NASA Astrophysics Data System (ADS)
Breed, D.; Bruintjes, R.; Jensen, T.; Salazar, V.; Fowler, T.
2005-12-01
During the winter and summer seasons of 2001 and 2002, data were collected to assess the efficacy of cloud seeding to enhance precipitation in the United Arab Emirates (UAE). The results of the feasibility study concluded: 1) that winter clouds in the UAE rarely produced conditions amenable to hygroscopic cloud seeding; 2) that summer convective clouds developed often enough, particularly over the Oman Mountains (e.g., the Hajar Mountains along the eastern UAE border and into Oman) to justify a randomized seeding experiment; 3) that collecting quantitative radar observations continues to be a complex but essential part of evaluating a cloud seeding experiment; 4) that successful flight operations would require solving several logistical issues; and 5) that several scientific questions would need to be studied in order to fully evaluate the efficacy and feasibility of hygroscopic cloud seeding, including cloud physical responses, radar-derived rainfall estimates as related to rainfall at the ground, and hydrological impacts. Based on these results, the UAE program proceeded through the design and implemention of a randomized hygroscopic cloud seeding experiment during the summer seasons to statistically quantify the potential for cloud seeding to enhance rainfall, specifically over the UAE and Oman Mountains, while collecting concurrent and separate physical measurements to support the statistical results and provide substantiation for the physical hypothesis. The randomized seeding experiment was carried out over the summers of 2003 and 2004, and a total of 134 cases were treated over the two summer seasons, of which 96 met the analysis criteria established in the experimental design of the program. The statistical evaluation of these cases yielded largely inconclusive results. Evidence will show that the thermodynamic profile had a large influence on storm characteristics and on precipitation development. This in turn provided a confounding factor in the conduct of the seeding experiment, particularly in the lateness of treatment in the storm cycle. The prevalence of capping inversions and the sensitivity of clouds to the level of the inversions as well as to wind shear will be shown using several data sets (soundings, aircraft, radar, numerical models). Concurrent physical measurements with the randomized experiment provided new insights into the physical processes of precipitation that developed in summertime convective clouds over the UAE that in turn helped in the interpretation of the statistical results.
Results of the Thailand Warm-Cloud Hygroscopic Particle Seeding Experiment.
NASA Astrophysics Data System (ADS)
Silverman, Bernard A.; Sukarnjanaset, Wathana
2000-07-01
A randomized, warm-rain enhancement experiment was carried out during 1995-98 in the Bhumibol catchment area in northwestern Thailand. The experiment was conducted in accordance with a randomized, floating single-target design. The seeding targets were semi-isolated, warm convective clouds, contained within a well-defined experimental unit, that, upon qualification, were selected for seeding or not seeding with calcium chloride particles in a random manner. The seeding was done by dispensing the calcium chloride particles at an average rate of 21 kg km1 per seeding pass into the updrafts of growing warm convective clouds (about 1-2 km above cloud base) that have not yet developed or, at most, have just started to develop a precipitation radar echo. The experiment was carried out by the Bureau of Royal Rainmaking and Agricultural Aviation (BRRAA) of the Ministry of Agriculture and Cooperatives as part of its Applied Atmospheric Resources Research Program, Phase 2.During the 4 yr of the experiment, a total of 67 experimental units (34 seeded and 33 nonseeded units) were qualified in accordance with the experimental design. Volume-scan data from a 10-cm Doppler radar at 5-min intervals were used to track each experimental unit, from which various radar-estimated properties of the experimental units were obtained. The statistical evaluation of the experiment was based on a rerandomization analysis of the single ratio of seeded to unseeded experimental unit lifetime properties. In 1997, the BRRAA acquired two sophisticated King Air 350 cloud-physics aircraft, providing the opportunity to obtain physical measurements of the aerosol characteristics of the environment in which the warm clouds grow, of the hydrometeor characteristics of seeded and unseeded clouds, and of the calcium chloride seeding plume dimensions and particle size distribution-information directly related to the effectiveness of the seeding conceptual model that was not directly available up to then.The evaluation of the Thailand warm-rain enhancement experiment has provided statistically significant evidence and supporting physical evidence that the seeding of warm convective clouds with calcium chloride particles produced more rain than was produced by their unseeded counterparts. An exploratory analysis of the time evolution of the seeding effects resulted in a significant revision to the seeding conceptual model.
Cloud microphysical background for the Israel-4 cloud seeding experiment
NASA Astrophysics Data System (ADS)
Freud, Eyal; Koussevitzky, Hagai; Goren, Tom; Rosenfeld, Daniel
2015-05-01
The modest amount of rainfall in Israel occurs in winter storms that bring convective clouds from the Mediterranean Sea when the cold post frontal air interacts with its relatively warm surface. These clouds were seeded in the Israel-1 and Israel-2 cloud glaciogenic seeding experiments, which have shown statistically significant positive effect of added rainfall of at least 13% in northern Israel, whereas the Israel-3 experiment showed no added rainfall in the south. This was followed by operational seeding in the north since 1975. The lack of physical evidence for the causes of the positive effects in the north caused a lack of confidence in the statistical results and led to the Israel-4 randomized seeding experiment in northern Israel. This experiment started in the winter of 2013/14. The main difference from the previous experiments is the focus on the orographic clouds in the catchment of the Sea of Galilee. The decision to commence the experiment was partially based on evidence supporting the existence of seeding potential, which is reported here. Aircraft and satellite microphysical and dynamic measurements of the clouds document the critical roles of aerosols, especially sea spray, on cloud microstructure and precipitation forming processes. It was found that the convective clouds over sea and coastal areas are naturally seeded hygroscopically by sea spray and develop precipitation efficiently. The diminution of the large sea spray aerosols farther inland along with the increase in aerosol concentrations causes the clouds to develop precipitation more slowly. The short time available for the precipitation forming processes in super-cooled orographic clouds over the Golan Heights farthest inland represents the best glaciogenic seeding potential.
Statistical Analysis of the Polarimetric Cloud Analysis and Seeding Test (POLCAST) Field Projects
NASA Astrophysics Data System (ADS)
Ekness, Jamie Lynn
The North Dakota farming industry brings in more than $4.1 billion annually in cash receipts. Unfortunately, agriculture sales vary significantly from year to year, which is due in large part to weather events such as hail storms and droughts. One method to mitigate drought is to use hygroscopic seeding to increase the precipitation efficiency of clouds. The North Dakota Atmospheric Research Board (NDARB) sponsored the Polarimetric Cloud Analysis and Seeding Test (POLCAST) research project to determine the effectiveness of hygroscopic seeding in North Dakota. The POLCAST field projects obtained airborne and radar observations, while conducting randomized cloud seeding. The Thunderstorm Identification Tracking and Nowcasting (TITAN) program is used to analyze radar data (33 usable cases) in determining differences in the duration of the storm, rain rate and total rain amount between seeded and non-seeded clouds. The single ratio of seeded to non-seeded cases is 1.56 (0.28 mm/0.18 mm) or 56% increase for the average hourly rainfall during the first 60 minutes after target selection. A seeding effect is indicated with the lifetime of the storms increasing by 41 % between seeded and non-seeded clouds for the first 60 minutes past seeding decision. A double ratio statistic, a comparison of radar derived rain amount of the last 40 minutes of a case (seed/non-seed), compared to the first 20 minutes (seed/non-seed), is used to account for the natural variability of the cloud system and gives a double ratio of 1.85. The Mann-Whitney test on the double ratio of seeded to non-seeded cases (33 cases) gives a significance (p-value) of 0.063. Bootstrapping analysis of the POLCAST set indicates that 50 cases would provide statistically significant results based on the Mann-Whitney test of the double ratio. All the statistical analysis conducted on the POLCAST data set show that hygroscopic seeding in North Dakota does increase precipitation. While an additional POLCAST field project would be necessary to obtain standardly accepted statistically significant results (p < 0.5) for the double ratio of precipitation amount, the obtained p-value of 0.063 is close and considering the positive result from other hygroscopic seeding experiments, the North Dakota Cloud Modification Project should consider implementation of hygroscopic seeding.
Cirrus Cloud Seeding has Potential to Cool Climate
NASA Technical Reports Server (NTRS)
Storelvmo, T.; Kristjansson, J. E.; Muri, H.; Pfeffer, M.; Barahona, D.; Nenes, A.
2013-01-01
Cirrus clouds, thin ice clouds in the upper troposphere, have a net warming effect on Earth s climate. Consequently, a reduction in cirrus cloud amount or optical thickness would cool the climate. Recent research indicates that by seeding cirrus clouds with particles that promote ice nucleation, their lifetimes and coverage could be reduced. We have tested this hypothesis in a global climate model with a state-of-the-art representation of cirrus clouds and find that cirrus cloud seeding has the potential to cancel the entire warming caused by human activity from pre-industrial times to present day. However, the desired effect is only obtained for seeding particle concentrations that lie within an optimal range. With lower than optimal particle concentrations, a seeding exercise would have no effect. Moreover, a higher than optimal concentration results in an over-seeding that could have the deleterious effect of prolonging cirrus lifetime and contributing to global warming.
The behavior of the radar parameters of cumulonimbus clouds during cloud seeding with AgI
NASA Astrophysics Data System (ADS)
Vujović, D.; Protić, M.
2017-06-01
Deep convection yielding severe weather phenomena (hail, flash floods, thunder) is frequent in Serbia during the warmer part of the year, i.e. April to September. As an effort to mitigate any potential damage to material goods, agricultural crops and vegetation from larger hailstones, cloud seeding is performed. In this paper, we analyzed 29 severe hailstorms seeded by silver iodide. From these, we chose five intense summer thunderstorm cells to analyze in detail the influence of silver-iodide cloud seeding on the radar parameters. Four of them were seeded and one was not. We also used data from firing stations (hail fall occurrence, the size of the hailstones). The most sensitive radar parameter in seeding was the height where maximum reflectivity in the cloud was observed. Its cascade appeared in every case of seeding, but was absent from the non-seeded case. In the case of the supercell, increase and decrease of the height where maximum reflectivity in the cloud was observed occurred in almost regular intervals, 12 to 15 min. The most inert parameter in seeding was maximum radar reflectivity. It changed one to two dBz during one cycle. The height of the top of the cloud and the height of the zone exhibiting enhanced radar echo both had similar behavior. It seems that both increased after seeding due to a dynamic effect: upward currents increasing due to the release of latent heat during the freezing of supercooled droplets. Mean values of the height where maximum reflectivity in the cloud was observed, the height of the top of the cloud and the height of the zone exhibiting enhanced radar echo during seeded period were greater than during unseeded period in 75.9%, 72.4% and 79.3% cases, respectively. This is because the values of the chosen storm parameters were higher when the seeding started, and then those values decreased after the seeded was conducted.
Physical View of Cloud Seeding
ERIC Educational Resources Information Center
Tribus, Myron
1970-01-01
Reviews experimental data on various aspects of climate control. Includes a discussion of (1) the physics of cloud seeding, (2) the applications of cloud seeding, and (3) the role of statistics in the field of weather modification. Bibliography. (LC)
Precipitation formation from orographic cloud seeding.
French, Jeffrey R; Friedrich, Katja; Tessendorf, Sarah A; Rauber, Robert M; Geerts, Bart; Rasmussen, Roy M; Xue, Lulin; Kunkel, Melvin L; Blestrud, Derek R
2018-02-06
Throughout the western United States and other semiarid mountainous regions across the globe, water supplies are fed primarily through the melting of snowpack. Growing populations place higher demands on water, while warmer winters and earlier springs reduce its supply. Water managers are tantalized by the prospect of cloud seeding as a way to increase winter snowfall, thereby shifting the balance between water supply and demand. Little direct scientific evidence exists that confirms even the basic physical hypothesis upon which cloud seeding relies. The intent of glaciogenic seeding of orographic clouds is to introduce aerosol into a cloud to alter the natural development of cloud particles and enhance wintertime precipitation in a targeted region. The hypothesized chain of events begins with the introduction of silver iodide aerosol into cloud regions containing supercooled liquid water, leading to the nucleation of ice crystals, followed by ice particle growth to sizes sufficiently large such that snow falls to the ground. Despite numerous experiments spanning several decades, no direct observations of this process exist. Here, measurements from radars and aircraft-mounted cloud physics probes are presented that together show the initiation, growth, and fallout to the mountain surface of ice crystals resulting from glaciogenic seeding. These data, by themselves, do not address the question of cloud seeding efficacy, but rather form a critical set of observations necessary for such investigations. These observations are unambiguous and provide details of the physical chain of events following the introduction of glaciogenic cloud seeding aerosol into supercooled liquid orographic clouds.
Quantifying spatial variability of AgI cloud seeding benefits and Ag enrichments in snow
NASA Astrophysics Data System (ADS)
Fisher, J.; Benner, S. G.; Lytle, M. L.; Kunkel, M. L.; Blestrud, D.; Holbrook, V. P.; Parkinson, S.; Edwards, R.
2016-12-01
Glaciogenic cloud seeding is an important scientific technology for enhancing water resources across in the Western United States. Cloud seeding enriches super cooled liquid water layers with plumes of silver iodide (AgI), an artificial ice nuclei. Recent studies using target-control regression analysis and modeling estimate glaciogenic cloud seeding increases snow precipitation between 3-15% annually. However, the efficacy of cloud seeding programs is difficult to assess using weather models and statistics alone. This study will supplement precipitation enhancement statistics and Weather Research and Forecasting (WRF) model outputs with ultra-trace chemistry. Combining precipitation enhancement estimates with trace chemistry data (to estimate AgI plume targeting accuracy) may provide a more robust analysis. Precipitation enhancement from the 2016 water year will be modeled two ways. First, by using double-mass curve. Annual SNOTEL data of the cumulative SWE in unseeded areas and cumulative SWE in seeded areas will be compared before, and after, the cloud seeding program's initiation in 2003. Any change in the double-mass curve's slope after 2003 may be attributed to cloud seeding. Second, WRF model estimates of precipitation will be compared to the observed precipitation at SNOTEL sites. The difference between observed and modeled precipitation in AgI seeded regions may also be attributed to cloud seeding (assuming modeled and observed data are comparable at unseeded SNOTEL stations). Ultra-trace snow chemistry data from the 2016 winter season will be used to validate whether estimated precipitation increases are positively correlated with the mass of silver in the snowpack.
Marine Cloud Brightening: Recent Developments
NASA Astrophysics Data System (ADS)
Latham, J.; Gadian, A.; Kleypas, J. A.; Parkes, B.; Hauser, R.; Salter, S.
2012-12-01
Our detailed review of Marine Cloud Brightening (MCB) [Latham et al. (2012) Phil Trans Roy Soc] covers our work up to late 2010. We present herein an outline of some subsequent work. Areas in which we have been particularly active in the last 2 years include; (1) seawater spray technology, (2) influence of MCB on rainfall, (3) CFD studies of Flettner Rotor stability. (4) pseudo-random studies, (5), use of MCB to weaken hurricanes and halt coral bleaching. We used the UK Met. Office HADGEM 1 ocean/atmosphere coupled climate model in all the studies mentioned below. Our treatment of MCB is as described in our 2012 paper. In all cases below our conclusions are provisional, with more work required. We have analysed research conducted by others and ourselves on the important topic of the impact of MCB on rainfall. It appears that the widely varying predictions from different studies result from differences in cloud seeding locations and amounts. This raises the possibility - which needs much more investigation - that unacceptable rainfall differences could be overcome by changing seeding locations. It may be possible to produce a world-wide, everywhere-to-everywhere transfer function of the effects of increased cloud reflectivity by using pseudo-random variation of the CCN concentration in a climate model. Tests on artificial alterations to a real daily temperature record showed that, over a 20 year run, the scatter of results of the detection of the magnitude of the alteration were about 1% of the root mean square of the natural variation. In these studies the CCN values in 89 regions of the oceans were either multiplied or divided by a chosen constant, at different random 10-day intervals, during a run of 20 years. The resulting model predictions of important meteorological parameters such as temperature, precipitation and ice extent were recorded for all the regions of the world. For each point of interest the precipitation record was correlated for each different source region to give a world map of the influence of each spray region. This might be positive, negative or neutral. We obtained statistically significant results for precipitation in both directions at places far from the spray source, even in the opposite hemisphere, over eight 20 year runs. We may be able to reduce the probability of both floods and droughts by directing movements and activity of spray vessels. Our modeling indicates that MCB seeding of marine stratocumulus clouds in regions where hurricanes spawn or develop could reduce sea-surface-temperatures [SST] sufficiently to reduce hurricane intensity by perhaps one Category. Further modeling indicates that substantial coral bleaching predicted to result from CO2-doubling, in 3 important coral regions, might be essentially eliminated by MCB seeding.
Potential value of satellite cloud pictures in weather modification projects
NASA Technical Reports Server (NTRS)
Biswas, K. R.
1972-01-01
Satellite imagery for one project season of cloud seeding programs in the northern Great Plains has been surveyed for its probable usefulness in weather modification programs. The research projects and the meteorological information available are described. A few illustrative examples of satellite imagery analysis are cited and discussed, along with local observations of weather and the seeding decisions made in the research program. This analysis indicates a definite correlation between satellite-observed cloud patterns and the types of cloud seeding activity undertaken, and suggests a high probability of better and/or earlier decisions if the imagery is available in real time. Infrared imagery provides better estimates of cloud height which can be useful in assessing the possibility of a hail threat. The satellite imagery appears to be of more value to area-seeding projects than to single-cloud seeding experiments where the imagery is of little value except as an aid in local forecasting and analysis.
NASA Astrophysics Data System (ADS)
Pokharel, Binod; Geerts, Bart; Jing, Xiaoqin; Friedrich, Katja; Ikeda, Kyoko; Rasmussen, Roy
2017-01-01
The AgI Seeding Cloud Impact Investigation (ASCII) campaign, conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming, was designed to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. Part I of this study (Pokharel and Geerts, 2016) describes the project design, instrumentation, as well as the ambient atmospheric conditions and macrophysical and microphysical properties of the clouds sampled in ASCII. This paper (Part II) explores how the silver iodide (AgI) seeding affects snow growth in these orographic clouds in up to 27 intensive operation periods (IOPs), depending on the instrument used. In most cases, 2 h without seeding (NOSEED) were followed by 2 h of seeding (SEED). In situ data at flight level (2D-probes) indicate higher concentrations of small snow particles during SEED in convective clouds. The double difference of radar reflectivity Z (SEED - NOSEED in the target region, compared to the same trend in the control region) indicates an increase in Z for the composite of ASCII cases, over either mountain range, and for any of the three radar systems (WCR, MRR, and DOW), each with their own control and target regions, and for an array of snow gauges. But this double difference varies significantly from case to case, which is attributed to uncertainties related to sampling representativeness and to differences in natural trends between control and target regions. We conclude that a sample much larger than ASCII's sample is needed for clear observational evidence regarding the sensitivity of seeding efficacy to atmospheric and cloud conditions.
NASA Astrophysics Data System (ADS)
Sudhakar, P.; Sheela, K. Anitha; Ramakrishna Rao, D.; Malladi, Satyanarayana
2016-05-01
In recent years weather modification activities are being pursued in many countries through cloud seeding techniques to facilitate the increased and timely precipitation from the clouds. In order to induce and accelerate the precipitation process clouds are artificially seeded with suitable materials like silver iodide, sodium chloride or other hygroscopic materials. The success of cloud seeding can be predicted with confidence if the precipitation process involving aerosol, the ice water balance, water vapor content and size of the seeding material in relation to aerosol in the cloud is monitored in real time and optimized. A project on the enhancement of rain fall through cloud seeding is being implemented jointly with Kerala State Electricity Board Ltd. Trivandrum, Kerala, India at the catchment areas of the reservoir of one of the Hydro electric projects. The dual polarization lidar is being used to monitor and measure the microphysical properties, the extinction coefficient, size distribution and related parameters of the clouds. The lidar makes use of the Mie, Rayleigh and Raman scattering techniques for the various measurement proposed. The measurements with the dual polarization lidar as above are being carried out in real time to obtain the various parameters during cloud seeding operations. In this paper we present the details of the multi-wavelength dual polarization lidar being used and the methodology to monitor the various cloud parameters involved in the precipitation process. The necessary retrieval algorithms for deriving the microphysical properties of clouds, aerosols characteristics and water vapor profiles are incorporated as a software package working under Lab-view for online and off line analysis. Details on the simulation studies and the theoretical model developed in this regard for the optimization of various parameters are discussed.
Numerical simulation of airborne cloud seeding over Greece, using a convective cloud model
NASA Astrophysics Data System (ADS)
Spiridonov, Vlado; Karacostas, Theodore; Bampzelis, Dimitrios; Pytharoulis, Ioannis
2015-02-01
An extensive work has been done by the Department of Meteorology and Climatology at Aristotle University of Thessaloniki and others using a three-dimensional cloud resolving model to simulate AgI seeding by aircraft of three distinct hailstorm cases occurred over Greece in period 2007-2009. The seeding criterion for silver iodide glaciogenic seeding from air is based on the beneficial competition mechanism. According to thermodynamic analysis and classification proposed by Marwitz (1972a, b, and c) and based on their structural and evolutionary properties we classified them in three groups as singlecell, multicell and supercell hailstorms. The seeding optimization for each selected case is conducted by analysis of the thermodynamic characteristics of the meteorological environment as well as radar reflectivity fields observed by the state of the art Thunderstorm Identification, Tracking, Analysis and Nowcasting (TITAN) software applied in the Greek National Hail Suppression Program (GNHSP). Results of this comprehensive study have shown positive effects with respect to hailfall decrease after successful seeding as our primarily objective. All three cases have illustrated 15-20% decrease in accumulated hailfall at the ground Seeded clouds have exhibited earlier development of precipitation and slight dynamical enhancement of the updraft and rainfall increase of ~10- 12.5%. The results have emphasized a strong interaction between cloud dynamics and microphysics, especially the subgrid scale processes that have impact on agent transport and diffusion in a complex environment. Comparisons between modelled and observed radar reflectivity also show a relatively good agreement. Simulated cloud seeding follows the operational aircraft seeding for hail suppression. The ability of silver-iodide particles to act as ice nuclei has been used to perform airborne cloud seeding, under controlled conditions of temperature and humidity. The seeding effects depend upon applying the seeding methodology in proper seeding time, right placement and agent dose rate.
Occupational contact dermatitis in manual cloud seeding operations.
Ng, W T; Koh, D
2011-05-01
This is a case report on irritant contact dermatitis secondary to calcium oxide exposure during manual cloud seeding operations. A less hazardous substitute such as sodium chloride should be considered wherever possible. Cloud seeding operations are briefly discussed in this report, and the impact of calcium oxide exposure as an occupational hazard is elaborated.
NASA Astrophysics Data System (ADS)
Pokharel, Binod; Geerts, Bart
2016-12-01
The AgI Seeding Cloud Impact Investigation (ASCII) campaign was conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. The campaign was supported by a network of ground-based instruments, including microwave radiometers, two profiling Ka-band Micro-Rain Radars (MRRs), a Doppler on Wheels (DOW) X-band radar, and a Parsivel disdrometer. The University of Wyoming King Air operated the profiling Wyoming Cloud Radar, the Wyoming Cloud Lidar, and in situ cloud and precipitation particle probes. The characteristics of the orographic clouds, flow field, and upstream stability profiles in 27 intensive observation periods (IOPs) are described here. A composite analysis of the impact of seeding on snow growth is presented in Part II of this study (Pokharel et al., 2017).
NASA Astrophysics Data System (ADS)
DeFelice, T. P.; Axisa, Duncan
2017-09-01
This paper builds upon the processes and framework already established for identifying, integrating and testing an unmanned aircraft system (UAS) with sensing technology for use in rainfall enhancement cloud seeding programs to carry out operational activities or to monitor and evaluate seeding operations. We describe the development and assessment methodologies of an autonomous and adaptive UAS platform that utilizes in-situ real time data to sense, target and implement seeding. The development of a UAS platform that utilizes remote and in-situ real-time data to sense, target and implement seeding deployed with a companion UAS ensures optimal, safe, secure, cost-effective seeding operations, and the dataset to quantify the results of seeding. It also sets the path for an innovative, paradigm shifting approach for enhancing precipitation independent of seeding mode. UAS technology is improving and their application in weather modification must be explored to lay the foundation for future implementation. The broader significance lies in evolving improved technology and automating cloud seeding operations that lowers the cloud seeding operational footprint and optimizes their effectiveness and efficiency, while providing the temporal and spatial sensitivities to overcome the predictability or sparseness of environmental parameters needed to identify conditions suitable for seeding, and how such might be implemented. The dataset from the featured approach will contain data from concurrent Eulerian and Lagrangian perspectives over sub-cloud scales that will facilitate the development of cloud seeding decision support tools.
Efficient proof of ownership for cloud storage systems
NASA Astrophysics Data System (ADS)
Zhong, Weiwei; Liu, Zhusong
2017-08-01
Cloud storage system through the deduplication technology to save disk space and bandwidth, but the use of this technology has appeared targeted security attacks: the attacker can deceive the server to obtain ownership of the file by get the hash value of original file. In order to solve the above security problems and the different security requirements of the files in the cloud storage system, an efficient and information-theoretical secure proof of ownership sceme is proposed to support the file rating. Through the K-means algorithm to implement file rating, and use random seed technology and pre-calculation method to achieve safe and efficient proof of ownership scheme. Finally, the scheme is information-theoretical secure, and achieve better performance in the most sensitive areas of client-side I/O and computation.
Plan and Some Results of "Advanced Study on Precipitation Enhancement in Arid and Semi-Arid Regions"
NASA Astrophysics Data System (ADS)
Murakami, M.
2016-12-01
There are several technologies to secure water resources, including the desalination of seawater, recycling of industrial water and reuse of wastewater. However precipitation enhancement is the only way we can create a large amount of water for industrial use, for example, water for irrigation, provided we find clouds suitable for cloud seeding and apply appropriate and effective methods to increase precipitation. Therefore, rain enhancement research is critical in the quest for new water security options and innovative solutions in the UAE and other arid and semi-arid regions. The main objective of our project is to better evaluate, and ultimately improve, the effectiveness of rain enhancement in the UAE and other arid and semi-arid regions using hygroscopic and glaciogenic seeding techniques. One of the major questions regarding rain enhancement today is the effectiveness of hygroscopic seeding for warm and supercooled convective clouds. Our research will investigate the microphysical processes in seeded and unseeded clouds using a combination of laboratory experiments, numerical simulations and in-situ aircraft measurements in order to decipher the mechanism responsible for precipitation augmentation due to hygroscopic seeding. In our research, major elements of cloud seeding, e.g., assessment of seedability, development of optimal seeding methods and evaluation of seeding effects, will be investigated in the most efficient and realistic way, within three years, using mainly the numerical models with the sophisticated seeding scheme, which is developed on a basis of laboratory experiments and then validated against in-situ and remote sensing observations. In addition to the research plan, the outcomes of the research projects, which will be made available to the public at the end of the project and benefit the broader society, is discussed.
Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob
2012-09-13
The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.
Geoengineering by cloud seeding: influence on sea ice and climate system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasch, Philip J.; Latham, John; Chen, Chih-Chieh
2009-12-18
GCM computations using a fully coupled ocean atmosphere model indicate that increasing cloud reflectivity by seeding maritime boundary layer clouds with particles made from seawater may compensate for some of the effects on climate of increasing greenhouse gas concentrations. The chosen seeding strategy (one of many possible scenarios) can restore global averages of temperature, precipitation and sea ice to present day values, but not simultaneously. The response varies nonlinearly with extent of the seeding, and geoengineering generates local changes to important climatic features. The global tradeoffs of restoring ice cover and cooling the planet must be assessed alongside the localmore » changes to climate features.« less
Tai, Yanlong; Liang, Haoran; Zaki, Abdelali; El Hadri, Nabil; Abshaev, Ali M; Huchunaev, Buzgigit M; Griffiths, Steve; Jouiad, Mustapha; Zou, Linda
2017-12-26
Cloud-seeding materials as a promising water-augmentation technology have drawn more attention recently. We designed and synthesized a type of core/shell NaCl/TiO 2 (CSNT) particle with controlled particle size, which successfully adsorbed more water vapor (∼295 times at low relative humidity, 20% RH) than that of pure NaCl, deliquesced at a lower environmental RH of 62-66% than the hygroscopic point (h g.p ., 75% RH) of NaCl, and formed larger water droplets ∼6-10 times its original measured size area, whereas the pure NaCl still remained as a crystal at the same conditions. The enhanced performance was attributed to the synergistic effect of the hydrophilic TiO 2 shell and hygroscopic NaCl core microstructure, which attracted a large amount of water vapor and turned it into a liquid faster. Moreover, the critical particle size of the CSNT particles (0.4-10 μm) as cloud-seeding materials was predicted via the classical Kelvin equation based on their surface hydrophilicity. Finally, the benefits of CSNT particles for cloud-seeding applications were determined visually through in situ observation under an environmental scanning electron microscope on the microscale and cloud chamber experiments on the macroscale, respectively. These excellent and consistent performances positively confirmed that CSNT particles could be promising cloud-seeding materials.
NASA Astrophysics Data System (ADS)
Pokharel, Binod
This dissertation examines reflectivity data from three different radar systems, as well as airborne and ground-based in situ particle imaging data, to study the impact of ground-based glaciogenic seeding on orographic clouds and precipitation formed over the mountains in southern Wyoming. The data for this study come from the AgI Seeding Cloud Impact Investigation (ASCII) field campaign conducted over the Sierra Madre mountains in 2012 (ASCII-12) and over the Medicine Bow mountains in 2013 (ASCII-13) in the context of the Wyoming Weather Modification Pilot Project (WWMPP). The campaigns were supported by a network of ground-based instruments, including a microwave radiometer, two profiling Ka-band Micro Rain Radars (MRRs), a Doppler on Wheels (DOW), rawinsondes, a Cloud Particle Imager, and a Parsivel disdrometer. The University of Wyoming King Air with profiling Wyoming Cloud Radar (WCR) conducted nine successful flights in ASCII-12, and eight flights in ASCII-13. WCR profiles from these flights are combined with those from seven other flights, which followed the same geographically-fixed pattern in 2008-09 (pre-ASCII) over the Medicine Bow range. All sampled storms were relatively shallow, with low-level air forced over the target mountain, and cold enough to support ice initiation by silver iodide (AgI) nuclei in cloud. Three detailed case studies are conducted, each with different atmospheric conditions and different cloud and snow growth properties: one case (21 Feb 2012) is stratiform, with strong winds and cloud droplets too small to enable snow growth by accretion (riming). A second case (13 Feb 2012) contains shallow convective cells. Clouds in the third case study (22 Feb 2012) are stratiform but contain numerous large droplets (mode ~35 microm in diameter), large enough for ice particle growth by riming. These cases and all others, each with a treated period following an untreated period, show that a clear seeding signature is not immediately apparent in individual WCR reflectivity transects downwind of the silver iodide (AgI) generators, and that the natural trends in the precipitation over short timescales can easily overwhelm any seeding-induced change. Therefore the ASCII experimental design included a control region, upwind of the AgI generators. The three case studies generally show an increase in surface snow particle concentration in the target region during the seeding period. Frequency-by-altitude displays of all WCR reflectivity data collected during the flights show slightly higher reflectivity values during seeding near the ground, at least when compared to the control region, in all three cases. This also applies to the two other radar systems (MRR and DOW), both with their own sampling strategy and target/control regions. An examination of all ASCII cases combined (the "composite" analysis) also shows a positive trend in low-level reflectivity relative to the control region, both in convective and in stratiform cases. Also, convective cells sampled at flight level downwind of the AgI generators contain a higher concentration of small ice crystals during seeding. A word of caution is warranted: both the magnitude and the sign of the change in the target region, compared to that in the control region, varies from case to case in the composite, and amongst the three radar systems (WCR, DOW and MRR). We speculate that this variation is only partly driven by different responses of orographic clouds to glaciogenic seeding, related to factors such as cloud base and cloud top temperature, cloud liquid water content, and snow growth mechanism. Instead, most of this variation probably relates to non-homogenous natural trends across the mountain range, and/or to sample unrepresentativeness, especially for the (relative small) control region, in other words to the sampling methods. The impact of natural variability and sampling aliasing can only be overcome by a storm sample size much larger than that collected in ASCII. As such, the ASCII sample size is not adequate either to quantify the magnitude of the seeding impact on snowfall, or to identify the conditions most suitable for ground-based seeding. This study is an exploration of cloud microphysical evidence linking AgI cloud seeding to snowfall. It is not a statistical study. The preponderance of evidence from different radars and ground-based and airborne particle probes deployed in ASCII, in three case studies and in the composite analysis, points to the ability of ground-based glaciogenic seeding to increase the snowfall rate in orographic clouds..
Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob
2012-01-01
The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action. PMID:22869798
Prototype methodology for obtaining cloud seeding guidance from HRRR model data
NASA Astrophysics Data System (ADS)
Dawson, N.; Blestrud, D.; Kunkel, M. L.; Waller, B.; Ceratto, J.
2017-12-01
Weather model data, along with real time observations, are critical to determine whether atmospheric conditions are prime for super-cooled liquid water during cloud seeding operations. Cloud seeding groups can either use operational forecast models, or run their own model on a computer cluster. A custom weather model provides the most flexibility, but is also expensive. For programs with smaller budgets, openly-available operational forecasting models are the de facto method for obtaining forecast data. The new High-Resolution Rapid Refresh (HRRR) model (3 x 3 km grid size), developed by the Earth System Research Laboratory (ESRL), provides hourly model runs with 18 forecast hours per run. While the model cannot be fine-tuned for a specific area or edited to provide cloud-seeding-specific output, model output is openly available on a near-real-time basis. This presentation focuses on a prototype methodology for using HRRR model data to create maps which aid in near-real-time cloud seeding decision making. The R programming language is utilized to run a script on a Windows® desktop/laptop computer either on a schedule (such as every half hour) or manually. The latest HRRR model run is downloaded from NOAA's Operational Model Archive and Distribution System (NOMADS). A GRIB-filter service, provided by NOMADS, is used to obtain surface and mandatory pressure level data for a subset domain which greatly cuts down on the amount of data transfer. Then, a set of criteria, identified by the Idaho Power Atmospheric Science Group, is used to create guidance maps. These criteria include atmospheric stability (lapse rates), dew point depression, air temperature, and wet bulb temperature. The maps highlight potential areas where super-cooled liquid water may exist, reasons as to why cloud seeding should not be attempted, and wind speed at flight level.
NASA Astrophysics Data System (ADS)
Wobrock, Wolfram; Flossmann, Andrea I.; Monier, Marie; Pichon, Jean-Marc; Cortez, Laurent; Fournol, Jean-François; Schwarzenböck, Alfons; Mertes, Stephan; Heintzenberg, Jost; Laj, Paolo; Orsi, Giordano; Ricci, Loretta; Fuzzi, Sandro; Brink, Harry Ten; Jongejan, Piet; Otjes, René
The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H 2O 2 and NH 3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud. In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron-Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron-Findeisen process when acting also in natural clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latham, John; Bower, Keith; Choularton, Tom
2012-09-07
The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involvesmore » (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.« less
Marine cloud brightening: regional applications.
Latham, John; Gadian, Alan; Fournier, Jim; Parkes, Ben; Wadhams, Peter; Chen, Jack
2014-12-28
The general principle behind the marine cloud brightening (MCB) climate engineering technique is that seeding marine stratocumulus clouds with substantial concentrations of roughly monodisperse sub-micrometre-sized seawater particles might significantly enhance cloud albedo and longevity, thereby producing a cooling effect. This paper is concerned with preliminary studies of the possible beneficial application of MCB to three regional issues: (1) recovery of polar ice loss, (2) weakening of developing hurricanes and (3) elimination or reduction of coral bleaching. The primary focus is on Item 1. We focus discussion herein on advantages associated with engaging in limited-area seeding, regional effects rather than global; and the levels of seeding that may be required to address changing current and near-term conditions in the Arctic. We also mention the possibility that MCB might be capable of producing a localized cooling to help stabilize the West Antarctic Ice Sheet.
Illinois Precipitation Research: A Focus on Cloud and Precipitation Modification.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.; Czys, Robert R.; Scott, Robert W.; Westcott, Nancy E.
1991-05-01
At the heart of the 40-year atmospheric research endeavors of the Illinois State Water Survey have been studies to understand precipitation processes in order to learn how precipitation is modified purposefully and accidentally, and to measure the physical and socio-economic consequences of cloud and precipitation modification. Major field and laboratory activities of past years or briefly treated as a basis for describing the key findings of the past ten years. Recent studies of inadvertent and purposeful cloud and rain modification and their effects are emphasized, including a 1989 field project conducted in Illinois and key findings from an on-going exploratory experiment addressing cloud and rain modification. Results are encouraging for the use of dynamic seeding on summer cumuliform clouds of the Midwest.Typical in-cloud results at 10°C reveal multiple updrafts that tend to be filled with large amounts of supercooled drizzle and raindrops. Natural ice production is vigorous, and initial concentrations are larger than expected from ice nuclei. However, natural ice production is not so vigorous as to preclude opportunities for seeding. Radar-based studies of such clouds reveal that their echo cores usually can be identified prior to desired seeding times, which is significant for the evaluation of their behavior. Cell characteristics show considerable variance under different types of meteorological conditions. Analysis of cell mergers reveals that under conditions of weak vertical shear, mid-level intercell flow at 4 km occurs as the reflectivity bridge between cells rapidly intensifies. The degree of intensification of single-echo cores after they merge is strongly related to the age and vigor of the cores before they join. Hence, cloud growth may be enhanced if seeding can encourage echo cores to merge at critical times. Forecasting research has developed a technique for objectively distinguishing between operational seeding and nonoperational days and for objectively predicting maximum cloud-top height and seeding suitability. An accuracy rate of up to 60% in predicting maximum echo-top height using four categories has been achieved and suggests its use as a covariate in future experimentation. Impact studies illustrate that sizable summer rain increases would be necessary to produce economically beneficial outcomes for Corn Belt agriculture. Increases of 25% in July rainfall across certain high-production crop districts of the Corn Belt would produce economic effects realized nationally.
NASA Astrophysics Data System (ADS)
Schwarzenböck, A.; Mertes, S.; Heintzenberg, J.; Wobrock, W.; Laj, P.
The paper focuses on the redistribution of aerosol particles (APs) during the artificial nucleation and subsequent growth of ice crystals in a supercooled cloud. A significant number of the supercooled cloud droplets during icing periods (seeding agents: C 3H 8, CO 2) did not freeze as was presumed prior to the experiment but instead evaporated. The net mass flux of water vapour from the evaporating droplets to the nucleating ice crystals (Bergeron-Findeisen mechanism) led to the release of residual particles that simultaneously appeared in the interstitial phase. The strong decrease of the droplet residuals confirms the nucleation of ice particles on seeding germs without natural aerosol particles serving as ice nuclei. As the number of residual particles during the seedings did not drop to zero, other processes such as heterogeneous ice nucleation, spontaneous freezing, entrainment of supercooled droplets and diffusion to the created particle-free ice germs must have contributed to the experimental findings. During the icing periods, residual mass concentrations in the condensed phase dropped by a factor of 1.1-6.7, as compared to the unperturbed supercooled cloud. As the Bergeron-Findeisen process also occurs without artificial seeding in the atmosphere, this study demonstrated that the hydrometeors in mixed-phase clouds might be much cleaner than anticipated for the simple freezing process of supercooled droplets in tropospheric mid latitude clouds.
Use of meteorological satellite observations in weather modification programs
NASA Technical Reports Server (NTRS)
Dennis, A. S.; Smith, P. L., Jr.; Biswas, K. R.
1973-01-01
The potential value of weather satellite data in field operations of weather modification is appraised. It was found that satellites could play a useful role in operational weather modification projects, particularly in the recognition of treatment opportunities. Satellite cloud photographs and infrared observations appear promising in the identification of treatment opportunities in seeding orographic cloud systems for increased snowpack, in seeding convective clouds for increased rainfall, in identifying hail threats, and in tracking and observing hurricanes as an aid to timing and location of seeding treatments. It was concluded that the potential value of satellite data in the treatment and evaluation phases of operational projects is not as great as in the recognition of treatment opportunity.
NASA Astrophysics Data System (ADS)
Wakimizu, K.; Nishiyama, K.; Tomine, K.; Maki, T.; Suzuki, Y.; Morita, O.
2012-12-01
Many droughts (shortage of water) have broken out by extreme small amount rainfall in recent Japan. So far,in order to prevent these droughts,artificial rainfall methods with 'AgI' or 'dry ice' have been widely used in Japan. However,these methods have many problems,which a large amount of overcooling liquid in the cumulus cloud was not able to be converted into precipitation efficiently. So as to solve these problems,new artificial rainfall method using liquid carbon dioxide (LC) was proposed by Fukuta (1996). This new method consists of the generation of ice particles by homogeneous nucleation using LC and the subsequent more effective growth for ice particles without competition process. And, this method is called 'Low-Level Penetration Seeding of Homogeneous Ice Nucleant (LOLEPSHIN)' ; this induces a 'Roll-up Expansion of Twin Horizontal Ice-crystal Thermals (RETHIT)' and a subsequent 'Falling growth-Induced Lateral Air Spreading (FILAS)'. This LC method was applied to thin super-cooled cumulus clouds in Saga prefecture, Northern Kyushu, Japan on February 4,2006. The seeding airplane took off the Atugi Airport in Kanagawa Prefecture toward the Iki Island around 0830JST. Many cloud bands were cofirmed in the flight going to the experimental area and the cloud base temperature was approximately -9C (1200m). Scince some young developing thin cumuli were found over the Iki Island, LC seeding to these clouds was carried out two times from 0841JST until 0919JST penetrating the -9C (1200m) altitude. The first precipitation seeding ebded in failure. The second penetration seeding was done for 115 seconds around 0917JST. This penetration led to success of developing one artificial echo (Echo I) in the leeward side of the Iki Island. Eco I moved from NNW to SSW. The maximum area of Echo I were 48km2 (at 1033JST) and first comfirmed by the Kyushu University radar (KU radar) at 1006JST (46 min. after LC seeding) around Mt.Sefuri in Saga Prefecture. It can be inferred that ice perticles formed by LC seeding grew to the precipitable size and resultant snowfall was detected by radar in approximately 120 min. after seeding operation. In this study, based on these observed facts, optimum design for enhancing winter-time water resources by LC seeding method was suggested. Successive low-level horizontal penetrations of operational aircraft with seeding LC into many moving super-cooled cumuli towards the Japan Islands will lead to the spreading of cloud volume and subsequent coversion of large amount of iv active cloud volume into newly exploited artificial precipitation. As a result, these experiments succeeded, and the total amount of estimated radar precipitation of the be able to secure a large amount of water resource from these experiment results.
NASA Astrophysics Data System (ADS)
Dessens, J.; Sánchez, J. L.; Berthet, C.; Hermida, L.; Merino, A.
2016-03-01
The science of hail suppression by silver iodide (AgI) cloud seeding was developed during the second half of the 20th century in laboratory and tested in several research or operational projects using three delivery methods for the ice forming particles: ground generators, aircraft, and rockets. The randomization process for the seeding was often considered as the imperative method for a better evaluation but failed to give firm results, mostly because the projects did not last long enough considering the hazardous occurrence of severe hailfalls, and also probably due to the use of improper hail parameters. At the same time and until now, a continuous long-term research and operational field project (1952-2015) using ground generator networks has been conducted in France under the leadership of the Association Nationale d'Etude et de Lutte contre les Fléaux Atmosphériques (ANELFA), with a control initially based on annual insurance loss-to-risk ratios, then on hailpad data. More recently (2000-2009), a companion ground seeding project was developed in the north of Spain, with control mostly based on microphysical and hailpad data. The present paper, which focuses on hail suppression by ground seeding, reviews the production of the AgI nuclei, their dispersion and measurement in the atmosphere, as well as their observed or simulated effects in clouds. The paper summarizes the results of the main historical projects in Switzerland, Argentina, and North America, and finally concentrates on the current French and Spanish projects, with a review of already published results, complemented by new ones recently collected in Spain. The conclusion, at least for France and Spain, is that if ground seeding is performed starting 3 hours before the hail falls at the ground with a 10-km mesh AgI generator network located in the developing hailstorm areas, each generator burning about 9 g of AgI per hour, the hailfall energy of the most severe hail days is decreased by about 50%.
NASA Astrophysics Data System (ADS)
Farley, Richard D.
1987-07-01
This paper reports on simulations of a multicellular hailstorm case observed during the 1983 Alberta Hail Project. The field operations on that day concentrated on two successive feeder cells which were subjected to controlled seeding experiments. The fist of these cells received the placebo treatment and the second was seeded with dry ice. The principal tool of this study is a modified version of the two-dimensional, time dependent hail category model described in Part I of this series of papers. It is with this model that hail growth processes are investigated, including the simulated effects of cloud seeding techniques as practiced in Alberta.The model simulation of the natural case produces a very good replication of the observed storm, particularly the placebo feeder cell. This is evidenced, in particular, by the high degree of fidelity of the observed and modeled radar reflectivity in terms of magnitudes, structure, and evolution. The character of the hailfall at the surface and the scale of the storm are captured nicely by the model, although cloud-top heights are generally too high, particularly for the mature storm system.Seeding experiments similar to those conducted in the field have also been simulated. These involve seeding the feeder cell early in its active development phase with dry ice (CO2) or silver iodide (AgI) introduced near cloud top. The model simulations of these seeded cases capture some of the observed seeding signatures detected by radar and aircraft. In these model experiments, CO2 seeding produced a stronger response than AgI seeding relative to inhibiting hail formation. For both seeded cases, production of precipitating ice was initially enhanced by the seeding, but retarded slightly in the later stages, the net result being modest increases in surface rainfall, with hail reduced slightly. In general, the model simulations support several subhypotheses of the operational strategy of the Alberta Research Council regarding the earlier formation of ice, snow, and graupel due to seeding.
NASA Astrophysics Data System (ADS)
Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús
2011-09-01
This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.
Stabilization of Global Temperature and Polar Sea-ice cover via seeding of Maritime Clouds
NASA Astrophysics Data System (ADS)
Chen, Jack; Gadian, Alan; Latham, John; Launder, Brian; Neukermans, Armand; Rasch, Phil; Salter, Stephen
2010-05-01
The marine cloud albedo enhancement (cloud whitening) geoengineering technique (Latham1990, 2002, Bower et al. 2006, Latham et al. 2008, Salter et al. 2008, Rasch et al. 2009) involves seeding maritime stratocumulus clouds with seawater droplets of size (at creation) around 1 micrometer, causing the droplet number concentration to increase within the clouds, thereby enhancing their albedo and possibly longevity. GCM modeling indicates that (subject to satisfactory resolution of specified scientific and technological problems) the technique could produce a globally averaged negative forcing of up to about -4W/m2, adequate to hold the Earth's average temperature constant as the atmospheric carbon dioxide concentration increases to twice the current value. This idea is being examined using GCM modeling, LES cloud modeling, technological development (practical and theoretical), and analysis of data from the recent, extensive VOCALS field study of marine stratocumulus clouds. We are also formulating plans for a possible limited-area field test of the technique. Recent general circulation model computations using a fully coupled ocean-atmosphere model indicate that increasing cloud reflectivity by seeding maritime boundary layer clouds may compensate for some effects on climate of increasing greenhouse gas concentrations. The chosen seeding strategy (one of many possible scenarios), when employed in an atmosphere where the CO2 concentration is doubled, can restore global averages of temperature, precipitation and polar sea-ice to present day values, but not simultaneously. The response varies nonlinearly with the extent of seeding, and geoengineering generates local changes to important climatic features. Our computations suggest that for the specimen cases examined there is no appreciable reduction of rainfall over land, as a consequence of seeding. This result is in agreement with one separate study but not another. Much further work is required to explain these discrepancies and to address the crucially important issue of adverse ramifications associated with the possible deployment of this geoengineering technique. We envisage, should deployment occur, that wind-driven, unmanned Flettner spray vessels will sail back and forth perpendicular to the local prevailing wind, releasing seawater droplets into the boundary layer beneath marine stratocumulus clouds. In an effort to optimize vessel performance, computations of flow around a Flettner rotor with Thom fences are being conducted. An early result is that that the lift coefficient on the rotating cylinder undergoes very large, slow variations in time, with a frequency an order of magnitude below that of the rotation frequency of the cylinder. The vessels will drag turbines resembling oversized propellers through the water to provide the means for generating electrical energy. Some will be used for rotor spin, but most for the creation of spray droplets. One promising spray production technique involves pumping carefully filtered water through banks of filters and then micro-nozzles with piezoelectric excitation to vary drop diameter. Another involves electro-spraying from Taylor cone-jets. The rotors offer convenient housing for spray nozzles, with fan assistance to help initial dispersion of the droplets. This global cooling technique has the advantages that: (1) the only raw materials required are wind and seawater; (2) the amount of global cooling could be adjusted by switching on or off, by remote control, sea-water droplet generators mounted on the vessels; (3) if necessary, the entire system could be immediately switched off, with conditions returning to normal within a few days; (4) since not all suitable clouds need to be seeded, there exists, in principle, flexibility to choose seeding locations so as to optimise beneficial effects and subdue or eliminate adverse ones. K.Bower, T.W.Choularton, J.Latham, J.Sahraei and S.Salter., 2006. Computational Assessment of a Proposed Technique for Global Warming Mitigation Via Albedo-Enhancement of Marine Stratocumulus Clouds. Atmos. Res. 82, 328-336. Latham, J., 1990: Nature 347. 339-340. Latham, J., 2002, Atmos. Sci. Letters. (doi:10.1006/Asle.2002.0048). Latham, P.J. Rasch, C.C.Chen, L. Kettles, A. Gadian, A. Gettelman, H. Morrison, S. Salter., 2008. Phil. Trans. Roy. Soc. A, 366, 3969-3987,doi:10.1098/rsta.2008.0137. P.J.Rasch, J. Latham & C.C.Chen, 2010. Environ. Res. Lett. 4 045112 (8pp) doi:10.1088/1748-9326/4/4/045112 S. Salter, G. Sortino and J. Latham, 2008. Phil.Trans.Roy. Soc. A, 366, 2989-4006, doi:10.1098/rsta.2008.0136
Payette River Basin Project: Improving Operational Forecasting in Complex Terrain through Chemistry
NASA Astrophysics Data System (ADS)
Blestrud, D.; Kunkel, M. L.; Parkinson, S.; Holbrook, V. P.; Benner, S. G.; Fisher, J.
2015-12-01
Idaho Power Company (IPC) is an investor owned hydroelectric based utility, serving customers throughout southern Idaho and eastern Oregon. The University of Arizona (UA) runs an operational 1.8-km resolution Weather and Research Forecast (WRF) model for IPC, which is incorporated into IPC near and real-time forecasts for hydro, solar and wind generation, load servicing and a large-scale wintertime cloud seeding operation to increase winter snowpack. Winter snowpack is critical to IPC, as hydropower provides ~50% of the company's generation needs. In efforts to improve IPC's near-term forecasts and operational guidance to its cloud seeding program, IPC is working extensively with UA and the National Center for Atmospheric Research (NCAR) to improve WRF performance in the complex terrain of central Idaho. As part of this project, NCAR has developed a WRF based cloud seeding module (WRF CS) to deliver high-resolution, tailored forecasts to provide accurate guidance for IPC's operations. Working with Boise State University (BSU), IPC is conducting a multiyear campaign to validate the WRF CS's ability to account for and disperse the cloud seeding agent (AgI) within the boundary layer. This improved understanding of how WRF handles the AgI dispersion and fate will improve the understanding and ultimately the performance of WRF to forecast other parameters. As part of this campaign, IPC has developed an extensive ground based monitoring network including a Remote Area Snow Sampling Device (RASSD) that provides spatially and temporally discrete snow samples during active cloud seeding periods. To quantify AgI dispersion in the complex terrain, BSU conducts trace element analysis using LA-ICP-MS on the RASSD sampled snow to provide measurements (at the 10-12 level) of incorporated AgI, measurements are compare directly with WRF CS's estimates of distributed AgI. Modeling and analysis results from previous year's research and plans for coming seasons will be presented.
Modification of cirrus clouds to reduce global warming
NASA Astrophysics Data System (ADS)
Mitchell, David L.; Finnegan, William
2009-10-01
Greenhouse gases and cirrus clouds regulate outgoing longwave radiation (OLR) and cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). A potential delivery mechanism for the seeding material is already in place: the airline industry. Since seeding aerosol residence times in the troposphere are relatively short, the climate might return to its normal state within months after stopping the geoengineering experiment. The main known drawback to this approach is that it would not stop ocean acidification. It does not have many of the drawbacks that stratospheric injection of sulfur species has.
Directed Panspermia. 3. strategies and Motivation for Seeding Star-Forming Clouds
NASA Astrophysics Data System (ADS)
Mautner, Michael N.
1997-11-01
Microbial swarms aimed at star-forming regions of interstellar clouds can seed stellar associations of 10 - 100 young planetary systems. Swarms of millimeter size, milligram packets can be launched by 35 cm solar sails at 5E-4 c, to penetrate interstellar clouds. Selective capture in high-density planetary accretion zones of densities > 1E-17 kg m-3 is achieved by viscous drag. Strategies are evaluated to seed dense cloud cores, or individual protostellar condensations, accretion disks or young planets therein. Targeting the Ophiuchus cloud is described as a model system. The biological content, dispersed in 30 μm, 1E-10 kg capsules of 1E6 freeze-dried microorganisms each, may be captured by new planets or delivered to planets after incorporation first into carbonaceous asteroids and comets. These objects, as modeled by meteorite materials, contain biologically available organic and mineral nutrients that are shown to sustain microbial growth. The program may be driven by panbiotic ethics, predicated on: 1. The unique position of complex organic life amongst the structures of Nature; 2. Self-propagation as the basic propensity of the living pattern; 3. The biophysical unity humans with of the organic, DNA/protein family of life; and 4. Consequently, the primary human purpose to safeguard and propagate our organic life form. To promote this purpose, panspermia missions with diverse biological payloads will maximize survival at the targets and induce evolutionary pressures. In particular, eukaryotes and simple multicellular organisms in the payload will accelerate higher evolution. Based on the geometries and masses of star-forming regions, the 1E24 kg carbon resources of one solar system, applied during its 5E9 yr lifespan, can seed all newly forming planetary systems in the galaxy.
Mohana, G S; Shaanker, R U; Ganeshaiah, K N; Dayanandan, S
2001-07-01
Dalbergia sissoo, a wind-dispersed tropical tree, exhibits high intrafruit seed abortion. Of the four to five ovules in the flower, generally one and occasionally two or three develop to maturity. It has been proposed that the seed abortion is a consequence of intense sibling competition for maternal resources and that this competition occurs as an inverse function of the genetic relatedness among the developing seeds. Accordingly, developing seeds compete intensely when they are genetically less related but tend to develop together when genetically more related. We tested this hypothesis by comparing the genetic similarity among the pairs of seeds developing within a pod with that among (a) random pairs from the pool of all seeds, (b) random pairs from single-seeded pods, and (c) random pairs from two-seeded pods, using both randomly amplified polymorphic DNA (RAPD) and isozymes in five trees. We found that the pairs of seeds developing within a pod are genetically more similar than any random pairs of seeds in a tree. Thus the formation of two-seeded pods appear to be associated with increased genetic relatedness among the developing seeds. We discuss the results in the context of possible fitness advantages and then discuss the possible mechanisms that promote tolerance among related seeds.
NASA Astrophysics Data System (ADS)
Ritzman, Jaclyn M.
The objective of the Wyoming Weather Modification Pilot Project is to evaluate the effect of glaciogenic seeding on wintertime precipitation over two co-located barriers in southeast Wyoming. Orographic clouds are to be targeted if they meet strict criteria. An analysis of the impact of seeding requires knowledge of the amount of precipitation that fell from seedable clouds. This amount of precipitation was determined by applying the strict seeding criteria to an eight-year simulation from the Weather Research and Forecasting model at 4-km horizontal resolution. Results from the analysis from the model suggested that the fraction of seedable precipitation was 35.1% (35.5%) over the Sierra Madre and Medicine Bow mountain ranges from 2000-2008. This fraction decreases to 23.2% (23.0%) under a warmer, future climate scenario over the Sierra Madres (Medicine Bows).
Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon
NASA Astrophysics Data System (ADS)
Pöhlker, Christopher; Wiedemann, Kenia T.; Sinha, Bärbel; Shiraiwa, Manabu; Gunthe, Sachin S.; Smith, Mackenzie; Su, Hang; Artaxo, Paulo; Chen, Qi; Cheng, Yafang; Elbert, Wolfgang; Gilles, Mary K.; Kilcoyne, Arthur L. D.; Moffet, Ryan C.; Weigand, Markus; Martin, Scot T.; Pöschl, Ulrich; Andreae, Meinrat O.
2012-08-01
The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.
Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota.
Fajardo, C; Costa, G; Ortiz, L T; Nande, M; Rodríguez-Membibre, M L; Martín, M; Sánchez-Fortún, S
2016-11-01
Silver iodide is one of the most common nucleating materials used in cloud seeding. Previous cloud seeding studies have concluded that AgI is not practically bioavailable in the environment but instead remains in soils and sediments such that the free Ag amounts are likely too low to induce a toxicological effect. However, none of these studies has considered the continued use of this practice on the same geographical areas and thus the potential cumulative effect of environmental AgI. The aim of this study is to assess the risk of acute toxicity caused by AgI exposure under laboratory conditions at the concentration expected in the environment after repeated treatments on selected soil and aquatic biota. To achieve the aims, the viability of soil bacteria Bacillus cereus and Pseudomonas stutzeri and the survival of the nematode Caenorhabditis elegans exposed to different silver iodide concentrations have been evaluated. Freshwater green algae Dictyosphaerium chlorelloides and cyanobacteria Microcystis aeruginosa were exposed to silver iodide in culture medium, and their cell viability and photosynthetic activity were evaluated. Additionally, BOD5 exertion and the Microtox® toxicity test were included in the battery of toxicological assays. Both tests exhibited a moderate AgI adverse effect at the highest concentration (12.5µM) tested. However, AgI concentrations below 2.5µM increased BOD5. Although no impact on the growth and survival endpoints in the soil worm C. elegans was recorded after AgI exposures, a moderate decrease in cell viability was found for both of the assessed soil bacterial strains at the studied concentrations. Comparison between the studied species showed that the cyanobacteria were more sensitive than green algae. Exposure to AgI at 0.43μM, the reference value used in monitoring environmental impact, induced a significant decrease in photosynthetic activity that is primarily associated with the respiration (80% inhibition) and, to a lesser extent, the net photosynthesis (40% inhibition) in both strains of phytoplankton and a moderate decrease in soil bacteria viability. These results suggest that AgI from cloud seeding may moderately affect biota living in both terrestrial and aquatic ecosystems if cloud seeding is repeatedly applied in a specific area and large amounts of seeding materials accumulate in the environment. Copyright © 2016 Elsevier Inc. All rights reserved.
Drogue tracking using 3D flash lidar for autonomous aerial refueling
NASA Astrophysics Data System (ADS)
Chen, Chao-I.; Stettner, Roger
2011-06-01
Autonomous aerial refueling (AAR) is an important capability for an unmanned aerial vehicle (UAV) to increase its flying range and endurance without increasing its size. This paper presents a novel tracking method that utilizes both 2D intensity and 3D point-cloud data acquired with a 3D Flash LIDAR sensor to establish relative position and orientation between the receiver vehicle and drogue during an aerial refueling process. Unlike classic, vision-based sensors, a 3D Flash LIDAR sensor can provide 3D point-cloud data in real time without motion blur, in the day or night, and is capable of imaging through fog and clouds. The proposed method segments out the drogue through 2D analysis and estimates the center of the drogue from 3D point-cloud data for flight trajectory determination. A level-set front propagation routine is first employed to identify the target of interest and establish its silhouette information. Sufficient domain knowledge, such as the size of the drogue and the expected operable distance, is integrated into our approach to quickly eliminate unlikely target candidates. A statistical analysis along with a random sample consensus (RANSAC) is performed on the target to reduce noise and estimate the center of the drogue after all 3D points on the drogue are identified. The estimated center and drogue silhouette serve as the seed points to efficiently locate the target in the next frame.
Aerosol and Cloud Microphysical Properties in the Asir region of Saudi Arabia
NASA Astrophysics Data System (ADS)
Axisa, Duncan; Kucera, Paul; Burger, Roelof; Li, Runjun; Collins, Don; Freney, Evelyn; Posada, Rafael; Buseck, Peter
2010-05-01
In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region of Saudi Arabia as part of a Precipitation Enhancement Feasibility Study. Ground measurements of aerosol size distributions, hygroscopic growth factor, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were done in the Asir region of Saudi Arabia in August 2009. Research aircraft operations focused primarily on conducting measurements in clouds that are targeted for cloud top-seeding, on their microphysical characterization, especially the preconditions necessary for precipitation; understanding the evolution of droplet coalescence, supercooled liquid water, cloud ice and precipitation hydrometeors is necessary if advances are to be made in the study of cloud modification by cloud seeding. Non-precipitating mixed-phase clouds less than 3km in diameter that developed on top of the stable inversion were characterized by flying at the convective cloud top just above the inversion. Aerosol measurements were also done during the climb to cloud base height. The presentation will include a summary of the analysis and results with a focus on the unique features of the Asir region in producing convective clouds, characterization of the aerosol prior to convective development and the microphysical properties of convective clouds in the Asir region of Saudi Arabia.
NASA Astrophysics Data System (ADS)
Imai, T.; Martin, I.; Iha, K.
A Hurricane Modification Process with application of a new clean technology attested for seeding warm clouds with collector pure water droplets of controlled size to produce artificial rains in warm clouds is proposed to modify the hurricanes in order to avoid their formation or to modify the trajectory or to weaken hurricanes in action The Process is based on the time-dependent effects of cloud droplets microphysical processes for the formation and growth of the natural water droplets inside the clouds releasing large volumes of Aeolian energy to form the strong rotative upside air movements A new Paradigm proposed explain the strong and rotative winds created with the water droplets formation and grow process releasing the rotative Aeolian Energy in Tornados and Hurricanes This theory receive the Gold Medal Award of the Water Science in the 7th International Water Symposium 2005 in France Artificial seeding in the Process studies condensing a specified percentage of the water vapor to liquid water droplets where we observe the release of larges intensity of the Aeolian energy creates the hurricanes producing appreciable perturbations With they rotating strong wind created by the water droplets releasing Aeolian energy The Amplitudes of these winds are comparable to natural disasters Once this natural thermal process is completely understood artificial process to modify the hurricanes become scientifically possible to avoid them to happen or to deviate their trajectory or to weaken the already formed hurricanes In this work
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, J; Cunha, J; Sudhyadhom, A
Purpose: Robotic radiosurgery is a salvage treatment option for patients with recurrent prostate cancer. We explored the feasibility of tracking the bolus of permanent prostate implants (PPI) using image recognition software optimized to track spinal anatomy. Methods: Forty-five inert iodine seeds were implanted into a gelatin-based prostate phantom. Four superficial gold seeds were inserted to provide ground-truth alignment. A CT scan of the phantom (120 kVp, 1 mm slice thickness) was acquired and a single-energy iterative metal artifact reduction (MAR) algorithm was used to enhance the quality of the DRR used for tracking. CyberKnife treatment plans were generated from themore » MAR CT and regular CT (no-MAR) using spine tracking. The spine-tracking grid was centered on the bolus of seeds and resized to encompass the full seed cloud. A third plan was created from the regular CT scan, using fiducial tracking based on the 4 superficial gold seeds with identical align-center coordinates. The phantom was initially aligned using the fiducial-tracking plan. Then the MAR and no-MAR spine-tracking plans were loaded without moving the phantom. Differences in couch correction parameters were recorded in the case of perfect alignment and after the application of known rotations and translations (roll/pitch of 2 degrees; translations XYZ of 2 cm). Results: The spine tracking software was able to lock on to the bolus of seeds and provide couch corrections both in the MAR and no-MAR plans. In all cases, differences in the couch correction parameters from fiducial alignment were <0.5 mm in translations and <1 degree in rotations. Conclusion: We were able to successfully track the bolus of seeds with the spine-tracking grid in phantom experiments. For clinical applications, further investigation and developments to adapt the spine-tracking algorithm to optimize for PPI seed cloud tracking is needed to provide reliable tracking in patients. One of the authors (MD) has received research support and speaker honoraria from Accuray.« less
ERIC Educational Resources Information Center
Schaffhauser, Dian
2013-01-01
For any institution looking to shift enterprise resource planning (ERP) systems to the cloud, big savings can be achieved--but only if the school has properly prepped "before" negotiations begin. These three steps can help: (1) Mop up the mess first; (2) Understand the true costs for services; and (3) Calculate the cost of transition.
Analysis of Uniform Random Numbers Generated by Randu and Urn Ten Different Seeds.
The statistical properties of the numbers generated by two uniform random number generators, RANDU and URN, each using ten different seeds are...The testing is performed on a sequence of 50,000 numbers generated by each uniform random number generator using each of the ten seeds . (Author)
Clustering, randomness, and regularity in cloud fields. 4. Stratocumulus cloud fields
NASA Astrophysics Data System (ADS)
Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.
1994-07-01
To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (>900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.
Clustering, randomness, and regularity in cloud fields. 4: Stratocumulus cloud fields
NASA Technical Reports Server (NTRS)
Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.
1994-01-01
To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (more than 900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.
NASA Technical Reports Server (NTRS)
Weger, R. C.; Lee, J.; Zhu, Tianri; Welch, R. M.
1992-01-01
The current controversy existing in reference to the regularity vs. clustering in cloud fields is examined by means of analysis and simulation studies based upon nearest-neighbor cumulative distribution statistics. It is shown that the Poisson representation of random point processes is superior to pseudorandom-number-generated models and that pseudorandom-number-generated models bias the observed nearest-neighbor statistics towards regularity. Interpretation of this nearest-neighbor statistics is discussed for many cases of superpositions of clustering, randomness, and regularity. A detailed analysis is carried out of cumulus cloud field spatial distributions based upon Landsat, AVHRR, and Skylab data, showing that, when both large and small clouds are included in the cloud field distributions, the cloud field always has a strong clustering signal.
The triglyceride composition of 17 seed fats rich in octanoic, decanoic, or lauric acid.
Litchfield, C; Miller, E; Harlow, R D; Reiser, R
1967-07-01
Seed fats of eight species ofLauraceae (laurel family), six species ofCuphea (Lythraceae family), and three species ofUlmaceae (elm family) were extracted, and the triglycerides were isolated by preparative thin-layer chromatography. GLC of the triglycerides on a silicone column resolved 10 to 18 peaks with a 22 to 58 carbon number range for each fat. These carbon number distributions yielded considerable information about triglyceride compositions of the fats.The most interesting finding was withLaurus nobilis seed fat, which contained 58.4% lauric acid and 29.2-29.8% trilaurin. A maximum of 19.9% trilaurin would be predicted by a 1, 2, 3-random, a 1, 3-random-2-random, or a 1-random-2-random-3-random distribution of the lauric acid(3). This indicates a specificity for the biosynthesis of a simple triglyceride byLaurus nobilis seed enzymes.Cuphea lanceolata seed fat also contained more simple triglyceride (tridecanoin) than would be predicted by the fatty acid distribution theories.
NASA Astrophysics Data System (ADS)
Gadian, A.; Hauser, R.; Kleypas, J. A.; Latham, J.; Parkes, B.; Salter, S.
2013-12-01
This study examines the potential to cool ocean surface waters in regions of hurricane genesis and early development. This would be achieved by seeding, with copious quantities of seawater cloud condensation nuclei (CCN), low-level maritime stratocumulus clouds covering these regions or those at the source of incoming currents. Higher cloud droplet density would increase these clouds' reflectivity to incoming sunlight, and possibly their longevity. This approach is a more localized application of the Marine Cloud Brightening (MCB) geoengineering technique promoting global cooling. By utilizing a climate ocean/atmosphere coupled model, HadGEM1, and by judicious seeding of maritime stratocumulus clouds, we demonstrate that we may be able to significantly reduce sea surface temperatures (SSTs) in hurricane development regions. Thus artificial seeding may reduce hurricane intensity; but how well the magnitude of this effect is yet to be determined. Increases in coral bleaching events over the last few decades have been largely caused by rising SSTs, and continued warming is expected to cause even greater increases through this century. Using thr same Global Climate Model to examine the potential of MCB to cool oceanic surface waters in three coral reef provinces. Our simulations indicate that under doubled CO2 conditions, the substantial increases in coral bleaching conditions from current values in three reef regions (Caribbean, French Polynesia, and the Great Barrier Reef) were eliminated when MCB was applied, which reduced the SSTs at these sites roughly to their original values. In this study we also illustrate how even regional application of MCB can affect the planetary meridional heat flux and the reduction in poleward heat transfer. (a) Change in annual average sea surface temperature, Celsius, between the 2xCO2 and CONTROL simulations. (b) Change in annual average sea surface temperature, Celsius, between the CONTROL and 2xCO2+MCB simulations. The dashed black boxes in both panels represent the three coral reef regions. In the Southern north Atlantic, the warmer SSTs in (a) is reduced to the current "control" temperatures, weakening hurricane formation.
Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds
NASA Astrophysics Data System (ADS)
Christensen, M. W.; Suzuki, K.; Zambri, B.; Stephens, G. L.
2014-10-01
Aerosol influences on clouds are a major source of uncertainty to our understanding of forced climate change. Increased aerosol can enhance solar reflection from clouds countering greenhouse gas warming. Recently, this indirect effect has been extended from water droplet clouds to other types including mixed-phase clouds. Aerosol effects on mixed-phase clouds are important because of their fundamental role on sea ice loss and polar climate change, but very little is known about aerosol effects on these clouds. Here we provide the first analysis of the effects of aerosol emitted from ship stacks into mixed-phase clouds. Satellite observations of solar reflection in numerous ship tracks reveal that cloud albedo increases 5 times more in liquid clouds when polluted and persist 2 h longer than in mixed-phase clouds. These results suggest that seeding mixed-phase clouds via shipping aerosol is unlikely to provide any significant counterbalancing solar radiative cooling effects in warming polar regions.
NASA Astrophysics Data System (ADS)
Abdulkadir, Bashir Abubakar; Uemura, Yoshimitsu; Ramli, Anita; Osman, Noridah B.; Kusakabe, Katsuki; Kai, Takami
2014-10-01
In this research, biodiesel is produced by in situ transesterification (direct transesterification) method from the rubber seeds using KOH as a catalyst. The influence of methanol to seeds mass ratio, duration of reaction, and catalyst loading was investigated. The result shows that, the best ratio of seeds to methanol is 1:6 (10 g seeds with 60 g methanol), 120 minutes reaction time and catalyst loading of 3.0 g. The maximum FAME yield obtain was 70 %. This findings support FAME production from the seeds of rubber tree using direct transesterifcation method from the seeds of rubber tree as an alternative to diesel fuel. Also, significant properties of biodiesel such as cloud point, density, pour point, specific gravity, and viscosity were investigated.
Project Fog Drops. Part 2: Laboratory investigations
NASA Technical Reports Server (NTRS)
Kocmond, W. C.; Mack, E. J.; Katz, U.; Pilie, R. J.
1972-01-01
Measurements of the total nucleus concentration and cloud condensation nuclei (CCN) were acquired for several conditions representing both high normal and severe pollution levels for the Los Angeles Basin as well as clean filtered air. The data show that in filtered air there is a large photochemically induced increase in the total particle content within a few minutes after starting the lamp. The concentration of CCN remains near zero, until sufficient coagulation and condensation occurs on the smaller Aitken particles. The addition of gaseous pollutants to filtered air results in large increases in the photochemical production of both the cloud and Aitken nucleus concentration. Fogs were also generated under controlled, reproducible conditions in the cloud chamber and seeded with aerosols of various compounds which form monomolecular surface films at air-water interfaces. Visibility characteristics and droplet data were obtained. The data suggest that droplet growth on treated nuclei can be retarded but fog formation was not significantly altered by the chemical seeding.
GAS CLOUDS RAINING STAR STUFF ONTO MILKY WAY GALAXY
NASA Technical Reports Server (NTRS)
2002-01-01
This composite radio light image and rendition of our galaxy as seen in visible light shows enigmatic 'high-velocity clouds' of gas high above the plane of the Milky Way which rain gas into the galaxy, seeding it with the stuff of stars. The cloud outlined, and possibly others too, is now known to have low heavy element content and to be raining down onto the Milky Way disk, seeding it with material for star birth. Identifying this infalling gas helps in solving a long-standing mystery of galactic evolution by revealing a source of the low-metallicity gas required to explain the observed chemical composition of stars near the Sun. In this all-sky projection, the edge-on plane of our galaxy appears as a white horizontal strip. The false-color orange-yellow 'clouds' are regions containing neutral hydrogen, which glows in 21-centimeter radiation. Hubble Space Telescope's spectrograph was aimed at one of the clouds (encircled) to measure its detailed composition and velocity. This discovery is based on a combination of data from NASA's Hubble Space Telescope, three radio telescopes (at Effelsberg in Germany, and Dwingeloo and Westerbork in the Netherlands), the William Herschel Telescope on the island of La Palma and the Wisconsin H-alpha Mapper at NOAO's Kitt Peak Observatory. Photo Credits: Image composite by Ingrid Kallick of Possible Designs, Madison Wisconsin. The background Milky Way image is a drawing made at Lund Observatory. High-velocity clouds are from the survey done at Dwingeloo Observatory (Hulsbosch and Wakker, 1988).
The development of indonesian traditional bekel game in android platform
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Fahrani, O. R.; Purnamawati, S.; Pasha, M. F.
2018-03-01
Bekel is one of traditional Indonesian game that is rarely played nowadays. Bekel is a game to test dexterity level using a bekel ball and 6 to10 seeds. The game is played by throwing the ball up in the air, spreading the seeds randomly on the floor then picking the seeds up until the ground is clear. This game application is an adaptation of Bekel game focusing on the movements of the ball and the randomization of the seed positions. This game application has three levels of difficulty based on the basic rules of the actual Bekel game. The focus of the study is the free fall method of the ball and the random function of the seeds in the Android environment. The result show the Bekel application has sensitivity level of 71% for the ball movements and the probability rate of the random event occurrence is at 23%.
Csf Based Non-Ground Points Extraction from LIDAR Data
NASA Astrophysics Data System (ADS)
Shen, A.; Zhang, W.; Shi, H.
2017-09-01
Region growing is a classical method of point cloud segmentation. Based on the idea of collecting the pixels with similar properties to form regions, region growing is widely used in many fields such as medicine, forestry and remote sensing. In this algorithm, there are two core problems. One is the selection of seed points, the other is the setting of the growth constraints, in which the selection of the seed points is the foundation. In this paper, we propose a CSF (Cloth Simulation Filtering) based method to extract the non-ground seed points effectively. The experiments have shown that this method can obtain a group of seed spots compared with the traditional methods. It is a new attempt to extract seed points
NASA Technical Reports Server (NTRS)
Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.
2009-01-01
A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.
NASA Astrophysics Data System (ADS)
Helling, Ch.; Tootill, D.; Woitke, P.; Lee, G.
2017-07-01
Context. Recent observations indicate potentially carbon-rich (C/O > 1) exoplanet atmospheres. Spectral fitting methods for brown dwarfs and exoplanets have invoked the C/O ratio as additional parameter but carbon-rich cloud formation modeling is a challenge for the models applied. The determination of the habitable zone for exoplanets requires the treatment of cloud formation in chemically different regimes. Aims: We aim to model cloud formation processes for carbon-rich exoplanetary atmospheres. Disk models show that carbon-rich or near-carbon-rich niches may emerge and cool carbon planets may trace these particular stages of planetary evolution. Methods: We extended our kinetic cloud formation model by including carbon seed formation and the formation of C[s], TiC[s], SiC[s], KCl[s], and MgS[s] by gas-surface reactions. We solved a system of dust moment equations and element conservation for a prescribed Drift-Phoenixatmosphere structure to study how a cloud structure would change with changing initial C/O0 = 0.43...10.0. Results: The seed formation efficiency is lower in carbon-rich atmospheres than in oxygen-rich gases because carbon is a very effective growth species. The consequence is that fewer particles make up a cloud if C/O0 > 1. The cloud particles are smaller in size than in an oxygen-rich atmosphere. An increasing initial C/O ratio does not revert this trend because a much greater abundance of condensible gas species exists in a carbon-rich environment. Cloud particles are generally made of a mix of materials: carbon dominates if C/O0 > 1 and silicates dominate if C/O0 < 1. A carbon content of 80-90% carbon is reached only in extreme cases where C/O0 = 3.0 or 10.0. Conclusions: Carbon-rich atmospheres form clouds that are made of particles of height-dependent mixed compositions, sizes and numbers. The remaining gas phase is far less depleted than in an oxygen-rich atmosphere. Typical tracer molecules are HCN and C2H2 in combination with a featureless, smooth continuum due to a carbonaceous cloud cover, unless the cloud particles become crystalline.
Study of the Fine-Scale Structure of Cumulus Clouds.
NASA Astrophysics Data System (ADS)
Rodi, Alfred R.
Small cumulus clouds are studied using data from an instrumented aircraft. Two aspects of the role of turbulence and mixing in these couds are examined: (1) the effect of mixing on the droplet size distribution, and (2) the effect of turbulence on the spread of ice crystal plumes artificially generated with cloud seeding agents. The data were collected in the course of the Bureau of Reclamation's High Plains Cooperative Experiment (HIPLEX) in Montana in the summers of 1978-80 by the University of Wyoming King Air aircraft. The shape of the cloud droplet spectrum as measured by the Particle Measuring Systems (PMS) Forward Scattering Spectrometer Probe (FSSP) is found to be very sensitive to entrainment of dry environmental air into the cloud. The narrowest cloud droplet spectra, the highest droplet concentrations, and the largest sized droplets are found in the cloud parcels which are least affected by entrainment. The most dilute regions of cloud exhibit the broadest spectra which are frequently bimodal. A procedure for measuring cloud inhomogeneity from FSSP is developed. The data shows that the clouds are extremely inhomogeneous in structure. Current models of inhomogeneous mixing are shown to be inadequate in explaining droplet spectrum effects. However, the inhomogeneous models characterize the data far better than classical models of droplet spectrum evolution. High resolution measurements of ice crystals from the PMS two dimensional imaging probe are used to characterize the spread of the ice crystal plume in seeded clouds. Plume spread is found to be a very complicated process which is in some cases dominated by organized motions in the cloud. As a result, classical diffusion theory is often inadequate to predict plume growth. The turbulent diffusion that occurs is shown to be best modeled using the relative diffusion concept of Richardson. Procedures for adapting aircraft data to the relative diffusion model are developed, including techniques for converting the aircraft Eulerian data into estimates of Lagrangian correlations. Predictions of the model are compared with observations of plume growth. A detailed analysis of errors in the air motion sensing system on the aircraft is presented. A procedure is developed to estimate the errors due to aircraft gyroscope sensitivity to horizontal accelerations.
NASA Astrophysics Data System (ADS)
Farrah, S.; Al Yazidi, O.
2016-12-01
The UAE Research Program for Rain Enhancement Science (UAEREP) is an international research initiative designed to advance the science and technology of rain enhancement. It comes from an understanding of the needs of countries suffering from scarcity of fresh water, and its will to support innovation globally. The Program focuses on the following topics: Climate change, Climate modelling, Climatology, Atmospheric physics, Atmospheric dynamics, Weather modification, Cloud physics, Cloud dynamics, Cloud seeding, Weather radars, Dust modelling, Aerosol physics , Aerosol chemistry, Aerosol/cloud interactions, Water resources, Physics, Numerical modelling, Material science, Nanotechnology, Meteorology, Hydrology, Hydrogeology, Rocket technology, Laser technology, Water sustainability, Remote sensing, Environmental sciences... In 2015, three research teams from Japan, Germany and the UAE led by Prof. Masataka Murakami, Volker Wulfmeyer and Linda Zou have been respectively awarded. Together, they are addressing the issue of water security through innovative ideas: algorithms and sensors, land cover modification, and nanotechnologies to accelerate condensation. These three projects are undergoing now with extensive research and progresses. This session will be an opportunity to present their latest results as well as to detail the evolution of research in rain enhancement. In 2016 indeed, the Program saw a remarkable increase in participation, with 91 pre-proposals from 398 scientists, researchers and technologists affiliated to 180 institutes from 45 countries. The projects submitted are now focusing on modelling to predict weather, autonomous vehicles, rocket technology, lasers or new seeding materials… The science of rain enhancement offers considerable potential in terms of research, development and innovation. Though cloud seeding has been pursued since the late 1940s, it has been viewed as a relatively marginal field of interest for scientists. This benign neglect has been recently replaced by a new drive to solve the technical obstacles impeding its potential. There is now a real prospect that this science will come of age and play its rightful part in boosting sustainable water supplies for people at risk in arid and semi-arid regions of the world.
Cloud Macroscopic Organization: Order Emerging from Randomness
NASA Technical Reports Server (NTRS)
Yuan, Tianle
2011-01-01
Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.
2013-08-03
Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Perhaps a dandelion losing its seeds in the wind? Love clouds!
Francis, Jasmine H; Iyer, Saipriya; Gobin, Y Pierre; Brodie, Scott E; Abramson, David H
2017-10-01
To compare the efficacy and toxicity of treating class 3 retinoblastoma vitreous seeds with ophthalmic artery chemosurgery (OAC) alone versus OAC with intravitreous chemotherapy. Retrospective cohort study. Forty eyes containing clouds (class 3 vitreous seeds) of 40 retinoblastoma patients (19 treated with OAC alone and 21 treated with OAC plus intravitreous and periocular chemotherapy). Ocular survival, disease-free survival and time to regression of seeds were estimated with Kaplan-Meier estimates. Ocular toxicity was evaluated by clinical findings and electroretinography: 30-Hz flicker responses were compared at baseline and last follow-up visit. Continuous variables were compared with Student t test, and categorical variables were compared with the Fisher exact test. Ocular survival, disease-free survival, and time to regression of seeds. There were no disease- or treatment-related deaths and no patient demonstrated externalization of tumor or metastatic disease. There was no significant difference in the age, laterality, disease, or disease status (treatment naïve vs. previously treated) between the 2 groups. The time to regression of seeds was significantly shorter for eyes treated with OAC plus intravitreous chemotherapy (5.7 months) compared with eyes treated with OAC alone (14.6 months; P < 0.001). The 18-month Kaplan-Meier estimates of disease-free survival were significantly worse for the OAC alone group: 67.1% (95% confidence interval, 40.9%-83.6%) versus 94.1% (95% confidence interval, 65%-99.1%) for the OAC plus intravitreous chemotherapy group (P = 0.05). The 36-month Kaplan-Meier estimates of ocular survival were 83.3% (95% confidence interval, 56.7%-94.3%) for the OAC alone group and 100% for the OAC plus intravitreous chemotherapy group (P = 0.16). The mean change in electroretinography responses was not significantly different between groups, decreasing by 11 μV for the OAC alone group and 22 μV for the OAC plus intravitreous chemotherapy group (P = 0.4). Treating vitreous seed clouds with OAC and intravitreous and periocular chemotherapy, compared with OAC alone, resulted in a shorter time to regression and was associated with fewer recurrences requiring additional treatment and fewer enucleations. The toxicity to the retina does not seem to be significantly worse in the OAC plus intravitreous chemotherapy group. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Further analysis of a snowfall enhancement project in the Snowy Mountains of Australia
NASA Astrophysics Data System (ADS)
Manton, Michael J.; Peace, Andrew D.; Kemsley, Karen; Kenyon, Suzanne; Speirs, Johanna C.; Warren, Loredana; Denholm, John
2017-09-01
The first phase of the Snowy Precipitation Enhancement Research Project (SPERP-1) was a confirmatory experiment on winter orographic cloud seeding (Manton et al., 2011). Analysis of the data (Manton and Warren, 2011) found that a statistically significant impact of seeding could be obtained by removing any 5-hour experimental units (EUs) for which the amount of released seeding material was below a specified minimum. Analysis of the SPERP-1 data is extended in the present work by first considering the uncertainties in the measurement of precipitation and in the methodology. It is found that the estimation of the natural precipitation in the target area, based solely on the precipitation in the designated control area, is a significant source of uncertainty. A systematic search for optimal predictors shows that both the Froude number of the low-level flow across the mountains and the control precipitation should be used to estimate the natural precipitation. Applying the optimal predictors for the natural precipitation, statistically significant impacts are found using all EUs. This approach also supports a novel analysis of the sensitivity of seeding impacts to environmental variables, such as wind speed and cloud top temperature. The spatial distribution of seeding impact across the target is investigated. Building on the results of SPERP-1, phase 2 of the experiment (SPERP-2) ran from 2010 to 2013 with the target area extended to the north along the mountain ridges. Using the revised methodology, the seeding impacts in SPERP-2 are found to be consistent with those in SPERP-1, provided that the natural precipitation is estimated accurately.
Economic Intervention and Parenting: A Randomized Experiment of Statewide Child Development Accounts
ERIC Educational Resources Information Center
Nam, Yunju; Wikoff, Nora; Sherraden, Michael
2016-01-01
Objective: We examine the effects of Child Development Accounts (CDAs) on parenting stress and practices. Methods: We use data from the SEED for Oklahoma Kids (SEED OK) experiment. SEED OK selected caregivers of infants from Oklahoma birth certificates using a probability sampling method, randomly assigned caregivers to the treatment (n = 1,132)…
Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin
2015-01-01
Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks. PMID:26501283
Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin
2015-10-16
Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks.
NASA Astrophysics Data System (ADS)
Orville, Harold D.
A recent news brief about cloud seeding work being conducted in Cohuila, Mexico, (“Rain Dance,” Eos, July 23, 1996) contained unfounded, off-hand remarks that are a disservice to many scientists and professionals in the cloud physics and weather modification community. The news brief stated that “most previous attempts to catalyze rainfall by cloud seeding have produced inconclusive results, and almost none of the experiments have had a sound scientific basis.” The inconclusive results are primarily statistical; many outstanding scientific results have developed from the 50-year history of research into weather modification.Also, most of the work that I know about has proceeded on the scientific basis that was developed over the years by the scientific and operational communities, and it is improving with time. It is grossly inaccurate to say that almost none of the experiments have had a sound scientific basis. Improvements in technology are strengthening that scientific basis, and current physical and numerical studies being conducted in many places are improving understanding. (See reviews of the status of weather modification from the American Meteorological Society [1992] and the World Meteorological Organization [1992].)
Occurrence of lower cloud albedo in ship tracks
NASA Astrophysics Data System (ADS)
Chen, Y.-C.; Christensen, M. W.; Xue, L.; Sorooshian, A.; Stephens, G. L.; Rasmussen, R. M.; Seinfeld, J. H.
2012-09-01
The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, quasi-linear cloud features prevalent in oceanic regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease) and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air), nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.
Collapse of primordial gas clouds and the formation of quasar black holes
NASA Technical Reports Server (NTRS)
Loeb, Abraham; Rasio, Frederic A.
1994-01-01
The formation of quasar black holes during the hydrodynamic collapse of protogalactic gas clouds is discussed. The dissipational collapse and long-term dynamical evolution of these systems is analyzed using three-dimensional numerical simulations. The calculations focus on the final collapse stages of the inner baryonic component and therefore ignore the presence of dark matter. Two types of initial conditions are considered: uniformly rotating spherical clouds, and iirotational ellipsoidal clouds. In both cases the clouds are initially cold, homogeneous, and not far from rotational support (T/(absolute value of W) approximately equals 0.1). Although the details of the dynamical evolution depend sensitively on the initial conditions, the qualitative features of the final configurations do not. Most of the gas is found to fragment into small dense clumps, that eventually make up a spheroidal component resembling a galactic bulge. About 5% of the initial mass remains in the form of a smooth disk of gas supported by rotation in the gravitational potential potential well of the outer spheroid. If a central seed black hole of mass approximately greater than 10(exp 6) solar mass forms, it can grow by steady accretion from the disk and reach a typical quasar black hole mass approximately 10(exp 8) solar mass in less than 5 x 10(exp 8) yr. In the absence of a sufficiently massive seed, dynamical instabilities in a strongly self-gravitating inner region of the disk will inhibit steady accretion of gas and may prevent the immediate formation of quasar.
Automatic Generation of Indoor Navigable Space Using a Point Cloud and its Scanner Trajectory
NASA Astrophysics Data System (ADS)
Staats, B. R.; Diakité, A. A.; Voûte, R. L.; Zlatanova, S.
2017-09-01
Automatic generation of indoor navigable models is mostly based on 2D floor plans. However, in many cases the floor plans are out of date. Buildings are not always built according to their blue prints, interiors might change after a few years because of modified walls and doors, and furniture may be repositioned to the user's preferences. Therefore, new approaches for the quick recording of indoor environments should be investigated. This paper concentrates on laser scanning with a Mobile Laser Scanner (MLS) device. The MLS device stores a point cloud and its trajectory. If the MLS device is operated by a human, the trajectory contains information which can be used to distinguish different surfaces. In this paper a method is presented for the identification of walkable surfaces based on the analysis of the point cloud and the trajectory of the MLS scanner. This method consists of several steps. First, the point cloud is voxelized. Second, the trajectory is analysing and projecting to acquire seed voxels. Third, these seed voxels are generated into floor regions by the use of a region growing process. By identifying dynamic objects, doors and furniture, these floor regions can be modified so that each region represents a specific navigable space inside a building as a free navigable voxel space. By combining the point cloud and its corresponding trajectory, the walkable space can be identified for any type of building even if the interior is scanned during business hours.
Liebeskind, David S
2016-01-01
Crowdsourcing, an unorthodox approach in medicine, creates an unusual paradigm to study precision cerebrovascular health, eliminating the relative isolation and non-standardized nature of current imaging data infrastructure, while shifting emphasis to the astounding capacity of big data in the cloud. This perspective envisions the use of imaging data of the brain and vessels to orient and seed A Million Brains Initiative™ that may leapfrog incremental advances in stroke and rapidly provide useful data to the sizable population around the globe prone to the devastating effects of stroke and vascular substrates of dementia. Despite such variability in the type of data available and other limitations, the data hierarchy logically starts with imaging and can be enriched with almost endless types and amounts of other clinical and biological data. Crowdsourcing allows an individual to contribute to aggregated data on a population, while preserving their right to specific information about their own brain health. The cloud now offers endless storage, computing prowess, and neuroimaging applications for postprocessing that is searchable and scalable. Collective expertise is a windfall of the crowd in the cloud and particularly valuable in an area such as cerebrovascular health. The rise of precision medicine, rapidly evolving technological capabilities of cloud computing and the global imperative to limit the public health impact of cerebrovascular disease converge in the imaging of A Million Brains Initiative™. Crowdsourcing secure data on brain health may provide ultimate generalizability, enable focused analyses, facilitate clinical practice, and accelerate research efforts.
Introducing two Random Forest based methods for cloud detection in remote sensing images
NASA Astrophysics Data System (ADS)
Ghasemian, Nafiseh; Akhoondzadeh, Mehdi
2018-07-01
Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The quantitative values on Landsat 8 images show similar trend. Consequently, while SVM and K-nearest neighbor show overestimation in predicting cloud and snow/ice pixels, our Random Forest (RF) based models can achieve higher cloud, snow/ice kappa values on MODIS and thin cloud, thick cloud and snow/ice kappa values on Landsat 8 images. Our algorithms predict both thin and thick cloud on Landsat 8 images while the existing cloud detection algorithm, Fmask cannot discriminate them. Compared to the state-of-the-art methods, our algorithms have acquired higher average cloud and snow/ice kappa values for different spatial resolutions.
Black Clouds vs Random Variation in Hospital Admissions.
Ong, Luei Wern; Dawson, Jeffrey D; Ely, John W
2018-06-01
Physicians often accuse their peers of being "black clouds" if they repeatedly have more than the average number of hospital admissions while on call. Our purpose was to determine whether the black-cloud phenomenon is real or explainable by random variation. We analyzed hospital admissions to the University of Iowa family medicine service from July 1, 2010 to June 30, 2015. Analyses were stratified by peer group (eg, night shift attending physicians, day shift senior residents). We analyzed admission numbers to find evidence of black-cloud physicians (those with significantly more admissions than their peers) and white-cloud physicians (those with significantly fewer admissions). The statistical significance of whether there were actual differences across physicians was tested with mixed-effects negative binomial regression. The 5-year study included 96 physicians and 6,194 admissions. The number of daytime admissions ranged from 0 to 10 (mean 2.17, SD 1.63). Night admissions ranged from 0 to 11 (mean 1.23, SD 1.22). Admissions increased from 1,016 in the first year to 1,523 in the fifth year. We found 18 white-cloud and 16 black-cloud physicians in simple regression models that did not control for this upward trend. After including study year and other potential confounding variables in the regression models, there were no significant associations between physicians and admission numbers and therefore no true black or white clouds. In this study, apparent black-cloud and white-cloud physicians could be explained by random variation in hospital admissions. However, this randomness incorporated a wide range in workload among physicians, with potential impact on resident education at the low end and patient safety at the high end.
Clustering, randomness, and regularity in cloud fields: 2. Cumulus cloud fields
NASA Astrophysics Data System (ADS)
Zhu, T.; Lee, J.; Weger, R. C.; Welch, R. M.
1992-12-01
During the last decade a major controversy has been brewing concerning the proper characterization of cumulus convection. The prevailing view has been that cumulus clouds form in clusters, in which cloud spacing is closer than that found for the overall cloud field and which maintains its identity over many cloud lifetimes. This "mutual protection hypothesis" of Randall and Huffman (1980) has been challenged by the "inhibition hypothesis" of Ramirez et al. (1990) which strongly suggests that the spatial distribution of cumuli must tend toward a regular distribution. A dilemma has resulted because observations have been reported to support both hypotheses. The present work reports a detailed analysis of cumulus cloud field spatial distributions based upon Landsat, Advanced Very High Resolution Radiometer, and Skylab data. Both nearest-neighbor and point-to-cloud cumulative distribution function statistics are investigated. The results show unequivocally that when both large and small clouds are included in the cloud field distribution, the cloud field always has a strong clustering signal. The strength of clustering is largest at cloud diameters of about 200-300 m, diminishing with increasing cloud diameter. In many cases, clusters of small clouds are found which are not closely associated with large clouds. As the small clouds are eliminated from consideration, the cloud field typically tends towards regularity. Thus it would appear that the "inhibition hypothesis" of Ramirez and Bras (1990) has been verified for the large clouds. However, these results are based upon the analysis of point processes. A more exact analysis also is made which takes into account the cloud size distributions. Since distinct clouds are by definition nonoverlapping, cloud size effects place a restriction upon the possible locations of clouds in the cloud field. The net effect of this analysis is that the large clouds appear to be randomly distributed, with only weak tendencies towards regularity. For clouds less than 1 km in diameter, the average nearest-neighbor distance is equal to 3-7 cloud diameters. For larger clouds, the ratio of cloud nearest-neighbor distance to cloud diameter increases sharply with increasing cloud diameter. This demonstrates that large clouds inhibit the growth of other large clouds in their vicinity. Nevertheless, this leads to random distributions of large clouds, not regularity.
Corona discharge induced snow formation in a cloud chamber.
Ju, Jingjing; Wang, Tie-Jun; Li, Ruxin; Du, Shengzhe; Sun, Haiyi; Liu, Yonghong; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Chen, Na; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Chin, S L; Xu, Zhizhan
2017-09-18
Artificial rainmaking is in strong demand especially in arid regions. Traditional methods of seeding various Cloud Condensation Nuclei (CCN) into the clouds are costly and not environment friendly. Possible solutions based on ionization were proposed more than 100 years ago but there is still a lack of convincing verification or evidence. In this report, we demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra CCN. In comparison with another newly emerging femtosecond laser filamentation ionization method, the snow precipitation induced by the corona discharge has about 4 orders of magnitude higher wall-plug efficiency under similar conditions.
NASA Astrophysics Data System (ADS)
Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.
2010-01-01
A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.
Rain-shadow: An area harboring "Gray Ocean" clouds
NASA Astrophysics Data System (ADS)
Padmakumari, B.; Maheskumar, R. S.; Harikishan, G.; Morwal, S. B.; Kulkarni, J. R.
2018-06-01
The characteristics of monsoon convective clouds over the rain-shadow region of north peninsular India have been investigated using in situ aircraft cloud microphysical observations collected during Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). The parameters considered for characterization are: liquid water content (LWC), cloud vertical motion (updraft, downdraft: w), cloud droplet number concentration (CDNC) and effective radius (Re). The results are based on 15 research flights which were conducted from the base station Hyderabad during summer monsoon season. The clouds studied were developing congestus. The clouds have low CDNC and low updraft values resembling the oceanic convective clouds. The super-saturation in clouds is found to be low (≤0.2%) due to low updrafts. The land surface behaves like ocean surface during monsoon as deduced from Bowen ratio. Microphysically the clouds showed oceanic characteristics. However, these clouds yield low rainfall due to their low efficiency (mean 14%). The cloud parameters showed a large variability; hence their characteristic values are reported in terms of median values. These values will serve the numerical models for rainfall simulations over the region and also will be useful as a scientific basis for cloud seeding operations to increase the rainfall efficiency. The study revealed that monsoon convective clouds over the rain-shadow region are of oceanic type over the gray land, and therefore we christen them as "Gray Ocean" clouds.
Aircraft-Induced Hole Punch and Canal Clouds
NASA Astrophysics Data System (ADS)
Heymsfield, A. J.; Kennedy, P.; Massie, S. T.; Schmitt, C. G.; Wang, Z.; Haimov, S.; Rangno, A.
2009-12-01
The production of holes and channels in altocumulus clouds by two commercial turboprop aircraft is documented for the first time. An unprecedented data set combining in situ measurements from microphysical probes with remote sensing measurements from cloud radar and lidar, all operating from the NSF/NCAR C130 aircraft, as well as ground-based NOAA and CSU radars, is used to describe the radar/lidar properties of a hole punch cloud and channel and the ensuing ice microphysical properties and structure of the ice column that subsequently developed. Ice particle production by commercial turboprop aircraft climbing through clouds much warmer than the regions where contrails are produced has the potential to modify significantly the cloud microphysical properties and effectively seed them under some conditions. Jet aircraft may also be producing hole punch clouds when flying through altocumulus with supercooled droplets at heights lower than their normal cruise altitudes where contrails can form. Commercial aircraft therefore can generate ice and affect the clouds at temperatures as much as 30°C warmer than the -40°C contrail formation threshold temperature.
NASA Astrophysics Data System (ADS)
Wulfmeyer, V.; Behrendt, A.; Branch, O.; Schwitalla, T.
2016-12-01
A prerequisite for significant precipitation amounts is the presence of convergence zones. These are due to land surface heterogeneity, orography as well as mesoscale and synoptic scale circulations. Only, if these convergence zones are strong enough and interact with an upper level instability, deep convection can be initiated. For the understanding of convection initiation (CI) and optimal cloud seeding deployment, it is essential that these convergence zones are detected before clouds are developing in order to preempt the decisive microphysical processes for liquid water and ice formation. In this presentation, a new project on Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification (OCAL) is introduced, which is funded by the United Arab Emirates Rain Enhancement Program (UAEREP). This project has two research components. The first component focuses on an improved detection and forecasting of convergence zones and CI by a) operation of scanning Doppler lidar and cloud radar systems during two seasonal field campaigns in orographic terrain and over the desert in the UAE, and b) advanced forecasting of convergence zones and CI with the WRF-NOAHMP model system. Nowcasting to short-range forecasting of convection will be improved by the assimilation of Doppler lidar and the UAE radar network data. For the latter, we will apply a new model forward operator developed at our institute. Forecast uncertainties will be assessed by ensemble simulations driven by ECMWF boundaries. The second research component of OCAL will study whether artificial modifications of land surface heterogeneity are possible through plantations or changes of terrain, leading to an amplification of convergence zones. This is based on our pioneering work on high-resolution modeling of the impact of plantations on weather and climate in arid regions. A specific design of the shape and location of plantations can lead to the formation of convergence zones, which can strengthen convergent flows already existing in the region of interest, thus amplifying convection and precipitation. We expect that this method can be successfully applied in regions with pre-existing land-surface heterogeneity and orography such as coastal areas with land-sea breezes and the Al Hajar Mountain range.
Atmospheric transport of mold spores in clouds of desert dust
Shinn, E.A.; Griffin, Dale W.; Seba, D.B.
2003-01-01
Fungal spores can be transported globally in clouds of desert dust. Many species of fungi (commonly known as molds) and bacteria--including some that are human pathogens--have characteristics suited to long-range atmospheric transport. Dust from the African desert can affect air quality in Africa, Europe, the Middle East, and the Americas. Asian desert dust can affect air quality in Asia, the Arctic, North America, and Europe. Atmospheric exposure to mold-carrying desert dust may affect human health directly through allergic induction of respiratory stress. In addition, mold spores within these dust clouds may seed downwind ecosystems in both outdoor and indoor environments.
Overlap Properties of Clouds Generated by a Cloud Resolving Model
NASA Technical Reports Server (NTRS)
Oreopoulos, L.; Khairoutdinov, M.
2002-01-01
In order for General Circulation Models (GCMs), one of our most important tools to predict future climate, to correctly describe the propagation of solar and thermal radiation through the cloudy atmosphere a realistic description of the vertical distribution of cloud amount is needed. Actually, one needs not only the cloud amounts at different levels of the atmosphere, but also how these cloud amounts are related, in other words, how they overlap. Currently GCMs make some idealized assumptions about cloud overlap, for example that contiguous cloud layers overlap maximally and non-contiguous cloud layers overlap in a random fashion. Since there are difficulties in obtaining the vertical profile of cloud amount from observations, the realism of the overlap assumptions made in GCMs has not been yet rigorously investigated. Recently however, cloud observations from a relatively new type of ground radar have been used to examine the vertical distribution of cloudiness. These observations suggest that the GCM overlap assumptions are dubious. Our study uses cloud fields from sophisticated models dedicated to simulate cloud formation, maintenance, and dissipation called Cloud Resolving Models . These models are generally considered capable of producing realistic three-dimensional representation of cloudiness. Using numerous cloud fields produced by such a CRM we show that the degree of overlap between cloud layers is a function of their separation distance, and is in general described by a combination of the maximum and random overlap assumption, with random overlap dominating as separation distances increase. We show that it is possible to parameterize this behavior in a way that can eventually be incorporated in GCMs. Our results seem to have a significant resemblance to the results from the radar observations despite the completely different nature of the datasets. This consistency is encouraging and will promote development of new radiative transfer codes that will estimate the radiation effects of multi-layer cloud fields more accurately.
Research of MPPT for photovoltaic generation based on two-dimensional cloud model
NASA Astrophysics Data System (ADS)
Liu, Shuping; Fan, Wei
2013-03-01
The cloud model is a mathematical representation to fuzziness and randomness in linguistic concepts. It represents a qualitative concept with expected value Ex, entropy En and hyper entropy He, and integrates the fuzziness and randomness of a linguistic concept in a unified way. This model is a new method for transformation between qualitative and quantitative in the knowledge. This paper is introduced MPPT (maximum power point tracking, MPPT) controller based two- dimensional cloud model through analysis of auto-optimization MPPT control of photovoltaic power system and combining theory of cloud model. Simulation result shows that the cloud controller is simple and easy, directly perceived through the senses, and has strong robustness, better control performance.
A nonparametric significance test for sampled networks.
Elliott, Andrew; Leicht, Elizabeth; Whitmore, Alan; Reinert, Gesine; Reed-Tsochas, Felix
2018-01-01
Our work is motivated by an interest in constructing a protein-protein interaction network that captures key features associated with Parkinson's disease. While there is an abundance of subnetwork construction methods available, it is often far from obvious which subnetwork is the most suitable starting point for further investigation. We provide a method to assess whether a subnetwork constructed from a seed list (a list of nodes known to be important in the area of interest) differs significantly from a randomly generated subnetwork. The proposed method uses a Monte Carlo approach. As different seed lists can give rise to the same subnetwork, we control for redundancy by constructing a minimal seed list as the starting point for the significance test. The null model is based on random seed lists of the same length as a minimum seed list that generates the subnetwork; in this random seed list the nodes have (approximately) the same degree distribution as the nodes in the minimum seed list. We use this null model to select subnetworks which deviate significantly from random on an appropriate set of statistics and might capture useful information for a real world protein-protein interaction network. The software used in this paper are available for download at https://sites.google.com/site/elliottande/. The software is written in Python and uses the NetworkX library. ande.elliott@gmail.com or felix.reed-tsochas@sbs.ox.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
A nonparametric significance test for sampled networks
Leicht, Elizabeth; Whitmore, Alan; Reinert, Gesine; Reed-Tsochas, Felix
2018-01-01
Abstract Motivation Our work is motivated by an interest in constructing a protein–protein interaction network that captures key features associated with Parkinson’s disease. While there is an abundance of subnetwork construction methods available, it is often far from obvious which subnetwork is the most suitable starting point for further investigation. Results We provide a method to assess whether a subnetwork constructed from a seed list (a list of nodes known to be important in the area of interest) differs significantly from a randomly generated subnetwork. The proposed method uses a Monte Carlo approach. As different seed lists can give rise to the same subnetwork, we control for redundancy by constructing a minimal seed list as the starting point for the significance test. The null model is based on random seed lists of the same length as a minimum seed list that generates the subnetwork; in this random seed list the nodes have (approximately) the same degree distribution as the nodes in the minimum seed list. We use this null model to select subnetworks which deviate significantly from random on an appropriate set of statistics and might capture useful information for a real world protein–protein interaction network. Availability and implementation The software used in this paper are available for download at https://sites.google.com/site/elliottande/. The software is written in Python and uses the NetworkX library. Contact ande.elliott@gmail.com or felix.reed-tsochas@sbs.ox.ac.uk Supplementary information Supplementary data are available at Bioinformatics online. PMID:29036452
The angular distribution of infrared radiances emerging from broken fields of cumulus clouds
NASA Technical Reports Server (NTRS)
Naber, P. S.; Weinman, J. A.
1984-01-01
Infrared radiances were simultaneously measured from broken cloud fields over the eastern Pacific Ocean by means of the eastern and western geostationary satellites. The measurements were compared with the results of models that characterized the clouds as black circular cylinders disposed randomly on a plane and as black cuboids disposed in regular and in shifted periodic arrays. The data were also compared with the results obtained from a radiative transfer model that considered emission and scattering by a regular array of periodic cuboidal clouds. It was found that the radiances did not depend significantly on the azimuth angle; this suggested that the observed cloud fields were not regular periodic arrays. However, the dependence on zenith angle suggested that the clouds were not disposed randomly either. The implication of these measurements on the understanding of the transfer of infrared radiances through broken cloud fields is considered.
Seed size selection by olive baboons.
Kunz, Britta Kerstin; Linsenmair, Karl Eduard
2008-10-01
Seed size is an important plant fitness trait that can influence several steps between fruiting and the establishment of a plant's offspring. Seed size varies considerably within many plant species, yet the relevance of the trait for intra-specific fruit choice by primates has received little attention. Primates may select certain seed sizes within a species for a number of reasons, e.g. to decrease indigestible seed load or increase pulp intake per fruit. Olive baboons (Papio anubis, Cercopithecidae) are known to select seed size in unripe and mature pods of Parkia biglobosa (Mimosaceae) differentially, so that pods with small seeds, and an intermediate seed number, contribute most to dispersal by baboons. We tested whether olive baboons likewise select for smaller ripe seeds within each of nine additional fruit species whose fruit pulp baboons commonly consume, and for larger seeds in one species in which baboons feed on the seeds. Species differed in fruit type and seed number per fruit. For five of these species, baboons dispersed seeds that were significantly smaller than seeds extracted manually from randomly collected fresh fruits. In contrast, for three species, baboons swallowed seeds that were significantly longer and/or wider than seeds from fresh fruits. In two species, sizes of ingested seeds and seeds from fresh fruits did not differ significantly. Baboons frequently spat out seeds of Drypetes floribunda (Euphorbiaceae) but not those of other plant species having seeds of equal size. Oral processing of D. floribunda seeds depended on seed size: seeds that were spat out were significantly larger and swallowed seeds smaller, than seeds from randomly collected fresh fruits. We argue that seed size selection in baboons is influenced, among other traits, by the amount of pulp rewarded per fruit relative to seed load, which is likely to vary with fruit and seed shape.
Evaluation of Arctic Clouds And Their Response to External Forcing in Climate Models
NASA Astrophysics Data System (ADS)
Wang, Y.; Jiang, J. H.; Ming, Y.; Su, H.; Yung, Y. L.
2017-12-01
A warming Arctic is undergoing significant environmental changes, mostly evidenced by the reduction in Arctic sea-ice extent (SIE). However, the role of Arctic clouds in determining the sea ice melting remains elusive, as different phases of clouds can induce either positive or negative radiative forcing in different seasons. The possible cloud feedbacks following the opened ocean surface are also debatable due to variations of polar boundary structure. Therefore, Arctic cloud simulation has long been considered as the largest source of uncertainty in the climate sensitivity assessment. Other local or remote atmospheric factors, such as poleward moisture and heat transport as well as atmospheric aerosols seeding liquid and ice clouds, further complicate our understanding of the Arctic cloud change. Our recent efforts focus on the post-CMIP5 and CMIP6 models, which improve atmospheric compositions, cloud macro- and microphysics, convection parameterizations, etc. In this study, we utilize long-term satellite measurements with high-resolution coverage and broad wavelength spectrum to evaluate the mean states and variations of mixed-phase clouds in the Arctic, along with the concurrent moisture and SIE measurements. The model sensitivity experiments to understand external perturbations on the atmosphere-cryosphere coupling in the Arctic will be presented.
On the Analysis of the Climatology of Cloudiness of the Arabian Peninsula
NASA Astrophysics Data System (ADS)
Yousef, L. A.; Temimi, M.
2015-12-01
This study aims to determine the climatology of cloudiness over the Arabian Peninsula. The determined climatology will assist solar energy resource assessment in the region. The seasonality of cloudiness and its spatial variability will also help guide several cloud seeding operational experiments in the region. Cloud properties from the International Satellite Cloud Climatology Project (ISCCP) database covering the time period from 1983 through 2009 are analyzed. Time series of low, medium, high, and total cloud amounts are investigated, in addition to cloud optical depth and total column water vapor. Initial results show significant decreasing trends in the total and middle cloud amounts, both annually and seasonally, at a 95% confidence interval. The relationship between cloud amounts and climate oscillations known to affect the region is explored. Climate indices exhibiting significant correlations with the total cloud amounts include the Pacific Decadal Oscillation (PDO) index. The study also includes a focus on the United Arab Emirates (UAE), comparing the inferred cloudiness data to in situ rainfall measurements taken from rain gauges across the UAE. To assess the impact of cloudiness on solar power resources in the country, time series of cloud amounts and Direct Normal Irradiance (DNI), obtained from the UAE Solar Atlas, are compared.
Vahlensieck, Winfried; Theurer, Christoph; Pfitzer, Edith; Patz, Brigitte; Banik, Norbert; Engelmann, Udo
2015-01-01
The German Research Activities on Natural Urologicals (GRANU) study was a randomized, partially blinded, placebo-controlled, parallel-group trial that investigated the efficacy of pumpkin seed in men with lower urinary tract symptoms suggestive of benign prostatic hyperplasia (BPH/LUTS). A total of 1,431 men (50-80 years) with BPH/LUTS were randomly assigned to either pumpkin seed (5 g b.i.d.), capsules with pumpkin seed extract (500 mg b.i.d.) or matching placebo. The primary response criterion was a decrease in International Prostate Symptom Score (IPSS) of ≥5 points from baseline after 12 months. Secondary outcome measures included IPSS-related quality of life, IPSS single items and diary-recorded nocturia. After 12 months, the response rate (intention-to-treat/last-observation-carried-forward approach) did not differ between pumpkin seed extract and placebo. In the case of pumpkin seed (responders: 58.5%), the difference compared with placebo (responders: 47.3%) was descriptively significant. The study products were well tolerated. Overall, in men with BPH, 12 months of treatment with pumpkin seed led to a clinically relevant reduction in IPSS compared with placebo. In order to fully justify a recommendation for the use of pumpkin seed to treat moderate LUTS, these findings need to be substantiated in a confirmatory study or systematic review. 2014 S. Karger AG, Basel
Automatic Detection of Clouds and Shadows Using High Resolution Satellite Image Time Series
NASA Astrophysics Data System (ADS)
Champion, Nicolas
2016-06-01
Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel) with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel) with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8 and Pléiades-HR images and our first experiments show the feasibility to automate the detection of shadows and clouds in satellite image sequences.
Linear velocity fields in non-Gaussian models for large-scale structure
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.
1992-01-01
Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.
Global Measurements of Optically Thin Cirrus Clouds Using CALIOP
NASA Astrophysics Data System (ADS)
Ryan, R. A.; Avery, M. A.; Vaughan, M.
2017-12-01
Optically thin cirrus clouds, defined here as cold clouds consisting of randomly oriented ice crystals and having optical depths (τ) less than 0.3, are difficult to measure accurately. Thin cirrus clouds have been shown to have a net warming effect on the globe but, because passive instruments are not sensitive to optically thin clouds, the occurrence frequency of thin cirrus is greatly underestimated in historical passive sensor cloud climatology. One major strength of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is its ability to detect these thin cirrus clouds, thus filling an important missing piece in the historical data record. This poster examines multiple years of CALIOP Level 2 data, focusing on those CALIOP retrievals identified as being optically thin (τ < 0.3), having a cold centroid temperature (TC < -40°C), and consisting solely of randomly oriented ice crystals. Using this definition, thin cirrus are identified and counted globally within each season. By examining the spatial, and seasonal distributions of these thin clouds we hope to gain a better understanding of how thin cirrus affect the atmosphere. Understanding when and where these clouds form and persist in the global atmosphere is the topic and focus of the presented poster.
Temporally consistent segmentation of point clouds
NASA Astrophysics Data System (ADS)
Owens, Jason L.; Osteen, Philip R.; Daniilidis, Kostas
2014-06-01
We consider the problem of generating temporally consistent point cloud segmentations from streaming RGB-D data, where every incoming frame extends existing labels to new points or contributes new labels while maintaining the labels for pre-existing segments. Our approach generates an over-segmentation based on voxel cloud connectivity, where a modified k-means algorithm selects supervoxel seeds and associates similar neighboring voxels to form segments. Given the data stream from a potentially mobile sensor, we solve for the camera transformation between consecutive frames using a joint optimization over point correspondences and image appearance. The aligned point cloud may then be integrated into a consistent model coordinate frame. Previously labeled points are used to mask incoming points from the new frame, while new and previous boundary points extend the existing segmentation. We evaluate the algorithm on newly-generated RGB-D datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufi, M; Asl, A Kamali; Geramifar, P
2015-06-15
Purpose: The objective of this study was to find the best seed localization parameters in random walk algorithm application to lung tumor delineation in Positron Emission Tomography (PET) images. Methods: PET images suffer from statistical noise and therefore tumor delineation in these images is a challenging task. Random walk algorithm, a graph based image segmentation technique, has reliable image noise robustness. Also its fast computation and fast editing characteristics make it powerful for clinical purposes. We implemented the random walk algorithm using MATLAB codes. The validation and verification of the algorithm have been done by 4D-NCAT phantom with spherical lungmore » lesions in different diameters from 20 to 90 mm (with incremental steps of 10 mm) and different tumor to background ratios of 4:1 and 8:1. STIR (Software for Tomographic Image Reconstruction) has been applied to reconstruct the phantom PET images with different pixel sizes of 2×2×2 and 4×4×4 mm{sup 3}. For seed localization, we selected pixels with different maximum Standardized Uptake Value (SUVmax) percentages, at least (70%, 80%, 90% and 100%) SUVmax for foreground seeds and up to (20% to 55%, 5% increment) SUVmax for background seeds. Also, for investigation of algorithm performance on clinical data, 19 patients with lung tumor were studied. The resulted contours from algorithm have been compared with nuclear medicine expert manual contouring as ground truth. Results: Phantom and clinical lesion segmentation have shown that the best segmentation results obtained by selecting the pixels with at least 70% SUVmax as foreground seeds and pixels up to 30% SUVmax as background seeds respectively. The mean Dice Similarity Coefficient of 94% ± 5% (83% ± 6%) and mean Hausdorff Distance of 1 (2) pixels have been obtained for phantom (clinical) study. Conclusion: The accurate results of random walk algorithm in PET image segmentation assure its application for radiation treatment planning and diagnosis.« less
El-Kassaby, Yousry A; Funda, Tomas; Lai, Ben S K
2010-01-01
The impact of female reproductive success on the mating system, gene flow, and genetic diversity of the filial generation was studied using a random sample of 801 bulk seed from a 49-clone Pseudotsuga menziesii seed orchard. We used microsatellite DNA fingerprinting and pedigree reconstruction to assign each seed's maternal and paternal parents and directly estimated clonal reproductive success, selfing rate, and the proportion of seed sired by outside pollen sources. Unlike most family array mating system and gene flow studies conducted on natural and experimental populations, which used an equal number of seeds per maternal genotype and thus generating unbiased inferences only on male reproductive success, the random sample we used was a representative of the entire seed crop; therefore, provided a unique opportunity to draw unbiased inferences on both female and male reproductive success variation. Selfing rate and the number of seed sired by outside pollen sources were found to be a function of female fertility variation. This variation also substantially and negatively affected female effective population size. Additionally, the results provided convincing evidence that the use of clone size as a proxy to fertility is questionable and requires further consideration.
An Economical Analytical Equation for the Integrated Vertical Overlap of Cumulus and Stratus
NASA Astrophysics Data System (ADS)
Park, Sungsu
2018-03-01
By extending the previously proposed heuristic parameterization, the author derived an analytical equation computing the overlap areas between the precipitation (or radiation) areas and the cloud areas in a cloud system consisting of cumulus and stratus. The new analytical equation is accurate and much more efficient than the previous heuristic equation, which suffers from the truncation error in association with the digitalization of the overlap areas. Global test simulations with the new analytical formula in an offline mode showed that the maximum cumulus overlap simulates more surface precipitation flux than the random cumulus overlap. On the other hand, the maximum stratus overlap simulates less surface precipitation flux than random stratus overlap, which is due to the increase in the evaporation rate of convective precipitation from the random to maximum stratus overlap. The independent precipitation approximation (IPA) marginally decreases the surface precipitation flux, implying that IPA works well with other parameterizations. In contrast to the net production rate of precipitation and surface precipitation flux that increase when the cumulus and stratus are maximally and randomly overlapped, respectively, the global mean net radiative cooling and longwave cloud radiative forcing (LWCF) increase when the cumulus and stratus are randomly overlapped. On the global average, the vertical cloud overlap exerts larger impacts on the precipitation flux than on the radiation flux. The radiation scheme taking the subgrid variability of water vapor between the cloud and clear portions into account substantially increases the global mean LWCF in tropical deep convection and midlatitude storm track regions.
Small Seed Black Hole Growth in Various Accretion Regimes
NASA Astrophysics Data System (ADS)
Gerling-Dunsmore, Hannalore J.; Hopkins, Philip F.
2016-03-01
Observational evidence indicates a population of super massive black holes (SMBHs) (~109 -1010M⊙) formed within 1 Gyr after the Big Bang. One proposed means of SMBH formation is accretion onto small seed black holes (BHs) (~ 100M⊙). However, the existence of SMBHs within 1 Gyr requires rapid growth, but conventional models of accretion fail to grow the seed BHs quickly enough. Super Eddington accretion (Ṁ >ṀEddington) may aid in improving growth efficiency. We study small seed BH growth via accretion in 3D, using the magneto-hydrodynamics+gravity code GIZMO. In particular, we consider a BH in a high density turbulent star-forming cloud, and ask whether or not the BH can capture sufficient gas to grow rapidly. We consider both Eddington-limited and super Eddington regimes, and resolve physics on scales from 0.1 pc to 1 kpc while including detailed models for stellar feedback physics, including stellar winds, supernovae, radiation pressure, and photo-ionization. We present results on the viability of different small seed BHs growing into SMBH candidates.
Modification of cirrus clouds to reduce global warming
NASA Astrophysics Data System (ADS)
Mitchell, D. L.
2009-12-01
Since both greenhouse gases and cirrus clouds strongly affect outgoing longwave radiation (OLR) with no affect or less affect on solar radiation, respectively, an attempt to delay global warming to buy time for emission reduction strategies to work might naturally target cirrus clouds. Cirrus having optical depths < 3.6 cover 13% of the globe and have a net warming effect on climate, with the coldest cirrus having the strongest warming effect. Roughly 2/3 of predicted global warming is due to the feedback effect of water vapor and clouds from an initial greenhouse gas forcing, and a recent study indicates water vapor and clouds in the upper troposphere (UT) have the greatest impact on climate sensitivity (the equilibrium response of global-mean surface temperature to a CO2 doubling). Thus altering UT water vapor and cirrus may be a good strategy for climate engineering. Cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing via GCM simulations are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). This cirrus engineered net forcing is due to (1) reduced cirrus coverage and (2) reduced upper tropospheric water vapor, due to enhanced ice sedimentation. The implementation of this climate engineering could use the airline industry to disperse the seeding material. Commercial airliners typically fly at temperatures between -40 and -60 deg. C (where homogeneous freezing nucleation dominates). Weather modification research has developed ice nucleating substances that are extremely effective at these cold temperatures, are non-toxic and are relatively inexpensive. The seeding material could be released in both clear and cloudy conditions to build up a background concentration of efficient ice nuclei so that non-contrail cirrus will experience these nuclei and grow larger ice crystals. Flight corridors are denser in the high- and mid-latitudes where global warming is more severe. A risk with any geoengineering experiment is that it could affect climate in unforeseen ways, causing more harm than good. Since seeding aerosol residence times in the troposphere are 1-2 weeks, the climate might return back to its normal state within a few months after stopping the geoengineering. A drawback to this approach is that it would not stop ocean acidification. It may not have many of the draw-backs that stratospheric injection of sulfur species has, such as ozone destruction, decreased solar radiation possibly altering the hydrological cycle with more frequent droughts, greater expense, the creation of a white sky and less solar energy. In addition, modeling studies indicate it would take at least 3 years for the climate system to return to “normal” upon termination of stratospheric geoengineering.
Electron cloud generation and trapping in a quadrupole magnet at the Los Alamos proton storage ring
NASA Astrophysics Data System (ADS)
Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T. F.
2008-01-01
Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the “prompt” electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the “swept” electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100μs. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.
Photogrammetric Measurements of an EH-60L Brownout Cloud
NASA Technical Reports Server (NTRS)
Wong, Oliver D.; Tanner, Philip E.
2010-01-01
There is a critical lack of quantitative data regarding the mechanism of brownout cloud formation. Recognizing this, tests were conducted during the Air Force Research Lab 3D-LZ Brownout Test at the US Army Yuma Proving Ground. Photogrammetry was utilized during two rounds of flight tests with an instrumented EH-60L Black Hawk to determine if this technique could quantitatively measure the formation and evolution of a brownout cloud. Specific areas of interest include the location, size, and average convective velocity of the cloud, along with the characteristics of any defined structures within it. Following the first flight test, photogrammetric data were validated through comparison with onboard vehicle data. Lessons learned from this test were applied to the development of an improved photogrammetry system. A second flight test, utilizing the improved system, demonstrated that obtaining quantitative measurements of the brownout cloud are possible. Results from these measurements are presented in the paper. Flow visualization with chalk dust seeding was also tested. It was observed that pickup forces of the brownout cloud appear to be very low. Overall, these tests demonstrate the viability of photogrammetry as a means for quantifying brownout cloud formation and evolution.
Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems
NASA Technical Reports Server (NTRS)
Asano, S.; Sato, M.; Hansen, J. E.
1979-01-01
A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius.
Pearce, Brett; Mattheyse, Linda; Ellard, Louise; Desmond, Fiona; Pillai, Param; Weinberg, Laurence
2018-01-01
Background The avoidance of hypothermia is vital during prolonged and open surgery to improve patient outcomes. Hypothermia is particularly common during orthotopic liver transplantation (OLT) and associated with undesirable physiological effects that can adversely impact on perioperative morbidity. The KanMed WarmCloud (Bromma, Sweden) is a revolutionary, closed-loop, warm-air heating mattress developed to maintain normothermia and prevent pressure sores during major surgery. The clinical effectiveness of the WarmCloud device during OLT is unknown. Therefore, we conducted a randomized controlled trial to determine whether the WarmCloud device reduces hypothermia and prevents pressure injuries compared with the Bair Hugger underbody warming device. Methods Patients were randomly allocated to receive either the WarmCloud or Bair Hugger warming device. Both groups also received other routine standardized multimodal thermoregulatory strategies. Temperatures were recorded by nasopharyngeal temperature probe at set time points during surgery. The primary endpoint was nasopharyngeal temperature recorded 5 minutes before reperfusion. Secondary endpoints included changes in temperature over the predefined intraoperative time points, number of patients whose nadir temperature was below 35.5°C and the development of pressure injuries during surgery. Results Twenty-six patients were recruited with 13 patients randomized to each group. One patient from the WarmCloud group was excluded because of a protocol violation. Baseline characteristics were similar. The mean (standard deviation) temperature before reperfusion was 36.0°C (0.7) in the WarmCloud group versus 36.3°C (0.6) in the Bairhugger group (P = 0.25). There were no statistical differences between the groups for any of the secondary endpoints. Conclusions When combined with standardized multimodal thermoregulatory strategies, the WarmCloud device does not reduce hypothermia compared with the Bair Hugger device in patients undergoing OLT. PMID:29707629
NASA Astrophysics Data System (ADS)
Hillman, B. R.; Marchand, R.; Ackerman, T. P.
2016-12-01
Satellite instrument simulators have emerged as a means to reduce errors in model evaluation by producing simulated or psuedo-retrievals from model fields, which account for limitations in the satellite retrieval process. Because of the mismatch in resolved scales between satellite retrievals and large-scale models, model cloud fields must first be downscaled to scales consistent with satellite retrievals. This downscaling is analogous to that required for model radiative transfer calculations. The assumption is often made in both model radiative transfer codes and satellite simulators that the unresolved clouds follow maximum-random overlap with horizontally homogeneous cloud condensate amounts. We examine errors in simulated MISR and CloudSat retrievals that arise due to these assumptions by applying the MISR and CloudSat simulators to cloud resolving model (CRM) output generated by the Super-parameterized Community Atmosphere Model (SP-CAM). Errors are quantified by comparing simulated retrievals performed directly on the CRM fields with those simulated by first averaging the CRM fields to approximately 2-degree resolution, applying a "subcolumn generator" to regenerate psuedo-resolved cloud and precipitation condensate fields, and then applying the MISR and CloudSat simulators on the regenerated condensate fields. We show that errors due to both assumptions of maximum-random overlap and homogeneous condensate are significant (relative to uncertainties in the observations and other simulator limitations). The treatment of precipitation is particularly problematic for CloudSat-simulated radar reflectivity. We introduce an improved subcolumn generator for use with the simulators, and show that these errors can be greatly reduced by replacing the maximum-random overlap assumption with the more realistic generalized overlap and incorporating a simple parameterization of subgrid-scale cloud and precipitation condensate heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. SAND2016-7485 A
NASA Astrophysics Data System (ADS)
Harper, K.
2015-12-01
At the end of World War II, Nobel Prize-winning chemist Irving Langmuir and his team at the General Electric Research Laboratory in Schenectady, New York, were doing advanced research on cloaking smokes and aircraft icing for the US military. Trying to determine why some clouds precipitated while others did not, Langmuir concluded that non-precipitating clouds were lacking "ice nuclei" that would gather up cloud droplets until they became large enough to fall out of the cloud. If they could find an artificial substitute, it would be possible to modify clouds and the weather. Dry ice particles did the trick, military funding followed, and cloud busting commenced. But a handful of entrepreneurial meteorologists saw a different purpose: enhancing precipitation and preventing hail damage. The commercialization of weather modification was underway, with cloud seeding enhancing rainfall east of the Cascades, in the Desert Southwest, and even in the watersheds serving New York City. Hail busting took off in the Dakotas, and snowpack enhancement got a boost in Montana. Basic cloud physics research very quickly became commercial weather modification, fulfilling a postwar desire to use science and technology to control nature and creating an opening for meteorologists to provide a variety of specialized services to businesses whose profits depend on the weather.
Effect of some Evaporation Matters on Storability of Sunflower ( Helianthus annuus L.) Seed.
El-Saidy, Aml E A; El-Hai, K M Abd
This study focuses on finding compounds that are safe to humans and environment, such as propionic and acetic acids that may provide an alternative control of seed-borne pathogens and decrease seed deterioration during storage. The objectives of this study were to reduce sunflower seed deterioration and improve the viability of sunflower seed using environmentally safe organic acids. Propionic and acetic acids were applied on sunflower seed at different concentrations under laboratory conditions during different storage periods. After 6 months storage period, the viability of sunflower seed as well as morphological and physiological characteristics of seedlings were evaluated under greenhouse conditions. Laboratory experiment was conducted in a factorial completely randomized design and randomized complete block design for greenhouse experiment. Propionic and acetic acids at different concentrations showed inhibitory effects on the presence of different fungal genera in all storage periods. Propionic acid was most effective followed by acetic acid. Increasing storage periods from 0-6 months significantly decreased germination percentage, germination energy, seedling characters, survived healthy seedlings and seed oil and protein percentages but dead and rotted seeds, as well as rotted seedlings were increased. Treating sunflower seeds with propionic acid (100%) improved germination criteria, seedling characters and seed chemical characters as well as survival seedlings and minimized the dead seeds, rotted seeds and rotted seedlings as compared with the control under all storage periods. Under greenhouse conditions, the maximum growth parameter and physiological characters (chlorophylls a, b, carotenoids and total phenols) were recorded from seed treated with 100% propionic acid after 6 months of storage. It may be concluded that propionic and acetic acids vapors can have considerable fungicidal activity against sunflower pathogens and improve seed viability. Therefore, it is recommended using 100% propionic acid to reduce deterioration and seed-borne pathogens of sunflower under storage conditions.
Extraction and the Fatty Acid Profile of Rosa acicularis Seed Oil.
Du, Huanan; Zhang, Xu; Zhang, Ruchun; Zhang, Lu; Yu, Dianyu; Jiang, Lianzhou
2017-12-01
Rosa acicularis seed oil was extracted from Rosa acicularis seeds by the ultrasonic-assisted aqueous enzymatic method using cellulase and protease. Based on a single experiment, Plackett-Burman design was applied to ultrasonic-assisted aqueous enzymatic extraction of wild rose seed oil. The effects of enzyme amount, hydrolysis temperature and initial pH on total extraction rate of wild rose seed oil was studied by using Box-Behnken optimize methodology. Chemical characteristics of a sample of Rosa acicularis seeds and Rosa acicularis seed oil were characterized in this work. The tocopherol content was 200.6±0.3 mg/100 g oil. The Rosa acicularis seed oil was rich in linoleic acid (56.5%) and oleic acid (34.2%). The saturated fatty acids included palmitic acid (4%) and stearic acid (2.9%). The major fatty acids in the sn-2 position of triacylglycerol in Rosa acicularis oil were linoleic acid (60.6%), oleic acid (33.6%) and linolenic acid (3.2%). According to the 1,3-random-2-random hypothesis, the dominant triacylglycerols were LLL (18%), LLnL (1%), LLP (2%), LOL (10%), LLSt (1.2%), PLP (0.2%), LLnP (0.1%), LLnO (0.6%) and LOP (1.1%). This work could be useful for developing applications for Rosa acicularis seed oil.
Selective seed abortion affects the performance of the offspring in Bauhinia ungulata.
Mena-Alí, Jorge I; Rocha, Oscar J
2005-05-01
Under the microgametophytic competition hypothesis, a non-random pattern of seed abortion is expected, in which only the most vigorous seeds reach maturity. In a previous study, it was found that Bauhinia ungulata (Fabaceae) exhibits a pattern of seed abortion dependent on the position of the ovule within the ovary; ovules located in the stylar half of the fruit, close to the point of entry of pollen tubes to the ovary, have a low probability of seed abortion, whereas ovules in the basal half of the fruit are aborted with a high probability. A series of experimental fruits was generated, in which ovules from either the stylar (treatments 1 and 2) or the basal (treatments 3 and 4) half of fruits were destroyed, to evaluate whether these patterns of selective seed abortion have an effect on the vigour of the offspring in B. ungulata. Only 53 % of the seed from control fruits germinated. Seed set in fruits from treatments 1 and 2 showed a significantly lower (33-43 %) percentage of germination; the germination of seeds from fruits in treatments 3 and 4 (49-51 %) did not differ from control seeds. In addition, it was found that the differences in vigour of the offspring are not random with respect to the position of the ovule in the pod. The overall performance of the seeds correlated with their likelihood of maturation. Seeds located at the basal half of the treatment fruits showed lower values of vigour than seeds located on the stylar half. The differences were more marked for early measures of fitness.
James D. Haywood; Harold E. Grelen
2000-01-01
Prescribed burning treatments were applied over a 20 yr period in a commonly randomized field study to determine the effects of various fire regimes on vegetation in a direct seeded standof longleaf pine (Pinus palustris Mill.). Seeding was done in November 1968. The study area was broadcast-burned about 16 months after seeding. The initial...
Frank C. Sorensen; Robert K. Campbell
1992-01-01
The effect of seed weight on nursery seedling height was analyzed in two experiments. In expt. 1, 16 seeds per family from 111 families were individually weighed and sown in autumn. In expt. 2, a second group of 16 seeds were individually weighed and stratified and sown in spring. Four-tree noncontiguous family plots were randomly assigned to two densities in two...
One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels
NASA Astrophysics Data System (ADS)
Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.
2017-12-01
Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.
76 FR 43652 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-21
... Response: 30 minutes. Burden Hours: 55. Needs and Uses: This is an extension of a current information... activities (e.g., cloud seeding) provide reports prior to and after the activity. They are also required to...: Business or other for-profit organizations; not- for-profit institutions; individuals or households; state...
NASA Technical Reports Server (NTRS)
Grund, C. J.; Eloranta, E. W.
1990-01-01
The High Spectral Resolution Lidar (HSRL) was operated from a roof-top site in Madison, Wisconsin. The transmitter configuration used to acquire the case study data produces about 50 mW of ouput power and achieved eye-safe, direct optical depth, and backscatter cross section measurements with 10 min averaging times. A new continuously pumped, injection seeded, frequency doubled Nd:YAG laser transmitter reduces time-averaging constraints by a factor of about 10, while improving the aerosol-molecular signal separation capabilities and wavelength stability of the instrument. The cirrus cloud backscatter-phase functions have been determined for the October 27-28, 1986 segment of the HSRL FIRE dataset. Features exhibiting backscatter cross sections ranging over four orders of magnitude have been observed within this 33 h period. During this period, cirrus clouds were observed with optical thickness ranging from 0.01 to 1.4. The altitude relationship between cloud top and bottom boundaries and the optical center of the cloud is influenced by the type of formation observed.
Selective Seed Abortion Affects the Performance of the Offspring in Bauhinia ungulata
MENA-ALÍ, JORGE I.; ROCHA, OSCAR J.
2005-01-01
• Background and Aims Under the microgametophytic competition hypothesis, a non-random pattern of seed abortion is expected, in which only the most vigorous seeds reach maturity. In a previous study, it was found that Bauhinia ungulata (Fabaceae) exhibits a pattern of seed abortion dependent on the position of the ovule within the ovary; ovules located in the stylar half of the fruit, close to the point of entry of pollen tubes to the ovary, have a low probability of seed abortion, whereas ovules in the basal half of the fruit are aborted with a high probability. • Methods A series of experimental fruits was generated, in which ovules from either the stylar (treatments 1 and 2) or the basal (treatments 3 and 4) half of fruits were destroyed, to evaluate whether these patterns of selective seed abortion have an effect on the vigour of the offspring in B. ungulata. • Key Results Only 53 % of the seed from control fruits germinated. Seed set in fruits from treatments 1 and 2 showed a significantly lower (33–43 %) percentage of germination; the germination of seeds from fruits in treatments 3 and 4 (49–51 %) did not differ from control seeds. In addition, it was found that the differences in vigour of the offspring are not random with respect to the position of the ovule in the pod. • Conclusions The overall performance of the seeds correlated with their likelihood of maturation. Seeds located at the basal half of the treatment fruits showed lower values of vigour than seeds located on the stylar half. The differences were more marked for early measures of fitness. PMID:15749749
Wanjare, Maureen; Hou, Luqia; Nakayama, Karina H; Kim, Joseph J; Mezak, Nicholas P; Abilez, Oscar J; Tzatzalos, Evangeline; Wu, Joseph C; Huang, Ngan F
2017-07-25
Engineering of myocardial tissue constructs is a promising approach for treatment of coronary heart disease. To engineer myocardial tissues that better mimic the highly ordered physiological arrangement and function of native cardiomyocytes, we generated electrospun microfibrous polycaprolactone scaffolds with either randomly oriented (14 μm fiber diameter) or parallel-aligned (7 μm fiber diameter) microfiber arrangement and co-seeded the scaffolds with human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and endothelial cells (iECs) for up to 12 days after iCM seeding. Here we demonstrated that aligned microfibrous scaffolds induced iCM alignment along the direction of the aligned microfibers after 2 days of iCM seeding, as well as promoted greater iCM maturation by increasing the sarcomeric length and gene expression of myosin heavy chain adult isoform (MYH7), in comparison to randomly oriented scaffolds. Furthermore, the benefit of scaffold anisotropy was evident in the significantly higher maximum contraction velocity of iCMs on the aligned scaffolds, compared to randomly oriented scaffolds, at 12 days of culture. Co-seeding of iCMs with iECs led to reduced contractility, compared to when iCMs were seeded alone. These findings demonstrate a dominant role of scaffold anisotropy in engineering cardiovascular tissues that maintain iCM organization and contractile function.
NASA Astrophysics Data System (ADS)
Mitchell, D. L.; Garnier, A.; Mejia, J.; Avery, M. A.; Erfani, E.
2016-12-01
To date, it is not clear whether the climate intervention method known as cirrus cloud thinning (CCT) can be viable since it requires cirrus clouds to form through homogeneous ice nucleation (henceforth hom) and some recent GCM studies predict cirrus are formed primarily through heterogeneous ice nucleation (henceforth het). A new CALIPSO infrared retrieval method has been developed for single-layer cirrus cloud that measures the temperature dependence of their layer-averaged number concentration N, effective diameter De and ice water content for optical depths (OD) between 0.3 and 3.0. Based on N, the prevailing ice nucleation mechanism (hom or het) can be estimated as a function of temperature, season, latitude and surface type. These satellite results indicate that seeding cirrus clouds at high latitudes during winter may produce significant global surface cooling. This is because hom often appears to dominate over land during winter north of 30°N latitude while the same appears true for most of the Southern Hemisphere (south of 30°S) during all seasons. Moreover, the sampled cirrus cloud frequency of occurrence in the Arctic is at least twice as large during winter relative to other seasons, while frequency of occurrence in the Antarctic peaks in the spring and is second-highest during winter. During Arctic winter, a combination of frequent hom cirrus, maximum cirrus coverage and an extreme or absent sun angle produces the maximum seasonal cirrus net radiative forcing (warming). Thus a reduction in OD and coverage (via CCT) for these cirrus clouds could yield a significant net cooling effect. From these CALIPSO retrievals, De-T relationships are generated as a function of season, latitude and surface type (land vs. ocean). These will be used in CAM5 to estimate De and the ice fall speed, from which the cirrus radiative forcing will be estimated during winter north of 30°latitude, where hom cirrus are common. Another CAM5 simulation will replace the hom cirrus De-T relationships with those corresponding to het cirrus (at similar latitudes). In this way the potential cooling from CCT in the Northern Hemisphere will be estimated. If a field campaign was ever conducted for testing the efficacy of CCT, this CALIPSO retrieval could be used to help determine whether the seeded hom cirrus were transformed into het cirrus.
Automatic Recognition of Indoor Navigation Elements from Kinect Point Clouds
NASA Astrophysics Data System (ADS)
Zeng, L.; Kang, Z.
2017-09-01
This paper realizes automatically the navigating elements defined by indoorGML data standard - door, stairway and wall. The data used is indoor 3D point cloud collected by Kinect v2 launched in 2011 through the means of ORB-SLAM. By contrast, it is cheaper and more convenient than lidar, but the point clouds also have the problem of noise, registration error and large data volume. Hence, we adopt a shape descriptor - histogram of distances between two randomly chosen points, proposed by Osada and merges with other descriptor - in conjunction with random forest classifier to recognize the navigation elements (door, stairway and wall) from Kinect point clouds. This research acquires navigation elements and their 3-d location information from each single data frame through segmentation of point clouds, boundary extraction, feature calculation and classification. Finally, this paper utilizes the acquired navigation elements and their information to generate the state data of the indoor navigation module automatically. The experimental results demonstrate a high recognition accuracy of the proposed method.
NASA Astrophysics Data System (ADS)
Gischig, V.; Goertz-Allmann, B. P.; Bachmann, C. E.; Wiemer, S.
2012-04-01
Success of future enhanced geothermal systems relies on an appropriate pre-estimate of seismic risk associated with fluid injection at high pressure. A forward-model based on a semi-stochastic approach was created, which is able to compute synthetic earthquake catalogues. It proved to be able to reproduce characteristics of the seismic cloud detected during the geothermal project in Basel (Switzerland), such as radial dependence of stress drop and b-values as well as higher probability of large magnitude earthquakes (M>3) after shut-in. The modeling strategy relies on a simplistic fluid pressure model used to trigger failure points (so-called seeds) that are randomly distributed around an injection well. The seed points are assigned principal stress magnitudes drawn from Gaussian distributions representative of the ambient stress field. Once the effective stress state at a seed point meets a pre-defined Mohr-Coulomb failure criterion due to a fluid pressure increase a seismic event is induced. We assume a negative linear relationship between b-values and differential stress. Thus, for each event a magnitude can be drawn from a Gutenberg-Richter distribution with a b-value corresponding to differential stress at failure. The result is a seismic cloud evolving in time and space. Triggering of seismic events depends on appropriately calculating the transient fluid pressure field. Hence an effective continuum reservoir model able to reasonably reproduce the hydraulic behavior of the reservoir during stimulation is required. While analytical solutions for pressure diffusion are computationally efficient, they rely on linear pressure diffusion with constant hydraulic parameters, and only consider well head pressure while neglecting fluid injection rate. They cannot be considered appropriate in a stimulation experiment where permeability irreversibly increases by orders of magnitude during injection. We here suggest a numerical continuum model of non-linear pressure diffusion. Permeability increases both reversibly and, if a certain pressure threshold is reached, irreversibly in the form of a smoothed step-function. The models are able to reproduce realistic well head pressure magnitudes for injection rates common during reservoir stimulation. We connect this numerical model with the semi-stochastic seismicity model, and demonstrate the role of non-linear pressure diffusion on earthquakes probability estimates. We further use the model to explore various injection histories to assess the dependence of seismicity on injection strategy. It allows to qualitatively explore the probability of larger magnitude earthquakes (M>3) for different injection volumes, injection times, as well as injection build-up and shut-in strategies.
Iridescent clouds and distorted coronas.
Laven, Philip
2017-07-01
Near-forward scattering of sunlight generates coronas and iridescence on clouds. Coronas are caused by diffraction, whereas iridescence is less easily explained. Iridescence often appears as bands of color aligned with the edges of clouds or as apparently random patches of color on clouds. This paper suggests that iridescence is due to interference between light that has been diffracted by a spherical droplet of water and light that has been transmitted through the same droplet.
Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2005-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional singlecolumn models in simulating various types of clouds and cloud systems from Merent geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloudscale model (termed a super-parameterization or multiscale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameteridon NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production nms will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.
NASA Astrophysics Data System (ADS)
Flores-Tavizón, Edith; Mokgalaka-Matlala, Ntebogeng S.; Elizalde Galindo, José T.; Castillo-Michelle, Hiram; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.
2012-04-01
Magnetic field is closely related to the cell metabolism of plants [N. A. Belyavskaya, Adv. Space Res. 34, 1566 (2004)]. In order to see the effect of magnetic field on the plant growth, arsenic uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina) seeds, ten sets of 80 seeds were selected to be oriented with the long axis parallel or randomly oriented to an external magnetic field. The external magnetic field magnitude was 1 T, and the exposition time t = 30 min. Then, the seeds were stored for three days in a plastic bag and then sown on paper towels in a modified Hoagland's nutrient solution. After three days of germination in the dark and three days in light, seedlings were grown hydroponically in modified Hoagland's nutrient solution (high PO42-) containing 0, 10, or 20 ppm of arsenic as As (III) and (V). The results show that the germination ratios, growth, elongation, arsenic uptake, and total amylolytic activity of the long axis oriented mesquite seeds were much higher than those of the randomly oriented seeds. Also, these two sets of seeds showed higher properties than the ones that were not exposed to external magnetic field.
Coupled fvGCM-GCE Modeling System, TRMM Latent Heating and Cloud Library
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2004-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to imiprove the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. I this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the Goddard research plan of using Weather Research Forecast (WRF) model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.
Coupled fvGCM-GCE Modeling System: TRMM Latent Heating and Cloud Library
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2005-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. In this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the GCE model on developing a global cloud simulator.
Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2005-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erfani, Ehsan; Mitchell, David L.
Here, ice particle mass- and projected area-dimension ( m- D and A- D) power laws are commonly used in the treatment of ice cloud microphysical and optical properties and the remote sensing of ice cloud properties. Although there has long been evidence that a single m- D or A- D power law is often not valid over all ice particle sizes, few studies have addressed this fact. This study develops self-consistent m- D and A- D expressions that are not power laws but can easily be reduced to power laws for the ice particle size (maximum dimension or D) rangemore » of interest, and they are valid over a much larger D range than power laws. This was done by combining ground measurements of individual ice particle m and D formed at temperature T < –20 °C during a cloud seeding field campaign with 2-D stereo (2D-S) and cloud particle imager (CPI) probe measurements of D and A, and estimates of m, in synoptic and anvil ice clouds at similar temperatures. The resulting m- D and A- D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m- D power laws developed from recent field studies considering the same temperature range (–60 °C < T < –20 °C).« less
The beta distribution: A statistical model for world cloud cover
NASA Technical Reports Server (NTRS)
Falls, L. W.
1973-01-01
Much work has been performed in developing empirical global cloud cover models. This investigation was made to determine an underlying theoretical statistical distribution to represent worldwide cloud cover. The beta distribution with probability density function is given to represent the variability of this random variable. It is shown that the beta distribution possesses the versatile statistical characteristics necessary to assume the wide variety of shapes exhibited by cloud cover. A total of 160 representative empirical cloud cover distributions were investigated and the conclusion was reached that this study provides sufficient statical evidence to accept the beta probability distribution as the underlying model for world cloud cover.
Filling of Cloud-Induced Gaps for Land Use and Land Cover Classifications Around Refugee Camps
NASA Astrophysics Data System (ADS)
Braun, Andreas; Hagensieker, Ron; Hochschild, Volker
2016-08-01
Clouds cover is one of the main constraints in the field of optical remote sensing. Especially the use of multispectral imagery is affected by either fully obscured data or parts of the image which remain unusable. This study compares four algorithms for the filling of cloud induced gaps in classified land cover products based on Markov Random Fields (MRF), Random Forest (RF), Closest Spectral Fit (CSF) operators. They are tested on a classified image of Sentinel-2 where artificial clouds are filled by information derived from a scene of Sentinel-1. The approaches rely on different mathematical principles and therefore produced results varying in both pattern and quality. Overall accuracies for the filled areas range from 57 to 64 %. Best results are achieved by CSF, however some classes (e.g. sands and grassland) remain critical through all approaches.
Particle-in-cell simulations of the critical ionization velocity effect in finite size clouds
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Lu, G.; Goertz, C. K.; Nishikawa, K. - I.
1994-01-01
The critical ionization velocity (CIV) mechanism in a finite size cloud is studied with a series of electrostatic particle-in-cell simulations. It is observed that an initial seed ionization, produced by non-CIV mechanisms, generates a cross-field ion beam which excites a modified beam-plasma instability (MBPI) with frequency in the range of the lower hybrid frequency. The excited waves accelerate electrons along the magnetic field up to the ion drift energy that exceeds the ionization energy of the neutral atoms. The heated electrons in turn enhance the ion beam by electron-neutral impact ionization, which establishes a positive feedback loop in maintaining the CIV process. It is also found that the efficiency of the CIV mechanism depends on the finite size of the gas cloud in the following ways: (1) Along the ambient magnetic field the finite size of the cloud, L (sub parallel), restricts the growth of the fastest growing mode, with a wavelength lambda (sub m parallel), of the MBPI. The parallel electron heating at wave saturation scales approximately as (L (sub parallel)/lambda (sub m parallel)) (exp 1/2); (2) Momentum coupling between the cloud and the ambient plasma via the Alfven waves occurs as a result of the finite size of the cloud in the direction perpendicular to both the ambient magnetic field and the neutral drift. This reduces exponentially with time the relative drift between the ambient plasma and the neutrals. The timescale is inversely proportional to the Alfven velocity. (3) The transvers e charge separation field across the cloud was found to result in the modulation of the beam velocity which reduces the parallel heating of electrons and increases the transverse acceleration of electrons. (4) Some energetic electrons are lost from the cloud along the magnetic field at a rate characterized by the acoustic velocity, instead of the electron thermal velocity. The loss of energetic electrons from the cloud seems to be larger in the direction of plasma drift relative to the neutrals, where the loss rate is characterized by the neutral drift velocity. It is also shown that a factor of 4 increase in the ambient plasma density, increases the CIV ionization yield by almost 2 orders of magnitude at the end of a typical run. It is concluded that a larger ambient plasma density can result in a larger CIV yield because of (1) larger seed ion production by non-CIV mechanisms, (2) smaller Alfven velocity and hence weak momentum coupling, and (3) smaller ratio of the ion beam density to the ambient ion density, and therefore a weaker modulation of the beam velocity. The simulation results are used to interpret various chemical release experiments in space.
NASA Astrophysics Data System (ADS)
Nex, F.; Gerke, M.
2014-08-01
Image matching techniques can nowadays provide very dense point clouds and they are often considered a valid alternative to LiDAR point cloud. However, photogrammetric point clouds are often characterized by a higher level of random noise compared to LiDAR data and by the presence of large outliers. These problems constitute a limitation in the practical use of photogrammetric data for many applications but an effective way to enhance the generated point cloud has still to be found. In this paper we concentrate on the restoration of Digital Surface Models (DSM), computed from dense image matching point clouds. A photogrammetric DSM, i.e. a 2.5D representation of the surface is still one of the major products derived from point clouds. Four different algorithms devoted to DSM denoising are presented: a standard median filter approach, a bilateral filter, a variational approach (TGV: Total Generalized Variation), as well as a newly developed algorithm, which is embedded into a Markov Random Field (MRF) framework and optimized through graph-cuts. The ability of each algorithm to recover the original DSM has been quantitatively evaluated. To do that, a synthetic DSM has been generated and different typologies of noise have been added to mimic the typical errors of photogrammetric DSMs. The evaluation reveals that standard filters like median and edge preserving smoothing through a bilateral filter approach cannot sufficiently remove typical errors occurring in a photogrammetric DSM. The TGV-based approach much better removes random noise, but large areas with outliers still remain. Our own method which explicitly models the degradation properties of those DSM outperforms the others in all aspects.
NASA Astrophysics Data System (ADS)
Barker, H. W.; Stephens, G. L.; Partain, P. T.; Bergman, J. W.; Bonnel, B.; Campana, K.; Clothiaux, E. E.; Clough, S.; Cusack, S.; Delamere, J.; Edwards, J.; Evans, K. F.; Fouquart, Y.; Freidenreich, S.; Galin, V.; Hou, Y.; Kato, S.; Li, J.; Mlawer, E.; Morcrette, J.-J.; O'Hirok, W.; Räisänen, P.; Ramaswamy, V.; Ritter, B.; Rozanov, E.; Schlesinger, M.; Shibata, K.; Sporyshev, P.; Sun, Z.; Wendisch, M.; Wood, N.; Yang, F.
2003-08-01
The primary purpose of this study is to assess the performance of 1D solar radiative transfer codes that are used currently both for research and in weather and climate models. Emphasis is on interpretation and handling of unresolved clouds. Answers are sought to the following questions: (i) How well do 1D solar codes interpret and handle columns of information pertaining to partly cloudy atmospheres? (ii) Regardless of the adequacy of their assumptions about unresolved clouds, do 1D solar codes perform as intended?One clear-sky and two plane-parallel, homogeneous (PPH) overcast cloud cases serve to elucidate 1D model differences due to varying treatments of gaseous transmittances, cloud optical properties, and basic radiative transfer. The remaining four cases involve 3D distributions of cloud water and water vapor as simulated by cloud-resolving models. Results for 25 1D codes, which included two line-by-line (LBL) models (clear and overcast only) and four 3D Monte Carlo (MC) photon transport algorithms, were submitted by 22 groups. Benchmark, domain-averaged irradiance profiles were computed by the MC codes. For the clear and overcast cases, all MC estimates of top-of-atmosphere albedo, atmospheric absorptance, and surface absorptance agree with one of the LBL codes to within ±2%. Most 1D codes underestimate atmospheric absorptance by typically 15-25 W m-2 at overhead sun for the standard tropical atmosphere regardless of clouds.Depending on assumptions about unresolved clouds, the 1D codes were partitioned into four genres: (i) horizontal variability, (ii) exact overlap of PPH clouds, (iii) maximum/random overlap of PPH clouds, and (iv) random overlap of PPH clouds. A single MC code was used to establish conditional benchmarks applicable to each genre, and all MC codes were used to establish the full 3D benchmarks. There is a tendency for 1D codes to cluster near their respective conditional benchmarks, though intragenre variances typically exceed those for the clear and overcast cases. The majority of 1D codes fall into the extreme category of maximum/random overlap of PPH clouds and thus generally disagree with full 3D benchmark values. Given the fairly limited scope of these tests and the inability of any one code to perform extremely well for all cases begs the question that a paradigm shift is due for modeling 1D solar fluxes for cloudy atmospheres.
EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS
NASA Astrophysics Data System (ADS)
Falkovich, Gregory; Malinowski, Szymon P.
2008-07-01
Cloud physics has for a long time been an important segment of atmospheric science. It is common knowledge that clouds are crucial for our understanding of weather and climate. Clouds are also interesting by themselves (not to mention that they are beautiful). Complexity is hidden behind the common picture of these beautiful and interesting objects. The typical school textbook definition that a cloud is 'a set of droplets or particles suspended in the atmosphere' is not adequate. Clouds are complicated phenomena in which dynamics, turbulence, microphysics, thermodynamics and radiative transfer interact on a wide range of scales, from sub-micron to kilometres. Some of these interactions are subtle and others are more straightforward. Large and small-scale motions lead to activation of cloud condensation nuclei, condensational growth and collisions; small changes in composition and concentration of atmospheric aerosol lead to significant differences in radiative properties of the clouds and influence rainfall formation. It is justified to look at a cloud as a composite, nonlinear system which involves many interactions and feedback. This system is actively linked into a web of atmospheric, oceanic and even cosmic interactions. Due to the complexity of the cloud system, present-day descriptions of clouds suffer from simplifications, inadequate parameterizations, and omissions. Sometimes the most fundamental physics hidden behind these simplifications and parameterizations is not known, and a wide scope of view can sometimes prevent a 'microscopic', deep insight into the detail. Only the expertise offered by scientists focused on particular elementary processes involved in this complicated pattern of interactions allows us to shape elements of the puzzle from which a general picture of clouds can be created. To be useful, every element of the puzzle must be shaped precisely. This often creates problems in communication between the sciences responsible for shaping elements of the puzzle, and those which combine them. Scales, assumptions and the conditions used in order to describe a particular single process of interest must be consistent with the conditions in clouds. The papers in this focus issue of New Journal of Physics collectively demonstrate (i) the variation in scientific approaches towards investigating cloud processes, (ii) the various stages of shaping elements of the puzzle, and (iii) some attempts to put the pieces together. These papers present just a small subset of loosely arranged elements in an initial stage of puzzle creation. Addressed by this issue is one of the important problems in our understanding of cloud processes—the interaction between cloud particles and turbulence. There is currently a gap between the cloud physics community and scientists working in wind tunnels, on turbulence theory and particle interactions. This collection is intended to narrow this gap by bringing together work by theoreticians, modelers, laboratory experimentalists and those who measure and observe actual processes in clouds. It forms a collage of contributions showing various approaches to cloud processes including: • theoretical works with possible applications to clouds (Bistagnino and Boffetta, Gustavsson et al), • an attempt to construct a phenomenological description of clouds and rain (Lovejoy and Schertzer), • simplified models designed to parameterize turbulence micro- and macro-effects (Celani et al, Derevyanko et al), • focused theoretical research aimed at particular cloud processes (Ayala et al, parts I and II, Wang et al), • laboratory and modeling studies of complex cloud processes (Malinowski et al). This collage is far from being complete but, hopefully, should give the reader a representative impression of the current state of knowledge in the field. We hope it will be useful to all scientists whose work is inspired by cloud processes. Focus on Cloud Physics Contents The equivalent size of cloud condensation nuclei Antonio Celani, Andrea Mazzino and Marco Tizzi Laboratory and modeling studies of cloud-clear air interfacial mixing: anisotropy of small-scale turbulence due to evaporative cooling Szymon P Malinowski, Miroslaw Andrejczuk, Wojciech W Grabowski, Piotr Korczyk, Tomasz A Kowalewski and Piotr K Smolarkiewicz Evolution of non-uniformly seeded warm clouds in idealized turbulent conditions Stanislav Derevyanko, Gregory Falkovich and Sergei Turitsyn Lagrangian statistics in two-dimensional free turbulent convection A Bistagnino and G Boffetta Turbulence, raindrops and the l1/2 number density law S Lovejoy and D Schertzer Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization Orlando Ayala, Bogdan Rosa and Lian-Ping Wang Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation Orlando Ayala, Bogdan Rosa, Lian-Ping Wang and Wojciech W Grabowski Collisions of particles advected in random flows K Gustavsson, B Mehlig and M Wilkinson Turbulent collision efficiency of heavy particles relevant to cloud droplets Lian-Ping Wang, Orlando Ayala, Bogdan Rosa and Wojciech W Grabowski
Endocarpic Microorganisms of Two Types of Windrow-Dried Peanut Fruit (Arachis hypogaea L.) 1
Porter, D. Morris; Garren, Kenneth H.
1970-01-01
The endocarpic microorganisms of peanut fruit dried in either a random windrow (plants left as they fell from the digger) or an inverted windrow (plants inverted to expose fruit to sunlight) were different from that of freshly dug fruit. Chaetomium, Penicillium, Trichoderma, Rhizoctonia, and Fusarium were the dominant fungi found associated with shells (pericarp) of freshly dug fruit. The dominant fungi of shells of windrowed fruit included Chaetomium, Rhizoctonia, Fusarium, Sclerotium, and Alternaria. Seeds of freshly dug fruit were dominated by Penicillium and Aspergillus. The only dominant species in seed of windrowed fruit was Penicillium. Microorganisms were isolated from shells and seed of freshly dug fruit at a frequency of 79% and 52%, respectively. The percentage of infestation was reduced by drying in the field. This was particularly true of the inverted windrow. The proportion of shells and seed infested with a microorganism was reduced 13% and 36%, respectively, after field drying for 5 to 7 days in random and inverted windrows. Microorganisms were isolated much more frequently from shell pieces (73%) than from seed (36%). Images PMID:5466133
Endocarpic microorganisms of two types of windrow-dried peanut fruit (Arachis hypogaea L.).
Porter, D M; Garren, K H
1970-07-01
The endocarpic microorganisms of peanut fruit dried in either a random windrow (plants left as they fell from the digger) or an inverted windrow (plants inverted to expose fruit to sunlight) were different from that of freshly dug fruit. Chaetomium, Penicillium, Trichoderma, Rhizoctonia, and Fusarium were the dominant fungi found associated with shells (pericarp) of freshly dug fruit. The dominant fungi of shells of windrowed fruit included Chaetomium, Rhizoctonia, Fusarium, Sclerotium, and Alternaria. Seeds of freshly dug fruit were dominated by Penicillium and Aspergillus. The only dominant species in seed of windrowed fruit was Penicillium. Microorganisms were isolated from shells and seed of freshly dug fruit at a frequency of 79% and 52%, respectively. The percentage of infestation was reduced by drying in the field. This was particularly true of the inverted windrow. The proportion of shells and seed infested with a microorganism was reduced 13% and 36%, respectively, after field drying for 5 to 7 days in random and inverted windrows. Microorganisms were isolated much more frequently from shell pieces (73%) than from seed (36%).
Supersonic gas streams enhance the formation of massive black holes in the early universe.
Hirano, Shingo; Hosokawa, Takashi; Yoshida, Naoki; Kuiper, Rolf
2017-09-29
The origin of super-massive black holes in the early universe remains poorly understood. Gravitational collapse of a massive primordial gas cloud is a promising initial process, but theoretical studies have difficulty growing the black hole fast enough. We report numerical simulations of early black hole formation starting from realistic cosmological conditions. Supersonic gas motions left over from the Big Bang prevent early gas cloud formation until rapid gas condensation is triggered in a protogalactic halo. A protostar is formed in the dense, turbulent gas cloud, and it grows by sporadic mass accretion until it acquires 34,000 solar masses. The massive star ends its life with a catastrophic collapse to leave a black hole-a promising seed for the formation of a monstrous black hole. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
ERIC Educational Resources Information Center
Nam, Yunju; Kim, Youngmi; Clancy, Margaret; Zager, Robert; Sherraden, Michael
2013-01-01
This study examines the impacts of Child Development Accounts (CDAs) on account holding, saving, and asset accumulation for children, using data from the SEED for Oklahoma Kids experiment (SEED OK). SEED OK, a policy test of universal and progressive CDAs, provides a 529 college savings plan account to every infant in the treatment group with…
Estimates of genetics and phenotypics parameters for the yield and quality of soybean seeds.
Zambiazzi, E V; Bruzi, A T; Guilherme, S R; Pereira, D R; Lima, J G; Zuffo, A M; Ribeiro, F O; Mendes, A E S; Godinho, S H M; Carvalho, M L M
2017-09-27
Estimating genotype x environment (GxE) parameters for quality and yield in soybean seed grown in different environments in Minas Gerais State was the goal of this study, as well as to evaluate interaction effects of GxE for soybean seeds yield and quality. Seeds were produced in three locations in Minas Gerais State (Lavras, Inconfidentes, and Patos de Minas) in 2013/14 and 2014/15 seasons. Field experiments were conducted in randomized blocks in a factorial 17 x 6 (GxE), and three replications. Seed yield and quality were evaluated for germination in substrates paper and sand, seedling emergence, speed emergency index, mechanical damage by sodium hypochlorite, electrical conductivity, speed aging, vigor and viability of seeds by tetrazolium test in laboratory using completely randomized design. Quadratic component genotypic, GXE variance component, genotype determination coefficient, genetic variation coefficient and environmental variation coefficient were estimated using the Genes software. Percentage analysis of genotypes contribution, environments and genotype x environment interaction were conducted by sites combination two by two and three sites combination, using the R software. Considering genotypes selection of broad adaptation, TMG 1179 RR, CD 2737 RR, and CD 237 RR associated better yield performance at high physical and physiological potential of seed. Environmental effect was more expressive for most of the characters related to soybean seed quality. GxE interaction effects were expressive though genotypes did not present coincidental behavior in different environments.
NASA Technical Reports Server (NTRS)
Liu, Hongyu; Crawford, James H.; Pierce, Robert B.; Norris, Peter; Platnick, Steven E.; Chen, Gao; Logan, Jennifer A.; Yantosca, Robert M.; Evans, Mat J.; Kittaka, Chieko;
2006-01-01
Clouds exert an important influence on tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies (J-values). We assess the radiative effect of clouds on photolysis frequencies and key oxidants in the troposphere with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations from the Goddard Earth Observing System data assimilation system (GEOS DAS) at the NASA Global Modeling and Assimilation Office (GMAO). We focus on the year of 2001 with the GEOS-3 meteorological observations. Photolysis frequencies are calculated using the Fast-J radiative transfer algorithm. The GEOS-3 global cloud optical depth and cloud fraction are evaluated and generally consistent with the satellite retrieval products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the International Satellite Cloud Climatology Project (ISCCP). Results using the linear assumption, which assumes linear scaling of cloud optical depth with cloud fraction in a grid box, show global mean OH concentrations generally increase by less than 6% because of the radiative effect of clouds. The OH distribution shows much larger changes (with maximum decrease of approx.20% near the surface), reflecting the opposite effects of enhanced (weakened) photochemistry above (below) clouds. The global mean photolysis frequencies for J[O1D] and J[NO2] in the troposphere change by less than 5% because of clouds; global mean O3 concentrations in the troposphere increase by less than 5%. This study shows tropical upper tropospheric O3 to be less sensitive to the radiative effect of clouds than previously reported (approx.5% versus approx.20-30%). These results emphasize that the dominant effect of clouds is to influence the vertical redistribution of the intensity of photochemical activity while global average effects remain modest, again contrasting with previous studies. Differing vertical distributions of clouds may explain part, but not the majority, of these discrepancies between models. Using an approximate random overlap or a maximum-random overlap scheme to take account of the effect of cloud overlap in the vertical reduces the impact of clouds on photochemistry but does not significantly change our results with respect to the modest global average effect.
Allowing for Horizontally Heterogeneous Clouds and Generalized Overlap in an Atmospheric GCM
NASA Technical Reports Server (NTRS)
Lee, D.; Oreopoulos, L.; Suarez, M.
2011-01-01
While fully accounting for 3D effects in Global Climate Models (GCMs) appears not realistic at the present time for a variety of reasons such as computational cost and unavailability of 3D cloud structure in the models, incorporation in radiation schemes of subgrid cloud variability described by one-point statistics is now considered feasible and is being actively pursued. This development has gained momentum once it was demonstrated that CPU-intensive spectrally explicit Independent Column Approximation (lCA) can be substituted by stochastic Monte Carlo ICA (McICA) calculations where spectral integration is accomplished in a manner that produces relatively benign random noise. The McICA approach has been implemented in Goddard's GEOS-5 atmospheric GCM as part of the implementation of the RRTMG radiation package. GEOS-5 with McICA and RRTMG can handle horizontally variable clouds which can be set via a cloud generator to arbitrarily overlap within the full spectrum of maximum and random both in terms of cloud fraction and layer condensate distributions. In our presentation we will show radiative and other impacts of the combined horizontal and vertical cloud variability on multi-year simulations of an otherwise untuned GEOS-5 with fixed SSTs. Introducing cloud horizontal heterogeneity without changing the mean amounts of condensate reduces reflected solar and increases thermal radiation to space, but disproportionate changes may increase the radiative imbalance at TOA. The net radiation at TOA can be modulated by allowing the parameters of the generalized overlap and heterogeneity scheme to vary, a dependence whose behavior we will discuss. The sensitivity of the cloud radiative forcing to the parameters of cloud horizontal heterogeneity and comparisons of CERES-derived forcing will be shown.
The alignment of molecular cloud magnetic fields with the spiral arms in M33.
Li, Hua-bai; Henning, Thomas
2011-11-16
The formation of molecular clouds, which serve as stellar nurseries in galaxies, is poorly understood. A class of cloud formation models suggests that a large-scale galactic magnetic field is irrelevant at the scale of individual clouds, because the turbulence and rotation of a cloud may randomize the orientation of its magnetic field. Alternatively, galactic fields could be strong enough to impose their direction upon individual clouds, thereby regulating cloud accumulation and fragmentation, and affecting the rate and efficiency of star formation. Our location in the disk of the Galaxy makes an assessment of the situation difficult. Here we report observations of the magnetic field orientation of six giant molecular cloud complexes in the nearby, almost face-on, galaxy M33. The fields are aligned with the spiral arms, suggesting that the large-scale field in M33 anchors the clouds. ©2011 Macmillan Publishers Limited. All rights reserved
Uncertainty in aerosol hygroscopicity resulting from semi-volatile organic compounds
NASA Astrophysics Data System (ADS)
Goulden, Olivia; Crooks, Matthew; Connolly, Paul
2018-01-01
We present a novel method of exploring the effect of uncertainties in aerosol properties on cloud droplet number using existing cloud droplet activation parameterisations. Aerosol properties of a single involatile particle mode are randomly sampled within an uncertainty range and resulting maximum supersaturations and critical diameters calculated using the cloud droplet activation scheme. Hygroscopicity parameters are subsequently derived and the values of the mean and uncertainty are found to be comparable to experimental observations. A recently proposed cloud droplet activation scheme that includes the effects of co-condensation of semi-volatile organic compounds (SVOCs) onto a single lognormal mode of involatile particles is also considered. In addition to the uncertainties associated with the involatile particles, concentrations, volatility distributions and chemical composition of the SVOCs are randomly sampled and hygroscopicity parameters are derived using the cloud droplet activation scheme. The inclusion of SVOCs is found to have a significant effect on the hygroscopicity and contributes a large uncertainty. For non-volatile particles that are effective cloud condensation nuclei, the co-condensation of SVOCs reduces their actual hygroscopicity by approximately 25 %. A new concept of an effective hygroscopicity parameter is introduced that can computationally efficiently simulate the effect of SVOCs on cloud droplet number concentration without direct modelling of the organic compounds. These effective hygroscopicities can be as much as a factor of 2 higher than those of the non-volatile particles onto which the volatile organic compounds condense.
The seeding of cumulus clouds by ground-based silver iodide generators
Vincent J. Schaefer; John H. Dieterich
1959-01-01
The control of thunderstorms is a challenging objective in experimental meteorology. For the past five years it has been the long-range goal of Project Skyfire. The lightning storm season in western Montana, northern Idaho, eastern Oregon and Washington normally extends from June to September with the greatest storm intensity occurring in July and August. Over the past...
A novel microseeding method for the crystallization of membrane proteins in lipidic cubic phase.
Kolek, Stefan Andrew; Bräuning, Bastian; Stewart, Patrick Douglas Shaw
2016-04-01
Random microseed matrix screening (rMMS), in which seed crystals are added to random crystallization screens, is an important breakthrough in soluble protein crystallization that increases the number of crystallization hits that are available for optimization. This greatly increases the number of soluble protein structures generated every year by typical structural biology laboratories. Inspired by this success, rMMS has been adapted to the crystallization of membrane proteins, making LCP seed stock by scaling up LCP crystallization conditions without changing the physical and chemical parameters that are critical for crystallization. Seed crystals are grown directly in LCP and, as with conventional rMMS, a seeding experiment is combined with an additive experiment. The new method was used with the bacterial integral membrane protein OmpF, and it was found that it increased the number of crystallization hits by almost an order of magnitude: without microseeding one new hit was found, whereas with LCP-rMMS eight new hits were found. It is anticipated that this new method will lead to better diffracting crystals of membrane proteins. A method of generating seed gradients, which allows the LCP seed stock to be diluted and the number of crystals in each LCP bolus to be reduced, if required for optimization, is also demonstrated.
Field and Laboratory Studies of Atmospheric Organic Aerosol
NASA Astrophysics Data System (ADS)
Coggon, Matthew Mitchell
This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation. The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate. Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f 99) was found to coincide with periods of heavy (f 42 > 0.15; f99 > 0.04), moderate (0.05 < f42 < 0.15; 0.01 < f99 < 0.04), and negligible (f42 < 0.05; f99 < 0.01) ship influence. Application of these conditions to all measurements conducted during E-PEACE demonstrated that a large fraction of cloud droplet (72%) and dry aerosol mass (12%) sampled in the California coastal study region was heavily or moderately influenced by ship emissions. Another study investigated the chemical and physical evolution of a controlled organic plume emitted from the R/V Point Sur. Under sunny conditions, nucleated particles composed of oxidized organic compounds contributed nearly an order of magnitude more cloud condensation nuclei (CCN) than less oxidized particles formed under cloudy conditions. The processing time necessary for particles to become CCN active was short ( 4 hr). Laboratory chamber experiments were also conducted to evaluate particle-phase processes influencing aerosol phase and composition. In one study, ammonium sulfate seed was coated with a layer of secondary organic aerosol (SOA) from toluene oxidation followed by a layer of SOA from α-pinene oxidation. The system exhibited different evaporative properties than ammonium sulfate seed initially coated with α-pinene SOA followed by a layer of toluene SOA. This behavior is consistent with a shell-and-core model and suggests limited mixing among different SOA types. Another study investigated the reactive uptake of isoprene epoxy diols (IEPOX) onto non-acidified aerosol. It was demonstrated that particle acidity has limited influence on organic aerosol formation onto ammonium sulfate seed, and that the chemical system is limited by the availability of nucleophiles such as sulfate. Flow tube experiments were conducted to examine the role of iron in the reactive uptake and chemical oxidation of glycolaldehyde. Aerosol particles doped with iron and hydrogen peroxide were mixed with gas-phase glycolaldehyde and photochemically aged in a custom-built flow reactor. Compared to particles free of iron, iron-doped aerosols significantly enhanced the oxygen to carbon (O/C) ratio of accumulated organic mass. The primary oxidation mechanism is suggested to be a combination of Fenton and photo-Fenton reactions which enhance particle-phase OH radical concentrations.
NASA Astrophysics Data System (ADS)
Champion, N.
2012-08-01
Contrary to aerial images, satellite images are often affected by the presence of clouds. Identifying and removing these clouds is one of the primary steps to perform when processing satellite images, as they may alter subsequent procedures such as atmospheric corrections, DSM production or land cover classification. The main goal of this paper is to present the cloud detection approach, developed at the French Mapping agency. Our approach is based on the availability of multi-temporal satellite images (i.e. time series that generally contain between 5 and 10 images) and is based on a region-growing procedure. Seeds (corresponding to clouds) are firstly extracted through a pixel-to-pixel comparison between the images contained in time series (the presence of a cloud is here assumed to be related to a high variation of reflectance between two images). Clouds are then delineated finely using a dedicated region-growing algorithm. The method, originally designed for panchromatic SPOT5-HRS images, is tested in this paper using time series with 9 multi-temporal satellite images. Our preliminary experiments show the good performances of our method. In a near future, the method will be applied to Pléiades images, acquired during the in-flight commissioning phase of the satellite (launched at the end of 2011). In that context, this is a particular goal of this paper to show to which extent and in which way our method can be adapted to this kind of imagery.
The sensitivity of tropospheric chemistry to cloud interactions
NASA Technical Reports Server (NTRS)
Jonson, Jan E.; Isaksen, Ivar S. A.
1994-01-01
Clouds, although only occupying a relatively small fraction of the troposphere volume, can have a substantial impact on the chemistry of the troposphere. In newly formed clouds, or in clouds with air rapidly flowing through, the chemistry is expected to be far more active than in aged clouds with stagnant air. Thus, frequent cycling of air through shortlived clouds, i.e. cumulus clouds, is likely to be a much more efficient media for altering the composition of the atmosphere than an extensive cloud cover i.e. frontal cloud systems. The impact of clouds is tested out in a 2-D channel model encircling the globe in a latitudinal belt from 30 to 60 deg N. The model contains a detailed gas phase chemistry. In addition physiochemical interactions between the gas and aqueous phases are included. For species as H2O2, CH2O, O3, and SO2, Henry's law equilibria are assumed, whereas HNO3 and H2SO4 are regarded as completed dissolved in the aqueous phase. Absorption of HO2 and OH is assumed to be mass-transport limited. The chemistry of the aqueous phase is characterized by rapid cycling of odd hydrogen, (H2O2, HO2, and OH). O2(-) (produced through dissociation of HO2) reacting with dissolved O3 is a major source of OH in the aqueous phase. This reaction can be a significant sink for O3 in the troposphere. In the interstitial cloud air, odd hydrogen is depleted, whereas NO(x) remains in the gas phase, thus reducing ozone production due to the reaction between NO and HO2. Our calculations give markedly lower ozone levels when cloud interactions are included. This may in part explain the overpredictions of ozone levels often experienced in models neglecting cloud chemical interactions. In the present study, the existence of clouds, cloud types, and their lifetimes are modeled as pseudo random variables. Such pseudo random sequences are in reality deterministic and may, given the same starting values, be reproduced. The effects of cloud interactions on the overall chemistry of the troposphere are discussed. In particular, tests are performed to determine the sensitivity of cloud frequencies and cloud types.
Erfani, Ehsan; Mitchell, David L.
2016-04-07
Here, ice particle mass- and projected area-dimension ( m- D and A- D) power laws are commonly used in the treatment of ice cloud microphysical and optical properties and the remote sensing of ice cloud properties. Although there has long been evidence that a single m- D or A- D power law is often not valid over all ice particle sizes, few studies have addressed this fact. This study develops self-consistent m- D and A- D expressions that are not power laws but can easily be reduced to power laws for the ice particle size (maximum dimension or D) rangemore » of interest, and they are valid over a much larger D range than power laws. This was done by combining ground measurements of individual ice particle m and D formed at temperature T < –20 °C during a cloud seeding field campaign with 2-D stereo (2D-S) and cloud particle imager (CPI) probe measurements of D and A, and estimates of m, in synoptic and anvil ice clouds at similar temperatures. The resulting m- D and A- D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m- D power laws developed from recent field studies considering the same temperature range (–60 °C < T < –20 °C).« less
Effect of seeding rate on organic production
USDA-ARS?s Scientific Manuscript database
Increased demand for organic rice (Oryza sativa L.) has incentivized producer conversion from conventional to organically-managed rice production in the U.S. Little is known on the impacts of seeding rate on organic rice production. A completely randomized factorial design with four replications was...
Firth, Jacqueline; Balraj, Vinohar; Muliyil, Jayaprakash; Roy, Sheela; Rani, Lilly Michael; Chandresekhar, R.; Kang, Gagandeep
2010-01-01
To assess water contamination and the relative effectiveness of three options for point-of-use water treatment in South India, we conducted a 6-month randomized, controlled intervention trial using chlorine, Moringa oleifera seeds, a closed valved container, and controls. One hundred twenty-six families participated. Approximately 70% of public drinking water sources had thermotolerant coliform counts > 100/100 mL. Neither M. oleifera seeds nor containers reduced coliform counts in water samples from participants' homes. Chlorine reduced thermotolerant coliform counts to potable levels, but was less acceptable to participants. Laboratory testing of M. oleifera seeds in water from the village confirmed the lack of reduction in coliform counts, in contrast to the improvement seen with Escherichia coli seeded distilled water. This discrepancy merits further study, as M. oleifera was effective in reducing coliform counts in other studies and compliance with Moringa use in this study was high. PMID:20439952
Firth, Jacqueline; Balraj, Vinohar; Muliyil, Jayaprakash; Roy, Sheela; Rani, Lilly Michael; Chandresekhar, R; Kang, Gagandeep
2010-05-01
To assess water contamination and the relative effectiveness of three options for point-of-use water treatment in South India, we conducted a 6-month randomized, controlled intervention trial using chlorine, Moringa oleifera seeds, a closed valved container, and controls. One hundred twenty-six families participated. Approximately 70% of public drinking water sources had thermotolerant coliform counts > 100/100 mL. Neither M. oleifera seeds nor containers reduced coliform counts in water samples from participants' homes. Chlorine reduced thermotolerant coliform counts to potable levels, but was less acceptable to participants. Laboratory testing of M. oleifera seeds in water from the village confirmed the lack of reduction in coliform counts, in contrast to the improvement seen with Escherichia coli seeded distilled water. This discrepancy merits further study, as M. oleifera was effective in reducing coliform counts in other studies and compliance with Moringa use in this study was high.
NASA Technical Reports Server (NTRS)
Kahre, Melinda A.; Hollingsworth, Jeffery
2012-01-01
The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.
Sensitivity analysis of upwelling thermal radiance in presence of clouds
NASA Technical Reports Server (NTRS)
Subramanian, S. V.; Tiwari, S. N.; Suttles, J. T.
1981-01-01
Total upwelling radiance at the top of the atmosphere is evaluated theoretically in the presence of clouds. The influence of cloud heights, thicknesses and different cloud covers on the upwelling radiance is also investigated. The characteristics of the two cloud types considered in this study closely correspond to altocumulus and cirrus with the cloud emissivity as a function of its liquid water (or ice) content. For calculation of the integrated transmittance of atmospheric gases such as, H2O, CO2, O3, and N2O, the Quasi Random Band (QRB) model approach is adopted. Results are obtained in three different spectral ranges and are compared with the clearsky radiance results. It is found that the difference between the clearsky and cloudy radiance increases with increasing cloud height and liquid water content. This difference also decreases as the surface temperature approaches the value of the cloud top temperature.
Seed bank characteristics of the Nymphoides peltata population in Lake Taihu
NASA Astrophysics Data System (ADS)
Huang, Wei; Chen, Qiuwen; Chen, Kaining
2015-08-01
The Nymphoides peltata (N. peltata) population has shown rapid expansion in Lake Taihu, China, in recent years. The core question is whether N. peltata seeds have contributed to the expansion. To address this, we randomly selected three N. peltata stands to investigate the seed bank characteristics of N. peltata in Lake Taihu. Results showed that N. peltata had high seed production, with a maximum seed yield of 1763 seeds per m2. Density of intact and fragmented seeds decreased rapidly with sediment depth. Few intact or fragmented seeds were distributed at depths greater than 4 cm in the sediment. Spatial distribution of the seed bank indicated that most seeds sank to the sediment within the N. peltata stands, and few seeds took advantage of their floating ability. Seeds recovered from the sediment during April to June had a low germination rate, and no seeds germinated during October to April. Cold exposure treatment increased the germination rate remarkably. No seedlings were found in the field from January 2012 to December 2012, indicating that few seeds were successfully established in the surveyed area. The results suggested that sexual reproduction had little direct contribution to the N. peltata expansion in this large shallow lake.
ERIC Educational Resources Information Center
Goldschmidt, Pete; Jung, Hyekyung
2011-01-01
This evaluation focuses on the Seeds of Science/Roots of Reading: Effective Tools for Developing Literacy through Science in the Early Grades ("Seeds/Roots") model of science-literacy integration. The evaluation is based on a cluster randomized design of 100 teachers, half of which were in the treatment group. Multi-level models are employed to…
NASA Astrophysics Data System (ADS)
Ansmann, A.; Tesche, M.; Althausen, D.; Müller, D.; Seifert, P.; Freudenthaler, V.; Heese, B.; Wiegner, M.; Pisani, G.; Knippertz, P.; Dubovik, O.
2008-02-01
Multiwavelength lidar, Sun photometer, and radiosonde observations were conducted at Ouarzazate (30.9°N, 6.9°W, 1133 m above sea level, asl), Morocco, in the framework of the Saharan Mineral Dust Experiment (SAMUM) in May-June 2006. The field site is close to the Saharan desert. Information on the depolarization ratio, backscatter and extinction coefficients, and lidar ratio of the dust particles, estimates of the available concentration of atmospheric ice nuclei at cloud level, profiles of temperature, humidity, and the horizontal wind vector as well as backward trajectory analysis are used to study cases of cloud formation in the dust with focus on heterogeneous ice formation. Surprisingly, most of the altocumulus clouds that form at the top of the Saharan dust layer, which reaches into heights of 4-7 km asl and has layer top temperatures of -8°C to -18°C, do not show any ice formation. According to the lidar observations the presence of a high number of ice nuclei (1-20 cm-3) does not automatically result in the obvious generation of ice particles, but the observations indicate that cloud top temperatures must typically reach values as low as -20°C before significant ice production starts. Another main finding is that liquid clouds are obviously required before ice crystals form via heterogeneous freezing mechanisms, and, as a consequence, that deposition freezing is not an important ice nucleation process. An interesting case with cloud seeding in the free troposphere above the dust layer is presented in addition. Small water clouds formed at about -30°C and produced ice virga. These virga reached water cloud layers several kilometers below the initiating cloud cells and caused strong ice production in these clouds at temperatures as high as -12°C to -15°C.
Mellen, Philip B.; Daniel, Kurt R.; Brosnihan, K. Bridget; Hansen, Kim J.; Herrington, David M.
2012-01-01
Background Muscadine grape seeds have high concentrations of polyphenolic compounds with antioxidant and other properties that would be expected to have favorable effects on endothelial function. Objectives To evaluate the effect of muscadine grape seed supplementation on endothelial function and cardiovascular risk factors in subjects with increased cardiovascular risk. Design In a randomized, double-blind, placebo-controlled crossover trial, 50 adults with coronary disease or ≥1 cardiac risk factor received muscadine grape seed supplementation (1300 mg daily) and placebo for 4 weeks each, with a 4-week washout. Resting brachial diameter and brachial flow-mediated dilation (FMD) and biomarkers of inflammation, lipid peroxidation, and antioxidant capacity were determined at the beginning and end of each period and compared in mixed linear models. Results There was no evidence of improved FMD (% change) with muscadine grape seed (muscadine grape seed: pre 5.2% ± 0.3%, post 4.6% ± 0.3%, p = 0.06; placebo: pre 5.3% ± 0.4%, post 5.2% ± 0.4%, p = 0.82; p for muscadine grape seed vs. placebo = 0.25). However, there was a significant increase in baseline diameter (mm) with muscadine grape seed supplementation (muscadine grape seed: pre 4.05 ± 0.09, post 4.23 ± 0.10, p = 0.002; placebo: pre 4.12 ± 0.11, post 4.12 ± 0.10, p = 0.93; p for muscadine grape seed vs. placebo = 0.026). All other biomarkers were not significantly altered by muscadine grape seed supplementation. Conclusions Four weeks of muscadine grape seed supplementation in subjects with increased cardiovascular risk did not produce a statistically significant increase in brachial flow-mediated vasodilation or a significant change in other biomarkers of inflammation, lipid peroxidation, or antioxidant capacity. However, the muscadine grape seed supplement did result in a significant increase in resting brachial diameter. The clinical significance of the effect on resting diameter is not yet established. More research is warranted to fully characterize the vascular effects of this and other grape-derived nutritional supplements and to determine whether these vascular effects translate into important clinical benefits. PMID:21504973
Mellen, Philip B; Daniel, Kurt R; Brosnihan, K Bridget; Hansen, Kim J; Herrington, David M
2010-10-01
Muscadine grape seeds have high concentrations of polyphenolic compounds with antioxidant and other properties that would be expected to have favorable effects on endothelial function. To evaluate the effect of muscadine grape seed supplementation on endothelial function and cardiovascular risk factors in subjects with increased cardiovascular risk. In a randomized, double-blind, placebo-controlled crossover trial, 50 adults with coronary disease or ≥1 cardiac risk factor received muscadine grape seed supplementation (1300 mg daily) and placebo for 4 weeks each, with a 4-week washout. Resting brachial diameter and brachial flow-mediated dilation (FMD) and biomarkers of inflammation, lipid peroxidation, and antioxidant capacity were determined at the beginning and end of each period and compared in mixed linear models. There was no evidence of improved FMD (% change) with muscadine grape seed (muscadine grape seed: pre 5.2% ± 0.3%, post 4.6% ± 0.3%, p = 0.06; placebo: pre 5.3% ± 0.4%, post 5.2% ± 0.4%, p = 0.82; p for muscadine grape seed vs. placebo = 0.25). However, there was a significant increase in baseline diameter (mm) with muscadine grape seed supplementation (muscadine grape seed: pre 4.05 ± 0.09, post 4.23 ± 0.10, p = 0.002; placebo: pre 4.12 ± 0.11, post 4.12 ± 0.10, p = 0.93; p for muscadine grape seed vs. placebo = 0.026). All other biomarkers were not significantly altered by muscadine grape seed supplementation. Four weeks of muscadine grape seed supplementation in subjects with increased cardiovascular risk did not produce a statistically significant increase in brachial flow-mediated vasodilation or a significant change in other biomarkers of inflammation, lipid peroxidation, or antioxidant capacity. However, the muscadine grape seed supplement did result in a significant increase in resting brachial diameter. The clinical significance of the effect on resting diameter is not yet established. More research is warranted to fully characterize the vascular effects of this and other grape-derived nutritional supplements and to determine whether these vascular effects translate into important clinical benefits.
Hacisalihoglu, Gokhan; Larbi, Bismark; Settles, A Mark
2010-01-27
The objective of this study was to explore the potential of near-infrared reflectance (NIR) spectroscopy to determine individual seed composition in common bean ( Phaseolus vulgaris L.). NIR spectra and analytical measurements of seed weight, protein, and starch were collected from 267 individual bean seeds representing 91 diverse genotypes. Partial least-squares (PLS) regression models were developed with 61 bean accessions randomly assigned to a calibration data set and 30 accessions assigned to an external validation set. Protein gave the most accurate PLS regression, with the external validation set having a standard error of prediction (SEP) = 1.6%. PLS regressions for seed weight and starch had sufficient accuracy for seed sorting applications, with SEP = 41.2 mg and 4.9%, respectively. Seed color had a clear effect on the NIR spectra, with black beans having a distinct spectral type. Seed coat color did not impact the accuracy of PLS predictions. This research demonstrates that NIR is a promising technique for simultaneous sorting of multiple seed traits in single bean seeds with no sample preparation.
Wagner, Robert; Benz, Stefan; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Leisner, Thomas
2007-12-20
We have used the T-matrix method and the discrete dipole approximation to compute the midinfrared extinction cross-sections (4500-800 cm(-1)) of randomly oriented circular ice cylinders for aspect ratios extending up to 10 for oblate and down to 1/6 for prolate particle shapes. Equal-volume sphere diameters ranged from 0.1 to 10 microm for both particle classes. A high degree of particle asphericity provokes a strong distortion of the spectral habitus compared to the extinction spectrum of compactly shaped ice crystals with an aspect ratio around 1. The magnitude and the sign (increase or diminution) of the shape-related changes in both the absorption and the scattering cross-sections crucially depend on the particle size and the values for the real and imaginary part of the complex refractive index. When increasing the particle asphericity for a given equal-volume sphere diameter, the values for the overall extinction cross-sections may change in opposite directions for different parts of the spectrum. We have applied our calculations to the analysis of recent expansion cooling experiments on the formation of cirrus clouds, performed in the large coolable aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe at a temperature of 210 K. Depending on the nature of the seed particles and the temperature and relative humidity characteristics during the expansion, ice crystals of various shapes and aspect ratios could be produced. For a particular expansion experiment, using Illite mineral dust particles coated with a layer of secondary organic matter as seed aerosol, we have clearly detected the spectral signatures characteristic of strongly aspherical ice crystal habits in the recorded infrared extinction spectra. We demonstrate that the number size distributions and total number concentrations of the ice particles that were generated in this expansion run can only be accurately derived from the recorded infrared spectra when employing aspect ratios as high as 10 in the retrieval approach. Remarkably, the measured spectra could also be accurately fitted when employing an aspect ratio of 1 in the retrieval. The so-deduced ice particle number concentrations, however, exceeded the true values, determined with an optical particle counter, by more than 1 order of magnitude. Thus, the shape-induced spectral changes between the extinction spectra of platelike ice crystals of aspect ratio 10 and compactly shaped particles of aspect ratio 1 can be efficiently balanced by deforming the true number size distribution of the ice cloud. As a result of this severe size/shape ambiguity in the spectral analysis, we consider it indispensable to cross-check the infrared retrieval results of wavelength-sized ice particles with independent reference measurements of either the number size distribution or the particle morphology.
Fueling nuclear activity in disk galaxies: Starbursts and monsters
NASA Astrophysics Data System (ADS)
Heller, Clayton H.; Shlosman, Isaac
1994-03-01
We study the evolution of the gas distribution in a globally unstable galactic disk with a particular emphasis on the gasdynamics in the central kiloparsec and the fueling activity there. The two-component self-gravitating disk is embedded in a responsive halo of comparable mass. The gas and stars are evolved using a three-dimensional hybrid smoothed particle hydrodynamics/N-body code and the gravitational interactions are calculated using a hierarchical TREE algorithm. A massive 'star formation' is introduced when the gas becomes Jeans unstable and locally exceeds the critical density of approximately 100 solar mass pc-3. The newly formed OB stars deposit energy in the gas by means of radiation-driven winds and supernovae. This energy is partially thermalized (efficiency of a few percent); the rest is radiated away. Models without star formation are evolved for a comparison. The effect of a massive object at the disk center is studied by placing a 'seed' black hole (BH) of 5 x 107 solar mass with an accretion radius of 20 pc. The tendency of the system to form a massive object 'spontaneously' is tested in models without the BH. We find that for models without star formation the bar- or dynamical friction-driven inflows lead to (1) domination of the central kpc by a few massive clouds that evolve into a single object probably via a cloud binary system, with and without a 'seed' BH, (2) accretion onto the BH which has a sporadic character, and (3) formation of remnant disks around the BH with a radius of 60-80 pc which result from the capture and digestion of clouds. For models with star formation, we find that (1) the enrgy input into the gas induces angular momentum loss and inflow rates by a factor less than 3, (2) the star formation is concentrated mainly at the apocenters of the gaseous circulation in the stellar bar and in the nuclear region, (3) the nuclear starburst phase appears to be very luminous approximately 1045-1046 erg/s and episodic with a typical single burst duration of aproximately 107 yr, and (4) the starburst phase coincides with both the gas becoming dynamically important and the catastrophic growth of the BH. It ends with the formation of cold residual less than 1 kpc radius gas disks. Models without the 'seed' BH form less than 1 kpc radius fat disks which dominate the dynamics. Gaseous bars follow, drive further inflow, and may fission into a massive cloud binary system at the center.
Stereographic cloud heights from the imagery of two scan-synchronized geostationary satellites
NASA Technical Reports Server (NTRS)
Minzner, R. A.; Teagle, R. D.; Steranka, J.; Shenk, W. E.
1979-01-01
Scan synchronization of the sensors of two SMS-GOES satellites yields imagery from which cloud heights can be derived stereographically with a theoretical two-sigma random uncertainty of + or - 0.25 km for pairs of satellites separated by 60 degrees of longitude. Systematic height errors due to cloud motion can be kept below 100 m for all clouds with east-west components of speed below hurricane speed, provided the scan synchronization is within 40 seconds at the mid-point latitude, and the spin axis of each satellite is parallel to that of the earth.
NASA Astrophysics Data System (ADS)
Mikami, Masato; Saputro, Herman; Seo, Takehiko; Oyagi, Hiroshi
2018-03-01
Stable operation of liquid-fueled combustors requires the group combustion of fuel spray. Our study employs a percolation approach to describe unsteady group-combustion excitation based on findings obtained from microgravity experiments on the flame spread of fuel droplets. We focus on droplet clouds distributed randomly in three-dimensional square lattices with a low-volatility fuel, such as n-decane in room-temperature air, where the pre-vaporization effect is negligible. We also focus on the flame spread in dilute droplet clouds near the group-combustion-excitation limit, where the droplet interactive effect is assumed negligible. The results show that the occurrence probability of group combustion sharply decreases with the increase in mean droplet spacing around a specific value, which is termed the critical mean droplet spacing. If the lattice size is at smallest about ten times as large as the flame-spread limit distance, the flame-spread characteristics are similar to those over an infinitely large cluster. The number density of unburned droplets remaining after completion of burning attained maximum around the critical mean droplet spacing. Therefore, the critical mean droplet spacing is a good index for stable combustion and unburned hydrocarbon. In the critical condition, the flame spreads through complicated paths, and thus the characteristic time scale of flame spread over droplet clouds has a very large value. The overall flame-spread rate of randomly distributed droplet clouds is almost the same as the flame-spread rate of a linear droplet array except over the flame-spread limit.
Lee, Peisan; Liu, Ju-Chi; Hsieh, Ming-Hsiung; Hao, Wen-Rui; Tseng, Yuan-Teng; Liu, Shuen-Hsin; Lin, Yung-Kuo; Sung, Li-Chin; Huang, Jen-Hung; Yang, Hung-Yu; Ye, Jong-Shiuan; Zheng, He-Shun; Hsu, Min-Huei; Syed-Abdul, Shabbir; Lu, Richard; Nguyen, Phung-Anh; Iqbal, Usman; Huang, Chih-Wei; Jian, Wen-Shan; Li, Yu-Chuan Jack
2016-08-01
Less than 50% of patients with hypertensive disease manage to maintain their blood pressure (BP) within normal levels. The aim of this study is to evaluate whether cloud BP system integrated with computerized physician order entry (CPOE) can improve BP management as compared with traditional care. A randomized controlled trial done on a random sample of 382 adults recruited from 786 patients who had been diagnosed with hypertension and receiving treatment for hypertension in two district hospitals in the north of Taiwan. Physicians had access to cloud BP data from CPOE. Neither patients nor physicians were blinded to group assignment. The study was conducted over a period of seven months. At baseline, the enrollees were 50% male with a mean (SD) age of 58.18 (10.83) years. The mean sitting BP of both arms was no different. The proportion of patients with BP control at two, four and six months was significantly greater in the intervention group than in the control group. The average capture rates of blood pressure in the intervention group were also significantly higher than the control group in all three check-points. Cloud-based BP system integrated with CPOE at the point of care achieved better BP control compared to traditional care. This system does not require any technical skills and is therefore suitable for every age group. The praise and assurance to the patients from the physicians after reviewing the Cloud BP records positively reinforced both BP measuring and medication adherence behaviors. Copyright © 2016. Published by Elsevier Ireland Ltd.
Ornelas, Juan Francisco; Sosa, Victoria; Soltis, Douglas E.; Daza, Juan M.; González, Clementina; Soltis, Pamela S.; Gutiérrez-Rodríguez, Carla; de los Monteros, Alejandro Espinosa; Castoe, Todd A.; Bell, Charles; Ruiz-Sanchez, Eduardo
2013-01-01
Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy. PMID:23409165
NASA Astrophysics Data System (ADS)
Pauly, Tyler; Garrod, Robin T.
2018-02-01
Massive young stellar objects (MYSOs) in the Magellanic Clouds show infrared absorption features corresponding to significant abundances of CO, CO2, and H2O ice along the line of sight, with the relative abundances of these ices differing between the Magellanic Clouds and the Milky Way. CO ice is not detected toward sources in the Small Magellanic Cloud, and upper limits put its relative abundance well below sources in the Large Magellanic Cloud and the Milky Way. We use our gas-grain chemical code MAGICKAL, with multiple grain sizes and grain temperatures, and further expand it with a treatment for increased interstellar radiation field intensity to model the elevated dust temperatures observed in the MCs. We also adjust the elemental abundances used in the chemical models, guided by observations of H II regions in these metal-poor satellite galaxies. With a grid of models, we are able to reproduce the relative ice fractions observed in MC MYSOs, indicating that metal depletion and elevated grain temperature are important drivers of the MYSO envelope ice composition. Magellanic Cloud elemental abundances have a subgalactic C/O ratio, increasing H2O ice abundances relative to the other ices; elevated grain temperatures favor CO2 production over H2O and CO. The observed shortfall in CO in the Small Magellanic Cloud can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH3OH abundance is found to be enhanced in low-metallicity models, providing seed material for complex organic molecule formation in the Magellanic Clouds.
NASA Astrophysics Data System (ADS)
Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.
2014-03-01
An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.
NASA Astrophysics Data System (ADS)
De Haan, D. O.; Riva, M.; Surratt, J. D.; Cazaunau, M.; Doussin, J. F.
2016-12-01
Minimal organic aerosol forms when aerosol particles are exposed to gas-phase methylglyoxal, but condensed phase laboratory studies of aerosol chemistry have suggested that methylglyoxal is a significant source of oligomerized aerosol material. In this study, various types of seed particles were exposed to gaseous methylglyoxal and then cloud-processed in the CESAM chamber. The gas phase was continuously probed by high-resolution PTR-MS during the experiments, and the particle phase WSOC was chemically characterized by high-resolution UPLC/ESI-DAD-QTOFMS. Uptake of methylglyoxal to dry particles caused optical rather than size changes, along with the release of imine products to the gas phase. High RH and cloud processing released some particle-bound methylglyoxal back to the gas phase but triggered an uptake of imine products. Analysis of the particle phase identified N-containing aldol condensation products derived from methylglyoxal, imine (produced from methylglyoxal and amine reactions), acetaldehyde (produced by methylglyoxal photolysis) and hydroxyacetone (produced by methylglyoxal disproportionation) monomers.
Efficient sampling of complex network with modified random walk strategies
NASA Astrophysics Data System (ADS)
Xie, Yunya; Chang, Shuhua; Zhang, Zhipeng; Zhang, Mi; Yang, Lei
2018-02-01
We present two novel random walk strategies, choosing seed node (CSN) random walk and no-retracing (NR) random walk. Different from the classical random walk sampling, the CSN and NR strategies focus on the influences of the seed node choice and path overlap, respectively. Three random walk samplings are applied in the Erdös-Rényi (ER), Barabási-Albert (BA), Watts-Strogatz (WS), and the weighted USAir networks, respectively. Then, the major properties of sampled subnets, such as sampling efficiency, degree distributions, average degree and average clustering coefficient, are studied. The similar conclusions can be reached with these three random walk strategies. Firstly, the networks with small scales and simple structures are conducive to the sampling. Secondly, the average degree and the average clustering coefficient of the sampled subnet tend to the corresponding values of original networks with limited steps. And thirdly, all the degree distributions of the subnets are slightly biased to the high degree side. However, the NR strategy performs better for the average clustering coefficient of the subnet. In the real weighted USAir networks, some obvious characters like the larger clustering coefficient and the fluctuation of degree distribution are reproduced well by these random walk strategies.
Arctic sea ice melt leads to atmospheric new particle formation.
Dall Osto, M; Beddows, D C S; Tunved, P; Krejci, R; Ström, J; Hansson, H-C; Yoon, Y J; Park, Ki-Tae; Becagli, S; Udisti, R; Onasch, T; O Dowd, C D; Simó, R; Harrison, Roy M
2017-06-12
Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. The occurrence of such events across a full decade was anti-correlated with sea ice extent. New particles originating from open water and open pack ice increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea ice melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.
Surface Fitting Filtering of LIDAR Point Cloud with Waveform Information
NASA Astrophysics Data System (ADS)
Xing, S.; Li, P.; Xu, Q.; Wang, D.; Li, P.
2017-09-01
Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from "WATER (Watershed Allied Telemetry Experimental Research)" are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.
Preferential predation of cool season grass seed by the common cricket (Acheta domesticus)
USDA-ARS?s Scientific Manuscript database
To determine if there might be a seed predation preference among forage grasses a laboratory study was conducted using the common cricket (Acheta domesticus L.). Six cool-season grasses were selected and feeding studies were conducted over a three day period. The study was designed as a randomized ...
Maruki-Uchida, Hiroko; Morita, Minoru; Yonei, Yoshikazu; Sai, Masahiko
2018-01-01
Piceatannol has been reported to have a wide variety of effects on the skin, including promoting collagen production, inhibiting melanin synthesis, inducing the antioxidant glutathione, and eliminating reactive oxygen species. In this study, a randomized, placebo-controlled, double-blind trial was conducted to clinically evaluate the effects of piceatannol-rich passion fruit seed extract on the skin of healthy Japanese women (age, 35-54 y). Thirty-two women with dry skin received either passion fruit seed extract (5 mg piceatannol) or a placebo (dextrin) for 8 wk. Skin hydration and other parameters on the face were assessed at 0, 4, and 8 wk by using specialized equipment. Furthermore, questionnaire interviews were conducted regarding the physical condition of subjects at 0, 4, and 8 wk. The results showed that consumption of passion fruit seed extract led to significant increases in the moisture content of human skin after 4 and 8 wk compared with that before the trial. The amount of transepidermal water loss decreased over time, although the differences were not significant. Moreover, a stratified analysis of subjects with moisture values of ≤200 μS revealed increased moisture content in the passion fruit seed extract group as compared with the placebo group. Furthermore, the results of questionnaires showed significant reductions in "perspiration" and "fatigue" in the passion fruit seed extract group as compared with the placebo group. These results indicate that oral intake of passion fruit seed extract that is rich in piceatannol could improve the moisture of dry skin and reduce fatigue.
Power laws for the backscattering matrices in the case of lidar sensing of cirrus clouds
NASA Astrophysics Data System (ADS)
Kustova, Natalia V.; Konoshonkin, Alexander V.; Borovoi, Anatoli; Okamoto, Hajime; Sato, Kaori; Katagiri, Shuichiro
2017-11-01
The data bank for the backscattering matrixes of cirrus clouds that was calculated earlier by the authors and was available in the internet for free access has been replaced in the case of randomly oriented crystals by simple analytic equations. Four microphysical ratios conventionally measured by lidars have been calculated for different shapes and the effective size of the crystals. These values could be used for retrieving shapes of the crystals in cirrus clouds.
Factors Affecting University Students' Intention to Use Cloud Computing in Jordan
ERIC Educational Resources Information Center
Rababah, Khalid Ali; Khasawneh, Mohammad; Nassar, Bilal
2017-01-01
The aim of this study is to examine the factors affecting students' intention to use cloud computing in the Jordanian universities. To achieve this purpose, a quantitative research approach which is a survey-based was deployed. Around 400 questionnaires were distributed randomly to Information Technology (IT) students at four universities in…
NASA Astrophysics Data System (ADS)
Breiding, Peter; Georganopoulos, Markos; Meyer, Eileen T.
2018-01-01
Recent multiwavelength work led by the Boston University blazar group (e.g., Marscher et al.) strongly suggests that a fraction of the blazar flares seen by the Fermi Large Area Telescope (LAT) take place a few to several pc away from the central engine. However, at such distances from the central engine, there is no adequate external photon field to provide the seed photons required for producing the observed GeV emission under leptonic inverse Compton (IC) models. A possible solution is a spine-sheath geometry for the emitting region (MacDonald et al., but see Nalewajko et al.). Here we use the current view of the molecular torus (e.g., Elitzur; Netzer), in which the torus extends a few pc beyond the dust sublimation radius with dust clouds distributed with a declining density for decreasing polar angle. We show that for a spine-sheath blazar jet embedded in the torus, the wide beaming pattern of the synchrotron radiation of the relatively slow sheath will heat molecular clouds with subsequent IR radiation that will be highly boosted in the spine comoving frame, and that under reasonable conditions this photon field can dominate over the sheath photons directly entering the spine. If the sheath is sufficiently luminous it will sublimate the dust, and if the sheath synchrotron radiation extends to optical-UV energies (as may happen during flares), this will illuminate the sublimated dust clouds to produce emission lines that will vary in unison with the optical-UV continuum, as has been very recently reported for blazar CTA 102 (Jorstad et al.).
The evolution of grain mantles and silicate dust growth at high redshift
NASA Astrophysics Data System (ADS)
Ceccarelli, Cecilia; Viti, Serena; Balucani, Nadia; Taquet, Vianney
2018-05-01
In dense molecular clouds, interstellar grains are covered by mantles of iced molecules. The formation of the grain mantles has two important consequences: it removes species from the gas phase and promotes the synthesis of new molecules on the grain surfaces. The composition of the mantle is a strong function of the environment that the cloud belongs to. Therefore, clouds in high-zeta galaxies, where conditions - like temperature, metallicity, and cosmic ray flux - are different from those in the Milky Way, will have different grain mantles. In the last years, several authors have suggested that silicate grains might grow by accretion of silicon-bearing species on smaller seeds. This would occur simultaneously with the formation of the iced mantles and be greatly affected by its composition as a function of time. In this work, we present a numerical study of the grain mantle formation in high-zeta galaxies, and we quantitatively address the possibility of silicate growth. We find that the mantle thickness decreases with increasing redshift, from about 120 to 20 layers for z varying from 0 to 8. Furthermore, the mantle composition is also a strong function of the cloud redshift, with the relative importance of CO, CO2, ammonia, methane, and methanol highly varying with z. Finally, being Si-bearing species always a very minor component of the mantle, the formation of silicates in molecular clouds is practically impossible.
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2017-01-01
In this paper, we discuss some aspects of numerical modeling of electromagnetic scattering by discrete random medium by using numerically exact solutions of the macroscopic Maxwell equations. Typical examples of such media are clouds of interstellar dust, clouds of interplanetary dust in the Solar system, dusty atmospheres of comets, particulate planetary rings, clouds in planetary atmospheres, aerosol particles with numerous inclusions and so on. Our study is based on the results of extensive computations of different characteristics of electromagnetic scattering obtained by using the superposition T-matrix method which represents a direct computer solver of the macroscopic Maxwell equations for an arbitrary multisphere configuration. As a result, in particular, we clarify the range of applicability of the low-density theories of radiative transfer and coherent backscattering as well as of widely used effective-medium approximations.
NASA Technical Reports Server (NTRS)
Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.
2004-01-01
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).
Cirrus Cloud Retrieval Using Infrared Sounding Data: Multilevel Cloud Errors.
NASA Astrophysics Data System (ADS)
Baum, Bryan A.; Wielicki, Bruce A.
1994-01-01
In this study we perform an error analysis for cloud-top pressure retrieval using the High-Resolution Infrared Radiometric Sounder (HIRS/2) 15-µm CO2 channels for the two-layer case of transmissive cirrus overlying an overcast, opaque stratiform cloud. This analysis includes standard deviation and bias error due to instrument noise and the presence of two cloud layers, the lower of which is opaque. Instantaneous cloud pressure retrieval errors are determined for a range of cloud amounts (0.1 1.0) and cloud-top pressures (850250 mb). Large cloud-top pressure retrieval errors are found to occur when a lower opaque layer is present underneath an upper transmissive cloud layer in the satellite field of view (FOV). Errors tend to increase with decreasing upper-cloud elective cloud amount and with decreasing cloud height (increasing pressure). Errors in retrieved upper-cloud pressure result in corresponding errors in derived effective cloud amount. For the case in which a HIRS FOV has two distinct cloud layers, the difference between the retrieved and actual cloud-top pressure is positive in all casts, meaning that the retrieved upper-cloud height is lower than the actual upper-cloud height. In addition, errors in retrieved cloud pressure are found to depend upon the lapse rate between the low-level cloud top and the surface. We examined which sounder channel combinations would minimize the total errors in derived cirrus cloud height caused by instrument noise and by the presence of a lower-level cloud. We find that while the sounding channels that peak between 700 and 1000 mb minimize random errors, the sounding channels that peak at 300—500 mb minimize bias errors. For a cloud climatology, the bias errors are most critical.
Monitor weather conditions for cloud seeding control. [Colorado River Basin
NASA Technical Reports Server (NTRS)
Kahan, A. M. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The near real-time DCS platform data transfer to the time-share compare is a working reality. Six stations are now being automatically monitored and displayed with a system delay of 3 to 8 hours from time of data transmission to time of data accessibility on the computer. The DCS platform system has proven itself a valuable tool for near real-time monitoring of mountain precipitation. Data from Wolf Creek Pass were an important input in making the decision when to suspend seeding operations to avoid exceeding suspension criteria in that area. The DCS platforms, as deployed in this investigation, have proven themselves to be reliable weather resistant systems for winter mountain environments in the southern Colorado mountains.
NASA Astrophysics Data System (ADS)
Feingold, Graham; Balsells, Joseph; Glassmeier, Franziska; Yamaguchi, Takanobu; Kazil, Jan; McComiskey, Allison
2017-07-01
The relationship between the albedo of a cloudy scene A and cloud fraction fc is studied with the aid of heuristic models of stratocumulus and cumulus clouds. Existing work has shown that scene albedo increases monotonically with increasing cloud fraction but that the relationship varies from linear to superlinear. The reasons for these differences in functional dependence are traced to the relationship between cloud deepening and cloud widening. When clouds deepen with no significant increase in fc (e.g., in solid stratocumulus), the relationship between A and fc is linear. When clouds widen as they deepen, as in cumulus cloud fields, the relationship is superlinear. A simple heuristic model of a cumulus cloud field with a power law size distribution shows that the superlinear A-fc behavior is traced out either through random variation in cloud size distribution parameters or as the cloud field oscillates between a relative abundance of small clouds (steep slopes on a log-log plot) and a relative abundance of large clouds (flat slopes). Oscillations of this kind manifest in large eddy simulation of trade wind cumulus where the slope and intercept of the power law fit to the cloud size distribution are highly correlated. Further analysis of the large eddy model-generated cloud fields suggests that cumulus clouds grow larger and deeper as their underlying plumes aggregate; this is followed by breakup of large plumes and a tendency to smaller clouds. The cloud and thermal size distributions oscillate back and forth approximately in unison.
Topology of large-scale structure in seeded hot dark matter models
NASA Technical Reports Server (NTRS)
Beaky, Matthew M.; Scherrer, Robert J.; Villumsen, Jens V.
1992-01-01
The topology of the isodensity surfaces in seeded hot dark matter models, in which static seed masses provide the density perturbations in a universe dominated by massive neutrinos is examined. When smoothed with a Gaussian window, the linear initial conditions in these models show no trace of non-Gaussian behavior for r0 equal to or greater than 5 Mpc (h = 1/2), except for very low seed densities, which show a shift toward isolated peaks. An approximate analytic expression is given for the genus curve expected in linear density fields from randomly distributed seed masses. The evolved models have a Gaussian topology for r0 = 10 Mpc, but show a shift toward a cellular topology with r0 = 5 Mpc; Gaussian models with an identical power spectrum show the same behavior.
Exploration of Extended-Area Treatment Effects in FACE-2 Using Satellite Imagery.
NASA Astrophysics Data System (ADS)
Meití, José G.; Woodley, William L.; Flueck, John A.
1984-01-01
The second phase of the Florida Area Cumulus Experiment (FACE-2) has been completed and an exploratory analysis has been conducted to investigate the possibility that cloud seeding may have affected the rainfall outside the intended target. Rainfall was estimated over a 3.5×105 km2 area centered on the target using geosynchronous, infrared satellite imagery and the Griffith-Woodley rain estimation technique. This technique was derived in South Florida by calibrating infrared images using raingage and radar observations to produce an empirical, diagnostic (a posteriori), satellite rain estimation technique. The satellite rain estimates for the extended area were adjusted based on comparisons of raingage and satellite rainfall estimates for the entire FACE target (1.3×104 km2). All daily rainfall estimates were composited in two ways: 1) in the original coordinate system and 2) in a relative coordinate system that rotates the research area as a function of wind direction. After compositing, seeding effects were sought as a function of space and time.The results show more rainfall (in the mean) on seed than no seed days both in and downwind of the target but lesser rainfall upwind. All differences (averaging 20% downwind and 10% upwind) are confined in space to within 200 km of the center of the FACE target and in time to the 8 h period after initial treatment. In addition, the positive correlation between untreated upwind rainfall and target rainfall is degraded on seed days, suggesting possible intermittent negative effects of seeding upwind. Although the development of these differences in space and time suggests that seeding may have been partially responsible for their generation, the results do not have strong inferential (P-value) support.
Yan, Fang; Xu, Kaili
2017-01-01
Because a biomass gasification station includes various hazard factors, hazard assessment is needed and significant. In this article, the cloud model (CM) is employed to improve set pair analysis (SPA), and a novel hazard assessment method for a biomass gasification station is proposed based on the cloud model-set pair analysis (CM-SPA). In this method, cloud weight is proposed to be the weight of index. In contrast to the index weight of other methods, cloud weight is shown by cloud descriptors; hence, the randomness and fuzziness of cloud weight will make it effective to reflect the linguistic variables of experts. Then, the cloud connection degree (CCD) is proposed to replace the connection degree (CD); the calculation algorithm of CCD is also worked out. By utilizing the CCD, the hazard assessment results are shown by some normal clouds, and the normal clouds are reflected by cloud descriptors; meanwhile, the hazard grade is confirmed by analyzing the cloud descriptors. After that, two biomass gasification stations undergo hazard assessment via CM-SPA and AHP based SPA, respectively. The comparison of assessment results illustrates that the CM-SPA is suitable and effective for the hazard assessment of a biomass gasification station and that CM-SPA will make the assessment results more reasonable and scientific.
Yan, Fang; Xu, Kaili
2017-01-01
Because a biomass gasification station includes various hazard factors, hazard assessment is needed and significant. In this article, the cloud model (CM) is employed to improve set pair analysis (SPA), and a novel hazard assessment method for a biomass gasification station is proposed based on the cloud model-set pair analysis (CM-SPA). In this method, cloud weight is proposed to be the weight of index. In contrast to the index weight of other methods, cloud weight is shown by cloud descriptors; hence, the randomness and fuzziness of cloud weight will make it effective to reflect the linguistic variables of experts. Then, the cloud connection degree (CCD) is proposed to replace the connection degree (CD); the calculation algorithm of CCD is also worked out. By utilizing the CCD, the hazard assessment results are shown by some normal clouds, and the normal clouds are reflected by cloud descriptors; meanwhile, the hazard grade is confirmed by analyzing the cloud descriptors. After that, two biomass gasification stations undergo hazard assessment via CM-SPA and AHP based SPA, respectively. The comparison of assessment results illustrates that the CM-SPA is suitable and effective for the hazard assessment of a biomass gasification station and that CM-SPA will make the assessment results more reasonable and scientific. PMID:28076440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huggins, A.W.
A field research effort was conducted in the vicinity of the Tushar Mountains of southern Utah as part of the Federal-State Program in Atmospheric Modification Research involving the National Oceanic and Atmospheric Administration and the State of Utah. The field study took place in February and March 1989 and emphasized the studies of supercooled liquid water evolution in winter storms and attempts to measure the effects of ground-based silver iodide cloud seeding. Results of the field effort are presented.
Broadening of cloud droplet spectra through turbulent entrainment and eddy hopping
NASA Astrophysics Data System (ADS)
Abade, Gustavo; Grabowski, Wojciech; Pawlowska, Hanna
2017-11-01
This work discusses the effect of cloud turbulence and turbulent entrainment on the evolution of the cloud droplet-size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events, modeled as a random Poisson process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate and the mean fraction of environmental air entrained in an event are specified as external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. They are either unactivated cloud condensation nuclei (CCN) or cloud droplets that form from activated CCN. The model accounts for the transport of environmental CCN into the cloud by the entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using a linear model. We show that turbulence plays an important role in aiding entrained CCN to activate, providing a source of small cloud droplets and thus broadening the droplet size distribution. Further simulation results will be reported at the meeting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiyama, Hiromichi, E-mail: hishiyam@kitasato-u.ac.jp; Satoh, Takefumi; Kawakami, Shogo
Purpose: To compare dosimetric parameters, seed migration rates, operation times, and acute toxicities of intraoperatively built custom-linked (IBCL) seeds with those of loose seeds for prostate brachytherapy. Methods and Materials: Participants were 140 patients with low or intermediate prostate cancer prospectively allocated to an IBCL seed group (n=74) or a loose seed group (n=66), using quasirandomization (allocated by week of the month). All patients underwent prostate brachytherapy using an interactive plan technique. Computed tomography and plain radiography were performed the next day and 1 month after brachytherapy. The primary endpoint was detection of a 5% difference in dose to 90% ofmore » prostate volume on postimplant computed tomography 1 month after treatment. Seed migration was defined as a seed position >1 cm from the cluster of other seeds on radiography. A seed dropped into the seminal vesicle was also defined as a migrated seed. Results: Dosimetric parameters including the primary endpoint did not differ significantly between groups, but seed migration rate was significantly lower in the IBCL seed group (0%) than in the loose seed group (55%; P<.001). Mean operation time was slightly but significantly longer in the IBCL seed group (57 min) than in the loose seed group (50 min; P<.001). No significant differences in acute toxicities were seen between groups (median follow-up, 9 months). Conclusions: This prospective quasirandomized control trial showed no dosimetric differences between IBCL seed and loose seed groups. However, a strong trend toward decreased postimplant seed migration was shown in the IBCL seed group.« less
NASA Astrophysics Data System (ADS)
Agha Taher, R.; Jafari, M.; Fallah, M.; Alavi, A.
2015-12-01
Protecting the living environment has become one of the greatest human concerns; sudden increase of population, industry and technology development, unrestrained over consumption of the citizens and climate changes, have all caused many problems for mankind. Shores are special zones that are in contact with three Atmosphere, Hydrosphere and Lithosphere environments of earth. Shore lines are of the most important linear features of the earth's surface which have an animated and alive nature. In this regard, optimized management of the shores and environmental protection for stable development require observing the shorelines and their variations. Protection of shorelines within appropriate time periods is of high importance for the purpose of optimized management of the shores. The twenty first century has been called the era of information explosion. A time that, through benefits of new technologies, information experts attempt to generate more and up to date information in various fields and to provide them for managers and decision makers in order to be considered for future planning and also to assist the planners to arrange and set a comprehensive plan. Aerial images and remote sensing technology are economic methods to acquire the required data. Such methods are free from common time and place limitations in survey based methods. Among remote sensing data, the ones acquired from optical images have several benefits which include low cost, interpretation simplicity and ease of access. That is why most of the researches concerning extraction of shorelines are practiced using optical images. On the other hand, wide range coverage of satellite images along with rapid access to them caused these images to be used extensively for extracting the shorelines. The attempt in this research is to use satellite images and their application in order to study variations of the shorelines. Thus, for this purpose, Landsat satellite images from TM and ETM+ sensors in the 35 time period has been used. In order to reach better results, images from MODIS satellite has been used as auxiliary data for the images that are with an error margin. Initial classification on the images was conducted to distinguish water and non water applications. Neural network classification was applied with specific scales on the images and the two major applications were thereby extracted. Then, in order to authenticate the proceedings, Error matrix and Kappa coefficient has been applied on the classified images. Base pixel method of neural network was used for the purpose of information extraction while authenticity of that was evaluated too. The outcomes display the trend of Urmia shoreline has been approximately constant between the years of 1976 to 1995 and has experienced very low variations. In 1998 the lake experienced increase of water and therefore advancement of the shoreline of the lake due to increase of precipitation and the volume of inflowing water to the basin. During 2000 to 20125, however, the lake's shoreline has experienced a downward trend, which was intensified in 2007 and reached to its most critical level ever since, that is decreasing to about one third. Further, temporal and spatial potentiality evaluation of clouds seeding in Urmia lake zone has been studied as a solution for improvement and recovery of the current status of the lake, and an algorithm was proposed for optimized temporal- spatial study on could seeding. Ecological, meteorological and synoptic data were used for timing study of the cloud's seeding plan, which upon study; it is easy to evaluate precipitation potential and quality of the system. At the next step, the rate of humidity and also stability of the precipitating system can be analyzed using radar acquired data. Whereas extracted date from MODIS images are expressing the spatial position, therefore in order to study the location of the cloud's seeding, MODIS images of the selected time intervals along with applying MCM algorithm were used to conclude thick clouds. Also, with interpolation of the TRMM data, it is possible to deduce maximum precipitation in the form of spatial arena. One of the data categories that is used both for temporal and spatial analysis is radar images which in addition to time, displays the existing humidity range, movement direction, and positions of accumulated precipitation cores. Therefore, using this algorithm, it is possible to conclude the most optimized spatial position in order to execute the seeding plan.
Evolution of the Oort Cloud under Galactic Perturbations
NASA Astrophysics Data System (ADS)
Higuchi, A.; Kokubo, E.; Mukai, T.
2005-08-01
The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region and randomize their inclinations. Here we show the orbital evolution of planetesimals due to the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. We consider only the vertical component of the galactic tide because it is dominant compared to other components. Then, under such an axi-symmetric assumption, some planetesimals may show the librations around ω (argument of perihelion)=π /2 or 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. Using the secular perturbation theory, we can understand the motion of the planetesimals analytically. We applied the Kozai mechanism to the galactic tide and found that the galactic tide raise perihelia and randomize inclinations of planetesimals with semimajor axes larger than ˜ 103 AU in 5Gyr. We take into account time evolution of the local galactic density, which is thought to be denser in the early stage of the sun than the current one. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.
NASA Astrophysics Data System (ADS)
Gupta, Shaurya; Guha, Daipayan; Jakubovic, Raphael; Yang, Victor X. D.
2017-02-01
Computer-assisted navigation is used by surgeons in spine procedures to guide pedicle screws to improve placement accuracy and in some cases, to better visualize patient's underlying anatomy. Intraoperative registration is performed to establish a correlation between patient's anatomy and the pre/intra-operative image. Current algorithms rely on seeding points obtained directly from the exposed spinal surface to achieve clinically acceptable registration accuracy. Registration of these three dimensional surface point-clouds are prone to various systematic errors. The goal of this study was to evaluate the robustness of surgical navigation systems by looking at the relationship between the optical density of an acquired 3D point-cloud and the corresponding surgical navigation error. A retrospective review of a total of 48 registrations performed using an experimental structured light navigation system developed within our lab was conducted. For each registration, the number of points in the acquired point cloud was evaluated relative to whether the registration was acceptable, the corresponding system reported error and target registration error. It was demonstrated that the number of points in the point cloud neither correlates with the acceptance/rejection of a registration or the system reported error. However, a negative correlation was observed between the number of the points in the point-cloud and the corresponding sagittal angular error. Thus, system reported total registration points and accuracy are insufficient to gauge the accuracy of a navigation system and the operating surgeon must verify and validate registration based on anatomical landmarks prior to commencing surgery.
Changing climates of conflict: A social network experiment in 56 schools.
Paluck, Elizabeth Levy; Shepherd, Hana; Aronow, Peter M
2016-01-19
Theories of human behavior suggest that individuals attend to the behavior of certain people in their community to understand what is socially normative and adjust their own behavior in response. An experiment tested these theories by randomizing an anticonflict intervention across 56 schools with 24,191 students. After comprehensively measuring every school's social network, randomly selected seed groups of 20-32 students from randomly selected schools were assigned to an intervention that encouraged their public stance against conflict at school. Compared with control schools, disciplinary reports of student conflict at treatment schools were reduced by 30% over 1 year. The effect was stronger when the seed group contained more "social referent" students who, as network measures reveal, attract more student attention. Network analyses of peer-to-peer influence show that social referents spread perceptions of conflict as less socially normative.
NASA Astrophysics Data System (ADS)
Renno, N.; Williams, E.; Rosenfeld, D.; Fischer, D.; Fischer, J.; Kremic, T.; Agrawal, A.; Andreae, M.; Bierbaum, R.; Blakeslee, R.; Boerner, A.; Bowles, N.; Christian, H.; Dunion, J.; Horvath, A.; Huang, X.; Khain, A.; Kinne, S.; Lemos, M.-C.; Penner, J.
2012-04-01
The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. Knowledge of these interactions is foundational to our understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey (NRC 2007) indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns by studying the activation of CCN and their interactions with clouds and storms. CHASER proposes to revolutionize our understanding of the interactions of aerosols with clouds by making the first global measurements of the fundamental physical entity linking them: activated cloud condensation nuclei. The CHASER mission was conceptualized to measure all quantities necessary for determining the interactions of aerosols with clouds and storms. Measurements by current satellites allow the determination of crude profiles of cloud particle size but not of the activated CCN that seed them. CHASER uses a new technique (Freud et al. 2011; Rosenfeld et al. 2012) and high-heritage instruments to produce the first global maps of activated CCN and the properties of the clouds associated with them. CHASER measures the CCN concentration and cloud thermodynamic forcing simultaneously, allowing their effects to be distinguished. Changes in the behavior of a group of weather systems in which only one of the quantities varies (a partial derivative of the intensity with the desirable quantity) allow the determination of each effect statistically. The high uncertainties of current climate predictions limit their much-needed use in decision-making. CHASER mitigates this problem by establishing a Data Application Center for conducting social science research focused on understanding the best ways to use, transfer, and communicate mission data to decision-makers. The CHASER Data Application Center supports the visions of the National Research Council and the Decadal Survey for an integrated program of observations from space that secures practical benefits for humankind by developing data products for assessing risks due to severe weather and climate change.
Improving the Accuracy of Cloud Detection Using Machine Learning
NASA Astrophysics Data System (ADS)
Craddock, M. E.; Alliss, R. J.; Mason, M.
2017-12-01
Cloud detection from geostationary satellite imagery has long been accomplished through multi-spectral channel differencing in comparison to the Earth's surface. The distinction of clear/cloud is then determined by comparing these differences to empirical thresholds. Using this methodology, the probability of detecting clouds exceeds 90% but performance varies seasonally, regionally and temporally. The Cloud Mask Generator (CMG) database developed under this effort, consists of 20 years of 4 km, 15minute clear/cloud images based on GOES data over CONUS and Hawaii. The algorithms to determine cloudy pixels in the imagery are based on well-known multi-spectral techniques and defined thresholds. These thresholds were produced by manually studying thousands of images and thousands of man-hours to determine the success and failure of the algorithms to fine tune the thresholds. This study aims to investigate the potential of improving cloud detection by using Random Forest (RF) ensemble classification. RF is the ideal methodology to employ for cloud detection as it runs efficiently on large datasets, is robust to outliers and noise and is able to deal with highly correlated predictors, such as multi-spectral satellite imagery. The RF code was developed using Python in about 4 weeks. The region of focus selected was Hawaii and includes the use of visible and infrared imagery, topography and multi-spectral image products as predictors. The development of the cloud detection technique is realized in three steps. First, tuning of the RF models is completed to identify the optimal values of the number of trees and number of predictors to employ for both day and night scenes. Second, the RF models are trained using the optimal number of trees and a select number of random predictors identified during the tuning phase. Lastly, the model is used to predict clouds for an independent time period than used during training and compared to truth, the CMG cloud mask. Initial results show 97% accuracy during the daytime, 94% accuracy at night, and 95% accuracy for all times. The total time to train, tune and test was approximately one week. The improved performance and reduced time to produce results is testament to improved computer technology and the use of machine learning as a more efficient and accurate methodology of cloud detection.
NASA Astrophysics Data System (ADS)
Minnis, Patrick; Yost, Chris R.; Sun-Mack, Sunny; Chen, Yan
2008-06-01
The difference between cloud-top altitude Z top and infrared effective radiating height Z eff for optically thick ice clouds is examined using April 2007 data taken by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For even days, the difference ΔZ between CALIPSO Z top and MODIS Z eff is 1.58 +/- 1.26 km. The linear fit between Z top and Z eff , applied to odd-day data, yields a difference of 0.03 +/- 1.21 km and can be used to estimate Z top from any infrared-based Z eff for thick ice clouds. Random errors appear to be due primarily to variations in cloud ice-water content (IWC). Radiative transfer calculations show that ΔZ corresponds to an optical depth of ~1, which based on observed ice-particle sizes yields an average cloud-top IWC of ~0.015 gm-3, a value consistent with in situ measurements. The analysis indicates potential for deriving cloud-top IWC using dual-satellite data.
Cloud-property retrieval using merged HIRS and AVHRR data
NASA Technical Reports Server (NTRS)
Baum, Bryan A.; Wielicki, Bruce A.; Minnis, Patrick; Parker, Lindsay
1992-01-01
A technique is developed that uses a multispectral, multiresolution method to improve the overall retrieval of mid- to high-level cloud properties by combining HIRS sounding channel data with higher spatial resolution AVHRR radiometric data collocated with the HIRS footprint. Cirrus cloud radiative and physical properties are determined using satellite data, surface-based measurements provided by rawinsondes and lidar, and aircraft-based lidar data collected during the First International Satellite Cloud Climatology Program Regional Experiment in Wisconsin during the months of October and November 1986. HIRS cloud-height retrievals are compared to ground-based lidar and aircraft lidar when possible. Retrieved cloud heights are found to have close agreement with lidar for thin cloud, but are higher than lidar for optically thick cloud. The results of the reflectance-emittance relationships derived are compared to theoretical scattering model results for both water-droplet spheres and randomly oriented hexagonal ice crystals. It is found that the assumption of 10-micron water droplets is inadequate to describe the reflectance-emittance relationship for the ice clouds seen here. Use of this assumption would lead to lower cloud heights using the ISCCP approach. The theoretical results show that use of hexagonal ice crystal phase functions could lead to much improved results for cloud retrieval algorithms using a bispectral approach.
Rutzinger, Martin; Höfle, Bernhard; Hollaus, Markus; Pfeifer, Norbert
2008-01-01
Airborne laser scanning (ALS) is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (>20 echoes/m2) and additional classification variables from full-waveform (FWF) ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA) approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation) are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original measurements directly, i.e. the acquired points. Gridding of the data is not necessary, a process which is inherently coupled to loss of data and precision. The 3D properties provide especially a good separability of buildings and terrain points respectively, if they are occluded by vegetation. PMID:27873771
Use of Tabu Search in a Solver to Map Complex Networks onto Emulab Testbeds
2007-03-01
for. Our PF Chang dinners and Starbuck coffee breaks were pivotal in reconstituting me to take on another day at AFIT. I don’t know how I would’ve done...performance of assign. Option Description Value -s <seed> Random Number Generator Seed varies -P Prune Unsuable Pclasses n/a -H <float> Branching
Computer Modelling and Simulation of Solar PV Array Characteristics
NASA Astrophysics Data System (ADS)
Gautam, Nalin Kumar
2003-02-01
The main objective of my PhD research work was to study the behaviour of inter-connected solar photovoltaic (PV) arrays. The approach involved the construction of mathematical models to investigate different types of research problems related to the energy yield, fault tolerance, efficiency and optimal sizing of inter-connected solar PV array systems. My research work can be divided into four different types of research problems: 1. Modeling of inter-connected solar PV array systems to investigate their electrical behavior, 2. Modeling of different inter-connected solar PV array networks to predict their expected operational lifetimes, 3. Modeling solar radiation estimation and its variability, and 4. Modeling of a coupled system to estimate the size of PV array and battery-bank in the stand-alone inter-connected solar PV system where the solar PV system depends on a system providing solar radiant energy. The successful application of mathematics to the above-m entioned problems entailed three phases: 1. The formulation of the problem in a mathematical form using numerical, optimization, probabilistic and statistical methods / techniques, 2. The translation of mathematical models using C++ to simulate them on a computer, and 3. The interpretation of the results to see how closely they correlated with the real data. Array is the most cost-intensive component of the solar PV system. Since the electrical performances as well as life properties of an array are highly sensitive to field conditions, different characteristics of the arrays, such as energy yield, operational lifetime, collector orientation, and optimal sizing were investigated in order to improve their efficiency, fault-tolerance and reliability. Three solar cell interconnection configurations in the array - series-parallel, total-cross-tied, and bridge-linked, were considered. The electrical characteristics of these configurations were investigated to find out one that is comparatively less susceptible to the mismatches due to manufacturer's tolerances in cell characteristics, shadowing, soiling and aging of solar cells. The current-voltage curves and the values of energy yield characterized by maximum-power points and fill factors for these arrays were also obtained. Two different mathematical models, one for smaller size arrays and the other for the larger size arrays, were developed. The first model takes account of the partial differential equations with boundary value conditions, whereas the second one involves the simple linear programming concept. Based on the initial information on the values of short-circuit current and open-circuit voltage of thirty-six single-crystalline silicon solar cells provided by a manufacturer, the values of these parameters for up to 14,400 solar cells were generated randomly. Thus, the investigations were done for three different cases of array sizes, i.e., (6 x 6), (36 x 8) and (720 x 20), for each configuration. The operational lifetimes of different interconnected solar PV arrays and the improvement in their life properties through different interconnection and modularized configurations were investigated using a reliability-index model. Under normal conditions, the efficiency of a solar cell degrades in an exponential manner, and its operational life above a lowest admissible efficiency may be considered as the upper bound of its lifetime. Under field conditions, the solar cell may fail any time due to environmental stresses, or it may function up to the end of its expected lifetime. In view of this, the lifetime of a solar cell in an array was represented by an exponentially distributed random variable. At any instant of time t, this random variable was considered to have two states: (i) the cell functioned till time t, or (ii) the cell failed within time t. It was considered that the functioning of the solar cell included its operation at an efficiency decaying with time under normal conditions. It was assumed that the lifetime of a solar cell had lack of memory or aging property, which meant that no matter how long (say, t) the cell had been operational, the probability that it would last an additional time ?t was independent of t. The operational life of the solar cell above a lowest admissible efficiency was considered as the upper bound of its expected lifetime. The value of the upper bound on the expected life of solar cell was evaluated using the information provided by the manufacturers of the single-crystalline silicon solar cells. Then on the basis of these lifetimes, the expected operational lifetimes of the array systems were obtained. Since the investigations of the effects of collector orientation on the performance of an array require the continuous values of global solar radiation on a surface, a method to estimate the global solar radiation on a surface (horizontal or tilted) was also proposed. The cloudiness index was defined as the fraction of extraterrestrial radiation that reached the earth's surface when the sky above the location of interest was obscured by the cloud cover. The cloud cover at the location of interest during any time interval of a day was assumed to follow the fuzzy random phenomenon. The cloudiness index, therefore, was considered as a fuzzy random variable that accounted for the cloud cover at the location of interest during any time interval of a day. This variable was assumed to depend on four other fuzzy random variables that, respectively, accounted for the cloud cover corresponding to the 1) type of cloud group, 2) climatic region, 3) season with most of the precipitation, and 4) type of precipitation at the location of interest during any time interval. All possible types of cloud covers were categorized into five types of cloud groups. Each cloud group was considered to be a fuzzy subset. In this model, the cloud cover at the location of interest during a time interval was considered to be the clouds that obscure the sky above the location. The cloud covers, with all possible types of clouds having transmissivities corresponding to values in the membership range of a fuzzy subset (i.e., a type of cloud group), were considered to be the membership elements of that fuzzy subset. The transmissivities of different types of cloud covers in a cloud group corresponded to the values in the membership range of that cloud group. Predicate logic (i.e., if---then---, else---, conditions) was used to set the relationship between all the fuzzy random variables. The values of the above-mentioned fuzzy random variables were evaluated to provide the value of cloudiness index for each time interval at the location of interest. For each case of the fuzzy random variable, heuristic approach was used to identify subjectively the range ([a, b], where a and b were real numbers with in [0, 1] such that a
NASA Astrophysics Data System (ADS)
Bassier, M.; Bonduel, M.; Van Genechten, B.; Vergauwen, M.
2017-11-01
Point cloud segmentation is a crucial step in scene understanding and interpretation. The goal is to decompose the initial data into sets of workable clusters with similar properties. Additionally, it is a key aspect in the automated procedure from point cloud data to BIM. Current approaches typically only segment a single type of primitive such as planes or cylinders. Also, current algorithms suffer from oversegmenting the data and are often sensor or scene dependent. In this work, a method is presented to automatically segment large unstructured point clouds of buildings. More specifically, the segmentation is formulated as a graph optimisation problem. First, the data is oversegmented with a greedy octree-based region growing method. The growing is conditioned on the segmentation of planes as well as smooth surfaces. Next, the candidate clusters are represented by a Conditional Random Field after which the most likely configuration of candidate clusters is computed given a set of local and contextual features. The experiments prove that the used method is a fast and reliable framework for unstructured point cloud segmentation. Processing speeds up to 40,000 points per second are recorded for the region growing. Additionally, the recall and precision of the graph clustering is approximately 80%. Overall, nearly 22% of oversegmentation is reduced by clustering the data. These clusters will be classified and used as a basis for the reconstruction of BIM models.
NASA Technical Reports Server (NTRS)
Houlahan, Padraig; Scalo, John
1992-01-01
A new method of image analysis is described, in which images partitioned into 'clouds' are represented by simplified skeleton images, called structure trees, that preserve the spatial relations of the component clouds while disregarding information concerning their sizes and shapes. The method can be used to discriminate between images of projected hierarchical (multiply nested) and random three-dimensional simulated collections of clouds constructed on the basis of observed interstellar properties, and even intermediate systems formed by combining random and hierarchical simulations. For a given structure type, the method can distinguish between different subclasses of models with different parameters and reliably estimate their hierarchical parameters: average number of children per parent, scale reduction factor per level of hierarchy, density contrast, and number of resolved levels. An application to a column density image of the Taurus complex constructed from IRAS data is given. Moderately strong evidence for a hierarchical structural component is found, and parameters of the hierarchy, as well as the average volume filling factor and mass efficiency of fragmentation per level of hierarchy, are estimated. The existence of nested structure contradicts models in which large molecular clouds are supposed to fragment, in a single stage, into roughly stellar-mass cores.
Community-wide spatial and temporal discordances of seed-seedling shadows in a tropical rainforest.
Rother, Débora Cristina; Pizo, Marco Aurélio; Siqueira, Tadeu; Rodrigues, Ricardo Ribeiro; Jordano, Pedro
2015-01-01
Several factors decrease plant survival throughout their lifecycles. Among them, seed dispersal limitation may play a major role by resulting in highly aggregated (contagious) seed and seedling distributions entailing increased mortality. The arrival of seeds, furthermore, may not match suitable environments for seed survival and, consequently, for seedling establishment. In this study, we investigated spatio-temporal patterns of seed and seedling distribution in contrasting microhabitats (bamboo and non-bamboo stands) from the Brazilian Atlantic Forest. Spatial distribution patterns, spatial concordance between seed rain and seedling recruitment between subsequent years in two fruiting seasons (2004-2005 and 2007-2009), and the relation between seeds and seedlings with environmental factors were examined within a spatially-explicit framework. Density and species richness of both seeds and seedlings were randomly distributed in non-bamboo stands, but showed significant clustering in bamboo stands. Seed and seedling distributions showed across-year inconsistency, suggesting a marked spatial decoupling of the seed and seedling stages. Generalized linear mixed effects models indicated that only seed density and seed species richness differed between stand types while accounting for variation in soil characteristics. Our analyses provide evidence of marked recruitment limitation as a result of the interplay between biotic and abiotic factors. Because bamboo stands promote heterogeneity in the forest, they are important components of the landscape. However, at high densities, bamboos may limit recruitment for the plant community by imposing marked discordances of seed arrival and early seedling recruitment.
Quantifying Biomass from Point Clouds by Connecting Representations of Ecosystem Structure
NASA Astrophysics Data System (ADS)
Hendryx, S. M.; Barron-Gafford, G.
2017-12-01
Quantifying terrestrial ecosystem biomass is an essential part of monitoring carbon stocks and fluxes within the global carbon cycle and optimizing natural resource management. Point cloud data such as from lidar and structure from motion can be effective for quantifying biomass over large areas, but significant challenges remain in developing effective models that allow for such predictions. Inference models that estimate biomass from point clouds are established in many environments, yet, are often scale-dependent, needing to be fitted and applied at the same spatial scale and grid size at which they were developed. Furthermore, training such models typically requires large in situ datasets that are often prohibitively costly or time-consuming to obtain. We present here a scale- and sensor-invariant framework for efficiently estimating biomass from point clouds. Central to this framework, we present a new algorithm, assignPointsToExistingClusters, that has been developed for finding matches between in situ data and clusters in remotely-sensed point clouds. The algorithm can be used for assessing canopy segmentation accuracy and for training and validating machine learning models for predicting biophysical variables. We demonstrate the algorithm's efficacy by using it to train a random forest model of above ground biomass in a shrubland environment in Southern Arizona. We show that by learning a nonlinear function to estimate biomass from segmented canopy features we can reduce error, especially in the presence of inaccurate clusterings, when compared to a traditional, deterministic technique to estimate biomass from remotely measured canopies. Our random forest on cluster features model extends established methods of training random forest regressions to predict biomass of subplots but requires significantly less training data and is scale invariant. The random forest on cluster features model reduced mean absolute error, when evaluated on all test data in leave one out cross validation, by 40.6% from deterministic mesquite allometry and 35.9% from the inferred ecosystem-state allometric function. Our framework should allow for the inference of biomass more efficiently than common subplot methods and more accurately than individual tree segmentation methods in densely vegetated environments.
Registration algorithm of point clouds based on multiscale normal features
NASA Astrophysics Data System (ADS)
Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua
2015-01-01
The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.
Formation of the Oort Cloud: Coupling Dynamical and Collisional Evolutions of Cometesimals
NASA Astrophysics Data System (ADS)
Charnoz, S.; Morbidelli, A.
2002-09-01
Cometesimals are thought to be born in the region of Giant Planets region and were subsequently ejected to the Oort Cloud by gravitational scattering. Some recent works (Stern & Weisman, 2001 Nature 409) have emphasized that during this phase of violent ejection, random velocities among cometesimals become so high that the majority of kilometer-sized comets might have been destroyed by multiple violent collisions before they reach the Oort Cloud, resulting in a low mass Oort Cloud. We present a new approach which allows to couple dynamical and collisional evolutions. This study focuses on cometesimals starting from the Jupiter-Saturn region. We find that the rapid depletion of the disk, due to the gravitational-scattering exerted by the giant planets, prevents a large fraction of cometesimals from rapid collisional destruction. These conclusions support the classical scenario of Oort Cloud formation.
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Chen, D. W.
1990-01-01
Stratocumulus cloud fields in the FIRE IFO region are analyzed using LANDSAT Thematic Mapper imagery. Structural properties such as cloud cell size distribution, cell horizontal aspect ratio, fractional coverage and fractal dimension are determined. It is found that stratocumulus cloud number densities are represented by a power law. Cell horizontal aspect ratio has a tendency to increase at large cell sizes, and cells are bi-fractal in nature. Using LANDSAT Multispectral Scanner imagery for twelve selected stratocumulus scenes acquired during previous years, similar structural characteristics are obtained. Cloud field spatial organization also is analyzed. Nearest-neighbor spacings are fit with a number of functions, with Weibull and Gamma distributions providing the best fits. Poisson tests show that the spatial separations are not random. Second order statistics are used to examine clustering.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. M.
1982-01-01
Aerosol and cloud measurements have been simulated for a Space Shuttle lidar. Expected errors - in signal, transmission, density, and calibration - are calculated algebraically and checked by simulating measurements and retrievals using random-number generators. By day, vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 micron) as well as strong volcanic stratospheric aerosols (at 0.53 micron). By night, all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 micron), mesospheric aerosols (at 0.53 micron), and noctilucent clouds (at 1.06 and 0.53 micron). The vertical resolution was 0.1-0.5 km in the troposphere, 0.5-2.0 km above, except 0.25-1.0 km in the mesospheric cloud and aerosol layers; horizontal resolution was 100-2000 km.
Primordial Black Holes as Generators of Cosmic Structures
NASA Astrophysics Data System (ADS)
Carr, Bernard; Silk, Joseph
2018-05-01
Primordial black holes (PBHs) could provide the dark matter in various mass windows below 102M⊙ and those of 30M⊙ might explain the LIGO events. PBHs much larger than this might have important consequences even if they provide only a small fraction of the dark matter. In particular, they could generate cosmological structure either individually through the `seed' effect or collectively through the `Poisson' effect, thereby alleviating some problems associated with the standard CDM scenario. If the PBHs all have a similar mass and make a small contribution to the dark matter, then the seed effect dominates on small scales, in which case PBHs could generate the supermassive black holes in galactic nuclei or even galaxies themselves. If they have a similar mass and provide the dark matter, the Poisson effect dominates on all scales and the first bound clouds would form earlier than in the usual scenario, with interesting observational consequences. If the PBHs have an extended mass spectrum, which is more likely, they could fulfill all three roles - providing the dark matter, binding the first bound clouds and generating galaxies. In this case, the galactic mass function naturally has the observed form, with the galaxy mass being simply related to the black hole mass. The stochastic gravitational wave background from the PBHs in this scenario would extend continuously from the LIGO frequency to the LISA frequency, offering a potential goal for future surveys.
Can neutrino decay-driven mock gravity save hot dark matter?
NASA Technical Reports Server (NTRS)
Splinter, Randall J.; Melott, Adrian L.
1992-01-01
The radiative decay of a 30 eV neutrino with a lifetime of order 10 exp 23-24 s has recently been shown to yield a satisfactory explanation of a wide range of problems in astrophysics. In this paper, it is investigated whether the photon flux generated by the radiative decay of a massive neutrino is capable of generating sufficient radiation pressure to cause a 'mock gravitational' collapse of primordial hydrogen clouds. It is shown that when using neutral hydrogen as a source of opacity for mock gravity the time scale for mock gravitational collapse is significantly larger than the expansion time scale. Thus, the model fails as a source of galactic seed perturbations. Furthermore, it is argued that nonlinear feedback mechanisms will be unable to increase the collapse rate of the cloud under mock gravity.
Timóteo, Sérgio; Correia, Marta; Rodríguez-Echeverría, Susana; Freitas, Helena; Heleno, Ruben
2018-01-10
Species interaction networks are traditionally explored as discrete entities with well-defined spatial borders, an oversimplification likely impairing their applicability. Using a multilayer network approach, explicitly accounting for inter-habitat connectivity, we investigate the spatial structure of seed-dispersal networks across the Gorongosa National Park, Mozambique. We show that the overall seed-dispersal network is composed by spatially explicit communities of dispersers spanning across habitats, functionally linking the landscape mosaic. Inter-habitat connectivity determines spatial structure, which cannot be accurately described with standard monolayer approaches either splitting or merging habitats. Multilayer modularity cannot be predicted by null models randomizing either interactions within each habitat or those linking habitats; however, as habitat connectivity increases, random processes become more important for overall structure. The importance of dispersers for the overall network structure is captured by multilayer versatility but not by standard metrics. Highly versatile species disperse many plant species across multiple habitats, being critical to landscape functional cohesion.
Reclamation of skid roads with fiber mats and native vegetation: effects on erosion
shawn T. Grushecky; David w. McGill; William Grafton; John Edwards; Lisa Tager
2007-01-01
A research study was established to test the effectiveness of fiber mats and native seed mixtures in reducing soil erosion from newly-constructed skid roads in the Elk River Watershed in central West Virginia. Twelve road sections of equal grade were paired with a randomly-selected section receiving a fiber mat and native grass seed while the other road section was not...
Changing climates of conflict: A social network experiment in 56 schools
Paluck, Elizabeth Levy; Shepherd, Hana; Aronow, Peter M.
2016-01-01
Theories of human behavior suggest that individuals attend to the behavior of certain people in their community to understand what is socially normative and adjust their own behavior in response. An experiment tested these theories by randomizing an anticonflict intervention across 56 schools with 24,191 students. After comprehensively measuring every school’s social network, randomly selected seed groups of 20–32 students from randomly selected schools were assigned to an intervention that encouraged their public stance against conflict at school. Compared with control schools, disciplinary reports of student conflict at treatment schools were reduced by 30% over 1 year. The effect was stronger when the seed group contained more “social referent” students who, as network measures reveal, attract more student attention. Network analyses of peer-to-peer influence show that social referents spread perceptions of conflict as less socially normative. PMID:26729884
Sampling Large Graphs for Anticipatory Analytics
2015-05-15
low. C. Random Area Sampling Random area sampling [8] is a “ snowball ” sampling method in which a set of random seed vertices are selected and areas... Sampling Large Graphs for Anticipatory Analytics Lauren Edwards, Luke Johnson, Maja Milosavljevic, Vijay Gadepally, Benjamin A. Miller Lincoln...systems, greater human-in-the-loop involvement, or through complex algorithms. We are investigating the use of sampling to mitigate these challenges
Variability of arginine content and yield components in Valencia peanut germplasm.
Aninbon, Chorkaew; Jogloy, Sanun; Vorasoot, Nimitr; Nuchadomrong, Suporn; Holbrook, C Corley; Kvien, Craig; Puppala, Naveen; Patanothai, Aran
2017-06-01
Peanut seeds are rich in arginine, an amino acid that has several positive effects on human health. Establishing the genetic variability of arginine content in peanut will be useful for breeding programs that have high arginine as one of their goals. The objective of this study was to evaluate the variation of arginine content, pods/plant, seeds/pod, seed weight, and yield in Valencia peanut germplasm. One hundred and thirty peanut genotypes were grown under field condition for two years. A randomized complete block design with three replications was used for this study. Arginine content was analyzed in peanut seeds at harvest using spectrophotometry. Yield and yield components were recorded for each genotype. Significant differences in arginine content and yield components were found in the tested Valencia peanut germplasm. Arginine content ranged from 8.68-23.35 μg/g seed. Kremena was the best overall genotype of high arginine content, number of pods/plant, 100 seed weight and pod yield.
USDA-ARS?s Scientific Manuscript database
Random mating (i.e., panmixis) is a fundamental assumption in quantitative genetics. In outcrossing bee-pollinated perennial forage legume polycrosses, mating is assumed by default to follow theoretical random mating. This assumption informs breeders of expected inbreeding estimates based on polycro...
A portable low-cost 3D point cloud acquiring method based on structure light
NASA Astrophysics Data System (ADS)
Gui, Li; Zheng, Shunyi; Huang, Xia; Zhao, Like; Ma, Hao; Ge, Chao; Tang, Qiuxia
2018-03-01
A fast and low-cost method of acquiring 3D point cloud data is proposed in this paper, which can solve the problems of lack of texture information and low efficiency of acquiring point cloud data with only one pair of cheap cameras and projector. Firstly, we put forward a scene adaptive design method of random encoding pattern, that is, a coding pattern is projected onto the target surface in order to form texture information, which is favorable for image matching. Subsequently, we design an efficient dense matching algorithm that fits the projected texture. After the optimization of global algorithm and multi-kernel parallel development with the fusion of hardware and software, a fast acquisition system of point-cloud data is accomplished. Through the evaluation of point cloud accuracy, the results show that point cloud acquired by the method proposed in this paper has higher precision. What`s more, the scanning speed meets the demand of dynamic occasion and has better practical application value.
Gholipouri, Abdolghayoum; Nazarnejad, H
2007-10-15
To investigate the effects of stem pruning (No heading, head pruning of stem after formation of 10 and 14 nodes) and nitrogen levels (0, 50, 100 and 200 kg ha(-1)) on physical and chemical characteristic of pumpkin seed a Factorial experiment based on randomized complete block design with three replication was carried out in Gorgan at 2003 and repeated in 2004 years. Results showed that the stem pruning has significant effect on traits such as seed oil, linoleic acid and oleic acid content. Nitrogen levels also have significant effect on seed dimension, seed oil, linoleic acid and oleic acid content. The largest amount of oil and linoleic acid content was obtained by stem pruning after forming 14 node and 100 kg ha(-1) nitrogen in separately, but the interaction of treatments were not significant difference for all of traits.
Estimation of the cloud transmittance from radiometric measurements at the ground level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Dario; Mares, Oana, E-mail: mareshoana@yahoo.com
2014-11-24
The extinction of solar radiation due to the clouds is more significant than due to any other atmospheric constituent, but it is always difficult to be modeled because of the random distribution of clouds on the sky. Moreover, the transmittance of a layer of clouds is in a very complex relation with their type and depth. A method for estimating cloud transmittance was proposed in Paulescu et al. (Energ. Convers. Manage, 75 690–697, 2014). The approach is based on the hypothesis that the structure of the cloud covering the sun at a time moment does not change significantly in amore » short time interval (several minutes). Thus, the cloud transmittance can be calculated as the estimated coefficient of a simple linear regression for the computed versus measured solar irradiance in a time interval Δt. The aim of this paper is to optimize the length of the time interval Δt. Radiometric data measured on the Solar Platform of the West University of Timisoara during 2010 at a frequency of 1/15 seconds are used in this study.« less
Estimation of the cloud transmittance from radiometric measurements at the ground level
NASA Astrophysics Data System (ADS)
Costa, Dario; Mares, Oana
2014-11-01
The extinction of solar radiation due to the clouds is more significant than due to any other atmospheric constituent, but it is always difficult to be modeled because of the random distribution of clouds on the sky. Moreover, the transmittance of a layer of clouds is in a very complex relation with their type and depth. A method for estimating cloud transmittance was proposed in Paulescu et al. (Energ. Convers. Manage, 75 690-697, 2014). The approach is based on the hypothesis that the structure of the cloud covering the sun at a time moment does not change significantly in a short time interval (several minutes). Thus, the cloud transmittance can be calculated as the estimated coefficient of a simple linear regression for the computed versus measured solar irradiance in a time interval Δt. The aim of this paper is to optimize the length of the time interval Δt. Radiometric data measured on the Solar Platform of the West University of Timisoara during 2010 at a frequency of 1/15 seconds are used in this study.
Mena-Alí, Jorge I; Rocha, Oscar J
2005-02-01
It has been claimed that ovules linearly ordered within a fruit differ in their probabilities of reaching maturity. This was investigated by studying the effect the position of an ovule within the pod has on seed abortion and seed production in Bauhinia ungulata. Fruits collected during the dry seasons of 1999, 2000 and 2001 were opened, and the number, position and status of each ovule within the fruit were recorded. A GLM model was used to assess the effects of population, tree identity and ovule position within the pod on ovule fertilization, seed abortion, seed damage and seed maturation in two populations of B. ungulata. Nearly 30% of the ovules were not fertilized in 1999; this percentage dropped to 5% the following two years. Seed abortion (50%) and seed damage (15%) were the same every year during the study period. Only 15% of the initial ovules developed into mature seeds in 1999; this value increased to 35% in 2000 and 2001. However, seed survivorship was dependent on the position of the ovule within the pod; non-fertilized and early aborted ovules were found more often near the basal end of the ovary. The frequency of seed damage was not affected by position. Mature seeds were found mainly in the stylar half of fruits, where ovules are likely to be fertilized by fast pollen tubes. The pattern of seed production in B. ungulata is non-random but is dependent upon the position of the ovule within the pod. The results suggest that the seeds produced within a fruit might differ in their vigour.
SMBH Seeds: Model Discrimination with High-energy Emission Based on Scaling Relation Evolution
NASA Astrophysics Data System (ADS)
Ben-Ami, Sagi; Vikhlinin, Alexey; Loeb, Abraham
2018-02-01
We explore the expected X-ray (0.5–2 keV) signatures from supermassive black holes (SMBHs) at high redshifts (z∼ 5{--}12) assuming various models for their seeding mechanism and evolution. Seeding models are approximated through deviations from the {M}{BH}{--}σ relation observed in the local universe, while N-body simulations of the large-scale structure are used to estimate the density of observable SMBHs. We focus on two seeding model families: (i) light seed BHs from remnants of Pop-III stars and (ii) heavy seeds from the direct collapse of gas clouds. We investigate several models for the accretion history, such as sub-Eddington accretion, slim disk models, and torque-limited growth models. We consider observations with two instruments: (i) the Chandra X-ray Observatory and (ii) the proposed Lynx. We find that all of the simulated models are in agreement with the current results from the Chandra Deep Field South, i.e., consistent with zero SMBHs in the field of view. In deep Lynx exposures, the number of observed objects is expected to become statistically significant. We demonstrate the capability to limit the phase space of plausible scenarios of the birth and evolution of SMBHs by performing deep observations at a flux limit of 1× {10}-19 {erg} {{cm}}-2 {{{s}}}-1. Finally, we show that our models are in agreement with current limits on the cosmic X-ray background (CXRB) and the expected contribution from unresolved quasars. We find that an analysis of CXRB contributions down to the Lynx confusion limit yields valuable information that can help identify the correct scenario for the birth and evolution of SMBHs.
A new mosaic method for three-dimensional surface
NASA Astrophysics Data System (ADS)
Yuan, Yun; Zhu, Zhaokun; Ding, Yongjun
2011-08-01
Three-dimensional (3-D) data mosaic is a indispensable link in surface measurement and digital terrain map generation. With respect to the mosaic problem of the local unorganized cloud points with rude registration and mass mismatched points, a new mosaic method for 3-D surface based on RANSAC is proposed. Every circular of this method is processed sequentially by random sample with additional shape constraint, data normalization of cloud points, absolute orientation, data denormalization of cloud points, inlier number statistic, etc. After N random sample trials the largest consensus set is selected, and at last the model is re-estimated using all the points in the selected subset. The minimal subset is composed of three non-colinear points which form a triangle. The shape of triangle is considered in random sample selection in order to make the sample selection reasonable. A new coordinate system transformation algorithm presented in this paper is used to avoid the singularity. The whole rotation transformation between the two coordinate systems can be solved by twice rotations expressed by Euler angle vector, each rotation has explicit physical means. Both simulation and real data are used to prove the correctness and validity of this mosaic method. This method has better noise immunity due to its robust estimation property, and has high accuracy as the shape constraint is added to random sample and the data normalization added to the absolute orientation. This method is applicable for high precision measurement of three-dimensional surface and also for the 3-D terrain mosaic.
A Heuristic Parameterization for the Integrated Vertical Overlap of Cumulus and Stratus
NASA Astrophysics Data System (ADS)
Park, Sungsu
2017-10-01
The author developed a heuristic parameterization to handle the contrasting vertical overlap structures of cumulus and stratus in an integrated way. The parameterization assumes that cumulus is maximum-randomly overlapped with adjacent cumulus; stratus is maximum-randomly overlapped with adjacent stratus; and radiation and precipitation areas at each model interface are grouped into four categories, that is, convective, stratiform, mixed, and clear areas. For simplicity, thermodynamic scalars within individual portions of cloud, radiation, and precipitation areas are assumed to be internally homogeneous. The parameterization was implemented into the Seoul National University Atmosphere Model version 0 (SAM0) in an offline mode and tested over the globe. The offline control simulation reasonably reproduces the online surface precipitation flux and longwave cloud radiative forcing (LWCF). Although the cumulus fraction is much smaller than the stratus fraction, cumulus dominantly contributes to precipitation production in the tropics. For radiation, however, stratus is dominant. Compared with the maximum overlap, the random overlap of stratus produces stronger LWCF and, surprisingly, more precipitation flux due to less evaporation of convective precipitation. Compared with the maximum overlap, the random overlap of cumulus simulates stronger LWCF and weaker precipitation flux. Compared with the control simulation with separate cumulus and stratus, the simulation with a single-merged cloud substantially enhances the LWCF in the tropical deep convection and midlatitude storm track regions. The process-splitting treatment of convective and stratiform precipitation with an independent precipitation approximation (IPA) simulates weaker surface precipitation flux than the control simulation in the tropical region.
Zhang, Haili; Liu, Shuang; Li, Lan; Liu, Shisong; Liu, Shuqi; Mi, Jia; Tian, Geng
2016-08-01
Several clinical trials have shown that grape seed extract can reduce blood pressure, but the results are often irreproducible. We therefore sought to systematically evaluate the impact of grape seed extract treatment on the changes of systolic/diastolic blood pressure (SBP/DBP) by meta-analyzing available randomized controlled trials. Trial selection and data extraction were completed independently by 2 investigators. Effect-size estimates were expressed as weighted mean difference (WMD) and 95% confidence interval (CI). Twelve articles involving 16 clinical trials and 810 study subjects were analyzed. Overall analyses found significant reductions for SBP (WMD = -6.077; 95% CI: -10.736 to -1.419; P = 0.011) and DBP (WMD = -2.803; 95% CI: -4.417 to -1.189; P = 0.001) after grape seed extract treatment. In subgroup analyses, there were significant reductions in younger subjects (mean age < 50 years) for SBP (WMD = -6.049; 95% CI: -10.223 to -1.875; P = 0.005) and DBP (WMD = -3.116; 95% CI: -4.773 to -1.459; P < 0.001), in obese subjects (mean body mass index ≥ 25 kg/m) for SBP (WMD = -4.469; 95% CI: -6.628 to -2.310; P < 0.001), and in patients with metabolic syndrome for SBP (WMD = -8.487; 95% CI: -11.869 to -5.106; P < 0.001). Further meta-regression analyses showed that age, body mass index, and baseline blood pressure were negatively associated with the significant reductions of SBP and DBP after treatment. There was no indication of publication bias. Our findings demonstrate that grape seed extract exerted a beneficial impact on blood pressure, and this impact was more obvious in younger or obese subjects, as well as in patients with metabolic disorders. In view of the small sample size involved, we agree that confirmation of our findings in a large-scale, long-term, multiple-dose randomized controlled trial, especially among hypertensive patients is warranted.
Sharing Planetary-Scale Data in the Cloud
NASA Astrophysics Data System (ADS)
Sundwall, J.; Flasher, J.
2016-12-01
On 19 March 2015, Amazon Web Services (AWS) announced Landsat on AWS, an initiative to make data from the U.S. Geological Survey's Landsat satellite program freely available in the cloud. Because of Landsat's global coverage and long history, it has become a reference point for all Earth observation work and is considered the gold standard of natural resource satellite imagery. Within the first year of Landsat on AWS, the service served over a billion requests for Landsat imagery and metadata, globally. Availability of the data in the cloud has led to new product development by companies and startups including Mapbox, Esri, CartoDB, MathWorks, Development Seed, Trimble, Astro Digital, Blue Raster and Timbr.io. The model of staging data for analysis in the cloud established by Landsat on AWS has since been applied to high resolution radar data, European Space Agency satellite imagery, global elevation data and EPA air quality models. This session will provide an overview of lessons learned throughout these projects. It will demonstrate how cloud-based object storage is democratizing access to massive publicly-funded data sets that have previously only been available to people with access to large amounts of storage, bandwidth, and computing power. Technical discussion points will include: The differences between staging data for analysis using object storage versus file storage Using object stores to design simple RESTful APIs through thoughtful file naming conventions, header fields, and HTTP Range Requests Managing costs through data architecture and Amazon S3's "requester pays" feature Building tools that allow users to take their algorithm to the data in the cloud Using serverless technologies to display dynamic frontends for massive data sets
An evaluation of satellite-derived humidity and its relationship to convective development
NASA Technical Reports Server (NTRS)
Fuelberg, Henry E.
1993-01-01
An aircraft prototype of the High-Resolution Interferometer Sounder (HIS) was flown over Tennessee and northern Alabama during summer 1986. The HIS temperature and dewpoint soundings were examined on two flight days to determine their error characteristics and utility in mesoscale analyses. Random errors were calculated from structure functions while total errors were obtained by pairing the HIS soundings with radiosonde-derived profiles. Random temperature errors were found to be less than 1 C at most levels, but random dewpoint errors ranged from 1 to 5 C. Total errors of both parameters were considerably greater, with dewpoint errors especially large on the day having a pronounced subsidence inversion. Cumulus cloud cover on 15 June limited HIS mesoscale analyses on that day. Previously undetected clouds were found in many HIS fields of view, and these probably produced the low-level horizontal temperature and dewpoint variations observed in the retrievals. HIS dewpoints at 300 mb indicated a strong moisture gradient that was confirmed by GOES 6.7-micron imagery. HIS mesoscale analyses on 19 June revealed a tongue of humid air stretching across the study area. The moist region was confirmed by radiosonde data and imagery from the Multispectral Atmospheric Mapping Sensor (MAMS). Convective temperatures derived from HIS retrievals helped explain the cloud formation that occurred after the HIS overflights. Crude estimates of Bowen ratio were obtained from HIS data using a mixing-line approach. Values indicated that areas of large sensible heat flux were the areas of first cloud development. These locations were also suggested by GOES visible and infrared imagery. The HIS retrievals indicated that areas of thunderstorm formation were regions of greatest instability. Local landscape variability and atmospheric temperature and humidity fluctuations were found to be important factors in producing the cumulus clouds on 19 June. HIS soundings were capable of detecting some of this variability. The authors were impressed by HIS's performance on the two study days.
Compact high-power shipborne doppler lidar based on high spectral resolution techniques
NASA Astrophysics Data System (ADS)
Wu, Songhua; Liu, Bingyi; Dai, Guangyao; Qin, Shenguang; Liu, Jintao; Zhang, Kailin; Feng, Changzhong; Zhai, Xiaochun; Song, Xiaoquan
2018-04-01
The Compact High-Power Shipborne Doppler Wind Lidar (CHiPSDWiL) based on highspectral-resolution technique has been built up at the Ocean University of China for the measurement of the wind field and the properties of the aerosol and clouds in the troposphere. The design of the CHiPSDWiL including the transceiver, the injection seeding, the locking and the frequency measurement will be presented. Preliminary results measured by the CHiPSDWiL are provided.
NASA Technical Reports Server (NTRS)
Kahan, A. M. (Principal Investigator)
1975-01-01
The author has identified the following significant results. The LANDSAT data collection system has proven itself to be a valuable tool for control of cloud seeding operations and for verification of weather forecasts. These platforms have proven to be reliable weather resistant units suitable for the collection of hydrometeorological data from remote severe weather environments. The detailed design of the wind speed and direction system and the wire-wrapping of the logic boards were completed.
Life history trade-off moderates model predictions of diversity loss from climate change.
Moor, Helen
2017-01-01
Climate change can trigger species range shifts, local extinctions and changes in diversity. Species interactions and dispersal capacity are important mediators of community responses to climate change. The interaction between multispecies competition and variation in dispersal capacity has recently been shown to exacerbate the effects of climate change on diversity and to increase predictions of extinction risk dramatically. Dispersal capacity, however, is part of a species' overall ecological strategy and are likely to trade off with other aspects of its life history that influence population growth and persistence. In plants, a well-known example is the trade-off between seed mass and seed number. The presence of such a trade-off might buffer the diversity loss predicted by models with random but neutral (i.e. not impacting fitness otherwise) differences in dispersal capacity. Using a trait-based metacommunity model along a warming climatic gradient the effect of three different dispersal scenarios on model predictions of diversity change were compared. Adding random variation in species dispersal capacity caused extinctions by the introduction of strong fitness differences due an inherent property of the dispersal kernel. Simulations including a fitness-equalising trade-off based on empirical relationships between seed mass (here affecting dispersal distance, establishment probability, and seedling biomass) and seed number (fecundity) maintained higher initial species diversity and predicted lower extinction risk and diversity loss during climate change than simulations with variable dispersal capacity. Large seeded species persisted during climate change, but developed lags behind their climate niche that may cause extinction debts. Small seeded species were more extinction-prone during climate change but tracked their niches through dispersal and colonisation, despite competitive resistance from residents. Life history trade-offs involved in coexistence mechanisms may increase community resilience to future climate change and are useful guides for model development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inno, L.; Bono, G.; Buonanno, R.
2013-02-10
We present the largest near-infrared (NIR) data sets, JHKs, ever collected for classical Cepheids in the Magellanic Clouds (MCs). We selected fundamental (FU) and first overtone (FO) pulsators, and found 4150 (2571 FU, 1579 FO) Cepheids for Small Magellanic Cloud (SMC) and 3042 (1840 FU, 1202 FO) for Large Magellanic Cloud (LMC). Current sample is 2-3 times larger than any sample used in previous investigations with NIR photometry. We also discuss optical VI photometry from OGLE-III. NIR and optical-NIR Period-Wesenheit (PW) relations are linear over the entire period range (0.0 < log P {sub FU} {<=} 1.65) and their slopesmore » are, within the intrinsic dispersions, common between the MCs. These are consistent with recent results from pulsation models and observations suggesting that the PW relations are minimally affected by the metal content. The new FU and FO PW relations were calibrated using a sample of Galactic Cepheids with distances based on trigonometric parallaxes and Cepheid pulsation models. By using FU Cepheids we found a true distance moduli of 18.45 {+-} 0.02(random) {+-} 0.10(systematic) mag (LMC) and 18.93 {+-} 0.02(random) {+-} 0.10(systematic) mag (SMC). These estimates are the weighted mean over 10 PW relations and the systematic errors account for uncertainties in the zero point and in the reddening law. We found similar distances using FO Cepheids (18.60 {+-} 0.03(random) {+-} 0.10(systematic) mag (LMC) and 19.12 {+-} 0.03(random) {+-} 0.10(systematic) mag (SMC)). These new MC distances lead to the relative distance, {Delta}{mu} = 0.48 {+-} 0.03 mag (FU, log P = 1) and {Delta}{mu} = 0.52 {+-} 0.03 mag (FO, log P = 0.5), which agrees quite well with previous estimates based on robust distance indicators.« less
NASA Astrophysics Data System (ADS)
Sutariati, G. A. K.; Bande, L. O. S.; Khaeruni, A.; Muhidin; Mudi, L.; Savitri, R. M.
2018-02-01
Research was aimed to evaluate the bio-invigoration techniques using Bacillus sp. CKD061 in improving seed viability and vigor of local upland rice. The research is arranged in factorial with completely randomized design (CRD). The different upland rice cultivars as first factor that consists of 11 cultivars, namely: Pae Tinangge, Pae Rowu, Pae Uwa, Pae Tanta, Pae Waburi-Buri, Pae Mornene, Pae Indalibana, Pae Lawarangka, Pae Huko, Pae Wagamba and Pae Momea. The second factor is the seed bio-invigoration technique, consists of 5 treatments, namely: without seed bio-invigoration (B0), NaCl + Bacillus sp. CKD061 (B1), KNO3 + Bacillus sp. CKD061 (B2), Ground burned-rice husk + Bacillus sp. CKD061 (B3), and Ground brick + Bacillus sp. CKD061 (B4). The results showed that seed bio-invigoration using Bacillus sp. CKD061 gave effect on the seed viability and vigor. Interaction of the seed bio-invigoration and upland rice cultivars were able to improve seed viability and vigor. Seed bio-invigoration ttreatment using ground brick + Bacillus sp. CKD061 was the best treatment, which could improve the viability and vigor of Pae Waburi-Buri, Pae Mornene and Pae Indalibana. The treatment increased vigor index by 133% in Pae Waburi-Buri and 127% in Pae Mornene, and Pae Indalibana compared with control.
NASA Astrophysics Data System (ADS)
Havemann, S.; Aumann, H. H.; Desouza-Machado, S. G.
2017-12-01
The HT-FRTC uses principal components which cover the spectrum at a very high spectral resolution allowing very fast line-by-line-like, hyperspectral and broadband simulations for satellite-based, airborne and ground-based sensors. Using data from IASI and from the Airborne Research Interferometer Evaluation System (ARIES) on board the FAAM BAE 146 aircraft, variational retrievals in principal component space with HT-FRTC as forward model have demonstrated that valuable information on temperature and humidity profiles and on the cirrus cloud properties can be obtained simultaneously. The NASA/JPL/UMBC cloudy RTM inter-comparison project has been working on a global dataset consisting of 7377 AIRS spectra. Initial simulations with HT-FRTC for this dataset have been promising. A next step taken here is to investigate how sensitive the results are with respect to different assumptions in the cloud modelling. One aspect of this is to study how assumptions about the microphysical and related optical properties of liquid/ice clouds impact the statistics of the agreement between model and observations. The other aspect is about the cloud overlap scheme. Different schemes have been tested (maximum, random, maximum random). As the computational cost increases linearly with the number of cloud columns, it will be investigated if there is an optimal number of columns beyond which there is little additional benefit to be gained. During daytime the high wave number channels of AIRS are affected by solar radiation. With full scattering calculations using a monochromatic version of the Edwards-Slingo radiation code the HT-FRTC can model solar radiation reasonably well, but full scattering calculations are relatively expensive. Pure Chou scaling on the other hand can not properly describe scattering of solar radiation by clouds and requires additional refinements.
NASA Astrophysics Data System (ADS)
Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.
2017-11-01
The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.
Melgoza-Castillo, Alicia; Panjabi, Arvind O.; Sanchez-Flores, Alejandro; Martínez-Guerrero, José Hugo; Macías-Duarte, Alberto; Fernandez, Jesús A.
2017-01-01
We analyzed the diet of Baird’s Sparrow (Ammodramus bairdii) and Grasshopper Sparrow (A. savannarum) in three different sites and sampling periods across the Chihuahuan Desert in northern Mexico. DNA from seeds in regurgitated stomach contents was sequenced using NGS technology and identified with a barcoding approach using the P6 loop of the trnL intron as genetic marker. During each sampling period, we collected random soil samples to estimate seed availability in the soil seed bank. Due to the variability and size of the genetic marker, the resolution was limited to a family level resolution for taxonomic classification of seeds, but in several cases a genus level was achieved. Diets contained a high diversity of seeds but were dominated by a limited number of genera/families. Seeds from Panicoideae (from the genera Panicum, Setaria, Eriochloa, Botriochloa, and Hackelochloa) contributed for the largest part to the diets (53 ± 19%), followed by Bouteloua (10 ± 12%). Depending on the site and sampling period, other important seeds in the diets were Eragrostideae, Pleuraphis, Asteraceae, Verbena, and Amaranthus. The most abundant seeds were not always preferred. Aristida and Chloris were common in the soil seed bank but these seeds were avoided by both bird species. Baird’s and Grasshopper sparrows did not differ in seed preferences. This work highlights the importance of range management practices that favor seed production of Panicoideae and Bouteloua grasses to enhance winter habitat use and survival of Baird’s and Grasshopper sparrows in the Chihuahuan Desert. PMID:29261732
Titulaer, Mieke; Melgoza-Castillo, Alicia; Panjabi, Arvind O; Sanchez-Flores, Alejandro; Martínez-Guerrero, José Hugo; Macías-Duarte, Alberto; Fernandez, Jesús A
2017-01-01
We analyzed the diet of Baird's Sparrow (Ammodramus bairdii) and Grasshopper Sparrow (A. savannarum) in three different sites and sampling periods across the Chihuahuan Desert in northern Mexico. DNA from seeds in regurgitated stomach contents was sequenced using NGS technology and identified with a barcoding approach using the P6 loop of the trnL intron as genetic marker. During each sampling period, we collected random soil samples to estimate seed availability in the soil seed bank. Due to the variability and size of the genetic marker, the resolution was limited to a family level resolution for taxonomic classification of seeds, but in several cases a genus level was achieved. Diets contained a high diversity of seeds but were dominated by a limited number of genera/families. Seeds from Panicoideae (from the genera Panicum, Setaria, Eriochloa, Botriochloa, and Hackelochloa) contributed for the largest part to the diets (53 ± 19%), followed by Bouteloua (10 ± 12%). Depending on the site and sampling period, other important seeds in the diets were Eragrostideae, Pleuraphis, Asteraceae, Verbena, and Amaranthus. The most abundant seeds were not always preferred. Aristida and Chloris were common in the soil seed bank but these seeds were avoided by both bird species. Baird's and Grasshopper sparrows did not differ in seed preferences. This work highlights the importance of range management practices that favor seed production of Panicoideae and Bouteloua grasses to enhance winter habitat use and survival of Baird's and Grasshopper sparrows in the Chihuahuan Desert.
Siles, Laura; Cela, Jana; Munné-Bosch, Sergi
2013-11-01
Tocopherols are thought to prevent oxidative damage during seed quiescence and dormancy in all angiosperms. However, several monocot species accumulate tocotrienols in seeds and their role remains elusive. Here, we aimed to unravel the distribution of tocopherols and tocotrienols in seeds of the Arecaceae family, to examine possible trends of vitamin E accumulation within different clades of the same family. We examined the tocopherol and tocotrienol content in seeds of 84 species. Furthermore, we evaluated the vitamin E composition of the seed coat, endosperm and embryo of seeds from 6 species, to determine possible tissue-specific functions of particular vitamin E forms. While seeds of 98.8% (83 out of 84) of the species accumulated tocotrienols, only 58.3% (49 out of 84) accumulated tocopherols. The presence of tocopherols did not follow a clear evolutionary trend, and appeared randomly in some clades only. In addition, the tissue-specific location of vitamin E in seeds revealed that the embryo contains mostly α-tocopherol (in seed tocopherol-accumulating species) or α-tocotrienol (in seed tocopherol-deficient species). However, some species such as Socratea exorrhiza mostly accumulate β-tocotrienol, and Parajubaea torallyi accumulates a mixture of tocopherols and tocotrienols in the embryo. This suggests that tocotrienols can play a similar protective role to that exerted by tocopherols in seeds, at least in some species of the Arecaceae family. We conclude that tocotrienol, rather than tocopherol, accumulation is a conserved trait in seeds of the Arecaceae family. Copyright © 2013 Elsevier Ltd. All rights reserved.
Supernova Driving. II. Compressive Ratio in Molecular-cloud Turbulence
NASA Astrophysics Data System (ADS)
Pan, Liubin; Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke
2016-07-01
The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of the compressive ratio, with a mean value ≈0.3, lower than the equilibrium value of ≈0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density probability density function is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.
Satellite simulators are often used to account for limitations in satellite retrievals of cloud properties in comparisons between models and satellite observations. The purpose of the simulator framework is to enable more robust evaluation of model cloud properties, so that di erences between models and observations can more con dently be attributed to model errors. However, these simulators are subject to uncertainties themselves. A fundamental uncertainty exists in connecting the spatial scales at which cloud properties are retrieved with those at which clouds are simulated in global models. In this study, we create a series of sensitivity tests using 4more » km global model output from the Multiscale Modeling Framework to evaluate the sensitivity of simulated satellite retrievals when applied to climate models whose grid spacing is many tens to hundreds of kilometers. In particular, we examine the impact of cloud and precipitation overlap and of condensate spatial variability. We find the simulated retrievals are sensitive to these assumptions. Specifically, using maximum-random overlap with homogeneous cloud and precipitation condensate, which is often used in global climate models, leads to large errors in MISR and ISCCP-simulated cloud cover and in CloudSat-simulated radar reflectivity. To correct for these errors, an improved treatment of unresolved clouds and precipitation is implemented for use with the simulator framework and is shown to substantially reduce the identified errors.« less
Fractal Analyses of High-Resolution Cloud Droplet Measurements.
NASA Astrophysics Data System (ADS)
Malinowski, Szymon P.; Leclerc, Monique Y.; Baumgardner, Darrel G.
1994-02-01
Fractal analyses of individual cloud droplet distributions using aircraft measurements along one-dimensional horizontal cross sections through clouds are performed. Box counting and cluster analyses are used to determine spatial scales of inhomogeneity of cloud droplet spacing. These analyses reveal that droplet spatial distributions do not exhibit a fractal behavior. A high variability in local droplet concentration in cloud volumes undergoing mixing was found. In these regions, thin filaments of cloudy air with droplet concentration close to those observed in cloud cores were found. Results suggest that these filaments may be anisotropic. Additional box counting analyses performed for various classes of cloud droplet diameters indicate that large and small droplets are similarly distributed, except for the larger characteristic spacing of large droplets.A cloud-clear air interface defined by a certain threshold of total droplet count (TDC) was investigated. There are indications that this interface is a convoluted surface of a fractal nature, at least in actively developing cumuliform clouds. In contrast, TDC in the cloud interior does not have fractal or multifractal properties. Finally a random Cantor set (RCS) was introduced as a model of a fractal process with an ill-defined internal scale. A uniform measure associated with the RCS after several generations was introduced to simulate the TDC records. Comparison of the model with real TDC records indicates similar properties of both types of data series.
Reducing seed dependent variability of non-uniformly sampled multidimensional NMR data
NASA Astrophysics Data System (ADS)
Mobli, Mehdi
2015-07-01
The application of NMR spectroscopy to study the structure, dynamics and function of macromolecules requires the acquisition of several multidimensional spectra. The one-dimensional NMR time-response from the spectrometer is extended to additional dimensions by introducing incremented delays in the experiment that cause oscillation of the signal along "indirect" dimensions. For a given dimension the delay is incremented at twice the rate of the maximum frequency (Nyquist rate). To achieve high-resolution requires acquisition of long data records sampled at the Nyquist rate. This is typically a prohibitive step due to time constraints, resulting in sub-optimal data records to the detriment of subsequent analyses. The multidimensional NMR spectrum itself is typically sparse, and it has been shown that in such cases it is possible to use non-Fourier methods to reconstruct a high-resolution multidimensional spectrum from a random subset of non-uniformly sampled (NUS) data. For a given acquisition time, NUS has the potential to improve the sensitivity and resolution of a multidimensional spectrum, compared to traditional uniform sampling. The improvements in sensitivity and/or resolution achieved by NUS are heavily dependent on the distribution of points in the random subset acquired. Typically, random points are selected from a probability density function (PDF) weighted according to the NMR signal envelope. In extreme cases as little as 1% of the data is subsampled. The heavy under-sampling can result in poor reproducibility, i.e. when two experiments are carried out where the same number of random samples is selected from the same PDF but using different random seeds. Here, a jittered sampling approach is introduced that is shown to improve random seed dependent reproducibility of multidimensional spectra generated from NUS data, compared to commonly applied NUS methods. It is shown that this is achieved due to the low variability of the inherent sensitivity of the random subset chosen from a given PDF. Finally, it is demonstrated that metrics used to find optimal NUS distributions are heavily dependent on the inherent sensitivity of the random subset, and such optimisation is therefore less critical when using the proposed sampling scheme.
USDA-ARS?s Scientific Manuscript database
This randomized, double-blinded, clinical trial assessed the effect of high hydrostatic pressure processing (HPP) on genogroup I.1 human norovirus (HuNoV) inactivation in virus-seeded oysters when ingested by subjects. The safety and efficacy of HPP treatments were assessed in three study phases wi...
Suppression of oxidative stress by grape seed supplementation in rats
Choi, Soo-Kyong; Zhang, Xian-Hua
2012-01-01
Polyphenol-rich grape seeds have a beneficial effect on human health. The present study was performed to investigate the effects of grape seeds on antioxidant activities in rats. Male Sprague-Dawley rats were randomly divided into a control diet group (C), a high-fat diet group (HF), a 5% grape seed-supplemented control diet group (G), and a 5% grape seed-supplemented high-fat diet group (HG). Dietary supplementation with grape seeds reduced serum concentrations of lipid peroxides compared with those in the C and HF groups. The hepatic level of lipid peroxides decreased significantly in the grape seed groups compared with that in the C and HF groups. Superoxide dismutase activity in the G group increased significantly compared with that in the C group. Catalase activity tended to be higher by feeding grape seeds. The grape seed diet increased glutathione peroxidase activity in the C group. Glutathione-S-transferase activity increased significantly in the G group compared with that in the C group. Hepatic content of total glutathione increased significantly in the HG group but decreased significantly in the HF group. The ratio of reduced glutathione and oxidized glutathione increased by feeding the grape seed diet. Total vitamin A concentration was significantly higher in HG group than in other groups. Liver tocopherol content of the G and HG groups was significantly higher than that of the control groups. These results suggest that dietary supplementation with grape seeds is beneficial for suppressing lipid peroxidation in high fat-fed rats. PMID:22413034
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, L. S.; Clark, F. O.; Lynch, D. K., E-mail: larry@spectral.com, E-mail: dave@thulescientific.com
2013-05-01
We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ({sup s}eed{sup )}, embedded in a single-layer shell of H{sub 2} molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H{sub 2} molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H{sub 2} shell. We refer to these clusters as contaminated H{sub 2} clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectralmore » profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from {approx}centimeter-sized, dirty H{sub 2} ice balls, called contaminated H{sub 2} ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H{sub 2} molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the {approx}10-100 GHz spectral region.« less
NASA Technical Reports Server (NTRS)
Prigent, Catherine; Pardo, Juan R.; Mishchenko, Michael I.; Rossow, Willaim B.; Hansen, James E. (Technical Monitor)
2001-01-01
Special Sensor Microwave /Imager (SSM/I) observations in cloud systems are studied over the tropics. Over optically thick cloud systems, presence of polarized signatures at 37 and 85 GHz is evidenced and analyzed with the help of cloud top temperature and optical thickness extracted from visible and IR satellite observations. Scattering signatures at 85 GHz (TbV(85) less than or = 250 K) are associated with polarization differences greater than or = 6 K, approx. 50%, of the time over ocean and approx. 40% over land. In addition. over thick clouds the polarization difference at 37 GHz is rarely negligible. The polarization differences at 37 and 85 GHz do not stem from the surface but are generated in regions of relatively homogeneous clouds having high liquid water content. To interpret the observations, a radiative transfer model that includes the scattering by non-spherical particles is developed. based on the T-matrix approach and using the doubling and adding method. In addition to handling randomly and perfectly oriented particles, this model can also simulate the effect of partial orientation of the hydrometeors. Microwave brightness temperatures are simulated at SSM/I frequencies and are compared with the observations. Polarization differences of approx. 2 K can be simulated at 37 GHz over a rain layer, even using spherical drops. The polarization difference is larger for oriented non-spherical particles. The 85 GHz simulations are very sensitive to the ice phase of the cloud. Simulations with spherical particles or with randomly oriented non-spherical ice particles cannot replicate the observed polarization differences. However, with partially oriented non-spherical particles, the observed polarized signatures at 85 GHz are explained, and the sensitivity of the scattering characteristics to the particle size, asphericity, and orientation is analyzed. Implications on rain and ice retrievals are discussed.
1001 Ways to run AutoDock Vina for virtual screening
NASA Astrophysics Data System (ADS)
Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D.
2016-03-01
Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.
1001 Ways to run AutoDock Vina for virtual screening.
Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D
2016-03-01
Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.
MENA-ALÍ, JORGE I.; ROCHA, OSCAR J.
2004-01-01
• Background and Aims It has been claimed that ovules linearly ordered within a fruit differ in their probabilities of reaching maturity. This was investigated by studying the effect the position of an ovule within the pod has on seed abortion and seed production in Bauhinia ungulata. • Methods Fruits collected during the dry seasons of 1999, 2000 and 2001 were opened, and the number, position and status of each ovule within the fruit were recorded. A GLM model was used to assess the effects of population, tree identity and ovule position within the pod on ovule fertilization, seed abortion, seed damage and seed maturation in two populations of B. ungulata. • Key Results Nearly 30 % of the ovules were not fertilized in 1999; this percentage dropped to 5 % the following two years. Seed abortion (50 %) and seed damage (15 %) were the same every year during the study period. Only 15 % of the initial ovules developed into mature seeds in 1999; this value increased to 35 % in 2000 and 2001. However, seed survivorship was dependent on the position of the ovule within the pod; non-fertilized and early aborted ovules were found more often near the basal end of the ovary. The frequency of seed damage was not affected by position. Mature seeds were found mainly in the stylar half of fruits, where ovules are likely to be fertilized by fast pollen tubes. • Conclusions The pattern of seed production in B. ungulata is non-random but is dependent upon the position of the ovule within the pod. The results suggest that the seeds produced within a fruit might differ in their vigour. PMID:15596452
Project Baseline: An unprecedented resource to study plant evolution across space and time.
Etterson, Julie R; Franks, Steven J; Mazer, Susan J; Shaw, Ruth G; Gorden, Nicole L Soper; Schneider, Heather E; Weber, Jennifer J; Winkler, Katharine J; Weis, Arthur E
2016-01-01
Project Baseline is a seed bank that offers an unprecedented opportunity to examine spatial and temporal dimensions of microevolution during an era of rapid environmental change. Over the upcoming 50 years, biologists will withdraw genetically representative samples of past populations from this time capsule of seeds and grow them contemporaneously with modern samples to detect any phenotypic and molecular evolution that has occurred during the intervening time. We carefully developed this living genome bank using protocols to enhance its experimental value by collecting from multiple populations and species across a broad geographical range in sites that are likely to be preserved into the future. Seeds are accessioned with site and population data and are stored by maternal line under conditions that maximize seed longevity. This open-access resource will be available to researchers at regular intervals to evaluate contemporary evolution. To date, the Project Baseline collection includes 100-200 maternal lines of each of 61 species collected from over 831 populations on sites that are likely to be preserved into the future across the United States (∼78,000 maternal lines). Our strategically designed collection circumvents some problems that can cloud the results of "resurrection" studies involving naturally preserved or existing seed collections that are available fortuitously. The resurrection approach can be coupled with long-established and newer techniques over the next five decades to elucidate genetic change and thereby vastly improve our understanding of temporal and spatial changes in phenotype and the evolutionary processes underlying it. © 2016 Botanical Society of America.
A View of Earth's Aerosol System from Space to Your Office Chair
NASA Technical Reports Server (NTRS)
Colarco, Peter
2008-01-01
Aerosols are tiny particles and droplets suspended in the air. Each day you breathe in about 10 billion of them, about a half a million per breath. They are formed in nature by volcanoes, dust storms, sea spray, and emissions from vegetation. Humans create aerosols and alter their natural sources by burning fossil fuels and modifying land cover. Fires are another important source of aerosols; some are natural, such as wildfires started by lightning strikes, while others are from human-caused burning of vegetation for cooking, heating, and land clearing. Aerosols have complex effects on Earth's climate. In general, they cool the surface by reflecting (scattering) radiation from the sun back into space. Dust and smoke absorb solar radiation and heat the atmosphere where they are concentrated. Aerosols change the properties of clouds. Indeed, it would be very difficult to form clouds in the atmosphere without aerosols to act as 'seeds' for water to condense on. In aerosol polluted environments clouds tend to have smaller droplets than clouds formed in cleaner environments; these polluted clouds appear brighter from space because they reflect more sunlight, and they may persist longer and not rain as intensely. Aerosols also affect local air quality and visibility. Data collected by NASA satellites over the past decade have provided an unprecedented view of Earth's aerosol distribution and dramatically increased our understanding of where aerosols come from and just how far they travel in the atmosphere. In this talk I will discuss observations of aerosols from space and how they inform numerical transport models attempting to simulate the global aerosol system.
Changes in thunderstorm characteristics due to feeder cloud merging
NASA Astrophysics Data System (ADS)
Sinkevich, Andrei A.; Krauss, Terrence W.
2014-06-01
Cumulus cloud merging is a complex dynamical and microphysical process in which two convective cells merge into a single cell. Previous radar observations and numerical simulations have shown a substantial increase in the maximum area, maximum echo top and maximum reflectivity as a result of the merging process. Although the qualitative aspects of merging have been well documented, the quantitative effects on storm properties remain less defined. Therefore, a statistical assessment of changes in storm characteristics due to merging is of importance. Further investigation into the effects of cloud merging on precipitation flux (Pflux) in a statistical manner provided the motivation for this study in the Asir region of Saudi Arabia. It was confirmed that merging has a strong effect on storm development in this region. The data analysis shows that an increase in the median of the distribution of maximum reflectivity was observed just after merging and was equal to 3.9 dBZ. A detailed analysis of the individual merge cases compared the merged storm Pflux and mass to the sum of the individual Feeder and Storm portions just before merging for each case. The merged storm Pflux increased an average of 106% over the 20-min period after merging, and the mass increased on average 143%. The merged storm clearly became larger and more severe than the sum of the two parts prior to merging. One consequence of this study is that any attempts to evaluate the precipitation enhancement effects of cloud seeding must also include the issue of cloud mergers because merging can have a significant effect on the results.
Bahrami, R Nikkhah; Khodadadi, M; Pirivatlo, S Piry; Hassanpanah, D
2009-03-15
This experiment carried out to evaluate the effects of planting methods (seed sowing and transplanting) and head pruning (no pruning, pruning after 12th node and pruning after 16th node) on yield and yield components such as number of branches (sub-branches) per plant, fruits per plant, growth, fruit size, weight of fresh fruit, weight of seeds per fruit, number of seeds per fruit and seed yield of medicinal pumpkin. The experiment was carried out based of factorial experiment with Randomized Completely Blocks Design (RCBD) by three replications in Ardabil Agricultural and Natural Resources Researches Station at 2007. Seedlings were grown in heated greenhouse. When the climatic condition became suitable and seedlings were at the four leaves stage, both seeds and seedlings were planted at the same time in the farm. Maintenance operations were done during the growth season. Head pruning treatments were done the forecast time. The results showed that the planting methods had significant effect on the number of ripen fruits per plant, fruits diameter, weight of seeds per fruit, weight of 1000 seeds and seed yield and had no significant effect on the other traits. Also the results indicated that head pruning treatments had significant effects on the number of branches per plant, growth and seed yield and no significant on the other traits. In this experiment the most seed yield (997.8 kg ha(-1)) obtained from transplanting method with head pruning after 12th node and the least seed yield obtained from control.
Radiative Impacts of Cloud Heterogeneity and Overlap in an Atmospheric General Circulation Model
NASA Technical Reports Server (NTRS)
Oreopoulos, L.; Lee, D.; Sud, Y. C.; Suarez, M. J.
2012-01-01
The radiative impacts of introducing horizontal heterogeneity of layer cloud condensate, and vertical overlap of condensate and cloud fraction are examined with the aid of a new radiation package operating in the GEOS-5 Atmospheric General Circulation Model. The impacts are examined in terms of diagnostic top-of-the-atmosphere shortwave (SW) and longwave (LW) cloud radiative effect (CRE) calculations for a range of assumptions and parameter specifications about the overlap. The investigation is conducted for two distinct cloud schemes, the one that comes with the standard GEOS-5 distribution, and another which has been recently used experimentally for its enhanced GEOS-5 distribution, and another which has been recently used experimentally for its enhanced cloud microphysical capabilities; both are coupled to a cloud generator allowing arbitrary cloud overlap specification. We find that cloud overlap radiative impacts are significantly stronger for the operational cloud scheme for which a change of cloud fraction overlap from maximum-random to generalized results to global changes of SW and LW CRE of approximately 4 Watts per square meter, and zonal changes of up to approximately 10 Watts per square meter. This is because of fewer occurrences compared to the other scheme of large layer cloud fractions and of multi-layer situations with large numbers of atmospheric being simultaneously cloudy, conditions that make overlap details more important. The impact on CRE of the details of condensate distribution overlap is much weaker. Once generalized overlap is adopted, both cloud schemes are only modestly sensitive to the exact values of the overlap parameters. We also find that if one of the CRE components is overestimated and the other underestimated, both cannot be driven towards observed values by adjustments to cloud condensate heterogeneity and overlap alone.
Significant locations in auxiliary data as seeds for typical use cases of point clustering
NASA Astrophysics Data System (ADS)
Kröger, Johannes
2018-05-01
Random greedy clustering and grid-based clustering are highly susceptible by their initial parameters. When used for point data clustering in maps they often change the apparent distribution of the underlying data. We propose a process that uses precomputed weighted seed points for the initialization of clusters, for example from local maxima in population density data. Exemplary results from the clustering of a dataset of petrol stations are presented.
NASA Astrophysics Data System (ADS)
DeSouza-Machado, Sergio; Larrabee Strow, L.; Tangborn, Andrew; Huang, Xianglei; Chen, Xiuhong; Liu, Xu; Wu, Wan; Yang, Qiguang
2018-01-01
One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2-4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud profiles from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model are used in this paper.
Arouiee, H; Nazdar, T; Mousavi, A
2010-11-01
In order to investigation of allelopathic effects of some ornamental trees on seed germination of rye-grass (Lolium prenne) and tall fescue (Festuca arundinaceae), this experiment was conducted in a randomized complete block design with 3 replicates at the laboratory of Horticultural Sciences Department of Ferdowsi University of Mashhad, during 2008. In this research, we studied the effect of aqueous and hydro-alcoholic extracts of Afghanistan pine (Pinus eldarica), arizona cypress (Cupressus arizonica), black locust (Robinia psedue acacia) and box elder (Acer negundo) leaves that prepared in 1:5 ratio on seed germination percent and rate for two grasses. The results showed that all extracts decreased statistically seed germination in compared to control treatment. The highest germination percentage and germination rate of tested grass detected in control treatment. Hydro-alcoholic extracts of all woody plants (15, 30%) were completely inhibited seed germination of rye-grass and tall fescue. Also aqueous extract of arizona cypress was completely inhibited seed germination of tall fescue and had more inhibitory activity than other aqueous extracts on rye-grass. Between aqueous extracts, the highest and lowest seed germination of rye-grass was found in Afghanistan pine and arizona cypress, respectively.
Fikreselassie, Million
2012-05-01
Systematic breeding efforts on fenugreek have so far been neglected in Ethiopia. For this, 143 random samples of fenugreek accessions along with a commercial variety were used in this study to evaluate the potential of the land races. The field experiment was conducted at Haramaya University research station during 2011 main cropping season. Treatments were arranged in a 12x12 simple lattice design. The highest biomass and seed yielding accessions were generally concentrated more in the categories of yellow and green seed colors. When compared with the commercial variety, above 27% of the tested accessions performed significantly better in terms of seed yield indicating that significant yield gains could be secured by simple selection. However, further evaluation over wider environments is necessary to arrive at conclusive points for such quantitative traits. Green and yellow seeded accessions are widely distributed over all the country and over half of the accessions (63%) had green seed color. High seed yield bearing accessions were those collected from northwest and central part of Ethiopia, while accessions collected from eastern and northwestern Ethiopia were strikingly bold seed size. This variability would provide a basis for improving the crop in breeding program.
Evaluating stratiform cloud base charge remotely
NASA Astrophysics Data System (ADS)
Harrison, R. Giles; Nicoll, Keri A.; Aplin, Karen L.
2017-06-01
Stratiform clouds acquire charge at their upper and lower horizontal boundaries due to vertical current flow in the global electric circuit. Cloud charge is expected to influence microphysical processes, but understanding is restricted by the infrequent in situ measurements available. For stratiform cloud bases below 1 km in altitude, the cloud base charge modifies the surface electric field beneath, allowing a new method of remote determination. Combining continuous cloud height data during 2015-2016 from a laser ceilometer with electric field mill data, cloud base charge is derived using a horizontal charged disk model. The median daily cloud base charge density found was -0.86 nC m-2 from 43 days' data. This is consistent with a uniformly charged region 40 m thick at the cloud base, now confirming that negative cloud base charge is a common feature of terrestrial layer clouds. This technique can also be applied to planetary atmospheres and volcanic plumes.
NASA Technical Reports Server (NTRS)
Whitmire, D. P.; Matese, John J.; Reynolds, R. T.
1989-01-01
A growing amount of observational and theoretical evidence suggests that most main sequence stars are surrounded by disks of cometary material. The dust production by comets in such disks is investigated when the central stars evolve up the red giant and asymptotic giant branch (AGB). Once released, the dust is ablated and accelerated by the gas outflow and the fragments become the seeds necessary for condensation of the gas. The origin of the requisite seeds has presented a well known problem for classical nucleation theory. This model is consistent with the dust production observed in M giants and supergiants (which have increasing luminosities) and the fact that earlier supergiants and most WR stars (whose luminosities are unchanging) do not have significant dust clouds even though they have significant stellar winds. Another consequence of the model is that the spatial distribution of the dust does not, in general, coincide with that of the gas outflow, in contrast to the conventional condensation model. A further prediction is that the condensation radius is greater that that predicted by conventional theory which is in agreement with IR interferometry measurements of alpha-Ori.
Fine-scale spatial genetic dynamics over the life cycle of the tropical tree Prunus africana.
Berens, D G; Braun, C; González-Martínez, S C; Griebeler, E M; Nathan, R; Böhning-Gaese, K
2014-11-01
Studying fine-scale spatial genetic patterns across life stages is a powerful approach to identify ecological processes acting within tree populations. We investigated spatial genetic dynamics across five life stages in the insect-pollinated and vertebrate-dispersed tropical tree Prunus africana in Kakamega Forest, Kenya. Using six highly polymorphic microsatellite loci, we assessed genetic diversity and spatial genetic structure (SGS) from seed rain and seedlings, and different sapling stages to adult trees. We found significant SGS in all stages, potentially caused by limited seed dispersal and high recruitment rates in areas with high light availability. SGS decreased from seed and early seedling stages to older juvenile stages. Interestingly, SGS was stronger in adults than in late juveniles. The initial decrease in SGS was probably driven by both random and non-random thinning of offspring clusters during recruitment. Intergenerational variation in SGS could have been driven by variation in gene flow processes, overlapping generations in the adult stage or local selection. Our study shows that complex sequential processes during recruitment contribute to SGS of tree populations.
[Viability and germination of Hechtia perotensis (Bromeliaceae) seed].
Elizalde, Violeta; García, José Rodolfo; Peña-Valdivia, Cecilia Beatriz; Ybarra, Ma Carmen; Leyva, Otto Raúl; Trejo, Carlos
2017-03-01
Endemic populations of Hechtia perotensis have been described in Puebla and Veracruz, Mexico. Good quality seed collections can be used in conservation, research and ecological restoration. To evaluate seed quality of wild and endemic species, some compounds are used as effective promoters of germination, such as potassium nitrate (KNO3) and gibberellic acid (AG3), because they increase seed germination capacity and reduce latency. The triphenyl tetrazolium chloride (tetrazolium) test correlates seed viability because it is based on the activity of dehydrogenases in live tissues that catalyze mitochondrial respiration. The objective of this study was to obtain information on size and weight of capsules and seeds and seed germination and viability of H. perotensis, collected in Veracruz in the year 2012 and 2015. The hypotheses were 1) that seed germination and viability are independent of the year of collection, 2) that there is a tetrazolium concentration that can identify seed viability better than others, and 3) that pretreatment with KNO3 or AG3 improves seed germination. Seed germination was assessed using a completely randomized design with three treatments (control and the germination promoters 0.2 % KNO3 and 500 mg/L AG3), four treatments for the viability test (control, 0.2, 0.5 and 1.0 % of tetrazolium) and six replicates for each treatment. A total of one hundred seeds for germination experiments, and 25 seeds for the viability test were used. The results between and within years were analyzed with ANOVA and multiple comparison with the Tukey test. The proportion of non-germinated seeds was quantified along with the number of normal and abnormal seedlings, seeds with viable embryo, seeds without embryo, and seeds with low or no viability. On average, for the 2012 collected sample, 36 % had viable embryos, 7 % had low viability, 24 % were not viable and 33 % had no embryo. This result was significantly different from the 2015 sample, for which 87 % of seed showed viable embryos, 10 % had low viability, 0 % was not viable and 3 % had no embryo. Seed germination was also significantly different between years (22 and 92 %) Pregerminative treatments did not improve germination. Seed germination and viability of H. perotensis significantly varied between years of seed collection.
Bueno, Rafael S; Guevara, Roger; Ribeiro, Milton C; Culot, Laurence; Bufalo, Felipe S; Galetti, Mauro
2013-01-01
Functional redundancy has been debated largely in ecology and conservation, yet we lack detailed empirical studies on the roles of functionally similar species in ecosystem function. Large bodied frugivores may disperse similar plant species and have strong impact on plant recruitment in tropical forests. The two largest frugivores in the neotropics, tapirs (Tapirus terrestris) and muriquis (Brachyteles arachnoides) are potential candidates for functional redundancy on seed dispersal effectiveness. Here we provide a comparison of the quantitative, qualitative and spatial effects on seed dispersal by these megafrugivores in a continuous Brazilian Atlantic forest. We found a low overlap of plant species dispersed by both muriquis and tapirs. A group of 35 muriquis occupied an area of 850 ha and dispersed 5 times more plant species, and 13 times more seeds than 22 tapirs living in the same area. Muriquis dispersed 2.4 times more seeds in any random position than tapirs. This can be explained mainly because seed deposition by muriquis leaves less empty space than tapirs. However, tapirs are able to disperse larger seeds than muriquis and move them into sites not reached by primates, such as large forest gaps, open areas and fragments nearby. Based on published information we found 302 plant species that are dispersed by at least one of these megafrugivores in the Brazilian Atlantic forest. Our study showed that both megafrugivores play complementary rather than redundant roles as seed dispersers. Although tapirs disperse fewer seeds and species than muriquis, they disperse larger-seeded species and in places not used by primates. The selective extinction of these megafrugivores will change the spatial seed rain they generate and may have negative effects on the recruitment of several plant species, particularly those with large seeds that have muriquis and tapirs as the last living seed dispersers.
Tidal disruption of open clusters in their parent molecular clouds
NASA Technical Reports Server (NTRS)
Long, Kevin
1989-01-01
A simple model of tidal encounters has been applied to the problem of an open cluster in a clumpy molecular cloud. The parameters of the clumps are taken from the Blitz, Stark, and Long (1988) catalog of clumps in the Rosette molecular cloud. Encounters are modeled as impulsive, rectilinear collisions between Plummer spheres, but the tidal approximation is not invoked. Mass and binding energy changes during an encounter are computed by considering the velocity impulses given to individual stars in a random realization of a Plummer sphere. Mean rates of mass and binding energy loss are then computed by integrating over many encounters. Self-similar evolutionary calculations using these rates indicate that the disruption process is most sensitive to the cluster radius and relatively insensitive to cluster mass. The calculations indicate that clusters which are born in a cloud similar to the Rosette with a cluster radius greater than about 2.5 pc will not survive long enough to leave the cloud. The majority of clusters, however, have smaller radii and will survive the passage through their parent cloud.
Effects of Fenugreek Seed on the Severity and Systemic Symptoms of Dysmenorrhea
Younesy, Sima; Amiraliakbari, Sedigheh; Esmaeili, Somayeh; Alavimajd, Hamid; Nouraei, Soheila
2014-01-01
Background Primary dysmenorrhea is a prevalent disorder and its unfavorable effects deteriorates the quality of life in many people across the world. Based on some evidence on the characteristics of fenugreek as a medical plant with anti-inflammato-ry and analgesic properties, this double-blind, randomized, placebo controlled trial was conducted. The main purpose of the study was to evaluate the effects of fenugreek seeds on the severity of primary dysmenorrhea among students. Methods Unmarried Students were randomly assigned to two groups who received fenugreek (n = 51) or placebo (n = 50). For the first 3 days of menstruation, 2–3 capsules containing fenugreek seed powder (900 mg) were given to the subjects three times daily for two consecutive menstrual cycles. Pain severity was evaluated using a visual analog scale and systemic symptoms were assessed using a multidimensional verbal scale. Results Pain severity at baseline did not differ significantly between the two groups. Pain severity was significantly reduced in both groups after the intervention; however, the fenugreek group experienced significantly larger pain reduction (p < 0.001). With respect to the duration of pain, there was no meaningful difference between the two cycles in the placebo group (p = 0.07) but in the fenugreek group, the duration of pain decreased between the two cycles (p < 0.001). Systemic symptoms of dysmenorrhea (fatigue, headache, nausea, vomiting, lack of energy, syncope) decreased in the fenugreek seed group (p < 0.05). No side effects were reported in the fenugreek group. Conclusion These data suggest that prescription of fenugreek seed powder during menstruation can reduce the severity of dysmenorrhea. PMID:24695380
Seeded hot dark matter models with inflation
NASA Technical Reports Server (NTRS)
Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.
1993-01-01
We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.
Autonomous Byte Stream Randomizer
NASA Technical Reports Server (NTRS)
Paloulian, George K.; Woo, Simon S.; Chow, Edward T.
2013-01-01
Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.
Subrandom methods for multidimensional nonuniform sampling.
Worley, Bradley
2016-08-01
Methods of nonuniform sampling that utilize pseudorandom number sequences to select points from a weighted Nyquist grid are commonplace in biomolecular NMR studies, due to the beneficial incoherence introduced by pseudorandom sampling. However, these methods require the specification of a non-arbitrary seed number in order to initialize a pseudorandom number generator. Because the performance of pseudorandom sampling schedules can substantially vary based on seed number, this can complicate the task of routine data collection. Approaches such as jittered sampling and stochastic gap sampling are effective at reducing random seed dependence of nonuniform sampling schedules, but still require the specification of a seed number. This work formalizes the use of subrandom number sequences in nonuniform sampling as a means of seed-independent sampling, and compares the performance of three subrandom methods to their pseudorandom counterparts using commonly applied schedule performance metrics. Reconstruction results using experimental datasets are also provided to validate claims made using these performance metrics. Copyright © 2016 Elsevier Inc. All rights reserved.
Sudden spreading of infections in an epidemic model with a finite seed fraction
NASA Astrophysics Data System (ADS)
Hasegawa, Takehisa; Nemoto, Koji
2018-03-01
We study a simple case of the susceptible-weakened-infected-removed model in regular random graphs in a situation where an epidemic starts from a finite fraction of initially infected nodes (seeds). Previous studies have shown that, assuming a single seed, this model exhibits a kind of discontinuous transition at a certain value of infection rate. Performing Monte Carlo simulations and evaluating approximate master equations, we find that the present model has two critical infection rates for the case with a finite seed fraction. At the first critical rate the system shows a percolation transition of clusters composed of removed nodes, and at the second critical rate, which is larger than the first one, a giant cluster suddenly grows and the order parameter jumps even though it has been already rising. Numerical evaluation of the master equations shows that such sudden epidemic spreading does occur if the degree of the underlying network is large and the seed fraction is small.
NASA Astrophysics Data System (ADS)
Jinya, John; Bipasha, Paul S.
2016-05-01
Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in
Pseudo-random tool paths for CNC sub-aperture polishing and other applications.
Dunn, Christina R; Walker, David D
2008-11-10
In this paper we first contrast classical and CNC polishing techniques in regard to the repetitiveness of the machine motions. We then present a pseudo-random tool path for use with CNC sub-aperture polishing techniques and report polishing results from equivalent random and raster tool-paths. The random tool-path used - the unicursal random tool-path - employs a random seed to generate a pattern which never crosses itself. Because of this property, this tool-path is directly compatible with dwell time maps for corrective polishing. The tool-path can be used to polish any continuous area of any boundary shape, including surfaces with interior perforations.
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.
2005-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.
Kim, Joongheon; Kim, Jong-Kook
2016-01-01
This paper addresses the computation procedures for estimating the impact of interference in 60 GHz IEEE 802.11ad uplink access in order to construct visual big-data database from randomly deployed surveillance camera sensing devices. The acquired large-scale massive visual information from surveillance camera devices will be used for organizing big-data database, i.e., this estimation is essential for constructing centralized cloud-enabled surveillance database. This performance estimation study captures interference impacts on the target cloud access points from multiple interference components generated by the 60 GHz wireless transmissions from nearby surveillance camera devices to their associated cloud access points. With this uplink interference scenario, the interference impacts on the main wireless transmission from a target surveillance camera device to its associated target cloud access point with a number of settings are measured and estimated under the consideration of 60 GHz radiation characteristics and antenna radiation pattern models.
Optimization of PbTiO3 Seed Layers for PZT MEMS Actuators
2008-12-01
14. ABSTRACT The material properties of sol-gel lead zirconate titanate ( PZT ) are inherently linked with its crystallinity and texture . The use...will lead to a greater degree of texturing within the PZT thin film. Figure 6. X-ray diffraction data for PT seed solution. (001) oriented...previous studies PZT 45/55 has shown a higher piezoelectric coefficient compared to PZT 52/48 due to the random crystalline texture of the existing
Hassanzadeh Bashtian, Maryam; Emami, Seyed Ahmad; Mousavifar, Nezhat; Esmaily, Habib Allah; Mahmoudi, Mahmoud; Mohammad Poor, Amir Hooshang
2013-01-01
PCOS (Polycystic Ovarian Syndrome) is associated with insulin resistance, obesity and disorders of lipid metabolism as well as infertility. Fenugreek seeds extract is successfully used in lowering blood glucose. Metformin has also the same effect but in a different way. The aim of this study was the assessment of fenugreek effects on insulin resistance in women with PCOS. This was a prospective randomized, double-blind, placebo-controlled trial. The study was conducted at the Montaserieh Hospital in Mashhad University of Medical Sciences, Mashhad, Khorasan Razavi Province, Iran. The patient population included 58 oligo-anovulatory PCOS women with typical ovaries. Women were randomly allocated to receive hydroalcoholic extract of fenugreek seeds in capsules with metformin (n = 30) or placebo capsules with metformin (n = 28) and were assessed before and every 4 weeks within a treatment period of 8 weeks. Menstrual disturbance and metabolic parameters (markers of insulin resistance and hormonal parameters) were measured. Insulin resistance based on HOMA-IR (homeostasis model assessment for insulin resistance) model was not significantly different between two groups. Ultrasound scans were performed before and at the end of 8 weeks treatment with significant decrease in PAO (polycystic appearing ovaries) in group 1 (p = 0/01). Adjuvant therapy to the fenugreek seeds extract (with metformin) in PCOS women improved the sonographic results and menstrual cyclicity. PMID:24250624
Flood induced phenotypic plasticity in amphibious genus Elatine (Elatinaceae).
Molnár V, Attila; Tóth, János Pál; Sramkó, Gábor; Horváth, Orsolya; Popiela, Agnieszka; Mesterházy, Attila; Lukács, Balázs András
2015-01-01
Vegetative characters are widely used in the taxonomy of the amphibious genus Elatine L. However, these usually show great variation not just between species but between their aquatic and terrestrial forms. In the present study we examine the variation of seed and vegetative characters in nine Elatine species (E. brachysperma, E. californica, E. gussonei, E. hexandra, E. hungarica, E. hydropiper, E. macropoda, E. orthosperma and E. triandra) to reveal the extension of plasticity induced by the amphibious environment, and to test character reliability for species identification. Cultivated plant clones were kept under controlled conditions exposed to either aquatic or terrestrial environmental conditions. Six vegetative characters (length of stem, length of internodium, length of lamina, width of lamina, length of petioles, length of pedicel) and four seed characters (curvature, number of pits / lateral row, 1st and 2nd dimension) were measured on 50 fruiting stems of the aquatic and on 50 stems of the terrestrial form of the same clone. MDA, NPMANOVA Random Forest classification and cluster analysis were used to unravel the morphological differences between aquatic and terrestrial forms. The results of MDA cross-validated and Random Forest classification clearly indicated that only seed traits are stable within species (i.e., different forms of the same species keep similar morphology). Consequently, only seed morphology is valuable for taxonomic purposes since vegetative traits are highly influenced by environmental factors.
Flood induced phenotypic plasticity in amphibious genus Elatine (Elatinaceae)
Sramkó, Gábor; Horváth, Orsolya; Popiela, Agnieszka; Mesterházy, Attila; Lukács, Balázs András
2015-01-01
Vegetative characters are widely used in the taxonomy of the amphibious genus Elatine L. However, these usually show great variation not just between species but between their aquatic and terrestrial forms. In the present study we examine the variation of seed and vegetative characters in nine Elatine species (E. brachysperma, E. californica, E. gussonei, E. hexandra, E. hungarica, E. hydropiper, E. macropoda, E. orthosperma and E. triandra) to reveal the extension of plasticity induced by the amphibious environment, and to test character reliability for species identification. Cultivated plant clones were kept under controlled conditions exposed to either aquatic or terrestrial environmental conditions. Six vegetative characters (length of stem, length of internodium, length of lamina, width of lamina, length of petioles, length of pedicel) and four seed characters (curvature, number of pits / lateral row, 1st and 2nd dimension) were measured on 50 fruiting stems of the aquatic and on 50 stems of the terrestrial form of the same clone. MDA, NPMANOVA Random Forest classification and cluster analysis were used to unravel the morphological differences between aquatic and terrestrial forms. The results of MDA cross-validated and Random Forest classification clearly indicated that only seed traits are stable within species (i.e., different forms of the same species keep similar morphology). Consequently, only seed morphology is valuable for taxonomic purposes since vegetative traits are highly influenced by environmental factors. PMID:26713235
Read clouds uncover variation in complex regions of the human genome
Bishara, Alex; Liu, Yuling; Weng, Ziming; Kashef-Haghighi, Dorna; Newburger, Daniel E.; West, Robert; Sidow, Arend; Batzoglou, Serafim
2015-01-01
Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies. PMID:26286554
SUPERNOVA DRIVING. II. COMPRESSIVE RATIO IN MOLECULAR-CLOUD TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Liubin; Padoan, Paolo; Haugbølle, Troels
2016-07-01
The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of themore » compressive ratio, with a mean value ≈0.3, lower than the equilibrium value of ≈0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density probability density function is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.« less
Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development
Liu, Na; Zhang, Guwen; Xu, Shengchun; Mao, Weihua; Hu, Qizan; Gong, Yaming
2015-01-01
Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch) and grain pea (high seed starch and low soluble sugar) revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding. PMID:26635856
Security of practical private randomness generation
NASA Astrophysics Data System (ADS)
Pironio, Stefano; Massar, Serge
2013-01-01
Measurements on entangled quantum systems necessarily yield outcomes that are intrinsically unpredictable if they violate a Bell inequality. This property can be used to generate certified randomness in a device-independent way, i.e., without making detailed assumptions about the internal working of the quantum devices used to generate the random numbers. Furthermore these numbers are also private; i.e., they appear random not only to the user but also to any adversary that might possess a perfect description of the devices. Since this process requires a small initial random seed to sample the behavior of the quantum devices and to extract uniform randomness from the raw outputs of the devices, one usually speaks of device-independent randomness expansion. The purpose of this paper is twofold. First, we point out that in most real, practical situations, where the concept of device independence is used as a protection against unintentional flaws or failures of the quantum apparatuses, it is sufficient to show that the generated string is random with respect to an adversary that holds only classical side information; i.e., proving randomness against quantum side information is not necessary. Furthermore, the initial random seed does not need to be private with respect to the adversary, provided that it is generated in a way that is independent from the measured systems. The devices, however, will generate cryptographically secure randomness that cannot be predicted by the adversary, and thus one can, given access to free public randomness, talk about private randomness generation. The theoretical tools to quantify the generated randomness according to these criteria were already introduced in S. Pironio [Nature (London)NATUAS0028-083610.1038/nature09008 464, 1021 (2010)], but the final results were improperly formulated. The second aim of this paper is to correct this inaccurate formulation and therefore lay out a precise theoretical framework for practical device-independent randomness generation.
Simulating the inception of pulsed discharges near positive electrodes
NASA Astrophysics Data System (ADS)
Teunissen, Jannis; Ebert, Ute
2013-09-01
With 3D particle simulations we study the inception of pulsed discharges near positive electrodes. In different geometries, we first determine the breakdown voltage. Then we study the probability of inception for a fast voltage pulse. This probability mostly depends on the availability of seed electrons to generate the initial electron avalanches. These results are compared with experimental observations. Then we investigate how the shape of a starting discharge affects its further development. In particular, we discuss the formation of so-called ``inception clouds.'' JT was supported by STW-project 10755.
Validation of Nimbus-7 temperature-humidity infrared radiometer estimates of cloud type and amount
NASA Technical Reports Server (NTRS)
Stowe, L. L.
1982-01-01
Estimates of clear and low, middle and high cloud amount in fixed geographical regions approximately (160 km) squared are being made routinely from 11.5 micron radiance measurements of the Nimbus-7 Temperature-Humidity Infrared Radiometer (THIR). The purpose of validation is to determine the accuracy of the THIR cloud estimates. Validation requires that a comparison be made between the THIR estimates of cloudiness and the 'true' cloudiness. The validation results reported in this paper use human analysis of concurrent but independent satellite images with surface meteorological and radiosonde observations to approximate the 'true' cloudiness. Regression and error analyses are used to estimate the systematic and random errors of THIR derived clear amount.
NASA Technical Reports Server (NTRS)
Marshall, J.; Sauke, T.
1999-01-01
Electrostatic forces strongly influence the behavior of granular materials in both dispersed (cloud) systems and semi-packed systems. These forces can cause aggregation or dispersion of particles and are important in a variety of astrophysical and planetary settings. There are also many industrial and commercial settings where granular matter and electrostatics become partners for both good and bad. This partnership is important for human exploration on Mars where dust adheres to suits, machines, and habitats. Long-range Coulombic (electrostatic) forces, as opposed to contact-induced dipoles and van der Waals attractions, are generally regarded as resulting from net charge. We have proposed that in addition to net charge interactions, randomly distributed charge carriers on grains will result in a dipole moment regardless of any net charge. If grains are unconfined, or fluidized, they will rotate so that the dipole always induces attraction between grains. Aggregates are readily formed, and Coulombic polarity resulting from the dipole produces end-to-end stacking of grains to form filamentary aggregates. This has been demonstrated in USML experiments on Space Shuttle where microgravity facilitated the unmasking of static forces. It has also been demonstrated in a computer model using grains with charge carriers of both sign. Model results very closely resembled micro-g results with actual sand grains. Further computer modeling of the aggregation process has been conducted to improve our understanding of the aggregation process, and to provide a predictive tool for microgravity experiments slated for Space Station. These experiments will attempt to prove the dipole concept as outlined above. We have considerably enhanced the original computer model: refinements to the algorithm have improved the fidelity of grain behavior during grain contact, special attention has been paid to simulation time steps to enable establishment of a meaningful, quantitative time axis, and calibration of rounding accuracies have been conducted to test cumulative numerical influences in the model. The model has been run for larger grain populations, variable initial cloud densities, and we have introduced random net charging to individual grains, as well as a net charge to the cloud as a whole. The model uses 3 positive and 3 negative charges randomly distributed on each grain, with up to 160 grains contained within various size "boxes" that define the initial number densities in the clouds. Each charge represents localized charged region on a grain, but does not necessarily imply single quantized charge carriers. The Coulomb equations are then allowed to interact for each monopole: dipoles and any higher order charge coupling is a natural product of these "free" interactions over which the modeler exerts no influence. The charges are placed on surfaces of grains at random locations. A series of runs was conducted for neutral grains that had a perfect balance of negative and positive char carriers. Runs were also conducted with grains having additional fractional charges ranging between 0 and 1. By adding fractional charges of one sign, the model created grain populations in which all grains had excess charges the same sign, giving the cloud an overall net charge. This simulates clouds subjected to ionizing radiation (e. protoplanetary debris disk around a protosun), or any other process of charge biasing in a grain population (e.g., volcanic plumes). In another run series, random fractional charges of either sign were added to the grains so th some grains had a slight net positive charge while others had a slight net negative charge. This simulates triboelectrically-charged grain populations in which acquisition of an electron by one surface is at the expense creating a hole elsewhere. This dual sign charging was applied in two ways: in one case the cloud remained neutral by ensuring that all grain excess charges added to zero; in the other case, the cloud was permitted slight net char by not imposing a charge-balance condition. Additional information is contained in the original.
NASA Astrophysics Data System (ADS)
Pauly, Tyler Andrew
2017-06-01
Computational models of interstellar gas-grain chemistry have aided in our understanding of star-forming regions. Chemical kinetics models rely on a network of chemical reactions and a set of physical conditions in which atomic and molecular species are allowed to form and react. We replace the canonical single grain-size in our chemical model MAGICKAL with a grain size distribution and analyze the effects on the chemical composition of the gas and grain surface in quiescent and collapsing dark cloud models. We find that a grain size distribution coupled with a temperature distribution across grain sizes can significantly affect the bulk ice composition when dust temperatures fall near critical values related to the surface binding energies of common interstellar chemical species. We then apply the updated model to a study of ice formation in the cold envelopes surrounding massive young stellar objects in the Magellanic Clouds. The Magellanic Clouds are local satellite galaxies of the Milky Way, and they provide nearby environments to study star formation at low metallicity. We expand the model calculation of dust temperature to include a treatment for increased interstellar radiation field intensity; we vary the radiation field to model the elevated dust temperatures observed in the Magellanic Clouds. We also adjust the initial elemental abundances used in the model, guided by observations of Magellanic Cloud HII regions. We are able to reproduce the relative ice fractions observed, indicating that metal depletion and elevated grain temperature are important drivers of the envelope ice composition. The observed shortfall in CO in Small Magellanic Cloud sources can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH 3OH abundance is found to be enhanced (relative to total carbon abundance) in low-metallicity models, providing seed material for complex organic molecule formation. We conclude with a preliminary study of the recently discovered hot core in the Large Magellanic Cloud; we create a grid of models to simulate hot core formation in Magellanic Cloud environments, comparing them to models and observations of well-characterized galactic counterparts.
Soil seed bank in different habitats of the Eastern Desert of Egypt.
Gomaa, Nasr H
2012-04-01
The floristic composition and species diversity of the germinable soil seed bank were studied in three different habitats (desert salinized land, desert wadi, and reclaimed land) in the Eastern Desert of Egypt. Moreover, the degree of similarity between the seed bank and the above-ground vegetation was determined. The seed bank was studied in 40 stands representing the three habitats. Ten soil samples (each 25 × 20 cm and 5 cm depth) were randomly taken per stand. The seed bank was investigated by the seedling emergence method. Some 61 species belonging to 21 families and 54 genera were identified in the germinable seed bank. The recorded species include 43 annuals and 18 perennials. Ordination of stands by Detrended Correspondence Analysis (DCA) indicates that the stands of the three habitats are markedly distinguishable and show a clear pattern of segregation on the ordination planes. This indicates variations in the species composition among habitats. The results also demonstrate significant associations between the floristic composition of the seed bank and edaphic factors such as CaCO3, electrical conductivity, organic carbon and soil texture. The reclaimed land has the highest values of species richness, Shannon-index of diversity and the density of the germinable seed bank followed by the habitats of desert wadi and desert salinized land. Motyka's similarity index between the seed bank and the above-ground vegetation is significantly higher in reclaimed land (75.1%) compared to desert wadi (38.4%) and desert salinized land (36.5%).
Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).
Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R
2016-03-01
Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).
Ornelas, Juan Francisco; Rodríguez-Gómez, Flor
2015-01-01
Phylogeographical work on cloud forest-adapted species provides inconsistent evidence on cloud forest dynamics during glacial cycles. A study of Rhipsalis baccifera (Cactaceae), a bird-dispersed epiphytic mistletoe cactus, was conducted to investigate genetic variation at sequence data from nuclear [internal transcribed spacer (ITS), 677 bp] and chloroplast (rpl32-trnL, 1092bp) DNA for 154 individuals across the species range in Mesoamerica to determine if such patterns are consistent with the expansion/contraction model of cloud forest during glacial cycles. We conducted population and spatial genetic analyses as well as gene flow and divergence time estimates between 24 populations comprising the distribution of R. baccifera in Mexico and Guatemala to gain insight of the evolutionary history of these populations, and a complementary species distribution modeling approach to frame information derived from the genetic analyses into an explicit paleoecological context. The results revealed a phylogeographical break at the Isthmus of Tehuantepec, and high levels of genetic diversity among populations and cloud forest areas. Despite the genetic differentiation of some R. baccifera populations, the widespread ITS ribotypes suggest effective nuclear gene flow via pollen and population differentiation shown by the rpl32-trnL suggests more restricted seed flow. Predictions of species distribution models under past last glacial maximum (LGM) climatic conditions and a significant signal of demographic expansion suggest that R. baccifera populations experienced a range expansion tracking the conditions of the cloud forest distribution and shifted to the lowlands with population connectivity during the LGM. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.;
2006-01-01
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%-15% at 5 mm day.1, with proportionate reductions in latent heating sampling errors.
Development and efficacy assessments of tea seed oil makeup remover.
Parnsamut, N; Kanlayavattanakul, M; Lourith, N
2017-05-01
The efficacy of tea seed oil to clean foundation and eyeliner was evaluated. The safe and efficient tea seed oil makeup remover was developed. In vitro cleansing efficacy of makeup remover was UV-spectrophotometric validated. The stability evaluation by means of accelerated stability test was conducted. In vitro and in vivo cleansing efficacy of the removers was conducted in a comparison with benchmark majorly containing olive oil. Tea seed oil cleaned 90.64±4.56% of foundation and 87.62±8.35% of eyeliner. The stable with most appropriate textures base was incorporated with tea seed oil. Three tea seed oil removers (50, 55 and 60%) were stabled. The 60% tea seed oil remover significantly removed foundation better than others (94.48±3.37%; P<0.001) and the benchmark (92.32±1.33%), but insignificant removed eyeliner (87.50±5.15%; P=0.059). Tea seed oil remover caused none of skin irritation as examined in 20 human volunteers. A single-blind, randomized control exhibited that the tea seed oil remover gained a better preference over the benchmark (75.42±8.10 and 70.00±7.78%; P=0.974). The safe and efficient tea seed oil makeup removers had been developed. The consumers' choices towards the makeup remover containing the bio-oils are widen. In vitro cleansing efficacy during the course of makeup remover development using UV-spectrophotometric method feasible for pharmaceutic industries is encouraged. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
Frequency Analysis of the Laser Biospeckle
NASA Astrophysics Data System (ADS)
Enes, Adilson M.; Rabelo, Giovanni F.; Júnior, Roberto A. Braga; Dal Fabbro, Inácio M.; Vilela, Michelle
2008-04-01
This research work presents a study of beans seed tissue (Phaseolous vulgaris, L.) optical interactions with laser aiming to contribute to the development of biospeckle techniques applied to the recognition of bean seed tissue vitality when contaminated with fungi, by differentiating the generated frequency spectra. Biospeckle is an interference optic phenomenon occurring when a laser beam reaches a surface exhibiting some dynamic process, due to biological activities or purely physical changes. The technique involves image processing to distinguish each different active material contribution present in the seed, by means of the procedure known as "Moment of Inertia" and frequency analysis. Frequency analysis was carried by Fourier Transform preceded by module of convolution. A great challenge in this area is to identify the elements contribution to increase biospeckle activity, such as water, microorganisms, among others. This research work is recognized to provide an important step aiming to characterize the interaction of laser with biological material. Three groups of bean seeds were employed, one represented by healthy seeds and two groups composed of seeds contaminated with Aspergillus spp as well as with Fusarium spp fungi. The biospeckle analysis considered the activity and its frequency spectra. The seeds were each one exposed to laser in a random order. The results reveled differences in the average values of MI of the three seed groups. Also, some different harmonics in the biospeckle pattern in a same group as well as among seed groups had been noticed. These results allow confirming that it is possible to differentiate contaminated seeds from non-contaminated ones by means of biospeckle frequency analysis.
Tucker, L A
2017-01-01
Consumption of nuts and seeds is associated favorably with all-cause mortality. Nuts and seeds could reduce disease and prolong life by influencing telomeres. Telomere length is a good indicator of the senescence of cells. The purpose of the present study was to determine the relationship between nuts and seeds intake and leukocyte telomere length, a biomarker of biologic aging. Cross-sectional. A total of 5,582 randomly selected men and women from the National Health and Nutrition Examination Survey (NHANES), 1999-2002, were studied. DNA was obtained via blood samples. Telomere length was assessed using the quantitative polymerase chain reaction method. A validated, multi-pass, 24-h recall dietary assessment, administered by NHANES, was employed to quantify consumption of nuts and seeds. Nuts and seeds intake was positively and linearly associated with telomere length. For each 1-percent of total energy derived from nuts and seeds, telomere length was 5 base pairs longer (F=8.6, P=0.0065). Given the age-related rate of telomere shortening was 15.4 base pairs per year (F=581.1, P<0.0001), adults of the same age had more than 1.5 years of reduced cell aging if they consumed 5% of their total energy from nuts and seeds. Consumption of nuts and seeds accounts for meaningful decreases in biologic aging and cell senescence. The findings reinforce the recommendations of the 2015-2020 Dietary Guidelines for Americans, which encourage the consumption of nuts and seeds as part of a healthy diet.
Life history trade-off moderates model predictions of diversity loss from climate change
2017-01-01
Climate change can trigger species range shifts, local extinctions and changes in diversity. Species interactions and dispersal capacity are important mediators of community responses to climate change. The interaction between multispecies competition and variation in dispersal capacity has recently been shown to exacerbate the effects of climate change on diversity and to increase predictions of extinction risk dramatically. Dispersal capacity, however, is part of a species’ overall ecological strategy and are likely to trade off with other aspects of its life history that influence population growth and persistence. In plants, a well-known example is the trade-off between seed mass and seed number. The presence of such a trade-off might buffer the diversity loss predicted by models with random but neutral (i.e. not impacting fitness otherwise) differences in dispersal capacity. Using a trait-based metacommunity model along a warming climatic gradient the effect of three different dispersal scenarios on model predictions of diversity change were compared. Adding random variation in species dispersal capacity caused extinctions by the introduction of strong fitness differences due an inherent property of the dispersal kernel. Simulations including a fitness-equalising trade-off based on empirical relationships between seed mass (here affecting dispersal distance, establishment probability, and seedling biomass) and seed number (fecundity) maintained higher initial species diversity and predicted lower extinction risk and diversity loss during climate change than simulations with variable dispersal capacity. Large seeded species persisted during climate change, but developed lags behind their climate niche that may cause extinction debts. Small seeded species were more extinction-prone during climate change but tracked their niches through dispersal and colonisation, despite competitive resistance from residents. Life history trade-offs involved in coexistence mechanisms may increase community resilience to future climate change and are useful guides for model development. PMID:28520770
Average value of the shape and direction factor in the equation of refractive index
NASA Astrophysics Data System (ADS)
Zhang, Tao
2017-10-01
The theoretical calculation of the refractive indices is of great significance for the developments of new optical materials. The calculation method of refractive index, which was deduced from the electron-cloud-conductor model, contains the shape and direction factor 〈g〉. 〈g〉 affects the electromagnetic-induction energy absorbed by the electron clouds, thereby influencing the refractive indices. It is not yet known how to calculate 〈g〉 value of non-spherical electron clouds. In this paper, 〈g〉 value is derived by imaginatively dividing the electron cloud into numerous little volume elements and then regrouping them. This paper proves that 〈g〉 = 2/3 when molecules’ spatial orientations distribute randomly. The calculations of the refractive indices of several substances validate this equation. This result will help to promote the application of the calculation method of refractive index.
[Effect of compound gardenia oil and jujube seed oil on learning and memory in ovariectomized rats].
Chen, Ya-Hui; Lan, Zhong-Ping; Fu, Zhao-Ying; Li, Bao-Li; Zhang, Zheng-Xiang
2013-09-01
To observe the effect of compound of gardenia oil and jujube seed oil learning and memory in ovariectomized rats and its mechanism. Animals were randomly divided into six groups: sham group, model group, estrogen group, low dose group, middle dose group and high dose group. The ovariectomized rat models were established by resection of the lateral ovaries. The effect of compound of gardenia oil and jujube seed oil on learning and memory in ovariectomized rats was observed by means of Morris water maze. Acetylcholinesterase (AchE) and nitric oxide synthase (NOS) activities in rat brain were determined. The compound of gardenia oil and jujube seed oil could shorten the incubation period of appearance in castration rats and increase the number passing through Yuan Ping table in ovariectomized rats. As the training time extended, the incubation period of appearance was gradually shortened. The compound of gardenia oil and jujube seed oil could increase NOS activity, and decrease AChE activity in brain of ovariectomized rats. The compound of jujube seed oil and gardenia oil could promote the learning and memory in ovariectomized rats. This effect may be related with the increase in activities of NOS, AchE in rat brain.
Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.)
2014-01-01
Background The aim of this study was to evaluate the effect of nano silver and silver nitrate on yield of seed in basil plant. The study was carried out in a randomized block design with three replications. Results Four levels of either silver nitrate (0, 100, 200 and 300 ppm) or nano silver (0, 20, 40, and 60 ppm) were sprayed on basil plant at seed growth stage. The results showed that there was no significant difference between 100 ppm of silver nitrate and 60 ppm concentration of nano silver on the shoot silver concentration. However, increasing the concentration of silver nitrate from 100 to 300 ppm caused a decrease in seed yield. In contrast, a raise in the concentration of nano silver from 20 to 60 ppm has led to an improvement in the seed yield. Additionally, the lowest amount of seed yield was found with control plants. Conclusions Finally, with increasing level of silver nitrate, the polyphenol compound content was raised but the enhancing level of nano silver resulting in the reduction of these components. In conclusion, nano silver can be used instead of other compounds of silver. PMID:25383311
NASA Astrophysics Data System (ADS)
Saavedra, Francisco; Hensen, Isabell; Apaza Quevedo, Amira; Neuschulz, Eike Lena; Schleuning, Matthias
2017-11-01
Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.
Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei
2017-01-01
Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations. PMID:29057838
NASA Astrophysics Data System (ADS)
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.
2017-09-01
We have used the AMR hydrodynamic code, mg, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechanical energy input from 15, 40, 60 and 120 M⊙ stars into a 100 pc diameter 16 500 M⊙ cloud with a roughly spherical morphology with randomly distributed high-density condensations. The stellar winds are introduced using appropriate non-rotating Geneva stellar evolution models. In the 15 M⊙ star case, the wind has very little effect, spreading around a few neighbouring clumps before becoming overwhelmed by the cloud collapse. In contrast, in the 40, 60 and 120 M⊙ star cases, the more powerful stellar winds create large cavities and carve channels through the cloud, breaking out into the surrounding tenuous medium during the wind phase and considerably altering the cloud structure. After 4.97, 3.97 and 3.01 Myr, respectively, the massive stars explode as supernovae (SNe). The wind-sculpted surroundings considerably affect the evolution of these SN events as they both escape the cloud along wind-carved channels and sweep up remaining clumps of cloud/wind material. The 'cloud' as a coherent structure does not survive the SN from any of these stars, but only in the 120 M⊙ case is the cold molecular material completely destabilized and returned to the unstable thermal phase. In the 40 and 60 M⊙ cases, coherent clumps of cold material are ejected from the cloud by the SN, potentially capable of further star formation.
NASA Technical Reports Server (NTRS)
Belle, Jessica H.; Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang
2017-01-01
Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, approximately 70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.
Belle, Jessica H; Chang, Howard H; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang
2017-10-18
Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM 2.5 ) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM 2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM 2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM 2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM 2.5 concentrations.
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle
2011-01-01
It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.
Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets
NASA Astrophysics Data System (ADS)
Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane
2017-12-01
Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff < 2700 K and has a significant effect on the structure and the spectrum of the atmosphere for Teff < 2400 K. We have compared the synthetic spectra of our models with observed spectra and found that they fit the spectra of mid- to late-type M-dwarfs and early-type L-dwarfs well. The geometrical extension of the atmospheres (at τ = 1) changes with wavelength resulting in a flux variation of 10%. This translates into a change in geometrical extension of the atmosphere of about 50 km, which is the quantitative basis for exoplanetary transit spectroscopy. We also test DRIFT-MARCS for an example exoplanet and demonstrate that our simulations reproduce the Spitzer observations for WASP-19b rather well for Teff = 2600 K, log (g) = 3.2 and solar abundances. Our model points at an exoplanet with a deep cloud-free atmosphere with a substantial day-night energy transport and no temperature inversion.
Lin, Yuh-Feng; Sheng, Li-Huei; Wu, Mei-Yi; Zheng, Cai-Mei; Chang, Tian-Jong; Li, Yu-Chuan; Huang, Yu-Hui; Lu, Hsi-Peng
2014-12-01
No evidence exists from randomized trials to support using cloud-based manometers integrated with available physician order entry systems for tracking patient blood pressure (BP) to assist in the control of renal function deterioration. We investigated how integrating cloud-based manometers with physician order entry systems benefits our outpatient chronic kidney disease patients compared with typical BP tracking systems. We randomly assigned 36 chronic kidney disease patients to use cloud-based manometers integrated with physician order entry systems or typical BP recording sheets, and followed the patients for 6 months. The composite outcome was that the patients saw improvement both in BP and renal function. We compared the systolic and diastolic BP (SBP and DBP), and renal function of our patients at 0 months, 3 months, and 6 months after using the integrated manometers and typical BP monitoring sheets. Nighttime SBP and DBP were significantly lower in the study group compared with the control group. Serum creatinine level in the study group improved significantly compared with the control group after the end of Month 6 (2.83 ± 2.0 vs. 4.38 ± 3.0, p = 0.018). Proteinuria improved nonsignificantly in Month 6 in the study group compared with the control group (1.05 ± 0.9 vs. 1.90 ± 1.3, p = 0.09). Both SBP and DBP during the nighttime hours improved significantly in the study group compared with the baseline. In pre-end-stage renal disease patients, regularly monitoring BP by integrating cloud-based manometers appears to result in a significant decrease in creatinine and improvement in nighttime BP control. Estimated glomerular filtration rate and proteinuria were found to be improved nonsignificantly, and thus, larger population and longer follow-up studies may be needed.
Cost-effective cloud computing: a case study using the comparative genomics tool, roundup.
Kudtarkar, Parul; Deluca, Todd F; Fusaro, Vincent A; Tonellato, Peter J; Wall, Dennis P
2010-12-22
Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource-Roundup-using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon's Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon's computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chenyu; Chen, Dennis P.; Unocic, Raymond R.
The high performance of Pd-based intermetallic nanocatalysts has the potential to replace Pt-containing catalysts for fuel-cell reactions. Conventionally, intermetallic particles are obtained through the annealing of nanoparticles of a random alloy distribution. However, this method inevitably leads to sintering of the nanoparticles and generates polydisperse samples. Here, monodisperse PdCu nanoparticles with the ordered B2 phase were synthesized by seed-mediated co-reduction using PdCu nanoparticle seeds with a random alloy distribution (A1 phase). A time-evolution study suggests that the particles must overcome a size-dependent activation barrier for the ordering process to occur. Characterization of the as-prepared PdCu B2 nanoparticles by electron microscopymore » techniques revealed surface segregation of Pd as a thin shell over the PdCu core. The ordered nanoparticles exhibit superior activity and durability for the oxygen reduction reaction in comparison with PdCu A1 nanoparticles. This seed-mediated co-reduction strategy produced monodisperse nanoparticles ideally suited for structure–activity studies. Furthermore, the study of their growth mechanism provides insights into the size dependence of disorder–order transformations of bimetallic alloys at the nanoscale, which should enable the design of synthetic strategies toward other intermetallic systems.« less
NASA Astrophysics Data System (ADS)
Flynn, Michael S.; Griffiths, John F.
1980-12-01
An analysis of the possible differences among various rainfall parameters during drought and nondrought periods was undertaken for 12 Texas stations. The division of monthly rainfall amounts into quintiles served as the rainfall classification. Rainfall amounts, number of rains and rainfall intensities were calculated for each quintile for four thresholds of rainfall 0.0254, 0.2540, 0.5080 and 1.2700 cm. The thresholds were applied on a daily and hourly basis. At low rainfall thresholds in nearly every case, numbers of rains in very dry periods proved to be <100% of normal.The possible differences in persistence of rainfall during Very Dry and Very Wet periods were examined by calculating runs of rains of 0.0254 cm or more per hour. Medians of runs of rain hours in Very Dry periods were found to be less than those in Very Wet periods except at Corpus Christi in April and at Waco in February. Probabilities that a run of rain hours would extend to a given length were determined. During Very Dry periods a probability >0.5 that a rain will extend into a second hour during a month of key importance to agriculture (June, July and August) occurs only at Amarillo, Lovelady, Port Arthur and Waco. The probability that a rain will extend into a third hour is never above 0.5 during the key months in Very Dry periods for any of the stations studied.The implications of these findings are discussed in relation to feasibility of cloud seeding and to irrigation management during severe drought.
Pseudo-random bit generator based on lag time series
NASA Astrophysics Data System (ADS)
García-Martínez, M.; Campos-Cantón, E.
2014-12-01
In this paper, we present a pseudo-random bit generator (PRBG) based on two lag time series of the logistic map using positive and negative values in the bifurcation parameter. In order to hidden the map used to build the pseudo-random series we have used a delay in the generation of time series. These new series when they are mapped xn against xn+1 present a cloud of points unrelated to the logistic map. Finally, the pseudo-random sequences have been tested with the suite of NIST giving satisfactory results for use in stream ciphers.
Functional Redundancy and Complementarities of Seed Dispersal by the Last Neotropical Megafrugivores
Bueno, Rafael S.; Guevara, Roger; Ribeiro, Milton C.; Culot, Laurence; Bufalo, Felipe S.; Galetti, Mauro
2013-01-01
Background Functional redundancy has been debated largely in ecology and conservation, yet we lack detailed empirical studies on the roles of functionally similar species in ecosystem function. Large bodied frugivores may disperse similar plant species and have strong impact on plant recruitment in tropical forests. The two largest frugivores in the neotropics, tapirs (Tapirus terrestris) and muriquis (Brachyteles arachnoides) are potential candidates for functional redundancy on seed dispersal effectiveness. Here we provide a comparison of the quantitative, qualitative and spatial effects on seed dispersal by these megafrugivores in a continuous Brazilian Atlantic forest. Methodology/Principal Findings We found a low overlap of plant species dispersed by both muriquis and tapirs. A group of 35 muriquis occupied an area of 850 ha and dispersed 5 times more plant species, and 13 times more seeds than 22 tapirs living in the same area. Muriquis dispersed 2.4 times more seeds in any random position than tapirs. This can be explained mainly because seed deposition by muriquis leaves less empty space than tapirs. However, tapirs are able to disperse larger seeds than muriquis and move them into sites not reached by primates, such as large forest gaps, open areas and fragments nearby. Based on published information we found 302 plant species that are dispersed by at least one of these megafrugivores in the Brazilian Atlantic forest. Conclusions/Significance Our study showed that both megafrugivores play complementary rather than redundant roles as seed dispersers. Although tapirs disperse fewer seeds and species than muriquis, they disperse larger-seeded species and in places not used by primates. The selective extinction of these megafrugivores will change the spatial seed rain they generate and may have negative effects on the recruitment of several plant species, particularly those with large seeds that have muriquis and tapirs as the last living seed dispersers. PMID:23409161
Covariance analyses of satellite-derived mesoscale wind fields
NASA Technical Reports Server (NTRS)
Maddox, R. A.; Vonder Haar, T. H.
1979-01-01
Statistical structure functions have been computed independently for nine satellite-derived mesoscale wind fields that were obtained on two different days. Small cumulus clouds were tracked at 5 min intervals, but since these clouds occurred primarily in the warm sectors of midlatitude cyclones the results cannot be considered representative of the circulations within cyclones in general. The field structure varied considerably with time and was especially affected if mesoscale features were observed. The wind fields on the 2 days studied were highly anisotropic with large gradients in structure occurring approximately normal to the mean flow. Structure function calculations for the combined set of satellite winds were used to estimate random error present in the fields. It is concluded for these data that the random error in vector winds derived from cumulus cloud tracking using high-frequency satellite data is less than 1.75 m/s. Spatial correlation functions were also computed for the nine data sets. Normalized correlation functions were considerably different for u and v components and decreased rapidly as data point separation increased for both components. The correlation functions for transverse and longitudinal components decreased less rapidly as data point separation increased.
Beckman, Noelle G; Dybzinski, Ray; Tilman, G David
2014-02-01
Numerous observational studies have documented conspecific negative density-dependence that is consistent with the Janzen-Connell Hypothesis (JCH) of diversity maintenance. However, there have been few experimental tests of a central prediction of the JCH: that removing host-specific enemies should lead to greater increases in per capita recruitment in areas of higher host density or lower relative phylogenetic diversity. Using spatially randomized plots of high and low host biomass in a temperate grassland biodiversity experiment, we treated developing seedheads of six prairie perennials to factorial applications of fungicide and insecticide. We measured predispersal seed production, seed viability, and seedling biomass. Results were highly species-specific and idiosyncratic. Effects of insect seed predators and fungal pathogens on predispersal responses varied with neither conspecific biomass nor phylogenetic diversity, suggesting that-at least at the predispersal stage and for the insect and fungal seed predators we were able to exclude-the JCH is not sufficient to contribute to negative conspecific density-dependence for these dominant prairie species.
Gholami, Mohammad Amin; Forouzmand, Masihollah; Khajavi, Mokhtar; Hossienifar, Shima; Naghiha, Reza
2018-01-01
The purpose of this study was to investigate the effect of different corn processing methods on rumen microbial flora, histomorphometry and fermentation in fattening male lambs. Twenty male lambs (average age and weight of 90 days and 25.00 ± 1.10 kg, respectively) were used in a completely randomized design including four treatments and five replicates each over 80 days long period: 1) Lambs fed ground corn seeds; 2) Lambs fed steam-rolled corn; 3) Lambs fed soaked corn seeds (24 hr) and 4) Lambs fed soaked corn seeds (48 hr). At the end of the experiment, three lambs of each treatment were slaughtered and samples were collected for pH, volatile fatty acids, amylolytic, proteolytic, cellulytic and heterophilic bacteria and protozoa assessment. The number of proteolytic bacteria in soaked corn seeds was significantly increased in comparison with other treatments. The thickness of wall, papillae and muscular layers of rumen in the soaked corn seeds treatment was significantly increased. Overall, from a practical point of view, soaked corn processing could be generally used in lambs fattening system. PMID:29719663
Exponential gain of randomness certified by quantum contextuality
NASA Astrophysics Data System (ADS)
Um, Mark; Zhang, Junhua; Wang, Ye; Wang, Pengfei; Kim, Kihwan
2017-04-01
We demonstrate the protocol of exponential gain of randomness certified by quantum contextuality in a trapped ion system. The genuine randomness can be produced by quantum principle and certified by quantum inequalities. Recently, randomness expansion protocols based on inequality of Bell-text and Kochen-Specker (KS) theorem, have been demonstrated. These schemes have been theoretically innovated to exponentially expand the randomness and amplify the randomness from weak initial random seed. Here, we report the experimental evidence of such exponential expansion of randomness. In the experiment, we use three states of a 138Ba + ion between a ground state and two quadrupole states. In the 138Ba + ion system, we do not have detection loophole and we apply a methods to rule out certain hidden variable models that obey a kind of extended noncontextuality.
NASA Astrophysics Data System (ADS)
Jha, Vandana
In this study we examine the cumulative effect of dust acting as cloud nucleating aerosol (cloud condensation nuclei (CCN), giant cloud condensation nuclei (GCCN), and ice nuclei (IN)) along with anthropogenic aerosol pollution acting primarily as CCN, over the entire Colorado Rocky Mountains from the months of October to April in the year 2004-2005; the snow year. This ˜6.5 months analysis provides a range of snowfall totals and variability in dust and anthropogenic aerosol pollution. The specific objectives of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains using the Regional Atmospheric Modeling System (RAMS). In general, dust enhances precipitation primarily by acting as IN, while aerosol pollution reduces water resources in the CRB via the so-called "spill-over" effect, by enhancing cloud droplet concentrations and reducing riming rates. Dust is more episodic and aerosol pollution is more pervasive throughout the winter season. Combined response to dust and aerosol pollution is a net reduction of water resources in the CRB. The question is by how much are those water resources affected? Our best estimate is that total winter-season precipitation loss for for the CRB the 2004-2005 winter season due to the combined influence of aerosol pollution and dust is 5,380,00 acre-feet of water. Sensitivity studies for different cases have also been run for the specific cases in 2004-2005 winter season to analyze the impact of changing dust and aerosol ratios on precipitation in the Colorado River Basin. The dust is varied from 3 to 10 times in the experiments and the response is found to be non monotonic and depends on various environmental factors. The sensitivity studies show that adding dust in a wet system increases precipitation when IN affects are dominant. For a relatively dry system high concentrations of dust can result in over-seeding the clouds and reductions in precipitation. However, when adding dust to a system with warmer cloud bases, the response is non-monotonical, and when CCN affects are dominant, reductions in precipitation are found.
NASA Astrophysics Data System (ADS)
Basri, M.; Mawengkang, H.; Zamzami, E. M.
2018-03-01
Limitations of storage sources is one option to switch to cloud storage. Confidentiality and security of data stored on the cloud is very important. To keep up the confidentiality and security of such data can be done one of them by using cryptography techniques. Data Encryption Standard (DES) is one of the block cipher algorithms used as standard symmetric encryption algorithm. This DES will produce 8 blocks of ciphers combined into one ciphertext, but the ciphertext are weak against brute force attacks. Therefore, the last 8 block cipher will be converted into 8 random images using Least Significant Bit (LSB) algorithm which later draws the result of cipher of DES algorithm to be merged into one.
De Haan, David O; Tapavicza, Enrico; Riva, Matthieu; Cui, Tianqu; Surratt, Jason D; Smith, Adam C; Jordan, Mary-Caitlin; Nilakantan, Shiva; Almodovar, Marisol; Stewart, Tiffany N; de Loera, Alexia; De Haan, Audrey C; Cazaunau, Mathieu; Gratien, Aline; Pangui, Edouard; Doussin, Jean-François
2018-04-03
Aqueous methylglyoxal chemistry has often been implicated as an important source of oligomers in atmospheric aerosol. Here we report on chemical analysis of brown carbon aerosol particles collected from cloud cycling/photolysis chamber experiments, where gaseous methylglyoxal and methylamine interacted with glycine, ammonium, or methylammonium sulfate seed particles. Eighteen N-containing oligomers were identified in the particulate phase by liquid chromatography/diode array detection/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry. Chemical formulas were determined and, for 6 major oligomer products, MS 2 fragmentation spectra were used to propose tentative structures and mechanisms. Electronic absorption spectra were calculated for six tentative product structures by an ab initio second order algebraic-diagrammatic-construction/density functional theory approach. For five structures, matching calculated and measured absorption spectra suggest that they are dominant light-absorbing species at their chromatographic retention times. Detected oligomers incorporated methylglyoxal and amines, as expected, but also pyruvic acid, hydroxyacetone, and significant quantities of acetaldehyde. The finding that ∼80% (by mass) of detected oligomers contained acetaldehyde, a methylglyoxal photolysis product, suggests that daytime methylglyoxal oligomer formation is dominated by radical addition mechanisms involving CH 3 CO*. These mechanisms are evidently responsible for enhanced browning observed during photolytic cloud events.
ERTS-1 evaluation of natural resources management applications in the Great Basin
NASA Technical Reports Server (NTRS)
Tueller, P. T.; Lorain, G.
1973-01-01
The relatively cloud free weather in the Great Basin has allowed the accumulation of several dates of excellent ERTS-1 imagery. Mountains, valleys, playas, stream courses, canyons, alluvial fans, and other landforms are readily delineated on ERTS-1 imagery, particularly with MSS-5. Each band is useful for identifying and studying one or more natural resource features. For example, crested wheatgrass seedings were most easily identified and measured on MSS-7. Color enhancements simulating CIR were useful for depicting meadow and phreatophytic vegetation along water bodies and stream courses. Work is underway to inventory and monitor wildfire areas by age and successional status. Inventories have been completed on crested wheatgrass seedings over the entire State of Nevada, and inventories of playa surfaces, water surfaces, phreatophytic vegetation, snow cover, meadows, and other features is continuing. Vegetation ecotones are being delineated for vegetation mapping. The pinyon/juniper-northern desert shrub ecotone has been identified with considerable success. Phenology changes can be used to describe vegetation changes for management.
Saloua, Fatnassi; Saber, Chatti; Hedi, Zarrouk
2010-05-01
Oil extracted from seeds of Maclura pomifera fruits grown in Tunisia was investigated as an alternative feedstock for the production of biodiesel fuel. Biodiesel was prepared by transesterification of the crude oil with methanol in the presence of NaOH as catalyst. Maximum oil to ester conversion was 90%. The viscosity of the biodiesel oil (4.66 cSt) is similar to that of petroleum diesel (2.5-3.5 cSt). The density (0.889 g/cm(3)), kinematic viscosity (4.66 cSt), flash point (180 degrees Celsius), iodine number (125 degrees Celsius), neutralization number (0.4), pour point (-9 degrees Celsius), cloud point (-5 degrees Celsius), cetane number (48) are very similar to the values set forth by the ASTM and EN biodiesel standards for petroleum diesel (No. 2). The comparison shows that the methyl esters of M. pomifera oil could be possible diesel fuel replacements. Copyright 2009 Elsevier Ltd. All rights reserved.
Extending 3D Near-Cloud Corrections from Shorter to Longer Wavelengths
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Evans, K. Frank; Varnai, Tamas; Guoyong, Wen
2014-01-01
Satellite observations have shown a positive correlation between cloud amount and aerosol optical thickness (AOT) that can be explained by the humidification of aerosols near clouds, and/or by cloud contamination by sub-pixel size clouds and the cloud adjacency effect. The last effect may substantially increase reflected radiation in cloud-free columns, leading to overestimates in the retrieved AOT. For clear-sky areas near boundary layer clouds the main contribution to the enhancement of clear sky reflectance at shorter wavelengths comes from the radiation scattered into clear areas by clouds and then scattered to the sensor by air molecules. Because of the wavelength dependence of air molecule scattering, this process leads to a larger reflectance increase at shorter wavelengths, and can be corrected using a simple two-layer model. However, correcting only for molecular scattering skews spectral properties of the retrieved AOT. Kassianov and Ovtchinnikov proposed a technique that uses spectral reflectance ratios to retrieve AOT in the vicinity of clouds; they assumed that the cloud adjacency effect influences the spectral ratio between reflectances at two wavelengths less than it influences the reflectances themselves. This paper combines the two approaches: It assumes that the 3D correction for the shortest wavelength is known with some uncertainties, and then it estimates the 3D correction for longer wavelengths using a modified ratio method. The new approach is tested with 3D radiances simulated for 26 cumulus fields from Large-Eddy Simulations, supplemented with 40 aerosol profiles. The results showed that (i) for a variety of cumulus cloud scenes and aerosol profiles over ocean the 3D correction due to cloud adjacency effect can be extended from shorter to longer wavelengths and (ii) the 3D corrections for longer wavelengths are not very sensitive to unbiased random uncertainties in the 3D corrections at shorter wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromberger, Seth A.; Klymko, Christine F.; Henderson, Keith A.
Betweenness centrality is a graph statistic used to nd vertices that are participants in a large number of shortest paths in a graph. This centrality measure is commonly used in path and network interdiction problems and its complete form requires the calculation of all-pairs shortest paths for each vertex. This leads to a time complexity of O(jV jjEj), which is impractical for large graphs. Estimation of betweenness centrality has focused on performing shortest-path calculations on a subset of randomly- selected vertices. This reduces the complexity of the centrality estimation to O(jSjjEj); jSj < jV j, which can be scaled appropriatelymore » based on the computing resources available. An estimation strategy that uses random selection of vertices for seed selection is fast and simple to implement, but may not provide optimal estimation of betweenness centrality when the number of samples is constrained. Our experimentation has identi ed a number of alternate seed-selection strategies that provide lower error than random selection in common scale-free graphs. These strategies are discussed and experimental results are presented.« less
NASA Astrophysics Data System (ADS)
Sun, B.; Yang, P.; Kattawar, G. W.; Zhang, X.
2017-12-01
The ice cloud single-scattering properties can be accurately simulated using the invariant-imbedding T-matrix method (IITM) and the physical-geometric optics method (PGOM). The IITM has been parallelized using the Message Passing Interface (MPI) method to remove the memory limitation so that the IITM can be used to obtain the single-scattering properties of ice clouds for sizes in the geometric optics regime. Furthermore, the results associated with random orientations can be analytically achieved once the T-matrix is given. The PGOM is also parallelized in conjunction with random orientations. The single-scattering properties of a hexagonal prism with height 400 (in units of lambda/2*pi, where lambda is the incident wavelength) and an aspect ratio of 1 (defined as the height over two times of bottom side length) are given by using the parallelized IITM and compared to the counterparts using the parallelized PGOM. The two results are in close agreement. Furthermore, the integrated single-scattering properties, including the asymmetry factor, the extinction cross-section, and the scattering cross-section, are given in a completed size range. The present results show a smooth transition from the exact IITM solution to the approximate PGOM result. Because the calculation of the IITM method has reached the geometric regime, the IITM and the PGOM can be efficiently employed to accurately compute the single-scattering properties of ice cloud in a wide spectral range.
Read clouds uncover variation in complex regions of the human genome.
Bishara, Alex; Liu, Yuling; Weng, Ziming; Kashef-Haghighi, Dorna; Newburger, Daniel E; West, Robert; Sidow, Arend; Batzoglou, Serafim
2015-10-01
Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies. © 2015 Bishara et al.; Published by Cold Spring Harbor Laboratory Press.
Inference from clustering with application to gene-expression microarrays.
Dougherty, Edward R; Barrera, Junior; Brun, Marcel; Kim, Seungchan; Cesar, Roberto M; Chen, Yidong; Bittner, Michael; Trent, Jeffrey M
2002-01-01
There are many algorithms to cluster sample data points based on nearness or a similarity measure. Often the implication is that points in different clusters come from different underlying classes, whereas those in the same cluster come from the same class. Stochastically, the underlying classes represent different random processes. The inference is that clusters represent a partition of the sample points according to which process they belong. This paper discusses a model-based clustering toolbox that evaluates cluster accuracy. Each random process is modeled as its mean plus independent noise, sample points are generated, the points are clustered, and the clustering error is the number of points clustered incorrectly according to the generating random processes. Various clustering algorithms are evaluated based on process variance and the key issue of the rate at which algorithmic performance improves with increasing numbers of experimental replications. The model means can be selected by hand to test the separability of expected types of biological expression patterns. Alternatively, the model can be seeded by real data to test the expected precision of that output or the extent of improvement in precision that replication could provide. In the latter case, a clustering algorithm is used to form clusters, and the model is seeded with the means and variances of these clusters. Other algorithms are then tested relative to the seeding algorithm. Results are averaged over various seeds. Output includes error tables and graphs, confusion matrices, principal-component plots, and validation measures. Five algorithms are studied in detail: K-means, fuzzy C-means, self-organizing maps, hierarchical Euclidean-distance-based and correlation-based clustering. The toolbox is applied to gene-expression clustering based on cDNA microarrays using real data. Expression profile graphics are generated and error analysis is displayed within the context of these profile graphics. A large amount of generated output is available over the web.
NASA Astrophysics Data System (ADS)
Halimshah, Syamimi; Ismail B., S.; Ahmad, Wan Juliana Wan
2015-09-01
A study was conducted to determine the allelopathic potential of leaf and seed of Mucuna bracteata on the growth of E. indica through aqueous extract and debris (incorporated into the soil) experiment. Three concentrations of leaf and seed aqueous extract (16.7, 33.3 and 66.7 g/L) and debris (2.5, 5.0 and 10.0 g/500 g soil) of M. bracteata were used in the experiment. Complete randomized design (CRD) with three replications was applied in this experiment which was conducted twice. Results demonstrated that the leaf and seed extracts of M. bracteata exhibited higher suppression effect on the growth and germination of E. indica as the concentration increased. The leaf and seed extracts significantly reduced all measured parameters at all concentrations except for the shoot length and germination of E. indica by seed extract at 16.7 g/L which recorded insignificant reduction by 40.5% and 4% respectively. The leaf and seed debris significantly reduced the root length of E. indica at all treatments. Seed debris also showed significant reduction on the germination at all treatments and other seedling growth parameters (shoot length, fresh weight and dry weight) at 2.5 and 10.0 g/500 g soil. Meanwhile, the leaf debris demonstrated stimulation effect on the seedling growth parameters. As a whole, the leaf showed higher suppression effect in aqueous extract experiment while the seed recorded higher suppression effect in the debris experiment. Further studies need to be conducted to investigate the type of inhibition mechanism involved in both experiments.
Genetic comparisons between seed bank and Stipa krylovii plant populations.
Han, B; Zhao, M
2011-09-01
The soil seed bank represents the potential plant population since it is the source for population replacement. The genetic structure of a Stipa krylovii (Roshev.) plant population and its soil seed bank was investigated in the Xilinguole Steppe of Inner Mongolia using random amplified polymorphic DNA (RAPD) analyses. The population was sampled at two sites that were in close proximity to each other (0.5 km apart). Thirty plants and 18 seed bank samples were taken from each site to determine the genetic diversity between sites and between sources (plant or seed). The material was analyzed using 13 primers to produce 92 loci. Eighty-six were multi-loci, of which 23 loci (26.74%) of allele frequencies showed significant differences (P < or = 0.05). The genetic similarity between two seed bank sites was 0.9843 while the genetic similarity between two plant sites was 0.9619. Their similarities were all greater than that between the seed bank and plant populations. An analysis of their genetic structure showed that 87.86% of total variation was derived by two-loci. Genetic structures between plant and soil seed bank populations in S. krylovii were different due to the variance of mean gametic disequilibria and mean gene diversity. AMOVA results showed that the majority of variance (88.62%) occurred within sites, 12.75% was from between-groups. Further research is needed to investigate the selective function in maintaining the genetic diversity of Stipa krylovii plant populations.
2010-11-18
Icy particles in the cloud around Hartley 2, as seen by NASA EPOXI mission spacecraft. A star moving through the background is marked with red and moves in a particular direction, with a particular speed; icy particles move in random directions.
Comparison of Moringa Oleifera seeds oil characterization produced chemically and mechanically
NASA Astrophysics Data System (ADS)
Eman, N. A.; Muhamad, K. N. S.
2016-06-01
It is established that virtually every part of the Moringa oleifera tree (leaves, stem, bark, root, flowers, seeds, and seeds oil) are beneficial in some way with great benefits to human being. The tree is rich in proteins, vitamins, minerals. All Moringa oleifera food products have a very high nutritional value. They are eaten directly as food, as supplements, and as seasonings as well as fodder for animals. The purpose of this research is to investigate the effect of seeds particle size on oil extraction using chemical method (solvent extraction). Also, to compare Moringa oleifera seeds oil properties which are produced chemically (solvent extraction) and mechanically (mechanical press). The Moringa oleifera seeds were grinded, sieved, and the oil was extracted using soxhlet extraction technique with n-Hexane using three different size of sample (2mm, 1mm, and 500μm). The average oil yield was 36.1%, 40.80%, and 41.5% for 2mm, 1mm, and 500μm particle size, respectively. The properties of Moringa oleifera seeds oil were: density of 873 kg/m3, and 880 kg/m3, kinematic viscosity of 42.2mm2/s and 9.12mm2/s for the mechanical and chemical method, respectively. pH, cloud point and pour point were same for oil produced with both methods which is 6, 18°C and 12°C, respectively. For the fatty acids, the oleic acid is present with high percentage of 75.39%, and 73.60% from chemical and mechanical method, respectively. Other fatty acids are present as well in both samples which are (Gadoleic acid, Behenic acid, Palmitic acid) which are with lower percentage of 2.54%, 5.83%, and 5.73%, respectively in chemical method oil, while they present as 2.40%, 6.73%, and 6.04%, respectively in mechanical method oil. In conclusion, the results showed that both methods can produce oil with high quality. Moringa oleifera seeds oil appear to be an acceptable good source for oil rich in oleic acid which is equal to olive oil quality, that can be consumed in Malaysia where the olive oil is imported with high prices. In the same time cultivation of Moringa oleifera tree is considered to be a new source of income for the country and give more job opportunities.
Seed exchange networks, ethnicity, and sorghum diversity
Labeyrie, Vanesse; Thomas, Mathieu; Muthamia, Zachary K.; Leclerc, Christian
2016-01-01
Recent studies investigating the relationship between crop genetic diversity and human cultural diversity patterns showed that seed exchanges are embedded in farmers’ social organization. However, our understanding of the social processes involved remains limited. We investigated how farmers’ membership in three major social groups interacts in shaping sorghum seed exchange networks in a cultural contact zone on Mount Kenya. Farmers are members of residence groups at the local scale and of dialect groups clustered within larger ethnolinguistic units at a wider scale. The Chuka and Tharaka, who are allied in the same ethnolinguistic unit, coexist with the Mbeere dialect group in the study area. We assessed farmers’ homophily, propensity to exchange seeds with members of the same group, using exponential random graph models. We showed that homophily is significant within both residence and ethnolinguistic groups. At these two levels, homophily is driven by the kinship system, particularly by the combination of patrilocal residence and ethnolinguistic endogamy, because most seeds are exchanged among relatives. Indeed, residential homophily in seed exchanges results from local interactions between women and their in-law family, whereas at a higher level, ethnolinguistic homophily is driven by marriage endogamy. Seed exchanges and marriage ties are interrelated, and both are limited between the Mbeere and the other groups, although frequent between the Chuka and Tharaka. The impact of these social homophily processes on crop diversity is discussed. PMID:26699480
Seed exchange networks, ethnicity, and sorghum diversity.
Labeyrie, Vanesse; Thomas, Mathieu; Muthamia, Zachary K; Leclerc, Christian
2016-01-05
Recent studies investigating the relationship between crop genetic diversity and human cultural diversity patterns showed that seed exchanges are embedded in farmers' social organization. However, our understanding of the social processes involved remains limited. We investigated how farmers' membership in three major social groups interacts in shaping sorghum seed exchange networks in a cultural contact zone on Mount Kenya. Farmers are members of residence groups at the local scale and of dialect groups clustered within larger ethnolinguistic units at a wider scale. The Chuka and Tharaka, who are allied in the same ethnolinguistic unit, coexist with the Mbeere dialect group in the study area. We assessed farmers' homophily, propensity to exchange seeds with members of the same group, using exponential random graph models. We showed that homophily is significant within both residence and ethnolinguistic groups. At these two levels, homophily is driven by the kinship system, particularly by the combination of patrilocal residence and ethnolinguistic endogamy, because most seeds are exchanged among relatives. Indeed, residential homophily in seed exchanges results from local interactions between women and their in-law family, whereas at a higher level, ethnolinguistic homophily is driven by marriage endogamy. Seed exchanges and marriage ties are interrelated, and both are limited between the Mbeere and the other groups, although frequent between the Chuka and Tharaka. The impact of these social homophily processes on crop diversity is discussed.
NASA Technical Reports Server (NTRS)
Cameron, A. Collier; Duncan, D. K.; Ehrenfreund, P.; Foing, B. H.; Kuntz, K. D.; Penston, M. V.; Robinson, R. D.; Soderblom, D. R.
1989-01-01
New time-resolved H alpha, Ca II H and K and Mg II h and k spectra of the rapidly-rotating K0 dwarf star AB Doradus (= HD 36705). The transient absorption features seen in the H alpha line are also present in the Ca II and Mg II resonance lines. New techniques are developed for measuring the average strength of the line absorption along lines of sight intersecting the cloud. These techniques also give a measure of the projected cloud area. The strength of the resonance line absorption provides useful new constraints on the column densities, projected surface areas, temperatures and internal turbulent velocity dispersions of the circumstellar clouds producing the absorption features. At any given time the star appears to be surrounded by at least 6 to 10 clouds with masses in the range 2 to 6 x 10(exp 17) g. The clouds appear to have turbulent internal velocity dispersions of order 3 to 20 km/s, comparable with the random velocities of discrete filamentary structures in solar quiescent prominences. Night-to-night changes in the amount of Ca II resonance line absorption can be explained by changes in the amplitude of turbulent motions in the clouds. The corresponding changes in the total energy of the internal motions are of order 10(exp 29) erg per cloud. Changes of this magnitude could easily be activated by the frequent energetic (approximately 10(exp 34) erg) x ray flares seen on this star.
A New Approach for Checking and Complementing CALIPSO Lidar Calibration
NASA Technical Reports Server (NTRS)
Josset, Damien B.; Vaughan, Mark A.; Hu, Yongxiang; Avery, Melody A.; Powell, Kathleen A.; Hunt, William H.; Winker, David M.; Pelon, Jacques; Trepte, Charles R.; Lucker, Patricia L.;
2010-01-01
We have been studying the backscatter ratio of the two CALIPSO wavelengths for 3 different targets. We are showing the ratio of integrate attenuated backscatter coefficient for cirrus clouds, ocean surface and liquid. Water clouds for one month of nightime data (left:July,right:December), Only opaque cirrus classified as randomly oriented ice[1] are used. For ocean and water clouds, only the clearest shots, determined by a threshold on integrated attenuated backscatter are used. Two things can be immediately observed: 1. A similar trend (black dotted line) is visible using all targets, the color ratio shows a tendency to be higher north and lower south for those two months. 2. The water clouds average value is around 15% lower than ocean surface and cirrus clouds. This is due to the different multiple scattering at 532 nm and 1064 nm [2] which strongly impact the water cloud retrieval. Conclusion: Different targets can be used to improve CALIPSO 1064 nm calibration accuracy. All of them show the signature of an instrumental calibration shift. Multiple scattering introduce a bias in liquid water cloud signal but it still compares very well with all other methods and should not be overlooked. The effect of multiple scattering in liquid and ice clouds will be the subject of future research. If there really is a sampling issue. Combining all methods to increase the sampling, mapping the calibration coefficient or trying to reach an orbit per orbit calibration seems an appropriate way.
NASA Technical Reports Server (NTRS)
Greenwald, Thomas J.; Christopher, Sundar A.; Chou, Joyce
1997-01-01
Satellite observations of the cloud liquid water path (LWP) are compared from special sensor microwave imager (SSM/I) measurements and GOES 8 imager solar reflectance (SR) measurements to ascertain the impact of sub-field-of-view (FOV) cloud effects on SSM/I 37 GHz retrievals. The SR retrievals also incorporate estimates of the cloud droplet effective radius derived from the GOES 8 3.9-micron channel. The comparisons consist of simultaneous collocated and full-resolution measurements and are limited to nonprecipitating marine stratocumulus in the eastern Pacific for two days in October 1995. The retrievals from these independent methods are consistent for overcast SSM/I FOVS, with RMS differences as low as 0.030 kg/sq m, although biases exist for clouds with more open spatial structure, where the RMS differences increase to 0.039 kg/sq m. For broken cloudiness within the SSM/I FOV the average beam-filling error (BFE) in the microwave retrievals is found to be about 22% (average cloud amount of 73%). This systematic error is comparable with the average random errors in the microwave retrievals. However, even larger BFEs can be expected for individual FOVs and for regions with less cloudiness. By scaling the microwave retrievals by the cloud amount within the FOV, the systematic BFE can be significantly reduced but with increased RMS differences of O.046-0.058 kg/sq m when compared to the SR retrievals. The beam-filling effects reported here are significant and are expected to impact directly upon studies that use instantaneous SSM/I measurements of cloud LWP, such as cloud classification studies and validation studies involving surface-based or in situ data.
NASA Astrophysics Data System (ADS)
Varma, S.; Voulgarakis, A.; Liu, H.; Crawford, J. H.; Zhang, B.
2017-12-01
What drives the variability of trace gases in the troposphere is not well understood, as is the role of clouds in modulating this variability via radiative, transport, deposition, heterogeneous chemistry, and lightning effects that are associated with them. Accurately simulating tropospheric composition and its variability is of utmost importance as both could have a significant effect on the region's temperature and circulation, as well as on surface climate and the amount of UV radiation in the troposphere. In this presentation, we will examine how clouds can influence tropospheric and lower stratospheric composition through modifying solar radiation leading to changes in the local actinic flux and subsequently to photolysis, a key driver of chemistry. We will utilize C3M (a unique 3-D cloud data product merged from multiple A-Train satellites (CERES, CloudSat, CALIPSO, and MODIS) developed at the NASA Langley Research Center to evaluate the cloud fields and their vertical distribution in the HadGEM3-UKCA model developed by the Natural Environment Research Council (NERC, UK) and the Met Office. This evaluation will involve 1) comparing the effective cloud optical depth (ECOD) as calculated from C3M and the model using the approximate random overlap method, 2) applying 3-D scaling factors from C3M to the model's ECOD and analyzing the changes this makes to the model's cloud fields, and 3) running the scaled model and analyzing the impacts of this cloud field adjustment on the model's estimates of photolysis rates and key tropospheric oxidants such as ozone and OH.
Improvements for retrieval of cloud droplet size by the POLDER instrument
NASA Astrophysics Data System (ADS)
Shang, H.; Husi, L.; Bréon, F. M.; Ma, R.; Chen, L.; Wang, Z.
2017-12-01
The principles of cloud droplet size retrieval via Polarization and Directionality of the Earth's Reflectance (POLDER) requires that clouds be horizontally homogeneous. The retrieval is performed by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval and analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-grid-scale variability in droplet effective radius (CDR) can significantly reduce valid retrievals and introduce small biases to the CDR ( 1.5µm) and effective variance (EV) estimates. Nevertheless, the sub-grid-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval using limited observations is accurate and is largely free of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, measurements in the primary rainbow region (137-145°) are used to ensure retrievals of large droplet (>15 µm) and to reduce the uncertainties caused by cloud heterogeneity. A premium resoltion of 0.8° is determined by considering successful retrievals and cloud horizontal homogeneity. The improved algorithm is applied to measurements of POLDER in 2008, and we further compared our retrievals with cloud effective radii estimations of Moderate Resolution Imaging Spectroradiometer (MODIS). The results indicate that in global scale, the cloud effective radii and effective variance is larger in the central ocean than inland and coast areas. Over heavy polluted regions, the cloud droplets has small effective radii and narraw distribution due to the influence of aerosol particles.
NASA Astrophysics Data System (ADS)
Hong, Yang
Precipitation estimation from satellite information (VISIBLE , IR, or microwave) is becoming increasingly imperative because of its high spatial/temporal resolution and board coverage unparalleled by ground-based data. After decades' efforts of rainfall estimation using IR imagery as basis, it has been explored and concluded that the limitations/uncertainty of the existing techniques are: (1) pixel-based local-scale feature extraction; (2) IR temperature threshold to define rain/no-rain clouds; (3) indirect relationship between rain rate and cloud-top temperature; (4) lumped techniques to model high variability of cloud-precipitation processes; (5) coarse scales of rainfall products. As continuing studies, a new version of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network (PERSIANN), called Cloud Classification System (CCS), has been developed to cope with these limitations in this dissertation. CCS includes three consecutive components: (1) a hybrid segmentation algorithm, namely Hierarchically Topographical Thresholding and Stepwise Seeded Region Growing (HTH-SSRG), to segment satellite IR images into separated cloud patches; (2) a 3D feature extraction procedure to retrieve both pixel-based local-scale and patch-based large-scale features of cloud patch at various heights; (3) an ANN model, Self-Organizing Nonlinear Output (SONO) network, to classify cloud patches into similarity-based clusters, using Self-Organizing Feature Map (SOFM), and then calibrate hundreds of multi-parameter nonlinear functions to identify the relationship between every cloud types and their underneath precipitation characteristics using Probability Matching Method and Multi-Start Downhill Simplex optimization techniques. The model was calibrated over the Southwest of United States (100°--130°W and 25°--45°N) first and then adaptively adjusted to the study region of North America Monsoon Experiment (65°--135°W and 10°--50°N) using observations from Geostationary Operational Environmental Satellite (GOES) IR imagery, Next Generation Radar (NEXRAD) rainfall network, and Tropical Rainfall Measurement Mission (TRMM) microwave rain rate estimates. CCS functions as a distributed model that first identifies cloud patches and then dispatches different but the best matching cloud-precipitation function for each cloud patch to estimate instantaneous rain rate at high spatial resolution (4km) and full temporal resolution of GOES IR images (every 30-minute). Evaluated over a range of spatial and temporal scales, the performance of CCS compared favorably with GOES Precipitation Index (GPI), Universal Adjusted GPI (UAGPI), PERSIANN, and Auto-Estimator (AE) algorithms, consistently. Particularly, the large number of nonlinear functions and optimum IR-rain rate thresholds of CCS model are highly variable, reflecting the complexity of dominant cloud-precipitation processes from cloud patch to cloud patch over various regions. As a result, CCS can more successfully capture variability in rain rate at small scales than existing algorithms and potentially provides rainfall product from GOES IR-NEXARD-TRMM TMI (SSM/I) at 0.12° x 0.12° and 3-hour resolution with relative low standard error (˜=3.0mm/hr) and high correlation coefficient (˜=0.65).
Donà, M.; Balestrazzi, A.; Mondoni, A.; Rossi, G.; Ventura, L.; Buttafava, A.; Macovei, A.; Sabatini, M. E.; Valassi, A.; Carbonera, D.
2013-01-01
Background and Aims The germination test currently represents the most used method to assess seed viability in germplasm banks, despite the difficulties caused by the occurrence of seed dormancy. Furthermore, seed longevity can vary considerably across species and populations from different environments, and studies related to the eco-physiological processes underlying such variations are still limited in their depth. The aim of the present work was the identification of reliable molecular markers that might help in monitoring seed deterioration. Methods Dry seeds were subjected to artificial ageing and collected at different time points for molecular/biochemical analyses. DNA damage was measured using the RAPD (random amplified polymorphic DNA) approach while the seed antioxidant profile was obtained using both the DPPH (1,1-diphenyl, 2-picrylhydrazyl) assay and the Folin–Ciocalteu reagent method. Electron paramagnetic resonance (EPR) provided profiles of free radicals. Quantitative real-time polymerase chain reaction (QRT-PCR) was used to assess the expression profiles of the antioxidant genes MT2 (type 2 metallothionein) and SOD (superoxide dismutase). A modified QRT-PCR protocol was used to determine telomere length. Key Results The RAPD profiles highlighted different capacities of the two Silene species to overcome DNA damage induced by artificial ageing. The antioxidant profiles of dry and rehydrated seeds revealed that the high-altitude taxon Silene acaulis was characterized by a lower antioxidant specific activity. Significant upregulation of the MT2 and SOD genes was observed only in the rehydrated seeds of the low-altitude species. Rehydration resulted in telomere lengthening in both Silene species. Conclusions Different seed viability markers have been selected for plant species showing inherent variation of seed longevity. RAPD analysis, quantification of redox activity of non-enzymatic antioxidant compounds and gene expression profiling provide deeper insights to study seed viability during storage. Telomere lengthening is a promising tool to discriminate between short- and long-lived species. PMID:23532044
NASA Astrophysics Data System (ADS)
Li, Jiming; Lv, Qiaoyi; Jian, Bida; Zhang, Min; Zhao, Chuanfeng; Fu, Qiang; Kawamoto, Kazuaki; Zhang, Hua
2018-05-01
Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007-2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into account in the parameterization of decorrelation length scale L in order to further improve the calculation of the radiative budget and the prediction of climate change over the TP in the atmospheric models.
Evaluation of Inventory Reduction Strategies: Balad Air Base Case Study
2012-03-01
produced by conducting individual simulations using a unique random seed generated by the default Anylogic © random number generator. The...develops an agent-based simulation model of the sustainment supply chain supporting Balad AB during its closure using the software AnyLogic ®. The...research. The goal of USAF Stockage Policy is to maximize customer support while minimizing inventory costs (DAF, 2011:1). USAF stocking decisions
Phase seeding of a terahertz quantum cascade laser
Oustinov, Dimitri; Jukam, Nathan; Rungsawang, Rakchanok; Madéo, Julien; Barbieri, Stefano; Filloux, Pascal; Sirtori, Carlo; Marcadet, Xavier; Tignon, Jérôme; Dhillon, Sukhdeep
2010-01-01
The amplification of spontaneous emission is used to initiate laser action. As the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase-resolved detection of the laser field. Here, we demonstrate how the carrier phase can be fixed in a semiconductor laser: a quantum cascade laser (QCL). This is performed by injection seeding a QCL with coherent terahertz pulses, which forces laser action to start on a fixed phase. This permits the emitted laser field to be synchronously sampled with a femtosecond laser beam, and measured in the time domain. We observe the phase-resolved buildup of the laser field, which can give insights into the laser dynamics. In addition, as the electric field oscillations are directly measured in the time domain, QCLs can now be used as sources for time-domain spectroscopy. PMID:20842195
Jagathjothi, N; Amanullah, M Mohamed; Muthukrishnan, P
2013-11-15
Pot culture and field experiments were carried out at the Common Effluent Treatment Plant (CETP), Dindigul during kharif 2011-12 to investigate the influence of irrigation of treated tannery effluent along with domestic wastewater on growth, yield attributes and yield of cotton. The pot culture was in a factorial completely randomized design and field experiment laid out in factorial randomized block design with four replications. The results revealed that the mixing proportion of 25% Treated Tannery Effluent (TTE)+75% domestic wastewater (DWW) application recorded taller plants, higher dry matter production, number of sympodial branches plant(-1), number of fruiting points plant(-1), number of bolls plant(-1) and seed cotton yield with yield reduction of 15.28 and 16.11% compared to normal water irrigation under pot culture and field experiment, respectively. Regarding amendments, gypsum application registered higher seed cotton yield followed by VAM.
Real-time fast physical random number generator with a photonic integrated circuit.
Ugajin, Kazusa; Terashima, Yuta; Iwakawa, Kento; Uchida, Atsushi; Harayama, Takahisa; Yoshimura, Kazuyuki; Inubushi, Masanobu
2017-03-20
Random number generators are essential for applications in information security and numerical simulations. Most optical-chaos-based random number generators produce random bit sequences by offline post-processing with large optical components. We demonstrate a real-time hardware implementation of a fast physical random number generator with a photonic integrated circuit and a field programmable gate array (FPGA) electronic board. We generate 1-Tbit random bit sequences and evaluate their statistical randomness using NIST Special Publication 800-22 and TestU01. All of the BigCrush tests in TestU01 are passed using 410-Gbit random bit sequences. A maximum real-time generation rate of 21.1 Gb/s is achieved for random bit sequences in binary format stored in a computer, which can be directly used for applications involving secret keys in cryptography and random seeds in large-scale numerical simulations.
NASA Astrophysics Data System (ADS)
Alifu, Xiafukaiti; Ziqi, Peng; Shiina, Tatsuo
2018-04-01
Non-diffracting beam (NDB) is useful in lidar transmitter because of its high propagation efficiency and high resolution. We aimed to generate NDB in random media such as haze and cloud. The laboratory experiment was conducted with diluted processed milk (fat: 1.8%, 1.1μmφ). Narrow view angle detector of 5.5mrad was used to detect the forward scattering waveform. We obtained the central peak of NDB at the propagation distance of 5cm 30cm in random media by adjusting the concentration of <10%.
Dopant-induced ignition of helium nanoplasmas—a mechanistic study
NASA Astrophysics Data System (ADS)
Heidenreich, Andreas; Schomas, Dominik; Mudrich, Marcel
2017-12-01
Helium (He) nanodroplets irradiated by intense near-infrared laser pulses form a nanoplasma by avalanche-like electron impact ionizations (EIIs) even at lower laser intensities where He is not directly field ionized, provided that the droplets contain a few dopant atoms which provide seed electrons for the EII avalanche. In this theoretical paper on calcium and xenon doped He droplets we elucidate the mechanism which induces ionization avalanches, termed ignition. We find that the partial loss of seed electrons from the activated droplets starkly assists ignition, as the Coulomb barrier for ionization of helium is lowered by the electric field of the dopant cations, and this deshielding of the cation charges enhances their electric field. In addition, the dopant ions assist the acceleration of the seed electrons (slingshot effect) by the laser field, supporting EIIs of He and also causing electron loss by catapulting electrons away. The dopants’ ability to lower the Coulomb barriers at He as well as the slingshot effect decrease with the spatial expansion of the dopant, causing a dependence of the dopants’ ignition capability on the dopant mass. Here, we develop criteria (impact count functions) to assess the ignition capability of dopants, based on (i) the spatial overlap of the seed electron cloud with the He atoms and (ii) the overlap of their kinetic energy distribution with the distribution of Coulomb barrier heights at He. The relatively long time delays between the instants of dopant ionization and ignition (incubation times) for calcium doped droplets are determined to a large extent by the time it takes to deshield the dopant ions.
Statistical analysis of multivariate atmospheric variables. [cloud cover
NASA Technical Reports Server (NTRS)
Tubbs, J. D.
1979-01-01
Topics covered include: (1) estimation in discrete multivariate distributions; (2) a procedure to predict cloud cover frequencies in the bivariate case; (3) a program to compute conditional bivariate normal parameters; (4) the transformation of nonnormal multivariate to near-normal; (5) test of fit for the extreme value distribution based upon the generalized minimum chi-square; (6) test of fit for continuous distributions based upon the generalized minimum chi-square; (7) effect of correlated observations on confidence sets based upon chi-square statistics; and (8) generation of random variates from specified distributions.
Radiation hydrodynamics simulations of the formation of direct-collapse supermassive stellar systems
NASA Astrophysics Data System (ADS)
Chon, Sunmyon; Hosokawa, Takashi; Yoshida, Naoki
2018-04-01
Formation of supermassive stars (SMSs) with mass ≳104 M⊙ is a promising pathway to seed the formation of supermassive black holes in the early universe. The so-called direct-collapse (DC) model postulates that such an SMS forms in a hot gas cloud irradiated by a nearby star-forming galaxy. We study the DC SMS formation in a fully cosmological context using three-dimensional radiation hydrodynamics simulations. We initialize our simulations using the outputs of the cosmological simulation of Chon et al., where two DC gas clouds are identified. The long-term evolution over a hundred thousand years is followed from the formation of embryo protostars through their growth to SMSs. We show that the strength of the tidal force by a nearby galaxy determines the multiplicity of the formed stars and affects the protostellar growth. In one case, where a collapsing cloud is significantly stretched by strong tidal force, multiple star-disc systems are formed via filament fragmentation. Small-scale fragmentation occurs in each circumstellar disc, and more than 10 stars with masses of a few ×103 M⊙ are finally formed. Interestingly, about a half of them are found as massive binary stars. In the other case, the gas cloud collapses nearly spherically under a relatively weak tidal field, and a single star-disc system is formed. Only a few SMSs with masses ˜104 M⊙ are found already after evolution of a hundred thousand years, and the SMSs are expected to grow further by gas accretion and to leave massive black holes at the end of their lives.
Pratt, Linda W.; VanDeMark, Joshua R.; Euaparadorn, Melody
2011-01-01
Two endangered plant species (Portulaca sclerocarpa, `ihi mākole, and Sesbania tomentosa, `ōhai) and a species of concern (Bobea timonioides, `ahakea) native to the coastal lowlands and dry mid-elevation woodlands of Hawai`i Volcanoes National Park were studied for more than two years to determine their stand structure, short-term mortality rates, patterns of reproductive phenology, success of fruit production, seed germination rates in the greenhouse, presence of soil seed bank, and survival of both natural and planted seedlings. The role of rodents as fruit and seed predators was evaluated using exclosures and seed offerings in open and closed stations or cages. Rodents were excluded from randomly selected plants of P. sclerocarpa and from branches of S. tomentosa, and flower and fruit production were compared to that of adjacent unprotected plants. Tagged S. tomentosa fruit were also monitored monthly to detect rodent predation.
Statistics of primordial density perturbations from discrete seed masses
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.; Bertschinger, Edmund
1991-01-01
The statistics of density perturbations for general distributions of seed masses with arbitrary matter accretion is examined. Formal expressions for the power spectrum, the N-point correlation functions, and the density distribution function are derived. These results are applied to the case of uncorrelated seed masses, and power spectra are derived for accretion of both hot and cold dark matter plus baryons. The reduced moments (cumulants) of the density distribution are computed and used to obtain a series expansion for the density distribution function. Analytic results are obtained for the density distribution function in the case of a distribution of seed masses with a spherical top-hat accretion pattern. More generally, the formalism makes it possible to give a complete characterization of the statistical properties of any random field generated from a discrete linear superposition of kernels. In particular, the results can be applied to density fields derived by smoothing a discrete set of points with a window function.
NASA Technical Reports Server (NTRS)
Short, David A.; Lane, Robert E., Jr.; Winters, Katherine A.; Madura, John T.
2004-01-01
Clouds are highly effective in obscuring optical images of the Space Shuttle taken during its ascent by ground-based and airborne tracking cameras. Because the imagery is used for quick-look and post-flight engineering analysis, the Columbia Accident Investigation Board (CAIB) recommended the return-to-flight effort include an upgrade of the imaging system to enable it to obtain at least three useful views of the Shuttle from lift-off to at least solid rocket booster (SRB) separation (NASA 2003). The lifetimes of individual cloud elements capable of obscuring optical views of the Shuttle are typically 20 minutes or less. Therefore, accurately observing and forecasting cloud obscuration over an extended network of cameras poses an unprecedented challenge for the current state of observational and modeling techniques. In addition, even the best numerical simulations based on real observations will never reach "truth." In order to quantify the risk that clouds would obscure optical imagery of the Shuttle, a 3D model to calculate probabilistic risk was developed. The model was used to estimate the ability of a network of optical imaging cameras to obtain at least N simultaneous views of the Shuttle from lift-off to SRB separation in the presence of an idealized, randomized cloud field.
Quantum Analogies in the Interaction between Acoustic Waves and Bubble Clouds
NASA Astrophysics Data System (ADS)
Parrales, Miguel A.; Rodriguez-Rodriguez, Javier
2014-11-01
Analogies between quantum mechanical and acoustical propagation phenomena have a great interest in academic research due to their ability to shed light on some complex quantum effects, which are impossible to visualize directly in the macroscopic world. In this talk, we describe a number of these analogies concerning the acoustic behavior of bubble clouds. Firstly, we show that the structure of the collective oscillation modes of a spherical bubble cloud resembles that of the atomic orbitals of a hydrogen atom. Secondly, we present an analogy between some perturbation methods used in quantum-electrodynamics and the computation of the acoustic response of the randomly distributed bubble cloud by considering the contribution to the total scattered pressure of the multiple scattering paths that take place inside the clouds. As an application of this analogy, we obtain the scattering cross-section of a diluted cloud, which remarkably mimics the quantum scattering of an neutron wave when passing through an atomic nucleus. Finally, we numerically reproduce the behavior of an electron in a covalent bond between two hydrogen atoms by simulating the acoustic wave propagation through two neighboring spherical bubble assemblages. Funded by the Spanish Ministry of Economy and Competitiveness through Grants DPI2011-28356-C03-01 and DPI2011-28356-C03-02.
Microfluidic cell trap array for controlled positioning of single cells on adhesive micropatterns.
Lin, Laiyi; Chu, Yeh-Shiu; Thiery, Jean Paul; Lim, Chwee Teck; Rodriguez, Isabel
2013-02-21
Adhesive micropattern arrays permit the continuous monitoring and systematic study of the behavior of spatially confined cells of well-defined shape and size in ordered configurations. This technique has contributed to defining mechanisms that control cell polarity and cell functions, including proliferation, apoptosis, differentiation and migration in two-dimensional cell culture systems. These micropattern studies often involve isolating a single cell on one adhesive protein micropattern using random seeding methods. Random seeding has been successful for isolated and, to a lesser degree, paired patterns, where two patterns are placed in close proximity. Using this method, we found that the probability of obtaining one cell per pattern decreases significantly as the number of micropatterns in a cluster increases, from 16% for paired micropatterns to 0.3% for clusters of 6 micropatterns. This work presents a simple yet effective platform based on a microfludic sieve-like trap array to exert precise control over the positioning of single cells on micropatterns. We observed a 4-fold improvement over random seeding in the efficiency of placing a pair of single cells on paired micropattern and a 40-fold improvement for 6-pattern clusters. The controlled nature of this platform can also allow the juxtaposition of two different cell populations through a simple modification in the trap arrangement. With excellent control of the identity, number and position of neighbouring cells, this cell-positioning platform provides a unique opportunity for the extension of two-dimensional micropattern studies beyond paired micropatterns to organizations containing many cells or different cell types.
Leon, Juan S; Kingsley, David H; Montes, Julia S; Richards, Gary P; Lyon, G Marshall; Abdulhafid, Gwen M; Seitz, Scot R; Fernandez, Marina L; Teunis, Peter F; Flick, George J; Moe, Christine L
2011-08-01
Contamination of oysters with human noroviruses (HuNoV) constitutes a human health risk and may lead to severe economic losses in the shellfish industry. There is a need to identify a technology that can inactivate HuNoV in oysters. In this study, we conducted a randomized, double-blinded clinical trial to assess the effect of high hydrostatic pressure processing (HPP) on Norwalk virus (HuNoV genogroup I.1) inactivation in virus-seeded oysters ingested by subjects. Forty-four healthy, positive-secretor adults were divided into three study phases. Subjects in each phase were randomized into control and intervention groups. Subjects received Norwalk virus (8FIIb, 1.0 × 10(4) genomic equivalent copies) in artificially seeded oysters with or without HPP treatment (400 MPa at 25°C, 600 MPa at 6°C, or 400 MPa at 6°C for 5 min). HPP at 600 MPa, but not 400 MPa (at 6° or 25°C), completely inactivated HuNoV in seeded oysters and resulted in no HuNoV infection among these subjects, as determined by reverse transcription-PCR detection of HuNoV RNA in subjects' stool or vomitus samples. Interestingly, a white blood cell (granulocyte) shift was identified in 92% of the infected subjects and was significantly associated with infection (P = 0.0014). In summary, these data suggest that HPP is effective at inactivating HuNoV in contaminated whole oysters and suggest a potential intervention to inactivate infectious HuNoV in oysters for the commercial shellfish industry.
NASA Technical Reports Server (NTRS)
Weissman, Paul R.
1987-01-01
Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sending large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.
NASA Astrophysics Data System (ADS)
Ge, Xuming
2017-08-01
The coarse registration of point clouds from urban building scenes has become a key topic in applications of terrestrial laser scanning technology. Sampling-based algorithms in the random sample consensus (RANSAC) model have emerged as mainstream solutions to address coarse registration problems. In this paper, we propose a novel combined solution to automatically align two markerless point clouds from building scenes. Firstly, the method segments non-ground points from ground points. Secondly, the proposed method detects feature points from each cross section and then obtains semantic keypoints by connecting feature points with specific rules. Finally, the detected semantic keypoints from two point clouds act as inputs to a modified 4PCS algorithm. Examples are presented and the results compared with those of K-4PCS to demonstrate the main contributions of the proposed method, which are the extension of the original 4PCS to handle heavy datasets and the use of semantic keypoints to improve K-4PCS in relation to registration accuracy and computational efficiency.
Continuum Limit of Total Variation on Point Clouds
NASA Astrophysics Data System (ADS)
García Trillos, Nicolás; Slepčev, Dejan
2016-04-01
We consider point clouds obtained as random samples of a measure on a Euclidean domain. A graph representing the point cloud is obtained by assigning weights to edges based on the distance between the points they connect. Our goal is to develop mathematical tools needed to study the consistency, as the number of available data points increases, of graph-based machine learning algorithms for tasks such as clustering. In particular, we study when the cut capacity, and more generally total variation, on these graphs is a good approximation of the perimeter (total variation) in the continuum setting. We address this question in the setting of Γ-convergence. We obtain almost optimal conditions on the scaling, as the number of points increases, of the size of the neighborhood over which the points are connected by an edge for the Γ-convergence to hold. Taking of the limit is enabled by a transportation based metric which allows us to suitably compare functionals defined on different point clouds.
NASA Technical Reports Server (NTRS)
Eberhard, Wynn L.
1993-01-01
Many lidar researchers have occasionally observed zenith-enhanced backscatter (ZEB) from middle and high clouds. The ZEB signature consists of strong backscatter when the lidar is pointed directly at zenith and a dramatic decline in backscatter as the zenith angle dips slightly off zenith. Mirror-like reflection from horizontal facets of oriented crystals (especially plates) is generally accepted as the cause. It was found during a 3-year observation program that approximately 50 percent of ice clouds had ZEB, regardless of cloud height. The orientation of crystals and the ZEB they cause are important to study and understand for several reasons. First, radiative transfer in clouds with oriented crystals is different than if the same particles were randomly oriented. Second, crystal growth depends partly on the orientation of the particles. Third, ZEB measurements may provide useful information about cirrus microphysical and radiative properties. Finally, the remarkable effect of ZEB on lidar signals should be understood in order to properly interpret lidar data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weissman, P.R.
1987-03-01
Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sendingmore » large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.« less
Theoretical study of mixing in liquid clouds – Part 1: Classical concepts
Korolev, Alexei; Khain, Alex; Pinsky, Mark; ...
2016-07-28
The present study considers final stages of in-cloud mixing in the framework of classical concept of homogeneous and extreme inhomogeneous mixing. Simple analytical relationships between basic microphysical parameters were obtained for homogeneous and extreme inhomogeneous mixing based on the adiabatic consideration. It was demonstrated that during homogeneous mixing the functional relationships between the moments of the droplets size distribution hold only during the primary stage of mixing. Subsequent random mixing between already mixed parcels and undiluted cloud parcels breaks these relationships. However, during extreme inhomogeneous mixing the functional relationships between the microphysical parameters hold both for primary and subsequent mixing.more » The obtained relationships can be used to identify the type of mixing from in situ observations. The effectiveness of the developed method was demonstrated using in situ data collected in convective clouds. It was found that for the specific set of in situ measurements the interaction between cloudy and entrained environments was dominated by extreme inhomogeneous mixing.« less
Reinelt, Sebastian; Steinke, Daniel
2014-01-01
Summary In this work we report the synthesis of thermo-, oxidation- and cyclodextrin- (CD) responsive end-group-functionalized polymers, based on N,N-diethylacrylamide (DEAAm). In a classical free-radical chain transfer polymerization, using thiol-functionalized 4-alkylphenols, namely 3-(4-(1,1-dimethylethan-1-yl)phenoxy)propane-1-thiol and 3-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propane-1-thiol, poly(N,N-diethylacrylamide) (PDEAAm) with well-defined hydrophobic end-groups is obtained. These end-group-functionalized polymers show different cloud point values, depending on the degree of polymerization and the presence of randomly methylated β-cyclodextrin (RAMEB-CD). Additionally, the influence of the oxidation of the incorporated thioether linkages on the cloud point is investigated. The resulting hydrophilic sulfoxides show higher cloud point values for the lower critical solution temperature (LCST). A high degree of functionalization is supported by 1H NMR-, SEC-, FTIR- and MALDI–TOF measurements. PMID:24778720
Borchert, Mark I.; DeFalco, Lesley
2016-01-01
PREMISE OF THE STUDY: The distribution of Yucca brevifolia, a keystone species of the Mojave Desert, may contract with climate change, yet reproduction and dispersal are poorly understood. We tracked reproduction, seed predation, and fruit dispersal for two years and discuss whether Y. brevifolia is a masting species. METHODS: Fruit maturation, seed predation (larval yucca moths), and fruit dispersal (rodents) were monitored on a random sample of panicles during 2013 and 2014, which were years of high and low reproduction, respectively. Fates of fruits placed on the ground and in canopies were also tracked. Rodents were live-trapped to assess abundance and species composition. KEY RESULTS: In 2013, 66% of inflorescences produced fruit of which 53% escaped larval predation; 19.5% of seeds were destroyed in infested fruits. Total seed production was estimated to be >100 times greater in 2013 than 2014. One-third of the fruit crop fell to the ground and was removed by rodents over the course of 120 d. After ground fruits became scarce, rodents exploited canopy fruits. Rodent numbers were low in 2013, so fruits remained in canopies for 370 d. In 2014, fruit production was approximately 20% lower. Larvae infested the majority of fruits, and almost twice the number of seeds were damaged. Fruits were exploited by rodents within 65 d. CONCLUSIONS: High fertilization, prolific seed production, and low predispersal predation in 2013 suggests that pollinator attraction and satiation of seed predators influence masting in Y. brevifolia. Abundant, prolonged fruit availability to seed-dispersing rodents likely extends recruitment opportunities during mast years.
Souza, Aline Das Graças; Smiderle, Oscar Jose; Bianchi, Valmor Joao
2018-04-26
This study aimed to evaluate the efficiency of using the computerized imaging seed analysis system (SAS) in the biometric and morphophysiological characterization of seeds and the initial growth of seedlings from peach rootstocks. The experimental design was completely randomized with five replicates of 20 seeds. The variables analyzed were degree of seed humidity, length and width of seeds measured by SAS technology and manual measurements, mean germination time, germination percentage, radicle length and width, taproot length, length of the aerial part and taproot/aerial part ratio. The highest seed length, germination percentage (100%) and lower germination time (11.3), were obtained with the cv. Capdeboscq while, 'Tsukuba 1', 2' and 3' had intermediate seedlings length, varying from 1.55 to 1.65 cm with mean germination times between 14.5 and 18.0 days and average germination percentage of 96%. The computerized analysis of images is fast and efficient for biometric evaluations such as seed width and length, as well as initial growth of peach tree seedlings. The cvs Capdeboscq, Flordaguard and Tsukuba 2 presented greater radicle width, length and a mean taproot/aerial part ratio equal to 2, as well as higher number of adventitious roots, which indicated a strong positive correlation between radicle length, taproot length and initial seedling growth. The continuity of the research will certainly allow the development of reliable procedures for other species, besides allowing the identification of wider alternatives for the use of this system for the expansion of knowledge in the areas of physiology and evaluation of the physiological potential of seeds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Physical layer one-time-pad data encryption through synchronized semiconductor laser networks
NASA Astrophysics Data System (ADS)
Argyris, Apostolos; Pikasis, Evangelos; Syvridis, Dimitris
2016-02-01
Semiconductor lasers (SL) have been proven to be a key device in the generation of ultrafast true random bit streams. Their potential to emit chaotic signals under conditions with desirable statistics, establish them as a low cost solution to cover various needs, from large volume key generation to real-time encrypted communications. Usually, only undemanding post-processing is needed to convert the acquired analog timeseries to digital sequences that pass all established tests of randomness. A novel architecture that can generate and exploit these true random sequences is through a fiber network in which the nodes are semiconductor lasers that are coupled and synchronized to central hub laser. In this work we show experimentally that laser nodes in such a star network topology can synchronize with each other through complex broadband signals that are the seed to true random bit sequences (TRBS) generated at several Gb/s. The potential for each node to access real-time generated and synchronized with the rest of the nodes random bit streams, through the fiber optic network, allows to implement an one-time-pad encryption protocol that mixes the synchronized true random bit sequence with real data at Gb/s rates. Forward-error correction methods are used to reduce the errors in the TRBS and the final error rate at the data decoding level. An appropriate selection in the sampling methodology and properties, as well as in the physical properties of the chaotic seed signal through which network locks in synchronization, allows an error free performance.
Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Qaisieh, Bashar; Mason, Josh, E-mail: joshua.mason@nhs.net; Bownes, Peter
2015-07-15
Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focalmore » (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable reduction to organs at risk. Treating smaller targets makes seed positioning more critical.« less
Safaei, Naser; Babaei, Hossein; Azarfarin, Rasoul; Jodati, Ahmad-Reza; Yaghoubi, Alireza; Sheikhalizadeh, Mohammad-Ali
2017-01-01
This study aimed to test the beneficial effect of grape seed extract (GSE) (Vitis vinifera) and Vitamin C in oxidative stress and reperfusion injury induced by cardiopulmonary bypass (CPB) in coronary artery bypass surgery. In this randomized trial, 87 patients undergoing elective and isolated coronary bypass surgery included. The patients were randomly assigned into three groups (n = 29 each): (1) Control group with no treatment, (2) GSE group who received the extract 24 h before operation, 100 mg every 6 h, orally, (3) Vitamin C group who received 25 mg/kg Vitamin C through CPB during surgery. Blood samples were taken from coronary sinus at (T1) just before aortic cross clamp; (T2) just before starting controlled aortic root reperfusion; and (T3) 10 min after root reperfusion. Some clinical parameters and biochemical markers were compared among the groups. There were significant differences in tracheal intubation times, sinus rhythm return, and left ventricular function between treatment groups compared with control (P < 0.05). Total antioxidant capacity was higher (P < 0.05) in both grape seed and Vitamin C groups at T2 and T3 times. In reperfusion period, malondialdehyde level was increased in control group; however, it was significantly lower for the grape seed group (P = 0.04). The differences in the mean levels of superoxide dismutase and glutathione peroxidase among the three groups were not significant (P > 0.05 in all cases). In our patients, GSE and Vitamin C had antioxidative effects and reduced deleterious effects of CPB during coronary artery bypass grafting surgery.
NASA Astrophysics Data System (ADS)
Kusumanti, Endang; Murwani, Retno
2018-02-01
Arecha catechu L (bettle nut) seed and Anredera cordifolia (Ten) Steenis (“Binahong”) have been shown to have anti helmintic and wound healing activities respectively. Their combine use as phytogenic additives in layers have been shown to reduce serum transaminase. Further study was conducted to evaluate the effect of A. catechu seed and A. cordifolia leaves powder supplementation on fecal parasites number and the performance of laying hens obtained from outdoor small scale layer farmers. Forty eight of 42 weeks old laying hens were allocated randomly into 4 treatment groups i.e. no supplementation (T0), supplemented with 0.025% A. catechu seed and A. cordifolia leaves powder (T0.025%), 0.05% A. catechu seed and A. cordifolia leaves powder (T0.05%), 0.1% A. catechu seed and A. cordifolia leaves powder (T0.1%). Each treatment consisted of six replicates with two hens per replicate. Supplementation were carried out by administering alternately A. catechu seed powder for 3 days followed by A. cordifolia leaves powder for another 3 days. The alternate supplementation for each groups was conducted for 18 days. Feed consumption, egg production, egg weight, hen day production (HDP) were recorded daily. Parasites counts were sampled and enumerated at the beginning and at the end of supplementation. The result showed that alternate supplementation of 0.0.025% A. catechu seed and A. cordifolia leaves powder up to 18 days to 42 weeks old laying hens reduced fecal parasites without affecting performance.
Olmez, Zafer; Yahyaoglu, Zeki; Temel, Fatih; Gokturk, Askin
2008-05-01
This study was carried out to determine effects of pre-treatments including floating in hot water(100 degrees C) followed by continual cooling for 24 hr in the same water floating in tap water for 24 hr submersion in concentrate (98%) sulphuric acid (H2SO4) and cold stratification for different durations (20, 40 and 60 days) and their combinations on seed germination and to investigate how to overcome dormancy of seeds of Colutea armena Boiss. and Huet. and Cotinus coggygria Scop. The seeds were sown in polyethylene pots in the greenhouse and on seedbeds under open field conditions. The statistical design was a randomized complete block design with three replications. The highest germination percentage (77.19%), the best germination rate (16 days) and the highest growth rate (69.01%) were obtained from Colutea armena seeds that were submersed in sulphuric acid for 30 min and sown in the greenhouse. The pre-treatment of submersion in sulphuric acid for 20 min with cold stratification for 60 days gave the highest germination percentage (82.77%) and the highest growth rate (79.37%) in the greenhouse for Cotinus coggygria seeds. On the other hand, the best germination rate (9 days) was obtained from smoketree seeds that were cold stratified 60 days and sown under open field conditions. It can be stated that there is an affirmative effect of the greenhouse condition on germination percentage and growth rate values of the seeds used in this study
Row distance method sowing of forage Kochia, eastern saltwort and winterfat.
Zadbar, M; Dormanov, D N; Shariph-abad, H Heidari; Dorikov, M; Jalilvand, H
2007-05-15
In this study, we used three native range species of eastern saltwort, winterfat and forage Kochia. These species are extremely adapted to dry lands and have high productivity comparison with other forage species. In order to increase range production in poor, dry and sub dry land in the province of Khorasan (Sabzevar) the seeds of these species naturally were sowed. They were sowed individually on rows and mixed of the two by 2 or 3 species on the alternative rows. The research was carried out statistically in Completely Randomized Block Design (CRBD) as a factorial experiment by two factors. The first factor was row distance of seeding (three levels, 50, 75 and 100 cm distance between each row) and the second was kinds of intercropping methods (seven level of individual seeding by three mentioned species and mixed alternative rows of two by 2 and 3 species together) with four replicates (3x7x4). Number of seed was accounted by the number of bushes were germinated or died in each experimental unit. The results showed that maximum abundant of seed germination of all treatments was occurred from late April to late May. Sowing in the row spaces of 50 cm had highly statistically significant production than the ones of 75 and 100 cm spaces. Also, by comparing relative frequency percentage of germinated seeds and relative germinated died seed revealed that individual sowing seed of Salsola orientalis and Eurotia ceratoides, by 50 cm row space in Sabzevar region had better result, respectively, because of lowest mortality of plants and highest productivity of biomass.
Wang, Chenyu; Chen, Dennis P.; Unocic, Raymond R.; ...
2016-05-23
The high performance of Pd-based intermetallic nanocatalysts has the potential to replace Pt-containing catalysts for fuel-cell reactions. Conventionally, intermetallic particles are obtained through the annealing of nanoparticles of a random alloy distribution. However, this method inevitably leads to sintering of the nanoparticles and generates polydisperse samples. Here, monodisperse PdCu nanoparticles with the ordered B2 phase were synthesized by seed-mediated co-reduction using PdCu nanoparticle seeds with a random alloy distribution (A1 phase). A time-evolution study suggests that the particles must overcome a size-dependent activation barrier for the ordering process to occur. Characterization of the as-prepared PdCu B2 nanoparticles by electron microscopymore » techniques revealed surface segregation of Pd as a thin shell over the PdCu core. The ordered nanoparticles exhibit superior activity and durability for the oxygen reduction reaction in comparison with PdCu A1 nanoparticles. This seed-mediated co-reduction strategy produced monodisperse nanoparticles ideally suited for structure–activity studies. Furthermore, the study of their growth mechanism provides insights into the size dependence of disorder–order transformations of bimetallic alloys at the nanoscale, which should enable the design of synthetic strategies toward other intermetallic systems.« less
A Micro-Computer Model for Army Air Defense Training.
1985-03-01
generator. The period is 32763 numbers generated before a repetitive sequence is encountered on the development system. Chi-Squared tests for frequency...C’ Tests CPeriodicity. The period is 32763 numbers generated C’before a repetitive sequence is encountered on the development system. This was...positions in the test array. This was done with several different random number seeds. In each case 32763 p random numbers were generated before a
NASA Astrophysics Data System (ADS)
Shang, H.; Chen, L.; Bréon, F.-M.; Letu, H.; Li, S.; Wang, Z.; Su, L.
2015-07-01
The principles of the Polarization and Directionality of the Earth's Reflectance (POLDER) cloud droplet size retrieval requires that clouds are horizontally homogeneous. Nevertheless, the retrieval is applied by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using the POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval, and then analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-scale variability in droplet effective radius (CDR) can mislead both the CDR and effective variance (EV) retrievals. Nevertheless, the sub-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval is accurate using limited observations and is largely independent of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, the measurements in the primary rainbow region (137-145°) are used to ensure accurate large droplet (> 15 μm) retrievals and reduce the uncertainties caused by cloud heterogeneity. We apply the improved method using the POLDER global L1B data for June 2008, the new CDR results are compared with the operational CDRs. The comparison show that the operational CDRs tend to be underestimated for large droplets. The reason is that the cloudbow oscillations in the scattering angle region of 145-165° are weak for cloud fields with CDR > 15 μm. Lastly, a sub-scale retrieval case is analyzed, illustrating that a higher resolution, e.g., 42 km × 42 km, can be used when inverting cloud droplet size parameters from POLDER measurements.
NASA Astrophysics Data System (ADS)
Wu, J.; Yao, W.; Zhang, J.; Li, Y.
2018-04-01
Labeling 3D point cloud data with traditional supervised learning methods requires considerable labelled samples, the collection of which is cost and time expensive. This work focuses on adopting domain adaption concept to transfer existing trained random forest classifiers (based on source domain) to new data scenes (target domain), which aims at reducing the dependence of accurate 3D semantic labeling in point clouds on training samples from the new data scene. Firstly, two random forest classifiers were firstly trained with existing samples previously collected for other data. They were different from each other by using two different decision tree construction algorithms: C4.5 with information gain ratio and CART with Gini index. Secondly, four random forest classifiers adapted to the target domain are derived through transferring each tree in the source random forest models with two types of operations: structure expansion and reduction-SER and structure transfer-STRUT. Finally, points in target domain are labelled by fusing the four newly derived random forest classifiers using weights of evidence based fusion model. To validate our method, experimental analysis was conducted using 3 datasets: one is used as the source domain data (Vaihingen data for 3D Semantic Labelling); another two are used as the target domain data from two cities in China (Jinmen city and Dunhuang city). Overall accuracies of 85.5 % and 83.3 % for 3D labelling were achieved for Jinmen city and Dunhuang city data respectively, with only 1/3 newly labelled samples compared to the cases without domain adaption.
NASA Astrophysics Data System (ADS)
Basuki, F.; Susilowati, T.; Harwanto, D.
2018-03-01
This study aimed to analyze the performance of hybrid seeds between catfish (Clarias gariepinus Burchell) semarang and sangkuriang strains by parameters of fecundity, length and weight gain and seeds survival rate. The material used in this study was the parent of catfish semarang and sangkuriang strains. The research method used was experimental method using Completely Randomized Design (RAL), consists of four treatments and three replications. Those were Treatment A (semarang/HH ♀ × semarang/HH ♂), Treatment B (semarang/HH ♀ × sangkuriang/SS ♂), Treatment C (sangkuriang/SS ♀ × sangkuriang/SS ♂) and Treatment D (sangkuriang/SS ♀ × sangkuriang/SS ♂). The results showed that fecundity of most catfish eggs were obtained from treatment A, B, C and D. The hatching rate of catfish eggs from various treatments was not significantly different. Performance of seeds with length and weight parameters showed that newly hatched larvae until the age of one-week-feeding catfish are not significantly, the difference in seed performance began to appear on the 14th day of feeding. The order of the best treatment result were C, B, D and A. The difference was more significant at 28 days of feeding.
Rainfall Results of the Florida Area Cumulus Experiment, 1970-76.
NASA Astrophysics Data System (ADS)
Woodley, William L.; Jordan, Jill; Barnston, Anthony; Simpson, Joanne; Biondini, Ron; Flueck, John
1982-02-01
The Florida Area Cumulus Experiment of 1970-76 (FACE-1) is a single-area, randomized, exploratory experiment to determine whether seeding cumuli for dynamic effects (dynamic seeding) can be used to augment convective rainfall over a substantial target area (1.3 × 104 km2) in south Florida. Rainfall is estimated using S-band radar observations after adjustment by raingages. The two primary response variables are rain volumes in the total target (TT) and in the floating target (FT), the most intensely treated portion of the target. The experimental unit is the day and the main observational period is the 6 h after initiation of treatment (silver iodide flares on seed days and either no flares or placebos on control days). Analyses without predictors suggest apparent increases in both the location (means and medians) and the dispersion (standard deviation and interquartile range) characteristics of rainfall due to seeding in the FT and TT variables with substantial statistical support for the FT results and lesser statistical support for the TT results. Analyses of covariance using meteorologically meaningful predictor variables suggest a somewhat larger effect of seeding with stronger statistical support. These results are interpreted in terms of the FACE conceptual model.
Mesoscale Features and Cloud Organization on 10-12 December 1978 over the South China Sea.
NASA Astrophysics Data System (ADS)
Warner, Charles
1982-07-01
Aircraft data from Winter MONEX have been combined with other data to study mesoscale features, and organization of cumulus clouds, on 10-12 December 1978. A moderate cold surge in the northeasterly monsoon flow, toward cloudiness in an equatorial trough off Borneo, peaked on 11 December.Clouds in the northeasterly monsoon flow were similar to those in the trades, with variations in convective regime on length scales on the order of 100 km. Marked mid-tropospheric subsidence was accompanied by low-level divergence near 20°N. During 10 December, anvil clouds near Borneo expanded; cumulus congestus and cumulonimbus formed on the periphery of this area. The approach of the low-level northeasterlies to the area of anvils was marked by a diminution of subsidence, conditional instability, and a weak field of low-level convergence, with randomly organized cumulus of increasing height. A low-level easterly jet was found in this transition zone, downstream from cloudiness over the Philippines. South of Vietnam, a clear area was associated with low air temperatures, and not subsidence. Congestus and cumulonimbus clouds formed near the eastern coast of the Malay Peninsula.Cloud streets were seen from latitude 19°N to the Malaysian coast (with a break south of Vietnam). These clouds were confined below the level of an inflection point in the profile of winds normal to the street direction. Greatest spacings of streets occurred with greatest vertical shears of the cross-winds. Cloud number densities were more closely related to the instability of the vertical stratification than to any other parameter.Cross-wind organization of clouds occurred in circumstances of unstable, stratification and apparently of net ascent. Alignment of clouds was at an angle to the directions of both winds and vertical wind shears. It is inferred that when convergence was strong, deep clouds occurred along lines of convergence in the surface streamlines.
Cost-Effective Cloud Computing: A Case Study Using the Comparative Genomics Tool, Roundup
Kudtarkar, Parul; DeLuca, Todd F.; Fusaro, Vincent A.; Tonellato, Peter J.; Wall, Dennis P.
2010-01-01
Background Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource—Roundup—using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Methods Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon’s Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. Results We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon’s computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure. PMID:21258651
NASA Astrophysics Data System (ADS)
Varma, S.; Voulgarakis, A.; Liu, H.; Crawford, J. H.
2016-12-01
What drives the variability of trace gases and aerosols in the troposphere is not well understood, as is the role of clouds in modulating this variability via radiative, transport, deposition, and lightning effects that are associated with them. Such uncertainties are expected to be of particular importance in the tropical troposphere, a region that receives significant surface emissions and moisture via deep convection and upwelling, and experiences large amounts of lightning production of nitrogen oxides (NOx). Accurately simulating tropospheric composition and its variability is of utmost importance as both could have a significant effect on the region's temperature and circulation, as well as on surface climate and the amount of UV radiation in the troposphere. In this presentation, we will examine the key cloud processes which are expected to have an influence on tropospheric composition with a specific focus on their roles in modifying solar radiation and photolysis rates of trace gases through the backscattering of shortwave radiation. We will pay particular attention to the UT/LS which is less well understood and where clouds could have a significant impact due to backscattering. We will also utilize CCCM (a unique 3-D cloud data product merged from multiple A-Train satellites (CERES, CloudSat, CALIPSO, and MODIS) developed at the NASA Langley Research Center to evaluate the cloud fields and their vertical distribution in the HadGEM3-UKCA model and to adjust the cloud fields where appropriate. This evaluation will initially involve the comparison of effective cloud optical depth (ECOD) as calculated from CCCM and HadGEM3-UKCA using the approximate random overlap approximation followed by the application of 3-D scaling factors to the model's ECOD. We will then examine the impacts of the cloud field adjustment on tropospheric chemistry, with a focus on oxidants in the UT/LS.
NASA Technical Reports Server (NTRS)
Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung
2007-01-01
The consistency of cloud top temperature (Tc) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an 'effective scene brightness temperature' (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences ((Delta)Tb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of DTb,e are for high and opaque clouds, with increasing scatter in (Delta)Tb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in DTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-mm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of (Delta)Tb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than (Delta)Tb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.
NASA Astrophysics Data System (ADS)
Duley, W. W.
1995-05-01
A formalism based on the theory of random covalent networks (RCNs) in amorphous solids is developed for carbonaceous dust grains. RCN solutions provide optimized structures and relative compositions for amorphous materials. By inclusion of aliphatic, aromatic, and diamond clusters, solutions specific to interstellar materials can be obtained and compared with infrared spectral data. It is found that distinct RCN solutions corresponding to diffuse cloud and molecular cloud materials are possible. Specific solutions are derived for three representative objects: VI Cyg No. 12, NGC 7538 (IRS 9), and GC IRS 7. While diffuse cloud conditions with a preponderance of sp2 and sp3 bonded aliphatic CH species can be reproduced under a variety of RCN conditions, the presence of an abundant tertiary CH or diamond component is highly constrained. These solutions are related quantitatively to carbon depletions and can be used to provide a quantitative estimate of carbon in these various dust components. Despite the abundance of C6 aromatic rings in many RCN solutions, the infrared absorption due to the aromatic stretch at approximately 3.3 micrometers is weak under all conditions. The RCN formalism is shown to provide a useful method for tracing the evolutionary properties of interstellar carbonaceous grains.
Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds.
Nayak, Bijoor Shivananda; Ramdeen, Ria; Adogwa, Andrew; Ramsubhag, Adash; Marshall, Julien Rhodney
2012-12-01
Carica papaya L. (Linn) (Caricaceae) is traditionally used to treat various skin disorders, including wounds. It is widely used in developing countries as an effective and readily available treatment for various wounds, particularly burns. This study evaluated the wound-healing and antimicrobial activity of C. papaya seed extract. Ethanol extract of C. papaya seed (50 mg/kg/day) was evaluated for its wound-healing activity in Sprague-Dawley rats using excision wound model. Animals were randomly divided into four groups of six each (group 1 served as control, group 2 treated with papaya seed extract, group 3 treated with a standard drug mupirocin and papaya seed extract (1:1 ratio) and group 4 treated with a mupirocin ointment. Rate of wound contraction and hydroxyproline content were determined to assess the wound-healing activity of the seed extract. The group 2 animals showed a significant decrease in wound area of 89% over 13 days when compared with groups 1 (82%), 3 (86%) and 4 (84%) respectively. The hydroxyproline content was significantly higher with the granulation tissue obtained from group 2 animals which were treated with C. papaya seed extract. Histological analysis of granulation tissue of the group 2 animals showed the deposition of well-organized collagen. The extract exhibited antimicrobial activity against Salmonella choleraesuis and Staphylococcus aureus. Our results suggest that C. papaya promotes significant wound healing in rats and further evaluation for this activity in humans is suggested. © 2012 The Authors. © 2012 Blackwell Publishing Ltd and Medicalhelplines.com Inc.
Li, Xuejun; Xu, Jia; Yang, Yun
2015-01-01
Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.
NASA Astrophysics Data System (ADS)
Wang, Yueyang; Bao, Biwen; Yang, Chuyuan; Zhang, Li
2018-05-01
The dynamical properties of supernova remnants (SNRs) evolving with different interstellar medium structures are investigated through performing extensive two-dimensional magnetohydrodynamic (MHD) simulations in the cylindrical symmetry. Three cases of different interstellar medium structures are considered: the uniform medium, the turbulent medium and the cloudy medium. Large-scale density and magnetic fluctuations are calculated and mapped into the computational domain before simulations. The clouds are set by random distribution in advance. The above configuration allows us to study the time-dependent dynamical properties and morphological evolution of the SNR evolving with different ambient structures, along with the development of the instabilities at the contact discontinuity. Our simulation results indicate that remnant morphology deviates from symmetry if the interstellar medium contains clouds or turbulent density fluctuations. In the cloudy medium case, interactions between the shock wave and clouds lead to clouds' fragmentation. The magnetic field can be greatly enhanced by stretching field lines with a combination of instabilities while the width of amplification region is quite different among the three cases. Moreover, both the width of amplification region and the maximum magnetic-field strength are closely related to the clouds' density.
Li, Xuejun; Xu, Jia; Yang, Yun
2015-01-01
Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts. PMID:26357510
Why is the Magellanic Stream so Turbulent? - A Simulational Study
NASA Astrophysics Data System (ADS)
Williams, Elliott; Shelton, Robin L.
2018-06-01
As the Large and Small Magellanic Clouds travel through the Milky Way (MW) halo, gas is tidally and ram pressure stripped from them, forming the Leading Arm (LA) and Magellanic Stream (MS). The evolution of the LA and MS are an interest to astronomers because there is evidence that the diffuse gas that has been stripped off is able to fall onto the galactic disk and cool enough to fuel star formation in the MW. For et al, 2014 published a catalog of 251 high velocity clouds (HVCs) in the MS, many of which have head-tail morphologies, suggesting interaction with the Milky Way’s halo or other gas in the MS. For et al noticed that the pointing direction of the HVCs are random, which they interpreted as an indication of strong turbulence. They suggested the shock cascade scenario as a contributing process, where ablated cloud material generates turbulence (and H-alpha emission). We take a closer look at this process via simulations. We ran numerical simulations of clouds in the MS using the University of Chicago’s FLASH software. We simulated cases that had two clouds, where one trailed behind the other, and we simulated cases that had one cloud in order to examine the effects of drafting on cloud dynamics and velocity dispersion. Initial cloud temperatures ranged from 100 K to 20,000 K. We have created velocity dispersion maps from the FLASH simulation data to visualize turbulence. We compare these generated maps with 21 cm observations (most recently Westmeier, 2017), in order to search for signatures similar to the small scale turbulence seen in the simulations. We find that if the clouds are initially near to each other, then drafting allows the trailing cloud to catch the leading cloud and mix together. For greater separations, Kelvin-Helmholtz instabilities disrupt the clouds enough before impact that drafting has a minimal role. Our velocity dispersion maps of the warmer clouds closely match values published in For et al, 2014; although, thermal broadening accounts for a large fraction of the velocity dispersion found in the generated maps.
Efficient terrestrial laser scan segmentation exploiting data structure
NASA Astrophysics Data System (ADS)
Mahmoudabadi, Hamid; Olsen, Michael J.; Todorovic, Sinisa
2016-09-01
New technologies such as lidar enable the rapid collection of massive datasets to model a 3D scene as a point cloud. However, while hardware technology continues to advance, processing 3D point clouds into informative models remains complex and time consuming. A common approach to increase processing efficiently is to segment the point cloud into smaller sections. This paper proposes a novel approach for point cloud segmentation using computer vision algorithms to analyze panoramic representations of individual laser scans. These panoramas can be quickly created using an inherent neighborhood structure that is established during the scanning process, which scans at fixed angular increments in a cylindrical or spherical coordinate system. In the proposed approach, a selected image segmentation algorithm is applied on several input layers exploiting this angular structure including laser intensity, range, normal vectors, and color information. These segments are then mapped back to the 3D point cloud so that modeling can be completed more efficiently. This approach does not depend on pre-defined mathematical models and consequently setting parameters for them. Unlike common geometrical point cloud segmentation methods, the proposed method employs the colorimetric and intensity data as another source of information. The proposed algorithm is demonstrated on several datasets encompassing variety of scenes and objects. Results show a very high perceptual (visual) level of segmentation and thereby the feasibility of the proposed algorithm. The proposed method is also more efficient compared to Random Sample Consensus (RANSAC), which is a common approach for point cloud segmentation.
Public Auditing with Privacy Protection in a Multi-User Model of Cloud-Assisted Body Sensor Networks
Li, Song; Cui, Jie; Zhong, Hong; Liu, Lu
2017-01-01
Wireless Body Sensor Networks (WBSNs) are gaining importance in the era of the Internet of Things (IoT). The modern medical system is a particular area where the WBSN techniques are being increasingly adopted for various fundamental operations. Despite such increasing deployments of WBSNs, issues such as the infancy in the size, capabilities and limited data processing capacities of the sensor devices restrain their adoption in resource-demanding applications. Though providing computing and storage supplements from cloud servers can potentially enrich the capabilities of the WBSNs devices, data security is one of the prevailing issues that affects the reliability of cloud-assisted services. Sensitive applications such as modern medical systems demand assurance of the privacy of the users’ medical records stored in distant cloud servers. Since it is economically impossible to set up private cloud servers for every client, auditing data security managed in the remote servers has necessarily become an integral requirement of WBSNs’ applications relying on public cloud servers. To this end, this paper proposes a novel certificateless public auditing scheme with integrated privacy protection. The multi-user model in our scheme supports groups of users to store and share data, thus exhibiting the potential for WBSNs’ deployments within community environments. Furthermore, our scheme enriches user experiences by offering public verifiability, forward security mechanisms and revocation of illegal group members. Experimental evaluations demonstrate the security effectiveness of our proposed scheme under the Random Oracle Model (ROM) by outperforming existing cloud-assisted WBSN models. PMID:28475110
Predicting Daily Insolation with Hourly Cloud Height and Coverage.
NASA Astrophysics Data System (ADS)
Meyers, T. P.; Dale, R. F.
1983-04-01
Solar radiation information is used in crop growth, boundary layer, entomological and plant pathological models, and in determining the potential use of active and passive solar energy systems. Yet solar radiation is among the least measured meteorological variables.A semi-physical model based on standard meteorological data was developed to estimate solar radiation received at the earth's surface. The radiation model includes the effects of Rayleigh scattering, absorption by water vapor and permanent gases, and absorption and scattering by aerosols and clouds. Cloud attenuation is accounted for by assigning transmission coefficients based on cloud height and amount. The cloud transmission coefficients for various heights and coverages were derived empirically from hourly observations of solar radiation in conjunction with corresponding cloud observations at West Lafayette, Indiana. The model was tested with independent data from West Lafayette and Indianapolis, Madison, WI, Omaha, NE, Columbia, MO, Nashville, TN, Seattle, WA, Los Angeles, CA, Phoenix, AZ, Lake Charles, LA, Miami, FL, and Sterling, VA. For each of these locations a 16% random sample of days was drawn within each of the 12 months in a year for testing the model. Excellent agreement between predicted and observed radiation values was obtained for all stations tested. Mean absolute errors ranged from 1.05 to 1.80 MJ m2 day1 and root-mean-square errors ranged from 1.31 to 2.32 MJ m2 day1. The model's performance judged by relative error was found to be independent of season and cloud amount for all locations tested.
Li, Song; Cui, Jie; Zhong, Hong; Liu, Lu
2017-05-05
Wireless Body Sensor Networks (WBSNs) are gaining importance in the era of the Internet of Things (IoT). The modern medical system is a particular area where the WBSN techniques are being increasingly adopted for various fundamental operations. Despite such increasing deployments of WBSNs, issues such as the infancy in the size, capabilities and limited data processing capacities of the sensor devices restrain their adoption in resource-demanding applications. Though providing computing and storage supplements from cloud servers can potentially enrich the capabilities of the WBSNs devices, data security is one of the prevailing issues that affects the reliability of cloud-assisted services. Sensitive applications such as modern medical systems demand assurance of the privacy of the users' medical records stored in distant cloud servers. Since it is economically impossible to set up private cloud servers for every client, auditing data security managed in the remote servers has necessarily become an integral requirement of WBSNs' applications relying on public cloud servers. To this end, this paper proposes a novel certificateless public auditing scheme with integrated privacy protection. The multi-user model in our scheme supports groups of users to store and share data, thus exhibiting the potential for WBSNs' deployments within community environments. Furthermore, our scheme enriches user experiences by offering public verifiability, forward security mechanisms and revocation of illegal group members. Experimental evaluations demonstrate the security effectiveness of our proposed scheme under the Random Oracle Model (ROM) by outperforming existing cloud-assisted WBSN models.
The characteristic black hole mass resulting from direct collapse in the early Universe
NASA Astrophysics Data System (ADS)
Latif, M. A.; Schleicher, D. R. G.; Schmidt, W.; Niemeyer, J. C.
2013-12-01
Black holes of a billion solar masses are observed in the infant Universe a few hundred million years after the big bang. The direct collapse of protogalactic gas clouds in primordial haloes with Tvir ≥ 104 K provides the most promising way to assemble massive black holes. In this study, we aim to determine the characteristic mass scale of seed black holes and the time evolution of the accretion rates resulting from the direct collapse model. We explore the formation of supermassive black holes via cosmological large eddy simulations (LES) by employing sink particles and following their evolution for 20 000 yr after the formation of the first sink. As the resulting protostars were shown to have cool atmospheres in the presence of strong accretion, we assume here that UV feedback is negligible during this calculation. We confirm this result in a comparison run without sinks. Our findings show that black hole seeds with characteristic mass of 105 M⊙ are formed in the presence of strong Lyman-Werner flux which leads to an isothermal collapse. The characteristic mass is about two times higher in LES compared to the implicit large eddy simulations. The accretion rates increase with time and reach a maximum value of 10 M⊙ yr-1 after 104 yr. Our results show that the direct collapse model is clearly feasible as it provides the expected mass of the seed black holes.
Cobb, Nathan K; Jacobs, Megan A; Wileyto, Paul; Valente, Thomas; Graham, Amanda L
2016-06-01
To examine the diffusion of an evidence-based smoking cessation application ("app") through Facebook social networks and identify specific intervention components that accelerate diffusion. Between December 2012 and October 2013, we recruited adult US smokers ("seeds") via Facebook advertising and randomized them to 1 of 12 app variants using a factorial design. App variants targeted components of diffusion: duration of use (t), "contagiousness" (β), and number of contacts (Z). The primary outcome was the reproductive ratio (R), defined as the number of individuals installing the app ("descendants") divided by the number of a seed participant's Facebook friends. We randomized 9042 smokers. App utilization metrics demonstrated between-variant differences in expected directions. The highest level of diffusion (R = 0.087) occurred when we combined active contagion strategies with strategies to increase duration of use (incidence rate ratio = 9.99; 95% confidence interval = 5.58, 17.91; P < .001). Involving nonsmokers did not affect diffusion. The maximal R value (0.087) is sufficient to increase the numbers of individuals receiving treatment if applied on a large scale. Online interventions can be designed a priori to spread through social networks.
Automatic Extraction of Road Markings from Mobile Laser Scanning Data
NASA Astrophysics Data System (ADS)
Ma, H.; Pei, Z.; Wei, Z.; Zhong, R.
2017-09-01
Road markings as critical feature in high-defination maps, which are Advanced Driver Assistance System (ADAS) and self-driving technology required, have important functions in providing guidance and information to moving cars. Mobile laser scanning (MLS) system is an effective way to obtain the 3D information of the road surface, including road markings, at highway speeds and at less than traditional survey costs. This paper presents a novel method to automatically extract road markings from MLS point clouds. Ground points are first filtered from raw input point clouds using neighborhood elevation consistency method. The basic assumption of the method is that the road surface is smooth. Points with small elevation-difference between neighborhood are considered to be ground points. Then ground points are partitioned into a set of profiles according to trajectory data. The intensity histogram of points in each profile is generated to find intensity jumps in certain threshold which inversely to laser distance. The separated points are used as seed points to region grow based on intensity so as to obtain road mark of integrity. We use the point cloud template-matching method to refine the road marking candidates via removing the noise clusters with low correlation coefficient. During experiment with a MLS point set of about 2 kilometres in a city center, our method provides a promising solution to the road markings extraction from MLS data.
De Haan, David O; Hawkins, Lelia N; Welsh, Hannah G; Pednekar, Raunak; Casar, Jason R; Pennington, Elyse A; de Loera, Alexia; Jimenez, Natalie G; Symons, Michael A; Zauscher, Melanie; Pajunoja, Aki; Caponi, Lorenzo; Cazaunau, Mathieu; Formenti, Paola; Gratien, Aline; Pangui, Edouard; Doussin, Jean-François
2017-07-05
The effects of methylglyoxal uptake on the physical and optical properties of aerosol containing amines or ammonium sulfate were determined before and after cloud processing in a temperature- and RH-controlled chamber. The formation of brown carbon was observed upon methylglyoxal addition, detected as an increase in water-soluble organic carbon mass absorption coefficients below 370 nm and as a drop in single-scattering albedo at 450 nm. The imaginary refractive index component k 450 reached a maximum value of 0.03 ± 0.009 with aqueous glycine aerosol particles. Browning of solid particles occurred at rates limited by chamber mixing (<1 min), and in liquid particles occurred more gradually, but in all cases occurred much more rapidly than in bulk aqueous studies. Further browning in AS and methylammonium sulfate seeds was triggered by cloud events with chamber lights on, suggesting photosensitized brown carbon formation. Despite these changes in optical aerosol characteristics, increases in dried aerosol mass were rarely observed (<1 μg/m 3 in all cases), consistent with previous experiments on methylglyoxal. Under dry, particle-free conditions, methylglyoxal reacted (presumably on chamber walls) with methylamine with a rate constant k = (9 ± 2) × 10 -17 cm 3 molecule -1 s -1 at 294 K and activation energy E a = 64 ± 37 kJ/mol.
NASA Technical Reports Server (NTRS)
Liu, Hongyu; Crawford, James H.; Considine, David B.; Platnick, Steven; Norris, Peter M.; Duncan, Bryan N.; Pierce, Robert B.; Chen, Gao; Yantosca, Robert M.
2009-01-01
Clouds affect tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies. As a follow-up study to our recent assessment of the radiative effects of clouds on tropospheric chemistry, this paper presents an analysis of the sensitivity of such effects to cloud vertical distributions and optical properties (cloud optical depths (CODs) and cloud single scattering albedo), in a global 3-D chemical transport model (GEOS-Chem). GEOS-Chem was driven with a series of meteorological archives (GEOS1- STRAT, GEOS-3 and GEOS-4) generated by the NASA Goddard Earth Observing System data assimilation system. Clouds in GEOS1-STRAT and GEOS-3 have more similar vertical distributions (with substantially smaller CODs in GEOS1-STRAT) while those in GEOS-4 are optically much thinner in the tropical upper troposphere. We find that the radiative impact of clouds on global photolysis frequencies and hydroxyl radical (OH) is more sensitive to the vertical distribution of clouds than to the magnitude of column CODs. With random vertical overlap for clouds, the model calculated changes in global mean OH (J(O1D), J(NO2)) due to the radiative effects of clouds in June are about 0.0% (0.4%, 0.9%), 0.8% (1.7%, 3.1%), and 7.3% (4.1%, 6.0%), for GEOS1-STRAT, GEOS-3 and GEOS-4, respectively; the geographic distributions of these quantities show much larger changes, with maximum decrease in OH concentrations of approx.15-35% near the midlatitude surface. The much larger global impact of clouds in GEOS-4 reflects the fact that more solar radiation is able to penetrate through the optically thin upper-tropospheric clouds, increasing backscattering from low-level clouds. Model simulations with each of the three cloud distributions all show that the change in the global burden of ozone due to clouds is less than 5%. Model perturbation experiments with GEOS-3, where the magnitude of 3-D CODs are progressively varied from -100% to 100%, predict only modest changes (<5%) in global mean OH concentrations. J(O1D), J(NO2) and OH3 concentrations show the strongest sensitivity for small CODs and become insensitive at large CODs due to saturation effects. Caution should be exercised not to use in photochemical models a value for cloud single scattering albedo lower than about 0.999 in order to be consistent with the current knowledge of cloud absorption at the ultraviolet wavelengths.
Ikpeme, E V; Ekaluo, U B; Kooffreh, M E; Udensi, O
2011-03-15
This study was aimed at qualitative evaluation of the ethanol seed, leaf and pulp extracts of C. papaya for bioactive compounds and also to investigate their effect on the haematology in male albino rats. A 3 x 4 factorial experimental layout using randomized complete design was adopted. Results show that the phytochemicals found in seed, leaf and pulp were almost the same but however, in varying proportions. Present result also revealed that there were significant effects (p < 0.05) of the extracts on the heamatology of the treated rats, which was blamed on the varying and different variants ofbioactive compounds found in the extracts they were administered with. Suggestively, C. papaya extracts could be used to enhance the production of selected blood parameters, taking issue of dosage into consideration.
Imran, M; Shakeel, A; Azhar, F M; Farooq, J; Saleem, M F; Saeed, A; Nazeer, W; Riaz, M; Naeem, M; Javaid, A
2012-08-24
Cotton is an important cash crop worldwide, accounting for a large percentage of world agricultural exports; however, yield per acre is still poor in many countries, including Pakistan. Diallel mating system was used to identify parents for improving within-boll yield and fiber quality parameters. Combining ability analysis was employed to obtain suitable parents for this purpose. The parental genotypes CP-15/2, NIAB Krishma, CIM-482, MS-39, and S-12 were crossed in complete diallel mating under green house conditions during 2009. The F₀ seed of 20 hybrids and five parents were planted in the field in randomized complete block design with three replications during 2010. There were highly significant differences among all F₁ hybrids and their parents. Specific combining ability (SCA) variance was greater than general combining ability (GCA) variance for bolls per plant (9.987), seeds per boll (0.635), seed density (5.672), lint per seed (4.174), boll size (3.69), seed cotton yield (0.315), and lint percentage (0.470), showing predominance of non-additive genes; while seed volume (3.84) was controlled by additive gene action based on maximum GCA variance. Cultivar MS-39 was found to be the best general combiner for seed volume (0.102), seeds per boll (0.448), and lint per seed (0.038) and its utilization produced valuable hybrids, including MS-39 x NIAB Krishma and MS-39 x S-12. The parental line CIM-482 had high GCA effects for boll size (0.33) and seeds per boll (0.90). It also showed good SCA with S-12 and NIAB Krishma for bolls per plant, with CP- 15/2 for boll size, and with MS-39 for seeds per boll. The hybrids, namely, CP-15/2 x NIAB Krishma, NIAB Krishma x S-12, NIAB Krishma x CIM-482, MS-39 x NIAB Krishma, MS-39 x CP-15/2, and S-12 x MS-39 showed promising results. Correlation analysis revealed that seed cotton yield showed significant positive correlation with bolls per plant, boll size and seeds per boll while it showed negative correlation with lint percentage and lint per seed. Seed volume showed significant negative correlation with seed density. Seeds per boll were positively correlated with boll size and negatively correlated with bolls per plant lint percentage and lint per seed. Similarly, lint per seed exhibited positive correlation with lint percentage and boll size showed significantly negative correlation with bolls per plant. Presence of non-additive genetic effects in traits like bolls per plant, seeds per boll, lint per seed, seed cotton yield, and lint percentage is indicative of later generation selection or heterosis breeding may be adopted. For boll size, seed volume and seed density early generation selection may be followed because of the presence of additive gene action. The parental material used in this study and cross combinations obtained from these parents may be exploited in future breeding endeavors.
What Controls the Low Ice Number Concentration in the Upper Tropical Troposphere?
NASA Astrophysics Data System (ADS)
Penner, J.; Zhou, C.; Lin, G.; Liu, X.; Wang, M.
2015-12-01
Cirrus clouds in the tropical tropopause play a key role in regulating the moisture entering the stratosphere through their dehydrating effect. Low ice number concentrations and high supersaturations were frequently were observed in these clouds. However, low ice number concentrations are inconsistent with cirrus cloud formation based on homogeneous freezing. Different mechanisms have been proposed to explain this discrepancy, including the inhibition of homogeneous freezing by pre-existing ice crystals and/or glassy organic aerosol heterogeneous ice nuclei (IN) and limiting the formation of ice number from high frequency gravity waves. In this study, we examined the effect from three different parameterizations of in-cloud updraft velocities, the effect from pre-existing ice crystals, the effect from different water vapor deposition coefficients (α=0.1 or 1), and the effect from 0.1% of secondary organic aerosol (SOA) acting as glassy heterogeneous ice nuclei (IN) in CAM5. Model simulated ice crystal numbers are compared against an aircraft observational dataset. Using grid resolved large-scale updraft velocity in the ice nucleation parameterization generates ice number concentrations in better agreement with observations for temperatures below 205K while using updraft velocities based on the model-generated turbulence kinetic energy generates ice number concentrations in better agreement with observations for temperatures above 205K. A larger water vapor deposition coefficient (α=1) can efficiently reduce the ice number at temperatures below 205K but less so at higher temperatures. Glassy SOA IN are most effective at reducing the ice number concentrations when the effective in-cloud updraft velocities are moderate (~0.05-0.2 m s-1). Including the removal of water vapor on pre-existing ice can also effectively reduce the ice number and diminish the effects from the additional glassy SOA heterogeneous IN. We also re-evaluate whether IN seeding in cirrus cloud is a viable mechanism for cooling. A significant amount of negative climate forcing can only be achieved if we restrict the updraft velocity in regions of background cirrus formation to moderate values (~0.05-0.2 m s-1).
Improvement of Automated POST Case Success Rate Using Support Vector Machines
NASA Technical Reports Server (NTRS)
Zwack, Matthew R.; Dees, Patrick D.
2017-01-01
During early conceptual design of complex systems, concept down selection can have a large impact upon program life-cycle cost. Therefore, any concepts selected during early design will inherently commit program costs and affect the overall probability of program success. For this reason it is important to consider as large a design space as possible in order to better inform the down selection process. For conceptual design of launch vehicles, trajectory analysis and optimization often presents the largest obstacle to evaluating large trade spaces. This is due to the sensitivity of the trajectory discipline to changes in all other aspects of the vehicle design. Small deltas in the performance of other subsystems can result in relatively large fluctuations in the ascent trajectory because the solution space is non-linear and multi-modal [1]. In order to help capture large design spaces for new launch vehicles, the authors have performed previous work seeking to automate the execution of the industry standard tool, Program to Optimize Simulated Trajectories (POST). This work initially focused on implementation of analyst heuristics to enable closure of cases in an automated fashion, with the goal of applying the concepts of design of experiments (DOE) and surrogate modeling to enable near instantaneous throughput of vehicle cases [2]. Additional work was then completed to improve the DOE process by utilizing a graph theory based approach to connect similar design points [3]. The conclusion of the previous work illustrated the utility of the graph theory approach for completing a DOE through POST. However, this approach was still dependent upon the use of random repetitions to generate seed points for the graph. As noted in [3], only 8% of these random repetitions resulted in converged trajectories. This ultimately affects the ability of the random reps method to confidently approach the global optima for a given vehicle case in a reasonable amount of time. With only an 8% pass rate, tens or hundreds of thousands of reps may be needed to be confident that the best repetition is at least close to the global optima. However, typical design study time constraints require that fewer repetitions be attempted, sometimes resulting in seed points that have only a handful of successful completions. If a small number of successful repetitions are used to generate a seed point, the graph method may inherit some inaccuracies as it chains DOE cases from the non-global-optimal seed points. This creates inherent noise in the graph data, which can limit the accuracy of the resulting surrogate models. For this reason, the goal of this work is to improve the seed point generation method and ultimately the accuracy of the resulting POST surrogate model. The work focuses on increasing the case pass rate for seed point generation.
Datta, J K; Banerjee, A; Sikdar, M Saha; Gupta, S; Mondal, N K
2009-09-01
Field experiment was carried out during November 2006 to February 2007 under old alluvial soil to evaluate the impact of combined dose of chemical fertilizer, biofertilizer in combination with compost for the yellow sarson (Brassica campestries cv. B9) in a randomized block design replicated thrice. Various morpho-physiological parameters viz., plant population, length of shoot and root, leaf area index (LAI), crop growth rate (CGR), net assimilation rate (NAR), yield attributes viz., number of siliquae per plant, number of seeds/siliquae, 1000 seed weight (test weight), seed yield, stover yield and physiological and biochemical parameters viz., pigment content, sugar, amino acid, protein, ascorbic acid content in physiologically active leaf were performed. The treatment T1 i.e., 40% less N fertilizer 25% less P fertilizer K fertilizer constant + 12 kg ha(-1) biofertilizer (Azophos) and organic manure (compost) @ 5Mt ha(-1), showed the maximum chlorophyll accumulation (10. 231 mg g(-1) freshweight), highest seed/siliquae (25.143), test weight of seeds (4. 861g) and highest seed yield (10.661 tha(-1)). A comparison between all the morphological, anatomical, physiological and biochemical parameters due to application of chemical fertilizer; bio-fertilizer and compost alone and in combination and their impact on soil microorganism, flora and fauna will throw a sound environmental information.
Radiance and polarization of multiple scattered light from haze and clouds.
Kattawar, G W; Plass, G N
1968-08-01
The radiance and polarization of multiple scattered light is calculated from the Stokes' vectors by a Monte Carlo method. The exact scattering matrix for a typical haze and for a cloud whose spherical drops have an average radius of 12 mu is calculated from the Mie theory. The Stokes' vector is transformed in a collision by this scattering matrix and the rotation matrix. The two angles that define the photon direction after scattering are chosen by a random process that correctly simulates the actual distribution functions for both angles. The Monte Carlo results for Rayleigh scattering compare favorably with well known tabulated results. Curves are given of the reflected and transmitted radiances and polarizations for both the haze and cloud models and for several solar angles, optical thicknesses, and surface albedos. The dependence on these various parameters is discussed.
Trace gas exchanges and transports over the Amazonian rain forest
NASA Technical Reports Server (NTRS)
Garstang, Michael; Greco, Steve; Scala, John; Harriss, Robert; Browell, Edward; Sachse, Glenn; Simpson, Joanne; Tao, Wei-Kuo; Torres, Arnold
1986-01-01
Early results are presented from a program to model deep convective transport of chemical species by means of in situ data collection and numerical models. Data were acquired during the NASA GTE Amazon Boundary Layer Experiment in July-August 1985. Airborne instrumentation, including a UV-DIAL system, collected data on the O3, CO, NO, temperature and water vapor profiles from the surface to 400 mb altitude, while GOES imagery tracked convective clouds over the study area. A two-dimensional cloud model with small amplitude random temperature fluctuations at low levels, which simulated thermals, was used to describe the movements of the chemical species sensed in the convective atmosphere. The data was useful for evaluating the accuracy of the cloud model, which in turn was effective in describing the circulation of the chemical species.
Seeing the order in a mess: optical signature of periodicity in a cloud of plasmonic nanowires.
Natarov, Denys M; Marciniak, Marian; Sauleau, Ronan; Nosich, Alexander I
2014-11-17
We consider the two-dimensional (2-D) problem of the H-polarized plane wave scattering by a linear chain of silver nanowires in a cloud of similar pseudo-randomly located wires, in the visible range. Numerical solution uses the field expansions in local coordinates and addition theorems for cylindrical functions and has a guaranteed convergence. The total scattering cross-sections and near- and far-zone field patterns are presented. The observed resonance effects are studied and compared with their counterparts in the scattering by the same linear chain of wires in free space.
NASA Astrophysics Data System (ADS)
Segal-Rosenhaimer, M.; Knobelspiesse, K. D.; Redemann, J.; Cairns, B.; Alexandrov, M. D.
2016-12-01
The ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign is taking place in the South-East Atlantic during the Austral Spring for three consecutive years from 2016-2018. The study area encompasses one of the Earth's three semi-permanent subtropical Stratocumulus (Sc) cloud decks, and experiences very large aerosol optical depths, mainly biomass burning, originating from Africa. Over time, cloud optical depth (COD), lifetime and cloud microphysics (number concentration, effective radii Reff and precipitation) are expected to be influenced by indirect aerosol effects. These changes play a key role in the energetic balance of the region, and are part of the core investigation objectives of the ORACLES campaign, which acquires measurements of clean and polluted scenes of above cloud aerosols (ACA). Simultaneous retrievals of aerosol and cloud optical properties are being developed (e.g. MODIS, OMI), but still challenging, especially for passive, single viewing angle instruments. By comparison, multiangle polarimetric instruments like RSP (Research Scanning Polarimeter) show promise for detection and quantification of ACA, however, there are no operational retrieval algorithms available yet. Here we describe a new algorithm to retrieve cloud and aerosol optical properties from observations by RSP flown on the ER-2 and P-3 during the 2016 ORACLES campaign. The algorithm is based on training a NN, and is intended to retrieve aerosol and cloud properties simultaneously. However, the first step was to establish the retrieval scheme for low level Sc cloud optical properties. The NN training was based on simulated RSP total and polarized radiances for a range of COD, Reff, and effective variances, spanning 7 wavelength bands and 152 viewing zenith angles. Random and correlated noise were added to the simulations to achieve a more realistic representation of the signals. Before introducing the input variables to the network, the signals are projected on a principle component plane that retains the maximal signal information but minimizes the noise contribution. We will discuss parameter choices for the network and present preliminary results of cloud retrievals from ORACLES, compared with standard RSP low-level cloud retrieval method that has been validated against in situ observations.
Government and technological innovation - Weather modification as a case in point.
NASA Technical Reports Server (NTRS)
Lambright, W. H.
1972-01-01
The principal technology on which all forms of intentional, local weather modification ultimately rest is that of cloud seeding. There are three primary milestones in the evolution of such a new technology including invention, development, and introduction to society on an operational basis. It is shown that government has been deeply involved in each of the first two phases of weather modification's evolution. The agencies involved include the military agencies, the Weather Bureau, the National Science Foundation, and the Bureau of Reclamation. It is pointed out that weather modification will require some unusually flexible and open administrative devices if it is to advance in the public interest.
2002-11-11
KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-11-11
KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-11-11
KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
2002-11-11
KENNEDY SPACE CENTER, FLA. - The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, undergoes final processing before launch. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. CHIPSat is scheduled for launch, with the Ice, Cloud, and Land Elevation Satellite (ICESat), on a Delta II expendable launch vehicle from Vandenberg Air Force Base, Calif., on Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.
From seed production to seedling establishment: Important steps in an invasive process
NASA Astrophysics Data System (ADS)
Ferreras, Ana Elisa; Galetto, Leonardo
2010-03-01
It is widely accepted that exotic invasive species are one of the most important ecological and economic problems. Reproductive and establishment traits are considered key features of a population expansion process, but few works have studied many of these simultaneously. This work examines how large the differences are in reproductive and establishment traits between two Fabaceae, the exotic invasive, Gleditsia triacanthos and the native, Acacia aroma. Gleditsia is a serious leguminous woody invader in various parts of the world and Acacia is a common native tree of Argentina. Both species have similar dispersal mechanisms and their reproductive phenology overlaps. We chose 17 plants of each species in a continuous forest of the Chaco Serrano Forest of Córdoba, Argentina. In each plant we measured fruit production, fruit removal (exclusion experiments), seed predation (pre- and post-dispersal), seed germination, seed bank (on each focal tree, three sampling periods during the year), and density of seedlings (around focal individuals and randomly in the study site). Gleditsia presented some traits that could favour the invasion process, such as a higher number of seeds per plant, percentage of scarified seed germination and density of seedlings around the focal individuals, than Acacia. On the other hand, Gleditsia presented a higher percentage of seed predation. The seed bank was persistent in both species and no differences were observed in fruit removal. This work highlights the importance of simultaneously studying reproductive and establishment variables involved in the spreading of an exotic invasive species. It also gives important insight into the variables to be considered when planning management strategies. The results are discussed from the perspective of some remarkable hypotheses on invasive species and may contribute to rethinking some aspects of the theory on invasive species.
Stellar Winds and Dust Avalanches in the AU Mic Debris Disk
NASA Astrophysics Data System (ADS)
Chiang, Eugene; Fung, Jeffrey
2017-10-01
We explain the fast-moving, ripple-like features in the edge-on debris disk orbiting the young M dwarf AU Mic. The bright features are clouds of submicron dust repelled by the host star’s wind. The clouds are produced by avalanches: radial outflows of dust that gain exponentially more mass as they shatter background disk particles in collisional chain reactions. The avalanches are triggered from a region a few au across—the “avalanche zone”—located on AU Mic’s primary “birth” ring at a true distance of ˜35 au from the star but at a projected distance more than a factor of 10 smaller: the avalanche zone sits directly along the line of sight to the star, on the side of the ring nearest Earth, launching clouds that disk rotation sends wholly to the southeast, as observed. The avalanche zone marks where the primary ring intersects a secondary ring of debris left by the catastrophic disruption of a progenitor up to Varuna in size, less than tens of thousands of years ago. Only where the rings intersect are particle collisions sufficiently violent to spawn the submicron dust needed to seed the avalanches. We show that this picture works quantitatively, reproducing the masses, sizes, and velocities of the observed escaping clouds. The Lorentz force exerted by the wind’s magnetic field, whose polarity reverses periodically according to the stellar magnetic cycle, promises to explain the observed vertical undulations. The timescale between avalanches, about 10 yr, might be set by time variability of the wind mass loss rate or, more speculatively, by some self-regulating limit cycle.
Stellar Winds and Dust Avalanches in the AU Mic Debris Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Eugene; Fung, Jeffrey, E-mail: echiang@astro.berkeley.edu, E-mail: jeffrey.fung@berkeley.edu
We explain the fast-moving, ripple-like features in the edge-on debris disk orbiting the young M dwarf AU Mic. The bright features are clouds of submicron dust repelled by the host star’s wind. The clouds are produced by avalanches: radial outflows of dust that gain exponentially more mass as they shatter background disk particles in collisional chain reactions. The avalanches are triggered from a region a few au across—the “avalanche zone”—located on AU Mic’s primary “birth” ring at a true distance of ∼35 au from the star but at a projected distance more than a factor of 10 smaller: the avalanchemore » zone sits directly along the line of sight to the star, on the side of the ring nearest Earth, launching clouds that disk rotation sends wholly to the southeast, as observed. The avalanche zone marks where the primary ring intersects a secondary ring of debris left by the catastrophic disruption of a progenitor up to Varuna in size, less than tens of thousands of years ago. Only where the rings intersect are particle collisions sufficiently violent to spawn the submicron dust needed to seed the avalanches. We show that this picture works quantitatively, reproducing the masses, sizes, and velocities of the observed escaping clouds. The Lorentz force exerted by the wind’s magnetic field, whose polarity reverses periodically according to the stellar magnetic cycle, promises to explain the observed vertical undulations. The timescale between avalanches, about 10 yr, might be set by time variability of the wind mass loss rate or, more speculatively, by some self-regulating limit cycle.« less
Hernández-Montero, Jesús R.; Saldaña-Vázquez, Romeo A.; Galindo-González, Jorge; Sosa, Vinicio J.
2015-01-01
Forest disturbance causes specialization of plant-frugivore networks and jeopardizes mutualistic interactions through reduction of ecological redundancy. To evaluate how simplification of a forest into an agroecosystem affects plant-disperser mutualistic interactions, we compared bat-fruit interaction indexes of specialization in tropical montane cloud forest fragments (TMCF) and shaded-coffee plantations (SCP). Bat-fruit interactions were surveyed by collection of bat fecal samples. Bat-fruit interactions were more specialized in SCP (mean H2 ' = 0.55) compared to TMCF fragments (mean H2 ' = 0.27), and were negatively correlated to bat abundance in SCP (R = -0.35). The number of shared plant species was higher in the TMCF fragments (mean = 1) compared to the SCP (mean = 0.51) and this was positively correlated to the abundance of frugivorous bats (R= 0.79). The higher specialization in SCP could be explained by lower bat abundance and lower diet overlap among bats. Coffee farmers and conservation policy makers must increase the proportion of land assigned to TMCF within agroecosystem landscapes in order to conserve frugivorous bats and their invaluable seed dispersal service. PMID:25992550
Hernández-Montero, Jesús R; Saldaña-Vázquez, Romeo A; Galindo-González, Jorge; Sosa, Vinicio J
2015-01-01
Forest disturbance causes specialization of plant-frugivore networks and jeopardizes mutualistic interactions through reduction of ecological redundancy. To evaluate how simplification of a forest into an agroecosystem affects plant-disperser mutualistic interactions, we compared bat-fruit interaction indexes of specialization in tropical montane cloud forest fragments (TMCF) and shaded-coffee plantations (SCP). Bat-fruit interactions were surveyed by collection of bat fecal samples. Bat-fruit interactions were more specialized in SCP (mean H2 ' = 0.55) compared to TMCF fragments (mean H2 ' = 0.27), and were negatively correlated to bat abundance in SCP (R = -0.35). The number of shared plant species was higher in the TMCF fragments (mean = 1) compared to the SCP (mean = 0.51) and this was positively correlated to the abundance of frugivorous bats (R= 0.79). The higher specialization in SCP could be explained by lower bat abundance and lower diet overlap among bats. Coffee farmers and conservation policy makers must increase the proportion of land assigned to TMCF within agroecosystem landscapes in order to conserve frugivorous bats and their invaluable seed dispersal service.
NASA Astrophysics Data System (ADS)
Forster, Linda; Seefeldner, Meinhard; Wiegner, Matthias; Mayer, Bernhard
2017-07-01
Halo displays in the sky contain valuable information about ice crystal shape and orientation: e.g., the 22° halo is produced by randomly oriented hexagonal prisms while parhelia (sundogs) indicate oriented plates. HaloCam, a novel sun-tracking camera system for the automated observation of halo displays is presented. An initial visual evaluation of the frequency of halo displays for the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign from October to mid-November 2014 showed that sundogs were observed more often than 22° halos. Thus, the majority of halo displays was produced by oriented ice crystals. During the campaign about 27 % of the cirrus clouds produced 22° halos, sundogs or upper tangent arcs. To evaluate the HaloCam observations collected from regular measurements in Munich between January 2014 and June 2016, an automated detection algorithm for 22° halos was developed, which can be extended to other halo types as well. This algorithm detected 22° halos about 2 % of the time for this dataset. The frequency of cirrus clouds during this time period was estimated by co-located ceilometer measurements using temperature thresholds of the cloud base. About 25 % of the detected cirrus clouds occurred together with a 22° halo, which implies that these clouds contained a certain fraction of smooth, hexagonal ice crystals. HaloCam observations complemented by radiative transfer simulations and measurements of aerosol and cirrus cloud optical thickness (AOT and COT) provide a possibility to retrieve more detailed information about ice crystal roughness. This paper demonstrates the feasibility of a completely automated method to collect and evaluate a long-term database of halo observations and shows the potential to characterize ice crystal properties.
Lata, Hemant; Chandra, Suman; Techen, Natascha; Khan, Ikhlas A; ElSohly, Mahmoud A
2011-12-01
The increasing utilization of synthetic (encapsulated) seeds for germplasm conservation and propagation necessitates the assessment of genetic stability of conserved propagules following their plantlet conversion. We have assessed the genetic stability of synthetic seeds of Cannabis sativa L. during in vitro multiplication and storage for 6 months at different growth conditions using inter simple sequence repeat (ISSR) DNA fingerprinting. Molecular analysis of randomly selected plants from each batch was conducted using 14 ISSR markers. Of the 14 primers tested, nine produced 40 distinct and reproducible bands. All the ISSR profiles from in vitro stored plants were monomorphic and comparable to the mother plant which confirms the genetic stability among the clones. GC analysis of six major cannabinoids [Δ(9)-tetrahydrocannabinol, tetrahydrocannabivarin, cannabidiol, cannabichromene, cannabigerol and cannabinol] showed homogeneity in the re-grown clones and the mother plant with insignificant differences in cannabinoids content, thereby confirming the stability of plants derived from synthetic seeds following 6 months storage. © Springer Science+Business Media B.V. 2011
Morsy, T A; Kholif, S M; Kholif, A E; Matloup, O H; Salem, A Z M; Elella, A Abu
2015-08-01
This study aimed to investigate the effect of sunflower seeds, either as whole or as oil, on rumen fermentation, milk production, milk composition and fatty acids profile in dairy goats. Fifteen lactating Damascus goats were divided randomly into three groups (n = 5) fed a basal diet of concentrate feed mixture and fresh Trifolium alexandrinum at 50:50 on dry matter basis (Control) in addition to 50 g/head/d sunflower seeds whole (SS) or 20 mL/head/d sunflower seeds oil (SO) in a complete randomized design. Milk was sampled every two weeks during 90 days of experimental period for chemical analysis and rumen was sampled at 30, 60, and 90 days of the experiment for ruminal pH, volatile fatty acids (tVFA), and ammonia-N determination. Addition of SO decreased (p = 0.017) ruminal pH, whereas SO and SS increased tVFA (p<0.001) and acetate (p = 0.034) concentrations. Serum glucose increased (p = 0.013) in SO and SS goats vs Control. The SO and SS treated goats had improved milk yield (p = 0.007) and milk fat content (p = 0.002). Moreover, SO increased milk lactose content (p = 0.048) and feed efficiency (p = 0.046) compared to Control. Both of SS and SO increased (p<0.05) milk unsaturated fatty acids content specially conjugated linolenic acid (CLA) vs Control. Addition of SS and SO increased (p = 0. 021) C18:3N3 fatty acid compared to Control diet. Data suggested that addition of either SS or SO to lactating goats ration had beneficial effects on milk yield and milk composition with enhancing milk content of healthy fatty acids (CLA and omega 3), without detrimental effects on animal performance.
Safaei, Naser; Babaei, Hossein; Azarfarin, Rasoul; Jodati, Ahmad-Reza; Yaghoubi, Alireza; Sheikhalizadeh, Mohammad-Ali
2017-01-01
Background: This study aimed to test the beneficial effect of grape seed extract (GSE) (Vitis vinifera) and Vitamin C in oxidative stress and reperfusion injury induced by cardiopulmonary bypass (CPB) in coronary artery bypass surgery. Patients and Methods: In this randomized trial, 87 patients undergoing elective and isolated coronary bypass surgery included. The patients were randomly assigned into three groups (n = 29 each): (1) Control group with no treatment, (2) GSE group who received the extract 24 h before operation, 100 mg every 6 h, orally, (3) Vitamin C group who received 25 mg/kg Vitamin C through CPB during surgery. Blood samples were taken from coronary sinus at (T1) just before aortic cross clamp; (T2) just before starting controlled aortic root reperfusion; and (T3) 10 min after root reperfusion. Some clinical parameters and biochemical markers were compared among the groups. Results: There were significant differences in tracheal intubation times, sinus rhythm return, and left ventricular function between treatment groups compared with control (P < 0.05). Total antioxidant capacity was higher (P < 0.05) in both grape seed and Vitamin C groups at T2 and T3 times. In reperfusion period, malondialdehyde level was increased in control group; however, it was significantly lower for the grape seed group (P = 0.04). The differences in the mean levels of superoxide dismutase and glutathione peroxidase among the three groups were not significant (P > 0.05 in all cases). Conclusions: In our patients, GSE and Vitamin C had antioxidative effects and reduced deleterious effects of CPB during coronary artery bypass grafting surgery. PMID:28074795
The effect of grape seed extract on estrogen levels of postmenopausal women: a pilot study.
Wahner-Roedler, Dietlind L; Bauer, Brent A; Loehrer, Laura L; Cha, Stephen S; Hoskin, Tanya L; Olson, Janet E
2014-06-01
The role of estrogens in breast cancer (BC) development is widely accepted, leading to the development of selective estrogen receptor modulators and aromatase inhibitors for BC treatment and prevention. However, because of potential adverse effects, healthy women with high risk of BC are hesitant to take them. Preliminary evidence from animal studies shows that grapes may have an aromatase-inhibiting effect, decreasing estrogen synthesis and increasing androgen precursors. We conducted a randomized, double-blind, dose-finding early-phase trial on the effect of grape seed extract (GSE) on estrogen levels. Postmenopausal women who met study inclusion criteria (N = 46) were randomly assigned to daily GSE at a dose of 200, 400, 600, or 800 mg for 12 weeks. Primary outcome was change in plasma levels of estrogen conjugates from baseline to 12 weeks posttreatment. Thirty-nine participants (84.8%) completed the study. GSE in the 4 daily doses did not significantly decrease estrogen or increase androgen precursors.
Ghafar, Siti Aisyah Abd; Yazan, Latifah Saiful; Tahir, Paridah Md; Ismail, Maznah
2012-03-01
Kenaf (Hibiscus cannabinus) a plant of the family Malvaceae, is a valuable fiber plant native to India and Africa. Kenaf seeds contain alpha-linolenic acid, phytosterol such as β-sitosterol, vitamin E and other antioxidants with chemopreventive properties. In the present study we examined the hypothesis that kenaf seed 'supercritical fluid extract' (SFE) extract could suppress the early colon carcinogenesis in vivo by virtue of its bioactive compounds. To accomplish this goal, 60 male rats were randomly assigned to 5 groups which were (1) negative control group [not induced with azoxymethane (AOM)]; (2) positive control group (induced with AOM but received no treatment); (3) group treated with 500 mg/kg kenaf seed SFE extract; (4) group treated with 1000 mg/kg kenaf seed SFE extract; (5) group treated with 1500 mg/kg kenaf seed SFE extract. At 7 weeks of age, all rats except the negative control group received 15 mg/kg of AOM injection subcutaneously once a week for 2 weeks. Rats were euthanized at 13 weeks of the experiment. Number of ACF (mean±SD) ranged from 84.4±4.43 to 179.5±12.78 in group 2, 3, 4, 5. ACF reductions compared with the untreated group were 45.3, 51.4 and 53.1% in rats fed with 500, 1000 and 1500 mg/kg body weight, respectively. There were no significant differences in weight gain among groups. Our finding indicates that kenaf seed SFE extract reduced AOM-induced ACF in Sprague-Dawley male rats. Copyright © 2010 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Ilyas, Syafruddin; Hutahaean, Salomo; Nursal
2018-03-01
The discovery of male contraceptive drugs continues to be pursued, due to the few participation of men associated with the lack of contraceptive options for men. The combination of bitter melon seed methanol extract and DMPA are the options that currently apply to men. Therefore, the use of guinea pigs as experimental animals conducted research using experimental methods with complete randomized design (CRD). There are 4 control groups and 4 treatment groups. The first group, control group of dimethyl sulphoxide (DMSO) for 0 week (K0), The second one, bitter melon seed extract of 50 mg/100g Body Weight/day for 0 week (P0), the third one, control group of dimethyl sulfoxide (DMSO) for 4 weeks (K1), the fourth one, bitter melon seed extract of 50 mg/100g BW/day for 4 weeks + Depot medroxy Progesterone Acetate (P1), the fifth one, control group of dimethyl sulfoxide (DMSO) for 8 weeks (K2), the sixth one, bitter melon seed extract of 50 mg/100g BW/day for 8 weeks + DMPA (P2), the seventh one, control group of dimethyl sulfoxide (DMSO) for 12 weeks (K3), the eighth one, bitter melon seed extract of 50 mg/100g BW/day for 12 weeks + DMPA (P3). Methanol extract of bitter melon seed to decrease the quantity and quality of guinea pig spermatozoa decreased significantly, i.e. viability and normal morphology of spermatozoa (p<0.05).
Perronne, Rémi; Gibot-Leclerc, Stéphanie; Dessaint, Fabrice; Reibel, Carole; Le Corre, Valérie
2017-12-01
Phelipanche ramosa is a major root-holoparasitic damaging weed characterized by a broad host range, including numerous Fabaceae species. In France, the agricultural threat posed by P. ramosa has increased over two decades due to the appearance of a genetically differentiated pathovar presenting a clear host specificity for oilseed rape. The new pathovar has led to a massive expansion of P. ramosa in oilseed rape fields. The germination rate of P. ramosa seeds is currently known to vary among P. ramosa pathovars and host species. However, only a few studies have investigated whether phylogenetic relatedness among potential host species is a predictor of the ability of these species to induce the seed germination of parasitic weeds by testing for phylogenetic signal. We focused on a set of 12 Fabaceae species and we assessed the rate of induction of seed germination by these species for two pathovars based on in vitro co-cultivation experiments. All Fabaceae species tested induced the germination of P. ramosa seeds. The germination rate of P. ramosa seeds varied between Fabaceae species and tribes studied, while pathovars appeared non-influential. Considering oilseed rape as a reference species, we also highlighted a significant phylogenetic signal. Phylogenetically related species therefore showed more similar rates of induction of seed germination than species drawn at random from a phylogenetic tree. In in vitro conditions, only Lotus corniculatus induced a significantly higher germination rate than oilseed rape, and could potentially be used as a catch crop after confirmation of these results under field conditions.
3D local feature BKD to extract road information from mobile laser scanning point clouds
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Liu, Yuan; Dong, Zhen; Liang, Fuxun; Li, Bijun; Peng, Xiangyang
2017-08-01
Extracting road information from point clouds obtained through mobile laser scanning (MLS) is essential for autonomous vehicle navigation, and has hence garnered a growing amount of research interest in recent years. However, the performance of such systems is seriously affected due to varying point density and noise. This paper proposes a novel three-dimensional (3D) local feature called the binary kernel descriptor (BKD) to extract road information from MLS point clouds. The BKD consists of Gaussian kernel density estimation and binarization components to encode the shape and intensity information of the 3D point clouds that are fed to a random forest classifier to extract curbs and markings on the road. These are then used to derive road information, such as the number of lanes, the lane width, and intersections. In experiments, the precision and recall of the proposed feature for the detection of curbs and road markings on an urban dataset and a highway dataset were as high as 90%, thus showing that the BKD is accurate and robust against varying point density and noise.
Devi, D Chitra; Uthariaraj, V Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods.
A Solar Radiation Parameterization for Atmospheric Studies. Volume 15
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Suarez, Max J. (Editor)
1999-01-01
The solar radiation parameterization (CLIRAD-SW) developed at the Goddard Climate and Radiation Branch for application to atmospheric models are described. It includes the absorption by water vapor, O3, O2, CO2, clouds, and aerosols and the scattering by clouds, aerosols, and gases. Depending upon the nature of absorption, different approaches are applied to different absorbers. In the ultraviolet and visible regions, the spectrum is divided into 8 bands, and single O3 absorption coefficient and Rayleigh scattering coefficient are used for each band. In the infrared, the spectrum is divided into 3 bands, and the k-distribution method is applied for water vapor absorption. The flux reduction due to O2 is derived from a simple function, while the flux reduction due to CO2 is derived from precomputed tables. Cloud single-scattering properties are parameterized, separately for liquid drops and ice, as functions of water amount and effective particle size. A maximum-random approximation is adopted for the overlapping of clouds at different heights. Fluxes are computed using the Delta-Eddington approximation.
OORT-Cloud and Kuiper-Belt Comets
NASA Technical Reports Server (NTRS)
Whipple, Fred L.
1998-01-01
This paper follows the broadly accepted theory that Oort-Cloud Comets originated in the Solar Nebula in the general region where the major planets, Jupiter and Saturn, were formed while the Kuiper-Belt Comets originated farther out where the temperatures were lower. The Oort-Cloud Comets are identified orbitally by long periods and random inclinations and, including the Halley-type comets, comets with a Tisserand Criterion less than 2.0. Kuiper-Belt comets are identified by short periods, usually much less than 200 years, and small inclinations to the ecliptic. Here two criteria for comet activity are found to separate the two classes of comets. These quantities NG1 and NG2, were intended to measure theoretical nongravitaional effects on comet orbits. They are only, mildly successful in correlations with observed cases of measured non-gravitational forces. But, in fact, their variations with perihelion distance separate the two classes of comets. The results are consistent with the theory that the activity or intrinsic brightness of Oort-Cloud Comets fall off faster with increasing perihelion distance that does the intrinsic brightness of short-period Kuiper-Belt Comets.
Devi, D. Chitra; Uthariaraj, V. Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods. PMID:26955656
Improvements in sub-grid, microphysics averages using quadrature based approaches
NASA Astrophysics Data System (ADS)
Chowdhary, K.; Debusschere, B.; Larson, V. E.
2013-12-01
Sub-grid variability in microphysical processes plays a critical role in atmospheric climate models. In order to account for this sub-grid variability, Larson and Schanen (2013) propose placing a probability density function on the sub-grid cloud microphysics quantities, e.g. autoconversion rate, essentially interpreting the cloud microphysics quantities as a random variable in each grid box. Random sampling techniques, e.g. Monte Carlo and Latin Hypercube, can be used to calculate statistics, e.g. averages, on the microphysics quantities, which then feed back into the model dynamics on the coarse scale. We propose an alternate approach using numerical quadrature methods based on deterministic sampling points to compute the statistical moments of microphysics quantities in each grid box. We have performed a preliminary test on the Kessler autoconversion formula, and, upon comparison with Latin Hypercube sampling, our approach shows an increased level of accuracy with a reduction in sample size by almost two orders of magnitude. Application to other microphysics processes is the subject of ongoing research.
Game, cloud architecture and outreach for The BIG Bell Test
NASA Astrophysics Data System (ADS)
Abellan, Carlos; Tura, Jordi; Garcia, Marta; Beduini, Federica; Hirschmann, Alina; Pruneri, Valerio; Acin, Antonio; Marti, Maria; Mitchell, Morgan
The BIG Bell test uses the input from the Bellsters, self-selected human participants introducing zeros and ones through an online videogame, to perform a suite of quantum physics experiments. In this talk, we will explore the videogame, the data infrastructure and the outreach efforts of the BIG Bell test collaboration. First, we will discuss how the game was designed so as to eliminate possible feedback mechanisms that could influence people's behavior. Second, we will discuss the cloud architecture design for scalability as well as explain how we sent each individual bit from the users to the labs. Also, and using all the bits collected via the BIG Bell test interface, we will show a data analysis on human randomness, e.g. are younger Bellsters more random than older Bellsters? Finally, we will talk about the outreach and communication efforts of the BIG Bell test collaboration, exploring both the social media campaigns as well as the close interaction with teachers and educators to bring the project into classrooms.
NASA Astrophysics Data System (ADS)
Triharyanto, E.; Sudadi; Rawandari, S.
2018-03-01
Using seeds as planting materials is a solution to improve the quality and quantity of shallot. This study aims to determine the interaction between shallot varieties and Phosphate- Solubilizing Bacteria (PSB) on the flowering and shallot yield on the lowlands. The research was conducted in Mijil Village, Jaten, Karanganyar, 98 m altitude with Vertisol-type soil order in June to December 2016, using Randomized Complete Block Design (RCBD) with two factors. Shallot varieties used as factors are Bima, Manjung, Ilokos, Bima (bulb seeds), Mentes and Rubaru. PSB factors are control and with PSB inoculation. Observed variables included plant height, number of leaves, flowering percentage, seed formation and shallot bulb yield. Results showed that there was no interaction between varieties and PSB inoculation on all observed variables. However, PSB inoculation were able to increase the number of flowering plants and seed weight per plot. Bima variety have the highest average yield compared to other varieties in terms of number of leaves, number of bulbs per plant and bulb weight per plot (fresh harvest weight 317.74 g equivalent to 17.65 ton per hectare and dry weight 288.16 g consumption equivalent to 16 ton per hectare).
Identification of soybean genotypes adaptive to tropical area and suitable for industry
NASA Astrophysics Data System (ADS)
Adie, M. M.; Krisnawati, A.
2018-01-01
Soybeans in Indonesia are mostly used for raw material of tempeh industry. This study aims to identify 150 soybean genotypes for their suitability for raw materials of tempeh and adaptability to be developed in tropical area of Indonesia. The research material consisted of 150 soybean genotypes. The field research was conducted in Malang from February to May 2016, using a randomized block design with two replicates. The identification of 150 soybean genotypes showed 30.67% of super early maturity (<75 days), 50% of early maturity (76 - 79 days), and 19.33% were medium maturity (80 - 90 days). In the group of super early maturity, 11 genotypes were yielded between 3.01 - 3.69 t/ha and the 100 seed weight ranged from 15.27 - 20.18 g. In the early maturity group, there were 23 genotypes with seed yields between 3.01 - 3.66 t/ha, and the 100 seed weight ranged from 13.90 - 20.23 g. In Indonesia, tempeh industry requires soybeans with large seed size. In this research, G511H/Anj//Anj////Anjs-8-5 was suitable to be developed in Indonesia’s tropical climate and also preferred by industry for tempeh raw material due to its high yield, super early days to maturity, and large seed size.
Moulick, Debojyoti; Santra, S C; Ghosh, Dibakar
2017-11-01
Interactive aspect of among selenium (Se) and As (As) to mitigate As induced phytotoxicity in rice during germination and seedling growth has been based on mostly to petriplates and hydroponic mode of experiments. In this investigation we explore the consequences of sowing Se primed rice seeds in As spiked soil. Unprimed, hydroprimed and Se primed rice (IET-4094) seeds sown in As spiked soil, with five replications, arranged in complete randomized design for evaluating the impacts of seed priming on germination and seedling growth as well as As uptake and translocation pattern. Se promotes germination, seedling growth by modulating proline content, lipid peroxidation in root and shoot beside enhancing total chlorophyll content significantly in both As free and As spiked soil as compared to their respective unprimed and hydroprimed counterparts grown alike. Findings also indicates that seed priming with Se was able to execute dual roles i.e. a promotive and antagonistic aspect against As by restricting maximum soil As load to the root (with greater bioconcentration factor) and reducing translocation of As from root to shoot in a more practical and farmer friendly way to mitigate As induced toxicity and enhance germination and growth in rice seedlings. Copyright © 2017. Published by Elsevier Inc.
Rapid growth of seed black holes in the early universe by supra-exponential accretion.
Alexander, Tal; Natarajan, Priyamvada
2014-09-12
Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.
Takeuchi, Hiroshi
2018-05-08
Since searching for the global minimum on the potential energy surface of a cluster is very difficult, many geometry optimization methods have been proposed, in which initial geometries are randomly generated and subsequently improved with different algorithms. In this study, a size-guided multi-seed heuristic method is developed and applied to benzene clusters. It produces initial configurations of the cluster with n molecules from the lowest-energy configurations of the cluster with n - 1 molecules (seeds). The initial geometries are further optimized with the geometrical perturbations previously used for molecular clusters. These steps are repeated until the size n satisfies a predefined one. The method locates putative global minima of benzene clusters with up to 65 molecules. The performance of the method is discussed using the computational cost, rates to locate the global minima, and energies of initial geometries. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yi, Zao; Luo, Jiangshan; Tan, Xiulan; Yi, Yong; Yao, Weitang; Kang, Xiaoli; Ye, Xin; Zhu, Wenkun; Duan, Tao; Yi, Yougen; Tang, Yongjian
2015-11-01
Mesoporous gold sponges were prepared using 4-dimethylaminopyridine (DMAP)-stabilized Au seeds. This is a general process, which involves a simple template-free method, room temperature reduction of HAuCl4·4H2O with hydroxylamine. The formation process of mesoporous gold sponges could be accounted for the electrostatic interaction (the small Au nanoparticles (~3 nm) and the positively charged DMAP-stabilized Au seeds) and Ostwald ripening process. The mesoporous gold sponges had appeared to undergo electrostatic adsorption initially, sequentially linear aggregation, welding and Ostwald ripening, then, they randomly cross link into self-supporting, three-dimensional networks with time. The mesoporous gold sponges exhibit higher surface area than the literature. In addition, application of the spongelike networks as an active material for surface-enhanced Raman scattering has been investigated by employing 4-aminothiophenol (4-ATP) molecules as a probe.
Yi, Zao; Luo, Jiangshan; Tan, Xiulan; Yi, Yong; Yao, Weitang; Kang, Xiaoli; Ye, Xin; Zhu, Wenkun; Duan, Tao; Yi, Yougen; Tang, Yongjian
2015-01-01
Mesoporous gold sponges were prepared using 4-dimethylaminopyridine (DMAP)-stabilized Au seeds. This is a general process, which involves a simple template-free method, room temperature reduction of HAuCl4·4H2O with hydroxylamine. The formation process of mesoporous gold sponges could be accounted for the electrostatic interaction (the small Au nanoparticles (~3 nm) and the positively charged DMAP-stabilized Au seeds) and Ostwald ripening process. The mesoporous gold sponges had appeared to undergo electrostatic adsorption initially, sequentially linear aggregation, welding and Ostwald ripening, then, they randomly cross link into self-supporting, three-dimensional networks with time. The mesoporous gold sponges exhibit higher surface area than the literature. In addition, application of the spongelike networks as an active material for surface-enhanced Raman scattering has been investigated by employing 4-aminothiophenol (4-ATP) molecules as a probe. PMID:26538365
Fachinello, Marcelise Regina; Pozza, Paulo Cesar; Moreira, Ivan; Carvalho, Paulo Levi Oliveira; Castilha, Leandro Dalcin; Pasquetti, Tiago Junior; Esteves, Lucas Antonio Costa; Huepa, Laura Marcela Diaz
2015-10-01
Two experiments were carried out in Paraná State, Brazil, to evaluate the nutritional value of passion fruit seed meal (PFM) and to study the effect of PFM on growth performance, carcass, and blood characteristics in starter pigs (Topigs 20 × Tybor). In experiment 1, 25 castrated males, averaging 19.1-kg body weight, were individually fed in a completely randomized block design, consisting of five treatments and five replicates and an experimental period that lasted 14 days. In experiment 2, a total of 60 pigs (30 females and 30 castrated males) were distributed in a randomized block design with five treatments, six replications, and two animals per experimental unit and 90 days of experimentation. For both experiments, the same PFM inclusion rates were used in the experimental diets, namely, 0, 4, 8, 12, and 16 %. The metabolizable energy of PFM was estimated to be 15.0 MJ/kg. Inclusion of PFM at any level did not affect average daily gain, daily feed intake, feed/gain ratio, backfat thickness, loin depth, and plasma or blood components. It is concluded that passion fruit seed meal for swine in the starting phase can be added at a rate of up to 16 % in the diet without any negative effects on growth performance, carcass, and blood characteristics in starter commercial line pigs.
Supernova Driving. IV. The Star-formation Rate of Molecular Clouds
NASA Astrophysics Data System (ADS)
Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke; Frimann, Søren
2017-05-01
We compute the star-formation rate (SFR) in molecular clouds (MCs) that originate ab initio in a new, higher-resolution simulation of supernova-driven turbulence. Because of the large number of well-resolved clouds with self-consistent boundary and initial conditions, we obtain a large range of cloud physical parameters with realistic statistical distributions, which is an unprecedented sample of star-forming regions to test SFR models and to interpret observational surveys. We confirm the dependence of the SFR per free-fall time, SFRff, on the virial parameter, α vir, found in previous simulations, and compare a revised version of our turbulent fragmentation model with the numerical results. The dependences on Mach number, { M }, gas to magnetic pressure ratio, β, and compressive to solenoidal power ratio, χ at fixed α vir are not well constrained, because of random scatter due to time and cloud-to-cloud variations in SFRff. We find that SFRff in MCs can take any value in the range of 0 ≤ SFRff ≲ 0.2, and its probability distribution peaks at a value of SFRff ≈ 0.025, consistent with observations. The values of SFRff and the scatter in the SFRff-α vir relation are consistent with recent measurements in nearby MCs and in clouds near the Galactic center. Although not explicitly modeled by the theory, the scatter is consistent with the physical assumptions of our revised model and may also result in part from a lack of statistical equilibrium of the turbulence, due to the transient nature of MCs.
Visibility and aerosol measurement by diode-laser random-modulation CW lidar
NASA Technical Reports Server (NTRS)
Takeuchi, N.; Baba, H.; Sakurai, K.; Ueno, T.; Ishikawa, N.
1986-01-01
Examples of diode laser (DL) random-modulation continuous wave (RM-CW) lidar measurements are reported. The ability of the measurement of the visibility, vertical aerosol profile, and the cloud ceiling height is demonstrated. Although the data shown here were all measured at night time, the daytime measurement is, of course, possible. For that purpose, accurate control of the laser frequency to the center frequency of a narrow band filter is required. Now a new system with a frequency control is under construction.
Radiative Feedback of Forming Star Clusters on Their GMC Environments: Theory and Simulation
NASA Astrophysics Data System (ADS)
Howard, C. S.; Pudritz, R. E.; Harris, W. E.
2013-07-01
Star clusters form from dense clumps within a molecular cloud. Radiation from these newly formed clusters feeds back on their natal molecular cloud through heating and ionization which ultimately stops gas accretion into the cluster. Recent studies suggest that radiative feedback effects from a single cluster may be sufficient to disrupt an entire cloud over a short timescale. Simulating cluster formation on a large scale, however, is computationally demanding due to the high number of stars involved. For this reason, we present a model for representing the radiative output of an entire cluster which involves randomly sampling an initial mass function (IMF) as the cluster accretes mass. We show that this model is able to reproduce the star formation histories of observed clusters. To examine the degree to which radiative feedback shapes the evolution of a molecular cloud, we use the FLASH adaptive-mesh refinement hydrodynamics code to simulate cluster formation in a turbulent cloud. Unlike previous studies, sink particles are used to represent a forming cluster rather than individual stars. Our cluster model is then coupled with a raytracing scheme to treat radiative transfer as the clusters grow in mass. This poster will outline the details of our model and present preliminary results from our 3D hydrodynamical simulations.
Temporal Variations in Jupiter's Atmosphere
NASA Technical Reports Server (NTRS)
Simon-Miller, Amy A.; Chanover, N. J.; Yanamandra-Fisher, P.; Hammel, H. B.; dePater, I.; Noll, K.; Wong, M.; Clarke, J.; Sanchez-Levega, A.; Orton, G. S.;
2009-01-01
In recent years, Jupiter has undergone many atmospheric changes from storms turning red to global. cloud upheavals, and most recently, a cornet or asteroid impact. Yet, on top of these seemingly random changes events there are also periodic phenomena, analogous to observed Earth and Saturn atmospheric oscillations. We will present 15 years of Hubble data, from 1994 to 2009, to show how the equatorial tropospheric cloud deck and winds have varied over that time, focusing on the F953N, F41 ON and F255W filters. These filters give leverage on wind speeds plus cloud opacity, cloud height and tropospheric haze thickness, and stratospheric haze, respectively. The wind data consistently show a periodic oscillation near 7-8 S latitude. We will discuss the potential for variations with longitude and cloud height, within the calibration limits of those filters. Finally, we will discuss the role that large atmospheric events, such as the impacts in 1994 and 2009, and the global upheaval of 2007, have on temporal studies, This work was supported by a grant from the NASA Planetary Atmospheres Program. HST observational support was provided by NASA through grants from Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract NAS5-26555.
NASA Astrophysics Data System (ADS)
Ma, Hongchao; Cai, Zhan; Zhang, Liang
2018-01-01
This paper discusses airborne light detection and ranging (LiDAR) point cloud filtering (a binary classification problem) from the machine learning point of view. We compared three supervised classifiers for point cloud filtering, namely, Adaptive Boosting, support vector machine, and random forest (RF). Nineteen features were generated from raw LiDAR point cloud based on height and other geometric information within a given neighborhood. The test datasets issued by the International Society for Photogrammetry and Remote Sensing (ISPRS) were used to evaluate the performance of the three filtering algorithms; RF showed the best results with an average total error of 5.50%. The paper also makes tentative exploration in the application of transfer learning theory to point cloud filtering, which has not been introduced into the LiDAR field to the authors' knowledge. We performed filtering of three datasets from real projects carried out in China with RF models constructed by learning from the 15 ISPRS datasets and then transferred with little to no change of the parameters. Reliable results were achieved, especially in rural area (overall accuracy achieved 95.64%), indicating the feasibility of model transfer in the context of point cloud filtering for both easy automation and acceptable accuracy.
Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud
NASA Astrophysics Data System (ADS)
Chen, Jianqin; Zhu, Hehua; Li, Xiaojun
2016-10-01
This paper presents a new method for extracting discontinuity orientation automatically from rock mass surface 3D point cloud. The proposed method consists of four steps: (1) automatic grouping of discontinuity sets using an improved K-means clustering method, (2) discontinuity segmentation and optimization, (3) discontinuity plane fitting using Random Sample Consensus (RANSAC) method, and (4) coordinate transformation of discontinuity plane. The method is first validated by the point cloud of a small piece of a rock slope acquired by photogrammetry. The extracted discontinuity orientations are compared with measured ones in the field. Then it is applied to a publicly available LiDAR data of a road cut rock slope at Rockbench repository. The extracted discontinuity orientations are compared with the method proposed by Riquelme et al. (2014). The results show that the presented method is reliable and of high accuracy, and can meet the engineering needs.
Storm-based Cloud-to-Ground Lightning Probabilities and Warnings
NASA Astrophysics Data System (ADS)
Calhoun, K. M.; Meyer, T.; Kingfield, D.
2017-12-01
A new cloud-to-ground (CG) lightning probability algorithm has been developed using machine-learning methods. With storm-based inputs of Earth Networks' in-cloud lightning, Vaisala's CG lightning, multi-radar/multi-sensor (MRMS) radar derived products including the Maximum Expected Size of Hail (MESH) and Vertically Integrated Liquid (VIL), and near storm environmental data including lapse rate and CAPE, a random forest algorithm was trained to produce probabilities of CG lightning up to one-hour in advance. As part of the Prototype Probabilistic Hazard Information experiment in the Hazardous Weather Testbed in 2016 and 2017, National Weather Service forecasters were asked to use this CG lightning probability guidance to create rapidly updating probability grids and warnings for the threat of CG lightning for 0-60 minutes. The output from forecasters was shared with end-users, including emergency managers and broadcast meteorologists, as part of an integrated warning team.
Groves, Carol; German, Thomas; Dasgupta, Ranjit; Mueller, Daren; Smith, Damon L
2016-01-01
Soybean vein necrosis virus (SVNV; genus Tospovirus; Family Bunyaviridae) is a negative-sense single-stranded RNA virus that has been detected across the United States and in Ontario, Canada. In 2013, a seed lot of a commercial soybean variety (Glycine max) with a high percentage of discolored, deformed and undersized seed was obtained. A random sample of this seed was planted in a growth room under standard conditions. Germination was greater than 90% and the resulting seedlings looked normal. Four composite samples of six plants each were tested by reverse transcription polymerase chain reaction (RT-PCR) using published primers complimentary to the S genomic segment of SVNV. Two composite leaflet samples retrieved from seedlings yielded amplicons with a size and sequence predictive of SVNV. Additional testing of twelve arbitrarily selected individual plants resulted in the identification of two SVNV positive plants. Experiments were repeated by growing seedlings from the same seed lot in an isolated room inside a thrips-proof cage to further eliminate any external source of infection. Also, increased care was taken to reduce any possible PCR contamination. Three positive plants out of forty-eight were found using these measures. Published and newly designed primers for the L and M RNAs of SVNV were also used to test the extracted RNA and strengthen the diagnosis of viral infection. In experiments, by three scientists, in two different labs all three genomic RNAs of SVNV were amplified in these plant materials. RNA-seq analysis was also conducted using RNA extracted from a composite seedling sample found to be SVNV-positive and a symptomatic sample collected from the field. This analysis revealed both sense and anti-sense reads from all three gene segments in both samples. We have shown that SVNV can be transmitted in seed to seedlings from an infected seed lot at a rate of 6%. To our knowledge this is the first report of seed-transmission of a Tospovirus.
NASA Astrophysics Data System (ADS)
Jakub, Fabian; Mayer, Bernhard
2017-11-01
The formation of shallow cumulus cloud streets was historically attributed primarily to dynamics. Here, we focus on the interaction between radiatively induced surface heterogeneities and the resulting patterns in the flow. Our results suggest that solar radiative heating has the potential to organize clouds perpendicular to the sun's incidence angle. To quantify the extent of organization, we performed a high-resolution large-eddy simulation (LES) parameter study. We varied the horizontal wind speed, the surface heat capacity, the solar zenith and azimuth angles, and radiative transfer parameterizations (1-D and 3-D). As a quantitative measure we introduce a simple algorithm that provides a scalar quantity for the degree of organization and the alignment. We find that, even in the absence of a horizontal wind, 3-D radiative transfer produces cloud streets perpendicular to the sun's incident direction, whereas the 1-D approximation or constant surface fluxes produce randomly positioned circular clouds. Our reasoning for the enhancement or reduction of organization is the geometric position of the cloud's shadow and its corresponding surface fluxes. Furthermore, when increasing horizontal wind speeds to 5 or 10 m s-1, we observe the development of dynamically induced cloud streets. If, in addition, solar radiation illuminates the surface beneath the cloud, i.e., when the sun is positioned orthogonally to the mean wind field and the solar zenith angle is larger than 20°, the cloud-radiative feedback has the potential to significantly enhance the tendency to organize in cloud streets. In contrast, in the case of the 1-D approximation (or overhead sun), the tendency to organize is weaker or even prohibited because the shadow is cast directly beneath the cloud. In a land-surface-type situation, we find the organization of convection happening on a timescale of half an hour. The radiative feedback, which creates surface heterogeneities, is generally diminished for large surface heat capacities. We therefore expect radiative feedbacks to be strongest over land surfaces and weaker over the ocean. Given the results of this study we expect that simulations including shallow cumulus convection will have difficulties producing cloud streets if they employ 1-D radiative transfer solvers or may need unrealistically high wind speeds to excite cloud street organization.
NASA Technical Reports Server (NTRS)
Marshall, J. R.
1999-01-01
There is empirical evidence that freely-suspended triboelectrostatically charged particulate clouds of dielectric materials undergo rapid conversion from (nominally) monodispersed "aerosols" to a system of well-defined grain aggregates after grain motion or fluid turbulence ceases within the cloud. In United States Microgravity Laboratory Space Shuttle experiments USML-1 and USML-2, it was found that ballistically-energized grain dispersions would rapidly convert into populations of filamentary aggregates after natural fluid (air) damping of grain motion. Unless continuously disrupted mechanically, it was impossible to maintain a non-aggregated state for the grain clouds of sand-size materials. Similarly, ground- based experiments with very fine dust-size material produced the same results: rapid, impulsive "collapse" of the dispersed grains into well-defined filamentary structures. In both ground-based and microgravity experiments, the chains or filaments were created by long-range dipole electrostatic forces and dipole-induced dielectric interactions, not by monopole interactions. Maintenance of the structures was assisted by short-range static boundary adhesion forces and van der Waals interactions. When the aggregate containers in the USML experiments were disturbed after aggregate formation, the quiescently disposed filaments would rearrange themselves into fractal bundles and tighter clusters as a result of enforced encounters with one another. The long-range dipole interactions that bring the grains together into aggregates are a product of randomly-distributed monopole charges on the grain surfaces. In computer simulations, it has been shown that when the force vectors of all the random charges (of both sign) on a grain are resolved mathematically by assuming Coulombic interaction between them, the net result is a dipole moment on individual grains, even though the grains are electrically neutral insofar as there is no predominance, on their surface, of one charge sign over another. The random charges of both sign derive from natural grain-to-grain interactions that produce triboelectrification via charge exchange every time grain surfaces make contact with one another. The conversion from a random distribution of grains (upon which there are randomly distributed charges) into an organization of electrostatically-ordered aggregates, can be regarded (within the framework of granular-material science) as an "electrical or Coulombic phase change" of the particulate cloud. It is not totally dissimilar from the more normal phase-change concept in which, for example, a gas with long free-path-molecules suddenly becomes a solid as a result of structural ordering of the molecules (notably, also the result of electronic forces, albeit at a different scale). In both the gas-to-solid case, and the aerosol-to-aggregate case, the same materials and charges are present before and after the phase change, but their arrangement now has a higher degree of order and a lower-energy configuration. An input of energy into the system is required to reverse the situation. The aggregates in the USML experiments were observed to undergo at least two phase changes as noted above. The point about phase changes, and by implication, the "electrostructural" reorganizations in particulate clouds, is the following: (a) they can occur very rapidly, almost spontaneously, above a critical cloud density, (b) in going from a higher energy state to a lower energy state, they convert to a denser system, (c) energy must be required to reverse the situation, implying that energy is released during the high-to-low energy phase change. In applying this information to natural particulate clouds, some inferences can be made (it is stressed that reference is still to dielectric materials attracted by dipole forces). There are several natural settings to which the USML observations apply, and to which the phase-change implications likewise apply. Dense clouds of triboelectrically-charged, kinetically-energized grains are to be found in volcanic eruptions (particularly on earth), aeolian dust storms (particularly on Mars), meteorite impact ejecta curtains (on all planets), in "immature" debris rings around planets (e.g., that from which our own Moon may have condensed), and in gravitationally collapsing protoplanetary dust/planetesimal debris disks where dielectric granules are being increasingly brought into collisional relationships with one another (increasing both charge exchange and physical proximity). It is noted that in many of these cases, the degree of electrical charging on the grains is likely to be much higher than that in the USML experiments where charging was not enhanced above the "normal", naturally encountered level for the particular materials (quartz, glass, and various silicate minerals). Application of the phase-change concept suggests that volcanic, aeolian, and impact debris clouds may, under certain circumstances, undergo rapid, impulsive, or even catastrophic collapse into a denser state that will lead to rapid precipitation or fall-out of suspended particulates. Although this idea has been suggested previously by the author , the phase change concept possibly permits some new insights into cloud-system behavior. For example, in a protoplanetary debris disk, the work of gravity may suddenly be enhanced by electrostatically driven collapse of the system when materials reach a critical intergranular spacing or grain number density. This might reduce the rate of planet formation by orders of magnitude (considering the ratio of g-forces to electrostatic ones for very small grains in close proximity), and indeed, it might drive the collapse into a system configuration that would perhaps not be created by gravity alone. Additional information is contained in the original.
Xie, Li-Na; Guo, Hong-Yu; Gabler, Christopher A.; Li, Qing-Fang; Ma, Cheng-Cang
2015-01-01
Few studies have investigated the influence of water availability on plant population spatial patterns. We studied changes in the spatial patterns of Caragana stenophylla along a climatic drought gradient within the Inner Mongolian Plateau, China. We examined spatial patterns, seed density, “nurse effects” of shrubs on seedlings, transpiration rates and water use efficiency (WUE) of C. stenophylla across semi-arid, arid, and intensively arid zones. Our results showed that patches of C. stenophylla populations shifted from a random to a clumped spatial pattern towards drier environments. Seed density and seedling survival rate of C. stenophylla decreased from the semi-arid zone to the intensively arid zone. Across the three zones, there were more C. stenophylla seeds and seedlings underneath shrub canopies than outside shrub canopies; and in the intensively arid zone, there were almost no seeds or seedlings outside shrub canopies. Transpiration rates of outer-canopy leaves and WUE of both outer-canopy and inner-canopy leaves increased from the semi-arid zone to the intensively arid zone. In the intensively arid zone, transpiration rates and WUE of inner-canopy leaves were significantly lower and higher, respectively, than those of outer-canopy leaves. We conclude that, as drought stress increased, seed density decreased, seed proportions inside shrubs increased, and “nurse effects” of shrubs on seedlings became more important. These factors, combined with water-saving characteristics associated with clumped spatial patterns, are likely driving the changes in C. stenophylla spatial patterns. PMID:25785848
NASA Astrophysics Data System (ADS)
Shang, H.; Chen, L.; Bréon, F. M.; Letu, H.; Li, S.; Wang, Z.; Su, L.
2015-11-01
The principles of cloud droplet size retrieval via Polarization and Directionality of the Earth's Reflectance (POLDER) requires that clouds be horizontally homogeneous. The retrieval is performed by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval and analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-grid-scale variability in droplet effective radius (CDR) can significantly reduce valid retrievals and introduce small biases to the CDR (~ 1.5 μm) and effective variance (EV) estimates. Nevertheless, the sub-grid-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval using limited observations is accurate and is largely free of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, measurements in the primary rainbow region (137-145°) are used to ensure retrievals of large droplet (> 15 μm) and to reduce the uncertainties caused by cloud heterogeneity. We apply the improved method using the POLDER global L1B data from June 2008, and the new CDR results are compared with the operational CDRs. The comparison shows that the operational CDRs tend to be underestimated for large droplets because the cloudbow oscillations in the scattering angle region of 145-165° are weak for cloud fields with CDR > 15 μm. Finally, a sub-grid-scale retrieval case demonstrates that a higher resolution, e.g., 42 km × 42 km, can be used when inverting cloud droplet size distribution parameters from POLDER measurements.
Filtering Photogrammetric Point Clouds Using Standard LIDAR Filters Towards DTM Generation
NASA Astrophysics Data System (ADS)
Zhang, Z.; Gerke, M.; Vosselman, G.; Yang, M. Y.
2018-05-01
Digital Terrain Models (DTMs) can be generated from point clouds acquired by laser scanning or photogrammetric dense matching. During the last two decades, much effort has been paid to developing robust filtering algorithms for the airborne laser scanning (ALS) data. With the point cloud quality from dense image matching (DIM) getting better and better, the research question that arises is whether those standard Lidar filters can be used to filter photogrammetric point clouds as well. Experiments are implemented to filter two dense matching point clouds with different noise levels. Results show that the standard Lidar filter is robust to random noise. However, artefacts and blunders in the DIM points often appear due to low contrast or poor texture in the images. Filtering will be erroneous in these locations. Filtering the DIM points pre-processed by a ranking filter will bring higher Type II error (i.e. non-ground points actually labelled as ground points) but much lower Type I error (i.e. bare ground points labelled as non-ground points). Finally, the potential DTM accuracy that can be achieved by DIM points is evaluated. Two DIM point clouds derived by Pix4Dmapper and SURE are compared. On grassland dense matching generates points higher than the true terrain surface, which will result in incorrectly elevated DTMs. The application of the ranking filter leads to a reduced bias in the DTM height, but a slightly increased noise level.
Shallow cumuli ensemble statistics for development of a stochastic parameterization
NASA Astrophysics Data System (ADS)
Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs
2014-05-01
According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a Poisson distribution, and cloud properties sub-sampled from a generalized ensemble distribution. We study the role of the different cloud subtypes in a shallow convective ensemble and how the diverse cloud properties and cloud lifetimes affect the system macro-state. To what extent does the cloud-base mass flux distribution deviate from the simple Boltzmann distribution and how does it affect the results from the stochastic model? Is the memory, provided by the finite lifetime of individual clouds, of importance for the ensemble statistics? We also test for the minimal information given as an input to the stochastic model, able to reproduce the ensemble mean statistics and the variability in a convective ensemble. An important property of the resulting distribution of the sub-grid convective states is its scale-adaptivity - the smaller the grid-size, the broader the compound distribution of the sub-grid states.
NASA Astrophysics Data System (ADS)
Finke, U.; Blakeslee, R. J.; Mach, D. M.
2017-12-01
The next generation of European geostationary weather observing satellites (MTG) will operate an optical lightning location instrument (LI) which will be very similar to the Global Lightning Mapper (GLM) on board of GOES-R. For the development and verification of the product processing algorithms realistic test data are necessary. This paper presents a method of test data generation on the basis of optical lightning data from the LIS instrument and cloud image data from the Seviri radiometer.The basis is the lightning data gathered during the 15 year LIS operation time, particularly the empirical distribution functions of the optical pulse size, duration and radiance as well as the inter-correlation of lightning in space and time. These allow for a realistically structured simulation of lightning test data. Due to its low orbit the instantaneous field of view of the LIS is limited and moving with time. For the generation of test data which cover the geostationary visible disk, the LIS data have to be extended. This is realized by 1. simulating random lightning pulses according to the established distribution functions of the lightning parameters and 2. using the cloud radiometer data of the Seviri instrument on board of the geostationary Meteosat second generation (MSG). Particularly, the cloud top height product (CTH) identifies convective storm clouds wherein the simulation places random lightning pulses. The LIS instrument was recently deployed on the International Space Station (ISS). The ISS orbit reaches higher latitudes, particularly Europe. The ISS-LIS data is analyzed for single observation days. Additionally, the statistical distribution of parameters such as radiance, footprint size, and space time correlation of the groups are compared against the long time statistics from TRMM-LIS.Optical lightning detection efficiency from space is affected by the solar radiation reflected from the clouds. This effect is changing with day and night areas across the field of view. For a realistic simulation of this cloud background radiance the Seviri visual channel VIS08 data is used.Additionally to the test data study, this paper gives a comparison of the MTG-LI to the GLM and discusses differences in instrument design, product definition and generation and the merging of data from both geostationary instruments.
Realized gain from breeding Eucalyptus grandis in Florida
George Meskimen
1983-01-01
E. grandis is in the fourth generation of selection in southwest Florida. The breeding strategy combines a provenance trial, genetic base population, seedling seed orchard, and progeny test in a single plantation where all families are completely randomized in single-tree plots. That planting configuration closely predicted the magnitude of genetic...
Fire rehabilitation effectiveness: a chronosequence approach for the Great Basin
Pyke, David A.; Pilliod, David S.; Chambers, Jeanne C.; Brooks, Matthew L.; Grace, James
2009-01-01
Federal land management agencies have invested heavily in seeding vegetation for emergency stabilization and rehabilitation (ES&R) of non-forested lands. ES&R projects are implemented to reduce post-fire dominance of non-native annual grasses, minimize probability of recurrent fire, quickly recover lost habitat for sensitive species, and ultimately result in plant communities with desirable characteristics including resistance to invasive species and resilience or ability to recover following disturbance. Land managers lack scientific evidence to verify whether seeding non-forested lands achieves their desired long-term ES&R objectives. The overall objective of our investigation is to determine if ES&R projects increase perennial plant cover, improve community composition, decrease invasive annual plant cover and result in a more desirable fuel structure relative to no treatment following fires while potentially providing habitat for Greater Sage-Grouse, a species of management concern. In addition, we provide the locations and baseline vegetation data for further studies relating to ES&R project impacts. We examined effects of seeding treatments (drill and broadcast) vs. no seeding on biotic and abiotic (bare ground and litter) variables for the dominant climate regimes and ecological types within the Great Basin. We attempted to determine seeding effectiveness to provide desired plant species cover while restricting non-native annual grass cover relative to post-treatment precipitation, post-treatment grazing level and time-since-seeding. Seedings were randomly sampled from all known post-fire seedings that occurred in the four-state area of Idaho, Nevada, Oregon and Utah. Sampling locations were stratified by major land resource area, precipitation, and loam-dominated soils to ensure an adequate spread of locations to provide inference of our findings to similar lands throughout the Great Basin. Nearly 100 sites were located that contained an ES&R project. Of these sites, 61 were seeded by using a drill, 27 were broadcast aerially, and 12 had a combination of both. We randomly sampled three burned and seeded, burned and unseeded, and unburned and unseeded locations in the vicinity of the fire, each within the same ecological site. We measured foliar cover of all plant functional groups (perennial or annual, shrub, grass, forb, native or introduced), biological soil crusts, and abiotic (bare soil and litter) variables using the line-point intercept protocol. Fuel loads and horizontal fuel continuity were measured. We applied linear mixed models to response variables (cover and density of plant groups) relative to the dependent variables (seeding treatments and precipitation/temperature relationships. Post-fire strengths with native perennial grasses or shrubs in mixes did not increase density or cover of these groups significantly relative to unseeded, burned areas. Seeded non-native perennial grasses and the shrub Bassia prostrata were effective in providing more cover in aerial and drill seedings. Seeded non-native perennial grass cover increased with increased annual precipitation regardless of seeding type. Seeding native shrubs, particularly Artemisia tridentata, did not significantly increase shrub cover in burned areas. Cover of undesirable non-native annual grasses was lower in drill seedings relative to unseeded areas but only at higher elevations. Seeding effectiveness after wildfire is unpredictable in drier, low elevation environments, and our findings indicate management objectives are more likely met when focusing efforts on higher elevation or higher precipitation locations where establishment of perennial grasses is more likely. On sites where potential for invasion and dominance of non-native annuals is high, such as lower and drier sites, intensive methods of restoration that include invasive plant control before seeding may be required. Where establishment of native perennial plants is the goal, managers might consider using native-only seed mixtures, because we found that the non-native perennials typically used in Great Basin restoration efforts are selected for their competitive nature and may reduce establishment of less competitive native species. Although we attempted to include information on livestock grazing history after seedings, we were unable to extract sufficient data from files to address this topic that may play an additional role in understanding native plant abundance post-fire seeding. Evaluation of drill and aerial seeding effects on fuel characteristics focused on two metrics that are standard inputs for fire behavior models, fuel load and fuel continuity. Fuel loads were evaluated separately for total fuel load biomass, and the individual components that sum to total biomass, namely herbaceous, shrub, shrub:herbaceous ratio, litter, 10-hour, and 100-hour fuel biomasses. Fuel continuity was evaluated using the following cover categories, total, annual grass, annual forb, perennial forb perennial grass, shrub, litter, vegetative interspace, and perennial interspace. Drill seeding did not affect fuel loads, except to reduce 10-hour fuels, probably due to mechanical destruction of dead and down fuels by the drill seeding equipment. Drill seeding did affect fuel continuity, specifically decreasing total plant cover by increasing perennial grass cover which suppressed annual grass and litter production resulting in a net decrease in continuity, but only at the elevations above approximately 1500m. Aerial seeding had no effect on any fuel load or fuel continuity category. For the Greater Sage-Grouse habitat study, we developed multi-scale empirical models of sage-grouse occupancy in 211 randomly located plots within a 40 million ha portion of the species’ range. We then used these models to predict sage-grouse habitat quality at 101 ES&R seeding projects. We compared conditions at restoration sites to published habitat guidelines. Sage-grouse occupancy was positively related to plot- and landscape-level dwarf sagebrush (Artemisia arbuscula, A. nova, A. tripartita) and big sagebrush steppe, and negatively associated with non-native grass and human development. The predicted probability of sage-grouse occupancy at treated plots was low on average (0.07–0.09) and was not significantly different from burned areas that had not been treated. Restoration was more often successful at higher elevation sites with low annual temperatures, high spring precipitation, and high plant diversity. No plots seeded after fire (n=313) met all overstory guidelines for breeding habitats, but approximately 50% met understory guidelines, particularly for perennial grasses. This trend was similar for summer habitat. Ninety-eight percent of treated plots did not meet winter habitat guidelines. Restoration actions in burned areas did not increase the probability of meeting most guideline criteria. The probability of meeting guidelines was influenced by a latitudinal gradient, local climate, and topography. Post-fire seeding treatments in Great Basin sagebrush shrublands generally have not created high quality habitat for sage-grouse. Understory conditions are more likely to be adequate than those of overstory, but in unfavorable climates, establishing forbs and reducing cheatgrass dominance is unlikely. Reestablishing sagebrush cover will require more than 20 years using the restoration methods of the past two decades. Given current fire frequencies and restoration capabilities, protection of landscapes containing a mix of dwarf sagebrush and big sagebrush steppe, minimal human development, and low non-native plant cover may provide the best opportunity for conservation of sage-grouse habitats. Our database of ES&R locations has used the Land Treatment Digital Library to archive data and location information regarding our study (see Pilliod and Welty 2013). This has contributed to two additional studies. One examined the potential spread of Bassia prostrata (aka Kochia prostrata; forage kochia) from ES&R project locations (Gray and Muir 2013). The second used remote sensing to determine the phenology of vegetation green-up on post-fire seeded sites (Sankey et al. 2013).
Hasona, Nabil A.; Alrashidi, Ahmed A.; Aldugieman, Thamer Z.; Alshdokhi, Ali M.; Ahmed, Mohammed Q.
2017-01-01
This study was conducted to evaluate the biochemical effects of grape seed extract against dexamethasone-induced hepatic and renal dysfunction in a female albino rat. Twenty-eight adult female rats were divided randomly into four equal groups: Group 1: animals were injected subcutaneously with saline and consider as normal control one. Group 2: animals were injected subcutaneously with dexamethasone in a dose of 0.1 mg/kg body weight. Group 3: animals were injected subcutaneously with 0.1 mg/kg body weight of dexamethasone, and then treated with a grape seed extract in a dose of 200 mg/kg body weight by oral gavage. Group 4: animals were injected subcutaneously with 0.1 mg/kg body weight of dexamethasone, and then treated with a grape seed extract in a dose of 400 mg/kg body weight by oral gavage. After 4 weeks, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities, albumin, uric acid, creatinine, and glucose levels were assayed. Hepatic reduced glutathione (GSH), total protein content, and catalase and glucose-6-phosphate dehydrogenase activities were also assayed. Dexamethasone administration caused elevation of serum levels of glucose, uric acid, creatinine, ALT, AST activities, and a decrease in other parameters such as hepatic glutathione, total protein levels, and catalase enzyme activity. Treatment with Vitis vinifera L. seed extract showed a significant increase in the body weight of rats in the group treated with Vitis vinifera L. seed extract orally compared with the dexamethasone control group. An increase in GSH and catalase activity in response to oral treatment with Vitis vinifera L. seed extract was observed after treatment. Grape seed extract positively affects glucocorticoid-induced hepatic and renal alteration in albino rats. PMID:29051443
NASA Astrophysics Data System (ADS)
Yafizham; Herwibawa, B.
2018-01-01
This study was aimed to determine the effects of sodium azide on the performance of chili pepper. Dry seeds from pure lines of chili pepper cv. Landung were used in this experiment. Each set containing 50 seeds was placed in nylon fishner bags, washed in flowing water and soaked in distilled water for four hours. After soaking, four sets of seeds were dabbed dry with tissue paper and were treated for two hours at 30 0C in appropriate solution of 0, 0.10, 0.20, 0.40, 0.80, 1.60 mM sodium azide with phosphate buffer at pH 3. After treatment, the seeds were germinated in plastic boxes containing sterilized sand and kept under laboratory condition by supplied with water everyday. The seeds for M1 germination percentage, seedling height, plant height and number of leaves were recorded 30 days and 60 days after treatment, respectively. Seeds which radicle emerged were considered germinated, the seedling and plant height were measured from the tip of primary root to the base of the first leaf pair, and the number of leaves were counted for only fully expanded leaves. A completely randomized block design in four replicates was used throughout the experiment. Data obtained were analysed for range, mean, standard of deviation, and percent of control using Microsoft Office Excel 2007 software. It was concluded that different doses of sodium azide influenced the performances of chili pepper cv. Landung. Very low doses of sodium azide (0-1.60 mM) might be used to study the improvement of chili pepper diversity.
Patterns of fruit traits in a tropical rainforest in Xishuangbanna, SW China
NASA Astrophysics Data System (ADS)
Chen, Jin; Fleming, Theodore H.; Zhang, Ling; Wang, Hong; Liu, Yong
2004-10-01
As a basis for determining how vertebrate frugivores influence the evolution of tropical fruits, we investigated distribution patterns of different fruit traits that are known to influence frugivore food choice, drawing on data gathered from 626 plant species in a primary tropical rainforest at Xishuangbanna, SW China. Species with fleshy fruits are common (66%) in the forest; the proportion of fleshy fruits differed among different growth forms: canopy trees (63%), subcanopy trees (83%), shrubs (74%), lianas (67%), herbs (65%) and epiphytes (49%). Dry fruits had a higher frequency of small-seeded species (length of seed <2 mm) compared to fleshy fruit (34% vs. 14%, respectively), and a lower proportion of species with few seeds (1-3 seeds per fruit) (52% vs. 77%). In fleshy fruits, small fruits (<20 mm in length) were predominant (69%) while medium-sized fruits (20-50 mm) were produced by 105 species (26%), and 20 species (5%) produced large fruit (>50 mm). As a whole, black fruits were most common (40% of 389 species), followed by fruits with red, brown, yellow and bicolored (19%, 13%, 13% and 8%, respectively); green, white, and blue fruits were relatively rare (4%, 2% and 1%, respectively). Characteristics of small fleshy fruits included thin husks, red, white, or black colors and a few medium-sized seeds (2-10 mm). Many medium-sized fruits had large, well-protected seeds. The distribution of plant species among various fruit and seed categories is non-random in this forest. Nested ANOVA revealed a significant phylogenetic component in the variances of most fruit traits while fruit size and color showed 39.7-48.1% of within-genus variances from non-phylogenetic factors.
Kargar, Rohollah; Forouzanfar, Mohsen; Ghalamkari, Gholamreza; Nasr Esfahani, Mohammad Hossein
2017-02-01
Semen cryopreservation is affected by individual differences and use of clones animal from the same source is the main tool to eliminate genetic variation. Among many nutrients that are necessary for fertility, essential fatty acids and antioxidants are vital for production of healthy sperm by improving sperm membrane integrity and protecting sperm from oxidative stress. The goal of the current study was to investigate whether a flax seed oil or/and Vitamin E dietary supplementation could improve semen quality of cloned bucks following semen cryopreservation. Accordingly, eight adult cloned Bakhtiari bucks were divided randomly into four groups. Bucks were offered a base diet of hay and concentrate. The concentrate was enriched with flax seed oil, 30 gr/kg body weight/day (OIL), Vitamin E (VIT), 3 gr/kg body weight/day, or combined flax seed oil and the vitamin E (OIL-VIT). The concentrate with no supplements was considered as control group (CONT). Both flax seed oil and Vitamin E supplements were added to the total diet. The bucks were fed with their corresponding diets for a total of 9 weeks while sperm collection was carried out within 10-14 weeks. Ejaculates were diluted with Andromed ® and were frozen in liquid nitrogen. Sperm parameters and reactive oxygen species (ROS) contents were evaluated following freezing/thawing. According to the results of our study, dietary supplementation with flax seed oil, or/and Vitamin E can improve sperm motility, vitality and number of sperm with intact plasma membrane following freezing-thawing. But the degree of improvement in these parameters was significantly higher when Flax seed oil and vitamin E were co-supplemented. Copyright © 2016. Published by Elsevier Inc.
Charavay, Céline; Segard, Stéphane; Pochon, Nathalie; Nussaume, Laurent; Javot, Hélène
2017-01-01
Plant research is supported by an ever-growing collection of mutant or transgenic lines. In the past, a typical basic research laboratory would focus on only a few plant lines that were carefully isolated from collections of lines containing random mutations. The subsequent technological breakthrough in high-throughput sequencing, combined with novel and highly efficient mutagenesis techniques (including site-directed mutagenesis), has led to a recent exponential growth in plant line collections used by individual researchers. Tracking the generation and genetic properties of these genetic resources is thus becoming increasingly challenging for researchers. Another difficulty for researchers is controlling the use of seeds protected by a Material Transfer Agreement, as often only the original recipient of the seeds is aware of the existence of such documents. This situation can thus lead to difficult legal situations. Simultaneously, various institutions and the general public now demand more information about the use of genetically modified organisms (GMOs). In response, researchers are seeking new database solutions to address the triple challenge of research competition, legal constraints, and institutional/public demands. To help plant biology laboratories organize, describe, store, trace, and distribute their seeds, we have developed the new program SeedUSoon, with simplicity in mind. This software contains data management functions that allow the separate tracking of distinct mutations, even in successive crossings or mutagenesis. SeedUSoon reflects the biotechnological diversity of mutations and transgenes contained in any specific line, and the history of their inheritance. It can facilitate GMO certification procedures by distinguishing mutations on the basis of the presence/absence of a transgene, and by recording the technology used for their generation. Its interface can be customized to match the context and rules of any laboratory. In addition, SeedUSoon includes functions to help the laboratory protect intellectual property, export data, and facilitate seed exchange between laboratories. The SeedUSoon program, which is customizable to match individual practices and preferences, provides a powerful toolkit to plant laboratories searching for innovative approaches in laboratory management. PMID:28163712
Forest rodents provide directed dispersal of Jeffrey pine seeds
Briggs, J.S.; Wall, S.B.V.; Jenkins, S.H.
2009-01-01
Some species of animals provide directed dispersal of plant seeds by transporting them nonrandomly to microsites where their chances of producing healthy seedlings are enhanced. We investigated whether this mutualistic interaction occurs between granivorous rodents and Jeffrey pine (Pinus jeffreyi) in the eastern Sierra Nevada by comparing the effectiveness of random abiotic seed dispersal with the dispersal performed by four species of rodents: deer mice (Peromyscus maniculatus), yellow-pine and long-eared chipmunks (Tamias amoenus and T. quadrimaculatus), and golden-mantled ground squirrels (Spermophilus lateralis). We conducted two caching studies using radio-labeled seeds, the first with individual animals in field enclosures and the second with a community of rodents in open forest. We used artificial caches to compare the fates of seeds placed at the range of microsites and depths used by animals with the fates of seeds dispersed abiotically. Finally, we examined the distribution and survival of naturally establishing seedlings over an eight-year period.Several lines of evidence suggested that this community of rodents provided directed dispersal. Animals preferred to cache seeds in microsites that were favorable for emergence or survival of seedlings and avoided caching in microsites in which seedlings fared worst. Seeds buried at depths typical of animal caches (5–25 mm) produced at least five times more seedlings than did seeds on the forest floor. The four species of rodents differed in the quality of dispersal they provided. Small, shallow caches made by deer mice most resembled seeds dispersed by abiotic processes, whereas many of the large caches made by ground squirrels were buried too deeply for successful emergence of seedlings. Chipmunks made the greatest number of caches within the range of depths and microsites favorable for establishment of pine seedlings. Directed dispersal is an important element of the population dynamics of Jeffrey pine, a dominant tree species in the eastern Sierra Nevada. Quantifying the occurrence and dynamics of directed dispersal in this and other cases will contribute to better understanding of mutualistic coevolution of plants and animals and to more effective management of ecosystems in which directed dispersal is a keystone process.
New methods to detect particle velocity and mass flux in arc-heated ablation/erosion facilities
NASA Technical Reports Server (NTRS)
Brayton, D. B.; Bomar, B. W.; Seibel, B. L.; Elrod, P. D.
1980-01-01
Arc-heated flow facilities with injected particles are used to simulate the erosive and ablative/erosive environments encountered by spacecraft re-entry through fog, clouds, thermo-nuclear explosions, etc. Two newly developed particle diagnostic techniques used to calibrate these facilities are discussed. One technique measures particle velocity and is based on the detection of thermal radiation and/or chemiluminescence from the hot seed particles in a model ablation/erosion facility. The second technique measures a local particle rate, which is proportional to local particle mass flux, in a dust erosion facility by photodetecting and counting the interruptions of a focused laser beam by individual particles.
Long-term evolution of Oort Cloud comets: capture of comets
NASA Astrophysics Data System (ADS)
Nurmi, P.; Valtonen, M. J.; Zheng, J. Q.; Rickman, H.
2002-07-01
We test different possibilities for the origin of short-period comets captured from the Oort Cloud. We use an efficient Monte Carlo simulation method that takes into account non-gravitational forces, Galactic perturbations, observational selection effects, physical evolution and tidal splittings of comets. We confirm previous results and conclude that the Jupiter family comets cannot originate in the spherically distributed Oort Cloud, since there is no physically possible model of how these comets can be captured from the Oort Cloud flux and produce the observed inclination and Tisserand constant distributions. The extended model of the Oort Cloud predicted by the planetesimal theory consisting of a non-randomly distributed inner core and a classical Oort Cloud also cannot explain the observed distributions of Jupiter family comets. The number of comets captured from the outer region of the Solar system are too high compared with the observations if the inclination distribution of Jupiter family comets is matched with the observed distribution. It is very likely that the Halley-type comets are captured mainly from the classical Oort Cloud, since the distributions in inclination and Tisserand value can be fitted to the observed distributions with very high confidence. Also the expected number of comets is in agreement with the observations when physical evolution of the comets is included. However, the solution is not unique, and other more complicated models can also explain the observed properties of Halley-type comets. The existence of Jupiter family comets can be explained only if they are captured from the extended disc of comets with semimajor axes of the comets a<5000au. The original flattened distribution of comets is conserved as the cometary orbits evolve from the outer Solar system era to the observed region.
An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Wang, Yujie; Frey, R.
2008-01-01
Quality of aerosol retrievals and atmospheric correction depends strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. They don't explicitly address the classical problem of cloud search, wherein the baseline clear-skies scene is defined for comparison. Here, we report on a new CM algorithm which explicitly builds and maintains a reference clear-skies image of the surface (refcm) using a time series of MODIS measurements. The new algorithm, developed as part of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that clear-skies images of the same surface area have a common textural pattern, defined by the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This pattern changes slowly given the daily rate of global Earth observations, whereas clouds introduce high-frequency random disturbances. Under clear skies, consecutive gridded images of the same surface area have a high covariance, whereas in presence of clouds covariance is usually low. This idea is central to initialization of refcm which is used to derive cloud mask in combination with spectral and brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an internal dynamic land-water-snow classification coupled with a surface change mask. An initial comparison shows that the new algorithm offers the potential to perform better than the MODIS MOD35 cloud mask in situations where the land surface is changing rapidly, and over Earth regions covered by snow and ice.
NASA Technical Reports Server (NTRS)
Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip
2010-01-01
Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for the Phase II effort, will require full integration and optimization of the waveguide components (SHG waveguide, splitters, and phase modulator) onto a single, monolithic device. The PLC will greatly reduce the size and weight, improve electrical- to-optical efficiency, and significantly reduce the cost of NASA Langley s current stabilized HSRL seed laser system built around a commercial off-the-shelf seed laser that is free-space coupled to a bulk doubler and bulk phase modulator.
Liu, Y; Longmore, R B
1997-09-01
Sandalwood (Santalum spicatum) seed oil, which occurs to about 50% of the weight of the seed kernels, contains 30-35% of total fatty acids (FA) as ximenynic acid (XMYA). This study was designed to obtain basic information on changes in tissue FA composition and on the metabolic fate of XMYA in mice fed a sandalwood seed oil (SWSO)-enriched diet. Female mice were randomly divided into three groups, each receiving different semisynthetic diets containing 5.2% (w/w) fat (standard laboratory diet), 15% canola oil, or 15% SWSO for 8 wk. The effects of SWSO as a dietary fat on the FA composition of adipose tissue, brain, and liver lipids were determined by analyses of FA methyl ester derivatives of extracted total lipid. The FA compositions of the liver and adipose tissue were markedly altered by the dietary fats, and mice fed on a SWSO-enriched diet were found to contain XMYA but only in low concentration (0.3-3%) in these tissues; XMYA was not detected in brain. Oleic acid was suggested to be a principal XMYA biotransformation product. The results were interpreted to suggest that the metabolism of XMYA may involve both biohydrogenation and oxidation reactions.
NASA Astrophysics Data System (ADS)
Widnyana, I. K.; Ngga, M.; Sapanca, P. L. Y.
2018-01-01
The research was conducted to determine the effect of seed soaking with suspense of P. alcaligenes isolate KtSl, TrN2, and TmAl to the growth of swamp cabbage. The research has been initially developed on tomatoes. In this research, Randomized Block Design was chosen as its model while the data analysis was performed by using SPSS v.17 for Windows. Three types of treatment were administered towards P. alcaligenes, namely isolating, soaking, and growing the medium. Some observed parameters were germination and growth. The results showed that seed soaking treatments with suspense P. alcaligenes fostered the germination 25% faster, enhanced the crop up to 24.4%, increased the number of leaves up until 23.15%, lengthen stems to 25%, lengthen the roots up to 46.90%, and increase the fresh weight of stems up until 67.07% and oven-dry weight of stem up to 84.21% compared to the control treatment. The best response of treatment for germination speed was soaking seeds with P. alcaligenes TrN2 for 20 minutes on both NB (Natrium Broth) and PDB (Potato Dextrose Broth) media.
Physiological behavior of bean's seeds and grains during storage.
Cassol, Flávia D R; Fortes, Andréa M T; Mendonça, Lorena C; Buturi, Camila V; Marcon, Thaís R
2016-05-31
Beans are one of the most used foods to meet the energy needs of the Brazilian diet, requiring farmers to use high seed physiological potential. The aim was to evaluate the physiological quality of beans stored for 360 days. Analyses were performed at 0, 30, 90, 180, 270, and 360 days after receiving the seeds (S1 and S2) and grains (G1 and G2) of BRS Splendor. Tests of germination, accelerated aging, cold, speed of germination, average length of shoots, and root were performed. The experimental design was completely randomized split-plot in time and the means were compared through Tukey test at 5% probability. Seed germination was not affected in S2, while the drop in S1 and G1 was significant. The vigor of grains from field 1 declined from 91 to 50% and from 93% to 76% by accelerated aging and cold, respectively, after 360 days. The germination speed tests performed showed a decreased during the experiment. The grains from field 1 had lower physiological quality. The accelerated aging and cold tests, through the speed of germination parameter, showed decrease in the vigor of the Splendor BRS. The storage period influenced the physiological quality of the beans tested.
NASA Astrophysics Data System (ADS)
Hu, Xiaohua; Lang, Wenhui; Liu, Wei; Xu, Xue; Yang, Jianbo; Zheng, Lei
2017-08-01
Terahertz (THz) spectroscopy technique has been researched and developed for rapid and non-destructive detection of food safety and quality due to its low-energy and non-ionizing characteristics. The objective of this study was to develop a flexible identification model to discriminate transgenic and non-transgenic rice seeds based on terahertz (THz) spectroscopy. To extract THz spectral features and reduce the feature dimension, sparse representation (SR) is employed in this work. A sufficient sparsity level is selected to train the sparse coding of the THz data, and the random forest (RF) method is then applied to obtain a discrimination model. The results show that there exist differences between transgenic and non-transgenic rice seeds in THz spectral band and, comparing with Least squares support vector machines (LS-SVM) method, SR-RF is a better model for discrimination (accuracy is 95% in prediction set, 100% in calibration set, respectively). The conclusion is that SR may be more useful in the application of THz spectroscopy to reduce dimension and the SR-RF provides a new, effective, and flexible method for detection and identification of transgenic and non-transgenic rice seeds with THz spectral system.
NASA Astrophysics Data System (ADS)
Bahua, M. I.; Suparwata, D. O.
2018-02-01
The aim of this study is to analyze the level of participation of the society and analyze the correlation of internal and external factor with the level of participation from the society. This research was done in Randangan watershed in Pohuwato district, Gorontalo Province from Februari to April 2017. The population of the research is 150 people with 60 respondents that is chosen through random sampling. The data were collected through structured interview with questionnaire. The data were analyzed with class interval analysis (low, average, high), with sperman rank correlatioon analysis, and with descriptive analysis. The result of the research showed that the participation of the society is in low category in terms of determining the rehabilitation location (65.0% is not participated) and evaluation for planting monitoring (68.3% does not participate), and average participation on implementing seeding (55,0% participated), seeding (58.3% participating). Among the internal and external factors of the society, the one that has a significant relation is α = 0.05 is the level of program socialization is in implementing seeding (0.299). This indicates that the better the socialization the better the knowledge of the society in participating in implementing seeding
Competitive seeds-selection in complex networks
NASA Astrophysics Data System (ADS)
Zhao, Jiuhua; Liu, Qipeng; Wang, Lin; Wang, Xiaofan
2017-02-01
This paper investigates a competitive diffusion model where two competitors simultaneously select a set of nodes (seeds) in the network to influence. We focus on the problem of how to select these seeds such that, when the diffusion process terminates, a competitor can obtain more supports than its opponent. Instead of studying this problem in the game-theoretic framework as in the existing work, in this paper we design several heuristic seed-selection strategies inspired by commonly used centrality measures-Betweenness Centrality (BC), Closeness Centrality (CC), Degree Centrality (DC), Eigenvector Centrality (EC), and K-shell Centrality (KS). We mainly compare three centrality-based strategies, which have better performances in competing with the random selection strategy, through simulations on both real and artificial networks. Even though network structure varies across different networks, we find certain common trend appearing in all of these networks. Roughly speaking, BC-based strategy and DC-based strategy are better than CC-based strategy. Moreover, if a competitor adopts CC-based strategy, then BC-based strategy is a better strategy than DC-based strategy for his opponent, and the superiority of BC-based strategy decreases as the heterogeneity of the network decreases.
Herbicidal activity of pure compound isolated from rhizosphere inhabiting Aspergillus flavus.
Khattak, Saeed Ullah; Lutfullah, Ghosia; Iqbal, Zafar; Rehman, Irshad Ur; Ahmad, Jamshaid; Khan, Abid Ali
2018-05-01
In the quest for bioactive natural products of fungal origin, Aspergillus flavus was isolated from rhizosphere of Mentha piperita using Potato Dextrose Agar (PDA) and Czapec Yeast Broth (CYB) nutrient media for metabolites production. In total, three different metabolites were purified using HPLC/LCMS and the structures were established using 500 Varian NMR experiments. Further the isolated metabolites in different concentrations (10, 100, 1000 μg/mL) were tested for herbicidal activity using Completely Randomized design (CRD) against the seeds of Silybum marianum and Avena fatua which are major threats to wheat crop in Pakistan. Among the isolated metabolites, one compound was found active against the test weed species whose activity is reported in the present work. The chemical name of the compound is 2-(1, 4-dihydroxybutan-2-yl)-1, 3-dihydroxy-6, 8-dimethoxyanthracene-9, 10(4aH, 9aH)-dione with mass of 388. Results showed that all seeds germinated in control treatment; however, with the metabolite treated, the growth was retarded to different levels in all parts of the weeds. At a dose of 1000 μg/mL of the pure compound, 100% seeds of S. marianum and 60% seeds of A. fatua were inhibited. Interestingly, the pure compound exhibited less inhibition of 10% towards the seeds of common wheat (Triticum aestivum).
Aliaga-Rossel, Enzo; Manuel Fragoso, Jos
2015-03-01
Animal-plant interactions in Neotropical forests are complex processes. Within these processes, mid- to large-sized mammals consume fruits and seeds from several species; however, because of their size these mammals are overhunted, resulting in defaunated forests. Our objective was to evaluate and compare seed removal and survivorship in a forest with no hunting, a forest with moderate or reduced hunting, and a forest with higher hunting pressure. We examined the interaction between Astrocaryum gratum and white lipped peccary (Tayassu pecari) to tease apart the defaunation process. To isolate and evaluate mammal seed removal rates and to identify the causes of mortality on Agratum, under the three different hunting pressures forests, we used exclosures in each one. In four different forest-patches for each forest, we positioned a block-treatment consisting of three exclosures (total exclusion, peccary exclusion, and control), randomly distributed 5m apart and the block-treatments spaced 50-75 m apart from one another. We established 15 treatments in total for each patch (5 blocks per patch). There were 20 blocks within each forest type. For total exclusion, all vertebrates were excluded using galvanized wire mesh exclosures. The second, the peccary exclusion, was designed to stop peccaries from entering treatment units, providing access only to small vertebrates; larger mammals were able to access the treatment unit by reaching over the sides and the open top; finally, the Control allowed full access for all mammals. Fresh A. gratum fruits were collected from the forest floor under different adult trees throughout the study area. In each exclosure treatment, twenty Agratum seeds were placed, and their removal was recorded. In total, 3 600 seeds were analyzed. Seed survival was lower in unhunted forest compared to areas with moderate hunting and forest with a higher hunt pressure, supporting the hypothesis of the importance of mammals in seed removal. From the initial 400 seeds left for each control exclosure in each type of forest, there was a significant difference between the seed removal; 1.75% seeds in the unhunted forest remained; 43.5% in the moderately hunted forest, and 48.5% in hunted forest. The main cause of seed mortality was white lipped peccaries; while in the forests without them, the main removal was caused by rodents and a higher insect infection was observed in the heavily hunted forest. Our results indicated that defaunation affects seed survivorship.
Mohammadi, L; Sadeghi, Gh
2009-03-01
1. The applicability of different ratios of bitter vetch seed as a new method for moult induction in laying hens was studied. The effectiveness of bitter vetch seed on post-moult production and post-moult egg quality was also investigated. 2. A total of 120 Single Comb White Leghorn hens, 78 weeks of age, were used in this study. The hens were randomly assigned to 5 treatment groups of 24 birds each. The treatments were 30% bitter vetch seed (BV30) diet, 60% bitter vetch seed (BV60) diet, 90% bitter vetch seed (90BV) diet, feed withdrawal method (FW) and full-fed non-moulted control (CON). 3. Egg production ceased first in FW and BV90 treated hens and last in BV30 treated hens. As the percentage of bitter vetch seed increased in the moulting ration, feed intake decreased and body weight loss increased during the 10-d moult induction period. Time to first egg production was significantly greater in hens exposed to the FW and BV90 diets. 4. FW and BV90 treatment hens had significantly higher hen-d egg production than non-moulted control hens. Egg weight was significantly higher in BV30 and BV90 treatments. There were no differences in egg mass, feed intake and mortality among experimental treatments during the post-moult period. 5. No significant improvements were observed in exterior or interior egg quality in moulted hens, except for Haugh units, which were significantly higher in moulted hens when compared to the non-moulted control hens. 6. In conclusion, the present study showed ad libitum feeding of a layer ration with 90% of bitter vetch seed for 10 d proved to be effective for inducing moult, increasing post-moult egg production and improving some internal egg quality parameters.
Cahoon, Edgar B.; Ripp, Kevin G.; Hall, Sarah E.; McGonigle, Brian
2002-01-01
Seed oils of a number of Asteraceae and Euphorbiaceae species are enriched in 12-epoxyoctadeca-cis-9-enoic acid (vernolic acid), an unusual 18-carbon Δ12-epoxy fatty acid with potential industrial value. It has been previously demonstrated that the epoxy group of vernolic acid is synthesized by the activity of a Δ12-oleic acid desaturase-like enzyme in seeds of the Asteraceae Crepis palaestina and Vernonia galamensis. In contrast, results from metabolic studies have suggested the involvement of a cytochrome P450 enzyme in vernolic acid synthesis in seeds of the Euphorbiaceae species Euphorbia lagascae. To clarify the biosynthetic origin of vernolic acid in E. lagascae seed, an expressed sequence tag analysis was conducted. Among 1,006 randomly sequenced cDNAs from developing E. lagascae seeds, two identical expressed sequence tags were identified that encode a cytochrome P450 enzyme classified as CYP726A1. Consistent with the seed-specific occurrence of vernolic acid in E. lagascae, mRNA corresponding to the CYP726A1 gene was abundant in developing seeds, but was not detected in leaves. In addition, expression of the E. lagascae CYP726A1 cDNA in Saccharomyces cerevisiae was accompanied by production of vernolic acid in cultures supplied with linoleic acid and an epoxy fatty acid tentatively identified as 12-epoxyoctadeca-9,15-dienoic acid (12-epoxy-18:2Δ9,15) in cultures supplied with α-linolenic acid. Consistent with this, expression of CYP726A1 in transgenic tobacco (Nicotiana tabacum) callus or somatic soybean (Glycine max) embryos resulted in the accumulation of vernolic acid and 12-epoxy-18:2Δ9,15. Overall, these results conclusively demonstrate that Asteraceae species and the Euphorbiaceae E. lagascae have evolved structurally unrelated enzymes to generate the Δ12-epoxy group of vernolic acid. PMID:11842164
[Purity Detection Model Update of Maize Seeds Based on Active Learning].
Tang, Jin-ya; Huang, Min; Zhu, Qi-bing
2015-08-01
Seed purity reflects the degree of seed varieties in typical consistent characteristics, so it is great important to improve the reliability and accuracy of seed purity detection to guarantee the quality of seeds. Hyperspectral imaging can reflect the internal and external characteristics of seeds at the same time, which has been widely used in nondestructive detection of agricultural products. The essence of nondestructive detection of agricultural products using hyperspectral imaging technique is to establish the mathematical model between the spectral information and the quality of agricultural products. Since the spectral information is easily affected by the sample growth environment, the stability and generalization of model would weaken when the test samples harvested from different origin and year. Active learning algorithm was investigated to add representative samples to expand the sample space for the original model, so as to implement the rapid update of the model's ability. Random selection (RS) and Kennard-Stone algorithm (KS) were performed to compare the model update effect with active learning algorithm. The experimental results indicated that in the division of different proportion of sample set (1:1, 3:1, 4:1), the updated purity detection model for maize seeds from 2010 year which was added 40 samples selected by active learning algorithm from 2011 year increased the prediction accuracy for 2011 new samples from 47%, 33.75%, 49% to 98.89%, 98.33%, 98.33%. For the updated purity detection model of 2011 year, its prediction accuracy for 2010 new samples increased by 50.83%, 54.58%, 53.75% to 94.57%, 94.02%, 94.57% after adding 56 new samples from 2010 year. Meanwhile the effect of model updated by active learning algorithm was better than that of RS and KS. Therefore, the update for purity detection model of maize seeds is feasible by active learning algorithm.
Shi, Yang; Fan, Hongfei; Xiong, Guoyue
2015-01-01
With the rapid development of cloud computing techniques, it is attractive for personal health record (PHR) service providers to deploy their PHR applications and store the personal health data in the cloud. However, there could be a serious privacy leakage if the cloud-based system is intruded by attackers, which makes it necessary for the PHR service provider to encrypt all patients' health data on cloud servers. Existing techniques are insufficiently secure under circumstances where advanced threats are considered, or being inefficient when many recipients are involved. Therefore, the objectives of our solution are (1) providing a secure implementation of re-encryption in white-box attack contexts and (2) assuring the efficiency of the implementation even in multi-recipient cases. We designed the multi-recipient re-encryption functionality by randomness-reusing and protecting the implementation by obfuscation. The proposed solution is secure even in white-box attack contexts. Furthermore, a comparison with other related work shows that the computational cost of the proposed solution is lower. The proposed technique can serve as a building block for supporting secure, efficient and privacy-preserving personal health record service systems.
Reconstruction of Consistent 3d CAD Models from Point Cloud Data Using a Priori CAD Models
NASA Astrophysics Data System (ADS)
Bey, A.; Chaine, R.; Marc, R.; Thibault, G.; Akkouche, S.
2011-09-01
We address the reconstruction of 3D CAD models from point cloud data acquired in industrial environments, using a pre-existing 3D model as an initial estimate of the scene to be processed. Indeed, this prior knowledge can be used to drive the reconstruction so as to generate an accurate 3D model matching the point cloud. We more particularly focus our work on the cylindrical parts of the 3D models. We propose to state the problem in a probabilistic framework: we have to search for the 3D model which maximizes some probability taking several constraints into account, such as the relevancy with respect to the point cloud and the a priori 3D model, and the consistency of the reconstructed model. The resulting optimization problem can then be handled using a stochastic exploration of the solution space, based on the random insertion of elements in the configuration under construction, coupled with a greedy management of the conflicts which efficiently improves the configuration at each step. We show that this approach provides reliable reconstructed 3D models by presenting some results on industrial data sets.
Coarse Point Cloud Registration by Egi Matching of Voxel Clusters
NASA Astrophysics Data System (ADS)
Wang, Jinhu; Lindenbergh, Roderik; Shen, Yueqian; Menenti, Massimo
2016-06-01
Laser scanning samples the surface geometry of objects efficiently and records versatile information as point clouds. However, often more scans are required to fully cover a scene. Therefore, a registration step is required that transforms the different scans into a common coordinate system. The registration of point clouds is usually conducted in two steps, i.e. coarse registration followed by fine registration. In this study an automatic marker-free coarse registration method for pair-wise scans is presented. First the two input point clouds are re-sampled as voxels and dimensionality features of the voxels are determined by principal component analysis (PCA). Then voxel cells with the same dimensionality are clustered. Next, the Extended Gaussian Image (EGI) descriptor of those voxel clusters are constructed using significant eigenvectors of each voxel in the cluster. Correspondences between clusters in source and target data are obtained according to the similarity between their EGI descriptors. The random sampling consensus (RANSAC) algorithm is employed to remove outlying correspondences until a coarse alignment is obtained. If necessary, a fine registration is performed in a final step. This new method is illustrated on scan data sampling two indoor scenarios. The results of the tests are evaluated by computing the point to point distance between the two input point clouds. The presented two tests resulted in mean distances of 7.6 mm and 9.5 mm respectively, which are adequate for fine registration.
Holly, N
1988-01-01
A rapidly evolving technology, percutaneous transluminal coronary angioplasty, is increasingly favored over bypass surgery for treating some types of coronary stenosis because of its less traumatic invasion, better recovery response, and lower initial cost. However, substantially higher failure rates in initial procedures offset PTCA's savings to an unknown extent and cloud analysis of its overall impact. Lack of randomized clinical data precludes valid cost-effectiveness comparison of the technologies at this time. Criteria for establishing valid data and evaluations of currently available data are described in this paper.
Xu, Shaochun; Wang, Pengmei; Zhou, Yi; Zhang, Xiaomei; Gu, Ruiting; Liu, Xujia; Liu, Bingjian; Song, Xiaoyue; Xu, Shuai; Yue, Shidong
2018-01-01
Seagrasses are important components of global coastal ecosystems, and the eelgrass Zostera marina L. is widely distributed along the Atlantic and Pacific coasts in the temperate northern hemisphere, but limited datum related to the contribution of sexual reproduction to population recruitment have been reported. This study aimed to understand eelgrass sexual reproduction and population recruitment in Swan Lake (SLL), and Huiquan Bay (HQB) was included for comparison. Random sampling, permanent quadrats or cores and laboratory seed germination-based experimental methods were employed. The flowering, seed production, seed banks, seed germination, seedling survival, and seedling growth of eelgrass were investigated from July 2014 to December 2015 to evaluate the contribution of sexual reproduction to population recruitment. Results indicated a dominant role of asexual reproduction in HQB, while sexual reproduction played a relatively important role in SLL. The highest flowering shoot density in SLL was 517.27 ± 504.29 shoots m−2 (June) and represented 53.34% of the total shoots at the center site. The potential seed output per reproductive shoot and per unit area in SLL were 103.67 ± 37.95 seeds shoot−1 and 53,623.66 ± 19,628.11 seeds m−2, respectively. The maximum seed bank density in SLL was 552.21 ± 204.94 seeds m−2 (October). Seed germination mainly occurred from the middle of March to the end of May, and the highest seedling density was 296.88 ± 274.27 seedlings m−2 in April. The recruitment from seedlings accounted for 41.36% of the Z. marina population recruitment at the center site, while the sexual recruitment contribution at the patch site (50.52%) was greater than that at the center site. Seeds in SLL were acclimated to spring germination, while in HQB, they were acclimated to autumn germination (early October–late November). Seed bank density in HQB was very low, with a value of 254.35 ± 613.34 seeds m−2 (early October). However, seeds in HQB were significantly larger and heavier than those in SLL (size: P = 0.004; weight: P < 0.001). The recruitment from seedlings accounted for as low as 2.53% of the Z. marina population recruitment in HQB. Our laboratory seed germination experiment, which was conducted in autumn, showed that the seed germination percent in HQB was significantly greater than in SLL at optimal germination temperatures (10 and 15°C; P < 0.001). A laboratory seed germination test at suitable temperature may be a potential novel approach to identify the ecological differences among different geographic populations. It is suggested that the Z. marina population recruitment may have different strategies and adapt to specific local conditions, such as in SLL and HQB, and the temperature regime may control morphological and phonological variations. PMID:29483922
Xu, Shaochun; Wang, Pengmei; Zhou, Yi; Zhang, Xiaomei; Gu, Ruiting; Liu, Xujia; Liu, Bingjian; Song, Xiaoyue; Xu, Shuai; Yue, Shidong
2018-01-01
Seagrasses are important components of global coastal ecosystems, and the eelgrass Zostera marina L. is widely distributed along the Atlantic and Pacific coasts in the temperate northern hemisphere, but limited datum related to the contribution of sexual reproduction to population recruitment have been reported. This study aimed to understand eelgrass sexual reproduction and population recruitment in Swan Lake (SLL), and Huiquan Bay (HQB) was included for comparison. Random sampling, permanent quadrats or cores and laboratory seed germination-based experimental methods were employed. The flowering, seed production, seed banks, seed germination, seedling survival, and seedling growth of eelgrass were investigated from July 2014 to December 2015 to evaluate the contribution of sexual reproduction to population recruitment. Results indicated a dominant role of asexual reproduction in HQB, while sexual reproduction played a relatively important role in SLL. The highest flowering shoot density in SLL was 517.27 ± 504.29 shoots m -2 (June) and represented 53.34% of the total shoots at the center site. The potential seed output per reproductive shoot and per unit area in SLL were 103.67 ± 37.95 seeds shoot -1 and 53,623.66 ± 19,628.11 seeds m -2 , respectively. The maximum seed bank density in SLL was 552.21 ± 204.94 seeds m -2 (October). Seed germination mainly occurred from the middle of March to the end of May, and the highest seedling density was 296.88 ± 274.27 seedlings m -2 in April. The recruitment from seedlings accounted for 41.36% of the Z. marina population recruitment at the center site, while the sexual recruitment contribution at the patch site (50.52%) was greater than that at the center site. Seeds in SLL were acclimated to spring germination, while in HQB, they were acclimated to autumn germination (early October-late November). Seed bank density in HQB was very low, with a value of 254.35 ± 613.34 seeds m -2 (early October). However, seeds in HQB were significantly larger and heavier than those in SLL (size: P = 0.004; weight: P < 0.001). The recruitment from seedlings accounted for as low as 2.53% of the Z. marina population recruitment in HQB. Our laboratory seed germination experiment, which was conducted in autumn, showed that the seed germination percent in HQB was significantly greater than in SLL at optimal germination temperatures (10 and 15°C; P < 0.001). A laboratory seed germination test at suitable temperature may be a potential novel approach to identify the ecological differences among different geographic populations. It is suggested that the Z. marina population recruitment may have different strategies and adapt to specific local conditions, such as in SLL and HQB, and the temperature regime may control morphological and phonological variations.
NASA Astrophysics Data System (ADS)
Fry, R.; Routh, M.; Chaudhuri, S.; Fry, S.; Ison, M.; Hughes, S.; Komor, C.; Klabunde, K.; Sethi, V.; Collins, D.; Polkinghorn, W.; Wroobel, B.; Hughes, J.; Gower, G.; Shkolnik, J.
2017-12-01
Previous attempts to capture atmospheric CO2 by algal blooming were stalled by ocean viruses, zooplankton feeding, and/or bacterial decomposition of surface blooms, re-releasing captured CO2 instead of exporting it to seafloor. CCS fossil energy coupling could bypass algal bloom limits—enabling capture of 10 GtC/yr atmospheric CO2 by selective emiliania huxleyi (EHUX) blooming in mid-latitude open oceans, far from coastal waters and polar seas. This could enable a 500 GtC drawdown, 350 ppm restoration by 2050, 280 ppm CO2 by 2075, and ocean pH 8.2. White EHUX blooms could also reflect sunlight back into outer space and seed extra ocean cloud cover, via DMS release, to raise albedo 1.8%—restoring preindustrial temperature (ΔT = 0°C) by 2030. Open oceans would avoid post-bloom anoxia, exclusively a coastal water phenomenon. The EHUX calcification reaction initially sources CO2, but net sinking prevails in follow-up equilibration reactions. Heavier-than-water EHUX sink captured CO2 to the sea floor before surface decomposition occurs. Seeding EHUX high on their nonlinear growth curve could accelerate short-cycle secondary open-ocean blooming—overwhelming mid-latitude viruses, zooplankton, and competition from other algae. Mid-latitude "ocean deserts" exhibit low viral, zooplankton, and bacterial counts. Thermocline prevents nutrient upwelling that would otherwise promote competing algae. Adding nitrogen nutrient would foster exclusive EHUX blooming. Elevated EHUX seed levels could arise from sealed, pH-buffered, floating, seed-production bioreactors infused with 10% CO2 from carbon feedstock supplied by inland CCS fossil power plants capturing 90% of emissions as liquid CO2. Deep-water SPAR platforms extract natural gas from beneath the sea floor. On-platform Haber and pH processing could convert extracted CH4 to buffered NH4+ nutrient, enabling ≥0.7 GtC/yr of bioreactor seed production and 10 GtC/yr of amplified secondary open-ocean CO2 capture—making CCS fossil energy 1400% carbon negative.
Enhanced root and shoot growth of wheat (Triticum aestivum L.) by Trichoderma harzianum from Turkey.
Kucuk, Cigdem
2014-01-01
It is well known that Trichoderma species can be used as biocontrol and plant growth promote agent. In this study, Trichoderma harzianum isolates were evaluated for their growth promotion effects on wheat in greenhouse experiments. Two isolates of T. harzianum were used. The experimental design was a randomized complete block with three replications. Seeds were inoculated with conidial suspensions of each isolate. Wheat plants grown in steriled soil in pots. T. harzianum T8 and T15 isolates increased wheat length, root dry weight and shoot dry weight according to untreated control. Turkish isolates T8 and T15 did not produce damage in seeds nor in plants.
Accessing the SEED genome databases via Web services API: tools for programmers.
Disz, Terry; Akhter, Sajia; Cuevas, Daniel; Olson, Robert; Overbeek, Ross; Vonstein, Veronika; Stevens, Rick; Edwards, Robert A
2010-06-14
The SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST) server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups. The currently exposed Web services encompass over forty different methods for accessing data related to microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing any programmer access to the most consistent and accurate genome annotations available. The Web services are deployed using a platform independent service-oriented approach that allows the user to choose the most suitable programming platform for their application. Example code demonstrate that Web services can be used to access the SEED using common bioinformatics programming languages such as Perl, Python, and Java. We present a novel approach to access the SEED database. Using Web services, a robust API for access to genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the most current datasets available, including the new genomes as soon as they come online.
Physiological and enzymatic alterations in sesame seeds submitted to different osmotic potentials.
Pires, R M O; Àvila, M A B; Leite, D G; Santos, H O; Souza, G A; Von Pinho, E V R
2017-08-17
With the imminence of global climate changes that affect the temperature and the rainfall uniformity, it is growing the concern about the adaptation of crops to the water deficit. Thus, the objective of this study was to evaluate alterations in physiological and enzymatic mechanisms during the germination process of sesame seeds under different water availability. To simulate the water restriction we used PEG6000, a high molecular weight molecule that does not penetrate the seed structure but allows different osmotic potentials. The treatments were -0.1, -0.2, and -0.3 MPa, and the control. Germination, first-count germination, germination velocity index, and length and dry mass of the hypocotyl and radicle were performed. The seeds were weighed before and after treatments every 3 h. After each weighing, 100 seeds were taken for analysis of the enzymes alcohol dehydrogenase (ADH), malate dehydrogenase, esterase, catalase (CAT), superoxide dismutase (SOD), isocitrate lyase (ICL), and glutamate dehydrogenase (GTDH). The statistical design was completely randomized with five replications. PEG6000 prolonged ADH activity during the beginning of germination, maintaining the anaerobic metabolism for longer. Subsequently, their activity was reduced, as well as ICL, favoring the deterioration of the seeds that take the time to germinate. Behavior was evidenced by the appearance of SOD, CAT, and GTDH isoforms after 24 h of imbibition when water restriction was imposed. Therefore, the PEG600 is efficient in simulating water deficit conditions in future scenarios of climate change, offering impotent information regarding the germination behavior of the plants under these conditions.
Nutritional assessment of a jackfruit (Artocarpus heterophyllus) meal.
Hettiaratchi, U P K; Ekanayake, S; Welihinda, J
2011-06-01
The mature jackfruit (Artocarpus heterophyllus) is consumed in Sri Lanka either as a main meal or a meal accompaniment. However, there is no scientific data on the nutrient compositions of cooked jackfruit meals. Thus, the objective of the study was to carry out a nutritional assessment of a composite jackfruit breakfast meal comprising seeds and flesh. A jackfruit meal comprising of flesh (80% available carbohydrate) and seeds (20% available carbohydrate) was included in the study. The study was carried out in a random cross over design. Setting University of Sri Jayewardenepura. Study participants Healthy individuals (n=10, age: 20-30 yrs). The macronutrient contents, rapidly and slowly available glucose (SAG) contents, water solubility index of the jackfruit meal were determined according to standard methods. The GI of the meal was calculated according to FAO/WHO guidelines. The moisture content of the boiled jackfruit flesh was high (82% FW). Jack seeds contained 4.7% protein (FW), 11.1% total dietary fibre (FW) and 8% resistant starch (FW). Jackfruit meal elicited a GI of 75. The Glycaemic Load (GL) of the normal serving size of the meal is medium. The slowly available glucose (SAG) percentage of jackfruit meal (30%) was twice that of the standard. The boiled jackfruit flesh contained disintegrated starch granules while seeds contained intact swollen and disintegrated granules. The jackfruit seeds are a good source of starch (22%) and dietary fibre. The meal is categorized as a low GI meal. The low GI could be dueto the collective contributions from dietary fibre, slowly available glucose and un-gelatinised (intact) starch granules in the seeds.
Tada, Hayato; Kawashiri, Masa-Aki; Yamagishi, Masakazu
2017-04-01
Dyslipidemias, especially hyper-low-density lipoprotein cholesterolemia and hypertriglyceridemia, are important causal risk factors for coronary artery disease. Comprehensive genotyping using the 'next-generation sequencing' technique has facilitated the investigation of Mendelian dyslipidemias, in addition to Mendelian randomization studies using common genetic variants associated with plasma lipids and coronary artery disease. The beneficial effects of low-density lipoprotein cholesterol-lowering therapies on coronary artery disease have been verified by many randomized controlled trials over the years, and subsequent genetic studies have supported these findings. More recently, Mendelian randomization studies have preceded randomized controlled trials. When the on-target/off-target effects of rare variants and common variants exhibit the same direction, novel drugs targeting molecules identified by investigations of rare Mendelian lipid disorders could be promising. Such a strategy could aid in the search for drug discovery seeds other than those for dyslipidemias.
Sunn Hemp Biomass and Nitrogen Production for Different Planting Dates and Seeding Rates
USDA-ARS?s Scientific Manuscript database
Elevated nitrogen (N) fertilizer costs have renewed interest in alternative N sources, such as legumes. Sunn hemp (Crotalaria juncea L.) is a tropical legume capable of producing considerable biomass in a short period of time. A randomized complete block design with a split-plot restriction and fou...
Evaluation of fungicide rotations for management of Phytophthora fruit rot of watermelon, 2015
USDA-ARS?s Scientific Manuscript database
The experiment was conducted at the U.S. Vegetable Laboratory farm in Charleston, SC. The soil was Yonges loamy fine sand. For the past 6 years, the field has been infested with Phytophthora capsici. The experimental design was a randomized complete block with four replications. Five-week-old seedli...
Reed-Muller Codes in Error Correction in Wireless Adhoc Networks
2004-03-01
resulting spectrum is the spectrum of the windowed signal. Therefore, the window width is an important pa- rameter that affects the BER performanceof ... compare the results, the same random message was used. The seed value in msg.m was changed only for comparing the PAPR values of the system with
A network approach to the geometric structure of shallow cloud fields
NASA Astrophysics Data System (ADS)
Glassmeier, F.; Feingold, G.
2017-12-01
The representation of shallow clouds and their radiative impact is one of the largest challenges for global climate models. While the bulk properties of cloud fields, including effects of organization, are a very active area of research, the potential of the geometric arrangement of cloud fields for the development of new parameterizations has hardly been explored. Self-organized patterns are particularly evident in the cellular structure of Stratocumulus (Sc) clouds so readily visible in satellite imagery. Inspired by similar patterns in biology and physics, we approach pattern formation in Sc fields from the perspective of natural cellular networks. Our network analysis is based on large-eddy simulations of open- and closed-cell Sc cases. We find the network structure to be neither random nor characteristic to natural convection. It is independent of macroscopic cloud fields properties like the Sc regime (open vs closed) and its typical length scale (boundary layer height). The latter is a consequence of entropy maximization (Lewis's Law with parameter 0.16). The cellular pattern is on average hexagonal, where non-6 sided cells occur according to a neighbor-number distribution variance of about 2. Reflecting the continuously renewing dynamics of Sc fields, large (many-sided) cells tend to neighbor small (few-sided) cells (Aboav-Weaire Law with parameter 0.9). These macroscopic network properties emerge independent of the Sc regime because the different processes governing the evolution of closed as compared to open cells correspond to topologically equivalent network dynamics. By developing a heuristic model, we show that open and closed cell dynamics can both be mimicked by versions of cell division and cell disappearance and are biased towards the expansion of smaller cells. This model offers for the first time a fundamental and universal explanation for the geometric pattern of Sc clouds. It may contribute to the development of advanced Sc parameterizations. As an outlook, we discuss how a similar network approach can be applied to describe and quantify the geometric structure of shallow cumulus cloud fields.
Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light
NASA Astrophysics Data System (ADS)
Flores, Angel; Ehrehreich, Thomas; Holten, Roger; Anderson, Brian; Dajani, Iyad
2016-03-01
We report efficient coherent beam combining of five kilowatt-class fiber amplifiers with a diffractive optical element (DOE). Based on a master oscillator power amplifier (MOPA) configuration, the amplifiers were seeded with pseudo random phase modulated light. Each non-polarization maintaining fiber amplifier was optically path length matched and provides approximately 1.2 kW of near diffraction-limited output power (measured M2<1.1). Consequently, a low power sample of each laser was utilized for active linear polarization control. A low power sample of the combined beam after the DOE provided an error signal for active phase locking which was performed via Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging (LOCSET). After phase stabilization, the beams were coherently combined via the 1x5 DOE. A total combined output power of 4.9 kW was achieved with 82% combining efficiency and excellent beam quality (M2<1.1). The intrinsic DOE splitter loss was 5%. Similarly, losses due in part to non-ideal polarization, ASE content, uncorrelated wavefront errors, and misalignment errors contributed to the efficiency reduction.
Rango, A.; Foster, J.; Josberger, E.G.; Erbe, E.F.; Pooley, C.; Wergin, W.P.
2003-01-01
Snow crystals, which form by vapor deposition, occasionally come in contact with supercooled cloud droplets during their formation and descent. When this occurs, the droplets adhere and freeze to the snow crystals in a process known as accretion. During the early stages of accretion, discrete snow crystals exhibiting frozen cloud droplets are referred to as rime. If this process continues, the snow crystal may become completely engulfed in frozen cloud droplets. The resulting particle is known as graupel. Light microscopic investigations have studied rime and graupel for nearly 100 years. However, the limiting resolution and depth of field associated with the light microscope have prevented detailed descriptions of the microscopic cloud droplets and the three-dimensional topography of the rime and graupel particles. This study uses low-temperature scanning electron microscopy to characterize the frozen precipitates that are commonly known as rime and graupel. Rime, consisting of frozen cloud droplets, is observed on all types of snow crystals including needles, columns, plates, and dendrites. The droplets, which vary in size from 10 to 100 μm, frequently accumulate along one face of a single snow crystal, but are found more randomly distributed on aggregations consisting of two or more snow crystals (snowflakes). The early stages of riming are characterized by the presence of frozen cloud droplets that appear as a layer of flattened hemispheres on the surface of the snow crystal. As this process continues, the cloud droplets appear more sinuous and elongate as they contact and freeze to the rimed crystals. The advanced stages of this process result in graupel, a particle 1 to 3 mm across, composed of hundreds of frozen cloud droplets interspersed with considerable air spaces; the original snow crystal is no longer discernible. This study increases our knowledge about the process and characteristics of riming and suggests that the initial appearance of the flattened hemispheres may result from impact of the leading face of the snow crystal with cloud droplets. The elongated and sinuous configurations of frozen cloud droplets that are encountered on the more advanced stages suggest that aerodynamic forces propel cloud droplets to the trailing face of the descending crystal where they make contact and freeze.
Diffusing Wave Spectroscopy Used to Study Foams
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Durian, Douglas J.
2000-01-01
The white appearance of familiar objects such as clouds, snow, milk, or foam is due to the random scattering of light by the sample. As we all know, pure water is clear and easily passes a beam of light. However, tiny water droplets, such as those in a cloud, scatter light because the air and water droplet have different indexes of refraction. When many droplets, or scattering sites, are present, the incident light is scattered in random directions and the sample takes on a milky white appearance. In a glass of milk, the scattering is due to small colloidal particles. The white appearance of shaving cream, or foam, is due to the scattering of light at the water-bubble interface. Diffusing wave spectroscopy (DWS) is a laser light-scattering technique used to noninvasively probe the particle dynamics in systems that strongly scatter light. The technique takes advantage of the diffuse nature of light, which is reflected or transmitted from samples such as foams, dense colloidal suspensions (such as paint and milk), emulsions, liquid crystals, sandpiles, and even biological tissues.
NASA Astrophysics Data System (ADS)
Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne
2016-08-01
This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.
Canizo, Brenda V; Escudero, Leticia B; Pérez, María B; Pellerano, Roberto G; Wuilloud, Rodolfo G
2018-03-01
The feasibility of the application of chemometric techniques associated with multi-element analysis for the classification of grape seeds according to their provenance vineyard soil was investigated. Grape seed samples from different localities of Mendoza province (Argentina) were evaluated. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of twenty-nine elements (Ag, As, Ce, Co, Cs, Cu, Eu, Fe, Ga, Gd, La, Lu, Mn, Mo, Nb, Nd, Ni, Pr, Rb, Sm, Te, Ti, Tl, Tm, U, V, Y, Zn and Zr). Once the analytical data were collected, supervised pattern recognition techniques such as linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), k-nearest neighbors (k-NN), support vector machine (SVM) and Random Forest (RF) were applied to construct classification/discrimination rules. The results indicated that nonlinear methods, RF and SVM, perform best with up to 98% and 93% accuracy rate, respectively, and therefore are excellent tools for classification of grapes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sample size for estimating mean and coefficient of variation in species of crotalarias.
Toebe, Marcos; Machado, Letícia N; Tartaglia, Francieli L; Carvalho, Juliana O DE; Bandeira, Cirineu T; Cargnelutti Filho, Alberto
2018-04-16
The objective of this study was to determine the sample size necessary to estimate the mean and coefficient of variation in four species of crotalarias (C. juncea, C. spectabilis, C. breviflora and C. ochroleuca). An experiment was carried out for each species during the season 2014/15. At harvest, 1,000 pods of each species were randomly collected. In each pod were measured: mass of pod with and without seeds, length, width and height of pods, number and mass of seeds per pod, and mass of hundred seeds. Measures of central tendency, variability and distribution were calculated, and the normality was verified. The sample size necessary to estimate the mean and coefficient of variation with amplitudes of the confidence interval of 95% (ACI95%) of 2%, 4%, ..., 20% was determined by resampling with replacement. The sample size varies among species and characters, being necessary a larger sample size to estimate the mean in relation of the necessary for the coefficient of variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meikle, T.; Ballek, L.; Briggs, B.
This study investigates the cost effectiveness of three separate reclamation methods utilized in the long-term establishment of Big Sage (Artemisia tridentata va. wyomingensis). Direct seeding and planting with four cubic inch and ten cubic inch containerized stock were compared using five 36 square meter plots per treatment within a fenced randomized block. Seed plots were hand broadcast at a rate of 2 kilograms per hectare and mulched with certified weed-free wheat straw. Containerized stock plots were planted at a density of one per square meter. Controls with no seeding or planting were established to differentiate actual plant production/reproduction from seedmore » bank recruitment and migration from replaced topsoil and surrounding native areas. Stem density (stem/m{sup 2}), plant height (cm), and plant reproduction (seedlings/m{sup 2}) data will be gathered every spring and fall for three years (1994-1997). Final analysis of the data will relate establishment success to cost efficiency. This initial report on the study reviews only seedling establishment based on first year data.« less
Tao, Jinghe; Zhang, Wenxu; Liang, Li; Lei, Ziqiang
2018-02-01
Desertification is the degradation of land in arid and semi-arid areas. Nowadays, lack of water and desertification are extreme problems for plant survival and growth in the arid and semi-arid areas of the world. It becomes increasingly important as to how to let the plant absorb moisture more effectively for keeping growth strong. We synthesized superabsorbent polymers (SAPs) with carbohydrate and characterized them by Fourier transform infrared spectra analyses, scanning electron microscopy and thermogravimetric/differential thermal analyses. Then, a completely randomized experiment was conducted to assess the effect of carbohydrate-based SAPs on seed germination and seedling growth of maize in an artificial climate chest. The results showed that adding an appropriate amount of SAPs could improve root length, shoot length, total biomass, germination potential and germination rate. It indicates that this SAP is not toxic to plants and can promote seed germination, and at the same time provides a possibility of replacing other substrates.
NASA Astrophysics Data System (ADS)
Tao, Jinghe; Zhang, Wenxu; Liang, Li; Lei, Ziqiang
2018-02-01
Desertification is the degradation of land in arid and semi-arid areas. Nowadays, lack of water and desertification are extreme problems for plant survival and growth in the arid and semi-arid areas of the world. It becomes increasingly important as to how to let the plant absorb moisture more effectively for keeping growth strong. We synthesized superabsorbent polymers (SAPs) with carbohydrate and characterized them by Fourier transform infrared spectra analyses, scanning electron microscopy and thermogravimetric/differential thermal analyses. Then, a completely randomized experiment was conducted to assess the effect of carbohydrate-based SAPs on seed germination and seedling growth of maize in an artificial climate chest. The results showed that adding an appropriate amount of SAPs could improve root length, shoot length, total biomass, germination potential and germination rate. It indicates that this SAP is not toxic to plants and can promote seed germination, and at the same time provides a possibility of replacing other substrates.
Tao, Jinghe; Liang, Li; Lei, Ziqiang
2018-01-01
Desertification is the degradation of land in arid and semi-arid areas. Nowadays, lack of water and desertification are extreme problems for plant survival and growth in the arid and semi-arid areas of the world. It becomes increasingly important as to how to let the plant absorb moisture more effectively for keeping growth strong. We synthesized superabsorbent polymers (SAPs) with carbohydrate and characterized them by Fourier transform infrared spectra analyses, scanning electron microscopy and thermogravimetric/differential thermal analyses. Then, a completely randomized experiment was conducted to assess the effect of carbohydrate-based SAPs on seed germination and seedling growth of maize in an artificial climate chest. The results showed that adding an appropriate amount of SAPs could improve root length, shoot length, total biomass, germination potential and germination rate. It indicates that this SAP is not toxic to plants and can promote seed germination, and at the same time provides a possibility of replacing other substrates. PMID:29515838
Haberstroh, Kathrin; Ritter, Kathrin; Kuschnierz, Jens; Bormann, Kai-Hendrik; Kaps, Christian; Carvalho, Carlos; Mülhaupt, Rolf; Sittinger, Michael; Gellrich, Nils-Claudius
2010-05-01
The aim of this study was to investigate the osteogenic effect of three different cell-seeded 3D-bioplotted scaffolds in a ovine calvarial critical-size defect model. The choice of scaffold-materials was based on their applicability for 3D-bioplotting and respective possibility to produce tailor-made scaffolds for the use in cranio-facial surgery for the replacement of complex shaped boneparts. Scaffold raw-materials are known to be osteoinductive when being cell-seeded [poly(L-lactide-co-glycolide) (PLGA)] or having components with osteoinductive properties as tricalciumphosphate (TCP) or collagen (Col) or chitosan. The scaffold-materials PLGA, TCP/Col, and HYDR (TCP/Col/chitosan) were cell-seeded with osteoblast-like cells whether gained from bone (OLB) or from periost (OLP). In a prospective and randomized design nine sheep underwent osteotomy to create four critical-sized calvarial defects. Three animals each were assigned to the HYDR-, the TCP/Col-, or the PLGA-group. In each animal, one defect was treated with a cell-free, an OLB- or OLP-seeded group-specific scaffold, respectively. The fourth defect remained untreated as control (UD). Fourteen weeks later, animals were euthanized for histo-morphometrical analysis of the defect healing. OLB- and OLP-seeded HYDR and OLB-seeded TCP/Col scaffolds significantly increased the amount of newly formed bone (NFB) at the defect bottom and OLP-seeded HYDR also within the scaffold area, whereas PLGA-scaffolds showed lower rates. The relative density of NFB was markedly higher in the HYDR/OLB group compared to the corresponding PLGA group. TCP/Col had good stiffness to prepare complex structures by bioplotting but HYDR and PLGA were very soft. HYDR showed appropriate biodegradation, TCP/Col and PLGA seemed to be nearly undegraded after 14 weeks. 3D-bioplotted, cell-seeded HYDR and TCP/Col scaffolds increased the amount of NFB within ovine critical-size calvarial defects, but stiffness, respectively, biodegradation of materials is not appropriate for the application in cranio-facial surgery and have to be improved further by modifications of the manufacturing process or their material composition. (c) 2010 Wiley Periodicals, Inc.
Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data.
Schulz, Hans Martin; Li, Ching-Feng; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg
2017-01-01
Up until now montane cloud forest (MCF) in Taiwan has only been mapped for selected areas of vegetation plots. This paper presents the first comprehensive map of MCF distribution for the entire island. For its creation, a Random Forest model was trained with vegetation plots from the National Vegetation Database of Taiwan that were classified as "MCF" or "non-MCF". This model predicted the distribution of MCF from a raster data set of parameters derived from a digital elevation model (DEM), Landsat channels and texture measures derived from them as well as ground fog frequency data derived from the Moderate Resolution Imaging Spectroradiometer. While the DEM parameters and Landsat data predicted much of the cloud forest's location, local deviations in the altitudinal distribution of MCF linked to the monsoonal influence as well as the Massenerhebung effect (causing MCF in atypically low altitudes) were only captured once fog frequency data was included. Therefore, our study suggests that ground fog data are most useful for accurately mapping MCF.