suggested for MRI brain segmentation by a large number of researchers. By employing Markovianity, which represents the local property, MRF models are able to solve a global optimization problem locally. But they still have a heavy computation burden, especially when they use stochastic relaxation schemes such as Simulated Annealing (SA). In this paper, a new 3D-MRF model is put forward to raise the speed of the convergence. Although, search procedure of SA is fairly localized and prevents from exploring the same diversity of solutions, it suffers from several limitations. In comparison, Genetic Algorithm (GA) has a good capability of global researching but it is weak in hill climbing. Our proposed algorithm combines SA and an improved GA (IGA) to optimize the solution which speeds up the computation time. What is more, this proposed algorithm outperforms the traditional 2D-MRF in quality of the solution.
A Comparison of Techniques for Scheduling Earth-Observing Satellites
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna
2004-01-01
Scheduling observations by coordinated fleets of Earth Observing Satellites (EOS) involves large search spaces, complex constraints and poorly understood bottlenecks, conditions where evolutionary and related algorithms are often effective. However, there are many such algorithms and the best one to use is not clear. Here we compare multiple variants of the genetic algorithm: stochastic hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on ten realistically-sized EOS scheduling problems. Schedules are represented by a permutation (non-temperal ordering) of the observation requests. A simple deterministic scheduler assigns times and resources to each observation request in the order indicated by the permutation, discarding those that violate the constraints created by previously scheduled observations. Simulated annealing performs best. Random mutation outperform a more 'intelligent' mutator. Furthermore, the best mutator, by a small margin, was a novel approach we call temperature dependent random sampling that makes large changes in the early stages of evolution and smaller changes towards the end of search.
Cheng, Jun-Hu; Sun, Da-Wen; Pu, Hongbin
2016-04-15
The potential use of feature wavelengths for predicting drip loss in grass carp fish, as affected by being frozen at -20°C for 24 h and thawed at 4°C for 1, 2, 4, and 6 days, was investigated. Hyperspectral images of frozen-thawed fish were obtained and their corresponding spectra were extracted. Least-squares support vector machine and multiple linear regression (MLR) models were established using five key wavelengths, selected by combining a genetic algorithm and successive projections algorithm, and this showed satisfactory performance in drip loss prediction. The MLR model with a determination coefficient of prediction (R(2)P) of 0.9258, and lower root mean square error estimated by a prediction (RMSEP) of 1.12%, was applied to transfer each pixel of the image and generate the distribution maps of exudation changes. The results confirmed that it is feasible to identify the feature wavelengths using variable selection methods and chemometric analysis for developing on-line multispectral imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Genetic Algorithms and Local Search
NASA Technical Reports Server (NTRS)
Whitley, Darrell
1996-01-01
The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.
Automatic Layout Design for Power Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Puqi; Wang, Fei; Ngo, Khai
The layout of power modules is one of the key points in power module design, especially for high power densities, where couplings are increased. In this paper, along with the design example, an automatic design processes by using a genetic algorithm are presented. Some practical considerations and implementations are introduced in the optimization of module layout design.
NASA Astrophysics Data System (ADS)
Jude Hemanth, Duraisamy; Umamaheswari, Subramaniyan; Popescu, Daniela Elena; Naaji, Antoanela
2016-01-01
Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT) and Finite Ridgelet Transform (FRIT) are used in combination with GA and PSO to improve the efficiency of the image steganography system.
Vertical decomposition with Genetic Algorithm for Multiple Sequence Alignment
2011-01-01
Background Many Bioinformatics studies begin with a multiple sequence alignment as the foundation for their research. This is because multiple sequence alignment can be a useful technique for studying molecular evolution and analyzing sequence structure relationships. Results In this paper, we have proposed a Vertical Decomposition with Genetic Algorithm (VDGA) for Multiple Sequence Alignment (MSA). In VDGA, we divide the sequences vertically into two or more subsequences, and then solve them individually using a guide tree approach. Finally, we combine all the subsequences to generate a new multiple sequence alignment. This technique is applied on the solutions of the initial generation and of each child generation within VDGA. We have used two mechanisms to generate an initial population in this research: the first mechanism is to generate guide trees with randomly selected sequences and the second is shuffling the sequences inside such trees. Two different genetic operators have been implemented with VDGA. To test the performance of our algorithm, we have compared it with existing well-known methods, namely PRRP, CLUSTALX, DIALIGN, HMMT, SB_PIMA, ML_PIMA, MULTALIGN, and PILEUP8, and also other methods, based on Genetic Algorithms (GA), such as SAGA, MSA-GA and RBT-GA, by solving a number of benchmark datasets from BAliBase 2.0. Conclusions The experimental results showed that the VDGA with three vertical divisions was the most successful variant for most of the test cases in comparison to other divisions considered with VDGA. The experimental results also confirmed that VDGA outperformed the other methods considered in this research. PMID:21867510
Depth from Edge and Intensity Based Stereo.
1982-09-01
a Mars Viking vehicle, and a random dotted coffee jar. Assessment of the algorithm is a bit difficult: it uses a fairly simple control structure with...correspondences. This use of an evaluation function estimator allowed the introduction of the extensive pruning of a branch and bound algorithm. Even with it...Figure 3-6). This is the edge reversal constraint, and was integral to the pruning . As it happens, this same constraint is the key to the use of the
CrowdPhase: crowdsourcing the phase problem
Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.
2014-01-01
The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing. PMID:24914965
Ensemble-type numerical uncertainty information from single model integrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauser, Florian, E-mail: florian.rauser@mpimet.mpg.de; Marotzke, Jochem; Korn, Peter
2015-07-01
We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of themore » influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.« less
NASA Astrophysics Data System (ADS)
Kim, W.; Hahm, I.; Ahn, S. J.; Lim, D. H.
2005-12-01
This paper introduces a powerful method for determining hypocentral parameters for local earthquakes in 1-D using a genetic algorithm (GA) and two-point ray tracing. Using existing algorithms to determine hypocentral parameters is difficult, because these parameters can vary based on initial velocity models. We developed a new method to solve this problem by applying a GA to an existing algorithm, HYPO-71 (Lee and Larh, 1975). The original HYPO-71 algorithm was modified by applying two-point ray tracing and a weighting factor with respect to the takeoff angle at the source to reduce errors from the ray path and hypocenter depth. Artificial data, without error, were generated by computer using two-point ray tracing in a true model, in which velocity structure and hypocentral parameters were known. The accuracy of the calculated results was easily determined by comparing calculated and actual values. We examined the accuracy of this method for several cases by changing the true and modeled layer numbers and thicknesses. The computational results show that this method determines nearly exact hypocentral parameters without depending on initial velocity models. Furthermore, accurate and nearly unique hypocentral parameters were obtained, although the number of modeled layers and thicknesses differed from those in the true model. Therefore, this method can be a useful tool for determining hypocentral parameters in regions where reliable local velocity values are unknown. This method also provides the basic a priori information for 3-D studies. KEY -WORDS: hypocentral parameters, genetic algorithm (GA), two-point ray tracing
Salehi, Mojtaba; Bahreininejad, Ardeshir
2011-08-01
Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.
Salehi, Mojtaba
2010-01-01
Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously. PMID:21845020
González-Recio, O; Jiménez-Montero, J A; Alenda, R
2013-01-01
In the next few years, with the advent of high-density single nucleotide polymorphism (SNP) arrays and genome sequencing, genomic evaluation methods will need to deal with a large number of genetic variants and an increasing sample size. The boosting algorithm is a machine-learning technique that may alleviate the drawbacks of dealing with such large data sets. This algorithm combines different predictors in a sequential manner with some shrinkage on them; each predictor is applied consecutively to the residuals from the committee formed by the previous ones to form a final prediction based on a subset of covariates. Here, a detailed description is provided and examples using a toy data set are included. A modification of the algorithm called "random boosting" was proposed to increase predictive ability and decrease computation time of genome-assisted evaluation in large data sets. Random boosting uses a random selection of markers to add a subsequent weak learner to the predictive model. These modifications were applied to a real data set composed of 1,797 bulls genotyped for 39,714 SNP. Deregressed proofs of 4 yield traits and 1 type trait from January 2009 routine evaluations were used as dependent variables. A 2-fold cross-validation scenario was implemented. Sires born before 2005 were used as a training sample (1,576 and 1,562 for production and type traits, respectively), whereas younger sires were used as a testing sample to evaluate predictive ability of the algorithm on yet-to-be-observed phenotypes. Comparison with the original algorithm was provided. The predictive ability of the algorithm was measured as Pearson correlations between observed and predicted responses. Further, estimated bias was computed as the average difference between observed and predicted phenotypes. The results showed that the modification of the original boosting algorithm could be run in 1% of the time used with the original algorithm and with negligible differences in accuracy and bias. This modification may be used to speed the calculus of genome-assisted evaluation in large data sets such us those obtained from consortiums. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Genome analysis of Legionella pneumophila strains using a mixed-genome microarray.
Euser, Sjoerd M; Nagelkerke, Nico J; Schuren, Frank; Jansen, Ruud; Den Boer, Jeroen W
2012-01-01
Legionella, the causative agent for Legionnaires' disease, is ubiquitous in both natural and man-made aquatic environments. The distribution of Legionella genotypes within clinical strains is significantly different from that found in environmental strains. Developing novel genotypic methods that offer the ability to distinguish clinical from environmental strains could help to focus on more relevant (virulent) Legionella species in control efforts. Mixed-genome microarray data can be used to perform a comparative-genome analysis of strain collections, and advanced statistical approaches, such as the Random Forest algorithm are available to process these data. Microarray analysis was performed on a collection of 222 Legionella pneumophila strains, which included patient-derived strains from notified cases in The Netherlands in the period 2002-2006 and the environmental strains that were collected during the source investigation for those patients within the Dutch National Legionella Outbreak Detection Programme. The Random Forest algorithm combined with a logistic regression model was used to select predictive markers and to construct a predictive model that could discriminate between strains from different origin: clinical or environmental. Four genetic markers were selected that correctly predicted 96% of the clinical strains and 66% of the environmental strains collected within the Dutch National Legionella Outbreak Detection Programme. The Random Forest algorithm is well suited for the development of prediction models that use mixed-genome microarray data to discriminate between Legionella strains from different origin. The identification of these predictive genetic markers could offer the possibility to identify virulence factors within the Legionella genome, which in the future may be implemented in the daily practice of controlling Legionella in the public health environment.
Genetic Algorithm for Opto-thermal Skin Hydration Depth Profiling Measurements
NASA Astrophysics Data System (ADS)
Cui, Y.; Xiao, Perry; Imhof, R. E.
2013-09-01
Stratum corneum is the outermost skin layer, and the water content in stratum corneum plays a key role in skin cosmetic properties as well as skin barrier functions. However, to measure the water content, especially the water concentration depth profile, within stratum corneum is very difficult. Opto-thermal emission radiometry, or OTTER, is a promising technique that can be used for such measurements. In this paper, a study on stratum corneum hydration depth profiling by using a genetic algorithm (GA) is presented. The pros and cons of a GA compared against other inverse algorithms such as neural networks, maximum entropy, conjugate gradient, and singular value decomposition will be discussed first. Then, it will be shown how to use existing knowledge to optimize a GA for analyzing the opto-thermal signals. Finally, these latest GA results on hydration depth profiling of stratum corneum under different conditions, as well as on the penetration profiles of externally applied solvents, will be shown.
An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms
NASA Astrophysics Data System (ADS)
Wang, Rui; Mansor, Maszatul M.; Purshouse, Robin C.; Fleming, Peter J.
2015-10-01
Many-objective optimisation problems remain challenging for many state-of-the-art multi-objective evolutionary algorithms. Preference-inspired co-evolutionary algorithms (PICEAs) which co-evolve the usual population of candidate solutions with a family of decision-maker preferences during the search have been demonstrated to be effective on such problems. However, it is unknown whether PICEAs are robust with respect to the parameter settings. This study aims to address this question. First, a global sensitivity analysis method - the Sobol' variance decomposition method - is employed to determine the relative importance of the parameters controlling the performance of PICEAs. Experimental results show that the performance of PICEAs is controlled for the most part by the number of function evaluations. Next, we investigate the effect of key parameters identified from the Sobol' test and the genetic operators employed in PICEAs. Experimental results show improved performance of the PICEAs as more preferences are co-evolved. Additionally, some suggestions for genetic operator settings are provided for non-expert users.
Effect of Genetic Variants, Especially CYP2C9 and VKORC1, on the Pharmacology of Warfarin
Fung, Erik; Patsopoulos, Nikolaos A.; Belknap, Steven M.; O’Rourke, Daniel J.; Robb, John F.; Anderson, Jeffrey L.; Shworak, Nicholas W.; Moore, Jason H.
2014-01-01
The genes encoding the cytochrome P450 2C9 enzyme (CYP2C9) and vitamin K-epoxide reductase complex unit 1 (VKORC1) are major determinants of anticoagulant response to warfarin. Together with patient demographics and clinical information, they account for approximately one-half of the warfarin dose variance in individuals of European descent. Recent prospective and randomized controlled trial data support pharmacogenetic guidance with their use in warfarin dose initiation and titration. Benefits from pharmacogenetics-guided warfarin dosing have been reported to extend beyond the period of initial dosing, with supportive data indicating benefits to at least 3 months. The genetic effects of VKORC1 and CYP2C9 in African and Asian populations are concordant with those in individuals of European ancestry; however, frequency distribution of allelic variants can vary considerably between major populations. Future randomized controlled trials in multiethnic settings using population-specific dosing algorithms will allow us to further ascertain the generalizability and cost-effectiveness of pharmacogenetics-guided warfarin therapy. Additional genome-wide association studies may help us to improve and refine dosing algorithms and potentially identify novel biological pathways. PMID:23041981
Optimal Quantum Spatial Search on Random Temporal Networks
NASA Astrophysics Data System (ADS)
Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser
2017-12-01
To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.
Multiple image encryption scheme based on pixel exchange operation and vector decomposition
NASA Astrophysics Data System (ADS)
Xiong, Y.; Quan, C.; Tay, C. J.
2018-02-01
We propose a new multiple image encryption scheme based on a pixel exchange operation and a basic vector decomposition in Fourier domain. In this algorithm, original images are imported via a pixel exchange operator, from which scrambled images and pixel position matrices are obtained. Scrambled images encrypted into phase information are imported using the proposed algorithm and phase keys are obtained from the difference between scrambled images and synthesized vectors in a charge-coupled device (CCD) plane. The final synthesized vector is used as an input in a random phase encoding (DRPE) scheme. In the proposed encryption scheme, pixel position matrices and phase keys serve as additional private keys to enhance the security of the cryptosystem which is based on a 4-f system. Numerical simulations are presented to demonstrate the feasibility and robustness of the proposed encryption scheme.
Price, Rebecca M.; Andrews, Tessa C.; McElhinny, Teresa L.; Mead, Louise S.; Abraham, Joel K.; Thanukos, Anna; Perez, Kathryn E.
2014-01-01
Understanding genetic drift is crucial for a comprehensive understanding of biology, yet it is difficult to learn because it combines the conceptual challenges of both evolution and randomness. To help assess strategies for teaching genetic drift, we have developed and evaluated the Genetic Drift Inventory (GeDI), a concept inventory that measures upper-division students’ understanding of this concept. We used an iterative approach that included extensive interviews and field tests involving 1723 students across five different undergraduate campuses. The GeDI consists of 22 agree–disagree statements that assess four key concepts and six misconceptions. Student scores ranged from 4/22 to 22/22. Statements ranged in mean difficulty from 0.29 to 0.80 and in discrimination from 0.09 to 0.46. The internal consistency, as measured with Cronbach's alpha, ranged from 0.58 to 0.88 across five iterations. Test–retest analysis resulted in a coefficient of stability of 0.82. The true–false format means that the GeDI can test how well students grasp key concepts central to understanding genetic drift, while simultaneously testing for the presence of misconceptions that indicate an incomplete understanding of genetic drift. The insights gained from this testing will, over time, allow us to improve instruction about this key component of evolution. PMID:24591505
NASA Astrophysics Data System (ADS)
Dao, Son Duy; Abhary, Kazem; Marian, Romeo
2017-06-01
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial, NP-hard problem, for which no polynomial time algorithm is known to produce an optimal result on a random graph. In this paper, the further development of Genetic Algorithm (GA) for this integrated optimization is presented. Because of the dynamic nature of the problem, the size of its solution is variable. To deal with this variability and find an optimal solution to the problem, GA with new features in chromosome encoding, crossover, mutation, selection as well as algorithm structure is developed herein. With the proposed structure, the proposed GA is able to "learn" from its experience. Robustness of the proposed GA is demonstrated by a complex numerical example in which performance of the proposed GA is compared with those of three commercial optimization solvers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitley, L. Darrell; Howe, Adele E.; Watson, Jean-Paul
2004-09-01
Tabu search is one of the most effective heuristics for locating high-quality solutions to a diverse array of NP-hard combinatorial optimization problems. Despite the widespread success of tabu search, researchers have a poor understanding of many key theoretical aspects of this algorithm, including models of the high-level run-time dynamics and identification of those search space features that influence problem difficulty. We consider these questions in the context of the job-shop scheduling problem (JSP), a domain where tabu search algorithms have been shown to be remarkably effective. Previously, we demonstrated that the mean distance between random local optima and the nearestmore » optimal solution is highly correlated with problem difficulty for a well-known tabu search algorithm for the JSP introduced by Taillard. In this paper, we discuss various shortcomings of this measure and develop a new model of problem difficulty that corrects these deficiencies. We show that Taillard's algorithm can be modeled with high fidelity as a simple variant of a straightforward random walk. The random walk model accounts for nearly all of the variability in the cost required to locate both optimal and sub-optimal solutions to random JSPs, and provides an explanation for differences in the difficulty of random versus structured JSPs. Finally, we discuss and empirically substantiate two novel predictions regarding tabu search algorithm behavior. First, the method for constructing the initial solution is highly unlikely to impact the performance of tabu search. Second, tabu tenure should be selected to be as small as possible while simultaneously avoiding search stagnation; values larger than necessary lead to significant degradations in performance.« less
Nidheesh, N; Abdul Nazeer, K A; Ameer, P M
2017-12-01
Clustering algorithms with steps involving randomness usually give different results on different executions for the same dataset. This non-deterministic nature of algorithms such as the K-Means clustering algorithm limits their applicability in areas such as cancer subtype prediction using gene expression data. It is hard to sensibly compare the results of such algorithms with those of other algorithms. The non-deterministic nature of K-Means is due to its random selection of data points as initial centroids. We propose an improved, density based version of K-Means, which involves a novel and systematic method for selecting initial centroids. The key idea of the algorithm is to select data points which belong to dense regions and which are adequately separated in feature space as the initial centroids. We compared the proposed algorithm to a set of eleven widely used single clustering algorithms and a prominent ensemble clustering algorithm which is being used for cancer data classification, based on the performances on a set of datasets comprising ten cancer gene expression datasets. The proposed algorithm has shown better overall performance than the others. There is a pressing need in the Biomedical domain for simple, easy-to-use and more accurate Machine Learning tools for cancer subtype prediction. The proposed algorithm is simple, easy-to-use and gives stable results. Moreover, it provides comparatively better predictions of cancer subtypes from gene expression data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Boland, Mary Regina; Tatonetti, Nicholas P
2016-01-01
Prenatal and perinatal exposures vary seasonally (e.g., sunlight, allergens) and many diseases are linked with variance in exposure. Epidemiologists often measure these changes using birth month as a proxy for seasonal variance. Likewise, Genome-Wide Association Studies have associated or implicated these same diseases with many genes. Both disparate data types (epidemiological and genetic) can provide key insights into the underlying disease biology. We developed an algorithm that links 1) epidemiological data from birth month studies with 2) genetic data from published gene-disease association studies. Our framework uses existing data repositories - PubMed, DisGeNET and Gene Ontology - to produce a bipartite network that connects enriched seasonally varying biofactorss with birth month dependent diseases (BMDDs) through their overlapping developmental gene sets. As a proof-of-concept, we investigate 7 known BMDDs and highlight three important biological networks revealed by our algorithm and explore some interesting genetic mechanisms potentially responsible for the seasonal contribution to BMDDs.
Haque, Mohammad Nazmul; Noman, Nasimul; Berretta, Regina; Moscato, Pablo
2016-01-01
Classification of datasets with imbalanced sample distributions has always been a challenge. In general, a popular approach for enhancing classification performance is the construction of an ensemble of classifiers. However, the performance of an ensemble is dependent on the choice of constituent base classifiers. Therefore, we propose a genetic algorithm-based search method for finding the optimum combination from a pool of base classifiers to form a heterogeneous ensemble. The algorithm, called GA-EoC, utilises 10 fold-cross validation on training data for evaluating the quality of each candidate ensembles. In order to combine the base classifiers decision into ensemble's output, we used the simple and widely used majority voting approach. The proposed algorithm, along with the random sub-sampling approach to balance the class distribution, has been used for classifying class-imbalanced datasets. Additionally, if a feature set was not available, we used the (α, β) - k Feature Set method to select a better subset of features for classification. We have tested GA-EoC with three benchmarking datasets from the UCI-Machine Learning repository, one Alzheimer's disease dataset and a subset of the PubFig database of Columbia University. In general, the performance of the proposed method on the chosen datasets is robust and better than that of the constituent base classifiers and many other well-known ensembles. Based on our empirical study we claim that a genetic algorithm is a superior and reliable approach to heterogeneous ensemble construction and we expect that the proposed GA-EoC would perform consistently in other cases.
Haque, Mohammad Nazmul; Noman, Nasimul; Berretta, Regina; Moscato, Pablo
2016-01-01
Classification of datasets with imbalanced sample distributions has always been a challenge. In general, a popular approach for enhancing classification performance is the construction of an ensemble of classifiers. However, the performance of an ensemble is dependent on the choice of constituent base classifiers. Therefore, we propose a genetic algorithm-based search method for finding the optimum combination from a pool of base classifiers to form a heterogeneous ensemble. The algorithm, called GA-EoC, utilises 10 fold-cross validation on training data for evaluating the quality of each candidate ensembles. In order to combine the base classifiers decision into ensemble’s output, we used the simple and widely used majority voting approach. The proposed algorithm, along with the random sub-sampling approach to balance the class distribution, has been used for classifying class-imbalanced datasets. Additionally, if a feature set was not available, we used the (α, β) − k Feature Set method to select a better subset of features for classification. We have tested GA-EoC with three benchmarking datasets from the UCI-Machine Learning repository, one Alzheimer’s disease dataset and a subset of the PubFig database of Columbia University. In general, the performance of the proposed method on the chosen datasets is robust and better than that of the constituent base classifiers and many other well-known ensembles. Based on our empirical study we claim that a genetic algorithm is a superior and reliable approach to heterogeneous ensemble construction and we expect that the proposed GA-EoC would perform consistently in other cases. PMID:26764911
Registration algorithm of point clouds based on multiscale normal features
NASA Astrophysics Data System (ADS)
Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua
2015-01-01
The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.
Helaers, Raphaël; Milinkovitch, Michel C
2010-07-15
The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high customization for the phylogeneticist, as well as to an ergonomic interface and functionalities assisting the non-specialist for sound inference of large phylogenetic trees using nucleotide sequences. MetaPIGA v2.0 and its extensive user-manual are freely available to academics at http://www.metapiga.org.
2010-01-01
Background The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Results Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. Conclusions The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high customization for the phylogeneticist, as well as to an ergonomic interface and functionalities assisting the non-specialist for sound inference of large phylogenetic trees using nucleotide sequences. MetaPIGA v2.0 and its extensive user-manual are freely available to academics at http://www.metapiga.org. PMID:20633263
Grant, Richard W; Meigs, James B; Florez, Jose C; Park, Elyse R; Green, Robert C; Waxler, Jessica L; Delahanty, Linda M; O'Brien, Kelsey E
2011-10-01
The efficacy of diabetes genetic risk testing to motivate behavior change for diabetes prevention is currently unknown. This paper presents key issues in the design and implementation of one of the first randomized trials (The Genetic Counseling/Lifestyle Change (GC/LC) Study for Diabetes Prevention) to test whether knowledge of diabetes genetic risk can motivate patients to adopt healthier behaviors. Because individuals may react differently to receiving 'higher' vs 'lower' genetic risk results, we designed a 3-arm parallel group study to separately test the hypotheses that: (1) patients receiving 'higher' diabetes genetic risk results will increase healthy behaviors compared to untested controls, and (2) patients receiving 'lower' diabetes genetic risk results will decrease healthy behaviors compared to untested controls. In this paper we describe several challenges to implementing this study, including: (1) the application of a novel diabetes risk score derived from genetic epidemiology studies to a clinical population, (2) the use of the principle of Mendelian randomization to efficiently exclude 'average' diabetes genetic risk patients from the intervention, and (3) the development of a diabetes genetic risk counseling intervention that maintained the ethical need to motivate behavior change in both 'higher' and 'lower' diabetes genetic risk result recipients. Diabetes genetic risk scores were developed by aggregating the results of 36 diabetes-associated single nucleotide polymorphisms. Relative risk for type 2 diabetes was calculated using Framingham Offspring Study outcomes, grouped by quartiles into 'higher', 'average' (middle two quartiles) and 'lower' genetic risk. From these relative risks, revised absolute risks were estimated using the overall absolute risk for the study group. For study efficiency, we excluded all patients receiving 'average' diabetes risk results from the subsequent intervention. This post-randomization allocation strategy was justified because genotype represents a random allocation of parental alleles ('Mendelian randomization'). Finally, because it would be unethical to discourage participants to participate in diabetes prevention behaviors, we designed our two diabetes genetic risk counseling interventions (for 'higher' and 'lower' result recipients) so that both groups would be motivated despite receiving opposing results. For this initial assessment of the clinical implementation of genetic risk testing we assessed intermediate outcomes of attendance at a 12-week diabetes prevention course and changes in self-reported motivation. If effective, longer term studies with larger sample sizes will be needed to assess whether knowledge of diabetes genetic risk can help patients prevent diabetes. We designed a randomized clinical trial designed to explore the motivational impact of disclosing both higher than average and lower than average genetic risk for type 2 diabetes. This design allowed exploration of both increased risk and false reassurance, and has implications for future studies in translational genomics.
Problem solving with genetic algorithms and Splicer
NASA Technical Reports Server (NTRS)
Bayer, Steven E.; Wang, Lui
1991-01-01
Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.
Optimizing the availability of a buffered industrial process
Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.
2004-08-24
A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.
Systolic array processing of the sequential decoding algorithm
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Yao, K.
1989-01-01
A systolic array processing technique is applied to implementing the stack algorithm form of the sequential decoding algorithm. It is shown that sorting, a key function in the stack algorithm, can be efficiently realized by a special type of systolic arrays known as systolic priority queues. Compared to the stack-bucket algorithm, this approach is shown to have the advantages that the decoding always moves along the optimal path, that it has a fast and constant decoding speed and that its simple and regular hardware architecture is suitable for VLSI implementation. Three types of systolic priority queues are discussed: random access scheme, shift register scheme and ripple register scheme. The property of the entries stored in the systolic priority queue is also investigated. The results are applicable to many other basic sorting type problems.
Houwink, Elisa J.F.; Muijtjens, Arno M.M.; van Teeffelen, Sarah R.; Henneman, Lidewij; Rethans, Jan Joost; van der Jagt, Liesbeth E.J.; van Luijk, Scheltus J.; Dinant, Geert Jan; van der Vleuten, Cees; Cornel, Martina C.
2014-01-01
Purpose: General practitioners are increasingly called upon to deliver genetic services and could play a key role in translating potentially life-saving advancements in oncogenetic technologies to patient care. If general practitioners are to make an effective contribution in this area, their genetics competencies need to be upgraded. The aim of this study was to investigate whether oncogenetics training for general practitioners improves their genetic consultation skills. Methods: In this pragmatic, blinded, randomized controlled trial, the intervention consisted of a 4-h training (December 2011 and April 2012), covering oncogenetic consultation skills (family history, familial risk assessment, and efficient referral), attitude (medical ethical issues), and clinical knowledge required in primary-care consultations. Outcomes were measured using observation checklists by unannounced standardized patients and self-reported questionnaires. Results: Of 88 randomized general practitioners who initially agreed to participate, 56 completed all measurements. Key consultation skills significantly and substantially improved; regression coefficients after intervention were equivalent to 0.34 and 0.28 at 3-month follow-up, indicating a moderate effect size. Satisfaction and perceived applicability of newly learned skills were highly scored. Conclusion: The general practitioner–specific training proved to be a feasible, satisfactory, and clinically applicable method to improve oncogenetics consultation skills and could be used as an educational framework to inform future training activities with the ultimate aim of improving medical care. PMID:23722870
Prediction of Baseflow Index of Catchments using Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Yadav, B.; Hatfield, K.
2017-12-01
We present the results of eight machine learning techniques for predicting the baseflow index (BFI) of ungauged basins using a surrogate of catchment scale climate and physiographic data. The tested algorithms include ordinary least squares, ridge regression, least absolute shrinkage and selection operator (lasso), elasticnet, support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Our work seeks to identify the dominant controls of BFI that can be readily obtained from ancillary geospatial databases and remote sensing measurements, such that the developed techniques can be extended to ungauged catchments. More than 800 gauged catchments spanning the continental United States were selected to develop the general methodology. The BFI calculation was based on the baseflow separated from daily streamflow hydrograph using HYSEP filter. The surrogate catchment attributes were compiled from multiple sources including digital elevation model, soil, landuse, climate data, other publicly available ancillary and geospatial data. 80% catchments were used to train the ML algorithms, and the remaining 20% of the catchments were used as an independent test set to measure the generalization performance of fitted models. A k-fold cross-validation using exhaustive grid search was used to fit the hyperparameters of each model. Initial model development was based on 19 independent variables, but after variable selection and feature ranking, we generated revised sparse models of BFI prediction that are based on only six catchment attributes. These key predictive variables selected after the careful evaluation of bias-variance tradeoff include average catchment elevation, slope, fraction of sand, permeability, temperature, and precipitation. The most promising algorithms exceeding an accuracy score (r-square) of 0.7 on test data include support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Considering both the accuracy and the computational complexity of these algorithms, we identify the extremely randomized trees as the best performing algorithm for BFI prediction in ungauged basins.
Study Of Genetic Diversity Between Grasspea Landraces Using Morphological And Molecular Marker
NASA Astrophysics Data System (ADS)
Sedehi, Abbasali Vahabi; Lotfi, Asefeh; Solooki, Mahmood
2008-01-01
Grass pea is a beneficial crop to Iran since it has some major advantageous such as high grain and forage quality, high drought tolerance and medium level of salinity tolerance and a good native germplasm variation which accessible for breeding programs. This study was carried out to evaluate morphological traits of the grass pea landraces using a randomized complete block design with 3 replications at Research Farm of Isfahan University of Technology. To evaluate genetic diversity of 14 grass pea landraces from various locations in Iran were investigated using 32 RAPD & ISJ primers at Biocenter of University of Zabol. Analysis of variance indicated a highly significant differences among 14 grass pea landrace for the morphological traits. Average of polymorphism percentage of RAPD primer was 73.9%. Among used primer, 12 random primers showed polymorphism and a total of 56 different bands were observed in the genotypes. Jafar-abad and Sar-chahan genotypes with similarity coefficient of 66% and Khoram-abad 2 and Khoram-abad 7 genotypes with similarity coefficient of 3% were the most related and the most distinct genotypes, respectively. Fourteen primers out of 17 semi random primers produced 70 polymorphic bands which included 56% of the total 126 produced bands. Genetic relatedness among population was investigated using Jacard coefficient and unweighted pair group mean analysis (UPGMA) algorithm. The result of this research verified possibility of use of RAPD & ISJ markers for estimation of genetic diversity, management of genetic resources and determination of repetitive accessions in grass pea.
Gerald E. Rehfeldt; Barry C. Jaquish; Javier Lopez-Upton; Cuauhtemoc Saenz-Romero; J. Bradley St Clair; Laura P. Leites; Dennis G. Joyce
2014-01-01
The Random Forests classification algorithm was used to predict the occurrence of the realized climate niche for two sub-specific varieties of Pinus ponderosa and three varieties of Pseudotsuga menziesii from presence-absence data in forest inventory ground plots. Analyses were based on ca. 271,000 observations for P. ponderosa and ca. 426,000 observations for P....
Genetic algorithms using SISAL parallel programming language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tejada, S.
1994-05-06
Genetic algorithms are a mathematical optimization technique developed by John Holland at the University of Michigan [1]. The SISAL programming language possesses many of the characteristics desired to implement genetic algorithms. SISAL is a deterministic, functional programming language which is inherently parallel. Because SISAL is functional and based on mathematical concepts, genetic algorithms can be efficiently translated into the language. Several of the steps involved in genetic algorithms, such as mutation, crossover, and fitness evaluation, can be parallelized using SISAL. In this paper I will l discuss the implementation and performance of parallel genetic algorithms in SISAL.
Focusing light through random photonic layers by four-element division algorithm
NASA Astrophysics Data System (ADS)
Fang, Longjie; Zhang, Xicheng; Zuo, Haoyi; Pang, Lin
2018-02-01
The propagation of waves in turbid media is a fundamental problem of optics with vast applications. Optical phase optimization approaches for focusing light through turbid media using phase control algorithm have been widely studied in recent years due to the rapid development of spatial light modulator. The existing approaches include element-based algorithms - stepwise sequential algorithm, continuous sequential algorithm and whole element optimization approaches - partitioning algorithm, transmission matrix approach and genetic algorithm. The advantage of element-based approaches is that the phase contribution of each element is very clear; however, because the intensity contribution of each element to the focal point is small especially for the case of large number of elements, the determination of the optimal phase for a single element would be difficult. In other words, the signal to noise ratio of the measurement is weak, leading to possibly local maximal during the optimization. As for whole element optimization approaches, all elements are employed for the optimization. Of course, signal to noise ratio during the optimization is improved. However, because more random processings are introduced into the processing, optimizations take more time to converge than the single element based approaches. Based on the advantages of both single element based approaches and whole element optimization approaches, we propose FEDA approach. Comparisons with the existing approaches show that FEDA only takes one third of measurement time to reach the optimization, which means that FEDA is promising in practical application such as for deep tissue imaging.
Kim, Heejun; Bian, Jiantao; Mostafa, Javed; Jonnalagadda, Siddhartha; Del Fiol, Guilherme
2016-01-01
Motivation: Clinicians need up-to-date evidence from high quality clinical trials to support clinical decisions. However, applying evidence from the primary literature requires significant effort. Objective: To examine the feasibility of automatically extracting key clinical trial information from ClinicalTrials.gov. Methods: We assessed the coverage of ClinicalTrials.gov for high quality clinical studies that are indexed in PubMed. Using 140 random ClinicalTrials.gov records, we developed and tested rules for the automatic extraction of key information. Results: The rate of high quality clinical trial registration in ClinicalTrials.gov increased from 0.2% in 2005 to 17% in 2015. Trials reporting results increased from 3% in 2005 to 19% in 2015. The accuracy of the automatic extraction algorithm for 10 trial attributes was 90% on average. Future research is needed to improve the algorithm accuracy and to design information displays to optimally present trial information to clinicians.
NASA Astrophysics Data System (ADS)
Lin, Chao; Shen, Xueju; Hua, Binbin; Wang, Zhisong
2015-10-01
We demonstrate the feasibility of three dimensional (3D) polarization multiplexing by optimizing a single vectorial beam using a multiple-signal window multiple-plane (MSW-MP) phase retrieval algorithm. Original messages represented with multiple quick response (QR) codes are first partitioned into a series of subblocks. Then, each subblock is marked with a specific polarization state and randomly distributed in 3D space with both longitudinal and transversal adjustable freedoms. A generalized 3D polarization mapping protocol is established to generate a 3D polarization key. Finally, multiple-QR code is encrypted into one phase only mask and one polarization only mask based on the modified Gerchberg-Saxton (GS) algorithm. We take the polarization mask as the cyphertext and the phase only mask as additional dimension of key. Only when both the phase key and 3D polarization key are correct, original messages can be recovered. We verify our proposal with both simulation and experiment evidences.
An AES chip with DPA resistance using hardware-based random order execution
NASA Astrophysics Data System (ADS)
Bo, Yu; Xiangyu, Li; Cong, Chen; Yihe, Sun; Liji, Wu; Xiangmin, Zhang
2012-06-01
This paper presents an AES (advanced encryption standard) chip that combats differential power analysis (DPA) side-channel attack through hardware-based random order execution. Both decryption and encryption procedures of an AES are implemented on the chip. A fine-grained dataflow architecture is proposed, which dynamically exploits intrinsic byte-level independence in the algorithm. A novel circuit called an HMF (Hold-Match-Fetch) unit is proposed for random control, which randomly sets execution orders for concurrent operations. The AES chip was manufactured in SMIC 0.18 μm technology. The average energy for encrypting one group of plain texts (128 bits secrete keys) is 19 nJ. The core area is 0.43 mm2. A sophisticated experimental setup was built to test the DPA resistance. Measurement-based experimental results show that one byte of a secret key cannot be disclosed from our chip under random mode after 64000 power traces were used in the DPA attack. Compared with the corresponding fixed order execution, the hardware based random order execution is improved by at least 21 times the DPA resistance.
Manna, Raffaele; Cauda, Roberto; Feriozzi, Sandro; Gambaro, Giovanni; Gasbarrini, Antonio; Lacombe, Didier; Livneh, Avi; Martini, Alberto; Ozdogan, Huri; Pisani, Antonio; Riccio, Eleonora; Verrecchia, Elena; Dagna, Lorenzo
2017-10-01
Fever of unknown origin (FUO) is a rather rare clinical syndrome representing a major diagnostic challenge. The occurrence of more than three febrile attacks with fever-free intervals of variable duration during 6 months of observation has recently been proposed as a subcategory of FUO, Recurrent FUO (RFUO). A substantial number of patients with RFUO have auto-inflammatory genetic fevers, but many patients remain undiagnosed. We hypothesize that this undiagnosed subgroup may be comprised of, at least in part, a number of rare genetic febrile diseases such as Fabry disease. We aimed to identify key features or potential diagnostic clues for Fabry disease as a model of rare genetic febrile diseases causing RFUO, and to develop diagnostic guidelines for RFUO, using Fabry disease as an example of inserting other rare diseases in the existing FUO algorithms. An international panel of specialists in recurrent fevers and rare diseases, including internists, infectious disease specialists, rheumatologists, gastroenterologists, nephrologists, and medical geneticists convened to review the existing diagnostic algorithms, and to suggest recommendations for arriving at accurate diagnoses on the basis of available literature and clinical experience. By combining specific features of rare diseases with other diagnostic considerations, guidelines have been designed to raise awareness and identify rare diseases among other causes of FUO. The proposed guidelines may be useful for the inclusion of rare diseases in the diagnostic algorithms for FUO. A wide spectrum of patients will be needed to validate the algorithm in different clinical settings.
Bilayer segmentation of webcam videos using tree-based classifiers.
Yin, Pei; Criminisi, Antonio; Winn, John; Essa, Irfan
2011-01-01
This paper presents an automatic segmentation algorithm for video frames captured by a (monocular) webcam that closely approximates depth segmentation from a stereo camera. The frames are segmented into foreground and background layers that comprise a subject (participant) and other objects and individuals. The algorithm produces correct segmentations even in the presence of large background motion with a nearly stationary foreground. This research makes three key contributions: First, we introduce a novel motion representation, referred to as "motons," inspired by research in object recognition. Second, we propose estimating the segmentation likelihood from the spatial context of motion. The estimation is efficiently learned by random forests. Third, we introduce a general taxonomy of tree-based classifiers that facilitates both theoretical and experimental comparisons of several known classification algorithms and generates new ones. In our bilayer segmentation algorithm, diverse visual cues such as motion, motion context, color, contrast, and spatial priors are fused by means of a conditional random field (CRF) model. Segmentation is then achieved by binary min-cut. Experiments on many sequences of our videochat application demonstrate that our algorithm, which requires no initialization, is effective in a variety of scenes, and the segmentation results are comparable to those obtained by stereo systems.
Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer.
Covarrubias-Pazaran, Giovanny
2016-01-01
Most traits of agronomic importance are quantitative in nature, and genetic markers have been used for decades to dissect such traits. Recently, genomic selection has earned attention as next generation sequencing technologies became feasible for major and minor crops. Mixed models have become a key tool for fitting genomic selection models, but most current genomic selection software can only include a single variance component other than the error, making hybrid prediction using additive, dominance and epistatic effects unfeasible for species displaying heterotic effects. Moreover, Likelihood-based software for fitting mixed models with multiple random effects that allows the user to specify the variance-covariance structure of random effects has not been fully exploited. A new open-source R package called sommer is presented to facilitate the use of mixed models for genomic selection and hybrid prediction purposes using more than one variance component and allowing specification of covariance structures. The use of sommer for genomic prediction is demonstrated through several examples using maize and wheat genotypic and phenotypic data. At its core, the program contains three algorithms for estimating variance components: Average information (AI), Expectation-Maximization (EM) and Efficient Mixed Model Association (EMMA). Kernels for calculating the additive, dominance and epistatic relationship matrices are included, along with other useful functions for genomic analysis. Results from sommer were comparable to other software, but the analysis was faster than Bayesian counterparts in the magnitude of hours to days. In addition, ability to deal with missing data, combined with greater flexibility and speed than other REML-based software was achieved by putting together some of the most efficient algorithms to fit models in a gentle environment such as R.
Extracting random numbers from quantum tunnelling through a single diode.
Bernardo-Gavito, Ramón; Bagci, Ibrahim Ethem; Roberts, Jonathan; Sexton, James; Astbury, Benjamin; Shokeir, Hamzah; McGrath, Thomas; Noori, Yasir J; Woodhead, Christopher S; Missous, Mohamed; Roedig, Utz; Young, Robert J
2017-12-19
Random number generation is crucial in many aspects of everyday life, as online security and privacy depend ultimately on the quality of random numbers. Many current implementations are based on pseudo-random number generators, but information security requires true random numbers for sensitive applications like key generation in banking, defence or even social media. True random number generators are systems whose outputs cannot be determined, even if their internal structure and response history are known. Sources of quantum noise are thus ideal for this application due to their intrinsic uncertainty. In this work, we propose using resonant tunnelling diodes as practical true random number generators based on a quantum mechanical effect. The output of the proposed devices can be directly used as a random stream of bits or can be further distilled using randomness extraction algorithms, depending on the application.
van der Lee, J H; Svrcek, W Y; Young, B R
2008-01-01
Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.
Coverage maximization under resource constraints using a nonuniform proliferating random walk.
Saha, Sudipta; Ganguly, Niloy
2013-02-01
Information management services on networks, such as search and dissemination, play a key role in any large-scale distributed system. One of the most desirable features of these services is the maximization of the coverage, i.e., the number of distinctly visited nodes under constraints of network resources as well as time. However, redundant visits of nodes by different message packets (modeled, e.g., as walkers) initiated by the underlying algorithms for these services cause wastage of network resources. In this work, using results from analytical studies done in the past on a K-random-walk-based algorithm, we identify that redundancy quickly increases with an increase in the density of the walkers. Based on this postulate, we design a very simple distributed algorithm which dynamically estimates the density of the walkers and thereby carefully proliferates walkers in sparse regions. We use extensive computer simulations to test our algorithm in various kinds of network topologies whereby we find it to be performing particularly well in networks that are highly clustered as well as sparse.
System and method for key generation in security tokens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Philip G.; Humble, Travis S.; Paul, Nathanael R.
Functional randomness in security tokens (FRIST) may achieve improved security in two-factor authentication hardware tokens by improving on the algorithms used to securely generate random data. A system and method in one embodiment according to the present invention may allow for security of a token based on storage cost and computational security. This approach may enable communication where security is no longer based solely on onetime pads (OTPs) generated from a single cryptographic function (e.g., SHA-256).
Tsuruta, S; Misztal, I; Strandén, I
2001-05-01
Utility of the preconditioned conjugate gradient algorithm with a diagonal preconditioner for solving mixed-model equations in animal breeding applications was evaluated with 16 test problems. The problems included single- and multiple-trait analyses, with data on beef, dairy, and swine ranging from small examples to national data sets. Multiple-trait models considered low and high genetic correlations. Convergence was based on relative differences between left- and right-hand sides. The ordering of equations was fixed effects followed by random effects, with no special ordering within random effects. The preconditioned conjugate gradient program implemented with double precision converged for all models. However, when implemented in single precision, the preconditioned conjugate gradient algorithm did not converge for seven large models. The preconditioned conjugate gradient and successive overrelaxation algorithms were subsequently compared for 13 of the test problems. The preconditioned conjugate gradient algorithm was easy to implement with the iteration on data for general models. However, successive overrelaxation requires specific programming for each set of models. On average, the preconditioned conjugate gradient algorithm converged in three times fewer rounds of iteration than successive overrelaxation. With straightforward implementations, programs using the preconditioned conjugate gradient algorithm may be two or more times faster than those using successive overrelaxation. However, programs using the preconditioned conjugate gradient algorithm would use more memory than would comparable implementations using successive overrelaxation. Extensive optimization of either algorithm can influence rankings. The preconditioned conjugate gradient implemented with iteration on data, a diagonal preconditioner, and in double precision may be the algorithm of choice for solving mixed-model equations when sufficient memory is available and ease of implementation is essential.
Panmictic and Clonal Evolution on a Single Patchy Resource Produces Polymorphic Foraging Guilds
Getz, Wayne M.; Salter, Richard; Lyons, Andrew J.; Sippl-Swezey, Nicolas
2015-01-01
We develop a stochastic, agent-based model to study how genetic traits and experiential changes in the state of agents and available resources influence individuals’ foraging and movement behaviors. These behaviors are manifest as decisions on when to stay and exploit a current resource patch or move to a particular neighboring patch, based on information of the resource qualities of the patches and the anticipated level of intraspecific competition within patches. We use a genetic algorithm approach and an individual’s biomass as a fitness surrogate to explore the foraging strategy diversity of evolving guilds under clonal versus hermaphroditic sexual reproduction. We first present the resource exploitation processes, movement on cellular arrays, and genetic algorithm components of the model. We then discuss their implementation on the Nova software platform. This platform seamlessly combines the dynamical systems modeling of consumer-resource interactions with agent-based modeling of individuals moving over a landscapes, using an architecture that lays transparent the following four hierarchical simulation levels: 1.) within-patch consumer-resource dynamics, 2.) within-generation movement and competition mitigation processes, 3.) across-generation evolutionary processes, and 4.) multiple runs to generate the statistics needed for comparative analyses. The focus of our analysis is on the question of how the biomass production efficiency and the diversity of guilds of foraging strategy types, exploiting resources over a patchy landscape, evolve under clonal versus random hermaphroditic sexual reproduction. Our results indicate greater biomass production efficiency under clonal reproduction only at higher population densities, and demonstrate that polymorphisms evolve and are maintained under random mating systems. The latter result questions the notion that some type of associative mating structure is needed to maintain genetic polymorphisms among individuals exploiting a common patchy resource on an otherwise spatially homogeneous landscape. PMID:26274613
Semi-supervised and unsupervised extreme learning machines.
Huang, Gao; Song, Shiji; Gupta, Jatinder N D; Wu, Cheng
2014-12-01
Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multicluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.
Impact of Probiotics on Necrotizing Enterocolitis
Underwood, Mark A.
2016-01-01
A large number of randomized placebo-controlled clinical trials and cohort studies have demonstrated a decrease in the incidence of necrotizing enterocolitis with administration of probiotic microbes. These studies have prompted many neonatologists to adopt routine prophylactic administration of probiotics while others await more definitive studies and/or probiotic products with demonstrated purity and stable numbers of live organisms. Cross-contamination and inadequate sample size limit the value of further traditional placebo-controlled randomized controlled trials. Key areas for future research include mechanisms of protection, optimum probiotic species or strains (or combinations thereof) and duration of treatment, interactions between diet and the administered probiotic, and the influence of genetic polymorphisms in the mother and infant on probiotic response. Next generation probiotics selected based on bacterial genetics rather than ease of production and large cluster-randomized clinical trials hold great promise for NEC prevention. PMID:27836423
Relabeling exchange method (REM) for learning in neural networks
NASA Astrophysics Data System (ADS)
Wu, Wen; Mammone, Richard J.
1994-02-01
The supervised training of neural networks require the use of output labels which are usually arbitrarily assigned. In this paper it is shown that there is a significant difference in the rms error of learning when `optimal' label assignment schemes are used. We have investigated two efficient random search algorithms to solve the relabeling problem: the simulated annealing and the genetic algorithm. However, we found them to be computationally expensive. Therefore we shall introduce a new heuristic algorithm called the Relabeling Exchange Method (REM) which is computationally more attractive and produces optimal performance. REM has been used to organize the optimal structure for multi-layered perceptrons and neural tree networks. The method is a general one and can be implemented as a modification to standard training algorithms. The motivation of the new relabeling strategy is based on the present interpretation of dyslexia as an encoding problem.
Wang, Xiaogang; Chen, Wen; Chen, Xudong
2015-03-09
In this paper, we develop a new optical information authentication system based on compressed double-random-phase-encoded images and quick-response (QR) codes, where the parameters of optical lightwave are used as keys for optical decryption and the QR code is a key for verification. An input image attached with QR code is first optically encoded in a simplified double random phase encoding (DRPE) scheme without using interferometric setup. From the single encoded intensity pattern recorded by a CCD camera, a compressed double-random-phase-encoded image, i.e., the sparse phase distribution used for optical decryption, is generated by using an iterative phase retrieval technique with QR code. We compare this technique to the other two methods proposed in literature, i.e., Fresnel domain information authentication based on the classical DRPE with holographic technique and information authentication based on DRPE and phase retrieval algorithm. Simulation results show that QR codes are effective on improving the security and data sparsity of optical information encryption and authentication system.
Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm
NASA Astrophysics Data System (ADS)
Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui
2017-05-01
The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.
Progress in low-resolution ab initio phasing with CrowdPhase
Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.
2016-03-01
Ab initio phasing by direct computational methods in low-resolution X-ray crystallography is a long-standing challenge. A common approach is to consider it as two subproblems: sampling of phase space and identification of the correct solution. While the former is amenable to a myriad of search algorithms, devising a reliable target function for the latter problem remains an open question. Here, recent developments in CrowdPhase, a collaborative online game powered by a genetic algorithm that evolves an initial population of individuals with random genetic make-up ( i.e. random phases) each expressing a phenotype in the form of an electron-density map, aremore » presented. Success relies on the ability of human players to visually evaluate the quality of these maps and, following a Darwinian survival-of-the-fittest concept, direct the search towards optimal solutions. While an initial study demonstrated the feasibility of the approach, some important crystallographic issues were overlooked for the sake of simplicity. To address these, the new CrowdPhase includes consideration of space-group symmetry, a method for handling missing amplitudes, the use of a map correlation coefficient as a quality metric and a solvent-flattening step. Lastly, performances of this installment are discussed for two low-resolution test cases based on bona fide diffraction data.« less
Finding optimal vaccination strategies for pandemic influenza using genetic algorithms.
Patel, Rajan; Longini, Ira M; Halloran, M Elizabeth
2005-05-21
In the event of pandemic influenza, only limited supplies of vaccine may be available. We use stochastic epidemic simulations, genetic algorithms (GA), and random mutation hill climbing (RMHC) to find optimal vaccine distributions to minimize the number of illnesses or deaths in the population, given limited quantities of vaccine. Due to the non-linearity, complexity and stochasticity of the epidemic process, it is not possible to solve for optimal vaccine distributions mathematically. However, we use GA and RMHC to find near optimal vaccine distributions. We model an influenza pandemic that has age-specific illness attack rates similar to the Asian pandemic in 1957-1958 caused by influenza A(H2N2), as well as a distribution similar to the Hong Kong pandemic in 1968-1969 caused by influenza A(H3N2). We find the optimal vaccine distributions given that the number of doses is limited over the range of 10-90% of the population. While GA and RMHC work well in finding optimal vaccine distributions, GA is significantly more efficient than RMHC. We show that the optimal vaccine distribution found by GA and RMHC is up to 84% more effective than random mass vaccination in the mid range of vaccine availability. GA is generalizable to the optimization of stochastic model parameters for other infectious diseases and population structures.
Progress in low-resolution ab initio phasing with CrowdPhase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.
Ab initio phasing by direct computational methods in low-resolution X-ray crystallography is a long-standing challenge. A common approach is to consider it as two subproblems: sampling of phase space and identification of the correct solution. While the former is amenable to a myriad of search algorithms, devising a reliable target function for the latter problem remains an open question. Here, recent developments in CrowdPhase, a collaborative online game powered by a genetic algorithm that evolves an initial population of individuals with random genetic make-up ( i.e. random phases) each expressing a phenotype in the form of an electron-density map, aremore » presented. Success relies on the ability of human players to visually evaluate the quality of these maps and, following a Darwinian survival-of-the-fittest concept, direct the search towards optimal solutions. While an initial study demonstrated the feasibility of the approach, some important crystallographic issues were overlooked for the sake of simplicity. To address these, the new CrowdPhase includes consideration of space-group symmetry, a method for handling missing amplitudes, the use of a map correlation coefficient as a quality metric and a solvent-flattening step. Lastly, performances of this installment are discussed for two low-resolution test cases based on bona fide diffraction data.« less
NASA Astrophysics Data System (ADS)
Wang, Xiao; Zhang, Cheng; Li, Pin; Wang, Kai; Hu, Yang; Zhang, Peng; Liu, Huixia
2012-11-01
A central composite rotatable experimental design(CCRD) is conducted to design experiments for laser transmission joining of thermoplastic-Polycarbonate (PC). The artificial neural network was used to establish the relationships between laser transmission joining process parameters (the laser power, velocity, clamp pressure, scanning number) and joint strength and joint seam width. The developed mathematical models are tested by analysis of variance (ANOVA) method to check their adequacy and the effects of process parameters on the responses and the interaction effects of key process parameters on the quality are analyzed and discussed. Finally, the desirability function coupled with genetic algorithm is used to carry out the optimization of the joint strength and joint width. The results show that the predicted results of the optimization are in good agreement with the experimental results, so this study provides an effective method to enhance the joint quality.
Choice of optical system is critical for the security of double random phase encryption systems
NASA Astrophysics Data System (ADS)
Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Cassidy, Derek; Zhao, Liang; Ryle, James P.; Healy, John J.; Sheridan, John T.
2017-06-01
The linear canonical transform (LCT) is used in modeling a coherent light-field propagation through first-order optical systems. Recently, a generic optical system, known as the quadratic phase encoding system (QPES), for encrypting a two-dimensional image has been reported. In such systems, two random phase keys and the individual LCT parameters (α,β,γ) serve as secret keys of the cryptosystem. It is important that such encryption systems also satisfy some dynamic security properties. We, therefore, examine such systems using two cryptographic evaluation methods, the avalanche effect and bit independence criterion, which indicate the degree of security of the cryptographic algorithms using QPES. We compared our simulation results with the conventional Fourier and the Fresnel transform-based double random phase encryption (DRPE) systems. The results show that the LCT-based DRPE has an excellent avalanche and bit independence characteristics compared to the conventional Fourier and Fresnel-based encryption systems.
Santos, José; Monteagudo, Ángel
2017-03-27
The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.
Weigel, K A; VanRaden, P M; Norman, H D; Grosu, H
2017-12-01
In the early 1900s, breed society herdbooks had been established and milk-recording programs were in their infancy. Farmers wanted to improve the productivity of their cattle, but the foundations of population genetics, quantitative genetics, and animal breeding had not been laid. Early animal breeders struggled to identify genetically superior families using performance records that were influenced by local environmental conditions and herd-specific management practices. Daughter-dam comparisons were used for more than 30 yr and, although genetic progress was minimal, the attention given to performance recording, genetic theory, and statistical methods paid off in future years. Contemporary (herdmate) comparison methods allowed more accurate accounting for environmental factors and genetic progress began to accelerate when these methods were coupled with artificial insemination and progeny testing. Advances in computing facilitated the implementation of mixed linear models that used pedigree and performance data optimally and enabled accurate selection decisions. Sequencing of the bovine genome led to a revolution in dairy cattle breeding, and the pace of scientific discovery and genetic progress accelerated rapidly. Pedigree-based models have given way to whole-genome prediction, and Bayesian regression models and machine learning algorithms have joined mixed linear models in the toolbox of modern animal breeders. Future developments will likely include elucidation of the mechanisms of genetic inheritance and epigenetic modification in key biological pathways, and genomic data will be used with data from on-farm sensors to facilitate precision management on modern dairy farms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ringed Seal Search for Global Optimization via a Sensitive Search Model.
Saadi, Younes; Yanto, Iwan Tri Riyadi; Herawan, Tutut; Balakrishnan, Vimala; Chiroma, Haruna; Risnumawan, Anhar
2016-01-01
The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems.
NASA Astrophysics Data System (ADS)
Liu, Hua-Long; Liu, Hua-Dong
2014-10-01
Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And localization results based on the SQP-GA are compared with some algorithms such as the GA, some other intelligent and non-intelligent algorithms. The results of calculating examples both stimulated and spot experiments demonstrate that the localization method based on the SQP-GA can effectively prevent the results from getting trapped into the local optimum values, and the localization method is of great feasibility and very suitable for the field applications, and the precision of localization is enhanced, and the effectiveness of localization is ideal and satisfactory.
Hartfield, Matthew; Wright, Stephen I; Agrawal, Aneil F
2016-01-01
Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms. Copyright © 2016 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2012-11-01
The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.
NASA Technical Reports Server (NTRS)
Rogers, David
1991-01-01
G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.
García-Calvo, Raúl; Guisado, JL; Diaz-del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco
2018-01-01
Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes—master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)—is carried out for this problem. Several procedures that optimize the use of the GPU’s resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs). PMID:29662297
García-Calvo, Raúl; Guisado, J L; Diaz-Del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco
2018-01-01
Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes-master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)-is carried out for this problem. Several procedures that optimize the use of the GPU's resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs).
CrowdPhase: crowdsourcing the phase problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O., E-mail: yeates@mbi.ucla.edu
The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborativemore » online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.« less
Chen, Jianchi; Civerolo, Edwin L; Jarret, Robert L; Van Sluys, Marie-Anne; de Oliveira, Mariana C
2005-02-01
Xylella fastidiosa causes many important plant diseases including Pierce's disease (PD) in grape and almond leaf scorch disease (ALSD). DNA-based methodologies, such as randomly amplified polymorphic DNA (RAPD) analysis, have been playing key roles in genetic information collection of the bacterium. This study further analyzed the nucleotide sequences of selected RAPDs from X. fastidiosa strains in conjunction with the available genome sequence databases and unveiled several previously unknown novel genetic traits. These include a sequence highly similar to those in the phage family of Podoviridae. Genome comparisons among X. fastidiosa strains suggested that the "phage" is currently active. Two other RAPDs were also related to horizontal gene transfer: one was part of a broadly distributed cryptic plasmid and the other was associated with conjugal transfer. One RAPD inferred a genomic rearrangement event among X. fastidiosa PD strains and another identified a single nucleotide polymorphism of evolutionary value.
Software For Genetic Algorithms
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steve E.
1992-01-01
SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.
New knowledge-based genetic algorithm for excavator boom structural optimization
NASA Astrophysics Data System (ADS)
Hua, Haiyan; Lin, Shuwen
2014-03-01
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
Recursive Branching Simulated Annealing Algorithm
NASA Technical Reports Server (NTRS)
Bolcar, Matthew; Smith, J. Scott; Aronstein, David
2012-01-01
This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal solution, and the region from which new configurations can be selected shrinks as the search continues. The key difference between these algorithms is that in the SA algorithm, a single path, or trajectory, is taken in parameter space, from the starting point to the globally optimal solution, while in the RBSA algorithm, many trajectories are taken; by exploring multiple regions of the parameter space simultaneously, the algorithm has been shown to converge on the globally optimal solution about an order of magnitude faster than when using conventional algorithms. Novel features of the RBSA algorithm include: 1. More efficient searching of the parameter space due to the branching structure, in which multiple random configurations are generated and multiple promising regions of the parameter space are explored; 2. The implementation of a trust region for each parameter in the parameter space, which provides a natural way of enforcing upper- and lower-bound constraints on the parameters; and 3. The optional use of a constrained gradient- search optimization, performed on the continuous variables around each branch s configuration in parameter space to improve search efficiency by allowing for fast fine-tuning of the continuous variables within the trust region at that configuration point.
Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping
NASA Astrophysics Data System (ADS)
Balakrishnan, D.; Quan, C.; Tay, C. J.
2013-06-01
The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.
Mobile robot dynamic path planning based on improved genetic algorithm
NASA Astrophysics Data System (ADS)
Wang, Yong; Zhou, Heng; Wang, Ying
2017-08-01
In dynamic unknown environment, the dynamic path planning of mobile robots is a difficult problem. In this paper, a dynamic path planning method based on genetic algorithm is proposed, and a reward value model is designed to estimate the probability of dynamic obstacles on the path, and the reward value function is applied to the genetic algorithm. Unique coding techniques reduce the computational complexity of the algorithm. The fitness function of the genetic algorithm fully considers three factors: the security of the path, the shortest distance of the path and the reward value of the path. The simulation results show that the proposed genetic algorithm is efficient in all kinds of complex dynamic environments.
NASA Astrophysics Data System (ADS)
Feng, Ju; Shen, Wen Zhong; Xu, Chang
2016-09-01
A new algorithm for multi-objective wind farm layout optimization is presented. It formulates the wind turbine locations as continuous variables and is capable of optimizing the number of turbines and their locations in the wind farm simultaneously. Two objectives are considered. One is to maximize the total power production, which is calculated by considering the wake effects using the Jensen wake model combined with the local wind distribution. The other is to minimize the total electrical cable length. This length is assumed to be the total length of the minimal spanning tree that connects all turbines and is calculated by using Prim's algorithm. Constraints on wind farm boundary and wind turbine proximity are also considered. An ideal test case shows the proposed algorithm largely outperforms a famous multi-objective genetic algorithm (NSGA-II). In the real test case based on the Horn Rev 1 wind farm, the algorithm also obtains useful Pareto frontiers and provides a wide range of Pareto optimal layouts with different numbers of turbines for a real-life wind farm developer.
Theory and generation of conditional, scalable sub-Gaussian random fields
NASA Astrophysics Data System (ADS)
Panzeri, M.; Riva, M.; Guadagnini, A.; Neuman, S. P.
2016-03-01
Many earth and environmental (as well as a host of other) variables, Y, and their spatial (or temporal) increments, ΔY, exhibit non-Gaussian statistical scaling. Previously we were able to capture key aspects of such non-Gaussian scaling by treating Y and/or ΔY as sub-Gaussian random fields (or processes). This however left unaddressed the empirical finding that whereas sample frequency distributions of Y tend to display relatively mild non-Gaussian peaks and tails, those of ΔY often reveal peaks that grow sharper and tails that become heavier with decreasing separation distance or lag. Recently we proposed a generalized sub-Gaussian model (GSG) which resolves this apparent inconsistency between the statistical scaling behaviors of observed variables and their increments. We presented an algorithm to generate unconditional random realizations of statistically isotropic or anisotropic GSG functions and illustrated it in two dimensions. Most importantly, we demonstrated the feasibility of estimating all parameters of a GSG model underlying a single realization of Y by analyzing jointly spatial moments of Y data and corresponding increments, ΔY. Here, we extend our GSG model to account for noisy measurements of Y at a discrete set of points in space (or time), present an algorithm to generate conditional realizations of corresponding isotropic or anisotropic random fields, introduce two approximate versions of this algorithm to reduce CPU time, and explore them on one and two-dimensional synthetic test cases.
Degree-constrained multicast routing for multimedia communications
NASA Astrophysics Data System (ADS)
Wang, Yanlin; Sun, Yugeng; Li, Guidan
2005-02-01
Multicast services have been increasingly used by many multimedia applications. As one of the key techniques to support multimedia applications, the rational and effective multicast routing algorithms are very important to networks performance. When switch nodes in networks have different multicast capability, multicast routing problem is modeled as the degree-constrained Steiner problem. We presented two heuristic algorithms, named BMSTA and BSPTA, for the degree-constrained case in multimedia communications. Both algorithms are used to generate degree-constrained multicast trees with bandwidth and end to end delay bound. Simulations over random networks were carried out to compare the performance of the two proposed algorithms. Experimental results show that the proposed algorithms have advantages in traffic load balancing, which can avoid link blocking and enhance networks performance efficiently. BMSTA has better ability in finding unsaturated links and (or) unsaturated nodes to generate multicast trees than BSPTA. The performance of BMSTA is affected by the variation of degree constraints.
An Efficient Rank Based Approach for Closest String and Closest Substring
2012-01-01
This paper aims to present a new genetic approach that uses rank distance for solving two known NP-hard problems, and to compare rank distance with other distance measures for strings. The two NP-hard problems we are trying to solve are closest string and closest substring. For each problem we build a genetic algorithm and we describe the genetic operations involved. Both genetic algorithms use a fitness function based on rank distance. We compare our algorithms with other genetic algorithms that use different distance measures, such as Hamming distance or Levenshtein distance, on real DNA sequences. Our experiments show that the genetic algorithms based on rank distance have the best results. PMID:22675483
A hybrid genetic algorithm for resolving closely spaced objects
NASA Technical Reports Server (NTRS)
Abbott, R. J.; Lillo, W. E.; Schulenburg, N.
1995-01-01
A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.
Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories
NASA Technical Reports Server (NTRS)
Burchett, Bradley T.
2003-01-01
The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.
Applications of colored petri net and genetic algorithms to cluster tool scheduling
NASA Astrophysics Data System (ADS)
Liu, Tung-Kuan; Kuo, Chih-Jen; Hsiao, Yung-Chin; Tsai, Jinn-Tsong; Chou, Jyh-Horng
2005-12-01
In this paper, we propose a method, which uses Coloured Petri Net (CPN) and genetic algorithm (GA) to obtain an optimal deadlock-free schedule and to solve re-entrant problem for the flexible process of the cluster tool. The process of the cluster tool for producing a wafer usually can be classified into three types: 1) sequential process, 2) parallel process, and 3) sequential parallel process. But these processes are not economical enough to produce a variety of wafers in small volume. Therefore, this paper will propose the flexible process where the operations of fabricating wafers are randomly arranged to achieve the best utilization of the cluster tool. However, the flexible process may have deadlock and re-entrant problems which can be detected by CPN. On the other hand, GAs have been applied to find the optimal schedule for many types of manufacturing processes. Therefore, we successfully integrate CPN and GAs to obtain an optimal schedule with the deadlock and re-entrant problems for the flexible process of the cluster tool.
Webb, Samuel J; Hanser, Thierry; Howlin, Brendan; Krause, Paul; Vessey, Jonathan D
2014-03-25
A new algorithm has been developed to enable the interpretation of black box models. The developed algorithm is agnostic to learning algorithm and open to all structural based descriptors such as fragments, keys and hashed fingerprints. The algorithm has provided meaningful interpretation of Ames mutagenicity predictions from both random forest and support vector machine models built on a variety of structural fingerprints.A fragmentation algorithm is utilised to investigate the model's behaviour on specific substructures present in the query. An output is formulated summarising causes of activation and deactivation. The algorithm is able to identify multiple causes of activation or deactivation in addition to identifying localised deactivations where the prediction for the query is active overall. No loss in performance is seen as there is no change in the prediction; the interpretation is produced directly on the model's behaviour for the specific query. Models have been built using multiple learning algorithms including support vector machine and random forest. The models were built on public Ames mutagenicity data and a variety of fingerprint descriptors were used. These models produced a good performance in both internal and external validation with accuracies around 82%. The models were used to evaluate the interpretation algorithm. Interpretation was revealed that links closely with understood mechanisms for Ames mutagenicity. This methodology allows for a greater utilisation of the predictions made by black box models and can expedite further study based on the output for a (quantitative) structure activity model. Additionally the algorithm could be utilised for chemical dataset investigation and knowledge extraction/human SAR development.
Wiethoff, Katja; Baghai, Thomas C; Fisher, Robert; Seemüller, Florian; Laakmann, Gregor; Brieger, Peter; Cordes, Joachim; Malevani, Jaroslav; Laux, Gerd; Hauth, Iris; Möller, Hans-Jürgen; Kronmüller, Klaus-Thomas; Smolka, Michael N; Schlattmann, Peter; Berger, Maximilian; Ricken, Roland; Stamm, Thomas J; Heinz, Andreas; Bauer, Michael
2017-01-01
Abstract Background Treatment algorithms are considered as key to improve outcomes by enhancing the quality of care. This is the first randomized controlled study to evaluate the clinical effect of algorithm-guided treatment in inpatients with major depressive disorder. Methods Inpatients, aged 18 to 70 years with major depressive disorder from 10 German psychiatric departments were randomized to 5 different treatment arms (from 2000 to 2005), 3 of which were standardized stepwise drug treatment algorithms (ALGO). The fourth arm proposed medications and provided less specific recommendations based on a computerized documentation and expert system (CDES), the fifth arm received treatment as usual (TAU). ALGO included 3 different second-step strategies: lithium augmentation (ALGO LA), antidepressant dose-escalation (ALGO DE), and switch to a different antidepressant (ALGO SW). Time to remission (21-item Hamilton Depression Rating Scale ≤9) was the primary outcome. Results Time to remission was significantly shorter for ALGO DE (n=91) compared with both TAU (n=84) (HR=1.67; P=.014) and CDES (n=79) (HR=1.59; P=.031) and ALGO SW (n=89) compared with both TAU (HR=1.64; P=.018) and CDES (HR=1.56; P=.038). For both ALGO LA (n=86) and ALGO DE, fewer antidepressant medications were needed to achieve remission than for CDES or TAU (P<.001). Remission rates at discharge differed across groups; ALGO DE had the highest (89.2%) and TAU the lowest rates (66.2%). Conclusions A highly structured algorithm-guided treatment is associated with shorter times and fewer medication changes to achieve remission with depressed inpatients than treatment as usual or computerized medication choice guidance. PMID:28645191
Adli, Mazda; Wiethoff, Katja; Baghai, Thomas C; Fisher, Robert; Seemüller, Florian; Laakmann, Gregor; Brieger, Peter; Cordes, Joachim; Malevani, Jaroslav; Laux, Gerd; Hauth, Iris; Möller, Hans-Jürgen; Kronmüller, Klaus-Thomas; Smolka, Michael N; Schlattmann, Peter; Berger, Maximilian; Ricken, Roland; Stamm, Thomas J; Heinz, Andreas; Bauer, Michael
2017-09-01
Treatment algorithms are considered as key to improve outcomes by enhancing the quality of care. This is the first randomized controlled study to evaluate the clinical effect of algorithm-guided treatment in inpatients with major depressive disorder. Inpatients, aged 18 to 70 years with major depressive disorder from 10 German psychiatric departments were randomized to 5 different treatment arms (from 2000 to 2005), 3 of which were standardized stepwise drug treatment algorithms (ALGO). The fourth arm proposed medications and provided less specific recommendations based on a computerized documentation and expert system (CDES), the fifth arm received treatment as usual (TAU). ALGO included 3 different second-step strategies: lithium augmentation (ALGO LA), antidepressant dose-escalation (ALGO DE), and switch to a different antidepressant (ALGO SW). Time to remission (21-item Hamilton Depression Rating Scale ≤9) was the primary outcome. Time to remission was significantly shorter for ALGO DE (n=91) compared with both TAU (n=84) (HR=1.67; P=.014) and CDES (n=79) (HR=1.59; P=.031) and ALGO SW (n=89) compared with both TAU (HR=1.64; P=.018) and CDES (HR=1.56; P=.038). For both ALGO LA (n=86) and ALGO DE, fewer antidepressant medications were needed to achieve remission than for CDES or TAU (P<.001). Remission rates at discharge differed across groups; ALGO DE had the highest (89.2%) and TAU the lowest rates (66.2%). A highly structured algorithm-guided treatment is associated with shorter times and fewer medication changes to achieve remission with depressed inpatients than treatment as usual or computerized medication choice guidance. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Semi-automated quantitative Drosophila wings measurements.
Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan
2017-06-28
Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.
Kaspi, Omer; Yosipof, Abraham; Senderowitz, Hanoch
2017-06-06
An important aspect of chemoinformatics and material-informatics is the usage of machine learning algorithms to build Quantitative Structure Activity Relationship (QSAR) models. The RANdom SAmple Consensus (RANSAC) algorithm is a predictive modeling tool widely used in the image processing field for cleaning datasets from noise. RANSAC could be used as a "one stop shop" algorithm for developing and validating QSAR models, performing outlier removal, descriptors selection, model development and predictions for test set samples using applicability domain. For "future" predictions (i.e., for samples not included in the original test set) RANSAC provides a statistical estimate for the probability of obtaining reliable predictions, i.e., predictions within a pre-defined number of standard deviations from the true values. In this work we describe the first application of RNASAC in material informatics, focusing on the analysis of solar cells. We demonstrate that for three datasets representing different metal oxide (MO) based solar cell libraries RANSAC-derived models select descriptors previously shown to correlate with key photovoltaic properties and lead to good predictive statistics for these properties. These models were subsequently used to predict the properties of virtual solar cells libraries highlighting interesting dependencies of PV properties on MO compositions.
NASA Astrophysics Data System (ADS)
Zhou, Lifan; Chai, Dengfeng; Xia, Yu; Ma, Peifeng; Lin, Hui
2018-01-01
Phase unwrapping (PU) is one of the key processes in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) data. It is known that two-dimensional (2-D) PU problems can be formulated as maximum a posteriori estimation of Markov random fields (MRFs). However, considering that the traditional MRF algorithm is usually defined on a rectangular grid, it fails easily if large parts of the wrapped data are dominated by noise caused by large low-coherence area or rapid-topography variation. A PU solution based on sparse MRF is presented to extend the traditional MRF algorithm to deal with sparse data, which allows the unwrapping of InSAR data dominated by high phase noise. To speed up the graph cuts algorithm for sparse MRF, we designed dual elementary graphs and merged them to obtain the Delaunay triangle graph, which is used to minimize the energy function efficiently. The experiments on simulated and real data, compared with other existing algorithms, both confirm the effectiveness of the proposed MRF approach, which suffers less from decorrelation effects caused by large low-coherence area or rapid-topography variation.
Chen, Ying-ping; Chen, Chao-Hong
2010-01-01
An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence.
Kim, Heejun; Bian, Jiantao; Mostafa, Javed; Jonnalagadda, Siddhartha; Del Fiol, Guilherme
2016-01-01
Motivation: Clinicians need up-to-date evidence from high quality clinical trials to support clinical decisions. However, applying evidence from the primary literature requires significant effort. Objective: To examine the feasibility of automatically extracting key clinical trial information from ClinicalTrials.gov. Methods: We assessed the coverage of ClinicalTrials.gov for high quality clinical studies that are indexed in PubMed. Using 140 random ClinicalTrials.gov records, we developed and tested rules for the automatic extraction of key information. Results: The rate of high quality clinical trial registration in ClinicalTrials.gov increased from 0.2% in 2005 to 17% in 2015. Trials reporting results increased from 3% in 2005 to 19% in 2015. The accuracy of the automatic extraction algorithm for 10 trial attributes was 90% on average. Future research is needed to improve the algorithm accuracy and to design information displays to optimally present trial information to clinicians. PMID:28269867
Three-dimensional information hierarchical encryption based on computer-generated holograms
NASA Astrophysics Data System (ADS)
Kong, Dezhao; Shen, Xueju; Cao, Liangcai; Zhang, Hao; Zong, Song; Jin, Guofan
2016-12-01
A novel approach for encrypting three-dimensional (3-D) scene information hierarchically based on computer-generated holograms (CGHs) is proposed. The CGHs of the layer-oriented 3-D scene information are produced by angular-spectrum propagation algorithm at different depths. All the CGHs are then modulated by different chaotic random phase masks generated by the logistic map. Hierarchical encryption encoding is applied when all the CGHs are accumulated one by one, and the reconstructed volume of the 3-D scene information depends on permissions of different users. The chaotic random phase masks could be encoded into several parameters of the chaotic sequences to simplify the transmission and preservation of the keys. Optical experiments verify the proposed method and numerical simulations show the high key sensitivity, high security, and application flexibility of the method.
Learning Intelligent Genetic Algorithms Using Japanese Nonograms
ERIC Educational Resources Information Center
Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen
2012-01-01
An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…
Boiler-turbine control system design using a genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.; Lee, K.Y.
1995-12-01
This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.
Method for hyperspectral imagery exploitation and pixel spectral unmixing
NASA Technical Reports Server (NTRS)
Lin, Ching-Fang (Inventor)
2003-01-01
An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.
A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Songhua; Krauthammer, Prof. Michael
2010-01-01
There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper's key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manuallymore » labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based text detection approach is well suited for text detection in biomedical images, and that the iterative application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation of our algorithm freely available for academic use.« less
NASA Astrophysics Data System (ADS)
Pathak, Sayan D.; Haynor, David R.; Thompson, Carol L.; Lein, Ed; Hawrylycz, Michael
2009-02-01
Understanding the geography of genetic expression in the mouse brain has opened previously unexplored avenues in neuroinformatics. The Allen Brain Atlas (www.brain-map.org) (ABA) provides genome-wide colorimetric in situ hybridization (ISH) gene expression images at high spatial resolution, all mapped to a common three-dimensional 200μm3 spatial framework defined by the Allen Reference Atlas (ARA) and is a unique data set for studying expression based structural and functional organization of the brain. The goal of this study was to facilitate an unbiased data-driven structural partitioning of the major structures in the mouse brain. We have developed an algorithm that uses nonnegative matrix factorization (NMF) to perform parts based analysis of ISH gene expression images. The standard NMF approach and its variants are limited in their ability to flexibly integrate prior knowledge, in the context of spatial data. In this paper, we introduce spatial connectivity as an additional regularization in NMF decomposition via the use of Markov Random Fields (mNMF). The mNMF algorithm alternates neighborhood updates with iterations of the standard NMF algorithm to exploit spatial correlations in the data. We present the algorithm and show the sub-divisions of hippocampus and somatosensory-cortex obtained via this approach. The results are compared with established neuroanatomic knowledge. We also highlight novel gene expression based sub divisions of the hippocampus identified by using the mNMF algorithm.
Genetics-based control of a mimo boiler-turbine plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.M.; Lee, K.Y.
1994-12-31
A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.
Improved classification accuracy by feature extraction using genetic algorithms
NASA Astrophysics Data System (ADS)
Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.
2003-05-01
A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.
Honey Bees Inspired Optimization Method: The Bees Algorithm.
Yuce, Baris; Packianather, Michael S; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo
2013-11-06
Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.
NASA Astrophysics Data System (ADS)
De Geyter, G.; Baes, M.; Fritz, J.; Camps, P.
2013-02-01
We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC 4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different models and techniques and the complexity and degeneracies in the parameter space, we find reasonable agreement between the different models. We conclude that the FitSKIRT method allows comparison between different models and geometries in a quantitative manner and minimizes the need of human intervention and biasing. The high level of automation makes it an ideal tool to use on larger sets of observed data.
NASA Astrophysics Data System (ADS)
Moon, Byung-Young
2005-12-01
The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.
2012-01-01
Background Hemorrhagic events are frequent in patients on treatment with antivitamin-K oral anticoagulants due to their narrow therapeutic margin. Studies performed with acenocoumarol have shown the relationship between demographic, clinical and genotypic variants and the response to these drugs. Once the influence of these genetic and clinical factors on the dose of acenocoumarol needed to maintain a stable international normalized ratio (INR) has been demonstrated, new strategies need to be developed to predict the appropriate doses of this drug. Several pharmacogenetic algorithms have been developed for warfarin, but only three have been developed for acenocoumarol. After the development of a pharmacogenetic algorithm, the obvious next step is to demonstrate its effectiveness and utility by means of a randomized controlled trial. The aim of this study is to evaluate the effectiveness and efficiency of an acenocoumarol dosing algorithm developed by our group which includes demographic, clinical and pharmacogenetic variables (VKORC1, CYP2C9, CYP4F2 and ApoE) in patients with venous thromboembolism (VTE). Methods and design This is a multicenter, single blind, randomized controlled clinical trial. The protocol has been approved by La Paz University Hospital Research Ethics Committee and by the Spanish Drug Agency. Two hundred and forty patients with VTE in which oral anticoagulant therapy is indicated will be included. Randomization (case/control 1:1) will be stratified by center. Acenocoumarol dose in the control group will be scheduled and adjusted following common clinical practice; in the experimental arm dosing will be following an individualized algorithm developed and validated by our group. Patients will be followed for three months. The main endpoints are: 1) Percentage of patients with INR within the therapeutic range on day seven after initiation of oral anticoagulant therapy; 2) Time from the start of oral anticoagulant treatment to achievement of a stable INR within the therapeutic range; 3) Number of INR determinations within the therapeutic range in the first six weeks of treatment. Discussion To date, there are no clinical trials comparing pharmacogenetic acenocoumarol dosing algorithm versus routine clinical practice in VTE. Implementation of this pharmacogenetic algorithm in the clinical practice routine could reduce side effects and improve patient safety. Trial registration Eudra CT. Identifier: 2009-016643-18. PMID:23237631
Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree.
Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad
2015-01-01
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen-host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules.
Swarm satellite mission scheduling & planning using Hybrid Dynamic Mutation Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zheng, Zixuan; Guo, Jian; Gill, Eberhard
2017-08-01
Space missions have traditionally been controlled by operators from a mission control center. Given the increasing number of satellites for some space missions, generating a command list for multiple satellites can be time-consuming and inefficient. Developing multi-satellite, onboard mission scheduling & planning techniques is, therefore, a key research field for future space mission operations. In this paper, an improved Genetic Algorithm (GA) using a new mutation strategy is proposed as a mission scheduling algorithm. This new mutation strategy, called Hybrid Dynamic Mutation (HDM), combines the advantages of both dynamic mutation strategy and adaptive mutation strategy, overcoming weaknesses such as early convergence and long computing time, which helps standard GA to be more efficient and accurate in dealing with complex missions. HDM-GA shows excellent performance in solving both unconstrained and constrained test functions. The experiments of using HDM-GA to simulate a multi-satellite, mission scheduling problem demonstrates that both the computation time and success rate mission requirements can be met. The results of a comparative test between HDM-GA and three other mutation strategies also show that HDM has outstanding performance in terms of speed and reliability.
Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree
Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad
2015-01-01
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen–host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules. PMID:26649272
Efficiency and robustness of different bus network designs
NASA Astrophysics Data System (ADS)
Pang, John Zhen Fu; Bin Othman, Nasri; Ng, Keng Meng; Monterola, Christopher
2015-07-01
We compare the efficiencies and robustness of four transport networks that can be possibly formed as a result of deliberate city planning. The networks are constructed based on their spatial resemblance to the cities of Manhattan (lattice), Sudan (random), Beijing (single-blob) and Greater Cairo (dual-blob). For a given type, a genetic algorithm is employed to obtain an optimized set of the bus routes. We then simulate how commuter travels using Yen's algorithms for k shortest paths on an adjacency matrix. The cost of traveling such as walking between stations is captured by varying the weighted sums of matrices. We also consider the number of transfers a posteriori by looking at the computed shortest paths. With consideration to distances via radius of gyration, redundancies of travel and number of bus transfers, our simulations indicate that random and dual-blob are more efficient than single-blob and lattice networks. Moreover, dual-blob type is least robust when node removals are targeted but is most resilient when node failures are random. The work hopes to guide and provide technical perspectives on how geospatial distribution of a city limits the optimality of transport designs.
Training product unit neural networks with genetic algorithms
NASA Technical Reports Server (NTRS)
Janson, D. J.; Frenzel, J. F.; Thelen, D. C.
1991-01-01
The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.
New Results in Astrodynamics Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.
1998-01-01
Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.
Zheng, Guanglou; Fang, Gengfa; Shankaran, Rajan; Orgun, Mehmet A; Zhou, Jie; Qiao, Li; Saleem, Kashif
2017-05-01
Generating random binary sequences (BSes) is a fundamental requirement in cryptography. A BS is a sequence of N bits, and each bit has a value of 0 or 1. For securing sensors within wireless body area networks (WBANs), electrocardiogram (ECG)-based BS generation methods have been widely investigated in which interpulse intervals (IPIs) from each heartbeat cycle are processed to produce BSes. Using these IPI-based methods to generate a 128-bit BS in real time normally takes around half a minute. In order to improve the time efficiency of such methods, this paper presents an ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm. The technique of discrete wavelet transforms is employed to detect arrival time of these fiducial points, such as P, Q, R, S, and T peaks. Time intervals between them, including RR, RQ, RS, RP, and RT intervals, are then calculated based on this arrival time, and are used as ECG features to generate random BSes with low latency. According to our analysis on real ECG data, these ECG feature values exhibit the property of randomness and, thus, can be utilized to generate random BSes. Compared with the schemes that solely rely on IPIs to generate BSes, this MFBSG algorithm uses five feature values from one heart beat cycle, and can be up to five times faster than the solely IPI-based methods. So, it achieves a design goal of low latency. According to our analysis, the complexity of the algorithm is comparable to that of fast Fourier transforms. These randomly generated ECG BSes can be used as security keys for encryption or authentication in a WBAN system.
Automatic generation of randomized trial sequences for priming experiments.
Ihrke, Matthias; Behrendt, Jörg
2011-01-01
In most psychological experiments, a randomized presentation of successive displays is crucial for the validity of the results. For some paradigms, this is not a trivial issue because trials are interdependent, e.g., priming paradigms. We present a software that automatically generates optimized trial sequences for (negative-) priming experiments. Our implementation is based on an optimization heuristic known as genetic algorithms that allows for an intuitive interpretation due to its similarity to natural evolution. The program features a graphical user interface that allows the user to generate trial sequences and to interactively improve them. The software is based on freely available software and is released under the GNU General Public License.
NASA Astrophysics Data System (ADS)
Patra, Rusha; Dutta, Pranab K.
2015-07-01
Reconstruction of the absorption coefficient of tissue with good contrast is of key importance in functional diffuse optical imaging. A hybrid approach using model-based iterative image reconstruction and a genetic algorithm is proposed to enhance the contrast of the reconstructed image. The proposed method yields an observed contrast of 98.4%, mean square error of 0.638×10-3, and object centroid error of (0.001 to 0.22) mm. Experimental validation of the proposed method has also been provided with tissue-like phantoms which shows a significant improvement in image quality and thus establishes the potential of the method for functional diffuse optical tomography reconstruction with continuous wave setup. A case study of finger joint imaging is illustrated as well to show the prospect of the proposed method in clinical diagnosis. The method can also be applied to the concentration measurement of a region of interest in a turbid medium.
Lee, Fook Choon; Rangaiah, Gade Pandu; Ray, Ajay Kumar
2007-10-15
Bulk of the penicillin produced is used as raw material for semi-synthetic penicillin (such as amoxicillin and ampicillin) and semi-synthetic cephalosporins (such as cephalexin and cefadroxil). In the present paper, an industrial penicillin V bioreactor train is optimized for multiple objectives simultaneously. An industrial train, comprising a bank of identical bioreactors, is run semi-continuously in a synchronous fashion. The fermentation taking place in a bioreactor is modeled using a morphologically structured mechanism. For multi-objective optimization for two and three objectives, the elitist non-dominated sorting genetic algorithm (NSGA-II) is chosen. Instead of a single optimum as in the traditional optimization, a wide range of optimal design and operating conditions depicting trade-offs of key performance indicators such as batch cycle time, yield, profit and penicillin concentration, is successfully obtained. The effects of design and operating variables on the optimal solutions are discussed in detail. Copyright 2007 Wiley Periodicals, Inc.
DeMAID/GA USER'S GUIDE Design Manager's Aid for Intelligent Decomposition with a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Rogers, James L.
1996-01-01
Many companies are looking for new tools and techniques to aid a design manager in making decisions that can reduce the time and cost of a design cycle. One tool that is available to aid in this decision making process is the Design Manager's Aid for Intelligent Decomposition (DeMAID). Since the initial release of DEMAID in 1989, numerous enhancements have been added to aid the design manager in saving both cost and time in a design cycle. The key enhancement is a genetic algorithm (GA) and the enhanced version is called DeMAID/GA. The GA orders the sequence of design processes to minimize the cost and time to converge to a solution. These enhancements as well as the existing features of the original version of DEMAID are described. Two sample problems are used to show how these enhancements can be applied to improve the design cycle. This report serves as a user's guide for DeMAID/GA.
Determining the optimal number of Kanban in multi-products supply chain system
NASA Astrophysics Data System (ADS)
Widyadana, G. A.; Wee, H. M.; Chang, Jer-Yuan
2010-02-01
Kanban, a key element of just-in-time system, is a re-order card or signboard giving instruction or triggering the pull system to manufacture or supply a component based on actual usage of material. There are two types of Kanban: production Kanban and withdrawal Kanban. This study uses optimal and meta-heuristic methods to determine the Kanban quantity and withdrawal lot sizes in a supply chain system. Although the mix integer programming method gives an optimal solution, it is not time efficient. For this reason, the meta-heuristic methods are suggested. In this study, a genetic algorithm (GA) and a hybrid of genetic algorithm and simulated annealing (GASA) are used. The study compares the performance of GA and GASA with that of the optimal method using MIP. The given problems show that both GA and GASA result in a near optimal solution, and they outdo the optimal method in term of run time. In addition, the GASA heuristic method gives a better performance than the GA heuristic method.
Transmission over UWB channels with OFDM system using LDPC coding
NASA Astrophysics Data System (ADS)
Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech
2009-06-01
Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.
An efficient randomized algorithm for contact-based NMR backbone resonance assignment.
Kamisetty, Hetunandan; Bailey-Kellogg, Chris; Pandurangan, Gopal
2006-01-15
Backbone resonance assignment is a critical bottleneck in studies of protein structure, dynamics and interactions by nuclear magnetic resonance (NMR) spectroscopy. A minimalist approach to assignment, which we call 'contact-based', seeks to dramatically reduce experimental time and expense by replacing the standard suite of through-bond experiments with the through-space (nuclear Overhauser enhancement spectroscopy, NOESY) experiment. In the contact-based approach, spectral data are represented in a graph with vertices for putative residues (of unknown relation to the primary sequence) and edges for hypothesized NOESY interactions, such that observed spectral peaks could be explained if the residues were 'close enough'. Due to experimental ambiguity, several incorrect edges can be hypothesized for each spectral peak. An assignment is derived by identifying consistent patterns of edges (e.g. for alpha-helices and beta-sheets) within a graph and by mapping the vertices to the primary sequence. The key algorithmic challenge is to be able to uncover these patterns even when they are obscured by significant noise. This paper develops, analyzes and applies a novel algorithm for the identification of polytopes representing consistent patterns of edges in a corrupted NOESY graph. Our randomized algorithm aggregates simplices into polytopes and fixes inconsistencies with simple local modifications, called rotations, that maintain most of the structure already uncovered. In characterizing the effects of experimental noise, we employ an NMR-specific random graph model in proving that our algorithm gives optimal performance in expected polynomial time, even when the input graph is significantly corrupted. We confirm this analysis in simulation studies with graphs corrupted by up to 500% noise. Finally, we demonstrate the practical application of the algorithm on several experimental beta-sheet datasets. Our approach is able to eliminate a large majority of noise edges and to uncover large consistent sets of interactions. Our algorithm has been implemented in the platform-independent Python code. The software can be freely obtained for academic use by request from the authors.
Inference from clustering with application to gene-expression microarrays.
Dougherty, Edward R; Barrera, Junior; Brun, Marcel; Kim, Seungchan; Cesar, Roberto M; Chen, Yidong; Bittner, Michael; Trent, Jeffrey M
2002-01-01
There are many algorithms to cluster sample data points based on nearness or a similarity measure. Often the implication is that points in different clusters come from different underlying classes, whereas those in the same cluster come from the same class. Stochastically, the underlying classes represent different random processes. The inference is that clusters represent a partition of the sample points according to which process they belong. This paper discusses a model-based clustering toolbox that evaluates cluster accuracy. Each random process is modeled as its mean plus independent noise, sample points are generated, the points are clustered, and the clustering error is the number of points clustered incorrectly according to the generating random processes. Various clustering algorithms are evaluated based on process variance and the key issue of the rate at which algorithmic performance improves with increasing numbers of experimental replications. The model means can be selected by hand to test the separability of expected types of biological expression patterns. Alternatively, the model can be seeded by real data to test the expected precision of that output or the extent of improvement in precision that replication could provide. In the latter case, a clustering algorithm is used to form clusters, and the model is seeded with the means and variances of these clusters. Other algorithms are then tested relative to the seeding algorithm. Results are averaged over various seeds. Output includes error tables and graphs, confusion matrices, principal-component plots, and validation measures. Five algorithms are studied in detail: K-means, fuzzy C-means, self-organizing maps, hierarchical Euclidean-distance-based and correlation-based clustering. The toolbox is applied to gene-expression clustering based on cDNA microarrays using real data. Expression profile graphics are generated and error analysis is displayed within the context of these profile graphics. A large amount of generated output is available over the web.
2016-12-01
Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street Concord, NH 03301 under contract W911SR...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street... Genetic Algorithm 5a. CONTRACT NUMBER W199SR-15-2-001 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Justin L Paul 5d. PROJECT
Distinguishing computable mixtures of quantum states
NASA Astrophysics Data System (ADS)
Grande, Ignacio H. López; Senno, Gabriel; de la Torre, Gonzalo; Larotonda, Miguel A.; Bendersky, Ariel; Figueira, Santiago; Acín, Antonio
2018-05-01
In this article we extend results from our previous work [Bendersky et al., Phys. Rev. Lett. 116, 230402 (2016), 10.1103/PhysRevLett.116.230402] by providing a protocol to distinguish in finite time and with arbitrarily high success probability any algorithmic mixture of pure states from the maximally mixed state. Moreover, we include an experimental realization, using a modified quantum key distribution setup, where two different random sequences of pure states are prepared; these sequences are indistinguishable according to quantum mechanics, but they become distinguishable when randomness is replaced with pseudorandomness within the experimental preparation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiaobiao; Safranek, James
2014-09-01
Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)
NASA Astrophysics Data System (ADS)
Li, X. R.; Wang, X.
2016-03-01
When using the genetic algorithm to solve the problem of too-short-arc (TSA) determination, due to the difference of computing processes between the genetic algorithm and classical method, the methods for outliers editing are no longer applicable. In the genetic algorithm, the robust estimation is acquired by means of using different loss functions in the fitness function, then the outlier problem of TSAs is solved. Compared with the classical method, the application of loss functions in the genetic algorithm is greatly simplified. Through the comparison of results of different loss functions, it is clear that the methods of least median square and least trimmed square can greatly improve the robustness of TSAs, and have a high breakdown point.
Bio-Inspired Genetic Algorithms with Formalized Crossover Operators for Robotic Applications.
Zhang, Jie; Kang, Man; Li, Xiaojuan; Liu, Geng-Yang
2017-01-01
Genetic algorithms are widely adopted to solve optimization problems in robotic applications. In such safety-critical systems, it is vitally important to formally prove the correctness when genetic algorithms are applied. This paper focuses on formal modeling of crossover operations that are one of most important operations in genetic algorithms. Specially, we for the first time formalize crossover operations with higher-order logic based on HOL4 that is easy to be deployed with its user-friendly programing environment. With correctness-guaranteed formalized crossover operations, we can safely apply them in robotic applications. We implement our technique to solve a path planning problem using a genetic algorithm with our formalized crossover operations, and the results show the effectiveness of our technique.
Information filtering in evolving online networks
NASA Astrophysics Data System (ADS)
Chen, Bo-Lun; Li, Fen-Fen; Zhang, Yong-Jun; Ma, Jia-Lin
2018-02-01
Recommender systems use the records of users' activities and profiles of both users and products to predict users' preferences in the future. Considerable works towards recommendation algorithms have been published to solve the problems such as accuracy, diversity, congestion, cold-start, novelty, coverage and so on. However, most of these research did not consider the temporal effects of the information included in the users' historical data. For example, the segmentation of the training set and test set was completely random, which was entirely different from the real scenario in recommender systems. More seriously, all the objects are treated as the same, regardless of the new, the popular or obsoleted products, so do the users. These data processing methods always lose useful information and mislead the understanding of the system's state. In this paper, we detailed analyzed the difference of the network structure between the traditional random division method and the temporal division method on two benchmark data sets, Netflix and MovieLens. Then three classical recommendation algorithms, Global Ranking method, Collaborative Filtering and Mass Diffusion method, were employed. The results show that all these algorithms became worse in all four key indicators, ranking score, precision, popularity and diversity, in the temporal scenario. Finally, we design a new recommendation algorithm based on both users' and objects' first appearance time in the system. Experimental results showed that the new algorithm can greatly improve the accuracy and other metrics.
Intelligent Fault Diagnosis of HVCB with Feature Space Optimization-Based Random Forest
Ma, Suliang; Wu, Jianwen; Wang, Yuhao; Jia, Bowen; Jiang, Yuan
2018-01-01
Mechanical faults of high-voltage circuit breakers (HVCBs) always happen over long-term operation, so extracting the fault features and identifying the fault type have become a key issue for ensuring the security and reliability of power supply. Based on wavelet packet decomposition technology and random forest algorithm, an effective identification system was developed in this paper. First, compared with the incomplete description of Shannon entropy, the wavelet packet time-frequency energy rate (WTFER) was adopted as the input vector for the classifier model in the feature selection procedure. Then, a random forest classifier was used to diagnose the HVCB fault, assess the importance of the feature variable and optimize the feature space. Finally, the approach was verified based on actual HVCB vibration signals by considering six typical fault classes. The comparative experiment results show that the classification accuracy of the proposed method with the origin feature space reached 93.33% and reached up to 95.56% with optimized input feature vector of classifier. This indicates that feature optimization procedure is successful, and the proposed diagnosis algorithm has higher efficiency and robustness than traditional methods. PMID:29659548
Ringed Seal Search for Global Optimization via a Sensitive Search Model
Saadi, Younes; Yanto, Iwan Tri Riyadi; Herawan, Tutut; Balakrishnan, Vimala; Chiroma, Haruna; Risnumawan, Anhar
2016-01-01
The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems. PMID:26790131
NASA Astrophysics Data System (ADS)
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.
Damage identification on spatial Timoshenko arches by means of genetic algorithms
NASA Astrophysics Data System (ADS)
Greco, A.; D'Urso, D.; Cannizzaro, F.; Pluchino, A.
2018-05-01
In this paper a procedure for the dynamic identification of damage in spatial Timoshenko arches is presented. The proposed approach is based on the calculation of an arbitrary number of exact eigen-properties of a damaged spatial arch by means of the Wittrick and Williams algorithm. The proposed damage model considers a reduction of the volume in a part of the arch, and is therefore suitable, differently than what is commonly proposed in the main part of the dedicated literature, not only for concentrated cracks but also for diffused damaged zones which may involve a loss of mass. Different damage scenarios can be taken into account with variable location, intensity and extension of the damage as well as number of damaged segments. An optimization procedure, aiming at identifying which damage configuration minimizes the difference between its eigen-properties and a set of measured modal quantities for the structure, is implemented making use of genetic algorithms. In this context, an initial random population of chromosomes, representing different damage distributions along the arch, is forced to evolve towards the fittest solution. Several applications with different, single or multiple, damaged zones and boundary conditions confirm the validity and the applicability of the proposed procedure even in presence of instrumental errors on the measured data.
Primary chromatic aberration elimination via optimization work with genetic algorithm
NASA Astrophysics Data System (ADS)
Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao
2008-09-01
Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.
A Test of Genetic Algorithms in Relevance Feedback.
ERIC Educational Resources Information Center
Lopez-Pujalte, Cristina; Guerrero Bote, Vicente P.; Moya Anegon, Felix de
2002-01-01
Discussion of information retrieval, query optimization techniques, and relevance feedback focuses on genetic algorithms, which are derived from artificial intelligence techniques. Describes an evaluation of different genetic algorithms using a residual collection method and compares results with the Ide dec-hi method (Salton and Buckley, 1990…
Transonic Wing Shape Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2002-01-01
A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.
Moghadasi, Mohammad; Kozakov, Dima; Mamonov, Artem B.; Vakili, Pirooz; Vajda, Sandor; Paschalidis, Ioannis Ch.
2013-01-01
We introduce a message-passing algorithm to solve the Side Chain Positioning (SCP) problem. SCP is a crucial component of protein docking refinement, which is a key step of an important class of problems in computational structural biology called protein docking. We model SCP as a combinatorial optimization problem and formulate it as a Maximum Weighted Independent Set (MWIS) problem. We then employ a modified and convergent belief-propagation algorithm to solve a relaxation of MWIS and develop randomized estimation heuristics that use the relaxed solution to obtain an effective MWIS feasible solution. Using a benchmark set of protein complexes we demonstrate that our approach leads to more accurate docking predictions compared to a baseline algorithm that does not solve the SCP. PMID:23515575
Portfolio optimization by using linear programing models based on genetic algorithm
NASA Astrophysics Data System (ADS)
Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.
2018-01-01
In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.
Solving TSP problem with improved genetic algorithm
NASA Astrophysics Data System (ADS)
Fu, Chunhua; Zhang, Lijun; Wang, Xiaojing; Qiao, Liying
2018-05-01
The TSP is a typical NP problem. The optimization of vehicle routing problem (VRP) and city pipeline optimization can use TSP to solve; therefore it is very important to the optimization for solving TSP problem. The genetic algorithm (GA) is one of ideal methods in solving it. The standard genetic algorithm has some limitations. Improving the selection operator of genetic algorithm, and importing elite retention strategy can ensure the select operation of quality, In mutation operation, using the adaptive algorithm selection can improve the quality of search results and variation, after the chromosome evolved one-way evolution reverse operation is added which can make the offspring inherit gene of parental quality improvement opportunities, and improve the ability of searching the optimal solution algorithm.
Opto-digital spectrum encryption by using Baker mapping and gyrator transform
NASA Astrophysics Data System (ADS)
Chen, Hang; Zhao, Jiguang; Liu, Zhengjun; Du, Xiaoping
2015-03-01
A concept of spectrum information hidden technology is proposed in this paper. We present an optical encryption algorithm for hiding both the spatial and spectrum information by using the Baker mapping in gyrator transform domains. The Baker mapping is introduced for scrambling the every single band of the hyperspectral image before adding the random phase functions. Subsequently, three thin cylinder lenses are controlled by PC for implementing the gyrator transform. The amplitude and phase information in the output plane can be regarded as the encrypted information and main key. Some numerical simulations are made to test the validity and capability of the proposed encryption algorithm.
Zhan, Xue-yan; Zhao, Na; Lin, Zhao-zhou; Wu, Zhi-sheng; Yuan, Rui-juan; Qiao, Yan-jiang
2014-12-01
The appropriate algorithm for calibration set selection was one of the key technologies for a good NIR quantitative model. There are different algorithms for calibration set selection, such as Random Sampling (RS) algorithm, Conventional Selection (CS) algorithm, Kennard-Stone(KS) algorithm and Sample set Portioning based on joint x-y distance (SPXY) algorithm, et al. However, there lack systematic comparisons between two algorithms of the above algorithms. The NIR quantitative models to determine the asiaticoside content in Centella total glucosides were established in the present paper, of which 7 indexes were classified and selected, and the effects of CS algorithm, KS algorithm and SPXY algorithm for calibration set selection on the accuracy and robustness of NIR quantitative models were investigated. The accuracy indexes of NIR quantitative models with calibration set selected by SPXY algorithm were significantly different from that with calibration set selected by CS algorithm or KS algorithm, while the robustness indexes, such as RMSECV and |RMSEP-RMSEC|, were not significantly different. Therefore, SPXY algorithm for calibration set selection could improve the predicative accuracy of NIR quantitative models to determine asiaticoside content in Centella total glucosides, and have no significant effect on the robustness of the models, which provides a reference to determine the appropriate algorithm for calibration set selection when NIR quantitative models are established for the solid system of traditional Chinese medcine.
SPLICER - A GENETIC ALGORITHM TOOL FOR SEARCH AND OPTIMIZATION, VERSION 1.0 (MACINTOSH VERSION)
NASA Technical Reports Server (NTRS)
Wang, L.
1994-01-01
SPLICER is a genetic algorithm tool which can be used to solve search and optimization problems. Genetic algorithms are adaptive search procedures (i.e. problem solving methods) based loosely on the processes of natural selection and Darwinian "survival of the fittest." SPLICER provides the underlying framework and structure for building a genetic algorithm application. These algorithms apply genetically-inspired operators to populations of potential solutions in an iterative fashion, creating new populations while searching for an optimal or near-optimal solution to the problem at hand. SPLICER 1.0 was created using a modular architecture that includes a Genetic Algorithm Kernel, interchangeable Representation Libraries, Fitness Modules and User Interface Libraries, and well-defined interfaces between these components. The architecture supports portability, flexibility, and extensibility. SPLICER comes with all source code and several examples. For instance, a "traveling salesperson" example searches for the minimum distance through a number of cities visiting each city only once. Stand-alone SPLICER applications can be used without any programming knowledge. However, to fully utilize SPLICER within new problem domains, familiarity with C language programming is essential. SPLICER's genetic algorithm (GA) kernel was developed independent of representation (i.e. problem encoding), fitness function or user interface type. The GA kernel comprises all functions necessary for the manipulation of populations. These functions include the creation of populations and population members, the iterative population model, fitness scaling, parent selection and sampling, and the generation of population statistics. In addition, miscellaneous functions are included in the kernel (e.g., random number generators). Different problem-encoding schemes and functions are defined and stored in interchangeable representation libraries. This allows the GA kernel to be used with any representation scheme. The SPLICER tool provides representation libraries for binary strings and for permutations. These libraries contain functions for the definition, creation, and decoding of genetic strings, as well as multiple crossover and mutation operators. Furthermore, the SPLICER tool defines the appropriate interfaces to allow users to create new representation libraries. Fitness modules are the only component of the SPLICER system a user will normally need to create or alter to solve a particular problem. Fitness functions are defined and stored in interchangeable fitness modules which must be created using C language. Within a fitness module, a user can create a fitness (or scoring) function, set the initial values for various SPLICER control parameters (e.g., population size), create a function which graphically displays the best solutions as they are found, and provide descriptive information about the problem. The tool comes with several example fitness modules, while the process of developing a fitness module is fully discussed in the accompanying documentation. The user interface is event-driven and provides graphic output in windows. SPLICER is written in Think C for Apple Macintosh computers running System 6.0.3 or later and Sun series workstations running SunOS. The UNIX version is easily ported to other UNIX platforms and requires MIT's X Window System, Version 11 Revision 4 or 5, MIT's Athena Widget Set, and the Xw Widget Set. Example executables and source code are included for each machine version. The standard distribution media for the Macintosh version is a set of three 3.5 inch Macintosh format diskettes. The standard distribution medium for the UNIX version is a .25 inch streaming magnetic tape cartridge in UNIX tar format. For the UNIX version, alternate distribution media and formats are available upon request. SPLICER was developed in 1991.
Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous
NASA Technical Reports Server (NTRS)
Karr, C. L.; Freeman, L. M.; Meredith, D. L.
1990-01-01
The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.
Enhancement of A5/1 encryption algorithm
NASA Astrophysics Data System (ADS)
Thomas, Ria Elin; Chandhiny, G.; Sharma, Katyayani; Santhi, H.; Gayathri, P.
2017-11-01
Mobiles have become an integral part of today’s world. Various standards have been proposed for the mobile communication, one of them being GSM. With the rising increase of mobile-based crimes, it is necessary to improve the security of the information passed in the form of voice or data. GSM uses A5/1 for its encryption. It is known that various attacks have been implemented, exploiting the vulnerabilities present within the A5/1 algorithm. Thus, in this paper, we proceed to look at what these vulnerabilities are, and propose the enhanced A5/1 (E-A5/1) where, we try to improve the security provided by the A5/1 algorithm by XORing the key stream generated with a pseudo random number, without increasing the time complexity. We need to study what the vulnerabilities of the base algorithm (A5/1) is, and try to improve upon its security. This will help in the future releases of the A5 family of algorithms.
Wong, Brian J F; Karimi, Koohyar; Devcic, Zlatko; McLaren, Christine E; Chen, Wen-Pin
2008-06-01
The objectives of this study were to: 1) determine if a genetic algorithm in combination with morphing software can be used to evolve more attractive faces; and 2) evaluate whether this approach can be used as a tool to define or identify the attributes of the ideal attractive face. Basic research study incorporating focus group evaluations. Digital images were acquired of 250 female volunteers (18-25 y). Randomly selected images were used to produce a parent generation (P) of 30 synthetic faces using morphing software. Then, a focus group of 17 trained volunteers (18-25 y) scored each face on an attractiveness scale ranging from 1 (unattractive) to 10 (attractive). A genetic algorithm was used to select 30 new pairs from the parent generation, and these were morphed using software to produce a new first generation (F1) of faces. The F1 faces were scored by the focus group, and the process was repeated for a total of four iterations of the algorithm. The algorithm mimics natural selection by using the attractiveness score as the selection pressure; the more attractive faces are more likely to morph. All five generations (P-F4) were then scored by three focus groups: a) surgeons (n = 12), b) cos-metology students (n = 44), and c) undergraduate students (n = 44). Morphometric measurements were made of 33 specific features on each of the 150 synthetic faces, and correlated with attractiveness scores using univariate and multivariate analysis. The average facial attractiveness scores increased with each generation and were 3.66 (+0.60), 4.59 (+/-0.73), 5.50 (+/-0.62), 6.23 (+/-0.31), and 6.39 (+/-0.24) for P and F1-F4 generations, respectively. Histograms of attractiveness score distributions show a significant shift in the skew of each curve toward more attractive faces with each generation. Univariate analysis identified nasal width, eyebrow arch height, and lip thickness as being significantly correlated with attractiveness scores. Multivariate analysis identified a similar collection of morphometric measures. No correlation with more commonly accepted measures such as the length facial thirds or fifths were identified. When images are examined as a montage (by generation), clear distinct trends are identified: oval shaped faces, distinct arched eyebrows, and full lips predominate. Faces evolve to approximate the guidelines suggested by classical canons. F3 and F4 generation faces look profoundly similar. The statistical and qualitative analysis indicates that the algorithm and methodology succeeds in generating successively more attractive faces. The use of genetic algorithms in combination with a morphing software and traditional focus-group derived attractiveness scores can be used to evolve attractive synthetic faces. We have demonstrated that the evolution of attractive faces can be mimicked in software. Genetic algorithms and morphing provide a robust alternative to traditional approaches rooted in comparing attractiveness scores with a series of morphometric measurements in human subjects.
A "Hands on" Strategy for Teaching Genetic Algorithms to Undergraduates
ERIC Educational Resources Information Center
Venables, Anne; Tan, Grace
2007-01-01
Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that are "intractable" using classical methods. The language of genetic algorithms (GAs) is heavily laced with biological metaphors from evolutionary…
The potential of genetic algorithms for conceptual design of rotor systems
NASA Technical Reports Server (NTRS)
Crossley, William A.; Wells, Valana L.; Laananen, David H.
1993-01-01
The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)
NASA Astrophysics Data System (ADS)
Li, Xin-ran; Wang, Xin
2017-04-01
When the genetic algorithm is used to solve the problem of too short-arc (TSA) orbit determination, due to the difference of computing process between the genetic algorithm and the classical method, the original method for outlier deletion is no longer applicable. In the genetic algorithm, the robust estimation is realized by introducing different loss functions for the fitness function, then the outlier problem of the TSA orbit determination is solved. Compared with the classical method, the genetic algorithm is greatly simplified by introducing in different loss functions. Through the comparison on the calculations of multiple loss functions, it is found that the least median square (LMS) estimation and least trimmed square (LTS) estimation can greatly improve the robustness of the TSA orbit determination, and have a high breakdown point.
NASA Technical Reports Server (NTRS)
Wang, Lui; Valenzuela-Rendon, Manuel
1993-01-01
The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.
The genome architecture of the Collaborative Cross mouse genetic reference population.
2012-02-01
The Collaborative Cross Consortium reports here on the development of a unique genetic resource population. The Collaborative Cross (CC) is a multiparental recombinant inbred panel derived from eight laboratory mouse inbred strains. Breeding of the CC lines was initiated at multiple international sites using mice from The Jackson Laboratory. Currently, this innovative project is breeding independent CC lines at the University of North Carolina (UNC), at Tel Aviv University (TAU), and at Geniad in Western Australia (GND). These institutions aim to make publicly available the completed CC lines and their genotypes and sequence information. We genotyped, and report here, results from 458 extant lines from UNC, TAU, and GND using a custom genotyping array with 7500 SNPs designed to be maximally informative in the CC and used a novel algorithm to infer inherited haplotypes directly from hybridization intensity patterns. We identified lines with breeding errors and cousin lines generated by splitting incipient lines into two or more cousin lines at early generations of inbreeding. We then characterized the genome architecture of 350 genetically independent CC lines. Results showed that founder haplotypes are inherited at the expected frequency, although we also consistently observed highly significant transmission ratio distortion at specific loci across all three populations. On chromosome 2, there is significant overrepresentation of WSB/EiJ alleles, and on chromosome X, there is a large deficit of CC lines with CAST/EiJ alleles. Linkage disequilibrium decays as expected and we saw no evidence of gametic disequilibrium in the CC population as a whole or in random subsets of the population. Gametic equilibrium in the CC population is in marked contrast to the gametic disequilibrium present in a large panel of classical inbred strains. Finally, we discuss access to the CC population and to the associated raw data describing the genetic structure of individual lines. Integration of rich phenotypic and genomic data over time and across a wide variety of fields will be vital to delivering on one of the key attributes of the CC, a common genetic reference platform for identifying causative variants and genetic networks determining traits in mammals.
Dimitriadis, Stavros I; Liparas, Dimitris
2018-06-01
Neuroinformatics is a fascinating research field that applies computational models and analytical tools to high dimensional experimental neuroscience data for a better understanding of how the brain functions or dysfunctions in brain diseases. Neuroinformaticians work in the intersection of neuroscience and informatics supporting the integration of various sub-disciplines (behavioural neuroscience, genetics, cognitive psychology, etc.) working on brain research. Neuroinformaticians are the pathway of information exchange between informaticians and clinicians for a better understanding of the outcome of computational models and the clinical interpretation of the analysis. Machine learning is one of the most significant computational developments in the last decade giving tools to neuroinformaticians and finally to radiologists and clinicians for an automatic and early diagnosis-prognosis of a brain disease. Random forest (RF) algorithm has been successfully applied to high-dimensional neuroimaging data for feature reduction and also has been applied to classify the clinical label of a subject using single or multi-modal neuroimaging datasets. Our aim was to review the studies where RF was applied to correctly predict the Alzheimer's disease (AD), the conversion from mild cognitive impairment (MCI) and its robustness to overfitting, outliers and handling of non-linear data. Finally, we described our RF-based model that gave us the 1 st position in an international challenge for automated prediction of MCI from MRI data.
An Improved Heuristic Method for Subgraph Isomorphism Problem
NASA Astrophysics Data System (ADS)
Xiang, Yingzhuo; Han, Jiesi; Xu, Haijiang; Guo, Xin
2017-09-01
This paper focus on the subgraph isomorphism (SI) problem. We present an improved genetic algorithm, a heuristic method to search the optimal solution. The contribution of this paper is that we design a dedicated crossover algorithm and a new fitness function to measure the evolution process. Experiments show our improved genetic algorithm performs better than other heuristic methods. For a large graph, such as a subgraph of 40 nodes, our algorithm outperforms the traditional tree search algorithms. We find that the performance of our improved genetic algorithm does not decrease as the number of nodes in prototype graphs.
Use of Genetic Algorithms to solve Inverse Problems in Relativistic Hydrodynamics
NASA Astrophysics Data System (ADS)
Guzmán, F. S.; González, J. A.
2018-04-01
We present the use of Genetic Algorithms (GAs) as a strategy to solve inverse problems associated with models of relativistic hydrodynamics. The signal we consider to emulate an observation is the density of a relativistic gas, measured at a point where a shock is traveling. This shock is generated numerically out of a Riemann problem with mildly relativistic conditions. The inverse problem we propose is the prediction of the initial conditions of density, velocity and pressure of the Riemann problem that gave origin to that signal. For this we use the density, velocity and pressure of the gas at both sides of the discontinuity, as the six genes of an organism, initially with random values within a tolerance. We then prepare an initial population of N of these organisms and evolve them using methods based on GAs. In the end, the organism with the best fitness of each generation is compared to the signal and the process ends when the set of initial conditions of the organisms of a later generation fit the Signal within a tolerance.
Improved Genetic Algorithm Based on the Cooperation of Elite and Inverse-elite
NASA Astrophysics Data System (ADS)
Kanakubo, Masaaki; Hagiwara, Masafumi
In this paper, we propose an improved genetic algorithm based on the combination of Bee system and Inverse-elitism, both are effective strategies for the improvement of GA. In the Bee system, in the beginning, each chromosome tries to find good solution individually as global search. When some chromosome is regarded as superior one, the other chromosomes try to find solution around there. However, since chromosomes for global search are generated randomly, Bee system lacks global search ability. On the other hand, in the Inverse-elitism, an inverse-elite whose gene values are reversed from the corresponding elite is produced. This strategy greatly contributes to diversification of chromosomes, but it lacks local search ability. In the proposed method, the Inverse-elitism with Pseudo-simplex method is employed for global search of Bee system in order to strengthen global search ability. In addition, it also has strong local search ability. The proposed method has synergistic effects of the three strategies. We confirmed validity and superior performance of the proposed method by computer simulations.
Robot path planning using a genetic algorithm
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu
1988-01-01
Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.
Wang, Li; Jia, Pengfei; Huang, Tailai; Duan, Shukai; Yan, Jia; Wang, Lidan
2016-01-01
An electronic nose (E-nose) is an intelligent system that we will use in this paper to distinguish three indoor pollutant gases (benzene (C6H6), toluene (C7H8), formaldehyde (CH2O)) and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice, however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always find the global optimization value. In addition its search ability relies fully on randomness, so it cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to improve the global searching and convergence speed performance of KH. To obtain a more accurate model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee the krill group are diversiform at the early stage of iterations, and have a good performance in local searching ability at the later stage of iterations. The recognition results of EKH are compared with those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and we can find that EKH is better than the other considered methods. The research results verify that EKH not only significantly improves the performance of our E-nose system, but also provides a good beginning and theoretical basis for further study about other improved krill algorithms’ applications in all E-nose application areas. PMID:27529247
Efficient Adaptive FIR and IIR Filters.
1979-12-01
Squared) algorithm. -An analysis of the simplified gradient approach is presented and confirmed experimentally for the specific example of an adaptive line...APPENDIX A - SIMULATION 130 A.1 - THE SIMULATION METHOD 130 A.2 - FIR SIMULATION PRO)GRAM 133 A.3 - IIR SIMULATION PROGRAM 136 APPENDIX B - RANDOM...surface. The generation of the reference signal is a key consi- deration in adaptive filter implementation. There are various practical methods as
Genetic algorithms for adaptive real-time control in space systems
NASA Technical Reports Server (NTRS)
Vanderzijp, J.; Choudry, A.
1988-01-01
Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.
2013-01-01
intelligently selecting waveform parameters using adaptive algorithms. The adaptive algorithms optimize the waveform parameters based on (1) the EM...the environment. 15. SUBJECT TERMS cognitive radar, adaptive sensing, spectrum sensing, multi-objective optimization, genetic algorithms, machine...detection and classification block diagram. .........................................................6 Figure 5. Genetic algorithm block diagram
Uddin, Muhammad Shahin; Tahtali, Murat; Lambert, Andrew J; Pickering, Mark R; Marchese, Margaret; Stuart, Iain
2016-05-20
Compared with other medical-imaging modalities, ultrasound (US) imaging is a valuable way to examine the body's internal organs, and two-dimensional (2D) imaging is currently the most common technique used in clinical diagnoses. Conventional 2D US imaging systems are highly flexible cost-effective imaging tools that permit operators to observe and record images of a large variety of thin anatomical sections in real time. Recently, 3D US imaging has also been gaining popularity due to its considerable advantages over 2D US imaging. It reduces dependency on the operator and provides better qualitative and quantitative information for an effective diagnosis. Furthermore, it provides a 3D view, which allows the observation of volume information. The major shortcoming of any type of US imaging is the presence of speckle noise. Hence, speckle reduction is vital in providing a better clinical diagnosis. The key objective of any speckle-reduction algorithm is to attain a speckle-free image while preserving the important anatomical features. In this paper we introduce a nonlinear multi-scale complex wavelet-diffusion based algorithm for speckle reduction and sharp-edge preservation of 2D and 3D US images. In the proposed method we use a Rayleigh and Maxwell-mixture model for 2D and 3D US images, respectively, where a genetic algorithm is used in combination with an expectation maximization method to estimate mixture parameters. Experimental results using both 2D and 3D synthetic, physical phantom, and clinical data demonstrate that our proposed algorithm significantly reduces speckle noise while preserving sharp edges without discernible distortions. The proposed approach performs better than the state-of-the-art approaches in both qualitative and quantitative measures.
Application of hybrid clustering using parallel k-means algorithm and DIANA algorithm
NASA Astrophysics Data System (ADS)
Umam, Khoirul; Bustamam, Alhadi; Lestari, Dian
2017-03-01
DNA is one of the carrier of genetic information of living organisms. Encoding, sequencing, and clustering DNA sequences has become the key jobs and routine in the world of molecular biology, in particular on bioinformatics application. There are two type of clustering, hierarchical clustering and partitioning clustering. In this paper, we combined two type clustering i.e. K-Means (partitioning clustering) and DIANA (hierarchical clustering), therefore it called Hybrid clustering. Application of hybrid clustering using Parallel K-Means algorithm and DIANA algorithm used to clustering DNA sequences of Human Papillomavirus (HPV). The clustering process is started with Collecting DNA sequences of HPV are obtained from NCBI (National Centre for Biotechnology Information), then performing characteristics extraction of DNA sequences. The characteristics extraction result is store in a matrix form, then normalize this matrix using Min-Max normalization and calculate genetic distance using Euclidian Distance. Furthermore, the hybrid clustering is applied by using implementation of Parallel K-Means algorithm and DIANA algorithm. The aim of using Hybrid Clustering is to obtain better clusters result. For validating the resulted clusters, to get optimum number of clusters, we use Davies-Bouldin Index (DBI). In this study, the result of implementation of Parallel K-Means clustering is data clustered become 5 clusters with minimal IDB value is 0.8741, and Hybrid Clustering clustered data become 13 sub-clusters with minimal IDB values = 0.8216, 0.6845, 0.3331, 0.1994 and 0.3952. The IDB value of hybrid clustering less than IBD value of Parallel K-Means clustering only that perform at 1ts stage. Its means clustering using Hybrid Clustering have the better result to clustered DNA sequence of HPV than perform parallel K-Means Clustering only.
A new pivoting and iterative text detection algorithm for biomedical images.
Xu, Songhua; Krauthammer, Michael
2010-12-01
There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper's key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manually labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based text detection approach is well suited for text detection in biomedical images, and that the iterative application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation of our algorithm freely available for academic use. Copyright © 2010 Elsevier Inc. All rights reserved.
A multi-scaled approach for simulating chemical reaction systems.
Burrage, Kevin; Tian, Tianhai; Burrage, Pamela
2004-01-01
In this paper we give an overview of some very recent work, as well as presenting a new approach, on the stochastic simulation of multi-scaled systems involving chemical reactions. In many biological systems (such as genetic regulation and cellular dynamics) there is a mix between small numbers of key regulatory proteins, and medium and large numbers of molecules. In addition, it is important to be able to follow the trajectories of individual molecules by taking proper account of the randomness inherent in such a system. We describe different types of simulation techniques (including the stochastic simulation algorithm, Poisson Runge-Kutta methods and the balanced Euler method) for treating simulations in the three different reaction regimes: slow, medium and fast. We then review some recent techniques on the treatment of coupled slow and fast reactions for stochastic chemical kinetics and present a new approach which couples the three regimes mentioned above. We then apply this approach to a biologically inspired problem involving the expression and activity of LacZ and LacY proteins in E. coli, and conclude with a discussion on the significance of this work. Copyright 2004 Elsevier Ltd.
Warehouse stocking optimization based on dynamic ant colony genetic algorithm
NASA Astrophysics Data System (ADS)
Xiao, Xiaoxu
2018-04-01
In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.
A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.
Hajri, S; Liouane, N; Hammadi, S; Borne, P
2000-01-01
Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.
Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria
2009-01-01
The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship s flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm s design, along with mathematical models of the algorithm s performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.
Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria
2009-01-01
The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship's flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm's design, along with mathematical models of the algorithm's performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.
Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng
2015-01-01
The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior. PMID:26000011
Scalability problems of simple genetic algorithms.
Thierens, D
1999-01-01
Scalable evolutionary computation has become an intensively studied research topic in recent years. The issue of scalability is predominant in any field of algorithmic design, but it became particularly relevant for the design of competent genetic algorithms once the scalability problems of simple genetic algorithms were understood. Here we present some of the work that has aided in getting a clear insight in the scalability problems of simple genetic algorithms. Particularly, we discuss the important issue of building block mixing. We show how the need for mixing places a boundary in the GA parameter space that, together with the boundary from the schema theorem, delimits the region where the GA converges reliably to the optimum in problems of bounded difficulty. This region shrinks rapidly with increasing problem size unless the building blocks are tightly linked in the problem coding structure. In addition, we look at how straightforward extensions of the simple genetic algorithm-namely elitism, niching, and restricted mating are not significantly improving the scalability problems.
Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng
2015-01-01
The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.
An investigation of messy genetic algorithms
NASA Technical Reports Server (NTRS)
Goldberg, David E.; Deb, Kalyanmoy; Korb, Bradley
1990-01-01
Genetic algorithms (GAs) are search procedures based on the mechanics of natural selection and natural genetics. They combine the use of string codings or artificial chromosomes and populations with the selective and juxtapositional power of reproduction and recombination to motivate a surprisingly powerful search heuristic in many problems. Despite their empirical success, there has been a long standing objection to the use of GAs in arbitrarily difficult problems. A new approach was launched. Results to a 30-bit, order-three-deception problem were obtained using a new type of genetic algorithm called a messy genetic algorithm (mGAs). Messy genetic algorithms combine the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to effect a solution to the fixed-coding problem of standard simple GAs. The results of the study of mGAs in problems with nonuniform subfunction scale and size are presented. The mGA approach is summarized, both its operation and the theory of its use. Experiments on problems of varying scale, varying building-block size, and combined varying scale and size are presented.
Global Optimization of a Periodic System using a Genetic Algorithm
NASA Astrophysics Data System (ADS)
Stucke, David; Crespi, Vincent
2001-03-01
We use a novel application of a genetic algorithm global optimizatin technique to find the lowest energy structures for periodic systems. We apply this technique to colloidal crystals for several different stoichiometries of binary and trinary colloidal crystals. This application of a genetic algorithm is decribed and results of likely candidate structures are presented.
Efficient calculation of higher-order optical waveguide dispersion.
Mores, J A; Malheiros-Silveira, G N; Fragnito, H L; Hernández-Figueroa, H E
2010-09-13
An efficient numerical strategy to compute the higher-order dispersion parameters of optical waveguides is presented. For the first time to our knowledge, a systematic study of the errors involved in the higher-order dispersions' numerical calculation process is made, showing that the present strategy can accurately model those parameters. Such strategy combines a full-vectorial finite element modal solver and a proper finite difference differentiation algorithm. Its performance has been carefully assessed through the analysis of several key geometries. In addition, the optimization of those higher-order dispersion parameters can also be carried out by coupling to the present scheme a genetic algorithm, as shown here through the design of a photonic crystal fiber suitable for parametric amplification applications.
Crystal Structure Predictions Using Adaptive Genetic Algorithm and Motif Search methods
NASA Astrophysics Data System (ADS)
Ho, K. M.; Wang, C. Z.; Zhao, X.; Wu, S.; Lyu, X.; Zhu, Z.; Nguyen, M. C.; Umemoto, K.; Wentzcovitch, R. M. M.
2017-12-01
Material informatics is a new initiative which has attracted a lot of attention in recent scientific research. The basic strategy is to construct comprehensive data sets and use machine learning to solve a wide variety of problems in material design and discovery. In pursuit of this goal, a key element is the quality and completeness of the databases used. Recent advance in the development of crystal structure prediction algorithms has made it a complementary and more efficient approach to explore the structure/phase space in materials using computers. In this talk, we discuss the importance of the structural motifs and motif-networks in crystal structure predictions. Correspondingly, powerful methods are developed to improve the sampling of the low-energy structure landscape.
Research and application of multi-agent genetic algorithm in tower defense game
NASA Astrophysics Data System (ADS)
Jin, Shaohua
2018-04-01
In this paper, a new multi-agent genetic algorithm based on orthogonal experiment is proposed, which is based on multi-agent system, genetic algorithm and orthogonal experimental design. The design of neighborhood competition operator, orthogonal crossover operator, Son and self-learning operator. The new algorithm is applied to mobile tower defense game, according to the characteristics of the game, the establishment of mathematical models, and finally increases the value of the game's monster.
Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2001-01-01
A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.
Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem
Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh
2014-01-01
This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359
NASA Astrophysics Data System (ADS)
Soelistijanto, B.; Muliadi, V.
2018-03-01
Diffie-Hellman (DH) provides an efficient key exchange system by reducing the number of cryptographic keys distributed in the network. In this method, a node broadcasts a single public key to all nodes in the network, and in turn each peer uses this key to establish a shared secret key which then can be utilized to encrypt and decrypt traffic between the peer and the given node. In this paper, we evaluate the key transfer delay and cost performance of DH in opportunistic mobile networks, a specific scenario of MANETs where complete end-to-end paths rarely exist between sources and destinations; consequently, the end-to-end delays in these networks are much greater than typical MANETs. Simulation results, driven by a random node movement model and real human mobility traces, showed that DH outperforms a typical key distribution scheme based on the RSA algorithm in terms of key transfer delay, measured by average key convergence time; however, DH performs as well as the benchmark in terms of key transfer cost, evaluated by total key (copies) forwards.
Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity
Louis, S.J.; Raines, G.L.
2003-01-01
We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.
Hybrid genetic algorithm in the Hopfield network for maximum 2-satisfiability problem
NASA Astrophysics Data System (ADS)
Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf
2017-08-01
Heuristic method was designed for finding optimal solution more quickly compared to classical methods which are too complex to comprehend. In this study, a hybrid approach that utilizes Hopfield network and genetic algorithm in doing maximum 2-Satisfiability problem (MAX-2SAT) was proposed. Hopfield neural network was used to minimize logical inconsistency in interpretations of logic clauses or program. Genetic algorithm (GA) has pioneered the implementation of methods that exploit the idea of combination and reproduce a better solution. The simulation incorporated with and without genetic algorithm will be examined by using Microsoft Visual 2013 C++ Express software. The performance of both searching techniques in doing MAX-2SAT was evaluate based on global minima ratio, ratio of satisfied clause and computation time. The result obtained form the computer simulation demonstrates the effectiveness and acceleration features of genetic algorithm in doing MAX-2SAT in Hopfield network.
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator
Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements. PMID:29209364
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator.
Hussain, Abid; Muhammad, Yousaf Shad; Nauman Sajid, M; Hussain, Ijaz; Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.
Verschueren, Sabine M. P.; Degens, Hans; Morse, Christopher I.; Onambélé, Gladys L.
2017-01-01
Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual’s physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry. PMID:29155839
Wullems, Jorgen A; Verschueren, Sabine M P; Degens, Hans; Morse, Christopher I; Onambélé, Gladys L
2017-01-01
Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual's physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry.
Kim, Eun Young; Magnotta, Vincent A; Liu, Dawei; Johnson, Hans J
2014-09-01
Machine learning (ML)-based segmentation methods are a common technique in the medical image processing field. In spite of numerous research groups that have investigated ML-based segmentation frameworks, there remains unanswered aspects of performance variability for the choice of two key components: ML algorithm and intensity normalization. This investigation reveals that the choice of those elements plays a major part in determining segmentation accuracy and generalizability. The approach we have used in this study aims to evaluate relative benefits of the two elements within a subcortical MRI segmentation framework. Experiments were conducted to contrast eight machine-learning algorithm configurations and 11 normalization strategies for our brain MR segmentation framework. For the intensity normalization, a Stable Atlas-based Mapped Prior (STAMP) was utilized to take better account of contrast along boundaries of structures. Comparing eight machine learning algorithms on down-sampled segmentation MR data, it was obvious that a significant improvement was obtained using ensemble-based ML algorithms (i.e., random forest) or ANN algorithms. Further investigation between these two algorithms also revealed that the random forest results provided exceptionally good agreement with manual delineations by experts. Additional experiments showed that the effect of STAMP-based intensity normalization also improved the robustness of segmentation for multicenter data sets. The constructed framework obtained good multicenter reliability and was successfully applied on a large multicenter MR data set (n>3000). Less than 10% of automated segmentations were recommended for minimal expert intervention. These results demonstrate the feasibility of using the ML-based segmentation tools for processing large amount of multicenter MR images. We demonstrated dramatically different result profiles in segmentation accuracy according to the choice of ML algorithm and intensity normalization chosen. Copyright © 2014 Elsevier Inc. All rights reserved.
P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.
Young-Rae Cho; Yanan Xin; Speegle, Greg
2015-01-01
Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.
A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems
NASA Astrophysics Data System (ADS)
Thammano, Arit; Teekeng, Wannaporn
2015-05-01
The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.
A New Challenge for Compression Algorithms: Genetic Sequences.
ERIC Educational Resources Information Center
Grumbach, Stephane; Tahi, Fariza
1994-01-01
Analyzes the properties of genetic sequences that cause the failure of classical algorithms used for data compression. A lossless algorithm, which compresses the information contained in DNA and RNA sequences by detecting regularities such as palindromes, is presented. This algorithm combines substitutional and statistical methods and appears to…
Parente, Daniel J; Ray, J Christian J; Swint-Kruse, Liskin
2015-12-01
As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. © 2015 Wiley Periodicals, Inc.
Iteration and superposition encryption scheme for image sequences based on multi-dimensional keys
NASA Astrophysics Data System (ADS)
Han, Chao; Shen, Yuzhen; Ma, Wenlin
2017-12-01
An iteration and superposition encryption scheme for image sequences based on multi-dimensional keys is proposed for high security, big capacity and low noise information transmission. Multiple images to be encrypted are transformed into phase-only images with the iterative algorithm and then are encrypted by different random phase, respectively. The encrypted phase-only images are performed by inverse Fourier transform, respectively, thus new object functions are generated. The new functions are located in different blocks and padded zero for a sparse distribution, then they propagate to a specific region at different distances by angular spectrum diffraction, respectively and are superposed in order to form a single image. The single image is multiplied with a random phase in the frequency domain and then the phase part of the frequency spectrums is truncated and the amplitude information is reserved. The random phase, propagation distances, truncated phase information in frequency domain are employed as multiple dimensional keys. The iteration processing and sparse distribution greatly reduce the crosstalk among the multiple encryption images. The superposition of image sequences greatly improves the capacity of encrypted information. Several numerical experiments based on a designed optical system demonstrate that the proposed scheme can enhance encrypted information capacity and make image transmission at a highly desired security level.
NASA Astrophysics Data System (ADS)
Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed
2017-01-01
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.
NASA Astrophysics Data System (ADS)
Grieu, Stéphane; Faugeroux, Olivier; Traoré, Adama; Claudet, Bernard; Bodnar, Jean-Luc
2015-01-01
In the present paper, an artificial-intelligence-based approach dealing with the estimation of thermophysical properties is designed and evaluated. This new and "intelligent" approach makes use of photothermal responses obtained when subjecting materials to a light flux. So, the main objective of the present work was to estimate simultaneously both the thermal diffusivity and conductivity of materials, from front-face or rear-face photothermal responses to pseudo random binary signals. To this end, we used side-by-side feedforward neural networks trained with the cascade-correlation algorithm. In addition, computation time was a key point to consider. That is why the developed algorithms are computationally tractable.
Time Delay Measurements of Key Generation Process on Smart Cards
2015-03-01
random number generator is available (Chatterjee & Gupta, 2009). The ECC algorithm will grow in usage as information becomes more and more secure. Figure...Worldwide Mobile Enterprise Security Software 2012–2016 Forecast and Analysis), mobile identity and access management is expected to grow by 27.6 percent...iPad, tablets) as well as 80000 BlackBerry phones. The mobility plan itself will be deployed in three phases over 2014, with the first phase
Refined genetic algorithm -- Economic dispatch example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheble, G.B.; Brittig, K.
1995-02-01
A genetic-based algorithm is used to solve an economic dispatch (ED) problem. The algorithm utilizes payoff information of perspective solutions to evaluate optimality. Thus, the constraints of classical LaGrangian techniques on unit curves are eliminated. Using an economic dispatch problem as a basis for comparison, several different techniques which enhance program efficiency and accuracy, such as mutation prediction, elitism, interval approximation and penalty factors, are explored. Two unique genetic algorithms are also compared. The results are verified for a sample problem using a classical technique.
Immune allied genetic algorithm for Bayesian network structure learning
NASA Astrophysics Data System (ADS)
Song, Qin; Lin, Feng; Sun, Wei; Chang, KC
2012-06-01
Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.
Flexible Space-Filling Designs for Complex System Simulations
2013-06-01
interior of the experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with...Computer Experiments, Design of Experiments, Genetic Algorithm , Latin Hypercube, Response Surface Methodology, Nearly Orthogonal 15. NUMBER OF PAGES 147...experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with minimal correlations
Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Wells, Valana L.
1996-01-01
This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.
Self-calibration of a noisy multiple-sensor system with genetic algorithms
NASA Astrophysics Data System (ADS)
Brooks, Richard R.; Iyengar, S. Sitharama; Chen, Jianhua
1996-01-01
This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray-scale images corrupted with noise. Both taboo search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results. The presentation includes a graphic presentation of the paths taken by tabu search and genetic algorithms when trying to find the best possible match between two corrupted images.
Increasing Prediction the Original Final Year Project of Student Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Saragih, Rijois Iboy Erwin; Turnip, Mardi; Sitanggang, Delima; Aritonang, Mendarissan; Harianja, Eva
2018-04-01
Final year project is very important forgraduation study of a student. Unfortunately, many students are not seriouslydidtheir final projects. Many of studentsask for someone to do it for them. In this paper, an application of genetic algorithms to predict the original final year project of a studentis proposed. In the simulation, the data of the final project for the last 5 years is collected. The genetic algorithm has several operators namely population, selection, crossover, and mutation. The result suggest that genetic algorithm can do better prediction than other comparable model. Experimental results of predicting showed that 70% was more accurate than the previous researched.
Randomized Dynamic Mode Decomposition
NASA Astrophysics Data System (ADS)
Erichson, N. Benjamin; Brunton, Steven L.; Kutz, J. Nathan
2017-11-01
The dynamic mode decomposition (DMD) is an equation-free, data-driven matrix decomposition that is capable of providing accurate reconstructions of spatio-temporal coherent structures arising in dynamical systems. We present randomized algorithms to compute the near-optimal low-rank dynamic mode decomposition for massive datasets. Randomized algorithms are simple, accurate and able to ease the computational challenges arising with `big data'. Moreover, randomized algorithms are amenable to modern parallel and distributed computing. The idea is to derive a smaller matrix from the high-dimensional input data matrix using randomness as a computational strategy. Then, the dynamic modes and eigenvalues are accurately learned from this smaller representation of the data, whereby the approximation quality can be controlled via oversampling and power iterations. Here, we present randomized DMD algorithms that are categorized by how many passes the algorithm takes through the data. Specifically, the single-pass randomized DMD does not require data to be stored for subsequent passes. Thus, it is possible to approximately decompose massive fluid flows (stored out of core memory, or not stored at all) using single-pass algorithms, which is infeasible with traditional DMD algorithms.
Ebrahimi, Mansour; Aghagolzadeh, Parisa; Shamabadi, Narges; Tahmasebi, Ahmad; Alsharifi, Mohammed; Adelson, David L; Hemmatzadeh, Farhid; Ebrahimie, Esmaeil
2014-01-01
The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and predicting possible future structure of influenza pandemics.
Ebrahimi, Mansour; Aghagolzadeh, Parisa; Shamabadi, Narges; Tahmasebi, Ahmad; Alsharifi, Mohammed; Adelson, David L.
2014-01-01
The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and predicting possible future structure of influenza pandemics. PMID:24809455
3D Protein structure prediction with genetic tabu search algorithm
2010-01-01
Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively. PMID:20522256
A novel algorithm for thermal image encryption.
Hussain, Iqtadar; Anees, Amir; Algarni, Abdulmohsen
2018-04-16
Thermal images play a vital character at nuclear plants, Power stations, Forensic labs biological research, and petroleum products extraction. Safety of thermal images is very important. Image data has some unique features such as intensity, contrast, homogeneity, entropy and correlation among pixels that is why somehow image encryption is trickier as compare to other encryptions. With conventional image encryption schemes it is normally hard to handle these features. Therefore, cryptographers have paid attention to some attractive properties of the chaotic maps such as randomness and sensitivity to build up novel cryptosystems. That is why, recently proposed image encryption techniques progressively more depends on the application of chaotic maps. This paper proposed an image encryption algorithm based on Chebyshev chaotic map and S8 Symmetric group of permutation based substitution boxes. Primarily, parameters of chaotic Chebyshev map are chosen as a secret key to mystify the primary image. Then, the plaintext image is encrypted by the method generated from the substitution boxes and Chebyshev map. By this process, we can get a cipher text image that is perfectly twisted and dispersed. The outcomes of renowned experiments, key sensitivity tests and statistical analysis confirm that the proposed algorithm offers a safe and efficient approach for real-time image encryption.
Trackside acoustic diagnosis of axle box bearing based on kurtosis-optimization wavelet denoising
NASA Astrophysics Data System (ADS)
Peng, Chaoyong; Gao, Xiaorong; Peng, Jianping; Wang, Ai
2018-04-01
As one of the key components of railway vehicles, the operation condition of the axle box bearing has a significant effect on traffic safety. The acoustic diagnosis is more suitable than vibration diagnosis for trackside monitoring. The acoustic signal generated by the train axle box bearing is an amplitude modulation and frequency modulation signal with complex train running noise. Although empirical mode decomposition (EMD) and some improved time-frequency algorithms have proved to be useful in bearing vibration signal processing, it is hard to extract the bearing fault signal from serious trackside acoustic background noises by using those algorithms. Therefore, a kurtosis-optimization-based wavelet packet (KWP) denoising algorithm is proposed, as the kurtosis is the key indicator of bearing fault signal in time domain. Firstly, the geometry based Doppler correction is applied to signals of each sensor, and with the signal superposition of multiple sensors, random noises and impulse noises, which are the interference of the kurtosis indicator, are suppressed. Then, the KWP is conducted. At last, the EMD and Hilbert transform is applied to extract the fault feature. Experiment results indicate that the proposed method consisting of KWP and EMD is superior to the EMD.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2004-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2005-01-01
A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
NASA Astrophysics Data System (ADS)
Shah, Rahul H.
Production costs account for the largest share of the overall cost of manufacturing facilities. With the U.S. industrial sector becoming more and more competitive, manufacturers are looking for more cost and resource efficient working practices. Operations management and production planning have shown their capability to dramatically reduce manufacturing costs and increase system robustness. When implementing operations related decision making and planning, two fields that have shown to be most effective are maintenance and energy. Unfortunately, the current research that integrates both is limited. Additionally, these studies fail to consider parameter domains and optimization on joint energy and maintenance driven production planning. Accordingly, production planning methodology that considers maintenance and energy is investigated. Two models are presented to achieve well-rounded operating strategy. The first is a joint energy and maintenance production scheduling model. The second is a cost per part model considering maintenance, energy, and production. The proposed methodology will involve a Time-of-Use electricity demand response program, buffer and holding capacity, station reliability, production rate, station rated power, and more. In practice, the scheduling problem can be used to determine a joint energy, maintenance, and production schedule. Meanwhile, the cost per part model can be used to: (1) test the sensitivity of the obtained optimal production schedule and its corresponding savings by varying key production system parameters; and (2) to determine optimal system parameter combinations when using the joint energy, maintenance, and production planning model. Additionally, a factor analysis on the system parameters is conducted and the corresponding performance of the production schedule under variable parameter conditions, is evaluated. Also, parameter optimization guidelines that incorporate maintenance and energy parameter decision making in the production planning framework are discussed. A modified Particle Swarm Optimization solution technique is adopted to solve the proposed scheduling problem. The algorithm is described in detail and compared to Genetic Algorithm. Case studies are presented to illustrate the benefits of using the proposed model and the effectiveness of the Particle Swarm Optimization approach. Numerical Experiments are implemented and analyzed to test the effectiveness of the proposed model. The proposed scheduling strategy can achieve savings of around 19 to 27 % in cost per part when compared to the baseline scheduling scenarios. By optimizing key production system parameters from the cost per part model, the baseline scenarios can obtain around 20 to 35 % in savings for the cost per part. These savings further increase by 42 to 55 % when system parameter optimization is integrated with the proposed scheduling problem. Using this method, the most influential parameters on the cost per part are the rated power from production, the production rate, and the initial machine reliabilities. The modified Particle Swarm Optimization algorithm adopted allows greater diversity and exploration compared to Genetic Algorithm for the proposed joint model which results in it being more computationally efficient in determining the optimal scheduling. While Genetic Algorithm could achieve a solution quality of 2,279.63 at an expense of 2,300 seconds in computational effort. In comparison, the proposed Particle Swarm Optimization algorithm achieved a solution quality of 2,167.26 in less than half the computation effort which is required by Genetic Algorithm.
Genetic algorithm dynamics on a rugged landscape
NASA Astrophysics Data System (ADS)
Bornholdt, Stefan
1998-04-01
The genetic algorithm is an optimization procedure motivated by biological evolution and is successfully applied to optimization problems in different areas. A statistical mechanics model for its dynamics is proposed based on the parent-child fitness correlation of the genetic operators, making it applicable to general fitness landscapes. It is compared to a recent model based on a maximum entropy ansatz. Finally it is applied to modeling the dynamics of a genetic algorithm on the rugged fitness landscape of the NK model.
Hartfield, Matthew; Wright, Stephen I.; Agrawal, Aneil F.
2016-01-01
Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms. PMID:26584902
Point Cloud Based Approach to Stem Width Extraction of Sorghum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Jihui; Zakhor, Avideh
A revolution in the field of genomics has produced vast amounts of data and furthered our understanding of the genotypephenotype map, but is currently constrained by manually intensive or limited phenotype data collection. We propose an algorithm to estimate stem width, a key characteristic used for biomass potential evaluation, from 3D point cloud data collected by a robot equipped with a depth sensor in a single pass in a standard field. The algorithm applies a two step alignment to register point clouds in different frames, a Frangi filter to identify stemlike objects in the point cloud and an orientation basedmore » filter to segment out and refine individual stems for width estimation. Individually, detected stems which are split due to occlusions are merged and then registered with previously found stems in previous camera frames in order to track temporally. We then refine the estimates to produce an accurate histogram of width estimates per plot. Since the plants in each plot are genetically identical, distributions of the stem width per plot can be useful in identifying genetically superior sorghum for biofuels.« less
Point Cloud Based Approach to Stem Width Extraction of Sorghum
Jin, Jihui; Zakhor, Avideh
2017-01-29
A revolution in the field of genomics has produced vast amounts of data and furthered our understanding of the genotypephenotype map, but is currently constrained by manually intensive or limited phenotype data collection. We propose an algorithm to estimate stem width, a key characteristic used for biomass potential evaluation, from 3D point cloud data collected by a robot equipped with a depth sensor in a single pass in a standard field. The algorithm applies a two step alignment to register point clouds in different frames, a Frangi filter to identify stemlike objects in the point cloud and an orientation basedmore » filter to segment out and refine individual stems for width estimation. Individually, detected stems which are split due to occlusions are merged and then registered with previously found stems in previous camera frames in order to track temporally. We then refine the estimates to produce an accurate histogram of width estimates per plot. Since the plants in each plot are genetically identical, distributions of the stem width per plot can be useful in identifying genetically superior sorghum for biofuels.« less
The First National Student Conference: NASA University Research Centers at Minority Institutions
NASA Technical Reports Server (NTRS)
Daso, Endwell O. (Editor); Mebane, Stacie (Editor)
1997-01-01
The conference includes contributions from 13 minority universities with NASA University Research Centers. Topics discussed include: leadership, survival strategies, life support systems, food systems, simulated hypergravity, chromium diffusion doping, radiation effects on dc-dc converters, metal oxide glasses, crystal growth of Bil3, science and communication on wheels, semiconductor thin films, numerical solution of random algebraic equations, fuzzy logic control, spatial resolution of satellite images, programming language development, nitric oxide in the thermosphere and mesosphere, high performance polyimides, crossover control in genetic algorithms, hyperthermal ion scattering, etc.
MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali
2017-01-01
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms. PMID:28979308
MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali
2017-01-01
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms.
Wang, Lin; Qu, Hui; Chen, Tao; Yan, Fang-Ping
2013-01-01
The integration with different decisions in the supply chain is a trend, since it can avoid the suboptimal decisions. In this paper, we provide an effective intelligent algorithm for a modified joint replenishment and location-inventory problem (JR-LIP). The problem of the JR-LIP is to determine the reasonable number and location of distribution centers (DCs), the assignment policy of customers, and the replenishment policy of DCs such that the overall cost is minimized. However, due to the JR-LIP's difficult mathematical properties, simple and effective solutions for this NP-hard problem have eluded researchers. To find an effective approach for the JR-LIP, a hybrid self-adapting differential evolution algorithm (HSDE) is designed. To verify the effectiveness of the HSDE, two intelligent algorithms that have been proven to be effective algorithms for the similar problems named genetic algorithm (GA) and hybrid DE (HDE) are chosen to compare with it. Comparative results of benchmark functions and randomly generated JR-LIPs show that HSDE outperforms GA and HDE. Moreover, a sensitive analysis of cost parameters reveals the useful managerial insight. All comparative results show that HSDE is more stable and robust in handling this complex problem especially for the large-scale problem.
Chen, Tao; Yan, Fang-Ping
2013-01-01
The integration with different decisions in the supply chain is a trend, since it can avoid the suboptimal decisions. In this paper, we provide an effective intelligent algorithm for a modified joint replenishment and location-inventory problem (JR-LIP). The problem of the JR-LIP is to determine the reasonable number and location of distribution centers (DCs), the assignment policy of customers, and the replenishment policy of DCs such that the overall cost is minimized. However, due to the JR-LIP's difficult mathematical properties, simple and effective solutions for this NP-hard problem have eluded researchers. To find an effective approach for the JR-LIP, a hybrid self-adapting differential evolution algorithm (HSDE) is designed. To verify the effectiveness of the HSDE, two intelligent algorithms that have been proven to be effective algorithms for the similar problems named genetic algorithm (GA) and hybrid DE (HDE) are chosen to compare with it. Comparative results of benchmark functions and randomly generated JR-LIPs show that HSDE outperforms GA and HDE. Moreover, a sensitive analysis of cost parameters reveals the useful managerial insight. All comparative results show that HSDE is more stable and robust in handling this complex problem especially for the large-scale problem. PMID:24453822
Analytical Plug-In Method for Kernel Density Estimator Applied to Genetic Neutrality Study
NASA Astrophysics Data System (ADS)
Troudi, Molka; Alimi, Adel M.; Saoudi, Samir
2008-12-01
The plug-in method enables optimization of the bandwidth of the kernel density estimator in order to estimate probability density functions (pdfs). Here, a faster procedure than that of the common plug-in method is proposed. The mean integrated square error (MISE) depends directly upon [InlineEquation not available: see fulltext.] which is linked to the second-order derivative of the pdf. As we intend to introduce an analytical approximation of [InlineEquation not available: see fulltext.], the pdf is estimated only once, at the end of iterations. These two kinds of algorithm are tested on different random variables having distributions known for their difficult estimation. Finally, they are applied to genetic data in order to provide a better characterisation in the mean of neutrality of Tunisian Berber populations.
An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem. PMID:24489491
An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.
Malki, Karim; Tosto, Maria Grazia; Mouriño-Talín, Héctor; Rodríguez-Lorenzo, Sabela; Pain, Oliver; Jumhaboy, Irfan; Liu, Tina; Parpas, Panos; Newman, Stuart; Malykh, Artem; Carboni, Lucia; Uher, Rudolf; McGuffin, Peter; Schalkwyk, Leonard C; Bryson, Kevin; Herbster, Mark
2017-04-01
Response to antidepressant (AD) treatment may be a more polygenic trait than previously hypothesized, with many genetic variants interacting in yet unclear ways. In this study we used methods that can automatically learn to detect patterns of statistical regularity from a sparsely distributed signal across hippocampal transcriptome measurements in a large-scale animal pharmacogenomic study to uncover genomic variations associated with AD. The study used four inbred mouse strains of both sexes, two drug treatments, and a control group (escitalopram, nortriptyline, and saline). Multi-class and binary classification using Machine Learning (ML) and regularization algorithms using iterative and univariate feature selection methods, including InfoGain, mRMR, ANOVA, and Chi Square, were used to uncover genomic markers associated with AD response. Relevant genes were selected based on Jaccard distance and carried forward for gene-network analysis. Linear association methods uncovered only one gene associated with drug treatment response. The implementation of ML algorithms, together with feature reduction methods, revealed a set of 204 genes associated with SSRI and 241 genes associated with NRI response. Although only 10% of genes overlapped across the two drugs, network analysis shows that both drugs modulated the CREB pathway, through different molecular mechanisms. Through careful implementation and optimisations, the algorithms detected a weak signal used to predict whether an animal was treated with nortriptyline (77%) or escitalopram (67%) on an independent testing set. The results from this study indicate that the molecular signature of AD treatment may include a much broader range of genomic markers than previously hypothesized, suggesting that response to medication may be as complex as the pathology. The search for biomarkers of antidepressant treatment response could therefore consider a higher number of genetic markers and their interactions. Through predominately different molecular targets and mechanisms of action, the two drugs modulate the same Creb1 pathway which plays a key role in neurotrophic responses and in inflammatory processes. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Origins of tmRNA: the missing link in the birth of protein synthesis?
Macé, Kevin; Gillet, Reynald
2016-09-30
The RNA world hypothesis refers to the early period on earth in which RNA was central in assuring both genetic continuity and catalysis. The end of this era coincided with the development of the genetic code and protein synthesis, symbolized by the apparition of the first non-random messenger RNA (mRNA). Modern transfer-messenger RNA (tmRNA) is a unique hybrid molecule which has the properties of both mRNA and transfer RNA (tRNA). It acts as a key molecule during trans-translation, a major quality control pathway of modern bacterial protein synthesis. tmRNA shares many common characteristics with ancestral RNA. Here, we present a model in which proto-tmRNAs were the first molecules on earth to support non-random protein synthesis, explaining the emergence of early genetic code. In this way, proto-tmRNA could be the missing link between the first mRNA and tRNA molecules and modern ribosome-mediated protein synthesis. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Jacobs, Aryana S.; Schwartz, Marc D.; Valdimarsdottir, Heiddis; Nusbaum, Rachel H.; Hooker, Gillian W.; DeMarco, Tiffani A.; Heinzmann, Jessica E.; McKinnon, Wendy; McCormick, Shelley R.; Davis, Claire; Forman, Andrea D.; Lebensohn, Alexandra Perez; Dalton, Emily; Tully, Diana Moglia; Graves, Kristi D.; Similuk, Morgan; Kelly, Scott; Peshkin, Beth N.
2016-01-01
Telephone genetic counseling (TC) for high-risk women interested in BRCA1/2 testing has been shown to yield positive outcomes comparable to usual care (UC; in-person) genetic counseling. However, little is known about how genetic counselors perceive the delivery of these alternate forms of genetic counseling. As part of a randomized trial of TC versus UC, genetic counselors completed a 5-item genetic counselor process questionnaire (GCQ) assessing key elements of pre-test sessions (information delivery, emotional support, addressing questions and concerns, tailoring of session, and facilitation of decision- making) with the 479 female participants (TC, N=236; UC, N=243). The GCQ scores did not differ for TC vs. UC sessions (t (477) = 0.11, p = 0.910). However, multivariate analysis showed that participant race/ethnicity significantly predicted genetic counselor perceptions (β = 0.172, p<0.001) in that the GCQ scores were lower for minorities in TC and UC. Exploratory analyses suggested that GCQ scores may be associated with patient preference for UC versus TC (t (79) = 2.21, p=0.030). Additionally, we found that genetic counselor ratings of session effectiveness were generally concordant with patient perceptions of the session. These data indicate that genetic counselors perceive that key components of TC can be delivered as effectively as UC, and that these elements may contribute to specific aspects of patient satisfaction. However, undefined process differences may be present which account for lower counselor perceptions about the effectiveness of their sessions with minority women (i.e., those other than non-Hispanic Whites). We discuss other potential clinical and research implications of our findings. PMID:26969308
Pose estimation for augmented reality applications using genetic algorithm.
Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen
2005-12-01
This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.
Improved Ant Algorithms for Software Testing Cases Generation
Yang, Shunkun; Xu, Jiaqi
2014-01-01
Existing ant colony optimization (ACO) for software testing cases generation is a very popular domain in software testing engineering. However, the traditional ACO has flaws, as early search pheromone is relatively scarce, search efficiency is low, search model is too simple, positive feedback mechanism is easy to porduce the phenomenon of stagnation and precocity. This paper introduces improved ACO for software testing cases generation: improved local pheromone update strategy for ant colony optimization, improved pheromone volatilization coefficient for ant colony optimization (IPVACO), and improved the global path pheromone update strategy for ant colony optimization (IGPACO). At last, we put forward a comprehensive improved ant colony optimization (ACIACO), which is based on all the above three methods. The proposed technique will be compared with random algorithm (RND) and genetic algorithm (GA) in terms of both efficiency and coverage. The results indicate that the improved method can effectively improve the search efficiency, restrain precocity, promote case coverage, and reduce the number of iterations. PMID:24883391
Optimization of laminated stacking sequence for buckling load maximization by genetic algorithm
NASA Technical Reports Server (NTRS)
Le Riche, Rodolphe; Haftka, Raphael T.
1992-01-01
The use of a genetic algorithm to optimize the stacking sequence of a composite laminate for buckling load maximization is studied. Various genetic parameters including the population size, the probability of mutation, and the probability of crossover are optimized by numerical experiments. A new genetic operator - permutation - is proposed and shown to be effective in reducing the cost of the genetic search. Results are obtained for a graphite-epoxy plate, first when only the buckling load is considered, and then when constraints on ply contiguity and strain failure are added. The influence on the genetic search of the penalty parameter enforcing the contiguity constraint is studied. The advantage of the genetic algorithm in producing several near-optimal designs is discussed.
Wong, Brian J. F.; Karmi, Koohyar; Devcic, Zlatko; McLaren, Christine E.; Chen, Wen-Pin
2013-01-01
Objectives The objectives of this study were to: 1) determine if a genetic algorithm in combination with morphing software can be used to evolve more attractive faces; and 2) evaluate whether this approach can be used as a tool to define or identify the attributes of the ideal attractive face. Study Design Basic research study incorporating focus group evaluations. Methods Digital images were acquired of 250 female volunteers (18–25 y). Randomly selected images were used to produce a parent generation (P) of 30 synthetic faces using morphing software. Then, a focus group of 17 trained volunteers (18–25 y) scored each face on an attractiveness scale ranging from 1 (unattractive) to 10 (attractive). A genetic algorithm was used to select 30 new pairs from the parent generation, and these were morphed using software to produce a new first generation (F1) of faces. The F1 faces were scored by the focus group, and the process was repeated for a total of four iterations of the algorithm. The algorithm mimics natural selection by using the attractiveness score as the selection pressure; the more attractive faces are more likely to morph. All five generations (P-F4) were then scored by three focus groups: a) surgeons (n = 12), b) cosmetology students (n = 44), and c) undergraduate students (n = 44). Morphometric measurements were made of 33 specific features on each of the 150 synthetic faces, and correlated with attractiveness scores using univariate and multivariate analysis. Results The average facial attractiveness scores increased with each generation and were 3.66 (+0.60), 4.59 (±0.73), 5.50 (±0.62), 6.23 (±0.31), and 6.39 (±0.24) for P and F1–F4 generations, respectively. Histograms of attractiveness score distributions show a significant shift in the skew of each curve toward more attractive faces with each generation. Univariate analysis identified nasal width, eyebrow arch height, and lip thickness as being significantly correlated with attractiveness scores. Multivariate analysis identified a similar collection of morphometric measures. No correlation with more commonly accepted measures such as the length facial thirds or fifths were identified. When images are examined as a montage (by generation), clear distinct trends are identified: oval shaped faces, distinct arched eyebrows, and full lips predominate. Faces evolve to approximate the guidelines suggested by classical canon. F3 and F4 generation faces look profoundly similar. The statistical and qualitative analysis indicates that the algorithm and methodology succeeds in generating successively more attractive faces. Conclusions The use of genetic algorithms in combination with a morphing software and traditional focus-group derived attractiveness scores can be used to evolve attractive synthetic faces. We have demonstrated that the evolution of attractive faces can be mimicked in software. Genetic algorithms and morphing provide a robust alternative to traditional approaches rooted in comparing attractiveness scores with a series of morphometric measurements in human subjects. PMID:18401273
Development of a Tool for an Efficient Calibration of CORSIM Models
DOT National Transportation Integrated Search
2014-08-01
This project proposes a Memetic Algorithm (MA) for the calibration of microscopic traffic flow simulation models. The proposed MA includes a combination of genetic and simulated annealing algorithms. The genetic algorithm performs the exploration of ...
Engineered Intrinsic Bioremediation of Ammonium Perchlorate in Groundwater
2010-12-01
German Collection of Microorganisms and Cell Cultures) GA Genetic Algorithms GA-ANN Genetic Algorithm Artificial Neural Network GMO genetically...for in situ treatment of perchlorate in groundwater. This is accomplished without the addition of genetically engineered microorganisms ( GMOs ) to the...perchlorate, even in the presence of oxygen and without the addition of genetically engineered microorganisms ( GMOs ) to the environment. This approach
An Asymptotically-Optimal Sampling-Based Algorithm for Bi-directional Motion Planning
Starek, Joseph A.; Gomez, Javier V.; Schmerling, Edward; Janson, Lucas; Moreno, Luis; Pavone, Marco
2015-01-01
Bi-directional search is a widely used strategy to increase the success and convergence rates of sampling-based motion planning algorithms. Yet, few results are available that merge both bi-directional search and asymptotic optimality into existing optimal planners, such as PRM*, RRT*, and FMT*. The objective of this paper is to fill this gap. Specifically, this paper presents a bi-directional, sampling-based, asymptotically-optimal algorithm named Bi-directional FMT* (BFMT*) that extends the Fast Marching Tree (FMT*) algorithm to bidirectional search while preserving its key properties, chiefly lazy search and asymptotic optimality through convergence in probability. BFMT* performs a two-source, lazy dynamic programming recursion over a set of randomly-drawn samples, correspondingly generating two search trees: one in cost-to-come space from the initial configuration and another in cost-to-go space from the goal configuration. Numerical experiments illustrate the advantages of BFMT* over its unidirectional counterpart, as well as a number of other state-of-the-art planners. PMID:27004130
Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed
2017-01-05
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration. Copyright © 2016 Elsevier B.V. All rights reserved.
Rotatin is a novel gene required for axial rotation and left-right specification in mouse embryos.
Faisst, Anja M; Alvarez-Bolado, Gonzalo; Treichel, Dieter; Gruss, Peter
2002-04-01
The genetic cascade that governs left-right (L-R) specification is starting to be elucidated. In the mouse, the lateral asymmetry of the body axis is revealed first by the asymmetric expression of nodal, lefty2 and pitx2 in the left lateral plate mesoderm of the neurulating embryo. Here we describe a novel gene, rotatin, essential for the correct expression of the key L-R specification genes nodal, lefty and Pitx2. Embryos deficient in rotatin show also randomized heart looping and delayed neural tube closure, and fail to undergo the critical morphogenetic step of axial rotation. The amino acid sequence deduced from the cDNA is predicted to contain at least three transmembrane domains. Our results show a novel key player in the genetic cascade that determines L-R specification, and suggest a causal link between this process and axial rotation.
Fuzzy probabilistic design of water distribution networks
NASA Astrophysics Data System (ADS)
Fu, Guangtao; Kapelan, Zoran
2011-05-01
The primary aim of this paper is to present a fuzzy probabilistic approach for optimal design and rehabilitation of water distribution systems, combining aleatoric and epistemic uncertainties in a unified framework. The randomness and imprecision in future water consumption are characterized using fuzzy random variables whose realizations are not real but fuzzy numbers, and the nodal head requirements are represented by fuzzy sets, reflecting the imprecision in customers' requirements. The optimal design problem is formulated as a two-objective optimization problem, with minimization of total design cost and maximization of system performance as objectives. The system performance is measured by the fuzzy random reliability, defined as the probability that the fuzzy head requirements are satisfied across all network nodes. The satisfactory degree is represented by necessity measure or belief measure in the sense of the Dempster-Shafer theory of evidence. An efficient algorithm is proposed, within a Monte Carlo procedure, to calculate the fuzzy random system reliability and is effectively combined with the nondominated sorting genetic algorithm II (NSGAII) to derive the Pareto optimal design solutions. The newly proposed methodology is demonstrated with two case studies: the New York tunnels network and Hanoi network. The results from both cases indicate that the new methodology can effectively accommodate and handle various aleatoric and epistemic uncertainty sources arising from the design process and can provide optimal design solutions that are not only cost-effective but also have higher reliability to cope with severe future uncertainties.
Power of data mining methods to detect genetic associations and interactions.
Molinaro, Annette M; Carriero, Nicholas; Bjornson, Robert; Hartge, Patricia; Rothman, Nathaniel; Chatterjee, Nilanjan
2011-01-01
Genetic association studies, thus far, have focused on the analysis of individual main effects of SNP markers. Nonetheless, there is a clear need for modeling epistasis or gene-gene interactions to better understand the biologic basis of existing associations. Tree-based methods have been widely studied as tools for building prediction models based on complex variable interactions. An understanding of the power of such methods for the discovery of genetic associations in the presence of complex interactions is of great importance. Here, we systematically evaluate the power of three leading algorithms: random forests (RF), Monte Carlo logic regression (MCLR), and multifactor dimensionality reduction (MDR). We use the algorithm-specific variable importance measures (VIMs) as statistics and employ permutation-based resampling to generate the null distribution and associated p values. The power of the three is assessed via simulation studies. Additionally, in a data analysis, we evaluate the associations between individual SNPs in pro-inflammatory and immunoregulatory genes and the risk of non-Hodgkin lymphoma. The power of RF is highest in all simulation models, that of MCLR is similar to RF in half, and that of MDR is consistently the lowest. Our study indicates that the power of RF VIMs is most reliable. However, in addition to tuning parameters, the power of RF is notably influenced by the type of variable (continuous vs. categorical) and the chosen VIM. Copyright © 2011 S. Karger AG, Basel.
Distributed genetic algorithms for the floorplan design problem
NASA Technical Reports Server (NTRS)
Cohoon, James P.; Hegde, Shailesh U.; Martin, Worthy N.; Richards, Dana S.
1991-01-01
Designing a VLSI floorplan calls for arranging a given set of modules in the plane to minimize the weighted sum of area and wire-length measures. A method of solving the floorplan design problem using distributed genetic algorithms is presented. Distributed genetic algorithms, based on the paleontological theory of punctuated equilibria, offer a conceptual modification to the traditional genetic algorithms. Experimental results on several problem instances demonstrate the efficacy of this method and indicate the advantages of this method over other methods, such as simulated annealing. The method has performed better than the simulated annealing approach, both in terms of the average cost of the solutions found and the best-found solution, in almost all the problem instances tried.
Comparing population structure as inferred from genealogical versus genetic information.
Colonna, Vincenza; Nutile, Teresa; Ferrucci, Ronald R; Fardella, Giulio; Aversano, Mario; Barbujani, Guido; Ciullo, Marina
2009-12-01
Algorithms for inferring population structure from genetic data (ie, population assignment methods) have shown to effectively recognize genetic clusters in human populations. However, their performance in identifying groups of genealogically related individuals, especially in scanty-differentiated populations, has not been tested empirically thus far. For this study, we had access to both genealogical and genetic data from two closely related, isolated villages in southern Italy. We found that nearly all living individuals were included in a single pedigree, with multiple inbreeding loops. Despite F(st) between villages being a low 0.008, genetic clustering analysis identified two clusters roughly corresponding to the two villages. Average kinship between individuals (estimated from genealogies) increased at increasing values of group membership (estimated from the genetic data), showing that the observed genetic clusters represent individuals who are more closely related to each other than to random members of the population. Further, average kinship within clusters and F(st) between clusters increases with increasingly stringent membership threshold requirements. We conclude that a limited number of genetic markers is sufficient to detect structuring, and that the results of genetic analyses faithfully mirror the structuring inferred from detailed analyses of population genealogies, even when F(st) values are low, as in the case of the two villages. We then estimate the impact of observed levels of population structure on association studies using simulated data.
Comparing population structure as inferred from genealogical versus genetic information
Colonna, Vincenza; Nutile, Teresa; Ferrucci, Ronald R; Fardella, Giulio; Aversano, Mario; Barbujani, Guido; Ciullo, Marina
2009-01-01
Algorithms for inferring population structure from genetic data (ie, population assignment methods) have shown to effectively recognize genetic clusters in human populations. However, their performance in identifying groups of genealogically related individuals, especially in scanty-differentiated populations, has not been tested empirically thus far. For this study, we had access to both genealogical and genetic data from two closely related, isolated villages in southern Italy. We found that nearly all living individuals were included in a single pedigree, with multiple inbreeding loops. Despite Fst between villages being a low 0.008, genetic clustering analysis identified two clusters roughly corresponding to the two villages. Average kinship between individuals (estimated from genealogies) increased at increasing values of group membership (estimated from the genetic data), showing that the observed genetic clusters represent individuals who are more closely related to each other than to random members of the population. Further, average kinship within clusters and Fst between clusters increases with increasingly stringent membership threshold requirements. We conclude that a limited number of genetic markers is sufficient to detect structuring, and that the results of genetic analyses faithfully mirror the structuring inferred from detailed analyses of population genealogies, even when Fst values are low, as in the case of the two villages. We then estimate the impact of observed levels of population structure on association studies using simulated data. PMID:19550436
Evolving aerodynamic airfoils for wind turbines through a genetic algorithm
NASA Astrophysics Data System (ADS)
Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI
2017-01-01
Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.
Identification of the optic nerve head with genetic algorithms.
Carmona, Enrique J; Rincón, Mariano; García-Feijoó, Julián; Martínez-de-la-Casa, José M
2008-07-01
This work proposes creating an automatic system to locate and segment the optic nerve head (ONH) in eye fundus photographic images using genetic algorithms. Domain knowledge is used to create a set of heuristics that guide the various steps involved in the process. Initially, using an eye fundus colour image as input, a set of hypothesis points was obtained that exhibited geometric properties and intensity levels similar to the ONH contour pixels. Next, a genetic algorithm was used to find an ellipse containing the maximum number of hypothesis points in an offset of its perimeter, considering some constraints. The ellipse thus obtained is the approximation to the ONH. The segmentation method is tested in a sample of 110 eye fundus images, belonging to 55 patients with glaucoma (23.1%) and eye hypertension (76.9%) and random selected from an eye fundus image base belonging to the Ophthalmology Service at Miguel Servet Hospital, Saragossa (Spain). The results obtained are competitive with those in the literature. The method's generalization capability is reinforced when it is applied to a different image base from the one used in our study and a discrepancy curve is obtained very similar to the one obtained in our image base. In addition, the robustness of the method proposed can be seen in the high percentage of images obtained with a discrepancy delta<5 (96% and 99% in our and a different image base, respectively). The results also confirm the hypothesis that the ONH contour can be properly approached with a non-deformable ellipse. Another important aspect of the method is that it directly provides the parameters characterising the shape of the papilla: lengths of its major and minor axes, its centre of location and its orientation with regard to the horizontal position.
Kaur, Jaspreet; Nygren, Anders; Vigmond, Edward J
2014-01-01
Fitting parameter sets of non-linear equations in cardiac single cell ionic models to reproduce experimental behavior is a time consuming process. The standard procedure is to adjust maximum channel conductances in ionic models to reproduce action potentials (APs) recorded in isolated cells. However, vastly different sets of parameters can produce similar APs. Furthermore, even with an excellent AP match in case of single cell, tissue behaviour may be very different. We hypothesize that this uncertainty can be reduced by additionally fitting membrane resistance (Rm). To investigate the importance of Rm, we developed a genetic algorithm approach which incorporated Rm data calculated at a few points in the cycle, in addition to AP morphology. Performance was compared to a genetic algorithm using only AP morphology data. The optimal parameter sets and goodness of fit as computed by the different methods were compared. First, we fit an ionic model to itself, starting from a random parameter set. Next, we fit the AP of one ionic model to that of another. Finally, we fit an ionic model to experimentally recorded rabbit action potentials. Adding the extra objective (Rm, at a few voltages) to the AP fit, lead to much better convergence. Typically, a smaller MSE (mean square error, defined as the average of the squared error between the target AP and AP that is to be fitted) was achieved in one fifth of the number of generations compared to using only AP data. Importantly, the variability in fit parameters was also greatly reduced, with many parameters showing an order of magnitude decrease in variability. Adding Rm to the objective function improves the robustness of fitting, better preserving tissue level behavior, and should be incorporated.
[Clinical applications of dosing algorithm in the predication of warfarin maintenance dose].
Huang, Sheng-wen; Xiang, Dao-kang; An, Bang-quan; Li, Gui-fang; Huang, Ling; Wu, Hai-li
2011-12-27
To evaluate the feasibility of clinical application for genetic based dosing algorithm in the predication of warfarin maintenance dose in Chinese population. The clinical data were collected and blood samples harvested from a total of 126 patients undergoing heart valve replacement. The genotypes of VKORC1 and CYP2C9 were determined by melting curve analysis after PCR. They were divided randomly into the study and control groups. In the study group, the first three doses of warfarin were prescribed according to the predicted warfarin maintenance dose while warfarin was initiated at 2.5 mg/d in the control group. The warfarin doses were adjusted according to the measured international normalized ratio (INR) values. And all subjects were followed for 50 days after an initiation of warfarin therapy. At the end of a 50-day follow-up period, the proportions of the patients on a stable dose were 82.4% (42/51) and 62.5% (30/48) for the study and control groups respectively. The mean durations of reaching a stable dose of warfarin were (27.5 ± 1.8) and (34.7 ± 1.8) days and the median durations were (24.0 ± 1.7) and (33.0 ± 4.5) days in the study and control groups respectively. Significant differences existed in the durations of reaching a stable dose between the two groups (P = 0.012). Compared with the control group, the hazard ratio (HR) for the duration of reaching a stable dose was 1.786 in the study group (95%CI 1.088 - 2.875, P = 0.026). The predicted dosing algorithm incorporating genetic and non-genetic factors may shorten the duration of achieving efficiently a stable dose of warfarin. And the present study validates the feasibility of its clinical application.
An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Weir, John M.; Wells, B. Earl
2003-01-01
Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.
Phase Reconstruction from FROG Using Genetic Algorithms[Frequency-Resolved Optical Gating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omenetto, F.G.; Nicholson, J.W.; Funk, D.J.
1999-04-12
The authors describe a new technique for obtaining the phase and electric field from FROG measurements using genetic algorithms. Frequency-Resolved Optical Gating (FROG) has gained prominence as a technique for characterizing ultrashort pulses. FROG consists of a spectrally resolved autocorrelation of the pulse to be measured. Typically a combination of iterative algorithms is used, applying constraints from experimental data, and alternating between the time and frequency domain, in order to retrieve an optical pulse. The authors have developed a new approach to retrieving the intensity and phase from FROG data using a genetic algorithm (GA). A GA is a generalmore » parallel search technique that operates on a population of potential solutions simultaneously. Operators in a genetic algorithm, such as crossover, selection, and mutation are based on ideas taken from evolution.« less
GAMBIT: A Parameterless Model-Based Evolutionary Algorithm for Mixed-Integer Problems.
Sadowski, Krzysztof L; Thierens, Dirk; Bosman, Peter A N
2018-01-01
Learning and exploiting problem structure is one of the key challenges in optimization. This is especially important for black-box optimization (BBO) where prior structural knowledge of a problem is not available. Existing model-based Evolutionary Algorithms (EAs) are very efficient at learning structure in both the discrete, and in the continuous domain. In this article, discrete and continuous model-building mechanisms are integrated for the Mixed-Integer (MI) domain, comprising discrete and continuous variables. We revisit a recently introduced model-based evolutionary algorithm for the MI domain, the Genetic Algorithm for Model-Based mixed-Integer opTimization (GAMBIT). We extend GAMBIT with a parameterless scheme that allows for practical use of the algorithm without the need to explicitly specify any parameters. We furthermore contrast GAMBIT with other model-based alternatives. The ultimate goal of processing mixed dependences explicitly in GAMBIT is also addressed by introducing a new mechanism for the explicit exploitation of mixed dependences. We find that processing mixed dependences with this novel mechanism allows for more efficient optimization. We further contrast the parameterless GAMBIT with Mixed-Integer Evolution Strategies (MIES) and other state-of-the-art MI optimization algorithms from the General Algebraic Modeling System (GAMS) commercial algorithm suite on problems with and without constraints, and show that GAMBIT is capable of solving problems where variable dependences prevent many algorithms from successfully optimizing them.
Bartsch, Georg; Mitra, Anirban P; Mitra, Sheetal A; Almal, Arpit A; Steven, Kenneth E; Skinner, Donald G; Fry, David W; Lenehan, Peter F; Worzel, William P; Cote, Richard J
2016-02-01
Due to the high recurrence risk of nonmuscle invasive urothelial carcinoma it is crucial to distinguish patients at high risk from those with indolent disease. In this study we used a machine learning algorithm to identify the genes in patients with nonmuscle invasive urothelial carcinoma at initial presentation that were most predictive of recurrence. We used the genes in a molecular signature to predict recurrence risk within 5 years after transurethral resection of bladder tumor. Whole genome profiling was performed on 112 frozen nonmuscle invasive urothelial carcinoma specimens obtained at first presentation on Human WG-6 BeadChips (Illumina®). A genetic programming algorithm was applied to evolve classifier mathematical models for outcome prediction. Cross-validation based resampling and gene use frequencies were used to identify the most prognostic genes, which were combined into rules used in a voting algorithm to predict the sample target class. Key genes were validated by quantitative polymerase chain reaction. The classifier set included 21 genes that predicted recurrence. Quantitative polymerase chain reaction was done for these genes in a subset of 100 patients. A 5-gene combined rule incorporating a voting algorithm yielded 77% sensitivity and 85% specificity to predict recurrence in the training set, and 69% and 62%, respectively, in the test set. A singular 3-gene rule was constructed that predicted recurrence with 80% sensitivity and 90% specificity in the training set, and 71% and 67%, respectively, in the test set. Using primary nonmuscle invasive urothelial carcinoma from initial occurrences genetic programming identified transcripts in reproducible fashion, which were predictive of recurrence. These findings could potentially impact nonmuscle invasive urothelial carcinoma management. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
On-line estimation of nonlinear physical systems
Christakos, G.
1988-01-01
Recursive algorithms for estimating states of nonlinear physical systems are presented. Orthogonality properties are rediscovered and the associated polynomials are used to linearize state and observation models of the underlying random processes. This requires some key hypotheses regarding the structure of these processes, which may then take account of a wide range of applications. The latter include streamflow forecasting, flood estimation, environmental protection, earthquake engineering, and mine planning. The proposed estimation algorithm may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. Moreover, the method has several advantages over nonrecursive estimators like disjunctive kriging. To link theory with practice, some numerical results for a simulated system are presented, in which responses from the proposed and extended Kalman algorithms are compared. ?? 1988 International Association for Mathematical Geology.
A Self-Alignment Algorithm for SINS Based on Gravitational Apparent Motion and Sensor Data Denoising
Liu, Yiting; Xu, Xiaosu; Liu, Xixiang; Yao, Yiqing; Wu, Liang; Sun, Jin
2015-01-01
Initial alignment is always a key topic and difficult to achieve in an inertial navigation system (INS). In this paper a novel self-initial alignment algorithm is proposed using gravitational apparent motion vectors at three different moments and vector-operation. Simulation and analysis showed that this method easily suffers from the random noise contained in accelerometer measurements which are used to construct apparent motion directly. Aiming to resolve this problem, an online sensor data denoising method based on a Kalman filter is proposed and a novel reconstruction method for apparent motion is designed to avoid the collinearity among vectors participating in the alignment solution. Simulation, turntable tests and vehicle tests indicate that the proposed alignment algorithm can fulfill initial alignment of strapdown INS (SINS) under both static and swinging conditions. The accuracy can either reach or approach the theoretical values determined by sensor precision under static or swinging conditions. PMID:25923932
Weissman, Scott M; Burt, Randall; Church, James; Erdman, Steve; Hampel, Heather; Holter, Spring; Jasperson, Kory; Kalady, Matt F; Haidle, Joy Larsen; Lynch, Henry T; Palaniappan, Selvi; Wise, Paul E; Senter, Leigha
2012-08-01
Identifying individuals who have Lynch syndrome (LS) involves a complex diagnostic work up that includes taking a detailed family history and a combination of various genetic and immunohistochemical tests. The National Society of Genetic Counselors (NSGC) and the Collaborative Group of the Americas on Inherited Colorectal Cancer (CGA-ICC) have come together to publish this clinical practice testing guideline for the evaluation of LS. The purpose of this practice guideline is to provide guidance and a testing algorithm for LS as well as recommendations on when to offer testing. This guideline does not replace a consultation with a genetics professional. This guideline includes explanations in support of this and a summary of background data. While this guideline is not intended to serve as a review of LS, it includes a discussion of background information on LS, and cites a number of key publications which should be reviewed for a more in-depth understanding of LS. These guidelines are intended for genetic counselors, geneticists, gastroenterologists, surgeons, medical oncologists, obstetricians and gynecologists, nurses and other healthcare providers who evaluate patients for LS.
Scalable Nearest Neighbor Algorithms for High Dimensional Data.
Muja, Marius; Lowe, David G
2014-11-01
For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.
Emergence of an optimal search strategy from a simple random walk
Sakiyama, Tomoko; Gunji, Yukio-Pegio
2013-01-01
In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths. PMID:23804445
Emergence of an optimal search strategy from a simple random walk.
Sakiyama, Tomoko; Gunji, Yukio-Pegio
2013-09-06
In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths.
Markov Chain Monte Carlo Bayesian Learning for Neural Networks
NASA Technical Reports Server (NTRS)
Goodrich, Michael S.
2011-01-01
Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.
A Darwinian approach to control-structure design
NASA Technical Reports Server (NTRS)
Zimmerman, David C.
1993-01-01
Genetic algorithms (GA's), as introduced by Holland (1975), are one form of directed random search. The form of direction is based on Darwin's 'survival of the fittest' theories. GA's are radically different from the more traditional design optimization techniques. GA's work with a coding of the design variables, as opposed to working with the design variables directly. The search is conducted from a population of designs (i.e., from a large number of points in the design space), unlike the traditional algorithms which search from a single design point. The GA requires only objective function information, as opposed to gradient or other auxiliary information. Finally, the GA is based on probabilistic transition rules, as opposed to deterministic rules. These features allow the GA to attack problems with local-global minima, discontinuous design spaces and mixed variable problems, all in a single, consistent framework.
A fast ergodic algorithm for generating ensembles of equilateral random polygons
NASA Astrophysics Data System (ADS)
Varela, R.; Hinson, K.; Arsuaga, J.; Diao, Y.
2009-03-01
Knotted structures are commonly found in circular DNA and along the backbone of certain proteins. In order to properly estimate properties of these three-dimensional structures it is often necessary to generate large ensembles of simulated closed chains (i.e. polygons) of equal edge lengths (such polygons are called equilateral random polygons). However finding efficient algorithms that properly sample the space of equilateral random polygons is a difficult problem. Currently there are no proven algorithms that generate equilateral random polygons with its theoretical distribution. In this paper we propose a method that generates equilateral random polygons in a 'step-wise uniform' way. We prove that this method is ergodic in the sense that any given equilateral random polygon can be generated by this method and we show that the time needed to generate an equilateral random polygon of length n is linear in terms of n. These two properties make this algorithm a big improvement over the existing generating methods. Detailed numerical comparisons of our algorithm with other widely used algorithms are provided.
A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images
Xu, Songhua; Krauthammer, Michael
2010-01-01
There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper’s key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manually labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. In this paper, we demonstrate that a projection histogram-based text detection approach is well suited for text detection in biomedical images, with a performance of F score of .60. The approach performs better than comparable approaches for text detection. Further, we show that the iterative application of the algorithm is boosting overall detection performance. A C++ implementation of our algorithm is freely available through email request for academic use. PMID:20887803
Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R
2012-08-01
A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data.
Heuristic approach to image registration
NASA Astrophysics Data System (ADS)
Gertner, Izidor; Maslov, Igor V.
2000-08-01
Image registration, i.e. correct mapping of images obtained from different sensor readings onto common reference frame, is a critical part of multi-sensor ATR/AOR systems based on readings from different types of sensors. In order to fuse two different sensor readings of the same object, the readings have to be put into a common coordinate system. This task can be formulated as optimization problem in a space of all possible affine transformations of an image. In this paper, a combination of heuristic methods is explored to register gray- scale images. The modification of Genetic Algorithm is used as the first step in global search for optimal transformation. It covers the entire search space with (randomly or heuristically) scattered probe points and helps significantly reduce the search space to a subspace of potentially most successful transformations. Due to its discrete character, however, Genetic Algorithm in general can not converge while coming close to the optimum. Its termination point can be specified either as some predefined number of generations or as achievement of a certain acceptable convergence level. To refine the search, potential optimal subspaces are searched using more delicate and efficient for local search Taboo and Simulated Annealing methods.
Automated design of infrared digital metamaterials by genetic algorithm
NASA Astrophysics Data System (ADS)
Sugino, Yuya; Ishikawa, Atsushi; Hayashi, Yasuhiko; Tsuruta, Kenji
2017-08-01
We demonstrate automatic design of infrared (IR) metamaterials using a genetic algorithm (GA) and experimentally characterize their IR properties. To implement the automated design scheme of the metamaterial structures, we adopt a digital metamaterial consisting of 7 × 7 Au nano-pixels with an area of 200 nm × 200 nm, and their placements are coded as binary genes in the GA optimization process. The GA combined with three-dimensional (3D) finite element method (FEM) simulation is developed and applied to automatically construct a digital metamaterial to exhibit pronounced plasmonic resonances at the target IR frequencies. Based on the numerical results, the metamaterials are fabricated on a Si substrate over an area of 1 mm × 1 mm by using an EB lithography, Cr/Au (2/20 nm) depositions, and liftoff process. In the FT-IR measurement, pronounced plasmonic responses of each metamaterial are clearly observed near the targeted frequencies, although the synthesized pixel arrangements of the metamaterials are seemingly random. The corresponding numerical simulations reveal the important resonant behavior of each pixel and their hybridized systems. Our approach is fully computer-aided without artificial manipulation, thus paving the way toward the novel device design for next-generation plasmonic device applications.
A Genetic Algorithm Approach for the TV Self-Promotion Assignment Problem
NASA Astrophysics Data System (ADS)
Pereira, Paulo A.; Fontes, Fernando A. C. C.; Fontes, Dalila B. M. M.
2009-09-01
We report on the development of a Genetic Algorithm (GA), which has been integrated into a Decision Support System to plan the best assignment of the weekly self-promotion space for a TV station. The problem addressed consists on deciding which shows to advertise and when such that the number of viewers, of an intended group or target, is maximized. The GA proposed incorporates a greedy heuristic to find good initial solutions. These solutions, as well as the solutions later obtained through the use of the GA, go then through a repair procedure. This is used with two objectives, which are addressed in turn. Firstly, it checks the solution feasibility and if unfeasible it is fixed by removing some shows. Secondly, it tries to improve the solution by adding some extra shows. Since the problem faced by the commercial TV station is too big and has too many features it cannot be solved exactly. Therefore, in order to test the quality of the solutions provided by the proposed GA we have randomly generated some smaller problem instances. For these problems we have obtained solutions on average within 1% of the optimal solution value.
Galván-Tejada, Carlos E.; Zanella-Calzada, Laura A.; Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Gamboa-Rosales, Hamurabi; Garza-Veloz, Idalia; Martinez-Fierro, Margarita L.
2017-01-01
Breast cancer is an important global health problem, and the most common type of cancer among women. Late diagnosis significantly decreases the survival rate of the patient; however, using mammography for early detection has been demonstrated to be a very important tool increasing the survival rate. The purpose of this paper is to obtain a multivariate model to classify benign and malignant tumor lesions using a computer-assisted diagnosis with a genetic algorithm in training and test datasets from mammography image features. A multivariate search was conducted to obtain predictive models with different approaches, in order to compare and validate results. The multivariate models were constructed using: Random Forest, Nearest centroid, and K-Nearest Neighbor (K-NN) strategies as cost function in a genetic algorithm applied to the features in the BCDR public databases. Results suggest that the two texture descriptor features obtained in the multivariate model have a similar or better prediction capability to classify the data outcome compared with the multivariate model composed of all the features, according to their fitness value. This model can help to reduce the workload of radiologists and present a second opinion in the classification of tumor lesions. PMID:28216571
Galván-Tejada, Carlos E; Zanella-Calzada, Laura A; Galván-Tejada, Jorge I; Celaya-Padilla, José M; Gamboa-Rosales, Hamurabi; Garza-Veloz, Idalia; Martinez-Fierro, Margarita L
2017-02-14
Breast cancer is an important global health problem, and the most common type of cancer among women. Late diagnosis significantly decreases the survival rate of the patient; however, using mammography for early detection has been demonstrated to be a very important tool increasing the survival rate. The purpose of this paper is to obtain a multivariate model to classify benign and malignant tumor lesions using a computer-assisted diagnosis with a genetic algorithm in training and test datasets from mammography image features. A multivariate search was conducted to obtain predictive models with different approaches, in order to compare and validate results. The multivariate models were constructed using: Random Forest, Nearest centroid, and K-Nearest Neighbor (K-NN) strategies as cost function in a genetic algorithm applied to the features in the BCDR public databases. Results suggest that the two texture descriptor features obtained in the multivariate model have a similar or better prediction capability to classify the data outcome compared with the multivariate model composed of all the features, according to their fitness value. This model can help to reduce the workload of radiologists and present a second opinion in the classification of tumor lesions.
Cloud computing-based TagSNP selection algorithm for human genome data.
Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling
2015-01-05
Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used.
New optimization model for routing and spectrum assignment with nodes insecurity
NASA Astrophysics Data System (ADS)
Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli
2017-04-01
By adopting the orthogonal frequency division multiplexing technology, elastic optical networks can provide the flexible and variable bandwidth allocation to each connection request and get higher spectrum utilization. The routing and spectrum assignment problem in elastic optical network is a well-known NP-hard problem. In addition, information security has received worldwide attention. We combine these two problems to investigate the routing and spectrum assignment problem with the guaranteed security in elastic optical network, and establish a new optimization model to minimize the maximum index of the used frequency slots, which is used to determine an optimal routing and spectrum assignment schemes. To solve the model effectively, a hybrid genetic algorithm framework integrating a heuristic algorithm into a genetic algorithm is proposed. The heuristic algorithm is first used to sort the connection requests and then the genetic algorithm is designed to look for an optimal routing and spectrum assignment scheme. In the genetic algorithm, tailor-made crossover, mutation and local search operators are designed. Moreover, simulation experiments are conducted with three heuristic strategies, and the experimental results indicate that the effectiveness of the proposed model and algorithm framework.
The Applications of Genetic Algorithms in Medicine.
Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin
2015-11-01
A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.].
The Applications of Genetic Algorithms in Medicine
Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin
2015-01-01
A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.] PMID:26676060
Cloud Computing-Based TagSNP Selection Algorithm for Human Genome Data
Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling
2015-01-01
Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used. PMID:25569088
Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.
A genetic algorithm for replica server placement
NASA Astrophysics Data System (ADS)
Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl
2012-01-01
Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.
A genetic algorithm for replica server placement
NASA Astrophysics Data System (ADS)
Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl
2011-12-01
Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.
Stochastic dynamics of genetic broadcasting networks
NASA Astrophysics Data System (ADS)
Potoyan, Davit; Wolynes, Peter
The complex genetic programs of eukaryotic cells are often regulated by key transcription factors occupying or clearing out of a large number of genomic locations. Orchestrating the residence times of these factors is therefore important for the well organized functioning of a large network. The classic models of genetic switches sidestep this timing issue by assuming the binding of transcription factors to be governed entirely by thermodynamic protein-DNA affinities. Here we show that relying on passive thermodynamics and random release times can lead to a ''time-scale crisis'' of master genes that broadcast their signals to large number of binding sites. We demonstrate that this ''time-scale crisis'' can be resolved by actively regulating residence times through molecular stripping. We illustrate these ideas by studying the stochastic dynamics of the genetic network of the central eukaryotic master regulator NFκB which broadcasts its signals to many downstream genes that regulate immune response, apoptosis etc.
Superscattering of light optimized by a genetic algorithm
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.
2014-07-01
We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.
A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974
Neural-network-assisted genetic algorithm applied to silicon clusters
NASA Astrophysics Data System (ADS)
Marim, L. R.; Lemes, M. R.; dal Pino, A.
2003-03-01
Recently, a new optimization procedure that combines the power of artificial neural-networks with the versatility of the genetic algorithm (GA) was introduced. This method, called neural-network-assisted genetic algorithm (NAGA), uses a neural network to restrict the search space and it is expected to speed up the solution of global optimization problems if some previous information is available. In this paper, we have tested NAGA to determine the ground-state geometry of Sin (10⩽n⩽15) according to a tight-binding total-energy method. Our results indicate that NAGA was able to find the desired global minimum of the potential energy for all the test cases and it was at least ten times faster than pure genetic algorithm.
Efficient algorithms for polyploid haplotype phasing.
He, Dan; Saha, Subrata; Finkers, Richard; Parida, Laxmi
2018-05-09
Inference of haplotypes, or the sequence of alleles along the same chromosomes, is a fundamental problem in genetics and is a key component for many analyses including admixture mapping, identifying regions of identity by descent and imputation. Haplotype phasing based on sequencing reads has attracted lots of attentions. Diploid haplotype phasing where the two haplotypes are complimentary have been studied extensively. In this work, we focused on Polyploid haplotype phasing where we aim to phase more than two haplotypes at the same time from sequencing data. The problem is much more complicated as the search space becomes much larger and the haplotypes do not need to be complimentary any more. We proposed two algorithms, (1) Poly-Harsh, a Gibbs Sampling based algorithm which alternatively samples haplotypes and the read assignments to minimize the mismatches between the reads and the phased haplotypes, (2) An efficient algorithm to concatenate haplotype blocks into contiguous haplotypes. Our experiments showed that our method is able to improve the quality of the phased haplotypes over the state-of-the-art methods. To our knowledge, our algorithm for haplotype blocks concatenation is the first algorithm that leverages the shared information across multiple individuals to construct contiguous haplotypes. Our experiments showed that it is both efficient and effective.
Simulation and analysis of scalable non-Gaussian statistically anisotropic random functions
NASA Astrophysics Data System (ADS)
Riva, Monica; Panzeri, Marco; Guadagnini, Alberto; Neuman, Shlomo P.
2015-12-01
Many earth and environmental (as well as other) variables, Y, and their spatial or temporal increments, ΔY, exhibit non-Gaussian statistical scaling. Previously we were able to capture some key aspects of such scaling by treating Y or ΔY as standard sub-Gaussian random functions. We were however unable to reconcile two seemingly contradictory observations, namely that whereas sample frequency distributions of Y (or its logarithm) exhibit relatively mild non-Gaussian peaks and tails, those of ΔY display peaks that grow sharper and tails that become heavier with decreasing separation distance or lag. Recently we overcame this difficulty by developing a new generalized sub-Gaussian model which captures both behaviors in a unified and consistent manner, exploring it on synthetically generated random functions in one dimension (Riva et al., 2015). Here we extend our generalized sub-Gaussian model to multiple dimensions, present an algorithm to generate corresponding random realizations of statistically isotropic or anisotropic sub-Gaussian functions and illustrate it in two dimensions. We demonstrate the accuracy of our algorithm by comparing ensemble statistics of Y and ΔY (such as, mean, variance, variogram and probability density function) with those of Monte Carlo generated realizations. We end by exploring the feasibility of estimating all relevant parameters of our model by analyzing jointly spatial moments of Y and ΔY obtained from a single realization of Y.
Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.
ERIC Educational Resources Information Center
Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand
2003-01-01
Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…
Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...
Visible digital watermarking system using perceptual models
NASA Astrophysics Data System (ADS)
Cheng, Qiang; Huang, Thomas S.
2001-03-01
This paper presents a visible watermarking system using perceptual models. %how and why A watermark image is overlaid translucently onto a primary image, for the purposes of immediate claim of copyright, instantaneous recognition of owner or creator, or deterrence to piracy of digital images or video. %perceptual The watermark is modulated by exploiting combined DCT-domain and DWT-domain perceptual models. % so that the watermark is visually uniform. The resulting watermarked image is visually pleasing and unobtrusive. The location, size and strength of the watermark vary randomly with the underlying image. The randomization makes the automatic removal of the watermark difficult even though the algorithm is known publicly but the key to the random sequence generator. The experiments demonstrate that the watermarked images have pleasant visual effect and strong robustness. The watermarking system can be used in copyright notification and protection.
NASA Astrophysics Data System (ADS)
Liu, Zhengjun; Chen, Hang; Blondel, Walter; Shen, Zhenmin; Liu, Shutian
2018-06-01
A novel image encryption method is proposed by using the expanded fractional Fourier transform, which is implemented with a pair of lenses. Here the centers of two lenses are separated at the cross section of axis in optical system. The encryption system is addressed with Fresnel diffraction and phase modulation for the calculation of information transmission. The iterative process with the transform unit is utilized for hiding secret image. The structure parameters of a battery of lenses can be used for additional keys. The performance of encryption method is analyzed theoretically and digitally. The results show that the security of this algorithm is enhanced markedly by the added keys.
Optimum gradient material for a functionally graded dental implant using metaheuristic algorithms.
Sadollah, Ali; Bahreininejad, Ardeshir
2011-10-01
Despite dental implantation being a great success, one of the key issues facing it is a mismatch of mechanical properties between engineered and native biomaterials, which makes osseointegration and bone remodeling problematical. Functionally graded material (FGM) has been proposed as a potential upgrade to some conventional implant materials such as titanium for selection in prosthetic dentistry. The idea of an FGM dental implant is that the property would vary in a certain pattern to match the biomechanical characteristics required at different regions in the hosting bone. However, matching the properties does not necessarily guarantee the best osseointegration and bone remodeling. Little existing research has been reported on developing an optimal design of an FGM dental implant for promoting long-term success. Based upon remodeling results, metaheuristic algorithms such as the genetic algorithms (GAs) and simulated annealing (SA) have been adopted to develop a multi-objective optimal design for FGM implantation design. The results are compared with those in literature. Copyright © 2011 Elsevier Ltd. All rights reserved.
Job shop scheduling problem with late work criterion
NASA Astrophysics Data System (ADS)
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
Scheduling is considered as a key task in many industries, such as project based scheduling, crew scheduling, flight scheduling, machine scheduling, etc. In the machine scheduling area, the job shop scheduling problems are considered to be important and highly complex, in which they are characterized as NP-hard. The job shop scheduling problems with late work criterion and non-preemptive jobs are addressed in this paper. Late work criterion is a fairly new objective function. It is a qualitative measure and concerns with late parts of the jobs, unlike classical objective functions that are quantitative measures. In this work, simulated annealing was presented to solve the scheduling problem. In addition, operation based representation was used to encode the solution, and a neighbourhood search structure was employed to search for the new solutions. The case studies are Lawrence instances that were taken from the Operations Research Library. Computational results of this probabilistic meta-heuristic algorithm were compared with a conventional genetic algorithm, and a conclusion was made based on the algorithm and problem.
Altomare, Cristina; Guglielmann, Raffaella; Riboldi, Marco; Bellazzi, Riccardo; Baroni, Guido
2015-02-01
In high precision photon radiotherapy and in hadrontherapy, it is crucial to minimize the occurrence of geometrical deviations with respect to the treatment plan in each treatment session. To this end, point-based infrared (IR) optical tracking for patient set-up quality assessment is performed. Such tracking depends on external fiducial points placement. The main purpose of our work is to propose a new algorithm based on simulated annealing and augmented Lagrangian pattern search (SAPS), which is able to take into account prior knowledge, such as spatial constraints, during the optimization process. The SAPS algorithm was tested on data related to head and neck and pelvic cancer patients, and that were fitted with external surface markers for IR optical tracking applied for patient set-up preliminary correction. The integrated algorithm was tested considering optimality measures obtained with Computed Tomography (CT) images (i.e. the ratio between the so-called target registration error and fiducial registration error, TRE/FRE) and assessing the marker spatial distribution. Comparison has been performed with randomly selected marker configuration and with the GETS algorithm (Genetic Evolutionary Taboo Search), also taking into account the presence of organs at risk. The results obtained with SAPS highlight improvements with respect to the other approaches: (i) TRE/FRE ratio decreases; (ii) marker distribution satisfies both marker visibility and spatial constraints. We have also investigated how the TRE/FRE ratio is influenced by the number of markers, obtaining significant TRE/FRE reduction with respect to the random configurations, when a high number of markers is used. The SAPS algorithm is a valuable strategy for fiducial configuration optimization in IR optical tracking applied for patient set-up error detection and correction in radiation therapy, showing that taking into account prior knowledge is valuable in this optimization process. Further work will be focused on the computational optimization of the SAPS algorithm toward fast point-of-care applications. Copyright © 2014 Elsevier Inc. All rights reserved.
A genetic algorithm for solving supply chain network design model
NASA Astrophysics Data System (ADS)
Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.
2013-09-01
Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.
NASA Astrophysics Data System (ADS)
Chu, Xiaowen; Li, Bo; Chlamtac, Imrich
2002-07-01
Sparse wavelength conversion and appropriate routing and wavelength assignment (RWA) algorithms are the two key factors in improving the blocking performance in wavelength-routed all-optical networks. It has been shown that the optimal placement of a limited number of wavelength converters in an arbitrary mesh network is an NP complete problem. There have been various heuristic algorithms proposed in the literature, in which most of them assume that a static routing and random wavelength assignment RWA algorithm is employed. However, the existing work shows that fixed-alternate routing and dynamic routing RWA algorithms can achieve much better blocking performance. Our study in this paper further demonstrates that the wavelength converter placement and RWA algorithms are closely related in the sense that a well designed wavelength converter placement mechanism for a particular RWA algorithm might not work well with a different RWA algorithm. Therefore, the wavelength converter placement and the RWA have to be considered jointly. The objective of this paper is to investigate the wavelength converter placement problem under fixed-alternate routing algorithm and least-loaded routing algorithm. Under the fixed-alternate routing algorithm, we propose a heuristic algorithm called Minimum Blocking Probability First (MBPF) algorithm for wavelength converter placement. Under the least-loaded routing algorithm, we propose a heuristic converter placement algorithm called Weighted Maximum Segment Length (WMSL) algorithm. The objective of the converter placement algorithm is to minimize the overall blocking probability. Extensive simulation studies have been carried out over three typical mesh networks, including the 14-node NSFNET, 19-node EON and 38-node CTNET. We observe that the proposed algorithms not only outperform existing wavelength converter placement algorithms by a large margin, but they also can achieve almost the same performance comparing with full wavelength conversion under the same RWA algorithm.
NASA Astrophysics Data System (ADS)
Yusupov, L. R.; Klochkova, K. V.; Simonova, L. A.
2017-09-01
The paper presents a methodology of modeling the chemical composition of the composite material via genetic algorithm for optimization of the manufacturing process of products. The paper presents algorithms of methods based on intelligent system of vermicular graphite iron design
A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...
Independent tasks scheduling in cloud computing via improved estimation of distribution algorithm
NASA Astrophysics Data System (ADS)
Sun, Haisheng; Xu, Rui; Chen, Huaping
2018-04-01
To minimize makespan for scheduling independent tasks in cloud computing, an improved estimation of distribution algorithm (IEDA) is proposed to tackle the investigated problem in this paper. Considering that the problem is concerned with multi-dimensional discrete problems, an improved population-based incremental learning (PBIL) algorithm is applied, which the parameter for each component is independent with other components in PBIL. In order to improve the performance of PBIL, on the one hand, the integer encoding scheme is used and the method of probability calculation of PBIL is improved by using the task average processing time; on the other hand, an effective adaptive learning rate function that related to the number of iterations is constructed to trade off the exploration and exploitation of IEDA. In addition, both enhanced Max-Min and Min-Min algorithms are properly introduced to form two initial individuals. In the proposed IEDA, an improved genetic algorithm (IGA) is applied to generate partial initial population by evolving two initial individuals and the rest of initial individuals are generated at random. Finally, the sampling process is divided into two parts including sampling by probabilistic model and IGA respectively. The experiment results show that the proposed IEDA not only gets better solution, but also has faster convergence speed.
Multi-Objective Constraint Satisfaction for Mobile Robot Area Defense
2010-03-01
17 NSGA-II non-dominated sorting genetic algorithm II . . . . . . . . . . . . . . . . . . . 17 jMetal Metaheuristic Algorithms in...to alert the other agents and ensure trust in the system. This research presents an algorithm that tasks robots to meet the two specific goals of...problem is defined as a constraint satisfaction problem solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Both goals of
Benchmarking dairy herd health status using routinely recorded herd summary data.
Parker Gaddis, K L; Cole, J B; Clay, J S; Maltecca, C
2016-02-01
Genetic improvement of dairy cattle health through the use of producer-recorded data has been determined to be feasible. Low estimated heritabilities indicate that genetic progress will be slow. Variation observed in lowly heritable traits can largely be attributed to nongenetic factors, such as the environment. More rapid improvement of dairy cattle health may be attainable if herd health programs incorporate environmental and managerial aspects. More than 1,100 herd characteristics are regularly recorded on farm test-days. We combined these data with producer-recorded health event data, and parametric and nonparametric models were used to benchmark herd and cow health status. Health events were grouped into 3 categories for analyses: mastitis, reproductive, and metabolic. Both herd incidence and individual incidence were used as dependent variables. Models implemented included stepwise logistic regression, support vector machines, and random forests. At both the herd and individual levels, random forest models attained the highest accuracy for predicting health status in all health event categories when evaluated with 10-fold cross-validation. Accuracy (SD) ranged from 0.61 (0.04) to 0.63 (0.04) when using random forest models at the herd level. Accuracy of prediction (SD) at the individual cow level ranged from 0.87 (0.06) to 0.93 (0.001) with random forest models. Highly significant variables and key words from logistic regression and random forest models were also investigated. All models identified several of the same key factors for each health event category, including movement out of the herd, size of the herd, and weather-related variables. We concluded that benchmarking health status using routinely collected herd data is feasible. Nonparametric models were better suited to handle this complex data with numerous variables. These data mining techniques were able to perform prediction of health status and could add evidence to personal experience in herd management. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Selection of core animals in the Algorithm for Proven and Young using a simulation model.
Bradford, H L; Pocrnić, I; Fragomeni, B O; Lourenco, D A L; Misztal, I
2017-12-01
The Algorithm for Proven and Young (APY) enables the implementation of single-step genomic BLUP (ssGBLUP) in large, genotyped populations by separating genotyped animals into core and non-core subsets and creating a computationally efficient inverse for the genomic relationship matrix (G). As APY became the choice for large-scale genomic evaluations in BLUP-based methods, a common question is how to choose the animals in the core subset. We compared several core definitions to answer this question. Simulations comprised a moderately heritable trait for 95,010 animals and 50,000 genotypes for animals across five generations. Genotypes consisted of 25,500 SNP distributed across 15 chromosomes. Genotyping errors and missing pedigree were also mimicked. Core animals were defined based on individual generations, equal representation across generations, and at random. For a sufficiently large core size, core definitions had the same accuracies and biases, even if the core animals had imperfect genotypes. When genotyped animals had unknown parents, accuracy and bias were significantly better (p ≤ .05) for random and across generation core definitions. © 2017 The Authors. Journal of Animal Breeding and Genetics Published by Blackwell Verlag GmbH.
Design optimisation of powers-of-two FIR filter using self-organising random immigrants GA
NASA Astrophysics Data System (ADS)
Chandra, Abhijit; Chattopadhyay, Sudipta
2015-01-01
In this communication, we propose a novel design strategy of multiplier-less low-pass finite impulse response (FIR) filter with the aid of a recent evolutionary optimisation technique, known as the self-organising random immigrants genetic algorithm. Individual impulse response coefficients of the proposed filter have been encoded as sum of signed powers-of-two. During the formulation of the cost function for the optimisation algorithm, both the frequency response characteristic and the hardware cost of the discrete coefficient FIR filter have been considered. The role of crossover probability of the optimisation technique has been evaluated on the overall performance of the proposed strategy. For this purpose, the convergence characteristic of the optimisation technique has been included in the simulation results. In our analysis, two design examples of different specifications have been taken into account. In order to substantiate the efficiency of our proposed structure, a number of state-of-the-art design strategies of multiplier-less FIR filter have also been included in this article for the purpose of comparison. Critical analysis of the result unambiguously establishes the usefulness of our proposed approach for the hardware efficient design of digital filter.
Application of genetic algorithm in modeling on-wafer inductors for up to 110 Ghz
NASA Astrophysics Data System (ADS)
Liu, Nianhong; Fu, Jun; Liu, Hui; Cui, Wenpu; Liu, Zhihong; Liu, Linlin; Zhou, Wei; Wang, Quan; Guo, Ao
2018-05-01
In this work, the genetic algorithm has been introducted into parameter extraction for on-wafer inductors for up to 110 GHz millimeter-wave operations, and nine independent parameters of the equivalent circuit model are optimized together. With the genetic algorithm, the model with the optimized parameters gives a better fitting accuracy than the preliminary parameters without optimization. Especially, the fitting accuracy of the Q value achieves a significant improvement after the optimization.
Combinatorial Multiobjective Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Crossley, William A.; Martin. Eric T.
2002-01-01
The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.
Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong
2017-11-20
A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.
Results from the Biology Concept Inventory (BCI), and what they mean for biogeoscience literacy.
NASA Astrophysics Data System (ADS)
Garvin-Doxas, K.; Klymkowsky, M.
2008-12-01
While researching the Biology Concept Inventory (BCI) we found that a wide class of student difficulties in genetics and molecular biology can be traced to deep-seated misconceptions about random processes and molecular interactions. Students believe that random processes are inefficient, while biological systems are very efficient, and are therefore quick to propose their own rational explanations for various processes (from diffusion to evolution). These rational explanations almost always make recourse to a driver (natural selection in genetics, or density gradients in molecular biology) with the process only taking place when the driver is present. The concept of underlying random processes that are taking place all the time giving rise to emergent behaviour is almost totally absent. Even students who have advanced or college physics, and can discuss diffusion correctly in that context, cannot make the transfer to biological processes. Furthermore, their understanding of molecular interactions is purely geometric, with a lock-and-key model (rather than an energy minimization model) that does not allow for the survival of slight variations of the "correct" molecule. Together with the dominant misconception about random processes, this results in a strong conceptual barrier in understanding evolutionary processes, and can frustrate the success of education programs.
Simulating synchronization in neuronal networks
NASA Astrophysics Data System (ADS)
Fink, Christian G.
2016-06-01
We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.
A., Javadpour; A., Mohammadi
2016-01-01
Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629
Artificial immune algorithm for multi-depot vehicle scheduling problems
NASA Astrophysics Data System (ADS)
Wu, Zhongyi; Wang, Donggen; Xia, Linyuan; Chen, Xiaoling
2008-10-01
In the fast-developing logistics and supply chain management fields, one of the key problems in the decision support system is that how to arrange, for a lot of customers and suppliers, the supplier-to-customer assignment and produce a detailed supply schedule under a set of constraints. Solutions to the multi-depot vehicle scheduling problems (MDVRP) help in solving this problem in case of transportation applications. The objective of the MDVSP is to minimize the total distance covered by all vehicles, which can be considered as delivery costs or time consumption. The MDVSP is one of nondeterministic polynomial-time hard (NP-hard) problem which cannot be solved to optimality within polynomial bounded computational time. Many different approaches have been developed to tackle MDVSP, such as exact algorithm (EA), one-stage approach (OSA), two-phase heuristic method (TPHM), tabu search algorithm (TSA), genetic algorithm (GA) and hierarchical multiplex structure (HIMS). Most of the methods mentioned above are time consuming and have high risk to result in local optimum. In this paper, a new search algorithm is proposed to solve MDVSP based on Artificial Immune Systems (AIS), which are inspirited by vertebrate immune systems. The proposed AIS algorithm is tested with 30 customers and 6 vehicles located in 3 depots. Experimental results show that the artificial immune system algorithm is an effective and efficient method for solving MDVSP problems.
Ortuño, Francisco M; Valenzuela, Olga; Rojas, Fernando; Pomares, Hector; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio
2013-09-01
Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P < 0.01). This algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P < 0.05), whereas it shows results not significantly different to 3D-COFFEE (P > 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. The source code is available at http://www.ugr.es/~fortuno/MOSAStrE/MO-SAStrE.zip.
NASA Astrophysics Data System (ADS)
Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing
2015-09-01
In this paper, a novel image encryption system with fingerprint used as a secret key is proposed based on the phase retrieval algorithm and RSA public key algorithm. In the system, the encryption keys include the fingerprint and the public key of RSA algorithm, while the decryption keys are the fingerprint and the private key of RSA algorithm. If the users share the fingerprint, then the system will meet the basic agreement of asymmetric cryptography. The system is also applicable for the information authentication. The fingerprint as secret key is used in both the encryption and decryption processes so that the receiver can identify the authenticity of the ciphertext by using the fingerprint in decryption process. Finally, the simulation results show the validity of the encryption scheme and the high robustness against attacks based on the phase retrieval technique.
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2001-01-01
In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.
Genetic Algorithm Approaches for Actuator Placement
NASA Technical Reports Server (NTRS)
Crossley, William A.
2000-01-01
This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.
Design of an image encryption scheme based on a multiple chaotic map
NASA Astrophysics Data System (ADS)
Tong, Xiao-Jun
2013-07-01
In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation-substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.
NASA Astrophysics Data System (ADS)
Alfalou, Ayman; Mansour, Ali
2009-09-01
Nowadays, protecting information is a major issue in any transmission system, as showed by an increasing number of research papers related to this topic. Optical encoding methods, such as a Double Random Phase encryption system i.e. DRP, are widely used and cited in the literature. DRP systems have very simple principle and they are easily applicable to most images (B&W, gray levels or color). Moreover, some applications require an enhanced encoding level based on multiencryption scheme and including biometric keys (as digital fingerprints). The enhancement should be done without increasing transmitted or stored information. In order to achieve that goal, a new approach for simultaneous multiplexing & encoding of several target images is developed in this manuscript. By introducing two additional security levels, our approach enhances the security level of a classic "DRP" system. Our first security level consists in using several independent image-keys (randomly and structurally) along with a new multiplexing algorithm. At this level, several target images (multiencryption) are used. This part can reduce needed information (encoding information). At the second level a standard DRP system is included. Finally, our approach can detect if any vandalism attempt has been done on transmitted encrypted images.
2014-08-01
consensus algorithm called randomized gossip is more suitable [7, 8]. In asynchronous randomized gossip algorithms, pairs of neighboring nodes exchange...messages and perform updates in an asynchronous and unattended manner, and they also 1 The class of broadcast gossip algorithms [9, 10, 11, 12] are...dynamics [2] and asynchronous pairwise randomized gossip [7, 8], broadcast gossip algorithms do not require that nodes know the identities of their
Image reconstruction through thin scattering media by simulated annealing algorithm
NASA Astrophysics Data System (ADS)
Fang, Longjie; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Zhang, Xicheng; Zhu, Jianhua
2018-07-01
An idea for reconstructing the image of an object behind thin scattering media is proposed by phase modulation. The optimized phase mask is achieved by modulating the scattered light using simulated annealing algorithm. The correlation coefficient is exploited as a fitness function to evaluate the quality of reconstructed image. The reconstructed images optimized from simulated annealing algorithm and genetic algorithm are compared in detail. The experimental results show that our proposed method has better definition and higher speed than genetic algorithm.
Integrating Genetic and Functional Genomic Data to Elucidate Common Disease Tra
NASA Astrophysics Data System (ADS)
Schadt, Eric
2005-03-01
The reconstruction of genetic networks in mammalian systems is one of the primary goals in biological research, especially as such reconstructions relate to elucidating not only common, polygenic human diseases, but living systems more generally. Here I present a statistical procedure for inferring causal relationships between gene expression traits and more classic clinical traits, including complex disease traits. This procedure has been generalized to the gene network reconstruction problem, where naturally occurring genetic variations in segregating mouse populations are used as a source of perturbations to elucidate tissue-specific gene networks. Differences in the extent of genetic control between genders and among four different tissues are highlighted. I also demonstrate that the networks derived from expression data in segregating mouse populations using the novel network reconstruction algorithm are able to capture causal associations between genes that result in increased predictive power, compared to more classically reconstructed networks derived from the same data. This approach to causal inference in large segregating mouse populations over multiple tissues not only elucidates fundamental aspects of transcriptional control, it also allows for the objective identification of key drivers of common human diseases.
Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul
2005-01-01
An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.
Genetic algorithm for neural networks optimization
NASA Astrophysics Data System (ADS)
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Hybrid Architectures for Evolutionary Computing Algorithms
2008-01-01
other EC algorithms to FPGA Core Burns P1026/MAPLD 200532 Genetic Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based...on Parallel and Distributed Processing (IPPS/SPDP ), pp. 316-320, Proceedings. IEEE Computer Society 1998. [12] Scott, S. D. , Samal , A., and...Algorithm Hardware References S. Scott, A. Samal , and S. Seth, “HGA: A Hardware Based Genetic Algorithm”, Proceedings of the 1995 ACM Third
Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang
2017-09-01
Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.
Optimizing doped libraries by using genetic algorithms
NASA Astrophysics Data System (ADS)
Tomandl, Dirk; Schober, Andreas; Schwienhorst, Andreas
1997-01-01
The insertion of random sequences into protein-encoding genes in combination with biologicalselection techniques has become a valuable tool in the design of molecules that have usefuland possibly novel properties. By employing highly effective screening protocols, a functionaland unique structure that had not been anticipated can be distinguished among a hugecollection of inactive molecules that together represent all possible amino acid combinations.This technique is severely limited by its restriction to a library of manageable size. Oneapproach for limiting the size of a mutant library relies on `doping schemes', where subsetsof amino acids are generated that reveal only certain combinations of amino acids in a proteinsequence. Three mononucleotide mixtures for each codon concerned must be designed, suchthat the resulting codons that are assembled during chemical gene synthesis represent thedesired amino acid mixture on the level of the translated protein. In this paper we present adoping algorithm that `reverse translates' a desired mixture of certain amino acids into threemixtures of mononucleotides. The algorithm is designed to optimally bias these mixturestowards the codons of choice. This approach combines a genetic algorithm with localoptimization strategies based on the downhill simplex method. Disparate relativerepresentations of all amino acids (and stop codons) within a target set can be generated.Optional weighing factors are employed to emphasize the frequencies of certain amino acidsand their codon usage, and to compensate for reaction rates of different mononucleotidebuilding blocks (synthons) during chemical DNA synthesis. The effect of statistical errors thataccompany an experimental realization of calculated nucleotide mixtures on the generatedmixtures of amino acids is simulated. These simulations show that the robustness of differentoptima with respect to small deviations from calculated values depends on their concomitantfitness. Furthermore, the calculations probe the fitness landscape locally and allow apreliminary assessment of its structure.
Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.
Rani, R Ranjani; Ramyachitra, D
2016-12-01
Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Optimization of heterogeneous Bin packing using adaptive genetic algorithm
NASA Astrophysics Data System (ADS)
Sridhar, R.; Chandrasekaran, M.; Sriramya, C.; Page, Tom
2017-03-01
This research is concentrates on a very interesting work, the bin packing using hybrid genetic approach. The optimal and feasible packing of goods for transportation and distribution to various locations by satisfying the practical constraints are the key points in this project work. As the number of boxes for packing can not be predicted in advance and the boxes may not be of same category always. It also involves many practical constraints that are why the optimal packing makes much importance to the industries. This work presents a combinational of heuristic Genetic Algorithm (HGA) for solving Three Dimensional (3D) Single container arbitrary sized rectangular prismatic bin packing optimization problem by considering most of the practical constraints facing in logistic industries. This goal was achieved in this research by optimizing the empty volume inside the container using genetic approach. Feasible packing pattern was achieved by satisfying various practical constraints like box orientation, stack priority, container stability, weight constraint, overlapping constraint, shipment placement constraint. 3D bin packing problem consists of ‘n’ number of boxes being to be packed in to a container of standard dimension in such a way to maximize the volume utilization and in-turn profit. Furthermore, Boxes to be packed may be of arbitrary sizes. The user input data are the number of bins, its size, shape, weight, and constraints if any along with standard container dimension. This user input were stored in the database and encoded to string (chromosomes) format which were normally acceptable by GA. GA operators were allowed to act over these encoded strings for finding the best solution.
Combining neural networks and genetic algorithms for hydrological flow forecasting
NASA Astrophysics Data System (ADS)
Neruda, Roman; Srejber, Jan; Neruda, Martin; Pascenko, Petr
2010-05-01
We present a neural network approach to rainfall-runoff modeling for small size river basins based on several time series of hourly measured data. Different neural networks are considered for short time runoff predictions (from one to six hours lead time) based on runoff and rainfall data observed in previous time steps. Correlation analysis shows that runoff data, short time rainfall history, and aggregated API values are the most significant data for the prediction. Neural models of multilayer perceptron and radial basis function networks with different numbers of units are used and compared with more traditional linear time series predictors. Out of possible 48 hours of relevant history of all the input variables, the most important ones are selected by means of input filters created by a genetic algorithm. The genetic algorithm works with population of binary encoded vectors defining input selection patterns. Standard genetic operators of two-point crossover, random bit-flipping mutation, and tournament selection were used. The evaluation of objective function of each individual consists of several rounds of building and testing a particular neural network model. The whole procedure is rather computational exacting (taking hours to days on a desktop PC), thus a high-performance mainframe computer has been used for our experiments. Results based on two years worth data from the Ploucnice river in Northern Bohemia suggest that main problems connected with this approach to modeling are ovetraining that can lead to poor generalization, and relatively small number of extreme events which makes it difficult for a model to predict the amplitude of the event. Thus, experiments with both absolute and relative runoff predictions were carried out. In general it can be concluded that the neural models show about 5 per cent improvement in terms of efficiency coefficient over liner models. Multilayer perceptrons with one hidden layer trained by back propagation algorithm and predicting relative runoff show the best behavior so far. Utilizing the genetically evolved input filter improves the performance of yet another 5 per cent. In the future we would like to continue with experiments in on-line prediction using real-time data from Smeda River with 6 hours lead time forecast. Following the operational reality we will focus on classification of the runoffs into flood alert levels, and reformulation of the time series prediction task as a classification problem. The main goal of all this work is to improve flood warning system operated by the Czech Hydrometeorological Institute.
Automatic page layout using genetic algorithms for electronic albuming
NASA Astrophysics Data System (ADS)
Geigel, Joe; Loui, Alexander C. P.
2000-12-01
In this paper, we describe a flexible system for automatic page layout that makes use of genetic algorithms for albuming applications. The system is divided into two modules, a page creator module which is responsible for distributing images amongst various album pages, and an image placement module which positions images on individual pages. Final page layouts are specified in a textual form using XML for printing or viewing over the Internet. The system makes use of genetic algorithms, a class of search and optimization algorithms that are based on the concepts of biological evolution, for generating solutions with fitness based on graphic design preferences supplied by the user. The genetic page layout algorithm has been incorporated into a web-based prototype system for interactive page layout over the Internet. The prototype system is built using client-server architecture and is implemented in java. The system described in this paper has demonstrated the feasibility of using genetic algorithms for automated page layout in albuming and web-based imaging applications. We believe that the system adequately proves the validity of the concept, providing creative layouts in a reasonable number of iterations. By optimizing the layout parameters of the fitness function, we hope to further improve the quality of the final layout in terms of user preference and computation speed.
NASA Astrophysics Data System (ADS)
Narwadi, Teguh; Subiyanto
2017-03-01
The Travelling Salesman Problem (TSP) is one of the best known NP-hard problems, which means that no exact algorithm to solve it in polynomial time. This paper present a new variant application genetic algorithm approach with a local search technique has been developed to solve the TSP. For the local search technique, an iterative hill climbing method has been used. The system is implemented on the Android OS because android is now widely used around the world and it is mobile system. It is also integrated with Google API that can to get the geographical location and the distance of the cities, and displays the route. Therefore, we do some experimentation to test the behavior of the application. To test the effectiveness of the application of hybrid genetic algorithm (HGA) is compare with the application of simple GA in 5 sample from the cities in Central Java, Indonesia with different numbers of cities. According to the experiment results obtained that in the average solution HGA shows in 5 tests out of 5 (100%) is better than simple GA. The results have shown that the hybrid genetic algorithm outperforms the genetic algorithm especially in the case with the problem higher complexity.
Relaxation of selection, niche construction, and the Baldwin effect in language evolution.
Yamauchi, Hajime; Hashimoto, Takashi
2010-01-01
Deacon has suggested that one of the key factors of language evolution is not characterized by an increase in genetic contribution, often known as the Baldwin effect, but rather by a decrease. This process effectively increases linguistic learning capability by organizing a novel synergy of multiple lower-order functions previously irrelevant to the process of language acquisition. Deacon posits that this transition is not caused by natural selection. Rather, it is due to the relaxation of natural selection. While there are some cases in which relaxation caused by some external factors indeed induces the transition, we do not know what kind of relaxation has worked in language evolution. In this article, a genetic-algorithm-based computer simulation is used to investigate how the niche-constructing aspect of linguistic behavior may trigger the degradation of genetic predisposition related to language learning. The results show that agents initially increase their genetic predisposition for language learning—the Baldwin effect. They create a highly uniform sociolinguistic environment—a linguistic niche construction. This means that later generations constantly receive very similar inputs from adult agents, and subsequently the selective pressure to retain the genetic predisposition is relaxed.
Hamiltonian Monte Carlo acceleration using surrogate functions with random bases.
Zhang, Cheng; Shahbaba, Babak; Zhao, Hongkai
2017-11-01
For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov chain Monte Carlo methods, namely, Hamiltonian Monte Carlo. The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the-art methods.
Genetic management of endangered species at the Patuxent Wildlife Research Center
Gabel, R.R.; Gee, G.F.
1987-01-01
Summary: The Patuxent Wildlife Research Center conducts one of the world's largest and best-known research programs for captive propagation of endangered wildlife. In order to be effective and to ensure the long-term survival of species, researchers at Patuxent attempt to manage captive populations according to the principles of population genetics. This includes the use of estimated inbreeding levels for mate selections in Masked Bobwhites and biochemical analyses to measure extant genetic material and determine relationships among Whooping Cranes. As added insurance against catastrophic losses, or even random losses of key individuals representing unique lineages, cryopreservation of semen has been studied and used for some species. Artificial insemination, using either stored or fresh semen, is used to improve fertility rates, thereby increasing the chances for survival of unique genetic lines. Finally, a periodic influx of unrelated stock occurs, when feasible, in order to enhance the genetic base of captive populations. The application of these techniques will ensure that future releases utilize genetically viable animals, thereby improving the potential for successful reintroductions into the wild.
Moghri, Mehdi; Omidi, Mostafa; Farahnakian, Masoud
2014-01-01
During the past decade, polymer nanocomposites attracted considerable investment in research and development worldwide. One of the key factors that affect the quality of polymer nanocomposite products in machining is surface roughness. To obtain high quality products and reduce machining costs it is very important to determine the optimal machining conditions so as to achieve enhanced machining performance. The objective of this paper is to develop a predictive model using a combined design of experiments and artificial intelligence approach for optimization of surface roughness in milling of polyamide-6 (PA-6) nanocomposites. A surface roughness predictive model was developed in terms of milling parameters (spindle speed and feed rate) and nanoclay (NC) content using artificial neural network (ANN). As the present study deals with relatively small number of data obtained from full factorial design, application of genetic algorithm (GA) for ANN training is thought to be an appropriate approach for the purpose of developing accurate and robust ANN model. In the optimization phase, a GA is considered in conjunction with the explicit nonlinear function derived from the ANN to determine the optimal milling parameters for minimization of surface roughness for each PA-6 nanocomposite. PMID:24578636
Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox
NASA Astrophysics Data System (ADS)
Li, R. N.; Liu, X.; Liu, S. J.
2013-12-01
In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.
NASA Astrophysics Data System (ADS)
Liu, Yan; Deng, Honggui; Ren, Shuang; Tang, Chengying; Qian, Xuewen
2018-01-01
We propose an efficient partial transmit sequence technique based on genetic algorithm and peak-value optimization algorithm (GAPOA) to reduce high peak-to-average power ratio (PAPR) in visible light communication systems based on orthogonal frequency division multiplexing (VLC-OFDM). By analysis of hill-climbing algorithm's pros and cons, we propose the POA with excellent local search ability to further process the signals whose PAPR is still over the threshold after processed by genetic algorithm (GA). To verify the effectiveness of the proposed technique and algorithm, we evaluate the PAPR performance and the bit error rate (BER) performance and compare them with partial transmit sequence (PTS) technique based on GA (GA-PTS), PTS technique based on genetic and hill-climbing algorithm (GH-PTS), and PTS based on shuffled frog leaping algorithm and hill-climbing algorithm (SFLAHC-PTS). The results show that our technique and algorithm have not only better PAPR performance but also lower computational complexity and BER than GA-PTS, GH-PTS, and SFLAHC-PTS technique.
NASA Astrophysics Data System (ADS)
Li, Chao; Yang, Sheng-Chao; Guo, Qiao-Sheng; Zheng, Kai-Yan; Wang, Ping-Li; Meng, Zhen-Gui
2016-01-01
A combination of Fourier transform infrared spectroscopy with chemometrics tools provided an approach for studying Marsdenia tenacissima according to its geographical origin. A total of 128 M. tenacissima samples from four provinces in China were analyzed with FTIR spectroscopy. Six pattern recognition methods were used to construct the discrimination models: support vector machine-genetic algorithms, support vector machine-particle swarm optimization, K-nearest neighbors, radial basis function neural network, random forest and support vector machine-grid search. Experimental results showed that K-nearest neighbors was superior to other mathematical algorithms after data were preprocessed with wavelet de-noising, with a discrimination rate of 100% in both the training and prediction sets. This study demonstrated that FTIR spectroscopy coupled with K-nearest neighbors could be successfully applied to determine the geographical origins of M. tenacissima samples, thereby providing reliable authentication in a rapid, cheap and noninvasive way.
Goudie, Catherine; Coltin, Hallie; Witkowski, Leora; Mourad, Stephanie; Malkin, David; Foulkes, William D
2017-08-01
Identifying cancer predisposition syndromes in children with tumors is crucial, yet few clinical guidelines exist to identify children at high risk of having germline mutations. The McGill Interactive Pediatric OncoGenetic Guidelines project aims to create a validated pediatric guideline in the form of a smartphone/tablet application using algorithms to process clinical data and help determine whether to refer a child for genetic assessment. This paper discusses the initial stages of the project, focusing on its overall structure, the methodology underpinning the algorithms, and the upcoming algorithm validation process. © 2017 Wiley Periodicals, Inc.
A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera.
Ci, Wenyan; Huang, Yingping
2016-10-17
Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot) using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical relationship between optical flow, depth and camera ego-motion parameters through the camera's 3-dimensional motion and planar imaging model. Accordingly, the six motion parameters are computed by minimizing the objective function, using the iterative Levenberg-Marquard method. One of key points for visual odometry is that the feature points selected for the computation should contain inliers as much as possible. In this work, the feature points and their optical flows are initially detected by using the Kanade-Lucas-Tomasi (KLT) algorithm. A circle matching is followed to remove the outliers caused by the mismatching of the KLT algorithm. A space position constraint is imposed to filter out the moving points from the point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC) algorithm is employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach presented here is tested on real traffic videos and the results prove the robustness and precision of the method.
A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera
Ci, Wenyan; Huang, Yingping
2016-01-01
Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot) using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical relationship between optical flow, depth and camera ego-motion parameters through the camera’s 3-dimensional motion and planar imaging model. Accordingly, the six motion parameters are computed by minimizing the objective function, using the iterative Levenberg–Marquard method. One of key points for visual odometry is that the feature points selected for the computation should contain inliers as much as possible. In this work, the feature points and their optical flows are initially detected by using the Kanade–Lucas–Tomasi (KLT) algorithm. A circle matching is followed to remove the outliers caused by the mismatching of the KLT algorithm. A space position constraint is imposed to filter out the moving points from the point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC) algorithm is employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach presented here is tested on real traffic videos and the results prove the robustness and precision of the method. PMID:27763508
Optimization of genomic selection training populations with a genetic algorithm
USDA-ARS?s Scientific Manuscript database
In this article, we derive a computationally efficient statistic to measure the reliability of estimates of genetic breeding values for a fixed set of genotypes based on a given training set of genotypes and phenotypes. We adopt a genetic algorithm scheme to find a training set of certain size from ...
A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification
NASA Astrophysics Data System (ADS)
Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; Graveron-Demilly, D.; van Ormondt, D.
MRS Signal quantification is a rather involved procedure and has attracted the interest of the medical engineering community, regarding the development of computationally efficient methodologies. Significant contributions based on Computational Intelligence tools, such as Neural Networks (NNs), demonstrated a good performance but not without drawbacks already discussed by the authors. On the other hand preliminary application of Genetic Algorithms (GA) has already been reported in the literature by the authors regarding the peak detection problem encountered in MRS quantification using the Voigt line shape model. This paper investigates a novel constrained genetic algorithm involving a generic and adaptively defined fitness function which extends the simple genetic algorithm methodology in case of noisy signals. The applicability of this new algorithm is scrutinized through experimentation in artificial MRS signals interleaved with noise, regarding its signal fitting capabilities. Although extensive experiments with real world MRS signals are necessary, the herein shown performance illustrates the method's potential to be established as a generic MRS metabolites quantification procedure.
Fireworks algorithm for mean-VaR/CVaR models
NASA Astrophysics Data System (ADS)
Zhang, Tingting; Liu, Zhifeng
2017-10-01
Intelligent algorithms have been widely applied to portfolio optimization problems. In this paper, we introduce a novel intelligent algorithm, named fireworks algorithm, to solve the mean-VaR/CVaR model for the first time. The results show that, compared with the classical genetic algorithm, fireworks algorithm not only improves the optimization accuracy and the optimization speed, but also makes the optimal solution more stable. We repeat our experiments at different confidence levels and different degrees of risk aversion, and the results are robust. It suggests that fireworks algorithm has more advantages than genetic algorithm in solving the portfolio optimization problem, and it is feasible and promising to apply it into this field.
Zumbrennen-Bullough, Kimberly; Babitt, Jodie L.
2014-01-01
Iron is essential for most living organisms but iron excess can be toxic. Cellular and systemic iron balance is therefore tightly controlled. Iron homeostasis is dysregulated in chronic kidney disease (CKD) and contributes to the anemia that is prevalent in this patient population. Iron supplementation is one cornerstone of anemia management in CKD patients, but has not been rigorously studied in large prospective randomized controlled trials. This review highlights important advances from genetic studies and animal models that have provided key insights into the molecular mechanisms governing iron homeostasis and its disturbance in CKD, and summarizes how these findings may yield advances in the care of this patient population. PMID:24235084
Dynamic traffic assignment : genetic algorithms approach
DOT National Transportation Integrated Search
1997-01-01
Real-time route guidance is a promising approach to alleviating congestion on the nations highways. A dynamic traffic assignment model is central to the development of guidance strategies. The artificial intelligence technique of genetic algorithm...
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.
1991-01-01
A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.
NASA Astrophysics Data System (ADS)
Ebrahimi, Mehdi; Jahangirian, Alireza
2017-12-01
An efficient strategy is presented for global shape optimization of wing sections with a parallel genetic algorithm. Several computational techniques are applied to increase the convergence rate and the efficiency of the method. A variable fidelity computational evaluation method is applied in which the expensive Navier-Stokes flow solver is complemented by an inexpensive multi-layer perceptron neural network for the objective function evaluations. A population dispersion method that consists of two phases, of exploration and refinement, is developed to improve the convergence rate and the robustness of the genetic algorithm. Owing to the nature of the optimization problem, a parallel framework based on the master/slave approach is used. The outcomes indicate that the method is able to find the global optimum with significantly lower computational time in comparison to the conventional genetic algorithm.
Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J
2017-12-01
To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents. Copyright© by the Editorial Department of Journal of Forensic Medicine
NASA Astrophysics Data System (ADS)
Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.
2018-03-01
Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.
Research on laser marking speed optimization by using genetic algorithm.
Wang, Dongyun; Yu, Qiwei; Zhang, Yu
2015-01-01
Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%.
Tag SNP selection via a genetic algorithm.
Mahdevar, Ghasem; Zahiri, Javad; Sadeghi, Mehdi; Nowzari-Dalini, Abbas; Ahrabian, Hayedeh
2010-10-01
Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.
Research on rolling element bearing fault diagnosis based on genetic algorithm matching pursuit
NASA Astrophysics Data System (ADS)
Rong, R. W.; Ming, T. F.
2017-12-01
In order to solve the problem of slow computation speed, matching pursuit algorithm is applied to rolling bearing fault diagnosis, and the improvement are conducted from two aspects that are the construction of dictionary and the way to search for atoms. To be specific, Gabor function which can reflect time-frequency localization characteristic well is used to construct the dictionary, and the genetic algorithm to improve the searching speed. A time-frequency analysis method based on genetic algorithm matching pursuit (GAMP) algorithm is proposed. The way to set property parameters for the improvement of the decomposition results is studied. Simulation and experimental results illustrate that the weak fault feature of rolling bearing can be extracted effectively by this proposed method, at the same time, the computation speed increases obviously.
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.