[Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].
Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan
2016-03-01
To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.
Gravity and the orientation of cell division
NASA Technical Reports Server (NTRS)
Helmstetter, C. E.
1997-01-01
A novel culture system for mammalian cells was used to investigate division orientations in populations of Chinese hamster ovary cells and the influence of gravity on the positioning of division axes. The cells were tethered to adhesive sites, smaller in diameter than a newborn cell, distributed over a nonadhesive substrate positioned vertically. The cells grew and divided while attached to the sites, and the angles and directions of elongation during anaphase, projected in the vertical plane, were found to be random with respect to gravity. However, consecutive divisions of individual cells were generally along the same axis or at 90 degrees to the previous division, with equal probability. Thus, successive divisions were restricted to orthogonal planes, but the choice of plane appeared to be random, unlike the ordered sequence of cleavage orientations seen during early embryo development.
NASA Astrophysics Data System (ADS)
Huang, Chen-Yu; Hu, Keng-Hsiang; Wei, Zung-Hang
2016-12-01
Electrospinning technique is able to create nanofibers with specific orientation. Poly(vinyl alcohol) (PVA) have good mechanical stability but poor cell adhesion property due to the low affinity of protein. In this paper, extracellular matrix, gelatin is incorporated into PVA solution to form electrospun PVA-gelatin nanofibers membrane. Both randomly oriented and aligned nanofibers are used to investigate the topography-induced behavior of fibroblasts. Surface morphology of the fibers is studied by optical microscopy and scanning electron microscopy (SEM) coupled with image analysis. Functional group composition in PVA or PVA-gelatin is investigated by Fourier Transform Infrared (FTIR). The morphological changes, surface coverage, viability and proliferation of fibroblasts influenced by PVA and PVA-gelatin nanofibers with randomly orientated or aligned configuration are systematically compared. Fibroblasts growing on PVA-gelatin fibers show significantly larger projected areas as compared with those cultivated on PVA fibers which p-value is smaller than 0.005. Cells on PVA-gelatin aligned fibers stretch out extensively and their intracellular stress fiber pull nucleus to deform. Results suggest that instead of the anisotropic topology within the scaffold trigger the preferential orientation of cells, the adhesion of cell membrane to gelatin have substantial influence on cellular behavior.
Kolambkar, Yash M.; Bajin, Mehmet; Wojtowicz, Abigail; Hutmacher, Dietmar W.; García, Andrés J.
2014-01-01
Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration. PMID:24020454
Li, Yiping; Dai, Xiaohan; Bai, Yunyang; Liu, Yun; Wang, Yuehong; Liu, Ousheng; Yan, Fei; Tang, Zhangui; Zhang, Xuehui; Deng, Xuliang
2017-01-01
It has been proven that the surface topographic cues of fiber arrangement can induce osteogenic differentiation of mesenchymal stem cells. However, this effect alone is weak and insufficient to meet the needs of regenerative medicine. In this work, electroactivity concept was introduced to enhance the osteoinductivity of fibrous scaffolds. The randomly oriented and aligned electroactive fibrous scaffolds of poly-(l-lactic acid) (PLLA) with incorporation of ferroelectric ceramic BaTiO3 (BTO) nanoparticles (NPs) were fabricated by electrospinning. Physicochemical properties, including fiber morphology, microstructure, composition, thermal stability, surface roughness, and surface wettability, of these fibrous scaffolds were studied. The dielectric properties of the scaffolds were evaluated. The results showed that the randomly oriented BTO/PLLA composite fibrous scaffolds had the highest dielectric permittivity of 1.19, which is of the same order of magnitude as the natural bone. The combined effects of fiber orientation and electrical activity on the osteogenic responses of bone marrow mesenchymal stem cells (BM-MSCs) were specifically investigated. Randomly oriented composite fibrous scaffolds significantly promoted polygonal spreading and encouraged early osteogenic differentiation in BM-MSCs, whereas aligned composite fibrous scaffolds promoted cell elongation and discouraged osteogenic differentiation. These results evidenced that randomly fiber orientation and biomimetic electric activity have combining effects on osteogenic differentiation of BM-MSCs. Our findings indicate that coupling effects of multi-physical properties should be paid more attention to mimic the microenvironment for enhancing osteogenic differentiation of BM-MSCs. PMID:28603415
Montero, Ramon B.; Vial, Ximena; Nguyen, Dat Tat; Farhand, Sepehr; Reardon, Mark; Pham, Si M.; Tsechpenakis, Gavriil; Andreopoulos, Fotios M.
2011-01-01
Current therapeutic angiogenesis strategies are focused on the development of biologically responsive scaffolds that can deliver multiple angiogenic cytokines and/or cells in ischemic regions. Herein, we report on a novel electrospinning approach to fabricate cytokine-containing nanofibrous scaffolds with tunable architecture to promote angiogenesis. Fiber diameter and uniformity were controlled by varying the concentration of the polymeric (i.e. gelatin) solution, the feed rate, needle to collector distance, and electric field potential between the collector plate and injection needle. Scaffold fiber orientation (random vs. aligned) was achieved by alternating the polarity of two parallel electrodes placed on the collector plate thus dictating fiber deposition patterns. Basic fibroblast growth factor (bFGF) was physically immobilized within the gelatin scaffolds at variable concentrations and human umbilical vein endothelial cells (HUVEC) were seeded on the top of the scaffolds. Cell proliferation and migration was assessed as a function of growth factor loading and scaffold architecture. HUVECs successfully adhered onto gelatin B scaffolds and cell proliferation was directly proportional to the loading concentrations of the growth factor (0–100 bFGF ng/mL). Fiber orientation had a pronounced effect on cell morphology and orientation. Cells were spread along the fibers of the electrospun scaffolds with the aligned orientation and developed a spindle-like morphology parallel to the scaffold's fibers. In contrast, cells seeded onto the scaffolds with random fiber orientation, did not demonstrate any directionality and appeared to have a rounder shape. Capillary formation (i.e. sprouts length and number of sprouts per bead), assessed in a 3-D in vitro angiogenesis assay, was a function of bFGF loading concentration (0 ng, 50 ng and 100 ng per scaffold) for both types of electrospun scaffolds (i.e. with aligned or random fiber orientation). PMID:22200610
Jacques, Eveline; Lewandowski, Michal; Buytaert, Jan; Fierens, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris
2013-01-01
The plant cytoskeleton plays a crucial role in the cells’ growth and development during different developmental stages and it undergoes many rearrangements. In order to describe the arrangements of the F-actin cytoskeleton in root epidermal cells of Arabidopsis thaliana, the recently developed software MicroFilament Analyzer (MFA) was exploited. This software enables high-throughput identification and quantification of the orientation of filamentous structures on digital images in a highly standardized and fast way. Using confocal microscopy and transgenic GFP-FABD2-GFP plants the actin cytoskeleton was visualized in the root epidermis. MFA analysis revealed that during the early stages of cell development F-actin is organized in a mainly random pattern. As the cells grow, they preferentially adopt a longitudinal organization, a pattern that is also preserved in the largest cells. In the evolution from young to old cells, an approximately even distribution of transverse, oblique or combined orientations is always present besides the switch from random to a longitudinal oriented actin cytoskeleton. PMID:23656865
NASA Astrophysics Data System (ADS)
Nan, Hanqing; Liang, Long; Chen, Guo; Liu, Liyu; Liu, Ruchuan; Jiao, Yang
2018-03-01
Three-dimensional (3D) collective cell migration in a collagen-based extracellular matrix (ECM) is among one of the most significant topics in developmental biology, cancer progression, tissue regeneration, and immune response. Recent studies have suggested that collagen-fiber mediated force transmission in cellularized ECM plays an important role in stress homeostasis and regulation of collective cellular behaviors. Motivated by the recent in vitro observation that oriented collagen can significantly enhance the penetration of migrating breast cancer cells into dense Matrigel which mimics the intravasation process in vivo [Han et al. Proc. Natl. Acad. Sci. USA 113, 11208 (2016), 10.1073/pnas.1610347113], we devise a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization. Specifically, a collagen network is represented via the graph (node-bond) model and the microstructural statistics considered include the cross-link (node) density, valence distribution, fiber (bond) length distribution, as well as fiber orientation distribution. An optimization problem is formulated in which the objective function is defined as the squared difference between a set of target microstructural statistics and the corresponding statistics for the simulated network. Simulated annealing is employed to solve the optimization problem by evolving an initial network via random perturbations to generate realizations of homogeneous networks with randomly oriented fibers, homogeneous networks with aligned fibers, heterogeneous networks with a continuous variation of fiber orientation along a prescribed direction, as well as a binary system containing a collagen region with aligned fibers and a dense Matrigel region with randomly oriented fibers. The generation and propagation of active forces in the simulated networks due to polarized contraction of an embedded ellipsoidal cell and a small group of cells are analyzed by considering a nonlinear fiber model incorporating strain hardening upon large stretching and buckling upon compression. Our analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. Moreover, in the oriented-collagen-Matrigel system, the forces generated by a polarized cell in collagen can penetrate deeply into the Matrigel region. The stressed Matrigel fibers could provide contact guidance for the migrating cell cells, and thus enhance their penetration into Matrigel. This suggests a possible mechanism for the observed enhanced intravasation by oriented collagen.
Actin cable dynamics in budding yeast
Yang, Hyeong-Cheol; Pon, Liza A.
2002-01-01
Actin cables, bundles of actin filaments that align along the long axis of budding yeast, are crucial for establishment of cell polarity. We fused green fluorescent protein (GFP) to actin binding protein 140 (Abp140p) and visualized actin cable dynamics in living yeast. We detected two populations of actin cables: (i) bud-associated cables, which extend from the bud along the mother-bud axis, and (ii) randomly oriented cables, which are relatively short. Time-lapse imaging of Abp140p–GFP revealed an apparent increase in the length of bud-associated actin cables. Analysis of movement of Abp140p–GFP fiduciary marks on bud-associated cables and fluorescence loss in photobleaching experiments revealed that this apparent elongation occurs by assembly of new material at the end of the cable within the bud and movement of the opposite end of the cable toward the tip of the mother cell distal to the bud. The rate of extension of the tip of an elongating actin cable is 0.29 ± 0.08 μm/s. Latrunculin A (Lat-A) treatment completely blocked this process. We also observed movement of randomly oriented cables around the cortex of cells at a rate of 0.59 ± 0.14 μm/s. Mild treatment with Lat-A did not affect the velocity of movement of randomly oriented cables. However, Lat-A treatment did increase the number of randomly oriented, motile cables per cell. Our observations suggest that establishment of bud-associated actin cables during the cell cycle is accomplished not by realignment of existing cables but by assembly of new cables within the bud or bud neck, followed by elongation. PMID:11805329
Wang, Wei; Itoh, Soichiro; Konno, Katsumi; Kikkawa, Takeshi; Ichinose, Shizuko; Sakai, Katsuyoshi; Ohkuma, Tsuneo; Watabe, Kazuhiko
2009-12-15
We have constructed a chitosan nonwoven nanofiber mesh tube consisting of oriented fibers by the electrospinning method. The efficacy of oriented nanofibers on Schwann cell alignment and positive effect of this tube on peripheral nerve regeneration were confirmed. The physical properties of the chitosan nanofiber mesh sheets prepared by electrospinning with or without fiber orientation were characterized. Then, immortalized Schwann cells were cultured on these sheets. Furthermore, the chitosan nanofiber mesh tubes with or without orientation, and bilayered chitosan mesh tube with an inner layer of oriented nanofibers and an outer layer of randomized nanofibers were bridgegrafted into rat sciatic nerve defect. As a result of fiber orientation, the tensile strength along the axis of the sheet increased. Because Schwann cells aligned along the nanofibers, oriented fibrous sheets could exhibit a Schwann cell column. Functional recovery and electrophysiological recovery occurred in time in the oriented group as well as in the bilayered group, and approximately matched those in the isograft. Furthermore, histological analysis revealed that the sprouting of myelinated axons occurred vigorously followed by axonal maturation in the isograft, oriented, and bilayered group in the order. The oriented chitosan nanofiber mesh tube may be a promising substitute for autogenous nerve graft.
Marangoni, R; Preosti, G; Colombetti, G
2000-02-01
The marine ciliate Fabrea salina shows a clear positive phototaxis, but the mechanism by which a single cell is able to detect the direction of light and orient its swimming accordingly is still unknown. A simple model of phototaxis is that of a biased random walk, where the bias due to light can affect one or more of the parameters that characterize a random walk, i.e., the mean speed, the frequency distribution of the angles of directional changes and the frequency of directional changes. Since experimental evidence has shown no effect of light on the mean speed of Fabrea salina, we have excluded models depending on this parameter. We have, therefore, investigated the phototactic orientation of Fabrea salina by computer simulation of two simple models, the first where light affects the frequency distribution of the angles of directional changes (model M1) and the second where the light bias modifies the frequency of directional changes (model M2). Simulated M1 cells directly orient their swimming towards the direction of light, regardless of their current swimming orientation; simulated M2 cells, on the contrary, are unable to actively orient their motion, but remain locked along the light direction once they find it by chance. The simulations show that these two orientation models lead to different macroscopic behaviours of the simulated cell populations. By comparing the results of the simulations with the experimental ones, we have found that the phototactic behaviour of real cells is more similar to that of the M2 model.
Development of Maps of Simple and Complex Cells in the Primary Visual Cortex
Antolík, Ján; Bednar, James A.
2011-01-01
Hubel and Wiesel (1962) classified primary visual cortex (V1) neurons as either simple, with responses modulated by the spatial phase of a sine grating, or complex, i.e., largely phase invariant. Much progress has been made in understanding how simple-cells develop, and there are now detailed computational models establishing how they can form topographic maps ordered by orientation preference. There are also models of how complex cells can develop using outputs from simple cells with different phase preferences, but no model of how a topographic orientation map of complex cells could be formed based on the actual connectivity patterns found in V1. Addressing this question is important, because the majority of existing developmental models of simple-cell maps group neurons selective to similar spatial phases together, which is contrary to experimental evidence, and makes it difficult to construct complex cells. Overcoming this limitation is not trivial, because mechanisms responsible for map development drive receptive fields (RF) of nearby neurons to be highly correlated, while co-oriented RFs of opposite phases are anti-correlated. In this work, we model V1 as two topographically organized sheets representing cortical layer 4 and 2/3. Only layer 4 receives direct thalamic input. Both sheets are connected with narrow feed-forward and feedback connectivity. Only layer 2/3 contains strong long-range lateral connectivity, in line with current anatomical findings. Initially all weights in the model are random, and each is modified via a Hebbian learning rule. The model develops smooth, matching, orientation preference maps in both sheets. Layer 4 units become simple cells, with phase preference arranged randomly, while those in layer 2/3 are primarily complex cells. To our knowledge this model is the first explaining how simple cells can develop with random phase preference, and how maps of complex cells can develop, using only realistic patterns of connectivity. PMID:21559067
Cell orientation gradients on an inverse opal substrate.
Lu, Jie; Zou, Xin; Zhao, Ze; Mu, Zhongde; Zhao, Yuanjin; Gu, Zhongze
2015-05-20
The generation of cell gradients is critical for understanding many biological systems and realizing the unique functionality of many implanted biomaterials. However, most previous work can only control the gradient of cell density and this has no effect on the gradient of cell orientation, which has an important role in regulating the functions of many connecting tissues. Here, we report on a simple stretched inverse opal substrate for establishing desired cell orientation gradients. It was demonstrated that tendon fibroblasts on the stretched inverse opal gradient showed a corresponding alignment along with the elongation gradient of the substrate. This "random-to-aligned" cell gradient reproduces the insertion part of many connecting tissues, and thus, will have important applications in tissue engineering.
Fee, Timothy; Surianarayanan, Swetha; Downs, Crawford; Zhou, Yong; Berry, Joel
2016-01-01
To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL) and a blend of PCL and gelatin (PCL+Gel) to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes.
Some karyological observations on plants grown in space
NASA Technical Reports Server (NTRS)
Krikorian, A. D.; Oconnor, S. A.
1982-01-01
Experiments were conducted to assess whether cell division in a plant root would be affected by prolonged exposure to microgravity. Root materials from sunflower, oat, and mung bean plants grown on STS-2 and STS-3 were utilized for the experiments. It is found that all oat, sunflower, and mung seedlings showed a reduced number of cells in division as they went through their first cell division cycle on earth when compared to their ground controls. A significant number of oat, mung, and sunflower plantlets exhibited random root orientation and the lack of strictly orthotropic growth of their shoot systems in the flight samples. In addition, it is found that the mung roots were apparently least affected in terms of their cytology despite the fact that their roots were often randomly oriented.
Jia, Lin; Prabhakaran, Molamma P; Qin, Xiaohong; Ramakrishna, Seeram
2014-09-01
Fabricating scaffolds that can simulate the architecture and functionality of native extracellular matrix is a huge challenge in vascular tissue engineering. Various kinds of materials are engineered via nano-technological approaches to meet the current challenges in vascular tissue regeneration. During this study, nanofibers from pure polyurethane and hybrid polyurethane/collagen in two different morphologies (random and aligned) and in three different ratios of polyurethane:collagen (75:25; 50:50; 25:75) are fabricated by electrospinning. The fiber diameters of the nanofibrous scaffolds are in the range of 174-453 nm and 145-419 for random and aligned fibers, respectively, where they closely mimic the nanoscale dimensions of native extracellular matrix. The aligned polyurethane/collagen nanofibers expressed anisotropic wettability with mechanical properties which is suitable for regeneration of the artery. After 12 days of human aortic smooth muscle cells culture on different scaffolds, the proliferation of smooth muscle cells on hybrid polyurethane/collagen (3:1) nanofibers was 173% and 212% higher than on pure polyurethane scaffolds for random and aligned scaffolds, respectively. The results of cell morphology and protein staining showed that the aligned polyurethane/collagen (3:1) scaffold promote smooth muscle cells alignment through contact guidance, while the random polyurethane/collagen (3:1) also guided cell orientation most probably due to the inherent biochemical composition. Our studies demonstrate the potential of aligned and random polyurethane/collagen (3:1) as promising substrates for vascular tissue regeneration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Wanjare, Maureen; Hou, Luqia; Nakayama, Karina H; Kim, Joseph J; Mezak, Nicholas P; Abilez, Oscar J; Tzatzalos, Evangeline; Wu, Joseph C; Huang, Ngan F
2017-07-25
Engineering of myocardial tissue constructs is a promising approach for treatment of coronary heart disease. To engineer myocardial tissues that better mimic the highly ordered physiological arrangement and function of native cardiomyocytes, we generated electrospun microfibrous polycaprolactone scaffolds with either randomly oriented (14 μm fiber diameter) or parallel-aligned (7 μm fiber diameter) microfiber arrangement and co-seeded the scaffolds with human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and endothelial cells (iECs) for up to 12 days after iCM seeding. Here we demonstrated that aligned microfibrous scaffolds induced iCM alignment along the direction of the aligned microfibers after 2 days of iCM seeding, as well as promoted greater iCM maturation by increasing the sarcomeric length and gene expression of myosin heavy chain adult isoform (MYH7), in comparison to randomly oriented scaffolds. Furthermore, the benefit of scaffold anisotropy was evident in the significantly higher maximum contraction velocity of iCMs on the aligned scaffolds, compared to randomly oriented scaffolds, at 12 days of culture. Co-seeding of iCMs with iECs led to reduced contractility, compared to when iCMs were seeded alone. These findings demonstrate a dominant role of scaffold anisotropy in engineering cardiovascular tissues that maintain iCM organization and contractile function.
Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex
Coppola, David; White, Leonard E.; Wolf, Fred
2015-01-01
The architecture of iso-orientation domains in the primary visual cortex (V1) of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1’s intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point process, the predicted layouts remain distinct from experimental observations and resemble Gaussian random fields. We conclude that V1 layout invariants are specific quantitative signatures of visual cortical optimization, which cannot be explained by generic random feedforward-wiring models. PMID:26575467
Engineering controllable architecture in matrigel for 3D cell alignment.
Jang, Jae Myung; Tran, Si-Hoai-Trung; Na, Sang Cheol; Jeon, Noo Li
2015-02-04
We report a microfluidic approach to impart alignment in ECM components in 3D hydrogels by continuously applying fluid flow across the bulk gel during the gelation process. The microfluidic device where each channel can be independently filled was tilted at 90° to generate continuous flow across the Matrigel as it gelled. The presence of flow helped that more than 70% of ECM components were oriented along the direction of flow, compared with randomly cross-linked Matrigel. Following the oriented ECM components, primary rat cortical neurons and mouse neural stem cells showed oriented outgrowth of neuronal processes within the 3D Matrigel matrix.
Lau, Jason C. S.; Rodgers, Christopher T.; Hore, P. J.
2012-01-01
According to the radical pair model, the magnetic compass sense of migratory birds relies on photochemical transformations in the eye to detect the direction of the geomagnetic field. Magnetically sensitive radical pairs are thought to be generated in cryptochrome proteins contained in magnetoreceptor cells in the retina. A prerequisite of the current model is for some degree of rotational ordering of both the cryptochromes within the cells and of the cells within the retina so that the directional responses of individual molecules do not average to zero. Here, it is argued that anisotropic distributions of radical pairs can be generated by the photoselection effects that arise from the directionality of the light entering the eye. Light-induced rotational order among the transient radical pairs rather than intrinsic ordering of their molecular precursors is seen as the fundamental condition for a magnetoreceptor cell to exhibit an anisotropic response. A theoretical analysis shows that a viable compass magnetoreceptor could result from randomly oriented cryptochromes contained in randomly oriented cells distributed around the retina. PMID:22977104
Beller Lectureship Talk: Active response of biological cells to mechanical stress
NASA Astrophysics Data System (ADS)
Safran, Samuel
2009-03-01
Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. We present a simple and generic theoretical model for the active response of biological cells to mechanical stress. The theory includes cell activity and mechanical forces as well as random forces as factors that determine the polarizability that relates cell orientation to stress. This allows us to explain the puzzling observation of parallel (or sometimes random) alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency and compare the theory with recent experiments. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material distinguishes cells whose activity is controlled by stress from those controlled by strain. We have extended the theory to generalize the treatment of elastic inclusions in solids to ''living'' inclusions (cells) whose active polarizability, analogous to the polarizability of non-living matter, results in the feedback of cellular forces that develop in response to matrix stresses. We use this to explain recent observations of the non-monotonic dependence of stress-fiber polarization in stem cells on matrix rigidity. These findings provide a mechanical correlate for the existence of an optimal substrate elasticity for cell differentiation and function. [3pt] *In collaboration with R. De (Brown University), Y. Biton (Weizmann Institute), and A. Zemel (Hebrew University) and the experimental groups: Max Planck Institute, Stuttgart: S. Jungbauer, R. Kemkemer, J. Spatz; University of Pennsylvania: A. Brown, D. Discher, F. Rehfeldt.
Samavedi, Satyavrata; Vaidya, Prasad; Gaddam, Prudhvidhar; Whittington, Abby R; Goldstein, Aaron S
2014-12-01
Although bone-patellar tendon-bone (B-PT-B) autografts are the gold standard for repair of anterior cruciate ligament ruptures, they suffer from drawbacks such as donor site morbidity and limited supply. Engineered tissues modeled after B-PT-B autografts are promising alternatives because they have the potential to regenerate connective tissue and facilitate osseointegration. Towards the long-term goal of regenerating ligaments and their bony insertions, the objective of this study was to construct 2D meshes and 3D cylindrical composite scaffolds - possessing simultaneous region-wise differences in fiber orientation, diameter, chemistry and mechanical properties - by electrospinning two different polymers from off-set spinnerets. Using a dual drum collector, 2D meshes consisting of an aligned polycaprolactone (PCL) fiber region, randomly oriented poly(lactide-co-glycolide) (PLGA) fiber region and a transition region (comprised of both PCL and PLGA fibers) were prepared, and region-wise differences were confirmed by microscopy and tensile testing. Bone marrow stromal cells (BMSCs) cultured on these meshes exhibited random orientations and low aspect ratios on the random PLGA regions, and high aspect ratios and alignment on the aligned PCL regions. Next, meshes containing an aligned PCL region flanked by two transition regions and two randomly oriented PLGA regions were prepared and processed into 3D cylindrical composite scaffolds using an interpenetrating photo-crosslinkable polyethylene glycol diacrylate hydrogel to recapitulate the shape of B-PT-B autografts. Tensile testing indicated that cylindrical composites were mechanically robust, and eventually failed due to stress concentration in the aligned PCL region. In summary, this study demonstrates a process to fabricate electrospun meshes possessing region-wise differences in properties that can elicit region-dependent cell responses, and be readily processed into scaffolds with the shape of B-PT-B autografts. © 2014 Wiley Periodicals, Inc.
Estimation of 3D shape from image orientations.
Fleming, Roland W; Holtmann-Rice, Daniel; Bülthoff, Heinrich H
2011-12-20
One of the main functions of vision is to estimate the 3D shape of objects in our environment. Many different visual cues, such as stereopsis, motion parallax, and shading, are thought to be involved. One important cue that remains poorly understood comes from surface texture markings. When a textured surface is slanted in 3D relative to the observer, the surface patterns appear compressed in the retinal image, providing potentially important information about 3D shape. What is not known, however, is how the brain actually measures this information from the retinal image. Here, we explain how the key information could be extracted by populations of cells tuned to different orientations and spatial frequencies, like those found in the primary visual cortex. To test this theory, we created stimuli that selectively stimulate such cell populations, by "smearing" (filtering) images of 2D random noise into specific oriented patterns. We find that the resulting patterns appear vividly 3D, and that increasing the strength of the orientation signals progressively increases the sense of 3D shape, even though the filtering we apply is physically inconsistent with what would occur with a real object. This finding suggests we have isolated key mechanisms used by the brain to estimate shape from texture. Crucially, we also find that adapting the visual system's orientation detectors to orthogonal patterns causes unoriented random noise to look like a specific 3D shape. Together these findings demonstrate a crucial role of orientation detectors in the perception of 3D shape.
Kishore, Vipuil; Bullock, Whitney; Sun, Xuanhao; Van Dyke, William Scott; Akkus, Ozan
2011-01-01
Topographical cues from the extracellular microenvironment can influence cellular activity including proliferation and differentiation. Information on the effects of material topography on tenogenic differentiation of human mesenchymal stem cells (human MSCs) is limited. A methodology using the principles of isoelectric focusing has previously been developed in our laboratory to synthesize electrochemically aligned collagen (ELAC) threads that mimics the packing density, alignment and strength of collagen dense connective tissues. In the current study, human MSCs were cultured on ELAC and randomly-oriented collagen threads and the effect of collagen orientation on cell morphology, proliferation and tenogenic differentiation was investigated. The results indicate that higher rates of proliferation were observed on randomly oriented collagen threads compared to ELAC threads. On the other hand, tendon specific markers such as scleraxis, tenomodulin, tenascin-C and collagen-III were significantly increased on ELAC threads compared to randomly oriented collagen threads. Additionally, osteocalcin, a specific marker of bone differentiation was suppressed on ELAC threads. Previous studies have reported that BMP-12 is a key growth factor to induce tenogenic differentiation of human MSCs. To evaluate the synergistic effect of BMP-12 and collagen orientation, human MSCs were cultured on ELAC threads in culture medium supplemented with and without BMP-12. The results revealed that BMP-12 did not have an additional effect on the tenogenic differentiation of human MSCs on ELAC threads. Together, these results suggest that ELAC induces tenogenic differentiation of human MSCs by presenting an aligned and dense collagen substrate, akin to the tendon itself. In conclusion, ELAC has a significant potential to be used as a tendon replacement and in the development of an osteotendinous construct towards the regeneration of bone-tendon interfaces. PMID:22177622
Nanostructuring on zinc phthalocyanine thin films for single-junction organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhary, Dhirendra K.; Kumar, Lokendra, E-mail: lokendrakr@allduniv.ac.in
2016-05-23
Vertically aligned and random oriented crystalline molecular nanorods of organic semiconducting Zinc Phthalocyanine (ZnPc) have been grown on ITO coated glass substrate using solvent volatilization method. Interesting changes in surface morphology were observed under different solvent treatment. Vertically aligned nanorods of ZnPc thin film were observed in the films treated with acetone, where as the random oriented nanorods were observed in the films treated with chloroform. The X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) have been used for characterization of nanostructures. The optical properties of the nanorods have been investigated by UV-Vis. absorption spectroscopy.
Nonholonomic diffusion of a stochastic sled
NASA Astrophysics Data System (ADS)
Jung, Peter; Marchegiani, Giampiero; Marchesoni, Fabio
2016-01-01
A sled is a stylized mechanical model of a system which is constrained to move in space in a specific orientation, i.e., in the direction of the runners of the sled or a blade. The negation of motion transverse to the runners renders the sled a nonholonomic mechanical system. In this paper we report on the unexpected and fascinating richness of the dynamics of such a sled if it is subject to random forces. Specifically we show that the ensuing random dynamics is characterized by relatively smooth sections of motion interspersed by episodes of persistent tumbling (change of orientation) and sharp reversals resembling the random walks of bacterial cells. In the presence of self-propulsion, the diffusivity of the sled can be enhanced and suppressed depending on the directionality and strength of the propulsive force.
Elastase-Sensitive Elastomeric Scaffolds with Variable Anisotropy for Soft Tissue Engineering
Guan, Jianjun; Fujimoto, Kazuro L.; Wagner, William R.
2010-01-01
Purpose To develop elastase-sensitive polyurethane scaffolds that would be applicable to the engineering of mechanically active soft tissues. Methods A polyurethane containing an elastase-sensitive peptide sequence was processed into scaffolds by thermally induced phase separation. Processing conditions were manipulated to alter scaffold properties and anisotropy. The scaffold’s mechanical properties, degradation, and cytocompatibility using muscle-derived stem cells were characterized. Scaffold in vivo degradation was evaluated by subcutaneous implantation. Results When heat transfer was multidirectional, scaffolds had randomly oriented pores. Imposition of a heat transfer gradient resulted in oriented pores. Both scaffolds were flexible and relatively strong with mechanical properties dependent upon fabrication conditions such as solvent type, polymer concentration and quenching temperature. Oriented scaffolds exhibited anisotropic mechanical properties with greater tensile strength in the orientation direction. These scaffolds also supported muscle-derived stem cell growth more effectively than random scaffolds. The scaffolds expressed over 40% weight loss after 56 days in elastase containing buffer. Elastase-sensitive scaffolds were complete degraded after 8 weeks subcutaneous implantation in rats, markedly faster than similar polyurethanes that did not contain the peptide sequence. Conclusion The elastase-sensitive polyurethane scaffolds showed promise for application in soft tissue engineering where controlling scaffold mechanical properties and pore architecture are desirable. PMID:18509596
Dermal Aged and Fetal Fibroblasts Realign in Response to Mechanical Strain
NASA Technical Reports Server (NTRS)
Sawyer, Christine; Grymes, Rose; Alvarez, Teresa (Technical Monitor)
1994-01-01
Integrins specifically recognize and bind extracellular matrix components, providing physical anchor points and functional setpoints. Focal adhesion complexes, containing integrin and cytoskeletal proteins, are potential mechanoreceptors, poised to distribute applied forces through the cytoskeleton. Pursuing the hypothesis that cells both perceive and respond to external force, we applied a stretch/relaxation regimen to normal human fetal and aged dermal fibroblast monolayers cultured on flexible membranes. The frequency and magnitude of the applied force is precisely controlled by the Flexercell Unit(Trademark). A protocol of stretch (20% elongation of the monolayer) at a frequency of 6 cycles/min caused a progressive change from a randomly distributed pattern of cells to a symmetric, radial distribution with cells aligned parallel to the applied force. We have coined the term 'orienteering' as the process of active alignment of cells in response to applied force. Cytochalasin D was added in graded doses to investigate the role of the actin cytoskeleton in force perception and transmission. A clear dose response was found; at high concentrations orienteering was abolished; and the drug's impact was reversible. The two cell strains used were similar in their alignment behavior and in their responses to cytochalasin D. Orienteering was influenced by cell density, and the cell strains studied differed in this respect. Fetal cells, unlike their aged counterparts, failed to orient at high cell density. In both cell strains, mid-density cultures aligned rapidly and sparse cultures lagged. These results indicate that both cell-cell adhesion and cytoskeleton integrity are critical in mediating the orienteering response. Differences between these two cell strains may relate to their expression of extracellular matrix molecules (fibronectin, collagen type 1) integrins and their relative binding affinities.
The organization of repeating units in mitochondrial DNA from yeast petite mutants.
Bos, J L; Heyting, C; Van der Horst, G; Borst, P
1980-04-01
We have reinvestigated the linkage orientation of repeating units in mtDNAs of yeast ρ(-) petite mutants containing an inverted duplication. All five petite mtDNAs studied contain a continuous segment of wild-type mtDNA, part of which is duplicated and present in inverted form in the repeat. We show by restriction enzyme analysis that the non-duplicated segments between the inverted duplications are present in random orientation in all five petite mtDNAs. There is no segregation of sub-types with unique orientation. We attribute this to the high rate of intramolecular recombination between the inverted duplications. The results provide additional evidence for the high rate of recombination of yeast mtDNA even in haploid ρ(-) petite cells.We conclude that only two types of stable sequence organization exist in petite mtDNA: petites without an inverted duplication have repeats linked in straight head-to-tail arrangement (abcabc); petites with an inverted duplication have repeats in which the non-duplicated segments are present in random orientation.
Imaging single cells in a beam of live cyanobacteria with an X-ray laser (CXIDB ID 26)
Schot, Gijs, vander
2015-02-10
This entry contains ten diffraction patterns, and reconstructions images, of individual living Cyanobium gracile cells, imaged using 517 eV X-rays from the LCLS XFEL. The Hawk software package was used for phasing. The Uppsala aerosol injector was used for sample injection, assuring very low noise levels. The cells come from various stages of the cell cycle, and were imaged in random orientations.
Baird, Mark E
2003-10-01
The size, shape, and absorption coefficient of a microalgal cell determines, to a first order approximation, the rate at which light is absorbed by the cell. The rate of absorption determines the maximum amount of energy available for photosynthesis, and can be used to calculate the attenuation of light through the water column, including the effect of packaging pigments within discrete particles. In this paper, numerical approximations are made of the mean absorption cross-section of randomly oriented cells, aA. The shapes investigated are spheroids, rectangular prisms with a square base, cylinders, cones and double cones with aspect ratios of 0.25, 0.5, 1, 2, and 4. The results of the numerical simulations are fitted to a modified sigmoid curve, and take advantage of three analytical solutions. The results are presented in a non-dimensionalised format and are independent of size. A simple approximation using a rectangular hyperbolic curve is also given, and an approach for obtaining the upper and lower bounds of aA for more complex shapes is outlined.
Ba, O M; Hindie, M; Marmey, P; Gallet, O; Anselme, K; Ponche, A; Duncan, A C
2015-10-01
Quantity, orientation, conformation and covalent linkage of naturally cell adhesive proteins adsorbed or covalently linked to a surface, are known to influence the preservation of their subsequent long term cell adhesion properties and bioactivity. In the present work, we explore two different strategies for the covalent linking of plasma fibronectin (pFN) - used as a cell adhesive model protein, onto a polystyrene (PS) surface. One is aimed at tethering the protein to the surface in a semi-oriented fashion (via one of the 4 free thiol reactive groups on the protein) with a heterofunctional coupling agent (SSMPB method). The other aims to immobilize the protein in a more random fashion by reaction between the abundant pendant primary amine bearing amino acids of the pFN and activated carboxylic surface functions obtained after glutaric anhydride surface treatment (GA method). The overall goal will be to verify the hypothesis of a correlation between covalent immobilization of a model cell adhesive protein to a PS surface in a semi-oriented configuration (versus randomly oriented) with promotion of enhanced exposure of the protein's cell binding domain. This in turn would lead to enhanced cell adhesion. Ideally the goal is to elaborate substrates exhibiting a long term stable protein monolayer with preserved cell adhesive properties and bioactivity for biomaterial and/or cell adhesion commercial plate applications. However, the initial restrictive objective of this paper is to first quantitatively and qualitatively investigate the reversibly (merely adsorbed) versus covalently irreversibly bound protein to the surface after the immobilization procedure. Although immobilized surface amounts were similar (close to the monolayer range) for all immobilization approaches, covalent grafting showed improved retention and stronger "tethering" of the pFN protein to the surface (roughly 40%) after SDS rinsing compared to that for mere adsorption (0%) suggesting an added value to the covalent grafting immobilization methods. However no differences in exposure of the cell binding domains were observed (ELISA results) before SDS rinsing, suggesting that pFN protein grafting to the surface is initially kinetically driven be a stochastic random adsorption phenomenon. Covalent grafting acts in the final stage as a process that simply tethers and stabilizes (or freezes) the initial conformation/orientation of the adsorbed protein on the surface. In addition covalent linkage via the SSMPB approach is likely favored by surface-induce exposure of one of the normally hidden free thiol group pair, thus optimizing covalent linkage to the surface. However after SDS rinsing, this "tethering"/"freezing" effect was significantly more prominent for the GA grafting approach (due to greater number of potential covalent links between the protein and the surface) compared to that for the SSMPB approach. This hypothesis was buttressed by the improved resistance to denaturation (smaller conformational lability) for the GA compared to the SMPB approach and improved exposure of the cell binding domain for the former (>50%) even after SDS rinsing. These results are promising in that they suggest covalent tethering of fibronectin to PS substrate in a monolayer range, with significantly improved irreversible protein surface bonding via both approaches (compared to that for mere adsorption). The latter are likely applicable to a wide range of proteins. Copyright © 2015 Elsevier B.V. All rights reserved.
Topographic Independent Component Analysis reveals random scrambling of orientation in visual space
Martinez-Garcia, Marina; Martinez, Luis M.
2017-01-01
Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps. PMID:28640816
Topographic Independent Component Analysis reveals random scrambling of orientation in visual space.
Martinez-Garcia, Marina; Martinez, Luis M; Malo, Jesús
2017-01-01
Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps.
Chaffey, Nigel; Barlow, Peter; Sundberg, Björn
2002-03-01
The involvement of microfilaments and microtubules in the development of the radial and axial components of secondary xylem (wood) in hybrid aspen (Populus tremula L. x P. tremuloides Michx.) was studied by indirect immunofluorescent localization techniques. In addition to cambial cells, the differentiated cell types considered were early- and late-wood vessel elements, axial parenchyma, normal-wood fibers and gelatinous fibers, and contact and isolation ray cells. Microfilaments were rare in ray cambial cells, but were abundant and axially arranged in their derivatives once cell elongation had begun, and persisted in that orientation in mature ray cells. Microfilaments were axially arranged in fusiform cambial cells and persisted in that orientation in all xylem derivatives of those cells. Microtubules were randomly oriented in ray and fusiform cells of the cambial zone. Dense arrays of parallel-aligned microtubules were oriented near axially in the developing gelatinous fibers, but at a wide range of angles in normal-wood fibers. Ellipses of microfilaments were associated with pit development in fiber cells and isolation ray cells. Rings of co-localized microtubules and microfilaments were associated with developing inter-vessel bordered pits and vessel-contact ray cell contact pits, and, in the case of bordered pits, these rings decreased in diameter as the over-arching pit border increased in size. Although only microtubules were seen at the periphery of the perforation plate of vessel elements, a prominent meshwork of microfilaments overlaid the perforation plate itself. A consensus view of the roles of the cytoskeleton during wood formation in angiosperm trees is presented.
Jyske, Tuula; Fujiwara, Takeshi; Kuroda, Katsushi; Iki, Taiichi; Zhang, Chunhua; Jyske, Tuomas K; Abe, Hisashi
2014-08-01
To investigate the biological mechanism by which trees control the changes in microfibril (MF) orientation among secondary cell wall layers of conifer tracheids, we studied seasonal variation in the orientation of newly deposited MFs during tracheid cell wall development in Japanese cedar (Cryptomeria japonica D. Don) trees growing in Central Japan (36°36'N, 140°39'E). Sample blocks were repeatedly collected from four 16-year-old clones of different origins during the growing season of 2010 to investigate the hypotheses that changes in cellulose MF orientation between wall layers exhibited seasonal and clonal differences. The progressive change in the orientation of newly deposited MFs on the primary and secondary cell wall layers of tracheids was detected by field-emission-scanning electron microscopy. Tracheid production and differentiation was studied by light microscopy. We observed a decreasing trend in the orientation of deposited MFs from earlywood to latewood in the S2 and S1 layers, where MFs appeared in a Z-helix. In contrast, no seasonal pattern in the orientation of the MFs in the S-helix was observed. Minor clonal variation was observed in the phenology of tracheid production and differentiation. We concluded that a seasonal decreasing trend in the orientation of the MFs in the Z-helix in S1 and S2 was present, whereas the MFs in other layers exhibited minor random variations. Thus, the orientation of the MFs in S2 was affected by seasonal factors, whereas the MFs in other layers were more intrinsically controlled. The within-ring variations in the MF orientation and thus the resulting average MF angle might also be related to genotypic differences in the tracheid production and differentiation rate. However, our results do not exclude other intrinsic and environmental regulations in the change in MF orientation, which remains a topic for future studies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Webber, C J
2001-05-01
This article shows analytically that single-cell learning rules that give rise to oriented and localized receptive fields, when their synaptic weights are randomly and independently initialized according to a plausible assumption of zero prior information, will generate visual codes that are invariant under two-dimensional translations, rotations, and scale magnifications, provided that the statistics of their training images are sufficiently invariant under these transformations. Such codes span different image locations, orientations, and size scales with equal economy. Thus, single-cell rules could account for the spatial scaling property of the cortical simple-cell code. This prediction is tested computationally by training with natural scenes; it is demonstrated that a single-cell learning rule can give rise to simple-cell receptive fields spanning the full range of orientations, image locations, and spatial frequencies (except at the extreme high and low frequencies at which the scale invariance of the statistics of digitally sampled images must ultimately break down, because of the image boundary and the finite pixel resolution). Thus, no constraint on completeness, or any other coupling between cells, is necessary to induce the visual code to span wide ranges of locations, orientations, and size scales. This prediction is made using the theory of spontaneous symmetry breaking, which we have previously shown can also explain the data-driven self-organization of a wide variety of transformation invariances in neurons' responses, such as the translation invariance of complex cell response.
Delaine-Smith, Robin M; Green, Nicola H; Matcher, Stephen J; MacNeil, Sheila; Reilly, Gwendolen C
2014-01-01
The biological and mechanical function of connective tissues is largely determined by controlled cellular alignment and therefore it seems appropriate that tissue-engineered constructs should be architecturally similar to the in vivo tissue targeted for repair or replacement. Collagen organisation dictates the tensile properties of most tissues and so monitoring the deposition of cell-secreted collagen as the construct develops is essential for understanding tissue formation. In this study, electrospun fibres with a random or high degree of orientation, mimicking two types of tissue architecture found in the body, were used to culture human fibroblasts for controlling cell alignment. The minimally-invasive technique of second harmonic generation was used with the aim of monitoring and profiling the deposition and organisation of collagen at different construct depths over time while construct mechanical properties were also determined over the culture period. It was seen that scaffold fibre organisation affected cell migration and orientation up to 21 days which in turn had an effect on collagen organisation. Collagen in random fibrous constructs was deposited in alternating configurations at different depths however a high degree of organisation was observed throughout aligned fibrous constructs orientated in the scaffold fibre direction. Three-dimensional second harmonic generation images showed that deposited collagen was more uniformly distributed in random constructs but aligned constructs were more organised and had higher intensities. The tensile properties of all constructs increased with increasing collagen deposition and were ultimately dictated by collagen organisation. This study highlights the importance of scaffold architecture for controlling the development of well-organised tissue engineered constructs and the usefulness of second harmonic generation imaging for monitoring collagen maturation in a minimally invasive manner.
Orientation and length of mammalian skeletal myocytes in response to a unidirectional stretch
NASA Technical Reports Server (NTRS)
Collinsworth, A. M.; Torgan, C. E.; Nagda, S. N.; Rajalingam, R. J.; Kraus, W. E.; Truskey, G. A.
2000-01-01
Effects of mechanical forces exerted on mammalian skeletal muscle cells during development were studied using an in vitro model to unidirectionally stretch cultured C2C12 cells grown on silastic membrane. Previous models to date have not studied these responses of the mammalian system specifically. The silastic membrane upon which these cells were grown exhibited linear strain behavior over the range of 3.6-14.6% strain, with a Poisson's ratio of approximately 0.5. To mimic murine in utero long bone growth, cell substrates were stretched at an average strain rate of 2.36%/day for 4 days or 1.77%/day for 6 days with an overall membrane strain of 9.5% and 10.6%, respectively. Both control and stretched fibers stained positively for the contractile protein, alpha-actinin, demonstrating muscle fiber development. An effect of stretch on orientation and length of myofibers was observed. At both strain rates, stretched fibers aligned at a smaller angle relative to the direction of stretch and were significantly longer compared to randomly oriented control fibers. There was no effect of duration of stretch on orientation or length, suggesting the cellular responses are independent of strain rate for the range tested. These results demonstrate that, under conditions simulating mammalian long bone growth, cultured myocytes respond to mechanical forces by lengthening and orienting along the direction of stretch.
Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors.
Prodon, François; Chenevert, Janet; Hébras, Céline; Dumollard, Rémi; Faure, Emmanuel; Gonzalez-Garcia, Jose; Nishida, Hiroki; Sardet, Christian; McDougall, Alex
2010-06-01
Mitotic spindle orientation with respect to cortical polarity cues generates molecularly distinct daughter cells during asymmetric cell division (ACD). However, during ACD it remains unknown how the orientation of the mitotic spindle is regulated by cortical polarity cues until furrowing begins. In ascidians, the cortical centrosome-attracting body (CAB) generates three successive unequal cleavages and the asymmetric segregation of 40 localized postplasmic/PEM RNAs in germ cell precursors from the 8-64 cell stage. By combining fast 4D confocal fluorescence imaging with gene-silencing and classical blastomere isolation experiments, we show that spindle repositioning mechanisms are active from prometaphase until anaphase, when furrowing is initiated in B5.2 cells. We show that the vegetal-most spindle pole/centrosome is attracted towards the CAB during prometaphase, causing the spindle to position asymmetrically near the cortex. Next, during anaphase, the opposite spindle pole/centrosome is attracted towards the border with neighbouring B5.1 blastomeres, causing the spindle to rotate (10 degrees /minute) and migrate (3 microm/minute). Dynamic 4D fluorescence imaging of filamentous actin and plasma membrane shows that precise orientation of the cleavage furrow is determined by this second phase of rotational spindle displacement. Furthermore, in pairs of isolated B5.2 blastomeres, the second phase of rotational spindle displacement was lost. Finally, knockdown of PEM1, a protein localized in the CAB and required for unequal cleavage in B5.2 cells, completely randomizes spindle orientation. Together these data show that two separate mechanisms active during mitosis are responsible for spindle positioning, leading to precise orientation of the cleavage furrow during ACD in the cells that give rise to the germ lineage in ascidians.
Lin, Hsin-Yi; Peng, Zhao-Xiang
2017-08-17
The surface of medical implant alloy Ti-6Al-4V was chemically modified to allow it to covalently bond with collagen/PVA nanofibers. These nanofibers were successfully attached to the Ti-6Al-4V surface in three different morphologies: randomly oriented high-density fiber, COL(H); randomly oriented low-density fiber, COL(L); and aligned high-density fiber, COL(A). The effects of the morphology of these covalently-bound collagen nanofibers on the growth and differentiation of osteoblasts were studied for 21 days. The low-density nanofibers covered approximately 80% of the Ti64 surface, while the high-density nanofibers covered nearly 100%. These covalently attached fibrous coatings remained attached to the metal surface after 3 weeks of cell culture. In the first week the aligned fibers of COL(A) allowed the osteoblasts to stretch and elongate in the direction of the fibers. This directional elongation was not seen in the cells on the randomly-oriented samples. Cells proliferated and differentiated on all three surfaces over time. By the end of the test, the amount of type I collagen secreted by the cells on COL(H) was the highest, while the degree of mineralization was highest on COL(A) among the three samples (p < 0.05). Different nanofiber morphologies changed the cell morphology and the secretion of cellular products. The mechanisms remained to be investigated. The surface of medical implant alloy Ti-6Al-4V was chemically modified to allow it to covalently bond with collagen/PVA nanofibers. The SEM micrographs in the top row show the random and aligned morphology of the collagen-PVA nanofibers. The nanofibers on COL(A) were aligned in the general direction indicated by the arrow. The second row are images from EDX titanium element mapping. The location of the titanium elements are shown as bright dots. The low-density nanofibers, COL(L), covered approximately 80% of the Ti64 surface, while the high-density nanofibers, COL(H) and COL(A), covered nearly 100%. All three surfaces demonstrated good biocompatibility for the cultured osteoblasts. The fiber alignment seemed to have an effect on early cellular morphology (day 7), collagen secretion and calcium deposition, while the density of the fibers seemed to have no significant effect on cell behavior. SEM micrographs of osteoblasts after 7 and 14 days of cell culture are shown in the third and fourth rows. The surface of COL(L) has more cell-free spots indicated by (*) on day 7 as other two surfaces were covered by cells. The nanofibers could no longer be observed and were covered with mineralized granules (circles) after 14 days of cell culture. The cells appear stretched out on the mineralized granules.
Chromosome Gene Orientation Inversion Networks (GOINs) of Plasmodium Proteome.
Quevedo-Tumailli, Viviana F; Ortega-Tenezaca, Bernabé; González-Díaz, Humbert
2018-03-02
The spatial distribution of genes in chromosomes seems not to be random. For instance, only 10% of genes are transcribed from bidirectional promoters in humans, and many more are organized into larger clusters. This raises intriguing questions previously asked by different authors. We would like to add a few more questions in this context, related to gene orientation inversions. Does gene orientation (inversion) follow a random pattern? Is it relevant to biological activity somehow? We define a new kind of network coined as the gene orientation inversion network (GOIN). GOIN's complex network encodes short- and long-range patterns of inversion of the orientation of pairs of gene in the chromosome. We selected Plasmodium falciparum as a case of study due to the high relevance of this parasite to public health (causal agent of malaria). We constructed here for the first time all of the GOINs for the genome of this parasite. These networks have an average of 383 nodes (genes in one chromosome) and 1314 links (pairs of gene with inverse orientation). We calculated node centralities and other parameters of these networks. These numerical parameters were used to study different properties of gene inversion patterns, for example, distribution, local communities, similarity to Erdös-Rényi random networks, randomness, and so on. We find clues that seem to indicate that gene orientation inversion does not follow a random pattern. We noted that some gene communities in the GOINs tend to group genes encoding for RIFIN-related proteins in the proteome of the parasite. RIFIN-like proteins are a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Consequently, we used these centralities as input of machine learning (ML) models to predict the RIFIN-like activity of 5365 proteins in the proteome of Plasmodium sp. The best linear ML model found discriminates RIFIN-like from other proteins with sensitivity and specificity 70-80% in training and external validation series. All of these results may point to a possible biological relevance of gene orientation inversion not directly dependent on genetic sequence information. This work opens the gate to the use of GOINs as a tool for the study of the structure of chromosomes and the study of protein function in proteome research.
Oxygen vacancy effects in HfO2-based resistive switching memory: First principle study
NASA Astrophysics Data System (ADS)
Dai, Yuehua; Pan, Zhiyong; Wang, Feifei; Li, Xiaofeng
2016-08-01
The work investigated the shape and orientation of oxygen vacancy clusters in HfO2-base resistive random access memory (ReRAM) by using the first-principle method based on the density functional theory. Firstly, the formation energy of different local Vo clusters was calculated in four established orientation systems. Then, the optimized orientation and charger conductor shape were identified by comparing the isosurface plots of partial charge density, formation energy, and the highest isosurface value of oxygen vacancy. The calculated results revealed that the [010] orientation was the optimal migration path of Vo, and the shape of system D4 was the best charge conductor in HfO2, which effectively influenced the SET voltage, formation voltage and the ON/OFF ratio of the device. Afterwards, the PDOS of Hf near Vo and total density of states of the system D4_010 were obtained, revealing the composition of charge conductor was oxygen vacancy instead of metal Hf. Furthermore, the migration barriers of the Vo hopping between neighboring unit cells were calculated along four different orientations. The motion was proved along [010] orientation. The optimal circulation path for Vo migration in the HfO2 super-cell was obtained.
Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D
2015-01-01
Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.09384.001 PMID:26406118
On the alignment of cellulose microfibrils by cortical microtubules: a review and a model.
Baskin, T I
2001-01-01
The hypothesis that microtubules align microfibrils, termed the alignment hypothesis, states that there is a causal link between the orientation of cortical microtubules and the orientation of nascent microfibrils. I have assessed the generality of this hypothesis by reviewing what is known about the relation between microtubules and microfibrils in a wide group of examples: in algae of the family Characeae, Closterium acerosum, Oocystis solitaria, and certain genera of green coenocytes and in land plant tip-growing cells, xylem, diffusely growing cells, and protoplasts. The salient features about microfibril alignment to emerge are as follows. Cellulose microfibrils can be aligned by cortical microtubules, thus supporting the alignment hypothesis. Alignment of microfibrils can occur independently of microtubules, showing that an alternative to the alignment hypothesis must exist. Microfibril organization is often random, suggesting that self-assembly is insufficient. Microfibril organization differs on different faces of the same cell, suggesting that microfibrils are aligned locally, not with respect to the entire cell. Nascent microfibrils appear to associate tightly with the plasma membrane. To account for these observations, I present a model that posits alignment to be mediated through binding the nascent microfibril. The model, termed templated incorporation, postulates that the nascent microfibril is incorporated into the cell wall by binding to a scaffold that is oriented; further, the scaffold is built and oriented around either already incorporated microfibrils or plasma membrane proteins, or both. The role of cortical microtubules is to bind and orient components of the scaffold at the plasma membrane. In this way, spatial information to align the microfibrils may come from either the cell wall or the cell interior, and microfibril alignment with and without microtubules are subsets of a single mechanism.
Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum
NASA Astrophysics Data System (ADS)
Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi
2006-05-01
Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.
Onion epidermis as a new model to study the control of growth anisotropy in higher plants.
Suslov, Dmitry; Verbelen, Jean-Pierre; Vissenberg, Kris
2009-01-01
To elucidate the role of cellulose microfibrils in the control of growth anisotropy, a link between their net orientation, in vitro cell wall extensibility, and anisotropic cell expansion was studied during development of the adaxial epidermis of onion (Allium cepa) bulb scales using polarization confocal microscopy, creep tests, and light microscopy. During growth the net cellulose alignment across the whole thickness of the outer epidermal wall changed from transverse through random to longitudinal and back to transverse relative to the bulb axis. Cell wall extension in vitro was always higher transverse than parallel to the net cellulose alignment. The direction of growth anisotropy was perpendicular to the net microfibril orientation and changed during development from longitudinal to transverse to the bulb axis. The correlation between the degree of growth anisotropy and the net cellulose alignment was poor. Thus the net cellulose microfibril orientation across the whole thickness of the outer periclinal epidermis wall defines the direction but not the degree of growth anisotropy. Strips isolated from the epidermis in the directions perpendicular and transverse to a net cellulose orientation can be used as an extensiometric model to prove a protein involvement in the control of growth anisotropy.
Bioconvection in Cultures of the Calcifying Unicellular Alga Pleurochrysis Carterae
NASA Technical Reports Server (NTRS)
Montufar-Solis, Dina; Duke, P. Jackie; Marsh, Mary E.
2003-01-01
The unicellular, marine, calcifying alga P leurochiysis carterae--a model to study cell morphogenesis, cell polarity, calcification, gravitaxis, reproduction and development-- has extremely flexible culture requirements. Support studies for a flight experiment addressing cell motility suggested that cell density (cells/ml) affects cell movement in P. carterae cultures through the gradual establishment of bioconvection as the culture grows. To assess the effect of cell density on direction of the movement, without the effects of aging of the culture, swimming behavior was analyzed in aliquots from a series of dilutions obtained from a stock culture. Results showed that at low concentrations cells swim randomly. As the concentration increases, upswimming patterns overtake random swimming. Gradually, up and down movement patterns prevail, representative of bioconvection. This oriented swimming of P. carterae occurs in a wide range of concentrations, adding to the list of flexible requirements, in this case, cell concentration, to be used for spaceflight studies addressing cell motility and bioconvection in a unicellular model of biologically directed mineralization.
Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.
Potdar, Alka A; Jeon, Junhwan; Weaver, Alissa M; Quaranta, Vito; Cummings, Peter T
2010-03-10
Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells) that exist in multi-cellular organisms (humans) follow a bimodal correlated random walk (BCRW). Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases) each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation). Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.
Novel Micropatterned Cardiac Cell Cultures with Realistic Ventricular Microstructure
Badie, Nima; Bursac, Nenad
2009-01-01
Systematic studies of cardiac structure-function relationships to date have been hindered by the intrinsic complexity and variability of in vivo and ex vivo model systems. Thus, we set out to develop a reproducible cell culture system that can accurately replicate the realistic microstructure of native cardiac tissues. Using cell micropatterning techniques, we aligned cultured cardiomyocytes at micro- and macroscopic spatial scales to follow local directions of cardiac fibers in murine ventricular cross sections, as measured by high-resolution diffusion tensor magnetic resonance imaging. To elucidate the roles of ventricular tissue microstructure in macroscopic impulse conduction, we optically mapped membrane potentials in micropatterned cardiac cultures with realistic tissue boundaries and natural cell orientation, cardiac cultures with realistic tissue boundaries but random cell orientation, and standard isotropic monolayers. At 2 Hz pacing, both microscopic changes in cell orientation and ventricular tissue boundaries independently and synergistically increased the spatial dispersion of conduction velocity, but not the action potential duration. The realistic variations in intramural microstructure created unique spatial signatures in micro- and macroscopic impulse propagation within ventricular cross-section cultures. This novel in vitro model system is expected to help bridge the existing gap between experimental structure-function studies in standard cardiac monolayers and intact heart tissues. PMID:19413993
Shimizu, H; Bode, P M; Bode, H R
1995-12-01
In an adult hydra, the tissue of the body column is in a dynamic state. The epithelial cells of both layers are constantly in the mitotic cycle. As the tissue expands, it is continuously displaced along the body axis in either an apical or basal direction, but not in a circumferential direction. Using a modified whole mount method we examined the orientation of mitotic spindles to determine what role the direction of cell division plays in axial displacement. Surprisingly, the direction of cell division was found to differ in the two epithelial layers. In the ectoderm it was somewhat biased in an axial direction. In the endoderm it was strongly biased in a circumferential direction. For both layers, the directional biases occurred throughout the length of the body column, with some regional variation in its extent. As buds developed into adults, the bias in each layer increased from an almost random distribution to the distinctly different orientations of the adult. Thus, to maintain the observed axial direction of tissue displacement, rearrangement of the epithelial cells of both layers must occur continuously in the adult as well as in developing animals. How the locomotory and contractile behavior of the muscle processes of the epithelial cells may effect changes in cell shape, and thereby influence the direction of cell division in each layer, is discussed.
Chen, Qiang; Jing, Jiajia; Qi, Hongfei; Ahmed, Ifty; Yang, Haiou; Liu, Xianhu; Lu, T L; Boccaccini, Aldo R
2018-04-11
Structural and compositional modifications of metallic implant surfaces are being actively investigated to achieve improved bone-to-implant bonding. In this study, a strategy to modify bulk metallic surfaces by electrophoretic deposition (EPD) of short phosphate glass fibers (sPGF) is presented. Random and aligned orientation of sPGF embedded in a poly(acrylic acid) matrix is achieved by vertical and horizontal EPD, respectively. The influence of EPD parameters on the degree of alignment is investigated to pave the way for the fabrication of highly aligned sPGF structures in large areas. Importantly, the oriented sPGF structure in the coating, owing to the synergistic effects of bioactive composition and fiber orientation, plays an important role in directional cell migration and enhanced proliferation. Moreover, gene expression of MC3T3-E1 cells cultured with different concentrations of sPGF is thoroughly assessed to elucidate the potential stimulating effect of sPGF on osteogenic differentiation. This study represents an innovative exploitation of EPD to develop textured surfaces by orientation of fibers in the macroscale, which shows great potential for directional functionalization of metallic implants.
Collagen Gel Contraction by Fibroblasts: The Role of Myosin 2 and Gravity Effects
NASA Technical Reports Server (NTRS)
Johnson-Wint, Barbara P.; Malouvier, Alexandre; Holton, Emily
1996-01-01
Several lines of evidence suggest that collagen organization by connective tissue cells is sensitive to force. For instance, in flight experiments on rats the collagen fibrils which were produced under weightlessness and which were immediately next to the tendon fibroblasts were shown to be oriented randomly around the cells while the older fibrils right next to these and which were produced under 1 G, were highly organized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, X. Z.; Shen, W. Z., E-mail: wzshen@sjtu.edu.cn; Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, and Key Laboratory of Artificial Structures and Quantum Control
2015-06-14
Composite photoanode comprising nanoparticles and one-dimensional (1D) nanostructure is a promising alternative to conventional photoanode for dye-sensitized solar cells (DSCs). Besides fast electron transport channels, the 1D nanostructure also plays as light scattering centers. Here, we theoretically investigate the light scattering properties of capsule-shaped 1D nanostructure and their influence on the light collection of DSCs. It is found that the far-field light scattering of a single capsule depends on its volume, shape, and orientation: capsules with bigger equivalent spherical diameter, smaller aspect ratio, and horizontal orientation demonstrate stronger light scattering especially at large scattering angle. Using Monte Carlo approach, wemore » simulated and optimized the light harvesting efficiency of the cell. Two multilayer composite photoanodes containing orderly or randomly oriented capsules are proposed. DSCs composed of these two photoanodes are promising for higher efficiencies because of their efficient light collection and superior electron collection. These results will provide practical guidance to the design and optimization of the photoanodes for DSCs.« less
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Yurkin, Maxim A.
2017-01-01
Although the model of randomly oriented nonspherical particles has been used in a great variety of applications of far-field electromagnetic scattering, it has never been defined in strict mathematical terms. In this Letter we use the formalism of Euler rigid-body rotations to clarify the concept of statistically random particle orientations and derive its immediate corollaries in the form of most general mathematical properties of the orientation-averaged extinction and scattering matrices. Our results serve to provide a rigorous mathematical foundation for numerous publications in which the notion of randomly oriented particles and its light-scattering implications have been considered intuitively obvious.
Ulyanova, Yevgenia; Babanova, Sofia; Pinchon, Erica; Matanovic, Ivana; Singhal, Sameer; Atanassov, Plamen
2014-07-14
The effect of proper enzyme orientation at the electrode surface was explored for two multi-copper oxygen reducing enzymes: Bilirubin Oxidase (BOx) and Laccase (Lac). Simultaneous utilization of "tethering" agent (1-pyrenebutanoic acid, succinimidyl ester; PBSE), for stable enzyme immobilization, and syringaldazine (Syr), for enzyme orientation, of both Lac and BOx led to a notable enhancement of the electrode performance. For Lac cathodes tested in solution it was established that PBSE-Lac and PBSE-Syr-Lac modified cathodes demonstrated approximately 6 and 9 times increase in current density, respectively, compared to physically adsorbed and randomly oriented Lac cathodes. Further testing in solution utilizing BOx showed an even higher increase in achievable current densities, thus BOx was chosen for additional testing in air-breathing mode. In subsequent air-breathing experiments the incorporation of PBSE and Syr with BOx resulted in current densities of 0.65 ± 0.1 mA cm(-2); 2.5 times higher when compared to an unmodified BOx cathode. A fully tethered/oriented BOx cathode was combined with a NAD-dependent Glucose Dehydrogenase anode for the fabrication of a complete enzymatic membraneless fuel cell. A maximum power of 1.03 ± 0.06 mW cm(-2) was recorded for the complete fuel cell. The observed significant enhancement in the performance of "oriented" cathodes was a result of proper enzyme orientation, leading to facilitated enzyme/electrode interface interactions.
Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold.
Lee, Chia-Rong; Lin, Jia-De; Huang, Bo-Yuang; Lin, Shih-Hung; Mo, Ting-Shan; Huang, Shuan-Yu; Kuo, Chie-Tong; Yeh, Hui-Chen
2011-01-31
This investigation elucidates for the first time electrically controllable random lasers below the threshold voltage in dye-doped liquid crystal (DDLC) cells with and without adding an azo-dye. Experimental results show that the lasing intensities and the energy thresholds of the random lasers can be decreased and increased, respectively, by increasing the applied voltage below the Fréedericksz transition threshold. The below-threshold-electric-controllability of the random lasers is attributable to the effective decrease of the spatial fluctuation of the orientational order and thus of the dielectric tensor of LCs by increasing the electric-field-aligned order of LCs below the threshold, thereby increasing the diffusion constant and decreasing the scattering strength of the fluorescence photons in their recurrent multiple scattering. This can result in the decrease in the lasing intensity of the random lasers and the increase in their energy thresholds. Furthermore, the addition of an azo-dye in DDLC cell can induce the range of the working voltage below the threshold for the control of the random laser to reduce.
Conductivity of Nanowire Arrays under Random and Ordered Orientation Configurations
Jagota, Milind; Tansu, Nelson
2015-01-01
A computational model was developed to analyze electrical conductivity of random metal nanowire networks. It was demonstrated for the first time through use of this model that a performance gain in random metal nanowire networks can be achieved by slightly restricting nanowire orientation. It was furthermore shown that heavily ordered configurations do not outperform configurations with some degree of randomness; randomness in the case of metal nanowire orientations acts to increase conductivity. PMID:25976936
Reinwald, Yvonne; El Haj, Alicia J
2018-03-01
Topographical and mechanical cues are vital for cell fate, tissue development in vivo, and to mimic the native cell growth environment in vitro. To date, the combinatory effect of mechanical and topographical cues as not been thoroughly investigated. This study investigates the effect of PCL nanofiber alignment and hydrostatic pressure on stem cell differentiation for bone tissue regeneration. Bone marrow-derived human mesenchymal stem cells were seeded onto standard tissue culture plastic and electrospun random and aligned nanofibers. These substrates were either cultured statically or subjected to intermittent hydrostatic pressure at 270 kPa, 1 Hz for 60 min daily over 21 days in osteogenic medium. Data revealed higher cell metabolic activities for all mechanically stimulated cell culture formats compared with non-stimulated controls; and random fibers compared with aligned fibers. Fiber orientation influenced cell morphology and patterns of calcium deposition. Significant up-regulation of Collagen-I, ALP, and Runx-2 were observed for random and aligned fibers following mechanical stimulation; highest levels of osteogenic markers were expressed when hydrostatic pressure was applied to random fibers. These results indicate that fiber alignment and hydrostatic pressure direct stem cell fate and are important stimulus for tissue regeneration. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: A: 629-640, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.
El Haj, Alicia J.
2017-01-01
Abstract Topographical and mechanical cues are vital for cell fate, tissue development in vivo, and to mimic the native cell growth environment in vitro. To date, the combinatory effect of mechanical and topographical cues as not been thoroughly investigated. This study investigates the effect of PCL nanofiber alignment and hydrostatic pressure on stem cell differentiation for bone tissue regeneration. Bone marrow‐derived human mesenchymal stem cells were seeded onto standard tissue culture plastic and electrospun random and aligned nanofibers. These substrates were either cultured statically or subjected to intermittent hydrostatic pressure at 270 kPa, 1 Hz for 60 min daily over 21 days in osteogenic medium. Data revealed higher cell metabolic activities for all mechanically stimulated cell culture formats compared with non‐stimulated controls; and random fibers compared with aligned fibers. Fiber orientation influenced cell morphology and patterns of calcium deposition. Significant up‐regulation of Collagen‐I, ALP, and Runx‐2 were observed for random and aligned fibers following mechanical stimulation; highest levels of osteogenic markers were expressed when hydrostatic pressure was applied to random fibers. These results indicate that fiber alignment and hydrostatic pressure direct stem cell fate and are important stimulus for tissue regeneration. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: A: 629–640, 2018. PMID:28984025
Crystallization Dynamics of Organolead Halide Perovskite by Real-Time X-ray Diffraction.
Miyadera, Tetsuhiko; Shibata, Yosei; Koganezawa, Tomoyuki; Murakami, Takurou N; Sugita, Takeshi; Tanigaki, Nobutaka; Chikamatsu, Masayuki
2015-08-12
We analyzed the crystallization process of the CH3NH3PbI3 perovskite by observing real-time X-ray diffraction immediately after combining a PbI2 thin film with a CH3NH3I solution. A detailed analysis of the transformation kinetics demonstrated the fractal diffusion of the CH3NH3I solution into the PbI2 film. Moreover, the perovskite crystal was found to be initially oriented based on the PbI2 crystal orientation but to gradually transition to a random orientation. The fluctuating characteristics of the crystallization process of perovskites, such as fractal penetration and orientational transformation, should be controlled to allow the fabrication of high-quality perovskite crystals. The characteristic reaction dynamics observed in this study should assist in establishing reproducible fabrication processes for perovskite solar cells.
Quantitative Analysis of Filament Branch Orientation in Listeria Actin Comet Tails.
Jasnin, Marion; Crevenna, Alvaro H
2016-02-23
Several bacterial and viral pathogens hijack the host actin cytoskeleton machinery to facilitate spread and infection. In particular, Listeria uses Arp2/3-mediated actin filament nucleation at the bacterial surface to generate a branched network that will help propel the bacteria. However, the mechanism of force generation remains elusive due to the lack of high-resolution three-dimensional structural data on the spatial organization of the actin mother and daughter (i.e., branch) filaments within this network. Here, we have explored the three-dimensional structure of Listeria actin tails in Xenopus laevis egg extracts using cryo-electron tomography. We found that the architecture of Listeria actin tails is shared between those formed in cells and in cell extracts. Both contained nanoscopic bundles along the plane of the substrate, where the bacterium lies, and upright filaments (also called Z filaments), both oriented tangentially to the bacterial cell wall. Here, we were able to identify actin filament intersections, which likely correspond to branches, within the tails. A quantitative analysis of putative Arp2/3-mediated branches in the actin network showed that mother filaments lie on the plane of the substrate, whereas daughter filaments have random deviations out of this plane. Moreover, the analysis revealed that branches are randomly oriented with respect to the bacterial surface. Therefore, the actin filament network does not push directly toward the surface but rather accumulates, building up stress around the Listeria surface. Our results favor a mechanism of force generation for Listeria movement where the stress is released into propulsive motion. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Theory of fluorescence polarization in magnetically oriented photosynthetic systems.
Knox, R S; Davidovich, M A
1978-01-01
Many cells and cell fragments are known to assume specific alignments with respect to an applied magnetic field. One indicator of this alignment is a difference between the intensities of fluorescence observed in polarizations parallel and perpendicular to the magnetic filed. We calculate these two intensities using a model that assumes axially symmetric membranes and that covers a wide variety of shapes from flat disk to right cylinder. The fluorescence is assumed to originate at chromophores randomly exicted but nonrandomly oriented in the membranes. The membrane alignment is assumed to be due to the net torque on a nonrandom distribution of diamagnetically anisotropic molecules. The predicted results are consistent with most magnetoorientation data from green cells, but we are able to show that Chlorella data are not consistent with the hypothesis that the membranes have, and maintain, a cuplike configuration. Images FIGURE 4 FIGURE 5 PMID:737283
Culture of human anulus fibrosus cells on polyamide nanofibers: extracellular matrix production.
Gruber, Helen E; Hoelscher, Gretchen; Ingram, Jane A; Hanley, Edward N
2009-01-01
Studies were approved by the authors' Human Subjects Institutional Review Board. Human anulus cells were tested for growth and extracellular matrix (ECM) production in vitro. To investigate cell attachment, cell proliferation, and ECM production of human intervertebral disc anulus cells seeded onto randomly oriented electrospun polyamide nanofibers. Because nanofibrillar matrices have the potential to promote microenvironments, which may mimic in vivo conditions and resemble connective tissue, their utilization opens new avenues for cell-based tissue engineering applications for disc cells. Anulus cells were isolated from 4 cervical spine surgical disc specimens, expanded, and seeded into either routine plastic culture (control) or a nanofiber surface of randomly oriented electrospun polyamide nanofibers (Ultra-Web-coated culture dish, Corning) with a positive charge or without a charge. Cells were cultured for 9 days, digital images captured, cells harvested, embedded in paraffin, and examined for production of extracellular matrix (ECM). Additional anulus cultures were tested to quantitatively assess total proteoglycan production and cell proliferation under control or nanofiber cultures. Cells attached well and exhibited cell extensions within the nanofiber layers; cells on the charged nanofiber surface deposited greater amounts of chondroitin sulfate than of type II collagen than cells cultured on the uncharged nanofiber surface. Results showed that culture of anulus cells on nanofibers was permissive for secretion and assembly of type II collagen and chondroitin sulfate. Significantly greater total proteoglycan formation was present after culture on the nanofiber with added charge conditions {control, 0.6116 microg/mL +/- 0.186 [4] [mean +/- sem(n)] vs. 1.201 +/- 0.2509 [4], P < 0.05}. Cell proliferation, however, did not differ among treatment groups. Culture of anulus cells on nanofibers was found to be permissive for secretion and assembly of type II collagen and chondroitin sulfate, and culture on nanofibers with added charge significantly increased total proteoglycan production. These novel findings point to the need for further examination of nanofibrillar 3D culture of anulus cells for tissue engineering applications.
Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.
Picart, C; Dalhaimer, P; Discher, D E
2000-01-01
The red cell's spectrin-actin network is known to sustain local states of shear, dilation, and condensation, and yet the short actin filaments are found to maintain membrane-tangent and near-random azimuthal orientations. When calibrated with polarization results for single actin filaments, imaging of micropipette-deformed red cell ghosts has allowed an assessment of actin orientations and possible reorientations in the network. At the hemispherical cap of the aspirated projection, where the network can be dilated severalfold, filaments have the same membrane-tangent orientation as on a relatively unstrained portion of membrane. Likewise, over the length of the network projection pulled into the micropipette, where the network is strongly sheared in axial extension and circumferential contraction, actin maintains its tangent orientation and is only very weakly aligned with network extension. Similar results are found for the integral membrane protein Band 3. Allowing for thermal fluctuations, we deduce a bound for the effective coupling constant, alpha, between network shear and azimuthal orientation of the protofilament. The finding that alpha must be about an order of magnitude or more below its tight-coupling value illustrates how nanostructural kinematics can decouple from more macroscopic responses. Monte Carlo simulations of spectrin-actin networks at approximately 10-nm resolution further support this conclusion and substantiate an image of protofilaments as elements of a high-temperature spin glass. PMID:11106606
NASA Astrophysics Data System (ADS)
Flores-Tavizón, Edith; Mokgalaka-Matlala, Ntebogeng S.; Elizalde Galindo, José T.; Castillo-Michelle, Hiram; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.
2012-04-01
Magnetic field is closely related to the cell metabolism of plants [N. A. Belyavskaya, Adv. Space Res. 34, 1566 (2004)]. In order to see the effect of magnetic field on the plant growth, arsenic uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina) seeds, ten sets of 80 seeds were selected to be oriented with the long axis parallel or randomly oriented to an external magnetic field. The external magnetic field magnitude was 1 T, and the exposition time t = 30 min. Then, the seeds were stored for three days in a plastic bag and then sown on paper towels in a modified Hoagland's nutrient solution. After three days of germination in the dark and three days in light, seedlings were grown hydroponically in modified Hoagland's nutrient solution (high PO42-) containing 0, 10, or 20 ppm of arsenic as As (III) and (V). The results show that the germination ratios, growth, elongation, arsenic uptake, and total amylolytic activity of the long axis oriented mesquite seeds were much higher than those of the randomly oriented seeds. Also, these two sets of seeds showed higher properties than the ones that were not exposed to external magnetic field.
Fernandes, Henrique; Zhang, Hai; Figueiredo, Alisson; Malheiros, Fernando; Ignacio, Luis Henrique; Sfarra, Stefano; Ibarra-Castanedo, Clemente; Guimaraes, Gilmar; Maldague, Xavier
2018-01-19
The use of fiber reinforced materials such as randomly-oriented strands has grown in recent years, especially for manufacturing of aerospace composite structures. This growth is mainly due to their advantageous properties: they are lighter and more resistant to corrosion when compared to metals and are more easily shaped than continuous fiber composites. The resistance and stiffness of these materials are directly related to their fiber orientation. Thus, efficient approaches to assess their fiber orientation are in demand. In this paper, a non-destructive evaluation method is applied to assess the fiber orientation on laminates reinforced with randomly-oriented strands. More specifically, a method called pulsed thermal ellipsometry combined with an artificial neural network, a machine learning technique, is used in order to estimate the fiber orientation on the surface of inspected parts. Results showed that the method can be potentially used to inspect large areas with good accuracy and speed.
Maldague, Xavier
2018-01-01
The use of fiber reinforced materials such as randomly-oriented strands has grown in recent years, especially for manufacturing of aerospace composite structures. This growth is mainly due to their advantageous properties: they are lighter and more resistant to corrosion when compared to metals and are more easily shaped than continuous fiber composites. The resistance and stiffness of these materials are directly related to their fiber orientation. Thus, efficient approaches to assess their fiber orientation are in demand. In this paper, a non-destructive evaluation method is applied to assess the fiber orientation on laminates reinforced with randomly-oriented strands. More specifically, a method called pulsed thermal ellipsometry combined with an artificial neural network, a machine learning technique, is used in order to estimate the fiber orientation on the surface of inspected parts. Results showed that the method can be potentially used to inspect large areas with good accuracy and speed. PMID:29351240
Ion penetration depth in the plant cell wall
NASA Astrophysics Data System (ADS)
Yu, L. D.; Vilaithong, T.; Phanchaisri, B.; Apavatjrut, P.; Anuntalabhochai, S.; Evans, P.; Brown, I. G.
2003-05-01
This study investigates the depth of ion penetration in plant cell wall material. Based on the biological structure of the plant cell wall, a physical model is proposed which assumes that the wall is composed of randomly orientated layers of cylindrical microfibrils made from cellulose molecules of C 6H 12O 6. With this model, we have determined numerical factors for ion implantation in the plant cell wall to correct values calculated from conventional ion implantation programs. Using these correction factors, it is possible to apply common ion implantation programs to estimate the ion penetration depth in the cell for bioengineering purposes. These estimates are compared with measured data from experiments and good agreement is achieved.
Fauzi, M B; Lokanathan, Y; Aminuddin, B S; Ruszymah, B H I; Chowdhury, S R
2016-11-01
Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.
A Study of Parameters Affecting Fibroblast Morphology in Response to an Applied Mechanical Force
NASA Technical Reports Server (NTRS)
Grymes, Rosalind A.; Sawyer, Christine
1994-01-01
A precisely controlled stretch/relaxation regimen (20% elongation at 6.6 cycles/min) was applied to normal human fetal, neonatal and aged dermal fibroblasts cultured on flexible membranes. Culture conditions included poly (NH2) or collagen type I coated substrate membranes; control cultures were grown on the same pliable material in the absence of applied stretch. Direct observation and immunofluorescence analyses revealed a progressive change in cell body orientation limited to the stretched dermal fibroblast cultures. Monolayers gradually (over 4 days) acquired a symmetric, radial distribution equivalent to the biaxial array of the applied force. At high seeding density, alignment was inhibited in the fetal cell cultures. This cell strain required collagen type I coating for optimal attachment to the flexible membrane, preferring growth in three-dimensional cell 'balls' on the poly(NH2) coated substrate. Neonatal cells also required the collagen type I coating, but both neonatal and aged dermal fibroblasts aligned efficiently at all seeding densities examined. The randomly oriented neonatal cells on the unstretched control membranes spontaneously detached at confluence, as a single cell sheet. Their aligned counterparts did not detach until the applied stretch stimulus was removed. Low concentrations of cytochalasin D (62.5 ng/ml) disrupted the stretch-related alignment response. Rhodamine phalloidin staining visualized fewer actin stress fibers in stretched, aligned cells than in controls. Both intercellular interactions and cytoskeletal integrity mediate the response to mechanical strain. Normal rabbit corneal stroma fibroblasts (NRC) were also analyzed, and failed to orient under these conditions. This cell type may require a different regimen, or a longer time period, to demonstrate alignment behavior. Supported by NASA Space Biology RTOP 199-40-22 and the NASA-ARC Director's Discretionary Fund.
Balcioglu, Hayri E; van Hoorn, Hedde; Donato, Dominique M; Schmidt, Thomas; Danen, Erik H J
2015-04-01
Integrin adhesion receptors connect the extracellular matrix (ECM) to the cytoskeleton and serve as bidirectional mechanotransducers. During development, angiogenesis, wound healing and cancer progression, the relative abundance of fibronectin receptors, including integrins α5β1 and αvβ3, changes, thus altering the integrin composition of cell-matrix adhesions. Here, we show that enhanced αvβ3 expression can fully compensate for loss of α5β1 and other β1 integrins to support outside-in and inside-out force transmission. α5β1 and αvβ3 each mediate actin cytoskeletal remodeling in response to stiffening or cyclic stretching of the ECM. Likewise, α5β1 and αvβ3 support cellular traction forces of comparable magnitudes and similarly increase these forces in response to ECM stiffening. However, cells using αvβ3 respond to lower stiffness ranges, reorganize their actin cytoskeleton more substantially in response to stretch, and show more randomly oriented traction forces. Centripetal traction force orientation requires long stress fibers that are formed through the action of Rho kinase (ROCK) and myosin II, and that are supported by α5β1. Thus, altering the relative abundance of fibronectin-binding integrins in cell-matrix adhesions affects the spatiotemporal organization of force transmission. © 2015. Published by The Company of Biologists Ltd.
Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells.
Zhang, Xu; Munir, Rahim; Xu, Zhuo; Liu, Yucheng; Tsai, Hsinhan; Nie, Wanyi; Li, Jianbo; Niu, Tianqi; Smilgies, Detlef-M; Kanatzidis, Mercouri G; Mohite, Aditya D; Zhao, Kui; Amassian, Aram; Liu, Shengzhong Frank
2018-05-01
Ruddlesden-Popper reduced-dimensional hybrid perovskite (RDP) semiconductors have attracted significant attention recently due to their promising stability and excellent optoelectronic properties. Here, the RDP crystallization mechanism in real time from liquid precursors to the solid film is investigated, and how the phase transition kinetics influences phase purity, quantum well orientation, and photovoltaic performance is revealed. An important template-induced nucleation and growth of the desired (BA) 2 (MA) 3 Pb 4 I 13 phase, which is achieved only via direct crystallization without formation of intermediate phases, is observed. As such, the thermodynamically preferred perpendicular crystal orientation and high phase purity are obtained. At low temperature, the formation of intermediate phases, including PbI 2 crystals and solvate complexes, slows down intercalation of ions and increases nucleation barrier, leading to formation of multiple RDP phases and orientation randomness. These insights enable to obtain high quality (BA) 2 (MA) 3 Pb 4 I 13 films with preferentially perpendicular quantum well orientation, high phase purity, smooth film surface, and improved optoelectronic properties. The resulting devices exhibit high power conversion efficiency of 12.17%. This work should help guide the perovskite community to better control Ruddlesden-Popper perovskite structure and further improve optoelectronic and solar cell devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hemmersbach, Ruth; Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C M; Albers, Peter W; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf
2014-03-01
The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity.
Geometric Modeling of Inclusions as Ellipsoids
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.
2008-01-01
Nonmetallic inclusions in gas turbine disk alloys can have a significant detrimental impact on fatigue life. Because large inclusions that lead to anomalously low lives occur infrequently, probabilistic approaches can be utilized to avoid the excessively conservative assumption of lifing to a large inclusion in a high stress location. A prerequisite to modeling the impact of inclusions on the fatigue life distribution is a characterization of the inclusion occurrence rate and size distribution. To help facilitate this process, a geometric simulation of the inclusions was devised. To make the simulation problem tractable, the irregularly sized and shaped inclusions were modeled as arbitrarily oriented, three independent dimensioned, ellipsoids. Random orientation of the ellipsoid is accomplished through a series of three orthogonal rotations of axes. In this report, a set of mathematical models for the following parameters are described: the intercepted area of a randomly sectioned ellipsoid, the dimensions and orientation of the intercepted ellipse, the area of a randomly oriented sectioned ellipse, the depth and width of a randomly oriented sectioned ellipse, and the projected area of a randomly oriented ellipsoid. These parameters are necessary to determine an inclusion s potential to develop a propagating fatigue crack. Without these mathematical models, computationally expensive search algorithms would be required to compute these parameters.
Grathoff, Georg H.; Moore, D.M.
2002-01-01
The Waukesha Illite is an excellent example of the illites found in argillaceous rocks, typical for Paleozoic shales that have undergone significant burial diagenesis during their geologic history. It consists of a mixture of detrital 2M1, interpreted to be a residuum of karstification within Silurian carbonates, and diagenetic 1M and 1Md illite. The chemistry and the age of the illite polytypes are different. Extrapolating to 100%, the 1M and 1Md polytypes have an apparent diagenetic age between 295 and 325 Ma. The chemistry of the 1M polytype could not be determined because of its low abundance. The approximate chemical composition of the 1Md polytype is 0.67 K, 3.6 Si, and 1.9 Al per half unit cell. The 2M1 polytype has an apparent detrital age between 440 and 520 Ma, and an approximate chemical composition per half unit cell of 0.78 K, 3.4 Si, and 2.1 Al, all within our margin of error. X-ray diffraction (XRD) results of both random powder and oriented preparations both indicate that the Waukesha Illite consists of a mixture of illites. The XRD patterns of the random powder preparation indicate it is a physical mixture of three different illite polytypes. This result was confirmed using 3 different methods: (1) by measuring illite polytype-specific reflections; (2) by mixing illite polytype reference samples; and (3) by mixing WILDFIRE calculated XRD patterns. Decomposition of the illite 001 XRD peak from oriented preparations also indicates mixtures of illites. However, the proportions of the three illitic components derived from the oriented 001 peak decomposition differ from those results derived from the analysis of the random powder data. Therefore, the shape of the 001 reflection of the Waukesha Illite cannot be explained by mixing the three different illite polytypes.
Gao, Xiang; Song, Jinlin; Zhang, Yancong; Xu, Xiao; Zhang, Siqi; Ji, Ping; Wei, Shicheng
2016-10-07
The design and development of functional biomimetic systems for programmed stem cell response is a field of topical interest. To mimic bone extracellular matrix, we present an innovative strategy for constructing drug-loaded composite nanofibrous scaffolds in this study, which could integrate multiple cues from calcium phosphate mineral, bioactive molecule, and highly ordered fiber topography for the control of stem cell fate. Briefly, inspired by mussel adhesion mechanism, a polydopamine (pDA)-templated nanohydroxyapatite (tHA) was synthesized and then surface-functionalized with bone morphogenetic protein-7-derived peptides via catechol chemistry. Afterward, the resulting peptide-loaded tHA (tHA/pep) particles were blended with polycaprolactone (PCL) solution to fabricate electrospun hybrid nanofibers with random and aligned orientation. Our research demonstrated that the bioactivity of grafted peptides was retained in composite nanofibers. Compared to controls, PCL-tHA/pep composite nanofibers showed improved cytocompatibility. Moreover, the incorporated tHA/pep particles in nanofibers could further facilitate osteogenic differentiation potential of human mesenchymal stem cells (hMSCs). More importantly, the aligned PCL-tHA/pep composite nanofibers showed more osteogenic activity than did randomly oriented counterparts, even under nonosteoinductive conditions, indicating excellent performance of biomimetic design in cell fate decision. After in vivo implantation, the PCL-tHA/pep composite nanofibers with highly ordered structure could significantly promote the regeneration of lamellar-like bones in a rat calvarial critical-sized defect. Accordingly, the presented strategy in our work could be applied for a wide range of potential applications in not only bone regeneration application but also pharmaceutical science.
Cell proliferation of Paramecium tetraurelia on a slow rotating clinostat
NASA Astrophysics Data System (ADS)
Sawai, Satoe; Mogami, Yoshihiro; Baba, Shoji A.
Paramecium is known to proliferate faster under microgravity conditions, and slower under hypergravity. Experiments using axenic culture medium have demonstrated that hypergravity affected directly on the proliferation of Paramecium itself. In order to assess the mechanisms underlying the physiological effects of gravity on cell proliferation, Paramecium tetraurelia was grown under clinorotation (2.5 rpm) and the time course of the proliferation was investigated in detail on the basis of the logistic analysis. On the basis of the mechanical properties of Paramecium, this slow rate of the rotation appears to be enough to simulate microgravity in terms of the randomization of the cell orientation with respect to gravity. P. tetraurelia was cultivated in a closed chamber in which cells were confined without air bubbles, reducing the shear forces and turbulences under clinorotation. The chamber is made of quartz and silicone rubber film; the former is for the optically-flat walls for the measurement of cell density by means of a non-invasive laser optical-slice method, and the latter for gas exchange. Because of the small dimension for culture space, Paramecium does not accumulate at the top of the chamber in spite of its known negative gravitactic behavior. We measured the cell density at regular time intervals without breaking the configuration of the chamber, and analyzed the proliferation parameters by fitting the data to a logistic equation. As a result, P. tetraurelia showed reduced proliferation under slow clinorotation. The saturation of the cell density as well as the maximum proliferation rate decreased, although we found no significant changes on the half maximal time for proliferation. We also found that the mean swimming velocity decreased under slow clinorotation. These results were not consistent with those under microgravity and fast rotating clinostat. This may suggest that randomization of the cell orientation performed by slow rotating clinostat has not the same effect on Paramecium as that under microgravity that may affect the proliferation as the result of the reduced cost of propulsion.
Pauly, Hannah M; Kelly, Daniel J; Popat, Ketul C; Trujillo, Nathan A; Dunne, Nicholas J; McCarthy, Helen O; Haut Donahue, Tammy L
2016-08-01
Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatial Cytoskeleton Organization Supports Targeted Intracellular Transport
NASA Astrophysics Data System (ADS)
Hafner, Anne E.; Rieger, Heiko
2018-03-01
The efficiency of intracellular cargo transport from specific source to target locations is strongly dependent upon molecular motor-assisted motion along the cytoskeleton. Radial transport along microtubules and lateral transport along the filaments of the actin cortex underneath the cell membrane are characteristic for cells with a centrosome. The interplay between the specific cytoskeleton organization and the motor performance realizes a spatially inhomogeneous intermittent search strategy. In order to analyze the efficiency of such intracellular search strategies we formulate a random velocity model with intermittent arrest states. We evaluate efficiency in terms of mean first passage times for three different, frequently encountered intracellular transport tasks: i) the narrow escape problem, which emerges during cargo transport to a synapse or other specific region of the cell membrane, ii) the reaction problem, which considers the binding time of two particles within the cell, and iii) the reaction-escape problem, which arises when cargo must be released at a synapse only after pairing with another particle. Our results indicate that cells are able to realize efficient search strategies for various intracellular transport tasks economically through a spatial cytoskeleton organization that involves only a narrow actin cortex rather than a cell body filled with randomly oriented actin filaments.
Ong, Lee-Ling S; Xinghua Zhang; Kundukad, Binu; Dauwels, Justin; Doyle, Patrick; Asada, H Harry
2016-08-01
An approach to automatically detect bacteria division with temporal models is presented. To understand how bacteria migrate and proliferate to form complex multicellular behaviours such as biofilms, it is desirable to track individual bacteria and detect cell division events. Unlike eukaryotic cells, prokaryotic cells such as bacteria lack distinctive features, causing bacteria division difficult to detect in a single image frame. Furthermore, bacteria may detach, migrate close to other bacteria and may orientate themselves at an angle to the horizontal plane. Our system trains a hidden conditional random field (HCRF) model from tracked and aligned bacteria division sequences. The HCRF model classifies a set of image frames as division or otherwise. The performance of our HCRF model is compared with a Hidden Markov Model (HMM). The results show that a HCRF classifier outperforms a HMM classifier. From 2D bright field microscopy data, it is a challenge to separate individual bacteria and associate observations to tracks. Automatic detection of sequences with bacteria division will improve tracking accuracy.
NASA Astrophysics Data System (ADS)
Becker, C.; Ruske, F.; Sontheimer, T.; Gorka, B.; Bloeck, U.; Gall, S.; Rech, B.
2009-10-01
Polycrystalline silicon (poly-Si) thin films have been prepared by electron-beam evaporation and thermal annealing for the development of thin-film solar cells on glass coated with ZnO:Al as a transparent, conductive layer. The poly-Si microstructure and photovoltaic performance were investigated as functions of the deposition temperature by Raman spectroscopy, scanning and transmission electron microscopies including defect analysis, x-ray diffraction, external quantum efficiency, and open circuit measurements. It is found that two temperature regimes can be distinguished: Poly-Si films fabricated by deposition at low temperatures (Tdep<400 °C) and a subsequent thermal solid phase crystallization step exhibit 1-3 μm large, randomly oriented grains, but a quite poor photovoltaic performance. However, silicon films deposited at higher temperatures (Tdep>400 °C) directly in crystalline phase reveal columnar, up to 300 nm big crystals with a strong ⟨110⟩ orientation and much better solar cell parameters. It can be concluded from the results that the electrical quality of the material, reflected by the open circuit voltage of the solar cell, only marginally depends on crystal size and shape but rather on the intragrain properties of the material. The carrier collection, described by the short circuit current of the cell, seems to be positively influenced by preferential ⟨110⟩ orientation of the grains. The correlation between experimental, microstructural, and photovoltaic parameters will be discussed in detail.
NASA Astrophysics Data System (ADS)
Sakota, Daisuke; Takatani, Setsuo
2011-07-01
We have sought for non-invasive diagnosis of blood during the extracorporeal circulation support. To achieve the goal, we have newly developed a photon-cell interactive Monte Carlo (pciMC) model for optical propagation through blood. The pciMC actually describes the interaction of photons with 3-dimentional biconcave RBCs. The scattering is described by micro-scopical RBC boundary condition based on geometric optics. By using pciMC, we modeled the RBCs inside the extracorporeal circuit will be oriented by the blood flow. The RBCs' orientation was defined as their long axis being directed to the center of the circulation tube. Simultaneously the RBCs were allowed to randomly rotate about the long axis direction. As a result, as flow rate increased, the orientation rate increased and converged to approximately 22% at 0.5 L/min flow rate and above. And finally, by using this model, the pciMC non-invasively and absolutely predicted Hct and hemoglobin with the accuracies of 0.84+/-0.82 [HCT%] and 0.42+/-0.28 [g/dL] respectively against measurements by a blood gas analyzer.
NASA Astrophysics Data System (ADS)
Rathgeber, S.; Kuehnlenz, F.; Hoppe, H.; Egbe, D. A. M.; Tuerk, S.; Perlich, J.; Gehrke, R.
2012-02-01
A poly(arylene-ethynylene)-alt-poly(arylene-vinylene) statistical copolymer carrying linear and branched alkoxy side chains along the conjugated backbone in a random manner, yields, compared to its regular substituted counterparts, an improved performance in polymer:fullerene bulk-heterojunction solar cells. Results obtained from GiWAXS experiments show that the improved performance of the statistical copolymer may be attributed to the following structural characteristics: 1) Well, ordered stacked domains that promote backbone planarization and thus improve the ππ-overlap. 2) Partly face-on alignment of domains relative to the electrodes for an improved active layer electrode charge transfer. Branched side chains seem to promote face-on domain orientation. Most likely they can minimize their unfavorable contact with the interface by just bringing the CH3 groups of the branches into direct contact with the surface so that favorable phenylene-substrate interaction can promote face-on orientation. 3) A more isotropic domain orientation throughout the active layer to ensure that the backbone alignment direction has components perpendicular and parallel to the electrodes in order to compromise between light absorption and efficient intra-chain charge transport.
Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C.M.; Albers, Peter W.; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf
2014-01-01
Abstract The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity. Key Words: Levitation—Microgravity—Gravitaxis—Gravikinesis—Gravity. Astrobiology 14, 205–215. PMID:24621307
Parton, Richard M.; Hamilton, Russell S.; Ball, Graeme; Yang, Lei; Cullen, C. Fiona; Lu, Weiping; Ohkura, Hiroyuki
2011-01-01
Cytoskeletal organization is central to establishing cell polarity in various cellular contexts, including during messenger ribonucleic acid sorting in Drosophila melanogaster oocytes by microtubule (MT)-dependent molecular motors. However, MT organization and dynamics remain controversial in the oocyte. In this paper, we use rapid multichannel live-cell imaging with novel image analysis, tracking, and visualization tools to characterize MT polarity and dynamics while imaging posterior cargo transport. We found that all MTs in the oocyte were highly dynamic and were organized with a biased random polarity that increased toward the posterior. This organization originated through MT nucleation at the oocyte nucleus and cortex, except at the posterior end of the oocyte, where PAR-1 suppressed nucleation. Our findings explain the biased random posterior cargo movements in the oocyte that establish the germline and posterior. PMID:21746854
Snow Crystal Orientation Effects on the Scattering of Passive Microwave Radiation
NASA Technical Reports Server (NTRS)
Foster, J. L.; Barton, J. S.; Chang, A. T. C.; Hall, D. K.
1999-01-01
For this study, consideration is given to the role crystal orientation plays in scattering and absorbing microwave radiation. A discrete dipole scattering model is used to measure the passive microwave radiation, at two polarizations (horizontal and vertical), scattered by snow crystals oriented in random and non random positions, having various sizes (ranging between 1 micrometers to 10,000 micrometers in radius), and shapes (including spheroids, cylinders, hexagons). The model results demonstrate that for the crystal sizes typically found in a snowpack, crystal orientation is insignificant compared to crystal size in terms of scattering microwave energy in the 8,100 gm (37 GHz) region of the spectrum. Therefore, the assumption used in radiative transfer approaches, where snow crystals are modeled as randomly oriented spheres, is adequate to account for the transfer of microwave energy emanating from the ground and passing through a snowpack.
Retinal constraints on orientation specificity in cat visual cortex.
Schall, J D; Vitek, D J; Leventhal, A G
1986-03-01
Most retinal ganglion cells (Levick and Thibos, 1982) and cortical cells (Leventhal, 1983; Leventhal et al., 1984) subserving peripheral vision respond best to stimuli that are oriented radially, i.e., like the spokes of a wheel with the area centralis at the hub. We have extended this work by comparing directly the distributions of orientations represented in topographically corresponding regions of retina and visual cortex. Both central and peripheral regions were studied. The relations between the orientations of neighboring ganglion cells and the manner in which the overrepresentation of radial orientations is accommodated in the functional architecture of visual cortex were also studied. Our results are based on an analysis of the orientations of the dendritic fields of 1296 ganglion cells throughout the retina and the preferred orientations of 1389 cells located in retinotopically corresponding regions of cortical areas 17, 18, and 19 in the cat. We find that horizontal and vertical orientations are overrepresented in regions of both retina and visual cortex subserving the central 5 degrees of vision. The distributions of the orientations of retinal ganglion cells and cortical cells subserving the horizontal, vertical, and diagonal meridians outside the area centralis differ significantly. The distribution of the preferred orientations of the S (simple) cells in areas 17, 18 and 19 subserving a given part of the retina corresponds to the distribution of the dendritic field orientations of the ganglion cells in that part of retina. The distribution of the preferred orientations of C (complex) cells with narrow receptive fields in area 17 but not C cells with wide receptive fields in areas 17, 18, or 19 subserving a given part of the retina matches the distribution of the orientations of the ganglion cells in that part of retina. The orientations of all of the alpha-cells in 5-9 mm2 patches of retina along the horizontal, vertical, and oblique meridians were determined. A comparison of the orientations of neighboring cells indicates that other than a mutual tendency to be oriented radially, ganglion cells with similar orientations are not clustered in the retina. Reconstructions of electrode penetrations into regions of visual cortex representing peripheral retina indicate that columns subserving radial orientations are wider than those subserving nonradial orientations. Our results provide evidence that the distribution of the preferred orientations of simple cells in visual cortex subserving any region of the visual field matches the distribution of the orientations of the ganglion cells subserving the same region of the visual field.(ABSTRACT TRUNCATED AT 400 WORDS)
Magalhães, Thiago Alves; de Oliveira, Denis Coelho; Suzuki, Aline Yasko Marinho; Isaias, Rosy Mary dos Santos
2014-07-01
Cell redifferentiation, division, and elongation are recurrent processes, which occur during gall development, and are dependent on the cellulose microfibrils reorientation. We hypothesized that changes in the microfibrils orientation from non-galled tissues to galled ones occur and determine the final gall shape. This determination is caused by a new tissue zonation, its hyperplasia, and relative cell hypertrophy. The impact of the insect's activity on these patterns of cell development was herein tested in Baccharopelma dracunculifoliae-Baccharis dracunculifolia system. In this system, the microfibrils are oriented perpendicularly to the longest cell axis in elongated cells and randomly in isodiametric ones, either in non-galled or in galled tissues. The isodiametric cells of the abaxial epidermis in non-galled tissues divided and elongated periclinally, forming the outer gall epidermis. The anticlinally elongated cells of the abaxial palisade layer and the isodiametric cells of the spongy parenchyma originated the gall outer cortex with hypertrophied and periclinally elongated cells. The anticlinally elongated cells of the adaxial palisade layer originated the inner cortex with hypertrophied and periclinally elongated cells in young and mature galls and isodiametric cells in senescent galls. The isodiametric cells of the adaxial epidermis elongated periclinally in the inner gall epidermis. The current investigation demonstrates the role of cellulose microfibril reorientation for gall development. Once many factors other than this reorientation act on gall development, it should be interesting to check the possible relationship of the new cell elongation patterns with the pectic composition of the cell walls.
NASA Astrophysics Data System (ADS)
Aleshin, V. I.; Raevskiĭ, I. P.; Sitalo, E. I.
2008-11-01
A complete set of dielectric, piezoelectric, and elastic parameters for the textured ceramic material 0.67PMN-0.33PT is calculated by the self-consistency method with due regard for the anisotropy and piezoelectric activity of the medium. It is shown that the best piezoelectric properties corresponding to those of a single crystal are observed for the ceramic material with a texture in which all crystallites are oriented parallel to the [001] direction of the parent perovskite cubic cell. The simplest models of the polarization of an untextured ceramic material with a random initial orientation of crystallites are considered. The results obtained are compared with experimental data.
NASA Astrophysics Data System (ADS)
Yamaguchi, Seira; Masuda, Atsushi; Ohdaira, Keisuke
2016-04-01
This paper deals with the dependence of the potential-induced degradation (PID) of flat, p-type mono-crystalline silicon solar cell modules on the surface orientation of solar cells. The investigated modules were fabricated from p-type mono-crystalline silicon cells with a (100) or (111) surface orientation using a module laminator. PID tests were performed by applying a voltage of -1000 V to shorted module interconnector ribbons with respect to an Al plate placed on the cover glass of the modules at 85 °C. A decrease in the parallel resistance of the (100)-oriented cell modules is more significant than that of the (111)-oriented cell modules. Hence, the performance of the (100)-oriented-cell modules drastically deteriorates, compared with that of the (111)-oriented-cell modules. This implies that (111)-oriented cells offer a higher PID resistance.
A continuous process to align electrospun nanofibers into parallel and crossed arrays
NASA Astrophysics Data System (ADS)
Laudenslager, Michael J.; Sigmund, Wolfgang M.
2013-04-01
Electrical, optical, and mechanical properties of nanofibers are strongly affected by their orientation. Electrospinning is a nanofiber processing technique that typically produces nonwoven meshes of randomly oriented fibers. While several alignment techniques exist, they are only able to produce either a very thin layer of aligned fibers or larger quantities of fibers with less control over their alignment and orientation. The technique presented herein fills the gap between these two methods allowing one to produce thick meshes of highly oriented nanofibers. In addition, this technique is not limited to collection of fibers along a single axis. Modifications to the basic setup allow collection of crossed fibers without stopping and repositioning the apparatus. The technique works for a range of fiber sizes. In this study, fiber diameters ranged from 100 nm to 1 micron. This allows a few fibers at a time to rapidly deposit in alternating directions creating an almost woven structure. These aligned nanofibers have the potential to improve the performance of energy storage and thermoelectric devices and hold great promise for directed cell growth applications.
Amplified effect of Brownian motion in bacterial near-surface swimming
Li, Guanglai; Tam, Lick-Kong; Tang, Jay X.
2008-01-01
Brownian motion influences bacterial swimming by randomizing displacement and direction. Here, we report that the influence of Brownian motion is amplified when it is coupled to hydrodynamic interaction. We examine swimming trajectories of the singly flagellated bacterium Caulobacter crescentus near a glass surface with total internal reflection fluorescence microscopy and observe large fluctuations over time in the distance of the cell from the solid surface caused by Brownian motion. The observation is compared with computer simulation based on analysis of relevant physical factors, including electrostatics, van der Waals force, hydrodynamics, and Brownian motion. The simulation reproduces the experimental findings and reveals contribution from fluctuations of the cell orientation beyond the resolution of present observation. Coupled with hydrodynamic interaction between the bacterium and the boundary surface, the fluctuations in distance and orientation subsequently lead to variation of the swimming speed and local radius of curvature of swimming trajectory. These results shed light on the fundamental roles of Brownian motion in microbial motility, nutrient uptake, and adhesion. PMID:19015518
Li, Yingzi; Naveed, Hammad; Kachalo, Sema; Xu, Lisa X.; Liang, Jie
2014-01-01
Regulation of cell growth and cell division plays fundamental roles in tissue morphogenesis. However, the mechanisms of regulating tissue elongation through cell growth and cell division are still not well understood. The wing imaginal disc of Drosophila provides a model system that has been widely used to study tissue morphogenesis. Here we use a recently developed two-dimensional cellular model to study the mechanisms of regulating tissue elongation in Drosophila wing. We simulate the effects of directional cues on tissue elongation. We also computationally analyze the role of reduced cell size. Our simulation results indicate that oriented cell divisions, oriented mechanical forces, and reduced cell size can all mediate tissue elongation, but they function differently. We show that oriented cell divisions and oriented mechanical forces act as directional cues during tissue elongation. Between these two directional cues, oriented mechanical forces have a stronger influence than oriented cell divisions. In addition, we raise the novel hypothesis that reduced cell size may significantly promote tissue elongation. We find that reduced cell size alone cannot drive tissue elongation. However, when combined with directional cues, such as oriented cell divisions or oriented mechanical forces, reduced cell size can significantly enhance tissue elongation in Drosophila wing. Furthermore, our simulation results suggest that reduced cell size has a short-term effect on cell topology by decreasing the frequency of hexagonal cells, which is consistent with experimental observations. Our simulation results suggest that cell divisions without cell growth play essential roles in tissue elongation. PMID:24504016
Stochastic damage evolution in textile laminates
NASA Technical Reports Server (NTRS)
Dzenis, Yuris A.; Bogdanovich, Alexander E.; Pastore, Christopher M.
1993-01-01
A probabilistic model utilizing random material characteristics to predict damage evolution in textile laminates is presented. Model is based on a division of each ply into two sublaminas consisting of cells. The probability of cell failure is calculated using stochastic function theory and maximal strain failure criterion. Three modes of failure, i.e. fiber breakage, matrix failure in transverse direction, as well as matrix or interface shear cracking, are taken into account. Computed failure probabilities are utilized in reducing cell stiffness based on the mesovolume concept. A numerical algorithm is developed predicting the damage evolution and deformation history of textile laminates. Effect of scatter of fiber orientation on cell properties is discussed. Weave influence on damage accumulation is illustrated with the help of an example of a Kevlar/epoxy laminate.
Albumin fiber scaffolds for engineering functional cardiac tissues.
Fleischer, Sharon; Shapira, Assaf; Regev, Omri; Nseir, Nora; Zussman, Eyal; Dvir, Tal
2014-06-01
In recent years attempts to engineer contracting cardiac patches were focused on recapitulation of the myocardium extracellular microenvironment. We report here on our work, where for the first time, a three-dimensional cardiac patch was fabricated from albumin fibers. We hypothesized that since albumin fibers' mechanical properties resemble those of cardiac tissue extracellular matrix (ECM) and their biochemical character enables their use as protein carriers, they can support the assembly of cardiac tissues capable of generating strong contraction forces. Here, we have fabricated aligned and randomly oriented electrospun albumin fibers and investigated their structure, mechanical properties, and chemical nature. Our measurements showed that the scaffolds have improved elasticity as compared to synthetic electrospun PCL fibers, and that they are capable of adsorbing serum proteins, such as laminin leading to strong cell-matrix interactions. Moreover, due to the functional groups on their backbone, the fibers can be chemically modified with essential biomolecules. When seeded with rat neonatal cardiac cells the engineered scaffolds induced the assembly of aligned cardiac tissues with high aspect ratio cardiomyocytes and massive actinin striation. Compared to synthetic fibrous scaffolds, cardiac cells cultured within aligned or randomly oriented scaffolds formed functional tissues, exhibiting significantly improved function already on Day 3, including higher beating rate (P = 0.0002 and P < 0.0001, respectively), and higher contraction amplitude (P = 0.009 and P = 0.003, respectively). Collectively, our results suggest that albumin electrospun scaffolds can play a key role in contributing to the ex vivo formation of a contracting cardiac muscle tissue. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Kern, Volker D.; Schwuchow, Jochen M.; Reed, David W.; Nadeau, Jeanette A.; Lucas, Jessica; Skripnikov, Alexander; Sack, Fred D.
2005-01-01
In addition to shoots and roots, the gravity (g)-vector orients the growth of specialized cells such as the apical cell of dark-grown moss protonemata. Each apical cell of the moss Ceratodon purpureus senses the g-vector and adjusts polar growth accordingly producing entire cultures of upright protonemata (negative gravitropism). The effect of withdrawing a constant gravity stimulus on moss growth was studied on two NASA Space Shuttle (STS) missions as well as during clinostat rotation on earth. Cultures grown in microgravity (spaceflight) on the STS-87 mission exhibited two successive phases of non-random growth and patterning, a radial outgrowth followed by the formation of net clockwise spiral growth. Also, cultures pre-aligned by unilateral light developed clockwise hooks during the subsequent dark period. The second spaceflight experiment flew on STS-107 which disintegrated during its descent on 1 February 2003. However, most of the moss experimental hardware was recovered on the ground, and most cultures, which had been chemically fixed during spaceflight, were retrieved. Almost all intact STS-107 cultures displayed strong spiral growth. Non-random culture growth including clockwise spiral growth was also observed after clinostat rotation. Together these data demonstrate the existence of default non-random growth patterns that develop at a population level in microgravity, a response that must normally be overridden and masked by a constant g-vector on earth.
NASA Astrophysics Data System (ADS)
Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio
2015-04-01
A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.
Wave propagation modeling in composites reinforced by randomly oriented fibers
NASA Astrophysics Data System (ADS)
Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw
2018-02-01
A new method for prediction of elastic constants in randomly oriented fiber composites is proposed. It is based on mechanics of composites, the rule of mixtures and total mass balance tailored to the spectral element mesh composed of 3D brick elements. Selected elastic properties predicted by the proposed method are compared with values obtained by another theoretical method. The proposed method is applied for simulation of Lamb waves in glass-epoxy composite plate reinforced by randomly oriented fibers. Full wavefield measurements conducted by the scanning laser Doppler vibrometer are in good agreement with simulations performed by using the time domain spectral element method.
NASA Astrophysics Data System (ADS)
Akazawa, Housei; Ueno, Yuko
2014-10-01
We report how the crystallinity and orientation of hydroxyapatite (HAp) films deposited on sapphire substrates depend on the crystallographic planes. Both solid-phase crystallization of amorphous HAp films and crystallization during sputter deposition at elevated temperatures were examined. The low-temperature epitaxial phase on C-plane sapphire substrates has c-axis orientated HAp crystals regardless of the crystallization route, whereas the preferred orientation switches to the (310) direction at higher temperatures. Only the symmetric stretching mode (ν1) of PO43- units appears in the Raman scattering spectra, confirming well-ordered crystalline domains. In contrast, HAp crystals grown on A-plane sapphire substrates are always oriented toward random orientations. Exhibiting all vibrational modes (ν1, ν3, and ν4) of PO43- units in the Raman scattering spectra reflects random orientation, violating the Raman selection rule. If we assume that Raman intensities of PO43- units represent the crystallinity of HAp films, crystallization terminating the surface with the C-plane is hindered by the presence of excess H2O and OH species in the film, whereas crystallization at random orientations on the A-plane sapphire is rather promoted by these species. Such contrasting behaviors between C-plane and A-plane substrates will reflect surface-plane dependent creation of crystalline seeds and eventually determine the orientation of resulting HAp films.
Free Vibration of Uncertain Unsymmetrically Laminated Beams
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Goyal, Vijay K.
2001-01-01
Monte Carlo Simulation and Stochastic FEA are used to predict randomness in the free vibration response of thin unsymmetrically laminated beams. For the present study, it is assumed that randomness in the response is only caused by uncertainties in the ply orientations. The ply orientations may become random or uncertain during the manufacturing process. A new 16-dof beam element, based on the first-order shear deformation beam theory, is used to study the stochastic nature of the natural frequencies. Using variational principles, the element stiffness matrix and mass matrix are obtained through analytical integration. Using a random sequence a large data set is generated, containing possible random ply-orientations. This data is assumed to be symmetric. The stochastic-based finite element model for free vibrations predicts the relation between the randomness in fundamental natural frequencies and the randomness in ply-orientation. The sensitivity derivatives are calculated numerically through an exact formulation. The squared fundamental natural frequencies are expressed in terms of deterministic and probabilistic quantities, allowing to determine how sensitive they are to variations in ply angles. The predicted mean-valued fundamental natural frequency squared and the variance of the present model are in good agreement with Monte Carlo Simulation. Results, also, show that variations between plus or minus 5 degrees in ply-angles can affect free vibration response of unsymmetrically and symmetrically laminated beams.
Fujita, Miki; Wasteneys, Geoffrey O
2014-05-01
Cellulose microfibrils are critical for plant cell specialization and function. Recent advances in live cell imaging of fluorescently tagged cellulose synthases to track cellulose synthesis have greatly advanced our understanding of cellulose biosynthesis. Nevertheless, cellulose deposition patterns remain poorly described in many cell types, including those in the process of division or differentiation. In this study, we used field emission scanning electron microscopy analysis of cryo-planed tissues to determine the arrangement of cellulose microfibrils in various faces of cells undergoing cytokinesis or specialized development, including cell types in which cellulose cannot be imaged by conventional approaches. In dividing cells, we detected microfibrillar meshworks in the cell plates, consistent with the concentration at the cell plate of cellulose synthase complexes, as detected by fluorescently tagged CesA6. We also observed a loss of parallel cellulose microfibril orientation in walls of the mother cell during cytokinesis, which corresponded with the loss of fluorescently tagged cellulose synthase complexes from these surfaces. In recently formed guard cells, microfibrils were randomly organized and only formed a highly ordered circumferential pattern after pore formation. In pit fields, cellulose microfibrils were arranged in circular patterns around plasmodesmata. Microfibrils were random in most cotyledon cells except the epidermis and were parallel to the growth axis in trichomes. Deposition of cellulose microfibrils was spatially delineated in metaxylem and protoxylem cells of the inflorescence stem, supporting recent studies on microtubule exclusion mechanisms.
Icardo, José M; Colvee, Elvira; Cerra, Maria C; Tota, Bruno
2002-12-01
Sturgeons constitute a family of living "fossil" fish whose heart is related to that of other ancient fish and the elasmobranches. We have undertaken a systematic study of the structure of the sturgeon heart aimed at unraveling the relationship between the heart structure and the adaptive evolutionary changes. In a related paper, data were presented on the conus valves and the subendocardium. Here, the structure of the conus myocardium, the subepicardial tissue, and the conus-aorta transition were studied by conventional light, transmission, and scanning electron microscopy. In addition, actin localization by fluorescent phalloidin was used. The conus myocardium is organized into bundles whose spatial organization changes along the conus length. The variable orientation of the myocardial cell bundles may be effective in emptying the conus lumen during contraction and in preventing reflux of blood. Myocardial cell bundles are separated by loose connective tissue that contains collagen and elastin fibers, vessels, and extremely flat cells separating the cell bundles and enclosing blood vessels and collagen fibers. The ultrastructure of the myocardial cells was found to be very similar to that of other fish groups, suggesting that it is largely conservative. The subepicardium is characterized by the presence of nodular structures that contain lympho-hemopoietic (thymus-like) tissue in the young sturgeons and a large number of lymphocytes after the sturgeons reach sexual maturity. This tissue is likely implicated in the establishment and maintenance of the immune responses. The intrapericardial ventral aorta shows a middle layer of circumferentially oriented cells and internal and external layers with cells oriented longitudinally. Elastin fibers completely surround each smooth muscle cell, and the spaces between the different layers are occupied by randomly arranged collagen bundles. The intrapericardial segment of the ventral aorta is a true transitional segment whose structural characteristics are different from those of both the conus subendocardium and the rest of the ventral aorta. Copyright 2002 Wiley-Liss, Inc.
Akkerman, M; Franssen-Verheijen, M A W; Immerzeel, P; Hollander, L D E N; Schel, J H N; Emons, A M C
2012-07-01
Cellulose is the most abundant biopolymer on earth, and has qualities that make it suitable for biofuel. There are new tools for the visualisation of the cellulose synthase complexes in living cells, but those do not show their product, the cellulose microfibrils (CMFs). In this study we report the characteristics of cell wall textures, i.e. the architectures of the CMFs in the wall, of root hairs of Arabidopsis thaliana, Medicago truncatula and Vicia sativa and compare the different techniques we used to study them. Root hairs of these species have a random primary cell wall deposited at the root hair tip, which covers the outside of the growing and fully grown hair. The secondary wall starts between 10 (Arabidopsis) and 40 (Vicia) μm from the hair tip and the CMFs make a small angle, Z as well as S direction, with the long axis of the root hair. CMFs are 3-4 nm wide in thin sections, indicating that single cellulose synthase complexes make them. Thin sections after extraction of cell wall matrix, leaving only the CMFs, reveal the type of wall texture and the orientation and width of CMFs, but CMF density within a lamella cannot be quantified, and CMF length is always underestimated by this technique. Field emission scanning electron microscopy and surface preparations for transmission electron microscopy reveal the type of wall texture and the orientation of individual CMFs. Only when the orientation of CMFs in subsequent deposited lamellae is different, their density per lamella can be determined. It is impossible to measure CMF length with any of the EM techniques. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.
NASA Technical Reports Server (NTRS)
Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu
2015-01-01
Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.
Attardo, Alessio; Calegari, Federico; Haubensak, Wulf; Wilsch-Bräuninger, Michaela; Huttner, Wieland B.
2008-01-01
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors. PMID:18545663
Compressing random microstructures via stochastic Wang tilings.
Novák, Jan; Kučerová, Anna; Zeman, Jan
2012-10-01
This Rapid Communication presents a stochastic Wang tiling-based technique to compress or reconstruct disordered microstructures on the basis of given spatial statistics. Unlike the existing approaches based on a single unit cell, it utilizes a finite set of tiles assembled by a stochastic tiling algorithm, thereby allowing to accurately reproduce long-range orientation orders in a computationally efficient manner. Although the basic features of the method are demonstrated for a two-dimensional particulate suspension, the present framework is fully extensible to generic multidimensional media.
The neurophysiology of figure-ground segregation in primary visual cortex.
Lamme, V A
1995-02-01
The activity of neurons in the primary visual cortex of the awake macaque monkey was recorded while the animals were viewing full screen arrays of either oriented line segments or moving random dots. A square patch of the screen was made to perceptually pop out as a circumscribed figure by virtue of differences between the orientation or the direction of motion of the texture elements within that patch and the surround. The animals were trained to identify the figure patches by making saccadic eye movements towards their positions. Almost every cell gave a significantly larger response to elements belonging to the figure than to similar elements belonging to the background. The figure-ground response enhancement was present along the entire extent of the patch and was absent as soon as the receptive field was outside the patch. The strength of the effect had no relation with classical receptive field properties like orientation or direction selectivity or receptive field size. The response enhancement had a latency of 30-40 msec relative to the onset of the neuronal response itself. The results show that context modulation within primary visual cortex has a highly sophisticated nature, putting the image features the cells are responding to into their fully evaluated perceptual context.
Belzil, Camille; Asada, Naoyuki; Ishiguro, Kei-Ichiro; Nakaya, Takeo; Parsons, Kari; Pendolino, Valentina; Neumayer, Gernot; Mapelli, Marina; Nakatani, Yoshihiro; Sanada, Kamon; Nguyen, Minh Dang
2014-05-08
Apical neural progenitors (aNPs) drive neurogenesis by means of a program consisting of self-proliferative and neurogenic divisions. The balance between these two manners of division sustains the pool of apical progenitors into late neurogenesis, thereby ensuring their availability to populate the brain with terminal cell types. Using knockout and in utero electroporation mouse models, we report a key role for the microtubule-associated protein 600 (p600) in the regulation of spindle orientation in aNPs, a cellular event that has been associated with cell fate and neurogenesis. We find that p600 interacts directly with the neurogenic protein Ndel1 and that aNPs knockout for p600, depleted of p600 by shRNA or expressing a Ndel1-binding p600 fragment all display randomized spindle orientation. Depletion of p600 by shRNA or expression of the Ndel1-binding p600 fragment also results in a decreased number of Pax6-positive aNPs and an increased number of Tbr2-positive basal progenitors destined to become neurons. These Pax6-positive aNPs display a tilted mitotic spindle. In mice wherein p600 is ablated in progenitors, the production of neurons is significantly impaired and this defect is associated with microcephaly. We propose a working model in which p600 controls spindle orientation in aNPs and discuss its implication for neurogenesis. © 2014. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yi; Chen, Wei; Xu, Hongyi
To provide a seamless integration of manufacturing processing simulation and fiber microstructure modeling, two new stochastic 3D microstructure reconstruction methods are proposed for two types of random fiber composites: random short fiber composites, and Sheet Molding Compounds (SMC) chopped fiber composites. A Random Sequential Adsorption (RSA) algorithm is first developed to embed statistical orientation information into 3D RVE reconstruction of random short fiber composites. For the SMC composites, an optimized Voronoi diagram based approach is developed for capturing the substructure features of SMC chopped fiber composites. The proposed methods are distinguished from other reconstruction works by providing a way ofmore » integrating statistical information (fiber orientation tensor) obtained from material processing simulation, as well as capturing the multiscale substructures of the SMC composites.« less
Electrospun Nanofiber Scaffolds with Gradations in Fiber Organization
Khandalavala, Karl; Jiang, Jiang; Shuler, Franklin D.; Xie, Jingwei
2015-01-01
The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion. PMID:25938562
Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials
NASA Technical Reports Server (NTRS)
Nemeth, Noel, N.
2013-01-01
Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.
Oriented antibody immobilization on self-assembled monolayers applied as impedance biosensors
NASA Astrophysics Data System (ADS)
Tsugimura, Kaiki; Ohnuki, Hitoshi; Wu, Haiyun; Endo, Hideaki; Tsuya, Daiju; Izumi, Mitsuru
2017-11-01
Oriented immobilization of antibodies on a sensor chip is crucial for enhancing both the sensitivity and antigen-binding capacity of immunosensors. Here, we report a comparative study of the effect of oriented and random antibody immobilization on the binding efficiency by electrochemical impedance spectroscopy (EIS). Oriented immobilization of anti-myoglobin immunoglobulin G (anti-Myo IgG) was achieved by bonding to an Fc receptor of protein G (PrG) on a self-assembled monolayer (SAM), which results in the myoglobin (Myo) binding sites being exposed outside the sensing surface. Random immobilization of anti-Myo IgG was achieved by direct covalent attachment to the SAM surface. Both immobilizations were applied to interdigitated electrodes to enhance the electrochemical signal, and the Myo biosensor performance was then evaluated by a series of EIS measurements. We found that (i) the rate of the normalized charge transfer resistance for the oriented sample was 3 times higher than that for the random sample and (ii) the detection limit was 0.001 ng/mL, which is the lowest recorded detection limit among Myo immunosensors based on EIS. These findings indicate that oriented antibody immobilization is crucial for preparing highly sensitive EIS-based biosensors.
Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces.
Mwenifumbo, Steven; Li, Mingwei; Chen, Jianbo; Beye, Aboubaker; Soboyejo, Wolé
2007-01-01
This paper examines the effects of nano-scale titanium coatings, and micro-groove/micro-grid patterns on cell/surface interactions on silicon surfaces. The nature of the cellular attachment and adhesion to the coated/uncoated micro-textured surfaces was elucidated by the visualization of the cells and relevant cytoskeletal & focal adhesion proteins through scanning electron microscopy and immunofluorescence staining. Increased cell spreading and proliferation rates are observed on surfaces with 50 nm thick Ti coatings. The micro-groove geometries have been shown to promote contact guidance, which leads to reduced scar tissue formation. In contrast, smooth surfaces result in random cell orientations and the increased possibility of scar tissue formation. Immunofluorescence cell staining experiments also reveal that the actin stress fibers are aligned along the groove dimensions, with discrete focal adhesions occurring along the ridges, within the grooves and at the ends of the cell extensions. The implications of the observed cell/surface interactions are discussed for possible applications of silicon in implantable biomedical systems.
Kuhlmann, Levin; Vidyasagar, Trichur R.
2011-01-01
Controversy remains about how orientation selectivity emerges in simple cells of the mammalian primary visual cortex. In this paper, we present a computational model of how the orientation-biased responses of cells in lateral geniculate nucleus (LGN) can contribute to the orientation selectivity in simple cells in cats. We propose that simple cells are excited by lateral geniculate fields with an orientation-bias and disynaptically inhibited by unoriented lateral geniculate fields (or biased fields pooled across orientations), both at approximately the same retinotopic co-ordinates. This interaction, combined with recurrent cortical excitation and inhibition, helps to create the sharp orientation tuning seen in simple cell responses. Along with describing orientation selectivity, the model also accounts for the spatial frequency and length–response functions in simple cells, in normal conditions as well as under the influence of the GABAA antagonist, bicuculline. In addition, the model captures the response properties of LGN and simple cells to simultaneous visual stimulation and electrical stimulation of the LGN. We show that the sharp selectivity for stimulus orientation seen in primary visual cortical cells can be achieved without the excitatory convergence of the LGN input cells with receptive fields along a line in visual space, which has been a core assumption in classical models of visual cortex. We have also simulated how the full range of orientations seen in the cortex can emerge from the activity among broadly tuned channels tuned to a limited number of optimum orientations, just as in the classical case of coding for color in trichromatic primates. PMID:22013414
Structural basis of orientation sensitivity of cat retinal ganglion cells.
Leventhal, A G; Schall, J D
1983-11-10
We investigated the structural basis of the physiological orientation sensitivity of retinal ganglion cells (Levick and Thibos, '82). The dendritic fields of 840 retinal ganglion cells labeled by injections of horseradish peroxidase into the dorsal lateral geniculate nucleus (LGNd) or optic tracts of normal cats. Siamese cats, and cat deprived of patterned visual experience from birth by monocular lid-suture (MD) were studied. Mathematical techniques designed to analyze direction were used to find the dendritic field orientation of each cell. Statistical techniques designed for angular data were used to determine the relationship between dendritic field orientation and angular position on the retina (polar angle). Our results indicate that 88% of retinal ganglion cells have oriented dendritic fields and that dendritic field orientation is related systematically to retinal position. In all regions of retina more that 0.5 mm from the area centralis the dendritic fields of retinal ganglion cells are oriented radially, i.e., like the spokes of a wheel having the area centralis at its hub. This relationship was present in all animals and cell types studied and was strongest for cells located close to the horizontal meridian (visual streak) of the retina. Retinal ganglion cells appear to be sensitive to stimulus orientation because they have oriented dendritic fields.
Population gratings in saturable optical fibers with randomly oriented rare-earth ions
NASA Astrophysics Data System (ADS)
Stepanov, S.; Martinez, L. M.; Hernandez, E. H.; Agruzov, P.; Shamray, A.
2015-07-01
Formation of the dynamic population gratings in optical fibers with randomly oriented rare-earth ions is analyzed with a special interest to the grating component for readout with the orthogonal light polarization. It is shown that as compared with a simple model case of the collinearly oriented dipole-like centers their random orientation leads to approximately 2-times growth of the effective saturation power P sat when it is estimated from the incident power dependence of the fiber absorption or from that of the fluorescence intensity. An optimal incident power, for which the maximum of the dynamic population grating amplitude for collinear light polarization is observed, also follows this change in P sat, while formation of the grating for orthogonal polarization needs essentially higher light power. The reduced anisotropy of the active centers, which is in charge of the experimentally observed weakening of the polarization hole burning (PHB) and of the fluorescence polarization, compensates in some way the effect of random ion orientation. The ratio between the maximum conventional (i.e. for the interacting waves collinear polarizations) two-wave mixing (TWM) amplitude and the initial not saturable fiber optical density proves to be, however, nearly the same as in the model case of collinearly oriented dipoles. The ratio between the PHB effect and the amplitude of the anisotropic grating, which is responsible for TWM of the orthogonally polarized waves, is also not influenced significantly by the reduced anisotropy of ions.
Morris, Josephine L; Cross, Stephen J; Lu, Yinhui; Kadler, Karl E; Lu, Yongbo; Dallas, Sarah L; Martin, Paul
2018-06-06
Fibrillar collagen is a major component of many tissues but has been difficult to image in vivo using transgenic approaches because of problems associated with establishing cells and organisms that generate GFP-fusion collagens that can polymerise into functional fibrils. Here we have developed and characterised GFP and mCherry collagen-I fusion zebrafish lines with basal epidermal-specific expression. We use these lines to reveal the dynamic nature of collagen-I fibril deposition beneath the developing embryonic epidermis, as well as the repair of this collagen meshwork following wounding. Transmission electron microscope studies show that these transgenic lines faithfully reproduce the collagen ultrastructure present in wild type larval skin. During skin development we show that collagen I is deposited by basal epidermal cells initially in fine filaments that are largely randomly orientated but are subsequently aligned into a cross-hatch, orthogonal sub-epithelial network by embryonic day 4. Following skin wounding, we see that sub-epidermal collagen is re-established in the denuded domain, initially as randomly orientated wisps that subsequently become bonded to the undamaged collagen and aligned in a way that recapitulates developmental deposition of sub-epidermal collagen. Crossing our GFP-collagen line against one with tdTomato marking basal epidermal cell membranes reveals how much more rapidly wound re-epithelialisation occurs compared to the re-deposition of collagen beneath the healed epidermis. By use of other tissue specific drivers it will be possible to establish zebrafish lines to enable live imaging of collagen deposition and its remodelling in various other organs in health and disease. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Circumferentially aligned fibers guided functional neoartery regeneration in vivo.
Zhu, Meifeng; Wang, Zhihong; Zhang, Jiamin; Wang, Lina; Yang, Xiaohu; Chen, Jingrui; Fan, Guanwei; Ji, Shenglu; Xing, Cheng; Wang, Kai; Zhao, Qiang; Zhu, Yan; Kong, Deling; Wang, Lianyong
2015-08-01
An ideal vascular graft should have the ability to guide the regeneration of neovessels with structure and function similar to those of the native blood vessels. Regeneration of vascular smooth muscle cells (VSMCs) with circumferential orientation within the grafts is crucial for functional vascular reconstruction in vivo. To date, designing and fabricating a vascular graft with well-defined geometric cues to facilitate simultaneously VSMCs infiltration and their circumferential alignment remains a great challenge and scarcely reported in vivo. Thus, we have designed a bi-layered vascular graft, of which the internal layer is composed of circumferentially aligned microfibers prepared by wet-spinning and an external layer composed of random nanofibers prepared by electrospinning. While the internal circumferentially aligned microfibers provide topographic guidance for in vivo regeneration of circumferentially aligned VSMCs, the external random nanofibers can offer enhanced mechanical property and prevent bleeding during and after graft implantation. VSMCs infiltration and alignment within the scaffold was then evaluated in vitro and in vivo. Our results demonstrated that the circumferentially oriented VSMCs and longitudinally aligned ECs were successfully regenerated in vivo after the bi-layered vascular grafts were implanted in rat abdominal aorta. No formation of thrombosis or intimal hyperplasia was observed up to 3 month post implantation. Further, the regenerated neoartery exhibited contraction and relaxation property in response to vasoactive agents. This new strategy may bring cell-free small diameter vascular grafts closer to clinical application. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oriented cell division: new roles in guiding skin wound repair and regeneration
Yang, Shaowei; Ma, Kui; Geng, Zhijun; Sun, Xiaoyan; Fu, Xiaobing
2015-01-01
Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration. PMID:26582817
Predicting bending stiffness of randomly oriented hybrid panels
Laura Moya; William T.Y. Tze; Jerrold E. Winandy
2010-01-01
This study was conducted to develop a simple model to predict the bending modulus of elasticity (MOE) of randomly oriented hybrid panels. The modeling process involved three modules: the behavior of a single layer was computed by applying micromechanics equations, layer properties were adjusted for densification effects, and the entire panel was modeled as a three-...
Development and matching of binocular orientation preference in mouse V1.
Bhaumik, Basabi; Shah, Nishal P
2014-01-01
Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels.
Bonds, A B
1989-01-01
Mechanisms supporting orientation selectivity of cat striate cortical cells were studied by stimulation with two superimposed sine-wave gratings of different orientations. One grating (base) generated a discharge of known amplitude which could be modified by the second grating (mask). Masks presented at nonoptimal orientations usually reduced the base-generated response, but the degree of reduction varied widely between cells. Cells with narrow orientation tuning tended to be more susceptible to mask presence than broadly tuned cells; similarly, simple cells generally showed more response reduction than did complex cells. The base and mask stimuli were drifted at different temporal frequencies which, in simple cells, permitted the identification of individual response components from each stimulus. This revealed that the reduction of the base response by the mask usually did not vary regularly with mask orientation, although response facilitation from the mask was orientation selective. In some sharply tuned simple cells, response reduction had clear local maxima near the limits of the cell's orientation-tuning function. Response reduction resulted from a nearly pure rightward shift of the response versus log contrast function. The lowest mask contrast yielding reduction was within 0.1-0.3 log unit of the lowest contrast effective for excitation. The temporal-frequency bandpass of the response-reduction mechanism resembled that of most cortical cells. The spatial-frequency bandpass was much broader than is typical for single cortical cells, spanning essentially the entire visual range of the cat. These findings are compatible with a model in which weak intrinsic orientation-selective excitation is enhanced in two stages: (1) control of threshold by nonorientation-selective inhibition that is continuously dependent on stimulus contrast; and (2) in the more narrowly tuned cells, orientation-selective inhibition that has local maxima serving to increase the slope of the orientation-tuning function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorhagen, Susanne; Niessen, Carien M., E-mail: carien.niessen@uni-koeln.de
2014-11-01
Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Lossmore » of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.« less
Enhanced cellulose orientation analysis in complex model plant tissues.
Rüggeberg, Markus; Saxe, Friederike; Metzger, Till H; Sundberg, Björn; Fratzl, Peter; Burgert, Ingo
2013-09-01
The orientation distribution of cellulose microfibrils in the plant cell wall is a key parameter for understanding anisotropic plant growth and mechanical behavior. However, precisely visualizing cellulose orientation in the plant cell wall has ever been a challenge due to the small size of the cellulose microfibrils and the complex network of polymers in the plant cell wall. X-ray diffraction is one of the most frequently used methods for analyzing cellulose orientation in single cells and plant tissues, but the interpretation of the diffraction images is complex. Traditionally, circular or square cells and Gaussian orientation of the cellulose microfibrils have been assumed to elucidate cellulose orientation from the diffraction images. However, the complex tissue structures of common model plant systems such as Arabidopsis or aspen (Populus) require a more sophisticated approach. We present an evaluation procedure which takes into account the precise cell geometry and is able to deal with complex microfibril orientation distributions. The evaluation procedure reveals the entire orientation distribution of the cellulose microfibrils, reflecting different orientations within the multi-layered cell wall. By analyzing aspen wood and Arabidopsis stems we demonstrate the versatility of this method and show that simplifying assumptions on geometry and orientation distributions can lead to errors in the calculated microfibril orientation pattern. The simulation routine is intended to be used as a valuable tool for nanostructural analysis of plant cell walls and is freely available from the authors on request. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Fuxue, E-mail: yanfuxue@126.com; Han, Kai, E-
2017-02-15
C-axis oriented La{sub 0.67}Sr{sub 0.33}MnO{sub 3}(LSMO)/PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}(PZT) films are fabricated successfully by sol-gel method on LaAlO{sub 3} (00l) substrates. The structure, composition and morphology of the films are investigated by X-ray diffractometer (XRD, θ-2θ scan, ω-scan and ϕ-scan), X-ray photoelectron spectroscope (XPS), field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). The electric and magnetic properties of randomly and c-axis oriented LSMO/PZT films are studied comparably using ferroelectric testing apparatus and physical property measurement system (PPMS). It is found that the epitaxial LSMO/PZT composite films show well controlled growth along c-axis, and much bettermore » magnetoelectric properties than the randomly oriented ones. The ME voltage coefficient increases from 23 mV cm{sup −1} Oe{sup −1} for the randomly oriented LSMO/PZT composite films to 52 mV cm{sup −1} Oe{sup −1} for c-axis oriented ones prepared using the low cost sol-gel method presented in this study, which shows high potential in promising applications. - Highlights: •Epitaxial LSMO/PZT films were fabricated successfully by sol-gel method on LAO (00l) substrate. •The prepared films exhibit well-defined multiferroic properties for the epitaxial LSMO/PZT films. •Epitaxial LSMO/PZT films show superior magnetoelectric properties to the randomly oriented ones.« less
Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems
NASA Technical Reports Server (NTRS)
Asano, S.; Sato, M.; Hansen, J. E.
1979-01-01
A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius.
NASA Astrophysics Data System (ADS)
Suzuki, Daisuke; Hanyu, Takahiro
2018-04-01
A magnetic-tunnel-junction (MTJ)-oriented nonvolatile lookup table (LUT) circuit, in which a low-power data-shift function is performed by minimizing the number of write operations in MTJ devices is proposed. The permutation of the configuration memory cell for read/write access is performed as opposed to conventional direct data shifting to minimize the number of write operations, which results in significant write energy savings in the data-shift function. Moreover, the hardware cost of the proposed LUT circuit is small since the selector is shared between read access and write access. In fact, the power consumption in the data-shift function and the transistor count are reduced by 82 and 52%, respectively, compared with those in a conventional static random-access memory-based implementation using a 90 nm CMOS technology.
Ranjbar-Mohammadi, Marziyeh; Prabhakaran, Molamma P; Bahrami, S Hajir; Ramakrishna, Seeram
2016-04-20
Nanofibrous nerve guides have gained huge interest in supporting the peripheral nerve regeneration due to their abilities to simulate the topography, mechanical, biological and extracellular matrix morphology of native tissue. Gum tragacanth (GT) is a biocompatible mixture of polysaccharides that has been used in biomedical applications. During this study, we fabricated aligned and random nanofibers from poly(l-lactic acid) and gum tragacanth (PLLA/GT) in various ratios (100:0, 75:25, and 50:50) by electrospinning. Scanning electron microscope demonstrated smooth and uniform nanofibers with diameters in the range of 733±65nm and 226±73nm for align PLLA and random PLLA/GT 50:50 nanofibers, respectively. FTIR analysis, contact angle, in vitro biodegradation and tensile measurements were carried out to evaluate the chemical and mechanical properties of the different scaffolds. PLLA/GT 75:25 exhibited the most balanced properties compared to other scaffolds and was used for in vitro culture of nerve cells (PC12) to assess the potential of using these scaffolds as a substrate for nerve regeneration. The cells were found to attach and proliferate on aligned PLLA/GT 75:25 scaffolds, expressing bi-polar neurite extensions and the orientation of nerve cells was along the direction of the fiber alignment. Results of 8 days of in vitro culture of PC12 cells on aligned PLLA/GT 75:25 nanofibers, showed 20% increase in cell proliferation compared to PLLA/GT 75:25 random nanofibers. PLLA/GT 75:25 aligned nanofibers acted as a favorable cue to support neurite outgrowth and nerve cell elongation compared with PLLA nanofibers. Our results showed that aligned PLLA/GT 75:25 nanofibers are promising substrates for application as bioengineered grafts for nerve tissue regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites
NASA Astrophysics Data System (ADS)
Fasanella, Nicholas; Sundararaghavan, Veera
2015-09-01
Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments.
Children's Engagement and Competence in Personal Recollection: Effects of Parents' Reminiscing Goals
ERIC Educational Resources Information Center
Cleveland, Emily Sutcliffe; Reese, Elaine; Grolnick, Wendy S.
2007-01-01
Parents' goal orientations in parent-child reminiscing were examined in this study, where 28 preschoolers (mean age = 46 months) experienced a standardized event. Dyads discussed the event that evening, with parents randomly assigned to either an "outcome-oriented" or a "process-oriented" condition. Outcome-oriented parents, who were told that…
Regulating positioning and orientation of mitotic spindles via cell size and shape
NASA Astrophysics Data System (ADS)
Li, Jingchen; Jiang, Hongyuan
2018-01-01
Proper location of the mitotic spindle is critical for chromosome segregation and the selection of the cell division plane. However, how mitotic spindles sense cell size and shape to regulate their own position and orientation is still largely unclear. To investigate this question systematically, we used a general model by considering chromosomes, microtubule dynamics, and forces of various molecular motors. Our results show that in cells of various sizes and shapes, spindles can always be centered and oriented along the long axis robustly in the absence of other specified mechanisms. We found that the characteristic time of positioning and orientation processes increases with cell size. Spindles sense the cell size mainly by the cortical force in small cells and by the cytoplasmic force in large cells. In addition to the cell size, the cell shape mainly influences the orientation process. We found that more slender cells have a faster orientation process, and the final orientation is not necessarily along the longest axis but is determined by the radial profile and the symmetry of the cell shape. Finally, our model also reproduces the separation and repositioning of the spindle poles during the anaphase. Therefore, our work provides a general tool for studying the mitotic spindle across the whole mitotic phase.
Modeling and Predicting the Stress Relaxation of Composites with Short and Randomly Oriented Fibers
Obaid, Numaira; Sain, Mohini
2017-01-01
The addition of short fibers has been experimentally observed to slow the stress relaxation of viscoelastic polymers, producing a change in the relaxation time constant. Our recent study attributed this effect of fibers on stress relaxation behavior to the interfacial shear stress transfer at the fiber-matrix interface. This model explained the effect of fiber addition on stress relaxation without the need to postulate structural changes at the interface. In our previous study, we developed an analytical model for the effect of fully aligned short fibers, and the model predictions were successfully compared to finite element simulations. However, in most industrial applications of short-fiber composites, fibers are not aligned, and hence it is necessary to examine the time dependence of viscoelastic polymers containing randomly oriented short fibers. In this study, we propose an analytical model to predict the stress relaxation behavior of short-fiber composites where the fibers are randomly oriented. The model predictions were compared to results obtained from Monte Carlo finite element simulations, and good agreement between the two was observed. The analytical model provides an excellent tool to accurately predict the stress relaxation behavior of randomly oriented short-fiber composites. PMID:29053601
Face perception is tuned to horizontal orientation in the N170 time window.
Jacques, Corentin; Schiltz, Christine; Goffaux, Valerie
2014-02-07
The specificity of face perception is thought to reside both in its dramatic vulnerability to picture-plane inversion and its strong reliance on horizontally oriented image content. Here we asked when in the visual processing stream face-specific perception is tuned to horizontal information. We measured the behavioral performance and scalp event-related potentials (ERP) when participants viewed upright and inverted images of faces and cars (and natural scenes) that were phase-randomized in a narrow orientation band centered either on vertical or horizontal orientation. For faces, the magnitude of the inversion effect (IE) on behavioral discrimination performance was significantly reduced for horizontally randomized compared to vertically or nonrandomized images, confirming the importance of horizontal information for the recruitment of face-specific processing. Inversion affected the processing of nonrandomized and vertically randomized faces early, in the N170 time window. In contrast, the magnitude of the N170 IE was much smaller for horizontally randomized faces. The present research indicates that the early face-specific neural representations are preferentially tuned to horizontal information and offers new perspectives for a description of the visual information feeding face-specific perception.
The Role of Electrospinning in the Emerging Field of Nanomedicine
Chew, SY; Wen, Y; Dzenis, Y; Leong, KW
2008-01-01
The fact that in vivo the extracellular matrix or substratum with which cells interact often includes topography at the nanoscale underscores the importance of investigating cell-substrate interactions and performing cell culture at the submicron scale. An important and exciting direction of research in nanomedicine would be to gain an understanding and exploit the cellular response to nanostructures. Electrospinning is a simple and versatile technique that can produce a macroporous scaffold comprising randomly oriented or aligned nanofibers. It can also accommodate the incorporation of drug delivery function into the fibrous scaffold. Endowed with both topographical and biochemical signals such electrospun nanofibrous scaffolds may provide an optimal microenvironment for the seeded cells. This review covers the analysis and control of the electrospinning process, and describes the types of electrospun fibers fabricated for biomedical applications such as drug delivery and tissue engineering. PMID:17168776
Development and matching of binocular orientation preference in mouse V1
Bhaumik, Basabi; Shah, Nishal P.
2014-01-01
Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels. PMID:25104927
Higaki, Takumi; Kadota, Yasuhiro; Goh, Tatsuaki; Hayashi, Teruyuki; Kutsuna, Natsumaro; Sano, Toshio; Hasezawa, Seiichiro; Kuchitsu, Kazuyuki
2008-09-01
Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.
Human brain microvascular endothelial cells resist elongation due to shear stress.
Reinitz, Adam; DeStefano, Jackson; Ye, Mao; Wong, Andrew D; Searson, Peter C
2015-05-01
Endothelial cells in straight sections of vessels are known to elongate and align in the direction of flow. This phenotype has been replicated in confluent monolayers of bovine aortic endothelial cells and human umbilical vein endothelial cells (HUVECs) in cell culture under physiological shear stress. Here we report on the morphological response of human brain microvascular endothelial cells (HBMECs) in confluent monolayers in response to shear stress. Using a microfluidic platform we image confluent monolayers of HBMECs and HUVECs under shear stresses up to 16 dyne cm(-2). From live-cell imaging we quantitatively analyze the cell morphology and cell speed as a function of time. We show that HBMECs do not undergo a classical transition from cobblestone to spindle-like morphology in response to shear stress. We further show that under shear stress, actin fibers are randomly oriented in the cells indicating that there is no cytoskeletal remodeling. These results suggest that HBMECs are programmed to resist elongation and alignment under shear stress, a phenotype that may be associated with the unique properties of the blood-brain barrier. Copyright © 2015 Elsevier Inc. All rights reserved.
Koning, G A; Morselt, H W; Gorter, A; Allen, T M; Zalipsky, S; Kamps, J A; Scherphof, G L
2001-09-01
Compare pharmacokinetics of tumor-directed immunoliposomes in healthy and tumor-bearing rats (hepatic colon cancer metastases). A tumor cell-specific monoclonal antibody was attached to polyethyleneglycol-stabilized liposomes, either in a random orientation via a lipid anchor (MPB-PEG-liposomes) or uniformly oriented at the distal end of the PEG chains (Hz-PEG-liposomes). Pharmacokinetics and tissue distribution were determined using [3H]cholesteryloleylether or bilayer-anchored 5-fluoro[3H]deoxyuridine-dipalmitate ([3H]FUdR-dP) as a marker. In healthy animals clearance of PEG-(immuno)liposomes was almost log-linear and only slightly affected by antibody attachment; in tumor-bearing animals all liposomes displayed biphasic clearance. In normal and tumor animals blood elimination increased with increasing antibody density; particularly for the Hz-PEG-liposomes, and was accompanied by increased hepatic uptake, probably due to increased numbers of macrophages induced by tumor growth. The presence of antibodies on the liposomes enhanced tumor accumulation: uptake per gram tumor tissue (2-4% of dose) was similar to that of liver. Remarkably, this applied to tumor-specific and irrelevant antibody. Increased immunoliposome uptake by trypsin-treated Kupffer cells implicated involvement of high-affinity Fc-receptors on activated macrophages. Tumor growth and immunoliposome characteristics (antibody density and orientation) determine immunoliposome pharmacokinetics. Although with a long-circulating immunoliposome formulation, efficiently retaining the prodrug FUdR-dP, we achieved enhanced uptake by hepatic metastases, this was probably not mediated by specific interaction with the tumor cells, but rather by tumor-associated macrophages.
Burk, David H.; Ye, Zheng-Hua
2002-01-01
It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation. PMID:12215512
Burk, David H; Ye, Zheng-Hua
2002-09-01
It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation.
Pilipchuk, Sophia P; Monje, Alberto; Jiao, Yizu; Hao, Jie; Kruger, Laura; Flanagan, Colleen L; Hollister, Scott J; Giannobile, William V
2016-03-01
Scaffold design incorporating multiscale cues for clinically relevant, aligned tissue regeneration has potential to improve structural and functional integrity of multitissue interfaces. The objective of this preclinical study is to develop poly(ε-caprolactone) (PCL) scaffolds with mesoscale and microscale architectural cues specific to human ligament progenitor cells and assess their ability to form aligned bone-ligament-cementum complexes in vivo. PCL scaffolds are designed to integrate a 3D printed bone region with a micropatterned PCL thin film consisting of grooved pillars. The patterned film region is seeded with human ligament cells, fibroblasts transduced with bone morphogenetic protein-7 genes seeded within the bone region, and a tooth dentin segment positioned on the ligament region prior to subcutaneous implantation into a murine model. Results indicate increased tissue alignment in vivo using micropatterned PCL films, compared to random-porous PCL. At week 6, 30 μm groove depth significantly enhances oriented collagen fiber thickness, overall cell alignment, and nuclear elongation relative to 10 μm groove depth. This study demonstrates for the first time that scaffolds with combined hierarchical mesoscale and microscale features can align cells in vivo for oral tissue repair with potential for improving the regenerative response of other bone-ligament complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flake Orientation Effects On Physical and Mechanical Properties of Sweetgum Flakeboard
T.F. Shupe; Chung-Yun Hse; E.W. Price
2001-01-01
Research was initiated to determine the effect of flake orientation on the physical and mechanical properties offlakeboard. The panel fabrication techniques investigated were single-layer panels with random and oriented flake distribution, three-layer, five-layer, and seven-layer panels. Single-layer oriented panels had panel directional property ratios of 11.8 and 12....
Scattering from randomly oriented circular discs with application to vegetation
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1984-01-01
A vegetation layer is modeled by a collection of randomly oriented circular discs over a half space. The backscattering coefficient from such a half space is computed using the radiative transfer theory. It is shown that significantly different results are obtained from this theory as compared with some earlier investigations using the same modeling approach but with restricted disc orientations. In particular, the backscattered cross polarized returns cannot have a fast increasing angular trend which is inconsistent with measurements. By setting the appropriate angle of orientation to zero the theory reduces to previously published results. Comparisons are shown with measurements taken from milo, corn and wheat and good agreements are obtained for both polarized and cross polarized returns.
Scattering from randomly oriented circular discs with application to vegetation
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1983-01-01
A vegetation layer is modeled by a collection of randomly oriented circular discs over a half space. The backscattering coefficient from such a half space is computed using the radiative transfer theory. It is shown that significantly different results are obtained from this theory as compared with some earlier investigations using the same modeling approach but with restricted disc orientations. In particular, the backscattered cross-polarized returns cannot have a fast increasing angular trend which is inconsistent with measurements. By setting the appropriate angle of orientation to zero the theory reduces to previously published results. Comparisons are shown with measurements taken from milo, corn and wheat and good agreements are obtained for both polarized and cross-polarized returns.
Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis.
Tang, Zan; Hu, Yucheng; Wang, Zheng; Jiang, Kewu; Zhan, Cheng; Marshall, Wallace F; Tang, Nan
2018-02-05
Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): A new radiomics descriptor.
Prasanna, Prateek; Tiwari, Pallavi; Madabhushi, Anant
2016-11-22
In this paper, we introduce a new radiomic descriptor, Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe) for capturing subtle differences between benign and pathologic phenotypes which may be visually indistinguishable on routine anatomic imaging. CoLlAGe seeks to capture and exploit local anisotropic differences in voxel-level gradient orientations to distinguish similar appearing phenotypes. CoLlAGe involves assigning every image voxel an entropy value associated with the co-occurrence matrix of gradient orientations computed around every voxel. The hypothesis behind CoLlAGe is that benign and pathologic phenotypes even though they may appear similar on anatomic imaging, will differ in their local entropy patterns, in turn reflecting subtle local differences in tissue microarchitecture. We demonstrate CoLlAGe's utility in three clinically challenging classification problems: distinguishing (1) radiation necrosis, a benign yet confounding effect of radiation treatment, from recurrent tumors on T1-w MRI in 42 brain tumor patients, (2) different molecular sub-types of breast cancer on DCE-MRI in 65 studies and (3) non-small cell lung cancer (adenocarcinomas) from benign fungal infection (granulomas) on 120 non-contrast CT studies. For each of these classification problems, CoLlAGE in conjunction with a random forest classifier outperformed state of the art radiomic descriptors (Haralick, Gabor, Histogram of Gradient Orientations).
Pietra, Stefano; Gustavsson, Anna; Kiefer, Christian; Kalmbach, Lothar; Hörstedt, Per; Ikeda, Yoshihisa; Stepanova, Anna N; Alonso, Jose M; Grebe, Markus
2013-01-01
The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes.
ERIC Educational Resources Information Center
Chan, Matthew
2017-01-01
This study provides an overview and a snapshot of new student orientation (NSO) and new student e-orientation (NSEO) programs, with a focus on the content and feature analysis of the NSEOs. It offers an overview of currently available NSO programs of 100 randomly selected community colleges from a master list of nearly 900 community colleges in…
Functional implications of orientation maps in primary visual cortex
NASA Astrophysics Data System (ADS)
Koch, Erin; Jin, Jianzhong; Alonso, Jose M.; Zaidi, Qasim
2016-11-01
Stimulus orientation in the primary visual cortex of primates and carnivores is mapped as iso-orientation domains radiating from pinwheel centres, where orientation preferences of neighbouring cells change circularly. Whether this orientation map has a function is currently debated, because many mammals, such as rodents, do not have such maps. Here we show that two fundamental properties of visual cortical responses, contrast saturation and cross-orientation suppression, are stronger within cat iso-orientation domains than at pinwheel centres. These differences develop when excitation (not normalization) from neighbouring oriented neurons is applied to different cortical orientation domains and then balanced by inhibition from un-oriented neurons. The functions of the pinwheel mosaic emerge from these local intra-cortical computations: Narrower tuning, greater cross-orientation suppression and higher contrast gain of iso-orientation cells facilitate extraction of object contours from images, whereas broader tuning, greater linearity and less suppression of pinwheel cells generate selectivity for surface patterns and textures.
Long adaptation reveals mostly attractive shifts of orientation tuning in cat primary visual cortex.
Ghisovan, N; Nemri, A; Shumikhina, S; Molotchnikoff, S
2009-12-15
In the adult brain, sensory cortical neurons undergo transient changes of their response properties following prolonged exposure to an appropriate stimulus (adaptation). In cat V1, orientation-selective cells shift their preferred orientation after being adapted to a non-preferred orientation. There are conflicting reports as to the direction of those shifts, towards (attractive) or away (repulsive) from the adapter. Moreover, the mechanisms underlying attractive shifts remain unexplained. In the present investigation we show that attractive shifts are the most frequent outcome of a 12 min adaptation. Overall, cells displaying selectivity for oblique orientations exhibit significantly larger shifts than cells tuned to cardinal orientations. In addition, cells selective to cardinal orientations had larger shift amplitudes when the absolute difference between the original preferred orientation and the adapting orientation increased. Conversely, cells tuned to oblique orientations exhibited larger shift amplitudes when this absolute orientation difference was narrower. Hence, neurons tuned to oblique contours appear to show more plasticity in response to small perturbations. Two different mechanisms appear to produce attractive and repulsive orientation shifts. Attractive shifts result from concurrent response depression on the non-adapted flank and selective response facilitation on the adapted flank of the orientation tuning curve. In contrast, repulsive shifts are caused solely by response depression on the adapted flank. We suggest that an early mechanism leads to repulsive shifts while attractive shifts engage a subsequent late facilitation. A potential role for attractive shifts may be improved stimulus discrimination around the adapting orientation.
Roth, Therese M.; Chiang, C.-Y. Ason; Inaba, Mayu; Yuan, Hebao; Salzmann, Viktoria; Roth, Caitlin E.; Yamashita, Yukiko M.
2012-01-01
Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions. PMID:22357619
Electromagnetic wave extinction within a forested canopy
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1989-01-01
A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.
Random waves in the brain: Symmetries and defect generation in the visual cortex
NASA Astrophysics Data System (ADS)
Schnabel, M.; Kaschube, M.; Löwel, S.; Wolf, F.
2007-06-01
How orientation maps in the visual cortex of the brain develop is a matter of long standing debate. Experimental and theoretical evidence suggests that their development represents an activity-dependent self-organization process. Theoretical analysis [1] exploring this hypothesis predicted that maps at an early developmental stage are realizations of Gaussian random fields exhibiting a rigorous lower bound for their densities of topological defects, called pinwheels. As a consequence, lower pinwheel densities, if observed in adult animals, are predicted to develop through the motion and annihilation of pinwheel pairs. Despite of being valid for a large class of developmental models this result depends on the symmetries of the models and thus of the predicted random field ensembles. In [1] invariance of the orientation map's statistical properties under independent space rotations and orientation shifts was assumed. However, full rotation symmetry appears to be broken by interactions of cortical neurons, e.g. selective couplings between groups of neurons with collinear orientation preferences [2]. A recently proposed new symmetry, called shift-twist symmetry [3], stating that spatial rotations have to occur together with orientation shifts in order to be an appropriate symmetry transformation, is more consistent with this organization. Here we generalize our random field approach to this important symmetry class. We propose a new class of shift-twist symmetric Gaussian random fields and derive the general correlation functions of this ensemble. It turns out that despite strong effects of the shift-twist symmetry on the structure of the correlation functions and on the map layout the lower bound on the pinwheel densities remains unaffected, predicting pinwheel annihilation in systems with low pinwheel densities.
Wallin, Patric; Zandén, Carl; Carlberg, Björn; Hellström Erkenstam, Nina; Liu, Johan; Gold, Julie
2012-01-01
The properties of a cell’s microenvironment are one of the main driving forces in cellular fate processes and phenotype expression invivo. The ability to create controlled cell microenvironments invitro becomes increasingly important for studying or controlling phenotype expression in tissue engineering and drug discovery applications. This includes the capability to modify material surface properties within well-defined liquid environments in cell culture systems. One successful approach to mimic extra cellular matrix is with porous electrospun polymer fiber scaffolds, while microfluidic networks have been shown to efficiently generate spatially and temporally defined liquid microenvironments. Here, a method to integrate electrospun fibers with microfluidic networks was developed in order to form complex cell microenvironments with the capability to vary relevant parameters. Spatially defined regions of electrospun fibers of both aligned and random orientation were patterned on glass substrates that were irreversibly bonded to microfluidic networks produced in poly-dimethyl-siloxane. Concentration gradients obtained in the fiber containing channels were characterized experimentally and compared with values obtained by computational fluid dynamic simulations. Velocity and shear stress profiles, as well as vortex formation, were calculated to evaluate the influence of fiber pads on fluidic properties. The suitability of the system to support cell attachment and growth was demonstrated with a fibroblast cell line. The potential of the platform was further verified by a functional investigation of neural stem cell alignment in response to orientation of electrospun fibers versus a microfluidic generated chemoattractant gradient of stromal cell-derived factor 1 alpha. The described method is a competitive strategy to create complex microenvironments invitro that allow detailed studies on the interplay of topography, substrate surface properties, and soluble microenvironment on cellular fate processes. PMID:23781291
The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues.
Ptashnyk, Mariya; Seguin, Brian
2016-11-01
The microscopic structure and anisotropy of plant cell walls greatly influence the mechanical properties, morphogenesis, and growth of plant cells and tissues. The microscopic structure and properties of cell walls are determined by the orientation and mechanical properties of the cellulose microfibrils and the mechanical properties of the cell wall matrix. Viewing the shape of a plant cell as a square prism with the axis aligning with the primary direction of expansion and growth, the orientation of the microfibrils within the side walls, i.e. the parts of the cell walls on the sides of the cells, is known. However, not much is known about their orientation at the upper and lower ends of the cell. Here we investigate the impact of the orientation of cellulose microfibrils within the upper and lower parts of the plant cell walls by solving the equations of linear elasticity numerically. Three different scenarios for the orientation of the microfibrils are considered. We also distinguish between the microstructure in the side walls given by microfibrils perpendicular to the main direction of the expansion and the situation where the microfibrils are rotated through the wall thickness. The macroscopic elastic properties of the cell wall are obtained using homogenization theory from the microscopic description of the elastic properties of the cell wall microfibrils and wall matrix. It is found that the orientation of the microfibrils in the upper and lower parts of the cell walls affects the expansion of the cell in the lateral directions and is particularly important in the case of forces acting on plant cell walls and tissues.
Wang, Michael F Z; Hunter, Miranda V; Wang, Gang; McFaul, Christopher; Yip, Christopher M; Fernandez-Gonzalez, Rodrigo
2017-04-01
Embryos extend their anterior-posterior (AP) axis in a conserved process known as axis elongation. Drosophila axis elongation occurs in an epithelial monolayer, the germband, and is driven by cell intercalation, cell shape changes, and oriented cell divisions at the posterior germband. Anterior germband cells also divide during axis elongation. We developed image analysis and pattern-recognition methods to track dividing cells from confocal microscopy movies in a generally applicable approach. Mesectoderm cells, forming the ventral midline, divided parallel to the AP axis, while lateral cells displayed a uniform distribution of division orientations. Mesectoderm cells did not intercalate and sustained increased AP strain before cell division. After division, mesectoderm cell density increased along the AP axis, thus relieving strain. We used laser ablation to isolate mesectoderm cells from the influence of other tissues. Uncoupling the mesectoderm from intercalating cells did not affect cell division orientation. Conversely, separating the mesectoderm from the anterior and posterior poles of the embryo resulted in uniformly oriented divisions. Our data suggest that mesectoderm cells align their division angle to reduce strain caused by mechanical forces along the AP axis of the embryo. © 2017. Published by The Company of Biologists Ltd.
1990-10-01
to economic, technological, spatial or logistic concerns, or involve training, man-machine interfaces, or integration into existing systems. Once the...probabilistic reasoning, mixed analysis- and simulation-oriented, mixed computation- and communication-oriented, nonpreemptive static priority...scheduling base, nonrandomized, preemptive static priority scheduling base, randomized, simulation-oriented, and static scheduling base. The selection of both
Orienting apples for imaging using their inertial properties and random apple loading
USDA-ARS?s Scientific Manuscript database
The inability to control apple orientation during imaging has hindered development of automated systems for sorting apples for defects such as bruises and for safety issues such as fecal contamination. Recently, a potential method for orienting apples based on their inertial properties was discovere...
Orientation-selective Responses in the Mouse Lateral Geniculate Nucleus
Zhao, Xinyu; Chen, Hui; Liu, Xiaorong
2013-01-01
The dorsal lateral geniculate nucleus (dLGN) receives visual information from the retina and transmits it to the cortex. In this study, we made extracellular recordings in the dLGN of both anesthetized and awake mice, and found that a surprisingly high proportion of cells were selective for stimulus orientation. The orientation selectivity of dLGN cells was unchanged after silencing the visual cortex pharmacologically, indicating that it is not due to cortical feedback. The orientation tuning of some dLGN cells correlated with their elongated receptive fields, while in others orientation selectivity was observed despite the fact that their receptive fields were circular, suggesting that their retinal input might already be orientation selective. Consistently, we revealed orientation/axis-selective ganglion cells in the mouse retina using multielectrode arrays in an in vitro preparation. Furthermore, the orientation tuning of dLGN cells was largely maintained at different stimulus contrasts, which could be sufficiently explained by a simple linear feedforward model. We also compared the degree of orientation selectivity in different visual structures under the same recording condition. Compared with the dLGN, orientation selectivity is greatly improved in the visual cortex, but is similar in the superior colliculus, another major retinal target. Together, our results demonstrate prominent orientation selectivity in the mouse dLGN, which may potentially contribute to visual processing in the cortex. PMID:23904611
Pietra, Stefano; Gustavsson, Anna; Kiefer, Christian; Kalmbach, Lothar; Hörstedt, Per; Ikeda, Yoshihisa; Stepanova, Anna N.; Alonso, Jose M.; Grebe, Markus
2013-01-01
The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes. PMID:24240534
Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji
2015-01-01
The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.
Hsiao, Amy Y.; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji
2015-01-01
The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774
Warchol, Mark E; Montcouquiol, Mireille
2010-09-01
The avian inner ear possesses a remarkable ability to regenerate sensory hair cells after ototoxic injury. Regenerated hair cells possess phenotypes and innervation that are similar to those found in the undamaged ear, but little is known about the signaling pathways that guide hair cell differentiation during the regenerative process. The aim of the present study was to examine the factors that specify the orientation of hair cell stereocilia bundles during regeneration. Using organ cultures of the chick utricle, we show that hair cells are properly oriented after having regenerated entirely in vitro and that orientation is not affected by surgical removal of the striolar reversal zone. These results suggest that the orientation of regenerating stereocilia is not guided by the release of a diffusible morphogen from the striolar reversal zone but is specified locally within the regenerating sensory organ. In order to determine the nature of the reorientation cues, we examined the expression patterns of the core planar cell polarity molecule Vangl2 in the normal and regenerating utricle. We found that Vangl2 is asymmetrically expressed on cells within the sensory epithelium and that this expression pattern is maintained after ototoxic injury and throughout regeneration. Notably, treatment with a small molecule inhibitor of c-Jun-N-terminal kinase disrupted the orientation of regenerated hair cells. Both of these results are consistent with the hypothesis that noncanonical Wnt signaling guides hair cell orientation during regeneration.
Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro
2014-01-01
Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.
Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro
2014-06-18
Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.
A scattering model for forested area
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1988-01-01
A forested area is modeled as a volume of randomly oriented and distributed disc-shaped, or needle-shaped leaves shading a distribution of branches modeled as randomly oriented finite-length, dielectric cylinders above an irregular soil surface. Since the radii of branches have a wide range of sizes, the model only requires the length of a branch to be large compared with its radius which may be any size relative to the incident wavelength. In addition, the model also assumes the thickness of a disc-shaped leaf or the radius of a needle-shaped leaf is much smaller than the electromagnetic wavelength. The scattering phase matrices for disc, needle, and cylinder are developed in terms of the scattering amplitudes of the corresponding fields which are computed by the forward scattering theorem. These quantities along with the Kirchoff scattering model for a randomly rough surface are used in the standard radiative transfer formulation to compute the backscattering coefficient. Numerical illustrations for the backscattering coefficient are given as a function of the shading factor, incidence angle, leaf orientation distribution, branch orientation distribution, and the number density of leaves. Also illustrated are the properties of the extinction coefficient as a function of leaf and branch orientation distributions. Comparisons are made with measured backscattering coefficients from forested areas reported in the literature.
Loh, Ne-Te Duane
2011-08-01
These 2000 single-shot diffraction patterns include were either background-scattering only or hits (background-scattering plus diffraction signal from sub-micron ellipsoidal particles at random, undetermined orientations). Candidate hits were identified by eye, and the remainder were presumed as background. 54 usable, background-subtracted hits in this set (procedure in referenced article) were used to reconstruct the 3D diffraction intensities of the average ellipsoidal particle.
Emergence of Orientation Selectivity in the Mammalian Visual Pathway
Scholl, Benjamin; Tan, Andrew Y. Y.; Corey, Joseph
2013-01-01
Orientation selectivity is a property of mammalian primary visual cortex (V1) neurons, yet its emergence along the visual pathway varies across species. In carnivores and primates, elongated receptive fields first appear in V1, whereas in lagomorphs such receptive fields emerge earlier, in the retina. Here we examine the mouse visual pathway and reveal the existence of orientation selectivity in lateral geniculate nucleus (LGN) relay cells. Cortical inactivation does not reduce this orientation selectivity, indicating that cortical feedback is not its source. Orientation selectivity is similar for LGN relay cells spiking and subthreshold input to V1 neurons, suggesting that cortical orientation selectivity is inherited from the LGN in mouse. In contrast, orientation selectivity of cat LGN relay cells is small relative to subthreshold inputs onto V1 simple cells. Together, these differences show that although orientation selectivity exists in visual neurons of both rodents and carnivores, its emergence along the visual pathway, and thus its underlying neuronal circuitry, is fundamentally different. PMID:23804085
Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory
NASA Astrophysics Data System (ADS)
Kim, Sang-Koog
2011-03-01
An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.
Deorientation of PolSAR coherency matrix for volume scattering retrieval
NASA Astrophysics Data System (ADS)
Kumar, Shashi; Garg, R. D.; Kushwaha, S. P. S.
2016-05-01
Polarimetric SAR data has proven its potential to extract scattering information for different features appearing in single resolution cell. Several decomposition modelling approaches have been developed to retrieve scattering information from PolSAR data. During scattering power decomposition based on physical scattering models it becomes very difficult to distinguish volume scattering as a result from randomly oriented vegetation from scattering nature of oblique structures which are responsible for double-bounce and volume scattering , because both are decomposed in same scattering mechanism. The polarization orientation angle (POA) of an electromagnetic wave is one of the most important character which gets changed due to scattering from geometrical structure of topographic slopes, oriented urban area and randomly oriented features like vegetation cover. The shift in POA affects the polarimetric radar signatures. So, for accurate estimation of scattering nature of feature compensation in polarization orientation shift becomes an essential procedure. The prime objective of this work was to investigate the effect of shift in POA in scattering information retrieval and to explore the effect of deorientation on regression between field-estimated aboveground biomass (AGB) and volume scattering. For this study Dudhwa National Park, U.P., India was selected as study area and fully polarimetric ALOS PALSAR data was used to retrieve scattering information from the forest area of Dudhwa National Park. Field data for DBH and tree height was collect for AGB estimation using stratified random sampling. AGB was estimated for 170 plots for different locations of the forest area. Yamaguchi four component decomposition modelling approach was utilized to retrieve surface, double-bounce, helix and volume scattering information. Shift in polarization orientation angle was estimated and deorientation of coherency matrix for compensation of POA shift was performed. Effect of deorientation on RGB color composite for the forest area can be easily seen. Overestimation of volume scattering and under estimation of double bounce scattering was recorded for PolSAR decomposition without deorientation and increase in double bounce scattering and decrease in volume scattering was noticed after deorientation. This study was mainly focused on volume scattering retrieval and its relation with field estimated AGB. Change in volume scattering after POA compensation of PolSAR data was recorded and a comparison was performed on volume scattering values for all the 170 forest plots for which field data were collected. Decrease in volume scattering after deorientation was noted for all the plots. Regression between PolSAR decomposition based volume scattering and AGB was performed. Before deorientation, coefficient determination (R2) between volume scattering and AGB was 0.225. After deorientation an improvement in coefficient of determination was found and the obtained value was 0.613. This study recommends deorientation of PolSAR data for decomposition modelling to retrieve reliable volume scattering information from forest area.
Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis
NASA Astrophysics Data System (ADS)
Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.
2016-07-01
Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.
Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation.
García-Rodríguez, J; Martínez-Reina, J
2017-02-01
Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions' orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young's modulus [Formula: see text] GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young's modulus in the preferential direction of 9-16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.
Origin of the OFF state variability in ReRAM cells
NASA Astrophysics Data System (ADS)
Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Berdan, Radu; Papavassiliou, Christos; Prodromakis, Themistoklis
2014-04-01
This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO2 and In2O3 : SnO2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO2 or ITO active cores over 5 × 5 µm2 and 100 × 100 µm2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO2-based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states.
Viswanathan, Sivaram; Jayakumar, Jaikishan; Vidyasagar, Trichur R
2011-01-01
Abstract Neurones of the mammalian primary visual cortex have the remarkable property of being selective for the orientation of visual contours. It has been controversial whether the selectivity arises from intracortical mechanisms, from the pattern of afferent connectivity from lateral geniculate nucleus (LGN) to cortical cells or from the sharpening of a bias that is already present in the responses of many geniculate cells. To investigate this, we employed a variation of an electrical stimulation protocol in the LGN that has been claimed to suppress intracortical inputs and isolate the raw geniculocortical input to a striate cortical cell. Such stimulation led to a sharpening of the orientation sensitivity of geniculate cells themselves and some broadening of cortical orientation selectivity. These findings are consistent with the idea that non-specific inhibition of the signals from LGN cells which exhibit an orientation bias can generate the sharp orientation selectivity of primary visual cortical cells. This obviates the need for an excitatory convergence from geniculate cells whose receptive fields are arranged along a row in visual space as in the classical model and provides a framework for orientation sensitivity originating in the retina and getting sharpened through inhibition at higher levels of the visual pathway. PMID:21486788
Hsieh, Yu-Wei; Wu, Ching-Yi; Wang, Wei-En; Lin, Keh-Chung; Chang, Ku-Chou; Chen, Chih-Chi; Liu, Chien-Ting
2017-02-01
To investigate the treatment effects of bilateral robotic priming combined with the task-oriented approach on motor impairment, disability, daily function, and quality of life in patients with subacute stroke. A randomized controlled trial. Occupational therapy clinics in medical centers. Thirty-one subacute stroke patients were recruited. Participants were randomly assigned to receive bilateral priming combined with the task-oriented approach (i.e., primed group) or to the task-oriented approach alone (i.e., unprimed group) for 90 minutes/day, 5 days/week for 4 weeks. The primed group began with the bilateral priming technique by using a bimanual robot-aided device. Motor impairments were assessed by the Fugal-Meyer Assessment, grip strength, and the Box and Block Test. Disability and daily function were measured by the modified Rankin Scale, the Functional Independence Measure, and actigraphy. Quality of life was examined by the Stroke Impact Scale. The primed and unprimed groups improved significantly on most outcomes over time. The primed group demonstrated significantly better improvement on the Stroke Impact Scale strength subscale ( p = 0.012) and a trend for greater improvement on the modified Rankin Scale ( p = 0.065) than the unprimed group. Bilateral priming combined with the task-oriented approach elicited more improvements in self-reported strength and disability degrees than the task-oriented approach by itself. Further large-scale research with at least 31 participants in each intervention group is suggested to confirm the study findings.
Measuring market orientation: further evidence on Narver and Slater's three-component scale.
Chakrabarty, Subhra; Rogé, Joseph N
2003-12-01
A mail survey of a national random sample of 2,000 marketing managers was conducted. The data provided by 222 respondents were analyzed to assess the dimensionality of Narver and Slater's 15-item measure of market orientation. A confirmatory factor analysis, using LISREL 8.53, provided support for each of the separate dimensions of customer orientation, competitor orientation, and interfunctional coordination. However, a combined 3-factor model of market orientation was not supported. Directions for research are suggested.
Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.
Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro
2015-01-01
Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.
Ureter smooth muscle cell orientation in rat is predominantly longitudinal.
Spronck, Bart; Merken, Jort J; Reesink, Koen D; Kroon, Wilco; Delhaas, Tammo
2014-01-01
In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.
Douglass, Michael; Bezak, Eva; Penfold, Scott
2013-07-01
Investigation of increased radiation dose deposition due to gold nanoparticles (GNPs) using a 3D computational cell model during x-ray radiotherapy. Two GNP simulation scenarios were set up in Geant4; a single 400 nm diameter gold cluster randomly positioned in the cytoplasm and a 300 nm gold layer around the nucleus of the cell. Using an 80 kVp photon beam, the effect of GNP on the dose deposition in five modeled regions of the cell including cytoplasm, membrane, and nucleus was simulated. Two Geant4 physics lists were tested: the default Livermore and custom built Livermore/DNA hybrid physics list. 10(6) particles were simulated at 840 cells in the simulation. Each cell was randomly placed with random orientation and a diameter varying between 9 and 13 μm. A mathematical algorithm was used to ensure that none of the 840 cells overlapped. The energy dependence of the GNP physical dose enhancement effect was calculated by simulating the dose deposition in the cells with two energy spectra of 80 kVp and 6 MV. The contribution from Auger electrons was investigated by comparing the two GNP simulation scenarios while activating and deactivating atomic de-excitation processes in Geant4. The physical dose enhancement ratio (DER) of GNP was calculated using the Monte Carlo model. The model has demonstrated that the DER depends on the amount of gold and the position of the gold cluster within the cell. Individual cell regions experienced statistically significant (p < 0.05) change in absorbed dose (DER between 1 and 10) depending on the type of gold geometry used. The DER resulting from gold clusters attached to the cell nucleus had the more significant effect of the two cases (DER ≈ 55). The DER value calculated at 6 MV was shown to be at least an order of magnitude smaller than the DER values calculated for the 80 kVp spectrum. Based on simulations, when 80 kVp photons are used, Auger electrons have a statistically insignificant (p < 0.05) effect on the overall dose increase in the cell. The low energy of the Auger electrons produced prevents them from propagating more than 250-500 nm from the gold cluster and, therefore, has a negligible effect on the overall dose increase due to GNP. The results presented in the current work show that the primary dose enhancement is due to the production of additional photoelectrons.
Teich, Andrew F; Qian, Ning
2010-03-01
Orientation adaptation and perceptual learning change orientation tuning curves of V1 cells. Adaptation shifts tuning curve peaks away from the adapted orientation, reduces tuning curve slopes near the adapted orientation, and increases the responses on the far flank of tuning curves. Learning an orientation discrimination task increases tuning curve slopes near the trained orientation. These changes have been explained previously in a recurrent model (RM) of orientation selectivity. However, the RM generates only complex cells when they are well tuned, so that there is currently no model of orientation plasticity for simple cells. In addition, some feedforward models, such as the modified feedforward model (MFM), also contain recurrent cortical excitation, and it is unknown whether they can explain plasticity. Here, we compare plasticity in the MFM, which simulates simple cells, and a recent modification of the RM (MRM), which displays a continuum of simple-to-complex characteristics. Both pre- and postsynaptic-based modifications of the recurrent and feedforward connections in the models are investigated. The MRM can account for all the learning- and adaptation-induced plasticity, for both simple and complex cells, while the MFM cannot. The key features from the MRM required for explaining plasticity are broadly tuned feedforward inputs and sharpening by a Mexican hat intracortical interaction profile. The mere presence of recurrent cortical interactions in feedforward models like the MFM is insufficient; such models have more rigid tuning curves. We predict that the plastic properties must be absent for cells whose orientation tuning arises from a feedforward mechanism.
Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
Rogers, John A; Cao, Qing; Alam, Muhammad; Pimparkar, Ninad
2015-02-03
The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.
Early Visual Cortex Dynamics during Top-Down Modulated Shifts of Feature-Selective Attention.
Müller, Matthias M; Trautmann, Mireille; Keitel, Christian
2016-04-01
Shifting attention from one color to another color or from color to another feature dimension such as shape or orientation is imperative when searching for a certain object in a cluttered scene. Most attention models that emphasize feature-based selection implicitly assume that all shifts in feature-selective attention underlie identical temporal dynamics. Here, we recorded time courses of behavioral data and steady-state visual evoked potentials (SSVEPs), an objective electrophysiological measure of neural dynamics in early visual cortex to investigate temporal dynamics when participants shifted attention from color or orientation toward color or orientation, respectively. SSVEPs were elicited by four random dot kinematograms that flickered at different frequencies. Each random dot kinematogram was composed of dashes that uniquely combined two features from the dimensions color (red or blue) and orientation (slash or backslash). Participants were cued to attend to one feature (such as color or orientation) and respond to coherent motion targets of the to-be-attended feature. We found that shifts toward color occurred earlier after the shifting cue compared with shifts toward orientation, regardless of the original feature (i.e., color or orientation). This was paralleled in SSVEP amplitude modulations as well as in the time course of behavioral data. Overall, our results suggest different neural dynamics during shifts of attention from color and orientation and the respective shifting destinations, namely, either toward color or toward orientation.
Kung, Fu-Chen; Lin, Chi-Chang; Lai, Wen-Fu T
2014-12-01
Electrospun fiber sheets with various orientations (random, partially aligned, and aligned) and smooth and roughened casted membranes were prepared. Hydroxyapatite (HA) crystals were in situ formed on these material surfaces via immersion in 10× simulated body fluid solution. The size and morphology of the resulting fibers were examined using scanning electron microscopy. The average diameter of the fibers ranged from 225±25 to 1050±150 nm depending on the electrospinning parameters. Biological experiment results show that human adipose-derived stem cells exhibit different adhesion and osteogenic differentiation on the three types of fiber. The cell proliferation and osteogenic differentiation were best on the aligned fibers. Similar results were found for phosphorylated focal adhesion kinase expression. Electrospun poly(lactic acid) aligned fibers mineralized with HA crystals provide a good environment for cell growth and osteogenic differentiation and thus have great potential in the tissue engineering field. Copyright © 2014 Elsevier B.V. All rights reserved.
Bashur, Chris A; Dahlgren, Linda A; Goldstein, Aaron S
2006-11-01
Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes-formed by the electrospinning process-can regulate cell morphology. To test this, fused fiber meshes of poly(d,l-lactic-co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14-3.6 microm, and angular standard deviations of 31-60 degrees . Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6 microm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.
Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors
1977-01-01
Polymorphonuclear leukocyte (PMN) chemotaxis has been examined under conditions which allow phase microscope observations of cells responding to controlled gradients of chemotactic factors. With this visual assay, PMNs can be seen to orient rapidly and reversibly to gradients of N-formylmethionyl peptides. The level of orientation depends upon the mean concentration of peptide present as well as the concentration gradient. The response allows an estimation of the binding constant of the peptide to the cell. In optimal gradients, PMNs can detect a 1% difference in the concentration of peptide. At high cell densities, PMNs incubated with active peptides orient their locomotion away from the center of the cell population. This orientation appears to be due to inactivation of the peptides by the cells. Such inactivation in vivo could help to limit an inflammatory response. PMID:264125
Vaccaro, Christine M; Crisp, Catrina C; Fellner, Angela N; Jackson, Christopher; Kleeman, Steven D; Pavelka, James
2013-01-01
The objective of this study was to compare the effect of virtual reality simulation training plus robotic orientation versus robotic orientation alone on performance of surgical tasks using an inanimate model. Surgical resident physicians were enrolled in this assessor-blinded randomized controlled trial. Residents were randomized to receive either (1) robotic virtual reality simulation training plus standard robotic orientation or (2) standard robotic orientation alone. Performance of surgical tasks was assessed at baseline and after the intervention. Nine of 33 modules from the da Vinci Skills Simulator were chosen. Experts in robotic surgery evaluated each resident's videotaped performance of the inanimate model using the Global Rating Scale (GRS) and Objective Structured Assessment of Technical Skills-modified for robotic-assisted surgery (rOSATS). Nine resident physicians were enrolled in the simulation group and 9 in the control group. As a whole, participants improved their total time, time to incision, and suture time from baseline to repeat testing on the inanimate model (P = 0.001, 0.003, <0.001, respectively). Both groups improved their GRS and rOSATS scores significantly (both P < 0.001); however, the GRS overall pass rate was higher in the simulation group compared with the control group (89% vs 44%, P = 0.066). Standard robotic orientation and/or robotic virtual reality simulation improve surgical skills on an inanimate model, although this may be a function of the initial "practice" on the inanimate model and repeat testing of a known task. However, robotic virtual reality simulation training increases GRS pass rates consistent with improved robotic technical skills learned in a virtual reality environment.
Motivation and Cognition: The Impact of Ego and Task-Involvement on Levels of Processing.
ERIC Educational Resources Information Center
Golan, Shari; Graham, Sandra
To study the effects of motivation on cognition, 55 fifth- and sixth-grade students were randomly assigned to 3 motivational treatment groups: (1) ego-involved (ability oriented); (2) task-involved (mastery oriented); and (3) control (no orientation). The ego-involvement treatment attempted to make subjects feel that their abilities on the tasks…
Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells
Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro
2015-01-01
Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells. PMID:26039484
Pfleger, B; Bonds, A B
1995-01-01
The influence of GABAA receptors on orientation selectivity of cat complex cells was tested by iontophoresis of the GABAA receptor blockers bicuculline and N-methyl-bicuculline while stimulating with drifting sinusoidal gratings. Reduction of orientation tuning was markedly less than reported in previous studies that used drifting bars as visual stimuli. Only 3/31 cells lost orientation selectivity, with an average increase in bandwidth of 33%, as opposed to half the cells losing selectivity and a bandwidth increase for the remainder of 47% as reported previously. Infusion of GABAA blockers revealed a prominent stimulus onset transient response, lasting about 120 ms, that showed a broadening of orientation selectivity comparable to that found using drifting bars under similar circumstances. We believe that drifting gratings emphasize a steady-state response component that retains, in the presence of GABAA blockers, significant orientation selectivity. Because the onset transient is initially unselective for orientation, we suggest that the steady-state, orientation-selective response component develops from an alternate inhibitory mechanism, possibly mediated by GABAB receptors.
MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis
Szwedziak, Piotr; Wong, Felix; Schaefer, Kaitlin; Izoré, Thierry; Renner, Lars D; Holmes, Matthew J; Sun, Yingjie; Bisson-Filho, Alexandre W; Walker, Suzanne; Amir, Ariel; Löwe, Jan
2018-01-01
MreB is essential for rod shape in many bacteria. Membrane-associated MreB filaments move around the rod circumference, helping to insert cell wall in the radial direction to reinforce rod shape. To understand how oriented MreB motion arises, we altered the shape of Bacillus subtilis. MreB motion is isotropic in round cells, and orientation is restored when rod shape is externally imposed. Stationary filaments orient within protoplasts, and purified MreB tubulates liposomes in vitro, orienting within tubes. Together, this demonstrates MreB orients along the greatest principal membrane curvature, a conclusion supported with biophysical modeling. We observed that spherical cells regenerate into rods in a local, self-reinforcing manner: rapidly propagating rods emerge from small bulges, exhibiting oriented MreB motion. We propose that the coupling of MreB filament alignment to shape-reinforcing peptidoglycan synthesis creates a locally-acting, self-organizing mechanism allowing the rapid establishment and stable maintenance of emergent rod shape. PMID:29469806
Wei, Kun; Zhong, Suchuan
2017-08-01
Phenomenologically inspired by dolphins' unihemispheric sleep, we introduce a minimal model for random walks with physiological memory. The physiological memory consists of long-term memory which includes unconscious implicit memory and conscious explicit memory, and working memory which serves as a multi-component system for integrating, manipulating and managing short-term storage. The model assumes that the sleeping state allows retrievals of episodic objects merely from the episodic buffer where these memory objects are invoked corresponding to the ambient objects and are thus object-oriented, together with intermittent but increasing use of implicit memory in which decisions are unconsciously picked up from historical time series. The process of memory decay and forgetting is constructed in the episodic buffer. The walker's risk attitude, as a product of physiological heuristics according to the performance of objected-oriented decisions, is imposed on implicit memory. The analytical results of unihemispheric random walks with the mixture of object-oriented and time-oriented memory, as well as the long-time behavior which tends to the use of implicit memory, are provided, indicating the common sense that a conservative risk attitude is inclinable to slow movement.
Vaškebová, L; Šamaj, J; Ovecka, M
2017-12-27
The actin cytoskeleton forms a dynamic network in plant cells. A single-point mutation in the DER1 (deformed root hairs1) locus located in the sequence of ACTIN2, a gene for major actin in vegetative tissues of Arabidopsis thaliana, leads to impaired root hair development (Ringli C, Baumberger N, Diet A, Frey B, Keller B. 2002. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiology129: 1464-1472). Only root hair phenotypes have been described so far in der1 mutants, but here we demonstrate obvious aberrations in the organization of the actin cytoskeleton and overall plant development. Organization of the actin cytoskeleton in epidermal cells of cotyledons, hypocotyls and roots was studied qualitatively and quantitatively by live-cell imaging of transgenic lines carrying the GFP-FABD2 fusion protein and in fixed cells after phalloidin labelling. Patterns of root growth were characterized by FM4-64 vital staining, light-sheet microscopy imaging and microtubule immunolabelling. Plant phenotyping included analyses of germination, root growth and plant biomass. Speed of germination, plant fresh weight and total leaf area were significantly reduced in the der1-3 mutant in comparison with the C24 wild-type. Actin filaments in root, hypocotyl and cotyledon epidermal cells of the der1-3 mutant were shorter, thinner and arranged in more random orientations, while actin bundles were shorter and had altered orientations. The wavy pattern of root growth in der1-3 mutant was connected with higher frequencies of shifted cell division planes (CDPs) in root cells, which was consistent with the shifted positioning of microtubule-based preprophase bands and phragmoplasts. The organization of cortical microtubules in the root cells of the der1-3 mutant, however, was not altered. Root growth rate of the der1-3 mutant is not reduced, but changes in the actin cytoskeleton organization can induce a wavy root growth pattern through deregulation of CDP orientation. The results suggest that the der1-3 mutation in the ACT2 gene does not influence solely root hair formation process, but also has more general effects on the actin cytoskeleton, plant growth and development. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foroni, Laura; Vasuri, Francesco, E-mail: vasurifrancesco@libero.it; Chair of Vascular Surgery, Department of Specialistic Surgery and Anaesthesiological Sciences, S. Orsola-Malpighi Hospital, Bologna University
2013-06-10
We present a multi-technique study on in vitro epithelial–mesenchymal transition (EMT) in human MCF-7 cells cultured on electrospun scaffolds of poly(L-lactic acid) (PLA), with random and aligned fiber orientations. Our aim is to investigate the morphological and genetic characteristics induced by extracellular matrix in tumor cells cultured in different 3D environments, and at different time points. Cell vitality was assessed with AlamarBlue at days 1, 3, 5 and 7. Scanning electron microscopy was performed at culture days 3 and 7. Immunohistochemistry (for E-cadherin, β-catenin, cytokeratins, nucleophosmin, tubulin, Ki-67 and vimentin), immunofluorescence (for F-actin) western blot (for E-cadherin, β-catenin and vimentin)more » and transmission electron microscopy were carried out at day 7. An EMT gene array followed by PCR analysis confirmed the regulation of selected genes. At day 7, scanning electron microscopy on aligned-PLA revealed spindle-shaped cells gathered in buds and ribbon-like structures, with a higher nucleolar/nuclear ratio and a loss in E-cadherin and β-catenin at immunohistochemistry and western blot. An up-regulation of SMAD2, TGF-β2, TFPI2 and SOX10 was found in aligned-PLA compared to random-PLA cultured cells. The topography of the extracellular matrix has a role in tumor EMT, and a more aggressive phenotype characterizes MCF-7 cells cultured on aligned-PLA scaffold. -- Highlights: • After 7 culture days an aligned-PLA scaffold induces a spindle shape to MCF-7 cells. • Despite these changes, the aligned MCF-7 cells keep an epithelial phenotype. • The extracellular environment alone influences the E-cadherin/β-catenin axis. • The extracellular environment can promote the epithelial–mesenchymal transition.« less
Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhaoming; Pan, Haihua; Zhu, Genxing
2016-07-19
Assembly of nanoparticles building blocks during single crystal growth is widely observed in both natural and synthetic environments. Although this form of non-classical crystallization is generally described by oriented attachment, random aggregation of building blocks leading to single crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation-based growth initially produces a non-oriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single crystal formation via grain boundary migration. This mechanism is corroborated by measurementsmore » of orientation rate vs external stress, demonstrating a predictive relationship between the two. These findings advance our understanding of aggregation-based growth of natural minerals by nanocrystals, and suggest an approach to material synthesis that takes advantage of stress induced co-alignment.« less
Lemmens, Ryanne J. M.; Timmermans, Annick A. A.; Janssen-Potten, Yvonne J. M.; Pulles, Sanne A. N. T. D.; Geers, Richard P. J.; Bakx, Wilbert G. M.; Smeets, Rob J. E. M.; Seelen, Henk A. M.
2014-01-01
Purpose This study aims to assess the extent to which accelerometers can be used to determine the effect of robot-supported task-oriented arm-hand training, relative to task-oriented arm-hand training alone, on the actual amount of arm-hand use of chronic stroke patients in their home situation. Methods This single-blind randomized controlled trial included 16 chronic stroke patients, randomly allocated using blocked randomization (n = 2) to receive task-oriented robot-supported arm-hand training or task-oriented (unsupported) arm-hand training. Training lasted 8 weeks, 4 times/week, 2×30 min/day using the (T-)TOAT ((Technology-supported)-Task-Oriented-Arm-Training) method. The actual amount of arm-hand use, was assessed at baseline, after 8 weeks training and 6 months after training cessation. Duration of use and intensity of use of the affected arm-hand during unimanual and bimanual activities were calculated. Results Duration and intensity of use of the affected arm-hand did not change significantly during and after training, with or without robot-support (i.e. duration of use of unimanual use of the affected arm-hand: median difference of −0.17% in the robot-group and −0.08% in the control group between baseline and after training cessation; intensity of the affected arm-hand: median difference of 3.95% in the robot-group and 3.32% in the control group between baseline and after training cessation). No significant between-group differences were found. Conclusions Accelerometer data did not show significant changes in actual amount of arm-hand use after task-oriented training, with or without robot-support. Next to the amount of use, discrimination between activities performed and information about quality of use of the affected arm-hand are essential to determine actual arm-hand performance. Trial Registration Controlled-trials.com ISRCTN82787126 PMID:24823925
Algebraic Approximations to Extinction from Randomly Oriented Circular and Elliptical Cylinders
1995-06-01
amplitude (Ref. 3). The strict limit of validity of the formula is therefore the region where ( n - 1) < < 1. The cylinder is in effect treated as a slit... cylinders , l¢1x = 2Im -1lx << 1. This occurs since what we have been calling an edge effect is in fact the field distortion around the boundaries of the...ALGERBRAIC APPROXIMATIONS TO EXTINCTION FROM RANDOMLY ORIENTED CIRCULAR AND ELLIPTICAL CYLINDERS system Number: Patron Number: Requester: Notes
Levichkina, Ekaterina; Saalmann, Yuri B; Vidyasagar, Trichur R
2017-03-01
Primate posterior parietal cortex (PPC) is known to be involved in controlling spatial attention. Neurons in one part of the PPC, the lateral intraparietal area (LIP), show enhanced responses to objects at attended locations. Although many are selective for object features, such as the orientation of a visual stimulus, it is not clear how LIP circuits integrate feature-selective information when providing attentional feedback about behaviorally relevant locations to the visual cortex. We studied the relationship between object feature and spatial attention properties of LIP cells in two macaques by measuring the cells' orientation selectivity and the degree of attentional enhancement while performing a delayed match-to-sample task. Monkeys had to match both the location and orientation of two visual gratings presented separately in time. We found a wide range in orientation selectivity and degree of attentional enhancement among LIP neurons. However, cells with significant attentional enhancement had much less orientation selectivity in their response than cells which showed no significant modulation by attention. Additionally, orientation-selective cells showed working memory activity for their preferred orientation, whereas cells showing attentional enhancement also synchronized with local neuronal activity. These results are consistent with models of selective attention incorporating two stages, where an initial feature-selective process guides a second stage of focal spatial attention. We suggest that LIP contributes to both stages, where the first stage involves orientation-selective LIP cells that support working memory of the relevant feature, and the second stage involves attention-enhanced LIP cells that synchronize to provide feedback on spatial priorities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Robinson, Thomas N; Jones, Edward L; Dunn, Christina L; Dunne, Bruce; Johnson, Elizabeth; Townsend, Nicole T; Paniccia, Alessandro; Stiegmann, Greg V
2015-06-01
The monopolar "Bovie" is used in virtually every laparoscopic operation. The active electrode and its cord emit radiofrequency energy that couples (or transfers) to nearby conductive material without direct contact. This phenomenon is increased when the active electrode cord is oriented parallel to another wire/cord. The parallel orientation of the "Bovie" and laparoscopic camera cords cause transfer of energy to the camera cord resulting in cutaneous burns at the camera trocar incision. We hypothesized that separating the active electrode/camera cords would reduce thermal injury occurring at the camera trocar incision in comparison to parallel oriented active electrode/camera cords. In this prospective, blinded, randomized controlled trial, patients undergoing standardized laparoscopic cholecystectomy were randomized to separated active electrode/camera cords or parallel oriented active electrode/camera cords. The primary outcome variable was thermal injury determined by histology from skin biopsied at the camera trocar incision. Eighty-four patients participated. Baseline demographics were similar in the groups for age, sex, preoperative diagnosis, operative time, and blood loss. Thermal injury at the camera trocar incision was lower in the separated versus parallel group (31% vs 57%; P = 0.027). Separation of the laparoscopic camera cord from the active electrode cord decreases thermal injury from antenna coupling at the camera trocar incision in comparison to the parallel orientation of these cords. Therefore, parallel orientation of these cords (an arrangement promoted by integrated operating rooms) should be abandoned. The findings of this study should influence the operating room setup for all laparoscopic cases.
Texture and anisotropy in ferroelectric lead metaniobate
NASA Astrophysics Data System (ADS)
Iverson, Benjamin John
Ferroelectric lead metaniobate, PbNb2O6, is a piezoelectric ceramic typically used because of its elevated Curie temperature and anisotropic properties. However, the piezoelectric constant, d33, is relatively low in randomly oriented ceramics when compared to other ferroelectrics. Crystallographic texturing is often employed to increase the piezoelectric constant because the spontaneous polarization axes of grains are better aligned. In this research, crystallographic textures induced through tape casting are distinguished from textures induced through electrical poling. Texture is described using multiple quantitative approaches utilizing X-ray and neutron time-of-flight diffraction. Tape casting lead metaniobate with an inclusion of acicular template particles induces an orthotropic texture distribution. Templated grain growth from seed particles oriented during casting results in anisotropic grain structures. The degree of preferred orientation is directly linked to the shear behavior of the tape cast slurry. Increases in template concentration, slurry viscosity, and casting velocity lead to larger textures by inducing more particle orientation in the tape casting plane. The maximum 010 texture distributions were two and a half multiples of a random distribution. Ferroelectric texture was induced by electrical poling. Electric poling increases the volume of material oriented with the spontaneous polarization direction in the material. Samples with an initial paraelectric texture exhibit a greater change in the domain volume fraction during electrical poling than randomly oriented ceramics. In tape cast samples, the resulting piezoelectric response is proportional to the 010 texture present prior to poling. This results in property anisotropy dependent on initial texture. Piezoelectric properties measured on the most textured ceramics were similar to those obtained with a commercial standard.
Sun, Lan; Singh, Seema; Joo, Michael; Vega-Sanchez, Miguel; Ronald, Pamela; Simmons, Blake A; Adams, Paul; Auer, Manfred
2016-01-01
Cellulose microfibrils represent the major scaffold of plant cell walls. Different packing and orientation of the microfibrils at the microscopic scale determines the macroscopic properties of cell walls and thus affect their functions with a profound effect on plant survival. We developed a polarized Raman microspectroscopic method to determine cellulose microfibril orientation within rice plant cell walls. Employing an array of point measurements as well as area imaging and subsequent Matlab-assisted data processing, we were able to characterize the distribution of cellulose microfibril orientation in terms of director angle and anisotropy magnitude. Using this approach we detected differences between wild type rice plants and the rice brittle culm mutant, which shows a more disordered cellulose microfibril arrangement, and differences between different tissues of a wild type rice plant. This novel non-invasive Raman imaging approach allows for quantitative assessment of cellulose fiber orientation in cell walls of herbaceous plants, an important advancement in cell wall characterization. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Erić, M.; Petrović, S.; Kokkoris, M.; Lagoyannis, A.; Paneta, V.; Harissopulos, S.; Telečki, I.
2012-03-01
This work reports on the experimentally obtained depth profiles of 4 MeV 14N2+ ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals. The ion fluence was 1017 particles/cm2. The nitrogen depth profiling has been performed using the Nuclear Reaction Analysis (NRA) method, via the study of 14N(d,α0)12C and 14N(d,α1)12C nuclear reactions, and with the implementation of SRIM 2010 and SIMNRA computer simulation codes. For the randomly oriented silicon crystal, change of the density of silicon matrix and the nitrogen "bubble" formation have been proposed as the explanation for the difference between the experimental and simulated nitrogen depth profiles. During the implantation, the RBS/C spectra were measured on the nitrogen implanted and on the virgin crystal spots. These spectra provide information on the amorphization of the silicon crystals induced by the ion implantation.
Internal Stress and Microstructure of Zinc Oxide Films Sputter-Deposited with Carbon Dioxide Gas
NASA Astrophysics Data System (ADS)
Toru Ashida,; Kazuhiro Kato,; Hideo Omoto,; Atsushi Takamatsu,
2010-06-01
The internal stress and microstructure of ZnO films were investigated as a function of carbon dioxide (CO2) gas flow ratio [CO2/(O2+CO2)] during sputter deposition. The internal stress of the ZnO films decreased with increasing CO2 gas flow ratio. The carbon concentration in the films deposited using CO2 gas increased by up to 4.0 at. %. Furthermore, the ZnO films deposited without CO2 gas exhibited a preferred orientation of (002); however, the C-doped ZnO films exhibited random orientations. These findings suggest that the C atoms incorporated in the ZnO crystal lattice induce this random orientation, thereby relaxing the internal stress of C-doped ZnO films.
Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina
Venkataramani, Sowmya
2016-01-01
Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. SIGNIFICANCE STATEMENT A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. PMID:26985041
Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina.
Venkataramani, Sowmya; Taylor, W Rowland
2016-03-16
Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. Copyright © 2016 the authors 0270-6474/16/363336-14$15.00/0.
Flow cytometry of mammalian sperm: progress in DNA and morphology measurement.
Pinkel, D; Dean, P; Lake, S; Peters, D; Mendelsohn, M; Gray, J; Van Dilla, M; Gledhill, B
1979-01-01
Variability in DNA content and head shape of mammalian sperm are potentially useful markers for flow cytometric monitoring of genetic damage in spermatogenic cells. The high refractive index and extreme flatness of the sperm heads produce an optical effect which interferes with DNA measurements in flow cytometers which have dye excitation and fluorescence light collection normal to the axis of flow. Orientation of sperm in flow controls this effect and results in coefficients of variation of 2.5% and 4.2%, respectively, for DNA measurements of mouse and human sperm. Alternatively, the optical effect can be used to generate shape-related information. Measurements on randomly oriented sperm from three mammalian species using a pair of fluorescence detectors indicate that large shape differences are detectable. Acriflavine-Feulgen stained sperm nuclei are significantly bleached during flow cytometric measurements at power levels routinely used in many flow cytometers. Dual beam studies of this phenomenon indicate it may be useful in detecting abnormally shaped sperm.
A multichip aVLSI system emulating orientation selectivity of primary visual cortical cells.
Shimonomura, Kazuhiro; Yagi, Tetsuya
2005-07-01
In this paper, we designed and fabricated a multichip neuromorphic analog very large scale integrated (aVLSI) system, which emulates the orientation selective response of the simple cell in the primary visual cortex. The system consists of a silicon retina and an orientation chip. An image, which is filtered by a concentric center-surround (CS) antagonistic receptive field of the silicon retina, is transferred to the orientation chip. The image transfer from the silicon retina to the orientation chip is carried out with analog signals. The orientation chip selectively aggregates multiple pixels of the silicon retina, mimicking the feedforward model proposed by Hubel and Wiesel. The chip provides the orientation-selective (OS) outputs which are tuned to 0 degrees, 60 degrees, and 120 degrees. The feed-forward aggregation reduces the fixed pattern noise that is due to the mismatch of the transistors in the orientation chip. The spatial properties of the orientation selective response were examined in terms of the adjustable parameters of the chip, i.e., the number of aggregated pixels and size of the receptive field of the silicon retina. The multichip aVLSI architecture used in the present study can be applied to implement higher order cells such as the complex cell of the primary visual cortex.
Seldin, Lindsey; Muroyama, Andrew; Lechler, Terry
2016-01-01
Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA’s MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures. DOI: http://dx.doi.org/10.7554/eLife.12504.001 PMID:26765568
Sasaki, Kei; Sasaki, Hiroto; Takahashi, Atsuki; Kang, Siu; Yuasa, Tetsuya; Kato, Ryuji
2016-02-01
In recent years, cell and tissue therapy in regenerative medicine have advanced rapidly towards commercialization. However, conventional invasive cell quality assessment is incompatible with direct evaluation of the cells produced for such therapies, especially in the case of regenerative medicine products. Our group has demonstrated the potential of quantitative assessment of cell quality, using information obtained from cell images, for non-invasive real-time evaluation of regenerative medicine products. However, image of cells in the confluent state are often difficult to evaluate, because accurate recognition of cells is technically difficult and the morphological features of confluent cells are non-characteristic. To overcome these challenges, we developed a new image-processing algorithm, heterogeneity of orientation (H-Orient) processing, to describe the heterogeneous density of cells in the confluent state. In this algorithm, we introduced a Hessian calculation that converts pixel intensity data to orientation data and a statistical profiling calculation that evaluates the heterogeneity of orientations within an image, generating novel parameters that yield a quantitative profile of an image. Using such parameters, we tested the algorithm's performance in discriminating different qualities of cellular images with three types of clinically important cell quality check (QC) models: remaining lifespan check (QC1), manipulation error check (QC2), and differentiation potential check (QC3). Our results show that our orientation analysis algorithm could predict with high accuracy the outcomes of all types of cellular quality checks (>84% average accuracy with cross-validation). Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Malamy, J E; Shribak, M
2018-06-01
Epithelial cell dynamics can be difficult to study in intact animals or tissues. Here we use the medusa form of the hydrozoan Clytia hemisphaerica, which is covered with a monolayer of epithelial cells, to test the efficacy of an orientation-independent differential interference contrast microscope for in vivo imaging of wound healing. Orientation-independent differential interference contrast provides an unprecedented resolution phase image of epithelial cells closing a wound in a live, nontransgenic animal model. In particular, the orientation-independent differential interference contrast microscope equipped with a 40x/0.75NA objective lens and using the illumination light with wavelength 546 nm demonstrated a resolution of 460 nm. The repair of individual cells, the adhesion of cells to close a gap, and the concomitant contraction of these cells during closure is clearly visualized. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Sequential Reactions of Surface-Tethered Glycolytic Enzymes
Mukai, Chinatsu; Bergkvist, Magnus; Nelson, Jacquelyn L.; Travis, Alexander J.
2014-01-01
SUMMARY The development of complex hybrid organic-inorganic devices faces several challenges, including how they can generate energy. Cells face similar challenges regarding local energy production. Mammalian sperm solve this problem by generating ATP down the flagellar principal piece by means of glycolytic enzymes, several of which are tethered to a cytoskeletal support via germ cell-specific targeting domains. Inspired by this design, we have produced recombinant hexokinase type 1 and glucose-6-phosphate isomerase capable of oriented immobilization on a nickel-nitrilotriacetic acid modified surface. Specific activities of enzymes tethered via this strategy were substantially higher than when randomly adsorbed. Furthermore, these enzymes showed sequential activities when tethered onto the same surface. This is the first demonstration of surface-tethered pathway components showing sequential enzymatic activities, and it provides a first step toward reconstitution of glycolysis on engineered hybrid devices. PMID:19778729
Sadeh, Sadra; Rotter, Stefan
2014-01-01
Neurons in the primary visual cortex are more or less selective for the orientation of a light bar used for stimulation. A broad distribution of individual grades of orientation selectivity has in fact been reported in all species. A possible reason for emergence of broad distributions is the recurrent network within which the stimulus is being processed. Here we compute the distribution of orientation selectivity in randomly connected model networks that are equipped with different spatial patterns of connectivity. We show that, for a wide variety of connectivity patterns, a linear theory based on firing rates accurately approximates the outcome of direct numerical simulations of networks of spiking neurons. Distance dependent connectivity in networks with a more biologically realistic structure does not compromise our linear analysis, as long as the linearized dynamics, and hence the uniform asynchronous irregular activity state, remain stable. We conclude that linear mechanisms of stimulus processing are indeed responsible for the emergence of orientation selectivity and its distribution in recurrent networks with functionally heterogeneous synaptic connectivity. PMID:25469704
Probing molecular orientation of P3HT nanofibers in fiber-based organic solar cells
NASA Astrophysics Data System (ADS)
Yoon, Sangcheol; Han, Yaeeun; Hwang, Inchan
2018-01-01
Molecular orientation of conjugated polymers plays a key role in exciton generation/separation and charge transport, and thus significantly influence photovoltaic devices. Herein, we fabricated fiber-based organic solar cells and investigated the photovoltaic parameters with different diameters of fibers and PCBM diffusion. The open-circuit voltage that varies with molecular orientation whether it is face-on or edge-on was observed to differ. The investigation of the open-circuit voltage dependence reveals that thick fibers have core/shell like structures with different orientations. Thick fibers have face-on in the core and edge-on orientations in the shell. The face-on orientations are not preferentially formed in thin fibers, but the PCBM diffusion can induce face-on orientations that exist within the intermixed phase. Our results may shed a light on better understanding on fiber-based solar cells and suggest a way toward improving photovoltaic efficiency. [Figure not available: see fulltext.
Valente, T A M; Silva, D M; Gomes, P S; Fernandes, M H; Santos, J D; Sencadas, V
2016-02-10
Medically approved sterility methods should be a major concern when developing a polymeric scaffold, mainly when commercialization is envisaged. In the present work, poly(lactic acid) (PLA) fiber membranes were processed by electrospinning with random and aligned fiber alignment and sterilized under UV, ethylene oxide (EO), and γ-radiation, the most common ones for clinical applications. It was observed that UV light and γ-radiation do not influence fiber morphology or alignment, while electrospun samples treated with EO lead to fiber orientation loss and morphology changing from cylindrical fibers to ribbon-like structures, accompanied to an increase of polymer crystallinity up to 28%. UV light and γ-radiation sterilization methods showed to be less harmful to polymer morphology, without significant changes in polymer thermal and mechanical properties, but a slight increase of polymer wettability was detected, especially for the samples treated with UV radiation. In vitro results indicate that both UV and γ-radiation treatments of PLA membranes allow the adhesion and proliferation of MG 63 osteoblastic cells in a close interaction with the fiber meshes and with a growth pattern highly sensitive to the underlying random or aligned fiber orientation. These results are suggestive of the potential of both γ-radiation sterilized PLA membranes for clinical applications in regenerative medicine, especially those where customized membrane morphology and fiber alignment is an important issue.
Barisic, Marin; Aguiar, Paulo; Geley, Stephan; Maiato, Helder
2014-12-01
Accurate chromosome segregation during cell division in metazoans relies on proper chromosome congression at the equator. Chromosome congression is achieved after bi-orientation to both spindle poles shortly after nuclear envelope breakdown, or by the coordinated action of motor proteins that slide misaligned chromosomes along pre-existing spindle microtubules. These proteins include the minus-end-directed kinetochore motor dynein, and the plus-end-directed motors CENP-E at kinetochores and chromokinesins on chromosome arms. However, how these opposite and spatially distinct activities are coordinated to drive chromosome congression remains unknown. Here we used RNAi, chemical inhibition, kinetochore tracking and laser microsurgery to uncover the functional hierarchy between kinetochore and arm-associated motors, exclusively required for congression of peripheral polar chromosomes in human cells. We show that dynein poleward force counteracts chromokinesins to prevent stabilization of immature/incorrect end-on kinetochore-microtubule attachments and random ejection of polar chromosomes. At the poles, CENP-E becomes dominant over dynein and chromokinesins to bias chromosome ejection towards the equator. Thus, dynein and CENP-E at kinetochores drive congression of peripheral polar chromosomes by preventing arm-ejection forces mediated by chromokinesins from working in the wrong direction.
Orientation of Hittite Monuments
NASA Astrophysics Data System (ADS)
González-García, A. César; Belmonte, Juan Antonio
The possible astronomical or topographical orientations of the Hittite monuments of the Bronze Age has remained unexplored until recently. This would provide an important insight into how temporality was imprinted by this culture in sacred spaces and in the landscape. The authors' analysis of a statistically significant sample of Hittite temples - and a few monumental gates - has demonstrated that ancient Hittite monuments were not randomly orientated as previously thought. On the contrary, there were well-defined patterns of orientation that can be interpreted within the context of Hittite culture and religion.
Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets.
Lu, Xinglin; Feng, Xunda; Werber, Jay R; Chu, Chiheng; Zucker, Ines; Kim, Jae-Hong; Osuji, Chinedum O; Elimelech, Menachem
2017-11-14
The cytotoxicity of 2D graphene-based nanomaterials (GBNs) is highly important for engineered applications and environmental health. However, the isotropic orientation of GBNs, most notably graphene oxide (GO), in previous experimental studies obscured the interpretation of cytotoxic contributions of nanosheet edges. Here, we investigate the orientation-dependent interaction of GBNs with bacteria using GO composite films. To produce the films, GO nanosheets are aligned in a magnetic field, immobilized by cross-linking of the surrounding matrix, and exposed on the surface through oxidative etching. Characterization by small-angle X-ray scattering and atomic force microscopy confirms that GO nanosheets align progressively well with increasing magnetic field strength and that the alignment is effectively preserved by cross-linking. When contacted with the model bacterium Escherichia coli , GO nanosheets with vertical orientation exhibit enhanced antibacterial activity compared with random and horizontal orientations. Further characterization is performed to explain the enhanced antibacterial activity of the film with vertically aligned GO. Using phospholipid vesicles as a model system, we observe that GO nanosheets induce physical disruption of the lipid bilayer. Additionally, we find substantial GO-induced oxidation of glutathione, a model intracellular antioxidant, paired with limited generation of reactive oxygen species, suggesting that oxidation occurs through a direct electron-transfer mechanism. These physical and chemical mechanisms both require nanosheet penetration of the cell membrane, suggesting that the enhanced antibacterial activity of the film with vertically aligned GO stems from an increased density of edges with a preferential orientation for membrane disruption. The importance of nanosheet penetration for cytotoxicity has direct implications for the design of engineering surfaces using GBNs.
Davidson, P; Bigerelle, M; Bounichane, B; Giazzon, M; Anselme, K
2010-07-01
Contact guidance is generally evaluated by measuring the orientation angle of cells. However, statistical analyses are rarely performed on these parameters. Here we propose a statistical analysis based on a new parameter sigma, the orientation parameter, defined as the dispersion of the distribution of orientation angles. This parameter can be used to obtain a truncated Gaussian distribution that models the distribution of the data between -90 degrees and +90 degrees. We established a threshold value of the orientation parameter below which the data can be considered to be aligned within a 95% confidence interval. Applying our orientation parameter to cells on grooves and using a modelling approach, we established the relationship sigma=alpha(meas)+(52 degrees -alpha(meas))/(1+C(GDE)R) where the parameter C(GDE) represents the sensitivity of cells to groove depth, and R the groove depth. The values of C(GDE) obtained allowed us to compare the contact guidance of human osteoprogenitor (HOP) cells across experiments involving different groove depths, times in culture and inoculation densities. We demonstrate that HOP cells are able to identify and respond to the presence of grooves 30, 100, 200 and 500 nm deep and that the deeper the grooves, the higher the cell orientation. The evolution of the sensitivity (C(GDE)) with culture time is roughly sigmoidal with an asymptote, which is a function of inoculation density. The sigma parameter defined here is a universal parameter that can be applied to all orientation measurements and does not require a mathematical background or knowledge of directional statistics. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Development of a Model Competency-Based Orientation Program
1988-05-01
S. (1938). Basic writings of Sigmund Freud . New York: Random House. Hagerty, B.K. (1986). A competency-based orientation program for psychiatric...education, and nursing will be presented. • ..... Beginning with the field of psychology, Freud (1938) described motivation using the concept of psychic...Gosnell, D.J. (1987). Comparing two methods of hospital orientation for cost effective- ness. Journal of Nursing Staff Development, 3 , 3-8. Freud
Heck, Nicholas C; Mirabito, Lucas A; LeMaire, Kelly; Livingston, Nicholas A; Flentje, Annesa
2017-01-01
The current study examined the frequency with which randomized controlled trials (RCTs) of behavioral and psychological interventions for anxiety and depression include data pertaining to participant sexual orientation and nonbinary gender identities. Using systematic review methodology, the databases PubMed and PsycINFO were searched to identify RCTs published in 2004, 2009, and 2014. Random selections of 400 articles per database per year (2,400 articles in total) were considered for inclusion in the review. Articles meeting inclusion criteria were read and coded by the research team to identify whether the trial reported data pertaining to participant sexual orientation and nonbinary gender identities. Additional trial characteristics were also identified and indexed in our database (e.g., sample size, funding source). Of the 232 articles meeting inclusion criteria, only 1 reported participants' sexual orientation, and zero articles included nonbinary gender identities. A total of 52,769 participants were represented in the trials, 93 of which were conducted in the United States, and 43 acknowledged the National Institutes of Health as a source of funding. Despite known mental health disparities on the basis of sexual orientation and nonbinary gender identification, researchers evaluating interventions for anxiety and depression are not reporting on these important demographic characteristics. Reporting practices must change to ensure that our interventions generalize to lesbian, gay, bisexual, and transgender persons. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.
Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg
2014-07-01
The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.
Texture-dependent motion signals in primate middle temporal area
Gharaei, Saba; Tailby, Chris; Solomon, Selina S; Solomon, Samuel G
2013-01-01
Neurons in the middle temporal (MT) area of primate cortex provide an important stage in the analysis of visual motion. For simple stimuli such as bars and plaids some neurons in area MT – pattern cells – seem to signal motion independent of contour orientation, but many neurons – component cells – do not. Why area MT supports both types of receptive field is unclear. To address this we made extracellular recordings from single units in area MT of anaesthetised marmoset monkeys and examined responses to two-dimensional images with a large range of orientations and spatial frequencies. Component and pattern cell response remained distinct during presentation of these complex spatial textures. Direction tuning curves were sharpest in component cells when a texture contained a narrow range of orientations, but were similar across all neurons for textures containing all orientations. Response magnitude of pattern cells, but not component cells, increased with the spatial bandwidth of the texture. In addition, response variability in all neurons was reduced when the stimulus was rich in spatial texture. Fisher information analysis showed that component cells provide more informative responses than pattern cells when a texture contains a narrow range of orientations, but pattern cells had more informative responses for broadband textures. Component cells and pattern cells may therefore coexist because they provide complementary and parallel motion signals. PMID:24000175
The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions
NASA Astrophysics Data System (ADS)
Tzioufas, Achillefs
2018-04-01
We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.
The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions
NASA Astrophysics Data System (ADS)
Tzioufas, Achillefs
2018-06-01
We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.
Source polarization effects in an optical fiber fluorosensor
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1992-01-01
The exact field solution of a step-index profile fiber was used to determine the injection efficiency of a thin-film distribution of polarized sources located in the cladding of an optical fiber. Previous results for random source orientation were confirmed. The behavior of the power efficiency, P(eff), of a polarized distribution of sources was found to be similar to the behavior of a fiber with sources with random orientation. However, for sources polarized in either the x or y direction, P(eff) was found to be more efficient.
Horst, Renata; Maicki, Tomasz; Trąbka, Rafał; Albrecht, Sindy; Schmidt, Katharina; Mętel, Sylwia; von Piekartz, Harry
2017-05-01
To compare the short- and long-term effects of a structural-oriented (convential) with an activity-oriented physiotherapeutic treatment in patients with frozen shoulder. Double-blinded, randomized, experimental study. Outpatient clinic. We included patients diagnosed with a limited range of motion and pain in the shoulder region, who had received a prescription for physiotherapy treatment, without additional symptoms of dizziness, a case history of headaches, pain and/or limited range of motion in the cervical spine and/or temporomandibular joint. The study group received treatment during the performance of activities. The comparison group was treated with manual therapy and proprioceptive neuromuscular facilitation (conventional therapy). Both groups received 10 days of therapy, 30 minutes each day. Range of motion, muscle function tests, McGill pain questionnaire and modified Upper Extremity Motor Activity Log were measured at baseline, after two weeks of intervention and after a three-month follow-up period without therapy. A total of 66 patients were randomized into two groups: The activity-oriented group ( n = 33, mean = 44 years, SD = 16 years) including 20 male (61%) and the structural-oriented group ( n = 33, mean = 47 years, SD = 17 years) including 21 male (64%). The activity-oriented group revealed significantly greater improvements in the performance of daily life activities and functional and structural tests compared with the group treated with conventional therapy after 10 days of therapy and at the three-month follow-up ( p < 0.05). Therapy based on performing activities seems to be more effective for pain reduction and the ability to perform daily life activities than conventional treatment methods.
Ikuno, Koki; Kawaguchi, Saori; Kitabeppu, Shinsuke; Kitaura, Masaki; Tokuhisa, Kentaro; Morimoto, Shigeru; Matsuo, Atsushi; Shomoto, Koji
2012-11-01
To investigate the feasibility of peripheral sensory nerve stimulation combined with task-oriented training in patients with stroke during inpatient rehabilitation. A pilot randomized crossover trial. Two rehabilitation hospitals. Twenty-two patients with subacute stroke. Participants were randomly assigned to two groups and underwent two weeks of training in addition to conventional inpatient rehabilitation. The immediate group underwent peripheral sensory nerve stimulation combined with task-oriented training in the first week, followed by another week with task-oriented training alone. The delayed group underwent the same training in reverse order. Outcome measures were the level of fatigue and Wolf Motor Function Test. Patients were assessed at baseline, one and two weeks. All participants completed the study with no adverse events. There was no significant difference in level of fatigue between each treatment. From baseline to one week, the immediate group showed larger improvements than the delayed groups in the Wolf Motor Function Test (decrease in mean time (± SD) from 41.9 ± 16.2 seconds to 30.6 ± 11.4 seconds versus from 46.8 ± 19.4 seconds to 42.9 ± 14.7 seconds, respectively) but the difference did not reach significance after Bonferroni correction (P = 0.041). Within-group comparison showed significant improvements in the Wolf Motor Function Test mean time after the peripheral sensory nerve stimulation combined with task-oriented training periods in each group (P < 0.01). Peripheral sensory nerve stimulation is feasible in clinical settings and may enhance the effects of task-oriented training in patients with subacute stroke.
Benninger, Richard K. P.; Önfelt, Björn; Neil, Mark A. A.; Davis, Daniel M.; French, Paul M. W.
2005-01-01
The plasma membrane of cells is an ordered environment, giving rise to anisotropic orientation and restricted motion of molecules and proteins residing in the membrane. At the same time as being an organized matrix of defined structure, the cell membrane is heterogeneous and dynamic. Here we present a method where we use fluorescence imaging of linear dichroism to measure the orientation of molecules relative to the cell membrane. By detecting linear dichroism as well as fluorescence anisotropy, the orientation parameters are separated from dynamic properties such as rotational diffusion and homo energy transfer (energy migration). The sensitivity of the technique is enhanced by using two-photon excitation for higher photo-selection compared to single photon excitation. We show here that we can accurately image lipid organization in whole cell membranes and in delicate structures such as membrane nanotubes connecting two cells. The speed of our wide-field imaging system makes it possible to image changes in orientation and anisotropy occurring on a subsecond timescale. This is demonstrated by time-lapse studies showing that cholesterol depletion rapidly disrupts the orientation of a fluorophore located within the hydrophobic region of the cell membrane but not of a surface bound probe. This is consistent with cholesterol having an important role in stabilizing and ordering the lipid tails within the plasma membrane. PMID:15520272
Feed mechanism and method for feeding minute items
Stringer, Timothy Kent; Yerganian, Simon Scott
2012-11-06
A feeding mechanism and method for feeding minute items, such as capacitors, resistors, or solder preforms. The mechanism is adapted to receive a plurality of the randomly-positioned and randomly-oriented extremely small or minute items, and to isolate, orient, and position the items in a specific repeatable pickup location wherefrom they may be removed for use by, for example, a computer-controlled automated assembly machine. The mechanism comprises a sliding shelf adapted to receive and support the items; a wiper arm adapted to achieve a single even layer of the items; and a pushing arm adapted to push the items into the pickup location. The mechanism can be adapted for providing the items with a more exact orientation, and can also be adapted for use in a liquid environment.
Feed mechanism and method for feeding minute items
Stringer, Timothy Kent [Bucyrus, KS; Yerganian, Simon Scott [Lee's Summit, MO
2009-10-20
A feeding mechanism and method for feeding minute items, such as capacitors, resistors, or solder preforms. The mechanism is adapted to receive a plurality of the randomly-positioned and randomly-oriented extremely small or minute items, and to isolate, orient, and position one or more of the items in a specific repeatable pickup location wherefrom they may be removed for use by, for example, a computer-controlled automated assembly machine. The mechanism comprises a sliding shelf adapted to receive and support the items; a wiper arm adapted to achieve a single even layer of the items; and a pushing arm adapted to push the items into the pickup location. The mechanism can be adapted for providing the items with a more exact orientation, and can also be adapted for use in a liquid environment.
Center of mass perception and inertial frames of reference.
Bingham, G P; Muchisky, M M
1993-11-01
Center of mass perception was investigated by varying the shape, size, and orientation of planar objects. Shape was manipulated to investigate symmetries as information. The number of reflective symmetry axes, the amount of rotational symmetry, and the presence of radial symmetry were varied. Orientation affected systematic errors. Judgments tended to undershoot the center of mass. Random errors increased with size and decreased with symmetry. Size had no effect on random errors for maximally symmetric objects, although orientation did. The spatial distributions of judgments were elliptical. Distribution axes were found to align with the principle moments of inertia. Major axes tended to align with gravity in maximally symmetric objects. A functional and physical account was given in terms of the repercussions of error. Overall, judgments were very accurate.
Horizontal high speed stacking for batteries with prismatic cans
Bartos, Andrew L.; Lin, Yhu-Tin; Turner, III, Raymond D.
2016-06-14
A system and method for stacking battery cells or related assembled components. Generally planar, rectangular (prismatic-shaped) battery cells are moved from an as-received generally vertical stacking orientation to a generally horizontal stacking orientation without the need for robotic pick-and-place equipment. The system includes numerous conveyor belts that work in cooperation with one another to deliver, rotate and stack the cells or their affiliated assemblies. The belts are outfitted with components to facilitate the cell transport and rotation. The coordinated movement between the belts and the components promote the orderly transport and rotation of the cells from a substantially vertical stacking orientation into a substantially horizontal stacking orientation. The approach of the present invention helps keep the stacked assemblies stable so that subsequent assembly steps--such as compressing the cells or attaching electrical leads or thermal management components--may proceed with a reduced chance of error.
Endothelial cell response to biomechanical forces under simulated vascular loading conditions.
Punchard, M A; Stenson-Cox, C; O'cearbhaill, E D; Lyons, E; Gundy, S; Murphy, L; Pandit, A; McHugh, P E; Barron, V
2007-01-01
In vivo, endothelial cells (EC) are constantly exposed to the haemodynamic forces (HF) of pressure, wall shear stress and hoop stress. The main aim of this study was to design, create and validate a novel perfusion bioreactor capable of delivering shear stress and intravascular pressure to EC in vitro and to characterise their morphology, orientation and gene expression. Here we report the creation and validation of such a simulator and the dual application of pressure (120/60 mmHg) and low shear stress (5 dyn/cm(2)) to a monolayer of EC established on a non-compliant silicone tube. Under these conditions, EC elongated and realigned obliquely to the direction of applied shear stress in a time-dependent manner. Furthermore, randomly distributed F-actin microfilaments reorganised into long, dense stress fibres crossing the cells in a direction perpendicular to that of flow. Finally, combinatorial biomechanical conditioning of EC induced the expression of the inflammatory-associated E-selectin gene.
Hu, Yan; Chua, Daniel H C
2016-06-15
Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt(-1) as compared to standard carbon black of 7.4 W.mgPt(-1) under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support.
Hu, Yan; Chua, Daniel H. C.
2016-01-01
Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt−1 as compared to standard carbon black of 7.4 W.mgPt−1 under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support. PMID:27302135
3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures.
Park, Chan Ho; Kim, Kyoung-Hwa; Lee, Yong-Moo; Giannobile, William V; Seol, Yang-Jo
2017-09-08
Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.
Contour symmetry detection: the influence of axis orientation and number of objects.
Friedenberg, J; Bertamini, M
2000-09-01
Participants discriminated symmetrical from random contours connected by straight lines to form part of one- or two-objects. In experiment one, symmetrical contours were translated or reflected and presented at vertical, horizontal, and oblique axis orientations with orientation constant within blocks. Translated two-object contours were detected more easily than one, replicating a "lock-and-key" effect obtained previously for vertical orientations only [M. Bertamini, J.D. Friedenberg, M. Kubovy, Acta Psychologica, 95 (1997) 119-140]. A second experiment extended these results to a wider variety of axis orientations under mixed block conditions. The pattern of performance for translation and reflection at different orientations corresponded in both experiments, suggesting that orientation is processed similarly in the detection of these symmetries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Sijun, E-mail: sluo1@tulane.edu; Riggs, Brian C.; Shipman, Joshua T.
Direct integration of proton conductor films on Pt-coated substrates opens the way to film-based proton transport devices. Columnar SrZr{sub 0.95}Y{sub 0.05}O{sub 3−δ} (SZY) films with dense microstructure were deposited on Pt-coated MgO(100) substrates at 830 °C by pulsed laser deposition. The optimal window of ambient O{sub 2} pressure for good crystallinity of SZY films is from 400 to 600 mTorr. The ambient O{sub 2} compresses the plasma plume of SZY and increases the deposition rate. The 10 nm thick Ti adhesion layer on MgO(100) greatly affects the orientation of the sputtered Pt layers. Pt deposited directly on MgO shows a highly (111)-preferredmore » orientation and leads to preferentially oriented SZY films while the addition of a Ti adhesion layer makes Pt show a less preferential orientation that leads to randomly oriented SZY films. The RMS surface roughness of preferentially oriented SZY films is larger than that of randomly oriented SZY films deposited under the same ambient O{sub 2} pressure. As the O{sub 2} pressure increased, the RMS surface roughness of preferentially oriented SZY films increased, reaching 45.7 nm (2.61% of film thickness) at 600 mTorr. This study revealed the ambient O{sub 2} pressure and orientation dependent surface roughness of SZY films grown on Pt-coated MgO substrates, which provides the potential to control the surface microstructure of SZY films for electrochemical applications in film-based hydrogen devices.« less
Biomimetic light-harvesting funnels for re-directioning of diffuse light.
Pieper, Alexander; Hohgardt, Manuel; Willich, Maximilian; Gacek, Daniel Alexander; Hafi, Nour; Pfennig, Dominik; Albrecht, Andreas; Walla, Peter Jomo
2018-02-14
Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption <0.5%. Efficient donor-pool energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.
Corrigan, Patrick W; Powell, Karina J; Al-Khouja, Maya A
2015-11-01
Health communication campaigns often seek to diminish stigma and promote care seeking, with public service announcements (PSAs) frequently prominent in these campaigns. One example is the Australian-based beyondblue campaign. As an alternative approach, campaigns may seek to reduce stigma by promoting stories of recovery. Participants completed measures of stigmatizing and empowering attitudes at pre-, post-, and 72-hour follow-up after being randomized to a PSA recovery-oriented video, treatable disease-oriented video (beyondblue), or control. When exposed to the recovery-oriented PSA, participants showed significant reduction in stigmatizing attitudes from pre- to posttest than beyondblue or the control group with the emergence of nonsignificant trends identified at follow-up. Findings suggest a recovery-oriented video leads to better change on measures of stigma and affirming attitudes than beyondblue. Despite the aforementioned findings, results failed to show either the recovery or beyondblue videos had a significant impact on intent to seek treatment.
Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.
2015-03-24
Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COFmore » films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.« less
Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.
2015-02-17
Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COFmore » films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.« less
Surface engineering with functional random copolymers for nanolithographic applications
NASA Astrophysics Data System (ADS)
Sparnacci, Katia; Antonioli, Diego; Gianotti, Valentina; Lupi, Federico Ferrarese; Giammaria, Tommaso Jacopo; Seguini, Gabriele; Perego, Michele; Laus, Michele
2016-05-01
Hydroxyl-terminated P(S-r-MMA) random copolymers with molecular weight ranging from 1.7 to 69 kg/mol and a styrene unit fraction of 61% were grafted onto a silicon oxide surface and subsequently used to study the orientation of domains with respect to the substrate, in cylinder-forming PS-b-PMMA block copolymer thin films. When the thickness (H) of the grafted layer is greater than 5-6 nm, a perpendicular orientation is always observed because of the efficient decoupling of the BCP film from the polar SiO2 surface. Conversely, if H is less than 5 nm, the critical thickness of the grafted layer, which allows the neutralization of the substrate and promotion of the perpendicular orientation of the nanodomains in the BCP film, is found to depend on the Mn of the RCP. In particular, when Mn = 1700, a 2.0 nm thick grafted layer is sufficient to promote the perpendicular orientation of the PMMA cylinders in the PS-b-PMMA BCP film.
NASA Astrophysics Data System (ADS)
Shea, Thomas; Krimer, Daniel; Costa, Fidel; Hammer, Julia
2014-05-01
One of the achievements in recent years in volcanology is the determination of time-scales of magmatic processes via diffusion in minerals and its addition to the petrologists' and volcanologists' toolbox. The method typically requires one-dimensional modeling of randomly cut crystals from two-dimensional thin sections. Here we address the question whether using 1D (traverse) or 2D (surface) datasets exploited from randomly cut 3D crystals introduces a bias or dispersion in the time-scales estimated, and how this error can be improved or eliminated. Computational simulations were performed using a concentration-dependent, finite-difference solution to the diffusion equation in 3D. The starting numerical models involved simple geometries (spheres, parallelepipeds), Mg/Fe zoning patterns (either normal or reverse), and isotropic diffusion coefficients. Subsequent models progressively incorporated more complexity, 3D olivines possessing representative polyhedral morphologies, diffusion anisotropy along the different crystallographic axes, and more intricate core-rim zoning patterns. Sections and profiles used to compare 1, 2 and 3D diffusion models were selected to be (1) parallel to the crystal axes, (2) randomly oriented but passing through the olivine center, or (3) randomly oriented and sectioned. Results show that time-scales estimated on randomly cut traverses (1D) or surfaces (2D) can be widely distributed around the actual durations of 3D diffusion (~0.2 to 10 times the true diffusion time). The magnitude over- or underestimations of duration are a complex combination of the geometry of the crystal, the zoning pattern, the orientation of the cuts with respect to the crystallographic axes, and the degree of diffusion anisotropy. Errors on estimated time-scales retrieved from such models may thus be significant. Drastic reductions in the uncertainty of calculated diffusion times can be obtained by following some simple guidelines during the course of data collection (i.e. selection of crystals and concentration profiles, acquisition of crystallographic orientation data), thus allowing derivation of robust time-scales.
NASA Astrophysics Data System (ADS)
Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.
2010-02-01
We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.
Task oriented training improves the balance outcome & reducing fall risk in diabetic population.
Ghazal, Javeria; Malik, Arshad Nawaz; Amjad, Imran
2016-01-01
The objective was to determine the balance impairments and to compare task oriented versus traditional balance training in fall reduction among diabetic patients. The randomized control trial with descriptive survey and 196 diabetic patients were recruited to assess balance impairments through purposive sampling technique. Eighteen patients were randomly allocated into two groups; task oriented balance training group TOB (n=8) and traditional balance training group TBT (n=10). The inclusion criteria were 30-50 years age bracket and diagnosed cases of Diabetes Mellitus with neuropathy. The demographics were taken through standardized & valid assessment tools include Berg Balance Scale and Functional Reach Test. The measurements were obtained at baseline, after 04 and 08 weeks of training. The mean age of the participants was 49 ±6.79. The result shows that 165(84%) were at moderate risk of fall and 31(15%) were at mild risk of fall among total 196 diabetic patients. There was significant improvement (p <0.05) in task oriented balance training group for dynamic balance, anticipatory balance and reactive balance after 8 weeks of training as compare to traditional balance training. Task oriented balance training is effective in improving the dynamic, anticipator and reactive balance. The task oriented training reduces the risk of falling through enhancing balance outcome.
Task oriented training improves the balance outcome & reducing fall risk in diabetic population
Ghazal, Javeria; Malik, Arshad Nawaz; Amjad, Imran
2016-01-01
Objectives: The objective was to determine the balance impairments and to compare task oriented versus traditional balance training in fall reduction among diabetic patients. Methods: The randomized control trial with descriptive survey and 196 diabetic patients were recruited to assess balance impairments through purposive sampling technique. Eighteen patients were randomly allocated into two groups; task oriented balance training group TOB (n=8) and traditional balance training group TBT (n=10). The inclusion criteria were 30-50 years age bracket and diagnosed cases of Diabetes Mellitus with neuropathy. The demographics were taken through standardized & valid assessment tools include Berg Balance Scale and Functional Reach Test. The measurements were obtained at baseline, after 04 and 08 weeks of training. Results: The mean age of the participants was 49 ±6.79. The result shows that 165(84%) were at moderate risk of fall and 31(15%) were at mild risk of fall among total 196 diabetic patients. There was significant improvement (p <0.05) in task oriented balance training group for dynamic balance, anticipatory balance and reactive balance after 8 weeks of training as compare to traditional balance training. Conclusion: Task oriented balance training is effective in improving the dynamic, anticipator and reactive balance. The task oriented training reduces the risk of falling through enhancing balance outcome. PMID:27648053
Au, Mei K; Chan, Wai M; Lee, Lin; Chen, Tracy Mk; Chau, Rosanna Mw; Pang, Marco Yc
2014-10-01
To compare the effectiveness of a core stability program with a task-oriented motor training program in improving motor proficiency in children with developmental coordination disorder (DCD). Randomized controlled pilot trial. Outpatient unit in a hospital. Twenty-two children diagnosed with DCD aged 6-9 years were randomly allocated to the core stability program or the task-oriented motor program. Both groups underwent their respective face-to-face training session once per week for eight consecutive weeks. They were also instructed to carry out home exercises on a daily basis during the intervention period. Short Form of the Bruininks-Oseretsky Test of Motor Proficiency (Second Edition) and Sensory Organization Test at pre- and post-intervention. Intention-to-treat analysis revealed no significant between-group difference in the change of motor proficiency standard score (P=0.717), and composite equilibrium score derived from the Sensory Organization Test (P=0.100). Further analysis showed significant improvement in motor proficiency in both the core stability (mean change (SD)=6.3(5.4); p=0.008) and task-oriented training groups (mean change(SD)=5.1(4.0); P=0.007). The composite equilibrium score was significantly increased in the task-oriented training group (mean change (SD)=6.0(5.5); P=0.009), but not in the core stability group (mean change(SD) =0.0(9.6); P=0.812). In the task-oriented training group, compliance with the home program was positively correlated with change in motor proficiency (ρ=0.680, P=0.030) and composite equilibrium score (ρ=0.638, P=0.047). The core stability exercise program is as effective as task-oriented training in improving motor proficiency among children with DCD. © The Author(s) 2014.
Timmermans, Annick A A; Lemmens, Ryanne J M; Monfrance, Maurice; Geers, Richard P J; Bakx, Wilbert; Smeets, Rob J E M; Seelen, Henk A M
2014-03-31
Over fifty percent of stroke patients experience chronic arm hand performance problems, compromising independence in daily life activities and quality of life. Task-oriented training may improve arm hand performance after stroke, whereby augmented therapy may lead to a better treatment outcome. Technology-supported training holds opportunities for increasing training intensity. However, the effects of robot-supported task-oriented training with real life objects in stroke patients are not known to date. The aim of the present study was to investigate the effectiveness and added value of the Haptic Master robot combined with task-oriented arm hand training in chronic stroke patients. In a single-blind randomized controlled trial, 22 chronic stroke patients were randomly allocated to receive either task-oriented robot-assisted arm-hand training (experimental group) or task-oriented non-robotic arm-hand training (control group). For training, the T-TOAT (Technology-supported Task-Oriented Arm Training) method was applied. Training was provided during 8 weeks, 4 times/week, 2 × 30 min/day. A significant improvement after training on the Action Research Arm Test (ARAT) was demonstrated in the experimental group (p = 0.008). Results were maintained until 6 months after cessation of the training. On the perceived performance measure (Motor Activity Log (MAL)), both, the experimental and control group improved significantly after training (control group p = 0.008; experimental group p = 0.013). The improvements on MAL in both groups were maintained until 6 months after cessation of the training. With regard to quality of life, only in the control group a significant improvement after training was found (EuroQol-5D p = 0.015, SF-36 physical p = 0.01). However, the improvement on SF-36 in the control group was not maintained (p = 0.012). No between-group differences could be demonstrated on any of the outcome measures. Arm hand performance improved in chronic stroke patients, after eight weeks of task oriented training. The use of a Haptic Master robot in support of task-oriented arm training did not show additional value over the video-instructed task-oriented exercises in highly functional stroke patients. Current Controlled Trials ISRCTN82787126.
Cytochemical localization of calcium in cap cells of primary roots of Zea mays L
NASA Technical Reports Server (NTRS)
Moore, R.
1986-01-01
The distribution of calcium (Ca) in caps of vertically- and horizontally-oriented roots of Zea mays was monitored to determine its possible role in root graviresponsiveness. A modification of the antimonate precipitation procedure was used to localize Ca in situ. In vertically-oriented roots, the presumed graviperceptive (i.e., columella) cells were characterized by minimal and symmetric staining of the plasmalemma and mitochondria. No precipitate was present in plasmodesmata or cell walls. Within 5 min after horizontal reorientation, staining was associated with the portion of the cell wall adjacent to the distal end of the cell. This asymmetric staining persisted throughout the onset of gravicurvature. No staining of lateral cell walls of columella cells was observed at any stage of gravicurvature, suggesting that a lateral flow of Ca through the columella tissue of horizontally-oriented roots does not occur. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like structures in their cell walls. These results are discussed relative to proposed roles of root-cap Ca in root gravicurvature.
Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Nakano, Takayoshi
2015-02-01
Bone tissue has a specific anisotropic morphology derived from collagen fiber alignment and the related apatite crystal orientation as a bone quality index. However, the precise mechanism of cellular regulation of the crystallographic orientation of apatite has not been clarified. In this study, anisotropic construction of cell-produced mineralized matrix in vitro was established by initiating organized cellular alignment and subsequent oriented bone-like matrix (collagen/apatite) production. The oriented collagen substrates with three anisotropic levels were prepared by a hydrodynamic method. Primary osteoblasts were cultured on the fabricated substrates until mineralized matrix formation is confirmed. Osteoblast alignment was successfully regulated by the level of substrate collagen orientation, with preferential alignment along the direction of the collagen fibers. Notably, both fibrous orientation of newly synthesized collagen matrix and c-axis of produced apatite crystals showed preferential orientation along the cell direction. Because the degree of anisotropy of the deposited apatite crystals showed dependency on the directional distribution of osteoblasts cultured on the oriented collagen substrates, the cell orientation determines the crystallographic anisotropy of produced apatite crystals. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy, even the alignment of apatite crystals, is controllable by varying the degree of osteoblast alignment via regulating the level of substrate orientation. © 2014 Wiley Periodicals, Inc.
A linear model fails to predict orientation selectivity of cells in the cat visual cortex.
Volgushev, M; Vidyasagar, T R; Pei, X
1996-01-01
1. Postsynaptic potentials (PSPs) evoked by visual stimulation in simple cells in the cat visual cortex were recorded using in vivo whole-cell technique. Responses to small spots of light presented at different positions over the receptive field and responses to elongated bars of different orientations centred on the receptive field were recorded. 2. To test whether a linear model can account for orientation selectivity of cortical neurones, responses to elongated bars were compared with responses predicted by a linear model from the receptive field map obtained from flashing spots. 3. The linear model faithfully predicted the preferred orientation, but not the degree of orientation selectivity or the sharpness of orientation tuning. The ratio of optimal to non-optimal responses was always underestimated by the model. 4. Thus non-linear mechanisms, which can include suppression of non-optimal responses and/or amplification of optimal responses, are involved in the generation of orientation selectivity in the primary visual cortex. PMID:8930828
NASA Astrophysics Data System (ADS)
Haas, M.; Realo, E.; Winkler, H.; Meyer-Klaucke, W.; Trautwein, A. X.; Leupold, O.; Rüter, H. D.
1997-12-01
An expression for the amplitude of a pulse of synchrotron radiation (SR) coherently scattered in forward direction by a randomly oriented Mössbauer absorber is derived from the theory of γ optics. It is assumed that the hyperfine splittings present in the Mössbauer nuclei can be described in the framework of the spin-Hamiltonian formalism. In the general case of a thick Mössbauer sample, which consists of randomly oriented paramagnetic iron-containing molecules (for example, a frozen solution of a 57Fe protein) in an applied magnetic field, the response of this sample on an incident monochromatic and fully polarized SR beam cannot be given analytically because of the integrations involved. The way to evaluate nuclear forward-scattering spectra for this general case numerically is outlined and results of calculations with a corresponding program package called SYNFOS are shown and compared with experimental results obtained by measurements of the high-spin iron (II) ``picket-fence'' porphyrin [Fe(CH3COO)TPpivP]- in an applied field of 6 T.
Allen, Trudie; Ingles, Patricia J; Praekelt, Uta; Smith, Harry; Whitelam, Garry C
2006-05-01
Plants use specialized photoreceptors to detect the amount, quality, periodicity and direction of light and to modulate their growth and development accordingly. These regulatory light signals often interact with other environmental cues. Exposure of etiolated Arabidopsis seedlings to red (R) or far-red (FR) light causes hypocotyls to grow in random orientations with respect to the gravitational vector, thus overcoming the signal from gravity to grow upwards. This light response, mediated by either phytochrome A or phytochrome B, represents a prime example of cross-talk between environmental signalling systems. Here, we report the isolation the mutant gil1 (for gravitropic in the light) in which hypocotyls continue to grow upwards after exposure of seedlings to R or FR light. The gil1 mutant displays no other phenotypic alterations in response to gravity or light. Cloning of GIL1 has identified a novel gene that is necessary for light-dependent randomization of hypocotyl growth orientation. Using gil1, we have demonstrated that phytochrome-mediated randomization of Arabidopsis hypocotyl orientation provides a fitness advantage to seedlings developing in patchy, low-light environments.
Real-Space x-ray tomographic reconstruction of randomly oriented objects with sparse data frames.
Ayyer, Kartik; Philipp, Hugh T; Tate, Mark W; Elser, Veit; Gruner, Sol M
2014-02-10
Schemes for X-ray imaging single protein molecules using new x-ray sources, like x-ray free electron lasers (XFELs), require processing many frames of data that are obtained by taking temporally short snapshots of identical molecules, each with a random and unknown orientation. Due to the small size of the molecules and short exposure times, average signal levels of much less than 1 photon/pixel/frame are expected, much too low to be processed using standard methods. One approach to process the data is to use statistical methods developed in the EMC algorithm (Loh & Elser, Phys. Rev. E, 2009) which processes the data set as a whole. In this paper we apply this method to a real-space tomographic reconstruction using sparse frames of data (below 10(-2) photons/pixel/frame) obtained by performing x-ray transmission measurements of a low-contrast, randomly-oriented object. This extends the work by Philipp et al. (Optics Express, 2012) to three dimensions and is one step closer to the single molecule reconstruction problem.
Randomized Controlled Trial of a Brief Problem-Orientation Intervention for Suicidal Ideation
ERIC Educational Resources Information Center
Fitzpatrick, Kathleen Kara; Witte, Tracy K.; Schmidt, Norman B.
2005-01-01
Empirical evaluations suggest that problem orientation, the initial reaction to problems, differentiates suicidal youth from nonclinical controls and nonideating psychiatric controls. One promising area for intervention with suicidal youth relates to enhancing this specific coping skill. Nonclinical participants (N = 110) with active suicidal…
Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis
Bosveld, Floris; Markova, Olga; Guirao, Boris; Martin, Charlotte; Wang, Zhimin; Pierre, Anaëlle; Balakireva, Maria; Gaugue, Isabelle; Ainslie, Anna; Christophorou, Nicolas; Lubensky, David K.; Minc, Nicolas; Bellaïche, Yohanns
2017-01-01
The orientation of cell division along the interphase cell long-axis, the century old Hertwig’s rule, has profound roles in tissue proliferation, morphogenesis, architecture and mechanics1,2. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways3–12. At mitosis, epithelial cells usually round up to ensure faithful chromosome segregation and to promote morphogenesis1. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. We found that in Drosophila epithelia, tricellular junctions (TCJ) localize microtubule force generators, orienting cell division via the Dynein associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJ emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues. PMID:26886796
Observing planar cell polarity in multiciliated mouse airway epithelial cells.
Vladar, Eszter K; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D
2015-01-01
The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type. Copyright © 2015 Elsevier Inc. All rights reserved.
High-efficiency, deep-junction, epitaxial InP solar cells on (100) and (111)B InP substrates
NASA Technical Reports Server (NTRS)
Venkatasubramanian, R.; Timmons, M. L.; Hutchby, J. A.; Walters, Robert J.; Summers, Geoffrey P.
1994-01-01
We report on the development and performance of deep-junction (approximately 0.25 micron), graded-emitter-doped, n(sup +)-p InP solar cells grown by metallorganic chemical vapor deposition (MOCVD). A novel, diffusion-transport process for obtaining lightly-doped p-type base regions of the solar cell is described. The I-V data and external quantum-efficiency response of these cells are presented. The best active-area AMO efficiency for these deep-junction cells on (100)-oriented InP substrates is 16.8 percent, with a J(sub SC) of 31.8 mA/sq cm, a V(sub OC) of 0.843 V, and a fill-factor of 0.85. By comparison, the best cell efficiency on the (111)B-oriented InP substrates was 15.0 percent. These efficiency values for deep-junction cells are encouraging and compare favorably with performance of thin-emitter (0.03 micron) epitaxial cells as well as that of deep-emitter diffused cells. The cell performance and breakdown voltage characteristics of a batch of 20 cells on each of the orientations are presented, indicating the superior breakdown voltage properties and other characteristics of InP cells on the (111)B orientation. Spectral response, dark I-V data, and photoluminescence (PL) measurements on the InP cells are presented with an analysis on the variation in J(sub SC) and V(sub OC) of the cells. It is observed, under open-circuit conditions, that lower-V(sub OC) cells exhibit higher band-edge PL intensity for both the (100) and (111)B orientations. This anomalous behavior suggests that radiative recombination in the heavily-doped n(sup +)-InP emitter may be detrimental to achieving higher V(sub OC) in n(sup +)-p InP solar cells.
Stochasticity and stereotypy in the Ciona notochord.
Carlson, Maia; Reeves, Wendy; Veeman, Michael
2015-01-15
Fate mapping with single cell resolution has typically been confined to embryos with completely stereotyped development. The lineages giving rise to the 40 cells of the Ciona notochord are invariant, but the intercalation of those cells into a single-file column is not. Here we use genetic labeling methods to fate map the Ciona notochord with both high resolution and large sample sizes. We find that the ordering of notochord cells into a single column is not random, but instead shows a distinctive signature characteristic of mediolaterally-biased intercalation. We find that patterns of cell intercalation in the notochord are somewhat stochastic but far more stereotyped than previously believed. Cell behaviors vary by lineage, with the secondary notochord lineage being much more constrained than the primary lineage. Within the primary lineage, patterns of intercalation reflect the geometry of the intercalating tissue. We identify the latest point at which notochord morphogenesis is largely stereotyped, which is shortly before the onset of mediolateral intercalation and immediately after the final cell divisions in the primary lineage. These divisions are consistently oriented along the AP axis. Our results indicate that the interplay between stereotyped and stochastic cell behaviors in morphogenesis can only be assessed by fate mapping experiments that have both cellular resolution and large sample sizes. Copyright © 2014 Elsevier Inc. All rights reserved.
Stochasticity and Stereotypy in the Ciona Notochord
Carlson, Maia; Reeves, Wendy; Veeman, Michael
2015-01-01
Fate mapping with single cell resolution has typically been confined to embryos with completely stereotyped development. The lineages giving rise to the 40 cells of the Ciona notochord are invariant, but the intercalation of those cells into a single-file column is not. Here we use genetic labeling methods to fate map the Ciona notochord with both high resolution and large sample sizes. We find that the ordering of notochord cells into a single column is not random, but instead shows a distinctive signature characteristic of mediolaterally-biased intercalation. We find that patterns of cell intercalation in the notochord are somewhat stochastic but far more stereotyped than previously believed. Cell behaviors vary by lineage, with the secondary notochord lineage being much more constrained than the primary lineage. Within the primary lineage, patterns of intercalation reflect the geometry of the intercalating tissue. We identify the latest point at which notochord morphogenesis is largely stereotyped, which is shortly before the onset of mediolateral intercalation and immediately after the final cell divisions in the primary lineage. These divisions are consistently oriented along the AP axis. Our results indicate that the interplay between stereotyped and stochastic cell behaviors in morphogenesis can only be assessed by fate mapping experiments that have both cellular resolution and large sample sizes. PMID:25459659
Srikesavan, Cynthia Swarnalatha; Shay, Barbara; Szturm, Tony
2016-09-13
To examine the feasibility of a clinical trial on a novel, home-based task-oriented training with conventional hand exercises in people with rheumatoid arthritis or hand osteoarthritis. To explore the experiences of participants who completed their respective home exercise programmes. Thirty volunteer participants aged between 30 and 60 years and diagnosed with rheumatoid arthritis or hand osteoarthritis were proposed for a single-center, assessor-blinded, randomized controlled trial ( ClinicalTrials.gov : NCT01635582). Participants received task-oriented training with interactive computer games and objects of daily life or finger mobility and strengthening exercises. Both programmes were home based and were done four sessions per week with 20 minutes each session for 6 weeks. Major feasibility outcomes were number of volunteers screened, randomized, and retained; completion of blinded assessments, exercise training, and home exercise sessions; equipment and data management; and clinical outcomes of hand function. Reaching the recruitment target in 18 months and achieving exercise compliance >80% were set as success criteria. Concurrent with the trial, focus group interviews explored experiences of those participants who completed their respective programmes. After trial initiation, revisions in inclusion criteria were required to promote recruitment. A total of 17 participants were randomized and 15 were retained. Completion of assessments, exercise training, and home exercise sessions; equipment and data collection and management demonstrated excellent feasibility. Both groups improved in hand function outcomes and exercise compliance was above 85%. Participants perceived both programmes as appropriate and acceptable. Participants who completed task-oriented training also agreed that playing different computer games was enjoyable, engaging, and motivating. Findings demonstrate initial evidence on recruitment, feasibility of trial procedures, and acceptability of task-oriented training in people with rheumatoid arthritis or hand osteoarthritis. Since the pilot trial was unsuccessful in participant recruitment, a large trial will not follow.
Etiology of homosexuality and attitudes toward same-sex parenting: a randomized study.
Frias-Navarro, Dolores; Monterde-I-Bort, Hector; Pascual-Soler, Marcos; Badenes-Ribera, Laura
2015-01-01
Attribution theory suggests the hypothesis that heterosexuals' attitudes toward homosexual sexual orientation will be more negative when homosexuality is attributed to controllable causes. Our randomized study analyzed (a) whether beliefs about the genetic or environmental etiology of the homosexual sexual orientation can be immediately modified by reading a text and (b) the causal effect of attributions about the controllability (environmental etiology) or noncontrollability (genetic etiology) of homosexual sexual orientation on the rejection of same-sex parenting and their social rights. The sample was composed of 190 Spanish university students with a mean age of 22.07 years (SD = 8.46). The results show that beliefs about the etiology of the sexual orientation could be modified by means of a written text. Furthermore, participants who believed that sexual orientation had a genetic etiology showed greater support for social rights and less rejection of same-sex parenting. However, the effects were detected only when there was a traditional opposition to the family with same-sex parenting. When the opposition was normative, the effect was not statistically significant. Our results can be useful in planning variables for intervention programs designed to foster tolerance toward and normality of sexual diversity.
NASA Astrophysics Data System (ADS)
Voth, Greg A.; Kramel, Stefan; Menon, Udayshankar K.; Koch, Donald L.
2017-11-01
We experimentally measure the sedimentation of non-spherical particles in isotropic turbulence. We obtain time-resolved 3D orientations of the particles along with the fluid velocity field around them in a vertical water tunnel. An active jet array with 40 individually controllable jets enables us to adjust the turbulence intensity and observe the transition from strongly aligned to randomized particle orientations. We focus on the orientation statistics of ramified particles formed from several slender arms, including fibers and particles with three arms in planar symmetry (triads), which allows us to study alignment of both fibers and disk-like particles. We can predict the turbulent intensity at which the transition from aligned to randomized particle orientations occurs using a non-dimensional settling factor given by the ratio of rotation timescale of the turbulence at the scale of the particle to the rotation timescale of a particles in quiescent flow due to inertial torques. A model of ramified particle motion based on slender body theory provides accurate predictions of the vertical and horizontal particle velocities relative to the turbulent fluid. Supported by Army Research Office Grant W911NF1510205.
Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert
2018-01-09
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.
Rajanna, Pramod M; Gilshteyn, Evgenia P; Yagafarov, Timur; Aleekseeva, Alena K; Anisimov, Anton S; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G
2018-01-31
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.
NASA Astrophysics Data System (ADS)
Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.
2018-03-01
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.
Investigating histological aspects of scars in children.
Westra, I; Verhaegen, P D H M; Ibrahim Korkmaz, H; Braam, K I; Kaspers, G J L; Niessen, H W M; Niessen, F B
2017-05-02
Very little is known about histological aspects of paediatric scars and the possible role of the immune system during their formation. In this study, the histology thoracic scars caused by the placement of an implantable central venous access device in children who underwent treatment for cancer was assessed. The amount and type of collagen, the collagen orientation, the type of elastic fibres, the vascularsation, and the count of neutrophils, macrophages, and lymphocytes were analysed. The severity of scarring was assessed using the Vancouver scar scale (VSS). To evaluate the role of the immune system on scar severity and histology, the scars of children suffering from acute lymphoblastic leukaemia (ALL) were compared with the scars of children suffering from other types of childhood cancer. Our results showed an extremely random orientation of the collagen fibres of the paediatric scars with a mean collagen orientation index of 0.22 (standard deviation (SD) 0.10, zero indicating a perfectly random orientation and a perfectly parallel orientation). A lower collagen orientation index was seen in scars with a lower VSS score (VSS score <3: 0.19 versus VSS score ≥3 0.29, p=0.037). A higher total VSS score, resembling a worse scar, was assessed to the scars in the non-ALL group compared with the children with ALL (mean ALL: 0.91 (0-3) versus mean non-ALL: 2.50 (0-6), p=0.037). To our knowledge, this is the first study investigating a wide array of histological aspects in paediatric scars. Compared with adult scars, an extremely random collagen orientation was found (0.22 in children versus 0.41 and 0.46 adult normotrophic and hypertrophic scars, respectively). A lower collagen orientation index was found in scars with a lower VSS score. In addition, less severe scarring was measured in children suffering from ALL compared with children suffering from other types of childhood cancer. This suggests that the immune system could play a role in the development of aberrant scarring and should be a target for future research.
Foster, D H; Westland, S
1998-01-01
Visual search for an edge or line element differing in orientation from a background of other edge or line elements can be performed rapidly and effortlessly. In this study, based on psychophysical measurements with ten human observers, threshold values of the angle between a target and background line elements were obtained as functions of background-element orientation, in brief masked displays. A repeated-loess analysis of the threshold functions suggested the existence of several groups of orientation-selective mechanisms contributing to rapid orientated-line detection; specifically, coarse, intermediate and fine mechanisms with preferred orientations spaced at angles of approximately 90 degrees, 35 degrees, and 10 degrees-25 degrees, respectively. The preferred orientations of coarse and some intermediate mechanisms coincided with the vertical or horizontal of the frontoparallel plane, but the preferred orientations of fine mechanisms varied randomly from observer to observer, possibly reflecting individual variations in neuronal sampling characteristics. PMID:9753784
McQuilken, Molly; La Riviere, Patrick J.; Occhipinti, Patricia; Verma, Amitabh; Oldenbourg, Rudolf; Gladfelter, Amy S.; Tani, Tomomi
2016-01-01
Regulation of order, such as orientation and conformation, drives the function of most molecular assemblies in living cells but remains difficult to measure accurately through space and time. We built an instantaneous fluorescence polarization microscope, which simultaneously images position and orientation of fluorophores in living cells with single-molecule sensitivity and a time resolution of 100 ms. We developed image acquisition and analysis methods to track single particles that interact with higher-order assemblies of molecules. We tracked the fluctuations in position and orientation of molecules from the level of an ensemble of fluorophores down to single fluorophores. We tested our system in vitro using fluorescently labeled DNA and F-actin, in which the ensemble orientation of polarized fluorescence is known. We then tracked the orientation of sparsely labeled F-actin network at the leading edge of migrating human keratinocytes, revealing the anisotropic distribution of actin filaments relative to the local retrograde flow of the F-actin network. Additionally, we analyzed the position and orientation of septin-GFP molecules incorporated in septin bundles in growing hyphae of a filamentous fungus. Our data indicate that septin-GFP molecules undergo positional fluctuations within ∼350 nm of the binding site and angular fluctuations within ∼30° of the central orientation of the bundle. By reporting position and orientation of molecules while they form dynamic higher-order structures, our approach can provide insights into how micrometer-scale ordered assemblies emerge from nanoscale molecules in living cells. PMID:27679846
Study design and "evidence" in patient-oriented research.
Concato, John
2013-06-01
Individual studies in patient-oriented research, whether described as "comparative effectiveness" or using other terms, are based on underlying methodological designs. A simple taxonomy of study designs includes randomized controlled trials on the one hand, and observational studies (such as case series, cohort studies, and case-control studies) on the other. A rigid hierarchy of these design types is a fairly recent phenomenon, promoted as a tenet of "evidence-based medicine," with randomized controlled trials receiving gold-standard status in terms of producing valid results. Although randomized trials have many strengths, and contribute substantially to the evidence base in clinical care, making presumptions about the quality of a study based solely on category of research design is unscientific. Both the limitations of randomized trials as well as the strengths of observational studies tend to be overlooked when a priori assumptions are made. This essay presents an argument in support of a more balanced approach to evaluating evidence, and discusses representative examples from the general medical as well as pulmonary and critical care literature. The simultaneous consideration of validity (whether results are correct "internally") and generalizability (how well results apply to "external" populations) is warranted in assessing whether a study's results are accurate for patients likely to receive the intervention-examining the intersection of clinical and methodological issues in what can be called a medicine-based evidence approach. Examination of cause-effect associations in patient-oriented research should recognize both the strengths and limitations of randomized trials as well as observational studies.
Agbaje, O B A; Wirth, R; Morales, L F G; Shirai, K; Kosnik, M; Watanabe, T; Jacob, D E
2017-09-01
Tridacna derasa shells show a crossed lamellar microstructure consisting of three hierarchical lamellar structural orders. The mineral part is intimately intergrown with 0.9 wt% organics, namely polysaccharides, glycosylated and unglycosylated proteins and lipids, identified by Fourier transform infrared spectrometry. Transmission electron microscopy shows nanometre-sized grains with irregular grain boundaries and abundant voids. Twinning is observed across all spatial scales and results in a spread of the crystal orientation angles. Electron backscatter diffraction analysis shows a strong fibre texture with the [001] axes of aragonite aligned radially to the shell surface. The aragonitic [100] and [010] axes are oriented randomly around [001]. The random orientation of anisotropic crystallographic directions in this plane reduces anisotropy of the Young's modulus and adds to the optimization of mechanical properties of bivalve shells.
Microtubules Enable the Planar Cell Polarity of Airway Cilia
Vladar, Eszter K.; Bayly, Roy D.; Sangoram, Ashvin; Scott, Matthew P.; Axelrod, Jeffrey D.
2012-01-01
Summary Background Airway cilia must be physically oriented along the longitudinal tissue axis for concerted, directional motility that is essential for proper mucociliary clearance. Results We show that Planar Cell Polarity (PCP) signaling specifies directionality and orients respiratory cilia. Within all airway epithelial cells a conserved set of PCP proteins shows interdependent, asymmetric junctional localization; non-autonomous signaling coordinates polarization between cells; and a polarized microtubule (MT) network is likely required for asymmetric PCP protein localization. We find that basal bodies dock after polarity of PCP proteins is established, are polarized nearly simultaneously, and refinement of basal body/cilium orientation continues during airway epithelial development. Unique to mature multiciliated cells, we identify PCP-regulated, planar polarized MTs that originate from basal bodies and interact, via their plus ends, with membrane domains associated with the PCP proteins Frizzled and Dishevelled. Disruption of MTs leads to misoriented cilia. Conclusions A conserved PCP pathway orients airway cilia by communicating polarity information from asymmetric membrane domains at the apical junctions, through MTs, to orient the MT and actin based network of ciliary basal bodies below the apical surface. PMID:23122850
NASA Technical Reports Server (NTRS)
Beye, R.; George, T.; Yang, J. W.; Khan, M. A.
1996-01-01
A structural examination of aluminum nitride growth on [111] silicon was carried out using transmission electron microscopy. Electron diffraction indicates that the basal planes of the wurtzitic overlayer mimic the orientation of the close-packed planes of the substrate. However, considerable, random rotation in the basal plane and random out-of-plane tilts were evident. This article examines these issues with a structural examination of AlN and GaN/AlN on silicon and compares the findings to those reported in the literature.
Long-range ordering effect in electrodeposition of zinc and zinc oxide.
Liu, Tao; Wang, Sheng; Shi, Zi-Liang; Ma, Guo-Bin; Wang, Mu; Peng, Ru-Wen; Hao, Xi-Ping; Ming, Nai-Ben
2007-05-01
In this paper, we report the long-range ordering effect observed in the electro-crystallization of Zn and ZnO from an ultrathin aqueous electrolyte layer of ZnSO4 . The deposition branches are regularly angled, covered with random-looking, scalelike crystalline platelets of ZnO. Although the orientation of each crystalline platelet of ZnO appears random, transmission electron microscopy shows that they essentially possess the same crystallographic orientation as the single-crystalline zinc electrodeposit underneath. Based on the experimental observations, we suggest that this unique long-range ordering effect results from an epitaxial nucleation effect in electrocrystallization.
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1988-01-01
A scattering model for defoliated vegetation is developed by treating a layer of defoliated vegetation as a collection of randomly oriented dielectric cylinders of finite length over an irregular ground surface. Both polarized and depolarized backscattering are computed and their behavior versus the volume fraction, the incidence angle, the frequency, the angular distribution and the cylinder size are illustrated. It is found that both the angular distribution and the cylinder size have significant effects on the backscattered signal. The present theory is compared with measurements from defoliated vegetations.
Dewey, Evan B.; Sanchez, Desiree; Johnston, Christopher A.
2015-01-01
SUMMARY Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily-conserved cell proliferation pathway. PMID:26592339
Dewey, Evan B; Sanchez, Desiree; Johnston, Christopher A
2015-11-02
Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here, we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily conserved cell proliferation pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kabara, J F; Bonds, A B
2001-12-01
Responses of cat striate cortical cells to a drifting sinusoidal grating were modified by the superimposition of a second, perturbing grating (PG) that did not excite the cell when presented alone. One consequence of the presence of a PG was a shift in the tuning curves. The orientation tuning of all 41 cells exposed to a PG and the spatial frequency tuning of 83% of the 23 cells exposed to a PG showed statistically significant dislocations of both the response function peak and center of mass from their single grating values. As found in earlier reports, the presence of PGs suppressed responsiveness. However, reductions measured at the single grating optimum orientation or spatial frequency were on average 1.3 times greater than the suppression found at the peak of the response function modified by the presence of the PG. Much of the loss in response seen at the single grating optimum is thus a result of a shift in the tuning function rather than outright suppression. On average orientation shifts were repulsive and proportional (approximately 0.10 deg/deg) to the angle between the perturbing stimulus and the optimum single grating orientation. Shifts in the spatial frequency response function were both attractive and repulsive, resulting in an overall average of zero. For both simple and complex cells, PGs generally broadened orientation response function bandwidths. Similarly, complex cell spatial frequency response function bandwidths broadened. Simple cell spatial frequency response functions usually did not change, and those that did broadened only 4% on average. These data support the hypothesis that additional sinusoidal components in compound stimuli retune cells' response functions for orientation and spatial frequency.
Asymmetric nanoparticle may go "active" at room temperature
NASA Astrophysics Data System (ADS)
Sheng, Nan; Tu, YuSong; Guo, Pan; Wan, RongZheng; Wang, ZuoWei; Fang, HaiPing
2017-04-01
Using molecular dynamics simulations, we show that an asymmetrically shaped nanoparticle in dilute solution possesses a spontaneously curved trajectory within a finite time interval, instead of the generally expected random walk. This unexpected dynamic behavior has a similarity to that of active matters, such as swimming bacteria, cells, or even fish, but is of a different physical origin. The key to the curved trajectory lies in the non-zero resultant force originated from the imbalance of the collision forces acted by surrounding solvent molecules on the asymmetrically shaped nanoparticle during its orientation regulation. Theoretical formulae based on microscopic observations have been derived to describe this non-zero force and the resulting motion of the asymmetrically shaped nanoparticle.
Mechanical remodeling of normally sized mammalian cells under a gravity vector.
Zhang, Chen; Zhou, Lüwen; Zhang, Fan; Lü, Dongyuan; Li, Ning; Zheng, Lu; Xu, Yanhong; Li, Zhan; Sun, Shujin; Long, Mian
2017-02-01
Translocation of the dense nucleus along a gravity vector initiates mechanical remodeling of a cell, but the underlying mechanisms of cytoskeletal network and focal adhesion complex (FAC) reorganization in a mammalian cell remain unclear. We quantified the remodeling of an MC3T3-E1 cell placed in upward-, downward-, or edge-on-orientated substrate. Nucleus longitudinal translocation presents a high value in downward orientation at 24 h or in edge-on orientation at 72 h, which is consistent with orientation-dependent distribution of perinuclear actin stress fibers and vimentin cords. Redistribution of total FAC area and fractionized super mature adhesion number coordinates this dependence at short duration. This orientation-dependent remodeling is associated with nucleus flattering and lamin A/C phosphorylation. Actin depolymerization or Rho-associated protein kinase signaling inhibition abolishes the orientation dependence of nucleus translocation, whereas tubulin polymerization inhibition or vimentin disruption reserves the dependence. A biomechanical model is therefore proposed for integrating the mechanosensing of nucleus translocation with cytoskeletal remodeling and FAC reorganization induced by a gravity vector.-Zhang, C., Zhou, L., Zhang, F., Lü, D., Li, N., Zheng, L., Xu, Y., Li, Z., Sun, S., Long, M. Mechanical remodeling of normally sized mammalian cells under a gravity vector. © FASEB.
Accardi, Mario Alberto; McCullen, Seth D.; Callanan, Anthony; Chung, Sangwon; Cann, Philippa M.
2013-01-01
Articular cartilage provides a low-friction, wear-resistant surface for diarthrodial joints. Due to overloading and overuse, articular cartilage is known to undergo significant wear and degeneration potentially resulting in osteoarthritis (OA). Regenerative medicine strategies offer a promising solution for the treatment of articular cartilage defects and potentially localized early OA. Such strategies rely on the development of materials to restore some aspects of cartilage. In this study, microfibrous poly(ɛ-caprolactone) scaffolds of varying fiber orientations (random and aligned) were cultured with bovine chondrocytes for 4 weeks in vitro, and the mechanical and frictional properties were evaluated. Mechanical properties were quantified using unconfined compression and tensile testing techniques. Frictional properties were investigated at physiological compressive strains occurring in native articular cartilage. Scaffolds were sheared along the fiber direction, perpendicular to the fiber direction and in random orientation. The evolution of damage as a result of shear was evaluated via white light interferometry and scanning electron microscopy. As expected, the fiber orientation strongly affected the tensile properties as well as the compressive modulus of the scaffolds. Fiber orientation did not significantly affect the equilibrium frictional coefficient, but it was, however, a key factor in dictating the evolution of surface damage on the surface. Scaffolds shear tested perpendicular to the fiber orientation displayed the highest surface damage. Our results suggest that the fiber orientation of the scaffold implanted in the joint could strongly affect its resistance to damage due to shear. Scaffold fiber orientation should thus be carefully considered when using microfibrous scaffolds. PMID:23688110
NASA Astrophysics Data System (ADS)
Fujii, Koki; Nomura, Fumimasa; Kaneko, Tomoyuki
2018-03-01
To investigate the optimal conditions for electrical stimulation, communities of lined-up chick embryonic cardiomyocytes were evaluated in terms of their threshold voltage for pacing (PVMin) and the half-maximum paced frequency (PF50), with a focus on the following factors: (1) the orientation of the major axis of cell communities to the electric field (EF) direction as the external factor; (2) the number of cells in a cell community, the length of the cell community, and the mean length of cells comprising the community as the internal factors. Firstly, PVMin decreased with increasing length of the cell network oriented parallel to the EF. PVMin was approximately 0.041 ± 0.025 V/mm when the community was sufficiently long. On the other hand, PVMin in the orthogonal orientation was constant at 1.7 ± 0.047 V/mm with no dependence on the length of the cell network. Secondly, we found that PF50 increased with increasing length of the cell network or the number of cells in the network; the PF50 values were 2.03 ± 0.05 and 3.39 ± 0.05 Hz when the respective cell network lengths were 100 µm (n = 43) and more than 300 µm (n = 6) and the cells were oriented parallel to the EF. These findings indicate that it is important to suppress ventricular fibrillation with minimal efficient stimulation by considering the EF direction with respect to the orientation of cardiomyocytes. Furthermore, expanded cells showed the loss of ability to respond to stimulation at higher frequencies. Cardiomyocytes combined with seeded fibroblasts as a cell network at a low density are a possible model of a ventricular remodeling heart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huberman, E.
1977-01-01
Treatment of experimental animals with chemical carcinogens, including some polycyclic hydrocarbons, can result in the formation of malignant tumors. The process whereby some chemicals induce malignancy is as yet unknown. However, in a model system using mammalian cells in culture, it was possible to show that the chemical carcinogens induce malignant transformation rather than select for pre-existing tumor cells. In the process of the in vitro cell transformation, the normal cells, which have an oriented pattern of cell growth, a limited life-span in vitro, and are not tumorigenic, are converted into cells that have a hereditary random pattern of cellmore » growth, the ability to grow continuously in culture, and the ability to form tumors in vivo. This stable heritable phenotype of the transformed cells is similar to that of cells derived from spontaneous or experimentally induced tumors. Such stable heritable phenotype changes may arise from alteration in gene expression due to a somatic mutation after interaction of the carcinogen with cellular DNA. In the present experiments we have shown that metabolically activated carcinogenic polycyclic hydrocarbons which have been shown to bind to cellular DNA induce somatic mutations at different genetic loci in mammalian cells and that there is a relationship between the degree of mutant induction and the degree of carcinogenicity of the different hydrocarbons tested.« less
Spirals in space - non-random orientation of moss protonemata in microgravity (STS-87)
NASA Astrophysics Data System (ADS)
Kern, V.; Sack, F.
Protonemata of the moss Ceratodon purpureus are an excellent system for studying gravitropism and phototropis in a tip-growing cell. In darkness protonemata express negative gravitropism (they grow up) with high fidelity. When irradiated they accurately align in the light path. When grown in darkness under microgravity conditions (STS-87, Nov./Dec. 1997), 7-day old cultures displayed a predominately radial orientation. However, in older (14 d) cultures the protonemata grew in arcs and overall formed clockwise spirals. Cultures grown on a slow-rotating clinostat for 14 days also expressed spirals. Spirals were mostly clockwise and formed regardless of the orientation with respect to the acceleration force (speed of clinostat rotation) or to the direction of rotation. The presence of spirals in 14 d but not 7 d cultures could be due to culture age, stage, or size and/or to the duration of exposure to microgravity or clino-rotation. The phenomenon of protonemal phototropism allowed us to investigate this further. When unilaterally irradiated for 7 days, cultures displayed negative and positive phototropism while gravitropism was suppressed; in these cultures almost all cells were aligned in a straight line along the light path. When such cultures were transferred to darkness for an additional 7 d, clockwise arcs and spirals formed. Thus, spiral formation requires only a 7-day dose of microgravity or clino-rotation, as long as the cultures are of a sufficient age or stage (7 days or less). The presence of coordinated clockwise spiral growth in μg suggests that there is an endogenous growth polarity in Ceratodon that normally is suppressed by gravitropism. A working hypothesis is that the spirals represent a residual spacing mechanism for controlling colony growth and the distribution of side branches. (Supported by NASA: NAG10-017).
Recovery practice in community mental health teams: national survey
Leamy, M.; Clarke, E.; Le Boutillier, C.; Bird, V.; Choudhury, R.; MacPherson, R.; Pesola, F.; Sabas, K.; Williams, J.; Williams, P.; Slade, M.
2016-01-01
Background There is consensus about the importance of ‘recovery’ in mental health services, but the link between recovery orientation of mental health teams and personal recovery of individuals has been underresearched. Aims To investigate differences in team leader, clinician and service user perspectives of recovery orientation of community adult mental health teams in England. Method In six English mental health National Health Service (NHS) trusts, randomly chosen community adult mental health teams were surveyed. A random sample of ten patients, one team leader and a convenience sample of five clinicians were surveyed from each team. All respondents rated the recovery orientation of their team using parallel versions of the Recovery Self Assessment (RSA). In addition, service users also rated their own personal recovery using the Questionnaire about Processes of Recovery (QPR). Results Team leaders (n = 22) rated recovery orientation higher than clinicians (n = 109) or patients (n = 120) (Wald(2) = 7.0, P = 0.03), and both NHS trust and team type influenced RSA ratings. Patient-rated recovery orientation was a predictor of personal recovery (b = 0.58, 95% CI 0.31–0.85, P<0.001). Team leaders and clinicians with experience of mental illness (39%) or supporting a family member or friend with mental illness (76%) did not differ in their RSA ratings from other team leaders or clinicians. Conclusions Compared with team leaders, frontline clinicians and service users have less positive views on recovery orientation. Increasing recovery orientation may support personal recovery. PMID:27340113
Edwards, Darin; Stancescu, Maria; Molnar, Peter; Hickman, James J
2013-08-21
In this study, we demonstrate the directed formation of small circuits of electrically active, synaptically connected neurons derived from the hippocampus of adult rats through the use of engineered chemically modified culture surfaces that orient the polarity of the neuronal processes. Although synaptogenesis, synaptic communication, synaptic plasticity, and brain disease pathophysiology can be studied using brain slice or dissociated embryonic neuronal culture systems, the complex elements found in neuronal synapses makes specific studies difficult in these random cultures. The study of synaptic transmission in mature adult neurons and factors affecting synaptic transmission are generally studied in organotypic cultures, in brain slices, or in vivo. However, engineered neuronal networks would allow these studies to be performed instead on simple functional neuronal circuits derived from adult brain tissue. Photolithographic patterned self-assembled monolayers (SAMs) were used to create the two-cell "bidirectional polarity" circuit patterns. This pattern consisted of a cell permissive SAM, N-1[3-(trimethoxysilyl)propyl] diethylenetriamine (DETA), and was composed of two 25 μm somal adhesion sites connected with 5 μm lines acting as surface cues for guided axonal and dendritic regeneration. Surrounding the DETA pattern was a background of a non-cell-permissive poly(ethylene glycol) (PEG) SAM. Adult hippocampal neurons were first cultured on coverslips coated with DETA monolayers and were later passaged onto the PEG-DETA bidirectional polarity patterns in serum-free medium. These neurons followed surface cues, attaching and regenerating only along the DETA substrate to form small engineered neuronal circuits. These circuits were stable for more than 21 days in vitro (DIV), during which synaptic connectivity was evaluated using basic electrophysiological methods.
Fradin, Cécile
2013-01-01
Magnetotactic bacteria possess organelles called magnetosomes that confer a magnetic moment on the cells, resulting in their partial alignment with external magnetic fields. Here we show that analysis of the trajectories of cells exposed to an external magnetic field can be used to measure the average magnetic dipole moment of a cell population in at least five different ways. We apply this analysis to movies of Magnetospirillum magneticum AMB-1 cells, and compare the values of the magnetic moment obtained in this way to that obtained by direct measurements of magnetosome dimension from electron micrographs. We find that methods relying on the viscous relaxation of the cell orientation give results comparable to that obtained by magnetosome measurements, whereas methods relying on statistical mechanics assumptions give systematically lower values of the magnetic moment. Since the observed distribution of magnetic moments in the population is not sufficient to explain this discrepancy, our results suggest that non-thermal random noise is present in the system, implying that a magnetotactic bacterial population should not be considered as similar to a paramagnetic material. PMID:24349185
Differentiation and Tropisms in Space-Grown Moss
NASA Technical Reports Server (NTRS)
Sack, Fred D.; Kern, Volker
1999-01-01
This grant supported a Space Shuttle experiment on the effects of microgravity on moss cells. Moss provides a rich system for gravitational and spaceflight research. The early phase of the moss life cycle consists of chains of cells that only grow only at their tips. In the moss Ceratodon purpureus these filaments (protonemata) grow away from gravity in the dark, in a process called gravitropism. The tipmost cells, the apical cells, contain heavy starch-filled bodies called amyloplasts that probably function in g-sensing and that sediment within the apical cell. The SPM-A (Space Moss aka SPAM) experiment flew in November - December, 1997 on STS-87 as part of the Collaborative US Ukrainian Experiment (CLTE). The experiment was accommodated in hardware purpose-built by NASA KSC and Bionetics and included Petri Dish Fixation Units (PDFU) and BRIC-LEDs. Together, this hardware allowed for the culture of the moss on agar in commercial petri dishes, for unilateral illumination with red light of varying intensity, and for chemical fixation in situ. The key findings of the spaceflight were quite unexpected. Neither the orientation of tip-growth nor the distribution of amyloplasts was random in microgravity.
Enticott, Joanne C; Shawyer, Frances; Brophy, Lisa; Russell, Grant; Fossey, Ellie; Inder, Brett; Mazza, Danielle; Vasi, Shiva; Weller, Penelope June; Wilson-Evered, Elisabeth; Edan, Vrinda; Meadows, Graham
2016-12-20
General practitioners (GPs) in Australia play a central role in the delivery of mental health care. This article describes the PULSAR (Principles Unite Local Services Assisting Recovery) Primary Care protocol, a novel mixed methods evaluation of a training intervention for GPs in recovery-oriented practice. The aim of the intervention is to optimize personal recovery in patients consulting study GPs for mental health issues. The intervention mixed methods design involves a stepped-wedge cluster randomized controlled trial testing the outcomes of training in recovery-oriented practice, together with an embedded qualitative study to identify the contextual enablers and challenges to implementing recovery-oriented practice. The project is conducted in Victoria, Australia between 2013 and 2017. Eighteen general practices and community health centers are randomly allocated to one of two steps (nine months apart) to start an intervention comprising GP training in the delivery of recovery-oriented practice. Data collection consists of cross-sectional surveys collected from patients of participating GPs at baseline, and again at the end of Steps 1 and 2. The primary outcome is improvement in personal recovery using responses to the Questionnaire about the Process of Recovery. Secondary outcomes are improvements in patient-rated measures of personal recovery and wellbeing, and of the recovery-oriented practice they have received, using the INSPIRE questionnaire, the Warwick-Edinburgh Mental Well-being Scale, and the Kessler Psychological Distress Scale. Participant data will be analyzed in the group that the cluster was assigned to at each study time point. Another per-protocol dataset will contain all data time-stamped according to the date of intervention received at each cluster site. Qualitative interviews with GPs and patients at three and nine months post-training will investigate experiences and challenges related to implementing recovery-oriented practice in primary care. Recovery-oriented practice is gaining increasing prominence in mental health service delivery and the outcomes of such an approach within the primary care sector for the first time will be evaluated in this project. If findings are positive, the intervention has the potential to extend recovery-oriented practice to GPs throughout the community. Australian and New Zealand Clinical Trial Registry ( ACTRN12614001312639 ). Registered: 8 August 2014.
Quantitative Analysis of Intracellular Motility Based on Optical Flow Model
Li, Heng
2017-01-01
Analysis of cell mobility is a key issue for abnormality identification and classification in cell biology research. However, since cell deformation induced by various biological processes is random and cell protrusion is irregular, it is difficult to measure cell morphology and motility in microscopic images. To address this dilemma, we propose an improved variation optical flow model for quantitative analysis of intracellular motility, which not only extracts intracellular motion fields effectively but also deals with optical flow computation problem at the border by taking advantages of the formulation based on L1 and L2 norm, respectively. In the energy functional of our proposed optical flow model, the data term is in the form of L2 norm; the smoothness of the data changes with regional features through an adaptive parameter, using L1 norm near the edge of the cell and L2 norm away from the edge. We further extract histograms of oriented optical flow (HOOF) after optical flow field of intracellular motion is computed. Then distances of different HOOFs are calculated as the intracellular motion features to grade the intracellular motion. Experimental results show that the features extracted from HOOFs provide new insights into the relationship between the cell motility and the special pathological conditions. PMID:29065574
Sauer, Stephan; Burkett, Sandra S; Lewandoski, Mark; Klar, Amar J S
2013-05-01
Sister chromatids contain identical DNA sequence but are chiral with respect to both their helical handedness and their replication history. Emerging evidence from various model organisms suggests that certain stem cells segregate sister chromatids nonrandomly to either maintain genome integrity or to bias cellular differentiation in asymmetric cell divisions. Conventional methods for tracing of old vs. newly synthesized DNA strands generally lack resolution for individual chromosomes and employ halogenated thymidine analogs with profound cytotoxic effects on rapidly dividing cells. Here, we present a modified chromosome orientation fluorescence in situ hybridization (CO-FISH) assay, where identification of individual chromosomes and their replication history is achieved in subsequent hybridization steps with chromosome-specific DNA probes and PNA telomere probes. Importantly, we tackle the issue of BrdU cytotoxicity and show that our method is compatible with normal mouse ES cell biology, unlike a recently published related protocol. Results from our CO-FISH assay show that mitotic segregation of mouse chromosome 7 is random in ES cells, which contrasts previously published results from our laboratory and settles a controversy. Our straightforward protocol represents a useful resource for future studies on chromatid segregation patterns of in vitro-cultured cells from distinct model organisms.
Murphy-Baum, Benjamin L; Taylor, W Rowland
2015-09-30
Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the strength and speed of excitation on both local and wide-field spatial scales. This study demonstrates how different synaptic inputs are regulated to tune a neuron to respond to specific features in the visual scene. Copyright © 2015 the authors 0270-6474/15/3513336-15$15.00/0.
Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially.
Schall, J D; Perry, V H; Leventhal, A G
1986-03-12
We analyzed the dendritic field morphology of 297 ganglion cells from peripheral regions of monkey retina. Most of the dendritic fields were elongated, and there was a significant tendency for the dendritic fields to be oriented radially, i.e., like the spokes of a wheel with the fovea at the hub. An overrepresentation of radial orientations in the peripheral retina of primates might explain why humans are best able to detect stimuli which are oriented radially using peripheral vision.
Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib
2011-03-01
The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza
Purpose: The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Methods: Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously publishedmore » design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 deg. to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. Results: The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. Conclusions: The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.« less
Olfactory epithelium influences the orientation of mitral cell dendrites during development.
López-Mascaraque, Laura; García, Concepción; Blanchart, Albert; De Carlos, Juan A
2005-02-01
We have established previously that, although the olfactory epithelium is absent in the homozygous Pax-6 mutant mouse, an olfactory bulb-like structure (OBLS) does develop. Moreover, this OBLS contains cells that correspond to mitral cells, the primary projection neurons in the olfactory bulb. The current study aimed to address whether the dendrites of mitral cells in the olfactory bulb or in the OBLS mitral-like cells, exhibit a change in orientation in the presence of the olfactory epithelium. The underlying hypothesis is that the olfactory epithelium imparts a trophic signal on mitral and mitral-like cell that influences the growth of their primary dendrites, orientating them toward the surface of the olfactory bulb. Hence, we cultured hemibrains from wild-type and Pax 6 mutant mice from two different embryonic stages (embryonic days 14 and 15) either alone or in coculture with normal olfactory epithelial explants or control tissue (cerebellum). Our results indicate that the final dendritic orientation of mitral and mitral-like cells is directly influenced both by age and indeed by the presence of the olfactory epithelium. Copyright 2004 Wiley-Liss, Inc.
Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles
NASA Astrophysics Data System (ADS)
Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.
2015-11-01
Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.
[See the thinking brain: a story about water].
Le Bihan, D
2008-01-01
Among the astonishing Einstein's papers from 1905, there is one which unexpectedly gave birth to a powerful method to explore the brain. Molecular diffusion was explained by Einstein on the basis of the random translational motion of molecules which results from their thermal energy. In the mid 1980s it was shown that water diffusion in the brain could be imaged using MRI. During their random displacements water molecules probe tissue structure at a microscopic scale, interacting with cell membranes and, thus, providing unique information on the functional architecture of tissues. A dramatic application of diffusion MRI has been brain ischemia, following the discovery that water diffusion drops immediately after the onset of an ischemic event, when brain cells undergo swelling through cytotoxic edema. On the other hand, water diffusion is anisotropic in white matter, because axon membranes limit molecular movement perpendicularly to the fibers. This feature can be exploited to map out the orientation in space of the white matter tracks and image brain connections. More recently, it has been shown that diffusion MRI could accurately detect cortical activation. As the diffusion response precedes by several seconds the hemodynamic response captured by BOLD fMRI, it has been suggested that water diffusion could reflect early neuronal events, such as the transient swelling of activated cortical cells. If confirmed, this discovery will represent a significant breakthrough, allowing non invasive access to a direct physiological marker of brain activation. This approach will bridge the gap between invasive optical imaging techniques in neuronal cell cultures, and current functional neuroimaging approaches in humans, which are based on indirect and remote blood flow changes.
Li, Ya-tang; Liu, Bao-hua; Chou, Xiao-lin; Zhang, Li I.
2015-01-01
In the primary visual cortex (V1), orientation-selective neurons can be categorized into simple and complex cells primarily based on their receptive field (RF) structures. In mouse V1, although previous studies have examined the excitatory/inhibitory interplay underlying orientation selectivity (OS) of simple cells, the synaptic bases for that of complex cells have remained obscure. Here, by combining in vivo loose-patch and whole-cell recordings, we found that complex cells, identified by their overlapping on/off subfields, had significantly weaker OS than simple cells at both spiking and subthreshold membrane potential response levels. Voltage-clamp recordings further revealed that although excitatory inputs to complex and simple cells exhibited a similar degree of OS, inhibition in complex cells was more narrowly tuned than excitation, whereas in simple cells inhibition was more broadly tuned than excitation. The differential inhibitory tuning can primarily account for the difference in OS between complex and simple cells. Interestingly, the differential synaptic tuning correlated well with the spatial organization of synaptic input: the inhibitory visual RF in complex cells was more elongated in shape than its excitatory counterpart and also was more elongated than that in simple cells. Together, our results demonstrate that OS of complex and simple cells is differentially shaped by cortical inhibition based on its orientation tuning profile relative to excitation, which is contributed at least partially by the spatial organization of RFs of presynaptic inhibitory neurons. SIGNIFICANCE STATEMENT Simple and complex cells, two classes of principal neurons in the primary visual cortex (V1), are generally thought to be equally selective for orientation. In mouse V1, we report that complex cells, identified by their overlapping on/off subfields, has significantly weaker orientation selectivity (OS) than simple cells. This can be primarily attributed to the differential tuning selectivity of inhibitory synaptic input: inhibition in complex cells is more narrowly tuned than excitation, whereas in simple cells inhibition is more broadly tuned than excitation. In addition, there is a good correlation between inhibitory tuning selectivity and the spatial organization of inhibitory inputs. These complex and simple cells with differential degree of OS may provide functionally distinct signals to different downstream targets. PMID:26245969
Li, Ya-tang; Liu, Bao-hua; Chou, Xiao-lin; Zhang, Li I; Tao, Huizhong W
2015-08-05
In the primary visual cortex (V1), orientation-selective neurons can be categorized into simple and complex cells primarily based on their receptive field (RF) structures. In mouse V1, although previous studies have examined the excitatory/inhibitory interplay underlying orientation selectivity (OS) of simple cells, the synaptic bases for that of complex cells have remained obscure. Here, by combining in vivo loose-patch and whole-cell recordings, we found that complex cells, identified by their overlapping on/off subfields, had significantly weaker OS than simple cells at both spiking and subthreshold membrane potential response levels. Voltage-clamp recordings further revealed that although excitatory inputs to complex and simple cells exhibited a similar degree of OS, inhibition in complex cells was more narrowly tuned than excitation, whereas in simple cells inhibition was more broadly tuned than excitation. The differential inhibitory tuning can primarily account for the difference in OS between complex and simple cells. Interestingly, the differential synaptic tuning correlated well with the spatial organization of synaptic input: the inhibitory visual RF in complex cells was more elongated in shape than its excitatory counterpart and also was more elongated than that in simple cells. Together, our results demonstrate that OS of complex and simple cells is differentially shaped by cortical inhibition based on its orientation tuning profile relative to excitation, which is contributed at least partially by the spatial organization of RFs of presynaptic inhibitory neurons. Simple and complex cells, two classes of principal neurons in the primary visual cortex (V1), are generally thought to be equally selective for orientation. In mouse V1, we report that complex cells, identified by their overlapping on/off subfields, has significantly weaker orientation selectivity (OS) than simple cells. This can be primarily attributed to the differential tuning selectivity of inhibitory synaptic input: inhibition in complex cells is more narrowly tuned than excitation, whereas in simple cells inhibition is more broadly tuned than excitation. In addition, there is a good correlation between inhibitory tuning selectivity and the spatial organization of inhibitory inputs. These complex and simple cells with differential degree of OS may provide functionally distinct signals to different downstream targets. Copyright © 2015 the authors 0270-6474/15/3511081-13$15.00/0.
Li, Xin; Young, Nathan M.; Tropp, Stephen; Hu, Diane; Xu, Yanhua; Hallgrímsson, Benedikt; Marcucio, Ralph S.
2013-01-01
Fibroblast growth factor (FGF) signaling mutations are a frequent contributor to craniofacial malformations including midfacial anomalies and craniosynostosis. FGF signaling has been shown to control cellular mechanisms that contribute to facial morphogenesis and growth such as proliferation, survival, migration and differentiation. We hypothesized that FGF signaling not only controls the magnitude of growth during facial morphogenesis but also regulates the direction of growth via cell polarity. To test this idea, we infected migrating neural crest cells of chicken embryos with replication-competent avian sarcoma virus expressing either FgfR2C278F, a receptor mutation found in Crouzon syndrome or the ligand Fgf8. Treated embryos exhibited craniofacial malformations resembling facial dysmorphologies in craniosynostosis syndrome. Consistent with our hypothesis, ectopic activation of FGF signaling resulted in decreased cell proliferation, increased expression of the Sprouty class of FGF signaling inhibitors, and repressed phosphorylation of ERK/MAPK. Furthermore, quantification of cell polarity in facial mesenchymal cells showed that while orientation of the Golgi body matches the direction of facial prominence outgrowth in normal cells, in FGF-treated embryos this direction is randomized, consistent with aberrant growth that we observed. Together, these data demonstrate that FGF signaling regulates cell proliferation and cell polarity and that these cell processes contribute to facial morphogenesis. PMID:23906837
Jacques, Eveline; Buytaert, Jan; Wells, Darren M; Lewandowski, Michal; Bennett, Malcolm J; Dirckx, Joris; Verbelen, Jean-Pierre; Vissenberg, Kris
2013-06-01
Image acquisition is an important step in the study of cytoskeleton organization. As visual interpretations and manual measurements of digital images are prone to errors and require a great amount of time, a freely available software package named MicroFilament Analyzer (MFA) was developed. The goal was to provide a tool that facilitates high-throughput analysis to determine the orientation of filamentous structures on digital images in a more standardized, objective and repeatable way. Here, the rationale and applicability of the program is demonstrated by analyzing the microtubule patterns in epidermal cells of control and gravi-stimulated Arabidopsis thaliana roots. Differential expansion of cells on either side of the root results in downward bending of the root tip. As cell expansion depends on the properties of the cell wall, this may imply a differential orientation of cellulose microfibrils. As cellulose deposition is orchestrated by cortical microtubules, the microtubule patterns were analyzed. The MFA program detects the filamentous structures on the image and identifies the main orientation(s) within individual cells. This revealed four distinguishable microtubule patterns in root epidermal cells. The analysis indicated that gravitropic stimulation and developmental age are both significant factors that determine microtubule orientation. Moreover, the data show that an altered microtubule pattern does not precede differential expansion. Other possible applications are also illustrated, including field emission scanning electron micrographs of cellulose microfibrils in plant cell walls and images of fluorescent actin. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Subcortical orientation biases explain orientation selectivity of visual cortical cells.
Vidyasagar, Trichur R; Jayakumar, Jaikishan; Lloyd, Errol; Levichkina, Ekaterina V
2015-04-01
The primary visual cortex of carnivores and primates shows an orderly progression of domains of neurons that are selective to a particular orientation of visual stimuli such as bars and gratings. We recorded from single-thalamic afferent fibers that terminate in these domains to address the issue whether the orientation sensitivity of these fibers could form the basis of the remarkable orientation selectivity exhibited by most cortical cells. We first performed optical imaging of intrinsic signals to obtain a map of orientation domains on the dorsal aspect of the anaesthetized cat's area 17. After confirming using electrophysiological recordings the orientation preferences of single neurons within one or two domains in each animal, we pharmacologically silenced the cortex to leave only the afferent terminals active. The inactivation of cortical neurons was achieved by the superfusion of either kainic acid or muscimol. Responses of single geniculate afferents were then recorded by the use of high impedance electrodes. We found that the orientation preferences of the afferents matched closely with those of the cells in the orientation domains that they terminated in (Pearson's r = 0.633, n = 22, P = 0.002). This suggests a possible subcortical origin for cortical orientation selectivity. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Mechanically induced orientation of adult rat cardiac myocytes in vitro
NASA Technical Reports Server (NTRS)
Samuel, J.-L.; Vandenburgh, H. H.
1990-01-01
The present study describes the spatial orientation of a population of freshly isolated adult rat cardiac myocytes using a computerized mechanical cell stimulator device for tissue cultured cells. A continuous unidirectional stretch of the substratum at 60 to 400 microns/min for 120 to 30 min, respectively, during the cell attachment period in a serum-free medium was found to induce a significant threefold increase in the number of rod-shaped myocytes oriented parallel to the direction of movement. The myocytes orient less well with unidirectional substratum stretching after their adhesion to the substratum. Adult myocytes plated onto a substratum undergoing continuous 10-percent stretch-relaxation cycling show no significant change in the myocyte orientation or cytoskeletal organization. In addition to the type of mechanical activity, orientation of rod-shaped myocytes is dependent on the speed of the substratum, the final stretch amplitude, and the timing between initiation of substratum stretching and adhesion of myocytes to the substratum.
SLK-dependent activation of ERMs controls LGN–NuMA localization and spindle orientation
Machicoane, Mickael; de Frutos, Cristina A.; Fink, Jenny; Rocancourt, Murielle; Lombardi, Yannis; Garel, Sonia; Piel, Matthieu
2014-01-01
Mitotic spindle orientation relies on a complex dialog between the spindle microtubules and the cell cortex, in which F-actin has been recently implicated. Here, we report that the membrane–actin linkers ezrin/radixin/moesin (ERMs) are strongly and directly activated by the Ste20-like kinase at mitotic entry in mammalian cells. Using microfabricated adhesive substrates to control the axis of cell division, we found that the activation of ERMs plays a key role in guiding the orientation of the mitotic spindle. Accordingly, impairing ERM activation in apical progenitors of the mouse embryonic neocortex severely disturbed spindle orientation in vivo. At the molecular level, ERM activation promotes the polarized association at the mitotic cortex of leucine-glycine-asparagine repeat protein (LGN) and nuclear mitotic apparatus (NuMA) protein, two essential factors for spindle orientation. We propose that activated ERMs, together with Gαi, are critical for the correct localization of LGN–NuMA force generator complexes and hence for proper spindle orientation. PMID:24958772
ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...
Value Orientation of Singapore Adolescents Towards Truthfulness, Justice and Compassion.
ERIC Educational Resources Information Center
Seng, SeokHoon; Siang, Low Meow; Wei, Tan Tai
This study examined the value orientation of Singapore adolescents toward the three fundamental values of truthfulness, justice, and compassion. A random sample of 315 secondary school students from 4 schools in Singapore (135 males and 180 females) completed a questionnaire, and a select sample of 19 students completed interviews about their…
Psychological Sources of Systematic Rejection Among White and Black Adolescents.
ERIC Educational Resources Information Center
Long, Samuel
In this study, individual-oriented and system-oriented models of systemic rejection among white and black adolescents are investigated. Systemic rejection is defined as attitudes of political alienation and political violence justification. Twelve hypotheses were generated and tested using survey data collected in May 1976 from a random sample of…
Jerry J. Vaske; Maureen P. Donnelly; Daniel R. Williams; Sandra Jonker
2001-01-01
Using the cognitive hierarchy as the theoretical foundation, this article examines the predictive influence of individuals' demographic characteristics on environmental value orientations and normative beliefs about national forest management. Data for this investigation were obtained from a random sample of Colorado residents (n = 960). As predicted by theory, a...
ERIC Educational Resources Information Center
Zacharia, Zacharias C.; de Jong, Ton
2014-01-01
This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre-post comparison study randomly assigned 194 undergraduates in an introductory physics course to one of five conditions: three…
Books and babies: clinical-based literacy programs.
Fortman, Kristine K; Fisch, Robert O; Phinney, Margaret Y; Defor, Terese A
2003-01-01
The purpose of this study was to assess parental response to a clinic-based literacy program at a health maintenance organization. It was hypothesized that participation would be associated with increased literacy orientation by children. This randomized community trial took place at a Midwestern health maintenance organization. Six clinics were paired and randomly assigned to participate or not participate in Project Read. The main outcome variable was literacy orientation (book use). The target population was parents of children younger than 12 months (N = 165). After 6 months of participation, parents were surveyed by telephone. Seventy-five percent and 77% of the treatment and control groups, respectively, had positive literacy orientation; this difference was not significant. Persons receiving a videotape were more likely to have a positive literacy orientation (82.9% vs 69.2%; P <.05). The multivariate regression analyses also showed that receiving the free videotape was a significant intervention exposure. The members of the population in this study are reading to their children. Parents who receive a videotape on the importance of reading are likely to read more to their children.
100-Fold Enhancement of Charge Transport in Uniaxially Oriented Mesoporous Anatase TiO 2 Films
Li, Ke; Liu, Jie; Sheng, Xia; ...
2017-12-04
Mesoporous semiconductor films are of considerable interest for applications in photoelectrochemical devices, however, despite intensive research till now, their charge transport properties remain significantly lower than their single-crystal counterparts. Herein, we report a novel low-temperature template-free technique for growing high surface area mesoporous anatase TiO2 films with a preferred [001] crystalline-orientation on FTO-coated glass substrate. Compared to mesoporous films that comprised of randomly oriented crystallites, the uniaxial orientation enables a 100-fold increase in the rate of electron transport. The uniaxially oriented mesoporous anatase TiO2 films exhibit should greatly facilitate the development and application of photoelectrochemical and electrochemical devices.
Cell wall biogenesis in Oocystis: experimental alteration of microfibril assembly and orientation.
Montezinos, D; Brown, R M
1978-01-01
Cell wall biogenesis in the unicellular green alga Oocystis apiculata has been studied. Under normal growth conditions, a cell wall with ordered microfibrils is synthesized. In each layer there are rows of parallel microfibrils. Layers are nearly perpendicular to each other. Terminal linear synthesizing complexes are located in the plasma membrane, and they are capable of bidirectional synthesis of cellulose microfibrils. Granule bands associated with the inner leaflet of the plasma membrane appear to control the orientation of newly synthesized microfibrils. Subcortical microtubules also are present during wall synthesis. Patterns of cell wall synthesis were studied after treatment with EDTA and EGTA as well as divalent cations (MgSO4, CaSO4, Cacl2). 0.1 M EDTA treatment for 15 min results in the disassociation of the terminal complexes from the ends of microfibrils. EDTA-treated cells followed by 15 min treatment with MgSO4 results in reaggregation of the linear complexes into a paired state, remote from the original ends to which they were associated. After 90 min treatment with MgSO4, normal synthesis resumes. EGTA and calcium salts do not affect the linear complexes or microfibril orientation. Treatments with colchicine and vinblastine sulphate do not depolymerize the microtubles, but the wall microfibril orientation is altered. With colchicine or vinblastine, the change in orientation from layer to layer is inhibited. The process is reversible upon removal of the drugs. Lumicolchicine has no effect upon microfibril orientation, but granule bands are disorganized. Treatment with coumarin, a known inhibitor of cellulose synthesis, causes the loss of visualization of subunits of the terminal complexes. The possibility of the existence of a membrane-associated colchicine-sensitive orientation protein for cellulose microfibrils is discussed. Transmembrane modulation of microfibril synthesis and orientation is presented.
Tsukamoto, Yoshinari; Akagi, Takami; Shima, Fumiaki; Akashi, Mitsuru
2017-06-01
Herein, we report the fabrication of orientation-controlled tissues similar to heart and nerve tissues using a cell accumulation and three-dimensional (3D) printing technique. We first evaluated the 3D shaping ability of hydroxybutyl chitosan (HBC), a thermoresponsive polymer, by using a robotic dispensing 3D printer. HBC polymer could be laminated to a height of 1124 ± 14 μm. Based on this result, we fabricated 3D gel frames of various shapes, such as square, triangular, rectangular, and circular, for shape control of 3D tissue and then normal human cardiac fibroblasts (NHCFs) coated with extracellular matrix nanofilms were seeded in the frames. Observation of shape-controlled tissues after 1 day of cultivation showed that the orientation of fibroblasts was in one direction when a short-sided, thin, rectangular-shaped frame was used. Next, we tried to fabricate orientation-controlled tissue with a vascular network by coculturing NHCF and normal human cardiac microvascular endothelial cells. As a consequence of cultivation for 4 days, observation of cocultured tissue confirmed aligned cells and blood capillaries in orientation-controlled tissue. Our results clearly demonstrated that it would be possible to control the cell orientation by controlling the shape of the tissues by combining a cell accumulation technique and a 3D printing system. The results of this study suggest promising strategies for the fabrication of oriented 3D tissues in vitro. These tissues, mimicking native organ structures, such as muscle and nerve tissue with a cell alignment structure, would be useful for tissue engineering, regenerative medicine, and pharmaceutical applications.
Hamada, Hirokazu; Abe, Yuko; Nagane, Ryoichi; Fang, Ya-Yin; Lewis, Mark A.; Long, Eric C.; Chikira, Makoto
2007-01-01
DNA fiber EPR was used to investigate the DNA binding stabilities and orientations of Cu(II)•Gly-Gly-His-derived metallopeptides containing d- vs. l-amino acid substitutions in the first peptide position. This examination included studies of Cu(II)•d-Arg-Gly-His and Cu(II)•d-Lys-Gly-His for comparison to metallopeptides containing l-Arg/Lys substitutions, and also the diastereoisomeric pairs Cu(II)•d/l-Pro-Gly-His and Cu(II)•d/l-Pro-Lys-His. Results indicated that l-Arg/Lys to d-Arg/Lys substitutions considerably randomized the orientation of the metallopeptides on DNA whereas the replacement of l-Pro by d-Pro in Cu(II)•l-Pro-Gly-His caused a decrease in randomness. The difference in the extent of randomness of d- vs. l-Pro-Gly-His complexes was diminished through the substitution of Gly for Lys in the middle peptide position, supporting the notion that the ε-amino group of Lys triggered further randomization, likely through hydrogen bonding or electrostatic interactions that disrupt binding of the metallopeptide equatorial plane and the DNA. The relationship between the stereochemistry of amino acid residues and the binding and reaction of M(II)•Xaa-Xaa’-His metallopeptides with DNA are also discussed. PMID:17706784
NASA Technical Reports Server (NTRS)
Kwon, Jin H.; Lee, Ja H.
1989-01-01
The far-field beam pattern and the power-collection efficiency are calculated for a multistage laser-diode-array amplifier consisting of about 200,000 5-W laser diode arrays with random distributions of phase and orientation errors and random diode failures. From the numerical calculation it is found that the far-field beam pattern is little affected by random failures of up to 20 percent of the laser diodes with reference of 80 percent receiving efficiency in the center spot. The random differences in phases among laser diodes due to probable manufacturing errors is allowed to about 0.2 times the wavelength. The maximum allowable orientation error is about 20 percent of the diffraction angle of a single laser diode aperture (about 1 cm). The preliminary results indicate that the amplifier could be used for space beam-power transmission with an efficiency of about 80 percent for a moderate-size (3-m-diameter) receiver placed at a distance of less than 50,000 km.
Sakota, Daisuke; Takatani, Setsuo
2012-05-01
Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.
Wetting morphologies on randomly oriented fibers.
Sauret, Alban; Boulogne, François; Soh, Beatrice; Dressaire, Emilie; Stone, Howard A
2015-06-01
We characterize the different morphologies adopted by a drop of liquid placed on two randomly oriented fibers, which is a first step toward understanding the wetting of fibrous networks. The present work reviews previous modeling for parallel and touching crossed fibers and extends it to an arbitrary orientation of the fibers characterized by the tilting angle and the minimum spacing distance. Depending on the volume of liquid, the spacing distance between fibers and the angle between the fibers, we highlight that the liquid can adopt three different equilibrium morphologies: 1) a column morphology in which the liquid spreads between the fibers, 2) a mixed morphology where a drop grows at one end of the column or 3) a single drop located at the node. We capture the different morphologies observed using an analytical model that predicts the equilibrium configuration of the liquid based on the geometry of the fibers and the volume of liquid.
Almada, Evangelina; Tonucci, Facundo M; Hidalgo, Florencia; Ferretti, Anabela; Ibarra, Solange; Pariani, Alejandro; Vena, Rodrigo; Favre, Cristián; Girardini, Javier; Kierbel, Arlinet; Larocca, M Cecilia
2017-11-02
The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.
Fluid flows created by swimming bacteria drive self-organization in confined suspensions
Lushi, Enkeleida; Wioland, Hugo; Goldstein, Raymond E.
2014-01-01
Concentrated suspensions of swimming microorganisms and other forms of active matter are known to display complex, self-organized spatiotemporal patterns on scales that are large compared with those of the individual motile units. Despite intensive experimental and theoretical study, it has remained unclear the extent to which the hydrodynamic flows generated by swimming cells, rather than purely steric interactions between them, drive the self-organization. Here we use the recent discovery of a spiral-vortex state in confined suspensions of Bacillus subtilis to study this issue in detail. Those experiments showed that if the radius of confinement in a thin cylindrical chamber is below a critical value, the suspension will spontaneously form a steady single-vortex state encircled by a counter-rotating cell boundary layer, with spiral cell orientation within the vortex. Left unclear, however, was the flagellar orientation, and hence the cell swimming direction, within the spiral vortex. Here, using a fast simulation method that captures oriented cell–cell and cell–fluid interactions in a minimal model of discrete particle systems, we predict the striking, counterintuitive result that in the presence of collectively generated fluid motion, the cells within the spiral vortex actually swim upstream against those flows. This prediction is then confirmed by the experiments reported here, which include measurements of flagella bundle orientation and cell tracking in the self-organized state. These results highlight the complex interplay between cell orientation and hydrodynamic flows in concentrated suspensions of microorganisms. PMID:24958878
The Multi-Orientable Random Tensor Model, a Review
NASA Astrophysics Data System (ADS)
Tanasa, Adrian
2016-06-01
After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the 1/N expansion and of the large N limit (N being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit.
Inaba, Mayu; Venkei, Zsolt G; Yamashita, Yukiko M
2015-03-20
Many stem cells divide asymmetrically in order to balance self-renewal with differentiation. The essence of asymmetric cell division (ACD) is the polarization of cells and subsequent division, leading to unequal compartmentalization of cellular/extracellular components that confer distinct cell fates to daughter cells. Because precocious cell division before establishing cell polarity would lead to failure in ACD, these two processes must be tightly coupled; however, the underlying mechanism is poorly understood. In Drosophila male germline stem cells, ACD is prepared by stereotypical centrosome positioning. The centrosome orientation checkpoint (COC) further serves to ensure ACD by preventing mitosis upon centrosome misorientation. In this study, we show that Bazooka (Baz) provides a platform for the correct centrosome orientation and that Baz-centrosome association is the key event that is monitored by the COC. Our work provides a foundation for understanding how the correct cell polarity may be recognized by the cell to ensure productive ACD.
Li, Yuwei; Li, Ang; Junge, Jason; Bronner, Marianne
2017-10-10
Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton.
Li, Yuwei; Li, Ang; Junge, Jason
2017-01-01
Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton. PMID:28994649
Microstructure of Al2O3 scales formed on NiCrAl alloys. Ph.D. Thesis - Case Western Reserve Univ.
NASA Technical Reports Server (NTRS)
Smialek, J. L.
1981-01-01
The structure of transient scales formed on pure and Y or Zr-doped Ni-15Cr-13Al alloys oxidized for 0.1 hr at 1100 C was studied by the use of transmission electron microscopy. Crystallographically oriented scales were found on all three alloys, but especially for the Zr-doped NiCrAl. The oriented scales consisted of alpha-(Al,Cr)2O3, Ni(Al,Cr)2O4 and gamma-Al2O3. They were often found in intimate contact with each other such that the close-packed planes and directions of one oxide phase were aligned with those of another. The prominent structural features of the oriented scales were approximately equal to micrometer subgrains; voids, antiphase domain boundaries and aligned precipitates were also prevalent. Randomly oriented alpha-Al2O3 was also found and was the only oxide ever observed at the immediate oxide metal interface. These approximately 0.15 micrometer grains were populated by intragranular voids which decreased in size and number towards the oxide metal interface. A sequence of oxidation was proposed in which the composition of the growing scale changed from oriented oxides rich in Ni and Cr to oriented oxides rich in Al. At the same time the structure changed from cubic spinels to hexagonal corundums with apparent precipitates of one phase in the matrix of the other. Eventually randomly oriented pure alpha-Al2O3 formed as the stable oxide with an abrupt transition: there was no gradual loss of orientation, no gradual compositional change or no gradual decrease in precipitate density.
Recurrent laryngeal nerve regeneration using an oriented collagen scaffold containing Schwann cells.
Chitose, Shun-Ichi; Sato, Kiminori; Fukahori, Mioko; Sueyoshi, Shintaro; Kurita, Takashi; Umeno, Hirohito
2017-07-01
Regeneration of the recurrent laryngeal nerve (RLN), which innervates the intrinsic laryngeal muscles such that they can perform complex functions, is particularly difficult to achieve. Synkinesis after RLN neogenesis leads to uncoordinated movement of laryngeal muscles. Recently, some basic research studies have used cultured Schwann cells (SCs) to repair peripheral nerve injuries. This study aimed to regenerate the RLN using an oriented collagen scaffold containing cultured SCs. Preliminary animal experiment. A 10-mm-long autologous canine cervical ansa was harvested. The nerve tissue was scattered and subcultured on oriented collagen sheets in reduced serum medium. After verifying that the smaller cultivated cells with high nucleus-cytoplasm ratios were SCs, collagen sheets with longitudinally oriented cells were rolled and inserted into a 20-mm collagen conduit. The fabricated scaffolds containing SCs were autotransplanted to a 20-mm deficient RLN, and vocal fold movements and histological characteristics were observed. Scaffolds containing cultured SCs were successfully fabricated. Immunocytochemical examination revealed that these isolated and cultured cells, identified as SCs, expressed S-100 protein and GFAP but not vimentin. The orientation of SCs matched that of the oriented collagen sheet. Two months after successful transplantation, laryngeal endoscopy revealed coordinated movement of the bilateral vocal folds by external stimulation under light general anesthesia. Hematoxylin and eosin staining showed that the regenerated RLN lacked epineurium surrounding the nerve fibers and was interspersed with collagen fibers. Myelin protein zero was expressed around many axons. Partial regeneration of RLN was achieved through the use of oriented collagen scaffolding. NA Laryngoscope, 127:1622-1627, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Hafner, Anne E; Rieger, Heiko
2016-11-15
Intracellular transport is vital for the proper functioning and survival of a cell. Cargo (proteins, vesicles, organelles, etc) is transferred from its place of creation to its target locations via molecular motor assisted transport along cytoskeletal filaments. The transport efficiency is strongly affected by the spatial organization of the cytoskeleton, which constitutes an inhomogeneous, complex network. In cells with a centrosome microtubules grow radially from the central microtubule organizing center towards the cell periphery whereas actin filaments form a dense meshwork, the actin cortex, underneath the cell membrane with a broad range of orientations. The emerging ballistic motion along filaments is frequently interrupted due to constricting intersection nodes or cycles of detachment and reattachment processes in the crowded cytoplasm. In order to investigate the efficiency of search strategies established by the cell's specific spatial organization of the cytoskeleton we formulate a random velocity model with intermittent arrest states. With extensive computer simulations we analyze the dependence of the mean first passage times for narrow escape problems on the structural characteristics of the cytoskeleton, the motor properties and the fraction of time spent in each state. We find that an inhomogeneous architecture with a small width of the actin cortex constitutes an efficient intracellular search strategy.
NASA Astrophysics Data System (ADS)
Tomar, Kiledar S.; Kumar, Shashi; Tolpekin, Valentyn A.; Joshi, Sushil K.
2016-05-01
Forests act as sink of carbon and as a result maintains carbon cycle in atmosphere. Deforestation leads to imbalance in global carbon cycle and changes in climate. Hence estimation of forest biophysical parameter like biomass becomes a necessity. PolSAR has the ability to discriminate the share of scattering element like surface, double bounce and volume scattering in a single SAR resolution cell. Studies have shown that volume scattering is a significant parameter for forest biophysical characterization which mainly occurred from vegetation due to randomly oriented structures. This random orientation of forest structure causes shift in orientation angle of polarization ellipse which ultimately disturbs the radar signature and shows overestimation of volume scattering and underestimation of double bounce scattering after decomposition of fully PolSAR data. Hybrid polarimetry has the advantage of zero POA shift due to rotational symmetry followed by the circular transmission of electromagnetic waves. The prime objective of this study was to extract the potential of Hybrid PolSAR and fully PolSAR data for AGB estimation using Extended Water Cloud model. Validation was performed using field biomass. The study site chosen was Barkot Forest, Uttarakhand, India. To obtain the decomposition components, m-alpha and Yamaguchi decomposition modelling for Hybrid and fully PolSAR data were implied respectively. The RGB composite image for both the decomposition techniques has generated. The contribution of all scattering from each plot for m-alpha and Yamaguchi decomposition modelling were extracted. The R2 value for modelled AGB and field biomass from Hybrid PolSAR and fully PolSAR data were found 0.5127 and 0.4625 respectively. The RMSE for Hybrid and fully PolSAR between modelled AGB and field biomass were 63.156 (t ha-1) and 73.424 (t ha-1) respectively. On the basis of RMSE and R2 value, this study suggests Hybrid PolSAR decomposition modelling to retrieve scattering element for AGB estimation from forest.
Chen, Yun; Pasapera, Ana M.; Koretsky, Alan P.; Waterman, Clare M.
2013-01-01
Cells are mechanosensitive to extracellular matrix (ECM) deformation, which can be caused by muscle contraction or changes in hydrostatic pressure. Focal adhesions (FAs) mediate the linkage between the cell and the ECM and initiate mechanically stimulated signaling events. We developed a stretching apparatus in which cells grown on fibronectin-coated elastic substrates can be stretched and imaged live to study how FAs dynamically respond to ECM deformation. Human bone osteosarcoma epithelial cell line U2OS was transfected with GFP-paxillin as an FA marker and subjected to sustained uniaxial stretching. Two responses at different timescales were observed: rapid FA growth within seconds after stretching, and delayed FA disassembly and loss of cell polarity that occurred over tens of minutes. Rapid FA growth occurred in all cells; however, delayed responses to stretch occurred in an orientation-specific manner, specifically in cells with their long axes perpendicular to the stretching direction, but not in cells with their long axes parallel to stretch. Pharmacological treatments demonstrated that FA kinase (FAK) promotes but Src inhibits rapid FA growth, whereas FAK, Src, and calpain 2 all contribute to delayed FA disassembly and loss of polarity in cells perpendicular to stretching. Immunostaining for phospho-FAK after stretching revealed that FAK activation was maximal at 5 s after stretching, specifically in FAs oriented perpendicular to stretch. We hypothesize that orientation-specific activation of strain/stress-sensitive proteins in FAs upstream to FAK and Src promote orientation-specific responses in FA growth and disassembly that mediate polarity rearrangement in response to sustained stretch. PMID:23754369
Tondon, Abhishek; Kaunas, Roland
2014-01-01
Cell structure depends on both matrix strain and stiffness, but their interactive effects are poorly understood. We investigated the interactive roles of matrix properties and stretching patterns on cell structure by uniaxially stretching U2OS cells expressing GFP-actin on silicone rubber sheets supporting either a surface-adsorbed coating or thick hydrogel of type-I collagen. Cells and their actin stress fibers oriented perpendicular to the direction of cyclic stretch on collagen-coated sheets, but oriented parallel to the stretch direction on collagen gels. There was significant alignment parallel to the direction of a steady increase in stretch for cells on collagen gels, while cells on collagen-coated sheets did not align in any direction. The extent of alignment was dependent on both strain rate and duration. Stretch-induced alignment on collagen gels was blocked by the myosin light-chain kinase inhibitor ML7, but not by the Rho-kinase inhibitor Y27632. We propose that active orientation of the actin cytoskeleton perpendicular and parallel to direction of stretch on stiff and soft substrates, respectively, are responses that tend to maintain intracellular tension at an optimal level. Further, our results indicate that cells can align along directions of matrix stress without collagen fibril alignment, indicating that matrix stress can directly regulate cell morphology.
Gharat, Amol; Baker, Curtis L
2017-01-25
Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell pathway might be pooled to generate cue-invariant receptive fields, we recorded visual responses from single neurons in cat Area 18 using linear multielectrode arrays. We measured responses to drifting and contrast-reversing luminance gratings as well as contrast modulation gratings. We found that a large fraction of these neurons have nonoriented responses to gratings, similar to those of subcortical Y cells: they respond at the second harmonic (F2) to high-spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low-spatial frequency drifting gratings ("Y-cell signature"). For a given neuron, spatial frequency tuning for linear (F1) and nonlinear (F2) responses is quite distinct, similar to orientation-selective cue-invariant neurons. Also, these neurons respond to contrast modulation gratings with selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their receptive field properties suggest that they could serve as building blocks for orientation-selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-center cortical Y-like cells in an unbalanced push-pull manner to generate orientation-selective, cue-invariant receptive fields. A significant fraction of neurons in early visual cortex have specialized receptive fields that allow them to selectively respond to the orientation of boundaries that are invariant to the cue (luminance, contrast, texture, motion) that defines them. However, the neural mechanism to construct such versatile receptive fields remains unclear. Using multielectrode recording, we found a large fraction of neurons in early visual cortex with receptive fields not selective for orientation that have spatial nonlinearities like those of subcortical Y cells. These are strong candidates for building cue-invariant orientation-selective neurons; we present a neural circuit model that pools such neurons in an imbalanced "push-pull" manner, to generate orientation-selective cue-invariant receptive fields. Copyright © 2017 the authors 0270-6474/17/370998-16$15.00/0.
Karimli, Leyla; Ssewamala, Fred M
2015-10-01
This present study tests the proposition that an economic strengthening intervention for families caring for AIDS-orphaned adolescents would positively affect adolescent future orientation and psychosocial outcomes through increased asset accumulation (in this case, by increasing family savings). Using longitudinal data from the cluster-randomized experiment, we ran generalized estimating equation models with robust standard errors clustering on individual observations. To examine whether family savings mediate the effect of the intervention on adolescents' future orientation and psychosocial outcomes, analyses were conducted in three steps: (1) testing the effect of intervention on mediator; (2) testing the effect of mediator on outcomes, controlling for the intervention; and (3) testing the significance of mediating effect using Sobel-Goodman method. Asymmetric confidence intervals for mediated effect were obtained through bootstrapping-to address the assumption of normal distribution. Results indicate that participation in a matched Child Savings Account (CSA) program improved adolescents' future orientation and psychosocial outcomes by reducing hopelessness, enhancing self-concept, and improving adolescents' confidence about their educational plans. However, the positive intervention effect on adolescent future orientation and psychosocial outcomes was not transmitted through saving. In other words, participation in the matched CSA program improved adolescent future orientation and psychosocial outcomes regardless of its impact on reported savings. Further research is necessary to understand exactly how participation in economic strengthening interventions, for example, those that employ matched CSAs, shape adolescent future orientation and psychosocial outcomes: what, if not savings, transmits the treatment effect and how? Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Karimli, Leyla; Ssewamala, Fred M.
2015-01-01
Purpose This present study tests the proposition that an economic strengthening intervention for families caring for AIDS-orphaned adolescents would positively affect adolescent future orientation and psychosocial outcomes through increased asset-accumulation (in this case, by increasing family savings). Methods Using longitudinal data from the cluster-randomized experiment we ran generalized estimating equation (GEE) models with robust standard errors clustering on individual observations. To examine whether family savings mediate the effect of the intervention on adolescents’ future orientation and psychosocial outcomes, analyses were conducted in three steps: (1) testing the effect of intervention on mediator; (2) testing the effect of mediator on outcomes, controlling for the intervention; and (3) testing the significance of mediating effect using Sobel-Goodman method. Asymmetric confidence intervals for mediated effect were obtained through bootstrapping—to address the assumption of normal distribution. Results Results indicate that participation in a matched Child Savings Account program improved adolescents’ future orientation and psychosocial outcomes by reducing hopelessness, enhancing self-concept, and improving adolescents’ confidence about their educational plans. However, the positive intervention effect on adolescent future orientation and psychosocial outcomes was not transmitted through saving. In other words, participation in the matched Child Savings Account program improved adolescent future orientation and psychosocial outcomes regardless of its impact on reported savings. Conclusions Further research is necessary to understand exactly how participation in economic strengthening interventions, for example, those that employ matched Child Savings Accounts, shape adolescent future orientation and psychosocial outcomes: what, if not savings, transmits the treatment effect and how? PMID:26271162
Koontz, Nicholas A; Wiggins, Richard H; Stoddard, Gregory J; Shah, Lubdha M
2017-10-01
There is a paucity of evidence-based literature regarding the advantages and disadvantages of the interlaminar approach and needle bevel orientation for performing a lumbar interlaminar epidural steroid injection (ESI). The purpose of this study was to determine if superior versus inferior lamina approach, needle bevel tip orientation, or both may predispose to inadvertent nonepidural penetration during lumbar interlaminar ESI. A prospective study was performed of patients with low back pain with or without radicular pain or neurogenic claudication referred for lumbar interlaminar ESI. Two hundred eleven patients were randomized by interlaminar approach (superior vs inferior) and bevel tip orientation (cranial vs caudal). Lumbar interlaminar ESI was performed by six interventionalists of varying levels of experience using fluoroscopic guidance with curved tip epidural needles, using loss-of-resistance technique and confirmation with contrast opacification. Exact Poisson regression was used to model the study outcome. Two hundred twenty-one lumbar interlaminar ESIs were performed on 211 patients, randomized to a superior (n = 121) or inferior lamina approach (n = 100) and to a cranial (n = 103) or caudal (n = 118) orientation of the bevel tip. Epidural needle placement was confirmed in 96.4% (n = 213) of cases. Nonepidural needle placement was most commonly associated with superior lamina approach and caudal bevel tip orientation, which was marginally significant (adjusted risk ratio, 6.88; 95% CI, 0.93-∞; p = 0.059). Inadvertent nonepidural needle penetration during fluoroscopically guided lumbar interlaminar ESI appears to be affected by approach, with superior lamina approach and caudal bevel tip orientation being the least favorable technique.
Mathematical modeling and numerical simulation of the mitotic spindle orientation system.
Ibrahim, Bashar
2018-05-21
The mitotic spindle orientation and position is crucial for the fidelity of chromosome segregation during asymmetric cell division to generate daughter cells with different sizes or fates. This mechanism is best understood in the budding yeast Saccharomyces cerevisiae, named the spindle position checkpoint (SPOC). The SPOC inhibits cells from exiting mitosis until the mitotic spindle is properly oriented along the mother-daughter polarity axis. Despite many experimental studies, the mechanisms underlying SPOC regulation remains elusive and unexplored theoretically. Here, a minimal mathematical is developed to describe SPOC activation and silencing having autocatalytic feedback-loop. Numerical simulations of the nonlinear ordinary differential equations (ODEs) model accurately reproduce the phenotype of SPOC mechanism. Bifurcation analysis of the nonlinear ODEs reveals the orientation dependency on spindle pole bodies, and how this dependence is altered by parameter values. These results provide for systems understanding on the molecular organization of spindle orientation system via mathematical modeling. The presented mathematical model is easy to understand and, within the above mentioned context, can be used as a base for further development of quantitative models in asymmetric cell-division. Copyright © 2018. Published by Elsevier Inc.
Adaptation Shifts Preferred Orientation of Tuning Curve in the Mouse Visual Cortex
Jeyabalaratnam, Jeyadarshan; Bharmauria, Vishal; Bachatene, Lyes; Cattan, Sarah; Angers, Annie; Molotchnikoff, Stéphane
2013-01-01
In frontalized mammals it has been demonstrated that adaptation produces shift of the peak of the orientation tuning curve of neuron following frequent or lengthier presentation of a non-preferred stimulus. Depending on the duration of adaptation the shift is attractive (toward the adapter) or repulsive (away from the adapter). Mouse exhibits a salt-and-pepper cortical organization of orientation maps, hence this species may respond differently to adaptation. To examine this question, we determined the effect of twelve minutes of adaptation to one particular orientation on neuronal orientation tuning curves in V1 of anesthetized mice. Multi-unit activity of neurons in V1 was recorded in a conventional fashion. Cells were stimulated with sine-wave drifting gratings whose orientation tilted in steps. Results revealed that similarly to cats and monkeys, majority of cells shifted their optimal orientation in the direction of the adapter while a small proportion exhibited a repulsive shift. Moreover, initially untuned cells showing poor tuning curves reacted to adaptation by displaying sharp orientation selectivity. It seems that modification of the cellular property following adaptation is a general phenomenon observed in all mammals in spite of the different organization pattern of the visual cortex. This study is of pertinence to comprehend the mechanistic pathways of brain plasticity. PMID:23717586
Effect of Delay on Search Decisions in a Task-Oriented Reading Environment
ERIC Educational Resources Information Center
Mañá, Amelia; Vidal-Abarca, Eduardo; Salmerón, Ladislao
2017-01-01
The goal of this study was to determine the effect of setting a delay between reading a text and answering comprehension questions on "when"-to-search and "what"-to-search decisions in a task-oriented reading environment. Fifty-five eighth-grade students were randomly divided into two groups. One group read one text, answered…
ERIC Educational Resources Information Center
Sideris, Georgios D.; Tsorbatzoudis, Charalambos
2003-01-01
The purpose of the present study was to profile, using a K-means cluster analysis, the cognitive, motivational, affective, and goal orientation characteristics of elementary school students with and without learning disabilities (LD). Participants were 58 fifth and 6 sixth graders (29 typical and 29 LD) selected using stratified random procedures.…
ERIC Educational Resources Information Center
Park, Heather L.; Hatchett, Gregory T.
2006-01-01
This study had two objectives. The first objective was to evaluate how well sex and sex-role orientation predicted receptivity to psychotherapy. The second objective was to evaluate whether exposure to gender-congruent therapy videos influenced participants' receptivity to psychotherapy. Participants were randomly assigned to three conditions: (1)…
Fit between Future Thinking and Future Orientation on Creative Imagination
ERIC Educational Resources Information Center
Chiu, Fa-Chung
2012-01-01
The purpose of the current study is to investigate the impact of future thinking, and the fit between future thinking and future orientation on creative thinking. In Study 1, 83 undergraduates were randomly assigned to three groups: 50-year future thinking, 5-year future thinking, and the present-day thinking. First, the priming tasks, in which…
Effects of Coping-Oriented Couples Therapy on Depression: A Randomized Clinical Trial
ERIC Educational Resources Information Center
Bodenmann, Guy; Plancherel, Bernard; Beach, Steven R. H.; Widmer, Kathrin; Gabriel, Barbara; Meuwly, Nathalie; Charvoz, Linda; Hautzinger, Martin; Schramm, Elisabeth
2008-01-01
The aim of this study was to evaluate the effectiveness of treating depression with coping-oriented couples therapy (COCT) as compared with cognitive-behavioral therapy (CBT; A. T. Beck, C. Ward, & M. Mendelson, 1961) and interpersonal psychotherapy (IPT; M. M. Weissman, J. C. Markowitz, & G. L. Klerman, 2000). Sixty couples, including 1…
NASA Astrophysics Data System (ADS)
Ohdaira, Keisuke; Matsumura, Hideki
2013-01-01
We succeed in the formation of micrometer-order-thick polycrystalline silicon (poly-Si) films through the flash-lamp-induced liquid-phase explosive crystallization (EC) of precursor a-Si films prepared by electron-beam (EB) evaporation. The velocity of the explosive crystallization (vEC) is estimated to be ˜14 m/s, which is close to the velocity of the liquid-phase epitaxy (LPE) of Si at a temperature around the melting point of a-Si of 1418 K. Poly-Si films formed have micrometer-order-long grains stretched along a lateral crystallization direction, and X-ray diffraction (XRD) and electron diffraction pattern measurements reveal that grains in poly-Si films tend to have a particular orientation. These features are significantly different from our previous results: the formation of poly-Si films containing randomly-oriented 10-nm-sized fine grains formed from a-Si films prepared by catalytic chemical vapor deposition (Cat-CVD) or sputtering. One possible reason for the emergence of a different EC mode in EB-evaporated a-Si films is the suppression of solid-phase nucleation (SPN) during Flash Lamp Annealing (FLA) due to tensile stress which precursor a-Si films originally hold. Poly-Si films formed from EB-evaporated a-Si films would contribute to the realization of high-efficiency thin-film poly-Si solar cells because of large and oriented grains.
Full, Sean Michael; Delman, Connor; Gluck, Jessica M; Abdmaulen, Raushan; Shemin, Richard J; Heydarkhan-Hagvall, Sepideh
2015-01-01
Within the past two decades polylactic-co-glycolic acid (PLGA) has gained considerable attention as a biocompatible and biodegradable polymer that is suitable for tissue engineering and regenerative medicine. In this present study, we have investigated the potential of PLGA, collagen I (ColI), and polyurethane (PU) scaffolds for ligament tissue regeneration. Two different ratios of PLGA (50:50 and 85:15) were used to determine the effects on mechanical tensile properties and cell adhesion. The Young's modulus, tensile stress at yield, and ultimate tensile strain of PLGA(50:50)-ColI-PU scaffolds demonstrated similar tensile properties to that of ligaments found in the knee. Whereas, scaffolds composed of PLGA(85:15)-ColI-PU had lower tensile properties than that of ligaments. Furthermore, we investigated the effect of fiber orientation on mechanical properties and our results indicate that aligned fiber scaffolds demonstrate higher tensile properties than scaffolds with random fiber orientation. Also, human fibroblasts attached and proliferated with no need for additional surface modifications to the presented electrospun scaffolds in both categories. Collectively, our investigation demonstrates the effectiveness of electrospun PLGA scaffolds as a suitable candidate for regenerative medicine, capable of being manipulated and combined with other polymers to create three-dimensional microenvironments with adjustable tensile properties to mimic native tissues. © 2014 Wiley Periodicals, Inc.
What befalls the proteins and water in a living cell when the cell dies?
Ling, Gilbert N; Fu, Ya-zhen
2005-01-01
The solvency of solutes of varying molecular size in the intracellular water of freshly-killed Ehrlich carcinoma cells fits the same theoretical curve that describes the solvency of similar solutes in a 36% solution of native bovine hemoglobin--a protein found only in red blood cells and making up 97.3% of the red cell's total intracellular proteins. The merging of the two sets of data confirms the prediction of the AI Hypothesis that key intracellular protein(s) in dying cells undergo(es) a transition from: (1) one in which the polypeptide NHCO groups assume a fully-extended conformation with relatively strong power of polarizing and orienting the bulk-phase water in multilayers; to (2) one in which most of the polypeptide NHCO groups are engaged in alpha-helical and other "introvert" conformations (see below for definition) with much weaker power in polarizing-orienting multilayers of bulk-phase water. This concordance of the two sets of data also shows that what we now call native hemoglobin--supposedly denoting hemoglobin found in its natural state in living red blood cells--, in fact, more closely resembles the water-polarizing, and -orienting intracellular proteins in dead cells. Although in the dead Ehrlich carcinoma cells as well as in the 36% solution of native hemoglobin, much of the protein's polypeptide NHCO groups are engaged in alpha-helical and other "introvert" conformation (Perutz 1969; Weissbluth 1974), both systems produce a weak but nonetheless pervasive and "long-range" water polarization and orientation. It is suggested that in both the dead Ehrlich carcinoma ascites cells and in the 36% native bovine hemoglobin solution, enough polypeptide NHCO groups assume the fully-extended conformation to produce the weak but far-reaching multilayer water polarization and orientation observed.
Rejniak, Katarzyna A.; Anderson, Alexander R.A.
2013-01-01
Normal hollow epithelial acini are 3-dimensional culture structures that resemble the architecture and functions of normal breast glands and lobules. This experimental model enables in vitro investigations of genotypic and molecular abnormalities associated with epithelial cancers. However, the way in which the acinar structure is formed is not yet completely understood. Gaining more information about consecutive stages of acini development—starting from a single cell that gives rise to a cluster of randomly oriented cells, followed by cell differentiation that leads to a layer of polarised cells enclosing the hollow lumen—will provide insight into the transformations of eukaryotic cells that are necessary for their successful arrangement into an epithelium. In this paper, we introduce a two-dimensional single-cell-based model representing the cross section of a typical acinus. Using this model, we investigate mechanisms that lead to the unpolarised cell growth, cell polarisation, stabilisation of the acinar structure and maintenance of the hollow lumen and discuss the sufficient conditions for each stage of acinar formation. In the follow-up paper (Rejniak and Anderson, A computational study of the development of epithelial acini. II. Necessary conditions for structure and lumen stability), we investigate what morphological changes are observable in the growing acini when some assumptions of this model are relaxed. PMID:18188652
Perceived change in orientation from optic flow in the central visual field
NASA Technical Reports Server (NTRS)
Dyre, Brian P.; Andersen, George J.
1988-01-01
The effects of internal depth within a simulation display on perceived changes in orientation have been studied. Subjects monocularly viewed displays simulating observer motion within a volume of randomly positioned points through a window which limited the field of view to 15 deg. Changes in perceived spatial orientation were measured by changes in posture. The extent of internal depth within the display, the presence or absence of visual information specifying change in orientation, and the frequency of motion supplied by the display were examined. It was found that increased sway occurred at frequencies equal to or below 0.375 Hz when motion at these frequencies was displayed. The extent of internal depth had no effect on the perception of changing orientation.
A Kalman-Filter-Based Approach to Combining Independent Earth-Orientation Series
NASA Technical Reports Server (NTRS)
Gross, Richard S.; Eubanks, T. M.; Steppe, J. A.; Freedman, A. P.; Dickey, J. O.; Runge, T. F.
1998-01-01
An approach. based upon the use of a Kalman filter. that is currently employed at the Jet Propulsion Laboratory (JPL) for combining independent measurements of the Earth's orientation, is presented. Since changes in the Earth's orientation can be described is a randomly excited stochastic process, the uncertainty in our knowledge of the Earth's orientation grows rapidly in the absence of measurements. The Kalman-filter methodology allows for an objective accounting of this uncertainty growth, thereby facilitating the intercomparison of measurements taken at different epochs (not necessarily uniformly spaced in time) and with different precision. As an example of this approach to combining Earth-orientation series, a description is given of a combination, SPACE95, that has been generated recently at JPL.
Sakura, Midori; Lambrinos, Dimitrios; Labhart, Thomas
2008-02-01
Many insects exploit skylight polarization for visual compass orientation or course control. As found in crickets, the peripheral visual system (optic lobe) contains three types of polarization-sensitive neurons (POL neurons), which are tuned to different ( approximately 60 degrees diverging) e-vector orientations. Thus each e-vector orientation elicits a specific combination of activities among the POL neurons coding any e-vector orientation by just three neural signals. In this study, we hypothesize that in the presumed orientation center of the brain (central complex) e-vector orientation is population-coded by a set of "compass neurons." Using computer modeling, we present a neural network model transforming the signal triplet provided by the POL neurons to compass neuron activities coding e-vector orientation by a population code. Using intracellular electrophysiology and cell marking, we present evidence that neurons with the response profile of the presumed compass neurons do indeed exist in the insect brain: each of these compass neuron-like (CNL) cells is activated by a specific e-vector orientation only and otherwise remains silent. Morphologically, CNL cells are tangential neurons extending from the lateral accessory lobe to the lower division of the central body. Surpassing the modeled compass neurons in performance, CNL cells are insensitive to the degree of polarization of the stimulus between 99% and at least down to 18% polarization and thus largely disregard variations of skylight polarization due to changing solar elevations or atmospheric conditions. This suggests that the polarization vision system includes a gain control circuit keeping the output activity at a constant level.
What predicts recovery orientation in county departments of mental health? A pilot study.
Brown, Timothy T; Mahoney, Christine B; Adams, Neal; Felton, Mistique; Pareja, Candy
2010-09-01
In this pilot study we examined the determinants of recovery orientation among employees and influential stakeholders in a sample of 12 county departments of mental health in California. A two-level hierarchical linear model with random intercepts was estimated. Analyses show that recovery orientation has a U-shaped relationship with the age of staff/influential stakeholders and is negatively related to the difference between the desired level of adhocracy and the current level of adhocracy. Recovery orientation is positively related to the education level of staff/influential stakeholders, satisfying transformational leadership outcomes, and larger mental health budgets per capita. Policy implications are discussed.
Gravity-oriented microfluidic device for uniform and massive cell spheroid formation
Lee, Kangsun; Kim, Choong; Young Yang, Jae; Lee, Hun; Ahn, Byungwook; Xu, Linfeng; Yoon Kang, Ji; Oh, Kwang W.
2012-01-01
We propose a simple method for forming massive and uniform three-dimensional (3-D) cell spheroids in a multi-level structured microfluidic device by gravitational force. The concept of orienting the device vertically has allowed spheroid formation, long-term perfusion, and retrieval of the cultured spheroids by user-friendly standard pipetting. We have successfully formed, perfused, and retrieved uniform, size-controllable, well-conditioned spheroids of human embryonic kidney 293 cells (HEK 293) in the gravity-oriented microfluidic device. We expect the proposed method will be a useful tool to study in-vitro 3-D cell models for the proliferation, differentiation, and metabolism of embryoid bodies or tumours. PMID:22662098
Figure/ground segregation from temporal delay is best at high spatial frequencies.
Kojima, H
1998-12-01
Two experiments investigated the role of spatial frequency in performance of a figure/ground segregation task based on temporal cues. Figure orientation was much easier to judge when figure and ground portions of the target were defined exclusively by random texture composed entirely of high spatial frequencies. When target components were defined by low spatial frequencies only, the task was nearly impossible except with long temporal delay between figure and ground. These results are inconsistent with the hypothesis that M-cell activity is primarily responsible for figure/ground segregation from temporal delay. Instead, these results point to a distinction between temporal integration and temporal differentiation. Additionally, the present results can be related to recent work on the binding of spatial features over time.
Xia, Xiaodong; Hao, Jia; Wang, Yang; Zhong, Zheng; Weng, George J
2017-05-24
Highly aligned graphene-based nanocomposites are of great interest due to their excellent electrical properties along the aligned direction. Graphene fillers in these composites are not necessarily perfectly aligned, but their orientations are highly confined to a certain angle, [Formula: see text] with 90° giving rise to the randomly oriented state and 0° to the perfectly aligned one. Recent experiments have shown that electrical conductivity and dielectric permittivity of highly aligned graphene-polymer nanocomposites are strongly dependent on this distribution angle, but at present no theory seems to exist to address this issue. In this work we present a new effective-medium theory that is derived from the underlying physical process including the effects of graphene orientation, filler loading, aspect ratio, percolation threshold, interfacial tunneling, and Maxwell-Wagner-Sillars polarization, to determine these two properties. The theory is formulated in the context of preferred orientational average. We highlight this new theory with an application to rGO/epoxy nanocomposites, and demonstrate that the calculated in-plane and out-of-plane conductivity and permittivity are in agreement with the experimental data as the range of graphene orientations changes from the randomly oriented to the highly aligned state. We also show that the percolation thresholds of highly aligned graphene nanocomposites are in general different along the planar and the normal directions, but they converge into a single one when the statistical distribution of graphene fillers is spherically symmetric.
Schindelman, G; Morikami, A; Jung, J; Baskin, T I; Carpita, N C; Derbyshire, P; McCann, M C; Benfey, P N
2001-05-01
To control organ shape, plant cells expand differentially. The organization of the cellulose microfibrils in the cell wall is a key determinant of differential expansion. Mutations in the COBRA (COB) gene of Arabidopsis, known to affect the orientation of cell expansion in the root, are reported here to reduce the amount of crystalline cellulose in cell walls in the root growth zone. The COB gene, identified by map-based cloning, contains a sequence motif found in proteins that are anchored to the extracellular surface of the plasma membrane through a glycosylphosphatidylinositol (GPI) linkage. In animal cells, this lipid linkage is known to confer polar localization to proteins. The COB protein was detected predominately on the longitudinal sides of root cells in the zone of rapid elongation. Moreover, COB RNA levels are dramatically upregulated in cells entering the zone of rapid elongation. Based on these results, models are proposed for the role of COB as a regulator of oriented cell expansion.
Schindelman, Gary; Morikami, Atsushi; Jung, Jee; Baskin, Tobias I.; Carpita, Nicholas C.; Derbyshire, Paul; McCann, Maureen C.; Benfey, Philip N.
2001-01-01
To control organ shape, plant cells expand differentially. The organization of the cellulose microfibrils in the cell wall is a key determinant of differential expansion. Mutations in the COBRA (COB) gene of Arabidopsis, known to affect the orientation of cell expansion in the root, are reported here to reduce the amount of crystalline cellulose in cell walls in the root growth zone. The COB gene, identified by map-based cloning, contains a sequence motif found in proteins that are anchored to the extracellular surface of the plasma membrane through a glycosylphosphatidylinositol (GPI) linkage. In animal cells, this lipid linkage is known to confer polar localization to proteins. The COB protein was detected predominately on the longitudinal sides of root cells in the zone of rapid elongation. Moreover, COB RNA levels are dramatically upregulated in cells entering the zone of rapid elongation. Based on these results, models are proposed for the role of COB as a regulator of oriented cell expansion. PMID:11331607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Bo; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing 100101; Xia Jing
Physiological and behavioral studies have demonstrated that a number of visual functions such as visual acuity, contrast sensitivity, and motion perception can be impaired by acute alcohol exposure. The orientation- and direction-selective responses of cells in primary visual cortex are thought to participate in the perception of form and motion. To investigate how orientation selectivity and direction selectivity of neurons are influenced by acute alcohol exposure in vivo, we used the extracellular single-unit recording technique to examine the response properties of neurons in primary visual cortex (A17) of adult cats. We found that alcohol reduces spontaneous activity, visual evoked unitmore » responses, the signal-to-noise ratio, and orientation selectivity of A17 cells. In addition, small but detectable changes in both the preferred orientation/direction and the bandwidth of the orientation tuning curve of strongly orientation-biased A17 cells were observed after acute alcohol administration. Our findings may provide physiological evidence for some alcohol-related deficits in visual function observed in behavioral studies.« less
Random sequential adsorption of cubes
NASA Astrophysics Data System (ADS)
Cieśla, Michał; Kubala, Piotr
2018-01-01
Random packings built of cubes are studied numerically using a random sequential adsorption algorithm. To compare the obtained results with previous reports, three different models of cube orientation sampling were used. Also, three different cube-cube intersection algorithms were tested to find the most efficient one. The study focuses on the mean saturated packing fraction as well as kinetics of packing growth. Microstructural properties of packings were analyzed using density autocorrelation function.
Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models.
Conradt, L; Bodsworth, E J; Roper, T J; Thomas, C D
2000-01-01
The dispersal patterns of animals are important in metapopulation ecology because they affect the dynamics and survival of populations. Theoretical models assume random dispersal but little is known in practice about the dispersal behaviour of individual animals or the strategy by which dispersers locate distant habitat patches. In the present study, we released individual meadow brown butterflies (Maniola jurtina) in a non-habitat and investigated their ability to return to a suitable habitat. The results provided three reasons for supposing that meadow brown butterflies do not seek habitat by means of random flight. First, when released within the range of their normal dispersal distances, the butterflies orientated towards suitable habitat at a higher rate than expected at random. Second, when released at larger distances from their habitat, they used a non-random, systematic, search strategy in which they flew in loops around the release point and returned periodically to it. Third, butterflies returned to a familiar habitat patch rather than a non-familiar one when given a choice. If dispersers actively orientate towards or search systematically for distant habitat, this may be problematic for existing metapopulation models, including models of the evolution of dispersal rates in metapopulations. PMID:11007325
Roudier, François; Fernandez, Anita G.; Fujita, Miki; Himmelspach, Regina; Borner, Georg H.H.; Schindelman, Gary; Song, Shuang; Baskin, Tobias I.; Dupree, Paul; Wasteneys, Geoffrey O.; Benfey, Philip N.
2005-01-01
The orientation of cell expansion is a process at the heart of plant morphogenesis. Cellulose microfibrils are the primary anisotropic material in the cell wall and thus are likely to be the main determinant of the orientation of cell expansion. COBRA (COB) has been identified previously as a potential regulator of cellulose biogenesis. In this study, characterization of a null allele, cob-4, establishes the key role of COB in controlling anisotropic expansion in most developing organs. Quantitative polarized-light and field-emission scanning electron microscopy reveal that loss of anisotropic expansion in cob mutants is accompanied by disorganization of the orientation of cellulose microfibrils and subsequent reduction of crystalline cellulose. Analyses of the conditional cob-1 allele suggested that COB is primarily implicated in microfibril deposition during rapid elongation. Immunodetection analysis in elongating root cells revealed that, in agreement with its substitution by a glycosylphosphatidylinositol anchor, COB was polarly targeted to both the plasma membrane and the longitudinal cell walls and was distributed in a banding pattern perpendicular to the longitudinal axis via a microtubule-dependent mechanism. Our observations suggest that COB, through its involvement in cellulose microfibril orientation, is an essential factor in highly anisotropic expansion during plant morphogenesis. PMID:15849274
Roudier, François; Fernandez, Anita G; Fujita, Miki; Himmelspach, Regina; Borner, Georg H H; Schindelman, Gary; Song, Shuang; Baskin, Tobias I; Dupree, Paul; Wasteneys, Geoffrey O; Benfey, Philip N
2005-06-01
The orientation of cell expansion is a process at the heart of plant morphogenesis. Cellulose microfibrils are the primary anisotropic material in the cell wall and thus are likely to be the main determinant of the orientation of cell expansion. COBRA (COB) has been identified previously as a potential regulator of cellulose biogenesis. In this study, characterization of a null allele, cob-4, establishes the key role of COB in controlling anisotropic expansion in most developing organs. Quantitative polarized-light and field-emission scanning electron microscopy reveal that loss of anisotropic expansion in cob mutants is accompanied by disorganization of the orientation of cellulose microfibrils and subsequent reduction of crystalline cellulose. Analyses of the conditional cob-1 allele suggested that COB is primarily implicated in microfibril deposition during rapid elongation. Immunodetection analysis in elongating root cells revealed that, in agreement with its substitution by a glycosylphosphatidylinositol anchor, COB was polarly targeted to both the plasma membrane and the longitudinal cell walls and was distributed in a banding pattern perpendicular to the longitudinal axis via a microtubule-dependent mechanism. Our observations suggest that COB, through its involvement in cellulose microfibril orientation, is an essential factor in highly anisotropic expansion during plant morphogenesis.
NASA Astrophysics Data System (ADS)
Willenweber, A.; Thomas, S.; Burnley, P. C.
2012-12-01
The Berkeley Texture Package BEARTEX is a Windows-based computer software that combines various algorithms to analyze lattice-preferred orientation in polycrystalline materials. BEARTEX was initially designed to interpret diffraction intensity data from pole figure goniometers. Recently it has been successfully used to process synthetic forsterite powder diffraction data from in-situ synchrotron X-ray diffraction taken during deformation (Bollinger et al. 2012). Our study aims to test the practicability of using BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz (novaculite) during deformation. In-situ X-ray diffraction data was collected during the deformation of novaculite at 2.5 GPa and up to 1000 °C in a D-DIA apparatus using the ten-element energy-dispersive detector at the NSLS beamline X17B2. Diffraction intensities are a function of crystal orientation, expressed in azimuth angle η and pole distance ψ. The latter is the angle between the normal of a given diffraction plane and the vertical direction of the D-DIA apparatus - our principal stress direction during compression. Orientation-dependent diffraction intensities were corrected for different responses of the single detectors and x-ray absorption effects of the anvils. Orientation distributions (ODs) and inverse pole figures were calculated using BEARTEX. In addition, electron backscatter diffraction (EBSD) analyses were carried out on the deformed novaculite samples. Generated pole figures were compared with those derived from BEARTEX. Textural properties of our novaculite starting material complicated the BEARTEX analyses. The relatively strong variation of grain sizes in our natural specimens caused non-random diffraction intensity distributions. Those lead to non-random distributions of crystal orientations when analyzed with BEARTEX, although pole figures from EBSD data clearly show random crystal orientations. In an attempt to solve this problem, we employed a scanning routine when recording in-situ synchrotron X-ray diffraction and so collected diffraction from multiple sample volumes rather than from one single spot. Here, we will present a comparison of pole figures derived from independent BEARTEX and EBSD analyses for a series of novaculite experiments and discuss the practicability of BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz. REFERENCES C. BOLLINGER, S. MERKEL AND P. RATERRON (2012): In situ quantitative analysis of stress and texture development in forsterite aggregates deformed at 6 GPa and 1373 K. J. Appl. Cryst., 45, 263-271.
Gerbasi, David; Shapiro, Moshe; Brumer, Paul
2006-02-21
Enantiomeric control of 1,3 dimethylallene in a collisional environment is examined. Specifically, our previous "laser distillation" scenario wherein three perpendicular linearly polarized light fields are applied to excite a set of vib-rotational eigenstates of a randomly oriented sample is considered. The addition of internal conversion, dissociation, decoherence, and collisional relaxation mimics experimental conditions and molecular decay processes. Of greatest relevance is internal conversion which, in the case of dimethylallene, is followed by molecular dissociation. For various rates of internal conversion, enantiomeric control is maintained in this scenario by a delicate balance between collisional relaxation of excited dimethylallene that enhances control and collisional dephasing, which diminishes control.
Vector solution for the mean electromagnetic fields in a layer of random particles
NASA Technical Reports Server (NTRS)
Lang, R. H.; Seker, S. S.; Levine, D. M.
1986-01-01
The mean electromagnetic fields are found in a layer of randomly oriented particles lying over a half space. A matrix-dyadic formulation of Maxwell's equations is employed in conjunction with the Foldy-Lax approximation to obtain equations for the mean fields. A two variable perturbation procedure, valid in the limit of small fractional volume, is then used to derive uncoupled equations for the slowly varying amplitudes of the mean wave. These equations are solved to obtain explicit expressions for the mean electromagnetic fields in the slab region in the general case of arbitrarily oriented particles and arbitrary polarization of the incident radiation. Numerical examples are given for the application to remote sensing of vegetation.
NASA Astrophysics Data System (ADS)
Paramonov, L. E.
2012-05-01
Light scattering by isotropic ensembles of ellipsoidal particles is considered in the Rayleigh-Gans-Debye approximation. It is proved that randomly oriented ellipsoidal particles are optically equivalent to polydisperse randomly oriented spheroidal particles and polydisperse spherical particles. Density functions of the shape and size distributions for equivalent ensembles of spheroidal and spherical particles are presented. In the anomalous diffraction approximation, equivalent ensembles of particles are shown to also have equal extinction, scattering, and absorption coefficients. Consequences of optical equivalence are considered. The results are illustrated by numerical calculations of the angular dependence of the scattering phase function using the T-matrix method and the Mie theory.
Popper, A N
1978-09-01
The anatomy and ultrastructure of the sacculus, lagena, and utriculus of the ear of Polypterus bichir and Scaphirhynchus platorynchus were studied using the scanning electron microscope. The otolithic organs each contain a single dense calcareous otolith in close contact with a sensory epithelium (macula). The maculae have sensory hair cells typical of those found in other vertebrates, surrounded by microvilli-covered supporting cells. The hair cells on each macula are divided into several groups, with all of the cells in each group morphologically polarized in the same direction. The cells of the utricular macula in both species are divided into opposing groups in a pattern similar to that found in other vertebrates. The saccular and lagenar maculae are located in a single large chamber in both species. In Scaphirhychus the two maculae are on the same plane, while in Polypterus they are at right angles to one another. The hair cells on the saccular maculae of both species are divided into two oppositely oriented groups. In Scaphirhynchus the cells on the posterior half of the macula are oriented dorsally on the dorsal half of the macula and ventrally on the ventral half. The anterior region of the macula is rotated and the cells of the dorsal and ventral groups are shifted so that they are oriented on the animal's horizon plane. A similar pattern is found in Polypterus, except that this macula is shaped like a "J" with the vertical portion of the J having horizontal cells and the bottom portion vertical cells. The lagenar maculae in both species have dorsally oriented cells on the anterior side of the macula and ventrally oriented cells on the posterior half of the macula. While these data are not sufficient for clarifying the taxonomic relationship between the two species studied, it is clear that the ears in these species have a number of significant differences from the teleost ear that could have functional and/or taxonomic significance.
Effect of environmental conditions on the flexural properties of wood I-beams and lumber
Gwo-Huang Chen; R.C. Tang; E.W. Price
1989-01-01
Flexural properties as affected by environmental conditions were evaluated for full-sized wood composite I-beams webbed with oriented strand board (OSB), randomly oriented flakeboard (RF) and 3-ply Structural I plywood (PLY). Solid-sawn southern pine 2 by 10's, ordinarily used in light-frame building construction, were also tested for comparative purposes....
USDA-ARS?s Scientific Manuscript database
The Texas Childhood Obesity Research Demonstration project (TX CORD) uses a systems-oriented approach to address obesity that includes individual and family interventions, community-level action, as well as environmental and policy initiatives. Given that randomization is seldom possible in communit...
RELATIVE ORIENTATION OF PAIRS OF SPIRAL GALAXIES IN THE SLOAN DIGITAL SKY SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buxton, Jesse; Ryden, Barbara S., E-mail: buxton.45@osu.edu, E-mail: ryden@astronomy.ohio-state.edu
2012-09-10
From our study of binary spiral galaxies in the Sloan Digital Sky Survey Data Release 6, we find that the relative orientation of disks in binary spiral galaxies is consistent with their being drawn from a random distribution of orientations. For 747 isolated pairs of luminous disk galaxies, the distribution of {phi}, the angle between the major axes of the galaxy images, is consistent with a uniform distribution on the interval [0 Degree-Sign , 90 Degree-Sign ]. With the assumption that the disk galaxies are oblate spheroids, we can compute cos {beta}, where {beta} is the angle between the rotationmore » axes of the disks. In the case that one galaxy in the binary is face-on or edge-on, the tilt ambiguity is resolved, and cos {beta} can be computed unambiguously. For 94 isolated pairs with at least one face-on member, and for 171 isolated pairs with at least one edge-on member, the distribution of cos {beta} is statistically consistent with the distribution of cos i for isolated disk galaxies. This result is consistent with random orientations of the disks within pairs.« less
Control of liquid crystal molecular orientation using ultrasound vibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, Satoki; Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321; Koyama, Daisuke
2016-03-07
We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5–25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distributionmore » of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.« less
Ardeshiri, Ramtin; Mulcahy, Ben; Zhen, Mei; Rezai, Pouya
2016-01-01
C. elegans is a well-known model organism in biology and neuroscience with a simple cellular (959 cells) and nervous (302 neurons) system and a relatively homologous (40%) genome to humans. Lateral and longitudinal manipulation of C. elegans to a favorable orientation is important in many applications such as neural and cellular imaging, laser ablation, microinjection, and electrophysiology. In this paper, we describe a micro-electro-fluidic device for on-demand manipulation of C. elegans and demonstrate its application in imaging of organs and neurons that cannot be visualized efficiently under natural orientation. To achieve this, we have used the electrotaxis technique to longitudinally orient the worm in a microchannel and then insert it into an orientation and imaging channel in which we integrated a rotatable glass capillary for orientation of the worm in any desired direction. The success rates of longitudinal and lateral orientations were 76% and 100%, respectively. We have demonstrated the application of our device in optical and fluorescent imaging of vulva, uterine-vulval cell (uv1), vulB1\\2 (adult vulval toroid cells), and ventral nerve cord of wild-type and mutant worms. In comparison to existing methods, the developed technique is capable of orienting the worm at any desired angle and maintaining the orientation while providing access to the worm for potential post-manipulation assays. This versatile tool can be potentially used in various applications such as neurobehavioral imaging, neuronal ablation, microinjection, and electrophysiology. PMID:27990213
NASA Astrophysics Data System (ADS)
Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J.
2008-04-01
Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG ( Edge-defined Film-fed- Growth) silicon substrates. The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.
Randall, Rachel M; Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy
2012-12-01
Disrupting the Wnt Planar Cell Polarity (PCP) signaling pathway in vivo results in loss of columnar growth plate architecture, but it is unknown whether activation of this pathway in vitro is sufficient to promote column formation. We hypothesized that activation of the Wnt PCP pathway in growth plate chondrocyte cell pellets would promote columnar organization in these cells that are normally oriented randomly in culture. Rat growth plate chondrocytes were transfected with plasmids encoding the Fzd7 cell-surface Wnt receptor, a Fzd7 deletion mutant lacking the Wnt-binding domain, or Wnt receptor-associated proteins Ror2 or Vangl2, and then cultured as three-dimensional cell pellets in the presence of recombinant Wnt5a or Wnt5b for 21 days. Cellular morphology was evaluated using histomorphometric measurements. Activation of Wnt PCP signaling components promoted the initiation of columnar morphogenesis in the chondrocyte pellet culture model, as measured by histomorphometric analysis of the column index (ANOVA p = 0.01). Activation of noncanonical Wnt signaling through overexpression of both the cell-surface Wnt receptor Fzd7 and receptor-associated protein Ror2 with addition of recombinant Wnt5a promotes the initiation of columnar architecture of growth plate chondrocytes in vitro, representing an important step toward growth plate regeneration. Copyright © 2012 Orthopaedic Research Society.
Amphiastral Mitotic Spindle Assembly in Vertebrate Cells Lacking Centrosomes
Hornick, Jessica E.; Mader, Christopher C.; Tribble, Emily K.; Bagne, Cydney C.; Vaughan, Kevin T.; Shaw, Sidney L.; Hinchcliffe, Edward H.
2011-01-01
Summary The role of centrosomes/centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles [1, 2, 3]. However, vertebrate somatic cells normally assemble a connected pair of polarized, astral MT arrays – termed an amphiaster (“a star on both sides” [4]) – that is formed by the splitting and separation of the microtubule-organizing center (MTOC) well before nuclear envelope breakdown (NEB) [5]. Whether amphiaster formation requires splitting of duplicated centrosomes is not known. We found that when centrosomes were removed from living vertebrate cells early in their cell cycle, an acentriolar MTOC re-assembled, and prior to NEB, a functional amphiastral spindle formed. Cytoplasmic dynein, dynactin, and pericentrin are all recruited to the interphase aMTOC, and the activity of kinesin-5 is needed for amphiaster formation. Mitosis proceeded on time and these karyoplasts divided in two. However, ~35% of aMTOCs failed to split/separate before NEB, and these entered mitosis with persistent monastral spindles. The chromatin-mediated RAN-GTP pathway could not restore bipolarity to monastral spindles, and these cells exited mitosis as single daughters. Our data reveal the novel finding that MTOC separation and amphiaster formation does not absolutely require the centrosome, but in its absence, the fidelity of bipolar spindle assembly is highly compromised. PMID:21439826
Bau, Josep; Cardé, Ring T
2015-09-01
Male moths locate females by navigating along her pheromone plume, often flying hundreds of meters en route. As the first male to find a calling female is most apt to be her mate, this can be termed "a race to find the female" and it is assumed to be under strong selective pressure for efficiency and rapidity. Locating a distant, odor-linked resource involves two strategies. The first is to contact the outer envelope of the odor plume. When wind direction is relatively invariant, the plume stretches and then crosswind flights may be favored, although when wind direction shifts over 60°, upwind and downwind paths may be optimal. Alternatively, the path may be random with respect to the direction of wind flow, with periodic changes in direction, as in either Lévy or Random Walks. After first detecting the pheromone, a second strategy follows: moths navigate along the plume by heading upwind when the pheromone is detected, with crosswind casting to re-establish contact if the plume is lost. This orientation path is not straightforward in nature, however, because atmospheric turbulence fragments the plume, thereby creating large odor gaps. Furthermore, a shifting wind direction can lead the responder out of the plume. One way to explore which strategies are optimal for enabling initial contact with the plume and subsequent navigation is through modeling of plumes' dispersal and of insects' flight strategies. Our simulations using the flight characteristics of the male gypsy moth (Lymantria dispar) suggest that search strategies similar to Lévy Walks are most apt to result in a high probability of contact with plumes. Although a searching trajectory aimed predominately crosswind performed almost as well as those with a random orientation when wind direction was relatively stable, downwind biased trajectories were least successful. A random orientation with respect to immediate wind flow, as used in our simulations of Lévy and Random Walks, seems optimal both for initial discovery of the plume and likelihood of locating an odor source. In the two available direct field observations, moths adopted a random orientation with respect to concurrent wind direction. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Cross-orientation interactions in human vision.
Roeber, Urte; Wong, Elaine M Y; Freeman, Alan W
2008-03-18
Humans can discriminate one visual contour from another on the basis of small differences in orientation. This capability depends on cortical detectors that are selective for a small range of orientations. We have measured this orientation bandwidth and the suppression that helps to shape it, with a reverse correlation technique. Human subjects were presented with a stream of randomly oriented gratings at a rate of 30 per second. Their task was to press a key whenever they saw an orientation nominated as the target. We analyzed the data by finding the probability density of two orientations: One preceded the key-press by the reaction time, and the second preceded the first by up to 100 ms. The results were as follows: (1) One grating facilitated the following one in producing a key-press when the gratings differed little in orientation. The estimate of orientation bandwidth resulting from this facilitation was 38 degrees . (2) A large angle between the two orientations reduced the probability of a key-press. This finding was best modelled as a suppression that did not vary with orientation, consistent with the idea that cross-orientation suppression is non-oriented. (3) Analysis of non-consecutive grating pairs showed that cross-orientation interactions lasted no longer than 67 ms.
A method to generate the surface cell layer of the 3D virtual shoot apex from apical initials.
Kucypera, Krzysztof; Lipowczan, Marcin; Piekarska-Stachowiak, Anna; Nakielski, Jerzy
2017-01-01
The development of cell pattern in the surface cell layer of the shoot apex can be investigated in vivo by use of a time-lapse confocal images, showing naked meristem in 3D in successive times. However, how this layer is originated from apical initials and develops as a result of growth and divisions of their descendants, remains unknown. This is an open area for computer modelling. A method to generate the surface cell layer is presented on the example of the 3D paraboloidal shoot apical dome. In the used model the layer originates from three apical initials that meet at the dome summit and develops through growth and cell divisions under the isotropic surface growth, defined by the growth tensor. The cells, which are described by polyhedrons, divide anticlinally with the smallest division plane that passes depending on the used mode through the cell center, or the point found randomly near this center. The formation of the surface cell pattern is described with the attention being paid to activity of the apical initials and fates of their descendants. The computer generated surface layer that included about 350 cells required about 1200 divisions of the apical initials and their derivatives. The derivatives were arranged into three more or less equal clonal sectors composed of cellular clones at different age. Each apical initial renewed itself 7-8 times to produce the sector. In the shape and location and the cellular clones the following divisions of the initial were manifested. The application of the random factor resulted in more realistic cell pattern in comparison to the pure mode. The cell divisions were analyzed statistically on the top view. When all of the division walls were considered, their angular distribution was uniform, whereas in the distribution that was limited to apical initials only, some preferences related to their arrangement at the dome summit were observed. The realistic surface cell pattern was obtained. The present method is a useful tool to generate surface cell layer, study activity of initial cells and their derivatives, and how cell expansion and division are coordinated during growth. We expect its further application to clarify the question of a number and permanence or impermanence of initial cells, and possible relationship between their shape and oriented divisions, both on the ground of the growth tensor approach.
NASA Astrophysics Data System (ADS)
Hafner, Anne E.; Rieger, Heiko
2016-12-01
Intracellular transport is vital for the proper functioning and survival of a cell. Cargo (proteins, vesicles, organelles, etc) is transferred from its place of creation to its target locations via molecular motor assisted transport along cytoskeletal filaments. The transport efficiency is strongly affected by the spatial organization of the cytoskeleton, which constitutes an inhomogeneous, complex network. In cells with a centrosome microtubules grow radially from the central microtubule organizing center towards the cell periphery whereas actin filaments form a dense meshwork, the actin cortex, underneath the cell membrane with a broad range of orientations. The emerging ballistic motion along filaments is frequently interrupted due to constricting intersection nodes or cycles of detachment and reattachment processes in the crowded cytoplasm. In order to investigate the efficiency of search strategies established by the cell’s specific spatial organization of the cytoskeleton we formulate a random velocity model with intermittent arrest states. With extensive computer simulations we analyze the dependence of the mean first passage times for narrow escape problems on the structural characteristics of the cytoskeleton, the motor properties and the fraction of time spent in each state. We find that an inhomogeneous architecture with a small width of the actin cortex constitutes an efficient intracellular search strategy.
Packed bed reactor for photochemical .sup.196 Hg isotope separation
Grossman, Mark W.; Speer, Richard
1992-01-01
Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.
Entre Dos Mundos/Between Two Worlds: Youth Violence Prevention for Acculturating Latino Families
ERIC Educational Resources Information Center
Smokowski, Paul R.; Bacallao, Martica
2009-01-01
Objective: This study evaluated the efficacy of Entre Dos Mundos/Between Two Worlds (EDM) prevention for Latino adolescents. Method: In an experimental trial to compare implementation formats, 41 Latino families were randomly assigned to EDM action-oriented skills training groups, and 47 families were randomly assigned to unstructured EDM support…
Electrical Resistance of the Low Dimensional Critical Branching Random Walk
NASA Astrophysics Data System (ADS)
Járai, Antal A.; Nachmias, Asaf
2014-10-01
We show that the electrical resistance between the origin and generation n of the incipient infinite oriented branching random walk in dimensions d < 6 is O( n 1- α ) for some universal constant α > 0. This answers a question of Barlow et al. (Commun Math Phys 278:385-431, 2008).
Yau, Kah Wai; Schätzle, Philipp; Tortosa, Elena; Pagès, Stéphane; Holtmaat, Anthony; Kapitein, Lukas C; Hoogenraad, Casper C
2016-01-27
In cultured vertebrate neurons, axons have a uniform arrangement of microtubules with plus-ends distal to the cell body (plus-end-out), whereas dendrites contain mixed polarity orientations with both plus-end-out and minus-end-out oriented microtubules. Rather than non-uniform microtubules, uniparallel minus-end-out microtubules are the signature of dendrites in Drosophila and Caenorhabditis elegans neurons. To determine whether mixed microtubule organization is a conserved feature of vertebrate dendrites, we used live-cell imaging to systematically analyze microtubule plus-end orientations in primary cultures of rat hippocampal and cortical neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neurons in the somatosensory cortex of living mice. In vitro and in vivo, all microtubules had a plus-end-out orientation in axons, whereas microtubules in dendrites had mixed orientations. When dendritic microtubules were severed by laser-based microsurgery, we detected equal numbers of plus- and minus-end-out microtubule orientations throughout the dendritic processes. In dendrites, the minus-end-out microtubules were generally more stable and comparable with plus-end-out microtubules in axons. Interestingly, at early stages of neuronal development in nonpolarized cells, newly formed neurites already contained microtubules of opposite polarity, suggesting that the establishment of uniform plus-end-out microtubules occurs during axon formation. We propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. Live-cell imaging was used to systematically analyze microtubule organization in primary cultures of rat hippocampal neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neuron in somatosensory cortex of living mice. In vitro and in vivo, all microtubules have a plus-end-out orientation in axons, whereas microtubules in dendrites have mixed orientations. Interestingly, newly formed neurites of nonpolarized neurons already contain mixed microtubules, and the specific organization of uniform plus-end-out microtubules only occurs during axon formation. Based on these findings, the authors propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. Copyright © 2016 the authors 0270-6474/16/361072-15$15.00/0.
Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes
NASA Astrophysics Data System (ADS)
Markoulidis, F.; Lei, C.; Lekakou, C.
2013-04-01
High-performance supercapacitors with organic electrolyte 1 M TEABF4 (tetraethyl ammonium tetrafluoroborate) in PC (propylene carbonate) were fabricated and tested, based on multiwall carbon nanotubes (MWNTs) deposited by electrophoresis on three types of alternative substrates: aluminium foil, ITO (indium tin oxide) coated PET (polyethylene terephthalate) film and PET film. In all cases, SEM (scanning electron microscopy) and STEM (scanning transmission electron microscopy) micrographs demonstrated that protruding, transversely oriented MWNT structures were formed, which should increase the transverse conductivity of these MWNT electrodes. The best supercapacitor cell of MWNT electrodes deposited on aluminium foil displayed good transverse orientation of the MWNT structures as well as an in-plane MWNT network at the feet of the protruding structures, which ensured good in-plane conductivity. Capacitor cells with MWNT electrodes deposited either on ITO-coated PET film or on PET film demonstrated lower but still very good performance due to the high density of transversely oriented MWNT structures (good transverse conductivity) but some in-plane inhomogeneities. Capacitor cells with drop-printed MWNTs on aluminium foil, without any transverse orientation, had 16-30 times lower specific capacitance and 5-40 times lower power density than the capacitor cells with the electrophoretically deposited MWNT electrodes.
Jo, Sae Byeok; Kim, Hyun Ho; Lee, Hansol; Kang, Boseok; Lee, Seongkyu; Sim, Myungsun; Kim, Min; Lee, Wi Hyoung; Cho, Kilwon
2015-08-25
Photon harvesting in organic solar cells is highly dependent on the anisotropic nature of the optoelectronic properties of photoactive materials. Here, we demonstrate an efficient approach to dramatically enhance photon harvesting in planar heterojunction solar cells by using a graphene-organic heterointerface. A large area, residue-free monolayer graphene is inserted at anode interface to serve as an atomically thin epitaxial template for growing highly orientated pentacene crystals with lying-down orientation. This anisotropic orientation enhances the overall optoelectronic properties, including light absorption, charge carrier lifetime, interfacial energetics, and especially the exciton diffusion length. Spectroscopic and crystallographic analysis reveal that the lying-down orientation persists until a thickness of 110 nm, which, along with increased exciton diffusion length up to nearly 100 nm, allows the device optimum thickness to be doubled to yield significantly enhanced light absorption within the photoactive layers. The resultant photovoltaic performance shows simultaneous increment in Voc, Jsc, and FF, and consequently a 5 times increment in the maximum power conversion efficiency than the equivalent devices without a graphene layer. The present findings indicate that controlling organic-graphene heterointerface could provide a design strategy of organic solar cell architecture for boosting photon harvesting.
Epitaxial Growth of YBa2Cu3O7 Films onto LaAlO3 (100) by Using Oxalates
NASA Astrophysics Data System (ADS)
Dominguez, A. Bustamante; Felix, L. León; Garcia, J.; Santibañez, J. Flores; Valladares, L. De Los Santos; Gonzalez, J. C.; Anaya, A. Osorio; Pillaca, M.
Due to the current necessity to obtain epitaxial superconductor films at low cost, we report the growth of YBa2Cu3O7 (Y123) films by chemical deposition. The procedure involved simple steps such as precipitation of stoichiometric amounts of yttrium, barium and copper acetates in oxalic acid (H2C2O4). The precursor solution was dripped onto LaAlO3 (100) substrates with the help of a Fisher pipette. The films were annealed in oxygen atmosphere during 12 h at three different temperatures: 820 °C, 840 °C and 860 °C. After 820 °C and 860 °C annealing, X-ray diffraction (XRD) analysis revealed high intensity of the (00l) reflections denoting that most of the Y123 grains were c-axis oriented. In addition, we also observed a-axis oriented grains ((h00) reflexion), minor randomly oriented grains and other phases (such as Y2BaCuO5 and CuO). In contrast, the sample treated at 840 °C, we noticed c - and a-axis oriented grains, very small amounts of randomly oriented grains without formation of other phases. From the magnetization versus temperature measurements, the critical temperatures were estimated at 70K and 90K for the samples annealed at 820 °C and 860 °C respectively.
Kochanska, Grazyna; Kim, Sanghag; Boldt, Lea J; Nordling, Jamie Koenig
2013-01-01
This multimethod study of mothers and toddlers (a) examined the effectiveness of a play-based intervention (child-oriented play vs. play-as-usual) on children's cooperation with their mothers and socioemotional competence; (b) introduced a robust new measure of maternal engagement in the intervention, reflected in the dose of child-oriented play the mother delivered to the child; and (c) examined ecological factors that predicted maternal engagement, and the effect of engagement on the outcomes. Low-income mothers (N = 186, 11% Latino, 27% minority) were randomized into child-oriented play group or play-as-usual group, participated in 8 play sessions, and played daily with their children for 10 weeks. Microscopic coding of mothers' behavior in play sessions assessed the dose of child-oriented play delivered to children; mothers' diaries assessed time in daily play. Children's cooperation with maternal control, observed in the laboratory, and mother-rated competence were measured before randomization (Pretest), after play sessions (Posttest 1), and 6 months later (Posttest 2). Children in both groups made significant gains in both outcomes. The gains in cooperation appeared longer lasting in child-oriented play group. Both groups made significantly greater gains than a "historical community control" group, an unrelated longitudinal study without any intervention. Structural equation analyses revealed that married mothers and those with fewer children delivered higher doses of child-oriented play, and those doses predicted children's higher cooperation and competence, with the effects of earlier scores covaried. The dose of time spent in daily play had no effect. Child-oriented play may be a promising, effective, and inexpensive means of promoting toddlers' positive development.
Kochanska, Grazyna; Kim, Sanghag; Boldt, Lea J.; Nordling, Jamie Koenig
2013-01-01
Objectives This multi-method study of mothers and toddlers (a) examined the effectiveness of a play-based intervention (child-oriented play versus play-as-usual) on children’s cooperation with their mothers and socioemotional competence, (b) introduced a robust new measure of maternal engagement in the intervention, reflected in the dose of child-oriented play the mother delivered to the child, (c) examined ecological factors that predicted maternal engagement, and the effect of engagement on the outcomes. Methods Low-income mothers (N=186, 11% Latino, 27% minority) were randomized into Child-Oriented Play group or Play-as-Usual group, and participated in 8 play sessions and played daily with their children for 10 weeks. Microscopic coding of mothers’ behavior in play sessions assessed the dose of child-oriented play delivered to children; mothers’ diaries assessed time in daily play. Children’s cooperation with maternal control, observed in the laboratory, and mother-rated competence were measured before randomization (Pretest), after play sessions (Posttest 1), and 6 months later (Posttest 2). Results Children in both groups made significant gains in both outcomes. The gains in cooperation appeared longer lasting in Child-Oriented Play group. Both groups made significantly greater gains than a “historical community control” group, an unrelated longitudinal study without any intervention. Structural Equation Analyses revealed that married mothers, and those with fewer children delivered higher doses of child-oriented play, and those doses predicted children’s higher cooperation and competence, with the effects of earlier scores covaried. The dose of time spent in daily play had no effect. Conclusion Child-oriented play may be a promising, effective, and inexpensive means of promoting toddlers’ positive development. PMID:23557253
Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c.
Roberts, V A; Freeman, H C; Olson, A J; Tainer, J A; Getzoff, E D
1991-07-15
To understand the specificity and efficiency of protein-protein interactions promoting electron transfer, we evaluated the role of electrostatic forces in precollision orientation by the development of two new methods, computer graphics alignment of protein electrostatic fields and a systematic orientational search of intermolecular electrostatic energies for two proteins at present separation distances. We applied these methods to the plastocyanin/cytochrome c interaction, which is faster than random collision, but too slow for study by molecular dynamics techniques. Significant electrostatic potentials were concentrated on one-fourth (969 A2) of the plastocyanin surface, with the greatest negative potential centered on the Tyr-83 hydroxyl within the acidic patch, and on one-eighth (632 A2) of the cytochrome c surface, with the greatest positive potential centered near the exposed heme edge. Coherent electrostatic fields occurred only over these regions, suggesting that local, rather than global, charge complementarity controls productive recognition. The three energetically favored families of pre-collision orientations all directed the positive region surrounding the heme edge of cytochrome c toward the acidic patch of plastocyanin but differed in heme plane orientation. Analysis of electrostatic fields, electrostatic energies of precollision orientations with 12 and 6 A separation distances, and surface topographies suggested that the favored orientations should converge to productive complexes promoting a single electron-transfer pathway from the cytochrome c heme edge to Tyr-83 of plastocyanin. Direct interactions of the exposed Cu ligand in plastocyanin with the cytochrome c heme edge are not unfavorable sterically or electrostatically but should occur no faster than randomly, indicating that this is not the primary pathway for electron transfer.
Finnema, Evelyn; Dröes, Rose-Marie; Ettema, Teake; Ooms, Marcel; Adèr, Herman; Ribbe, Miel; van Tilburg, Willem
2005-04-01
To examine the effect of integrated emotion-oriented care on nursing home residents with dementia and nursing assistants. A multi-site randomized clinical trial with matched groups, and measurements at baseline and after seven months. Sixteen psychogeriatric wards in fourteen nursing homes in the Netherlands. One hundred and forty-six elderly residents with the diagnosis dementia of the Alzheimer (DAT) type, mixed DAT and vascular dementia, and dementia syndrome (NAO) and 99 nursing assistants. Integrated emotion-oriented care and usual care. MESUREMENTS: Demented elderly: Behaviour and mood related to adaptation to the illness and the institutionalization. Nursing assistants: General health as measured by feelings of stress, stress reactions, feeling of competence and illness. Positive effects in favour of the integrated emotion-oriented care were found in mild to moderately demented residents on two adaptive tasks: maintaining an emotional balance (less anxiety) and preserving a positive self-image (less dissatisfaction). In the trained group of nursing assistants fewer stress reactions were found only in those who perceived improvement in their emotion-oriented care skills after training. Emotion-oriented care is more effective with regard to the emotional adaptation in nursing homes of persons with a mild to moderate dementia. For the severely demented elderly we did not find this surplus value. This outcome is of clinical importance for elderly persons with dementia who are cared for in nursing homes. With respect to the nursing assistants it is concluded that emotion-oriented care has a positive influence on stress reactions in some of them. Copyright 2005 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Chikashige, T.; Iwasaka, M.
2018-05-01
In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth's gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ˜20-μm-long plates with respect to the Earth's gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (0 1 ¯ 2 ¯ ) and (0 1 ¯ 2 )). In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.
Cooperative synchronized assemblies enhance orientation discrimination.
Samonds, Jason M; Allison, John D; Brown, Heather A; Bonds, A B
2004-04-27
There is no clear link between the broad tuning of single neurons and the fine behavioral capabilities of orientation discrimination. We recorded from populations of cells in the cat visual cortex (area 17) to examine whether the joint activity of cells can support finer discrimination than found in individual responses. Analysis of joint firing yields a substantial advantage (i.e., cooperation) in fine-angle discrimination. This cooperation increases to more considerable levels as the population of an assembly is increased. The cooperation in a population of six cells provides encoding of orientation with an information advantage that is at least 2-fold in terms of requiring either fewer cells or less time than independent coding. This cooperation suggests that correlated or synchronized activity can increase information.
Neuromorphic VLSI vision system for real-time texture segregation.
Shimonomura, Kazuhiro; Yagi, Tetsuya
2008-10-01
The visual system of the brain can perceive an external scene in real-time with extremely low power dissipation, although the response speed of an individual neuron is considerably lower than that of semiconductor devices. The neurons in the visual pathway generate their receptive fields using a parallel and hierarchical architecture. This architecture of the visual cortex is interesting and important for designing a novel perception system from an engineering perspective. The aim of this study is to develop a vision system hardware, which is designed inspired by a hierarchical visual processing in V1, for real time texture segregation. The system consists of a silicon retina, orientation chip, and field programmable gate array (FPGA) circuit. The silicon retina emulates the neural circuits of the vertebrate retina and exhibits a Laplacian-Gaussian-like receptive field. The orientation chip selectively aggregates multiple pixels of the silicon retina in order to produce Gabor-like receptive fields that are tuned to various orientations by mimicking the feed-forward model proposed by Hubel and Wiesel. The FPGA circuit receives the output of the orientation chip and computes the responses of the complex cells. Using this system, the neural images of simple cells were computed in real-time for various orientations and spatial frequencies. Using the orientation-selective outputs obtained from the multi-chip system, a real-time texture segregation was conducted based on a computational model inspired by psychophysics and neurophysiology. The texture image was filtered by the two orthogonally oriented receptive fields of the multi-chip system and the filtered images were combined to segregate the area of different texture orientation with the aid of FPGA. The present system is also useful for the investigation of the functions of the higher-order cells that can be obtained by combining the simple and complex cells.
Orientation of Zn3P2 films via phosphidation of Zn precursors
NASA Astrophysics Data System (ADS)
Katsube, Ryoji; Nose, Yoshitaro
2017-02-01
Orientation of solar absorber is an important factor to achieve high efficiency of thin film solar cells. In the case of Zn3P2 which is a promising absorber of low-cost and high-efficiency solar cells, (110)/(001) orientation was only reported in previous studies. We have successfully prepared (101)-oriented Zn3P2 films by phosphidation of (0001)-oriented Zn films at 350 °C. The phosphidation mechanism of Zn is discussed through STEM observations on the partially-reacted sample and the consideration of the relationship between the crystal structures of Zn and Zn3P2 . We revealed that (0001)-oriented Zn led to nucleation of (101)-oriented Zn3P2 due to the similarity in atomic arrangement between Zn and Zn3P2 . The electrical resistivity of the (101)-oriented Zn3P2 film was lower than those of (110)/(001)-oriented films, which is an advantage of the phosphidation technique to the growth processes in previous works. The results in this study demonstrated that well-conductive Zn3P2 films could be obtained by controlling orientations of crystal grains, and provide a guiding principle for microstructure control in absorber materials.
Development of orientation tuning in simple cells of primary visual cortex
Moore, Bartlett D.
2012-01-01
Orientation selectivity and its development are basic features of visual cortex. The original model of orientation selectivity proposes that elongated simple cell receptive fields are constructed from convergent input of an array of lateral geniculate nucleus neurons. However, orientation selectivity of simple cells in the visual cortex is generally greater than the linear contributions based on projections from spatial receptive field profiles. This implies that additional selectivity may arise from intracortical mechanisms. The hierarchical processing idea implies mainly linear connections, whereas cortical contributions are generally considered to be nonlinear. We have explored development of orientation selectivity in visual cortex with a focus on linear and nonlinear factors in a population of anesthetized 4-wk postnatal kittens and adult cats. Linear contributions are estimated from receptive field maps by which orientation tuning curves are generated and bandwidth is quantified. Nonlinear components are estimated as the magnitude of the power function relationship between responses measured from drifting sinusoidal gratings and those predicted from the spatial receptive field. Measured bandwidths for kittens are slightly larger than those in adults, whereas predicted bandwidths are substantially broader. These results suggest that relatively strong nonlinearities in early postnatal stages are substantially involved in the development of orientation tuning in visual cortex. PMID:22323631
Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Yoshida, Takashi; Matsugi, Yuki; Tsujimura, Naotaka; Sasayama, Teruyoshi; Enpuku, Keiji; Viereck, Thilo; Schilling, Meinhard; Ludwig, Frank
2017-04-01
In some biomedical applications of magnetic nanoparticles (MNPs), the particles are physically immobilized. In this study, we explore the effect of the alignment of the magnetic easy axes on the dynamic magnetization of immobilized MNPs under an AC excitation field. We prepared three immobilized MNP samples: (1) a sample in which easy axes are randomly oriented, (2) a parallel-aligned sample in which easy axes are parallel to the AC field, and (3) an orthogonally aligned sample in which easy axes are perpendicular to the AC field. First, we show that the parallel-aligned sample has the largest hysteresis in the magnetization curve and the largest harmonic magnetization spectra, followed by the randomly oriented and orthogonally aligned samples. For example, 1.6-fold increase was observed in the area of the hysteresis loop of the parallel-aligned sample compared to that of the randomly oriented sample. To quantitatively discuss the experimental results, we perform a numerical simulation based on a Fokker-Planck equation, in which probability distributions for the directions of the easy axes are taken into account in simulating the prepared MNP samples. We obtained quantitative agreement between experiment and simulation. These results indicate that the dynamic magnetization of immobilized MNPs is significantly affected by the alignment of the easy axes.
Reynolds, Andy M
2010-12-06
For many years, the dominant conceptual framework for describing non-oriented animal movement patterns has been the correlated random walk (CRW) model in which an individual's trajectory through space is represented by a sequence of distinct, independent randomly oriented 'moves'. It has long been recognized that the transformation of an animal's continuous movement path into a broken line is necessarily arbitrary and that probability distributions of move lengths and turning angles are model artefacts. Continuous-time analogues of CRWs that overcome this inherent shortcoming have appeared in the literature and are gaining prominence. In these models, velocities evolve as a Markovian process and have exponential autocorrelation. Integration of the velocity process gives the position process. Here, through a simple scaling argument and through an exact analytical analysis, it is shown that autocorrelation inevitably leads to Lévy walk (LW) movement patterns on timescales less than the autocorrelation timescale. This is significant because over recent years there has been an accumulation of evidence from a variety of experimental and theoretical studies that many organisms have movement patterns that can be approximated by LWs, and there is now intense debate about the relative merits of CRWs and LWs as representations of non-orientated animal movement patterns.
Gagliardo, A.; Odetti, F.; Ioalè, P.
2001-01-01
Whether pigeons use visual landmarks for orientation from familiar locations has been a subject of debate. By recording the directional choices of both anosmic and control pigeons while exiting from a circular arena we were able to assess the relevance of olfactory and visual cues for orientation from familiar sites. When the birds could see the surroundings, both anosmic and control pigeons were homeward oriented. When the view of the landscape was prevented by screens that surrounded the arena, the control pigeons exited from the arena approximately in the home direction, while the anosmic pigeons' distribution was not different from random. Our data suggest that olfactory and visual cues play a critical, but interchangeable, role for orientation at familiar sites. PMID:11571054
Buzás, P; Eysel, U T; Kisvárday, Z F
1998-11-01
Pyramidal cells mediating long-range corticocortical connections have been assumed to play an important role in visual perceptual mechanisms [C.D. Gilbert, Horizontal integration and cortical dynamics, Neuron 9 (1992) 1-13]. However, no information is available as yet on the specificity of individual pyramidal cells with respect to functional maps, e.g., orientation map. Here, we show a combination of techniques with which the functional topography of single pyramidal neurons can be explored in utmost detail. To this end, we used optical imaging of intrinsic signals followed by intracellular recording and staining with biocytin in vivo. The axonal and dendritic trees of the labelled neurons were reconstructed in three dimensions and aligned with corresponding functional orientation maps. The results indicate that, contrary to the sharp orientation tuning of neurons shown by the recorded spike activity, the efferent connections (axon terminal distribution) of the same pyramidal cells were found to terminate at a much broader range of orientations. Copyright 1998 Elsevier Science B.V.
Ghous, Misbah; Malik, Arshad Nawaz; Amjad, Mian Imran; Kanwal, Maria
2017-07-01
Stroke is one of most disabling condition which directly affects quality of life. The objective of this study was to compare the effect of activity repetition training with salat (prayer) versus task oriented training on functional outcomes of stroke. The study design was randomized control trial and 32 patients were randomly assigned into two groups'. The stroke including infarction or haemorrhagic, age bracket 30-70 years was included. The demographics were recorded and standardized assessment tool included Berg Balance Scale (BBS), Motor assessment scale (MAS) and Time Up and Go Test (TUG). The measurements were obtained at baseline, after four and six weeks. The mean age of the patients was 54.44±10.59 years with 16 (59%) male and 11(41%) female patients. Activity Repetition Training group showed significant improvement (p<0.05) and is effective in enhancing the functional status as compare to task oriented training group. The repetition with motivation and concentration is the key in re-learning process of neural plasticity.
NASA Astrophysics Data System (ADS)
Pinarbaşi; , Tacettin; Canpolat, Nurtaç; Bayrakçeken, Samih; Geban, Ömer
2006-12-01
This study investigated the effect of conceptual change text-oriented instruction over traditional instruction on students' understanding of solution concepts (e.g., dissolving, solubility, factors affecting solubility, concentrations of solutions, types of solutions, physical properties of solutions) and their attitudes towards chemistry. The sample of this study consisted of 87 undergraduate students from two classes enrolled in an introductory chemistry course. One of the classes was assigned randomly to the control group, and the other class were assigned randomly to the experimental group. During teaching the topic of solution concepts in the chemistry curriculum, a conceptual change text-oriented instruction was applied in the experimental group whereas traditional instruction was followed in the control group. The results showed that the students in the experimental group performed better with respect to solution concepts. In addition, it has been found that there was no significant difference between the attitudes of students in the experimental and control groups towards chemistry.
Resonant spin tunneling in randomly oriented nanospheres of Mn 12 acetate
Lendínez, S.; Zarzuela, R.; Tejada, J.; ...
2015-01-06
We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore » single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less
Resonant spin tunneling in randomly oriented nanospheres of Mn 12 acetate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lendínez, S.; Zarzuela, R.; Tejada, J.
We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore » single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less
Cell division plane orientation based on tensile stress in Arabidopsis thaliana
Louveaux, Marion; Julien, Jean-Daniel; Mirabet, Vincent; Boudaoud, Arezki; Hamant, Olivier
2016-01-01
Cell geometry has long been proposed to play a key role in the orientation of symmetric cell division planes. In particular, the recently proposed Besson–Dumais rule generalizes Errera’s rule and predicts that cells divide along one of the local minima of plane area. However, this rule has been tested only on tissues with rather local spherical shape and homogeneous growth. Here, we tested the application of the Besson–Dumais rule to the divisions occurring in the Arabidopsis shoot apex, which contains domains with anisotropic curvature and differential growth. We found that the Besson–Dumais rule works well in the central part of the apex, but fails to account for cell division planes in the saddle-shaped boundary region. Because curvature anisotropy and differential growth prescribe directional tensile stress in that region, we tested the putative contribution of anisotropic stress fields to cell division plane orientation at the shoot apex. To do so, we compared two division rules: geometrical (new plane along the shortest path) and mechanical (new plane along maximal tension). The mechanical division rule reproduced the enrichment of long planes observed in the boundary region. Experimental perturbation of mechanical stress pattern further supported a contribution of anisotropic tensile stress in division plane orientation. Importantly, simulations of tissues growing in an isotropic stress field, and dividing along maximal tension, provided division plane distributions comparable to those obtained with the geometrical rule. We thus propose that division plane orientation by tensile stress offers a general rule for symmetric cell division in plants. PMID:27436908
Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won
2016-01-01
Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration-culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.
Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won
2016-01-01
Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration—culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch. PMID:26989897
Dual-task results and the lateralization of spatial orientation: artifact of test selection?
Bowers, C A; Milham, L M; Price, C
1998-01-01
An investigation was conducted to identify the degree to which results regarding the lateralization of spatial orientation among men and women are artifacts of test selection. A dual-task design was used to study possible lateralization differences, providing baseline and dual-task measures of spatial-orientation performance, right- and left-hand tapping, and vocalization of "cat, dog, horse." The Guilford-Zimmerman Test (Guilford & Zimmerman, 1953), the Eliot-Price Test (Eliot & Price, 1976), and the Stumpf-Fay Cube Perspectives Test (Stumpf & Fay, 1983) were the three spatial-orientation tests used to investigate possible artifacts of test selection. Twenty-eight right-handed male and 39 right-handed female undergraduates completed random baseline and dual-task sessions. Analyses indicated no significant sex-related differences in spatial-orientation ability for all three tests. Furthermore, there was no evidence of differential lateralization of spatial orientation between the sexes.
NASA Astrophysics Data System (ADS)
Xiao, Mi; Zhang, Weikang; Zhang, Zebin; Zhang, Ping; Lan, Kuibo
2017-07-01
In this paper, Pb(Zr0.52Ti0.48)O3 (PZT) thin films with different preferred orientation were prepared on platinized silicon substrates by a modified sol-gel method. Our results indicate that the polarization switching current in PZT thin films is dependent on preferred orientation and poling temperature. In our measurements, (111)-oriented PZT has a larger polarization switching current than randomly oriented PZT, and with the increase of the degree of (111) preferred orientation and the poling temperature, the polarization switching current gradually increase. Considering the contact of PZT thin film with electrodes, the space-charged limited conduction (SCLC) combined with domain switching mechanism may be responsible for such phenomena. By analyzing the conduction data, we found the interface-limited Schottky emission (ES) and bulk-limited Poole-Frenkel hopping (PF) are not suitable for our samples.
Ferro- and piezoelectric properties of polar-axis-oriented CaBi4Ti4O15 films
NASA Astrophysics Data System (ADS)
Kato, Kazumi; Fu, Desheng; Suzuki, Kazuyuki; Tanaka, Kiyotaka; Nishizawa, Kaori; Miki, Takeshi
2004-05-01
Polar-axis-oriented CaBi4Ti4O15 (CBTi144) films were fabricated on Pt foils using a complex metal alkoxide solution. The 500-nm-thick film showed the columnar structure and consisted of well-developed grains. The a/b-axis orientation of the ferroelectric films is considered to be associated with the preferred orientation of Pt foil. The film showed good ferro- and piezoelectric properties. The Pr and Ec were 25 μC/cm2 and 306 kV/cm, respectively, at an applied voltage of 115 V. The d33 was characterized as 30 pm/V by piezoresponse force microscopy. The values were twice as large as those of the CBTi144 thin film with random orientation. The polar-axis-oriented CBTi144 films would open up possibilities for devices as Pb-free piezoelectric materials.
NASA Astrophysics Data System (ADS)
Vélez-García, Gregorio M.; Ortman, Kevin C.; Eberle, Aaron P. R.; Wapperom, Peter; Baird, Donald G.
2008-07-01
A 2D coupled Hele-Shaw flow approximation for predicting the flow-induced orientation of high aspect ratio particles in injection molded composite parts is presented. For a highly concentrated short glass fiber PBT suspension, the impact of inter-particle interactions and the orientation at the gate is investigated for a center-gated disk using material parameters determined from rheometry. Experimental orientation is determined from confocal laser micrographs using the methods of ellipses. The constitutive equations are discretized using discontinuous Galerkin Finite Elements. Model predictions are significantly improved by using a localized orientation measured experimentally at the gate region instead of random or averaged gapwise measured orientation assumed in previous studies. The predicted profile in different radial positions can be related to the layered structure along the gapwise direction. Model modifications including interactions have lower impact than the initial conditions.
Acephate affects migratory orientation of the white-throated sparrow (Zonotrichia albicollis)
Vyas, N.B.; Kuenzel, W.J.; Hill, E.F.; Sauer, J.R.
1995-01-01
Migratory white-throated sparrows (Zonotrichia albicollis) were exposed to acephate (acetylphosphoramidothioic acid O,S-dimethyl ester), an organophosphorus pesticide, to determine its effects on migratory orientation and behavior. Birds were also exposed to polarizer sheets to determine the mechanism by which acephate may affect migratory orientation. Adult birds exposed to 256 ppm acephate a.i. were not able to establish a preferred migratory orientation and exhibited random activity. All juvenile treatment groups displayed a seasonally correct southward migratory orientation. We hypothesize that acephate may have produced aberrant migratory behavior by affecting the memory of the migratory route and wintering ground. This experiment reveals that an environmentally relevant concentration of a common organophosphorus pesticide can alter migratory orientation, but its effect is markedly different between adult and juvenile sparrows. Results suggest that the survival of free-flying adult passerine migrants may be compromised following organophosphorus pesticide exposure.
Wöller, Wolfgang; Leichsenring, Falk; Leweke, Frank; Kruse, Johannes
2012-01-01
In this article, the authors present a psychodynamically oriented psychotherapy approach for posttraumatic stress disorder (PTSD) related to childhood abuse. This neurobiologically informed, phase-oriented treatment approach, which has been developed in Germany during the past 20 years, takes into account the broad comorbidity and the large degree of ego-function impairment typically found in these patients. Based on a psychodynamic relationship orientation, this treatment integrates a variety of trauma-specific imaginative and resource-oriented techniques. The approach places major emphasis on the prevention of vicarious traumatization. The authors are presently planning to test the approach in a randomized controlled trial aimed at strengthening the evidence base for psychodynamic psychotherapy in PTSD.
Origin and Function of Tuning Diversity in Macaque Visual Cortex.
Goris, Robbe L T; Simoncelli, Eero P; Movshon, J Anthony
2015-11-18
Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells' diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population. Copyright © 2015 Elsevier Inc. All rights reserved.
Wu, Tong; Zhang, Jialing; Wang, Yuanfei; Li, Dandan; Sun, Binbin; El-Hamshary, Hany; Yin, Meng; Mo, Xiumei
2018-01-01
Designing a biomimetic and functional tissue-engineered vascular graft has been urgently needed for repairing and regenerating defected vascular tissues. Utilizing a multi-layered vascular scaffold is commonly considered an effective way, because multi-layered scaffolds can easily simulate the structure and function of natural blood vessels. Herein, we developed a novel tri-layer tubular graft consisted of Poly(L-lactide-co-caprolactone)/collagen (PLCL/COL) fibers and Poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) yarns via a three-step electrospinning method. The tri-layer vascular graft consisted of PLCL/COL aligned fibers in inner layer, PLGA/SF yarns in middle layer, and PLCL/COL random fibers in outer layer. Each layer possessed tensile mechanical strength and elongation, and the entire tubular structure provided tensile and compressive supports. Furthermore, the human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs) proliferated well on the materials. Fluorescence staining images demonstrated that the axially aligned PLCL/COL fibers prearranged endothelium morphology in lumen and the circumferential oriented PLGA/SF yarns regulated SMCs organization along the single yarns. The outside PLCL/COL random fibers performed as the fixed layer to hold the entire tubular structure. The in vivo results showed that the tri-layer vascular graft supported cell infiltration, scaffold biodegradation and abundant collagen production after subcutaneous implantation for 10weeks, revealing the optimal biocompatibility and tissue regenerative capability of the tri-layer graft. Therefore, the specially designed tri-layer vascular graft will be beneficial to vascular reconstruction. Copyright © 2017. Published by Elsevier B.V.
Dual Roles for Spike Signaling in Cortical Neural Populations
Ballard, Dana H.; Jehee, Janneke F. M.
2011-01-01
A prominent feature of signaling in cortical neurons is that of randomness in the action potential. The output of a typical pyramidal cell can be well fit with a Poisson model, and variations in the Poisson rate repeatedly have been shown to be correlated with stimuli. However while the rate provides a very useful characterization of neural spike data, it may not be the most fundamental description of the signaling code. Recent data showing γ frequency range multi-cell action potential correlations, together with spike timing dependent plasticity, are spurring a re-examination of the classical model, since precise timing codes imply that the generation of spikes is essentially deterministic. Could the observed Poisson randomness and timing determinism reflect two separate modes of communication, or do they somehow derive from a single process? We investigate in a timing-based model whether the apparent incompatibility between these probabilistic and deterministic observations may be resolved by examining how spikes could be used in the underlying neural circuits. The crucial component of this model draws on dual roles for spike signaling. In learning receptive fields from ensembles of inputs, spikes need to behave probabilistically, whereas for fast signaling of individual stimuli, the spikes need to behave deterministically. Our simulations show that this combination is possible if deterministic signals using γ latency coding are probabilistically routed through different members of a cortical cell population at different times. This model exhibits standard features characteristic of Poisson models such as orientation tuning and exponential interval histograms. In addition, it makes testable predictions that follow from the γ latency coding. PMID:21687798
Wu, Shaohua; Wang, Ying; Streubel, Philipp N; Duan, Bin
2017-10-15
Non-woven nanofibrous scaffolds have been developed for tendon graft application by using electrospinning strategies. However, electrospun nanofibrous scaffolds face some obstacles and limitations, including suboptimal scaffold structure, weak tensile and suture-retention strengths, and compact structure for cell infiltration. In this work, a novel nanofibrous, woven biotextile, fabricated based on electrospun nanofiber yarns, was implemented as a tissue engineered tendon scaffold. Based on our modified electrospinning setup, polycaprolactone (PCL) nanofiber yarns were fabricated with reproducible quality, and were further processed into plain-weaving fabrics interlaced with polylactic acid (PLA) multifilaments. Nonwoven nanofibrous PCL meshes with random or aligned fiber structures were generated using typical electrospinning as comparative counterparts. The woven fabrics contained 3D aligned microstructures with significantly larger pore size and obviously enhanced tensile mechanical properties than their nonwoven counterparts. The biological results revealed that cell proliferation and infiltration, along with the expression of tendon-specific genes by human adipose derived mesenchymal stem cells (HADMSC) and human tenocytes (HT), were significantly enhanced on the woven fabrics compared with those on randomly-oriented or aligned nanofiber meshes. Co-cultures of HADMSC with HT or human umbilical vein endothelial cells (HUVEC) on woven fabrics significantly upregulated the functional expression of most tenogenic markers. HADMSC/HT/HUVEC tri-culture on woven fabrics showed the highest upregulation of most tendon-associated markers than all the other mono- and co-culture groups. Furthermore, we conditioned the tri-cultured constructs with dynamic conditioning and demonstrated that dynamic stretch promoted total collagen secretion and tenogenic differentiation. Our nanofiber yarn-based biotextiles have significant potential to be used as engineered scaffolds to synergize the multiple cell interaction and mechanical stimulation for promoting tendon regeneration. Tendon grafts are essential for the treatment of various tendon-related conditions due to the inherently poor healing capacity of native tendon tissues. In this study, we combined electrospun nanofiber yarns with textile manufacturing strategies to fabricate nanofibrous woven biotextiles with hierarchical features, aligned fibrous topography, and sufficient mechanical properties as tendon tissue engineered scaffolds. Comparing to traditional electrospun random or aligned meshes, our novel nanofibrous woven fabrics possess strong tensile and suture-retention strengths and larger pore size. We also demonstrated that the incorporation of tendon cells and vascular cells promoted the tenogenic differentiation of the engineered tendon constructs, especially under dynamic stretch. This study not only presents a novel tissue engineered tendon scaffold fabrication technique but also provides a useful strategy to promote tendon differentiation and regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Two-dimensional hexagonally oriented CdCl2.H2O nanorod assembly: formation and replication.
Deng, Zhaoxiang; Mao, Chengde
2004-09-14
This paper reports a simple bottom-up method that can controllably fabricate 2D hexagonally oriented and randomly distributed CdCl(2).H(2)O nanorods on mica surfaces. The as-formed nanorod assemblies have been successfully replicated into various matrixes, including gold, poly(dimethylsiloxane), and polyurethane. Thus, this method is compatible with soft-lithography towards further applications.
ERIC Educational Resources Information Center
Cecchini-Estrada, José-Antonio; Méndez-Giménez, Antonio
2017-01-01
This longitudinal study investigated the effects of a mastery motivational climate in physical education (PE) classes on 2×2 achievement goal orientation and dominance, self-regulated learning (SRL), and physical activity (PA) in leisure time. A total of 408 (264 women, 144 men) university students were randomly assigned to two groups:…
ERIC Educational Resources Information Center
Troy, Warwick G.; And Others
Three types of workshops dealing with racism and sexism were conducted for 1900 incoming university freshmen as part of their orientation program. The methods were a structured discussion model developed by Sedlacek and Brooks (1976), a Starpower simulation workshop, and a movie discussion group. Students were randomly assigned to one of the three…
NASA Astrophysics Data System (ADS)
Miyazaki, Masumi; Sakanoue, Tomo; Takenobu, Taishi
2018-03-01
Uniaxially oriented poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) films were prepared on rubbed polyimide substrates and applied to emitting layers of light-emitting electrochemical cells (LECs). The layered structure of the uniaxially oriented F8T2 film and ionic liquid electrolytes enabled us to demonstrate LEC operations with high anisotropic characteristics both in emission and charge transport. Polarized electroluminescence (EL) from electrochemically induced p-n junctions in the uniaxially oriented F8T2 was obtained. The dichroic ratios of EL were the same as those of photoluminescence, suggesting that the doping process into the oriented F8T2 did not interrupt the polymer ordering. This indicates the usefulness of the layered structure of the polymer/electrolyte for the fabrication of LECs based on highly oriented polymer films. In addition, uniaxially oriented F8T2 was found to show reduced threshold energy in optically pumped amplified spontaneous emission. These demonstrations suggest the advantage of uniaxially oriented polymer-based LECs for potential application in future electrically pumped lasers.
Wu, Bin; Pan, Jiefeng; Ge, Liang; Wu, Liang; Wang, Huanting; Xu, Tongwen
2014-01-01
The novel oriented electrospun nanofiber membrane composed of MOFs and SPPESK has been synthesized for proton exchange membrane fuel cell operating at high temperature and anhydrous conditions. It is clear that the oriented nanofiber membrane displays the higher proton conductivity than that of the disordered nanofiber membrane or the membrane prepared by conventional solvent-casting method (without nanofibers). Nanofibers within the membranes are significantly oriented. The proton conductivity of the oriented nanofiber membrane can reach up to (8.2 ± 0.16) × 10−2 S cm−1 at 160°C under anhydrous condition for the highly orientation of nanofibers. Moreover, the oxidative stability and resistance of methanol permeability of the nanofibers membrane are obviously improved with an increase in orientation of nanofibers. The observed methanol permeability of 0.707 × 10−7 cm2 s−1 is about 6% of Nafion-115. Consequently, orientated nanofibers membrane is proved to be a promising material as the proton exchange membrane for potential application in direct methanol fuel cells. PMID:25082522
Mechanical signals in plant development: a new method for single cell studies
NASA Technical Reports Server (NTRS)
Lynch, T. M.; Lintilhac, P. M.
1997-01-01
Cell division, which is critical to plant development and morphology, requires the orchestration of hundreds of intracellular processes. In the end, however, cells must make critical decisions, based on a discrete set of mechanical signals such as stress, strain, and shear, to divide in such a way that they will survive the mechanical loads generated by turgor pressure and cell enlargement within the growing tissues. Here we report on a method whereby tobacco protoplasts swirled into a 1.5% agarose entrapment medium will survive and divide. The application of a controlled mechanical load to agarose blocks containing protoplasts orients the primary division plane of the embedded cells. Photoelastic analysis of the agarose entrapment medium can identify the lines of principal stress within the agarose, confirming the hypothesis that cells divide either parallel or perpendicular to the principal stress tensors. The coincidence between the orientation of the new division wall and the orientation of the principal stress tensors suggests that the perception of mechanical stress is a characteristic of individual plant cells. The ability of a cell to determine a shear-free orientation for a new partition wall may be related to the applied load through the deformation of the matrix material. In an isotropic matrix a uniaxial load will produce a rotationally symmetric strain field, which will define a shear-free plane. Where high stress intensities combine with the loading geometry to produce multiaxial loads there will be no axis of rotational symmetry and hence no shear free plane. This suggests that two mechanisms may be orienting the division plane, one a mechanism that works in rotationally symmetrical fields, yielding divisions perpendicular to the compressive tensor, parallel to the long axis of the cell, and one in asymmetric fields, yielding divisions parallel to the short axis of the cell and the compressive tensor.
The influence of GAP-43 on orientation of cell division through G proteins.
Huang, Rui; Zhao, Junpeng; Ju, Lili; Wen, Yujun; Xu, Qunyuan
2015-12-01
Recent studies have shown that GAP-43 is highly expressed in horizontally dividing neural progenitor cells, and G protein complex are required for proper mitotic-spindle orientation of those progenitors in the mammalian developing cortex. In order to verify the hypothesis that GAP-43 may influence the orientation of cell division through interacting with G proteins during neurogenesis, the GAP-43 RNA from adult C57 mouse was cloned into the pEGFP-N1 vector, which was then transfected into Madin-Darby Canine Kidney (MDCK) cells cultured in a three-dimensional (3D) cell culture system. The interaction of GAP-43 with Gαi was detected by co-immunoprecipitation (co-IP), while cystogenesis of 3D morphogenesis of MDCK cells and expression of GAP-43 and Gαi were determined by immunofluorescence and Western blotting. The results showed are as follows: After being transfected by pEGFP-N1-GAP-43, GAP-43 was localized on the cell membrane and co-localized with Gαi, and this dramatically induced a defective cystogenesis in 3D morphogenesis of MDCK cells. The functional interaction between GAP-43 and Gαi proteins was proven by the co-IP assay. It can be considered from the results that the GAP-43 is involved in the orientation of cell division by interacting with Gαi and this should be an important mechanism for neurogenesis in the mammalian brain. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan
2016-05-01
The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ~1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ~1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01169a
Can ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells?
Sherkar, Tejas S; Koster, L Jan Anton
2016-01-07
The power conversion efficiency of photovoltaic cells based on the use of hybrid halide perovskites, CH3NH3PbX3 (X = Cl, Br, I), now exceeds 20%. Recently, it was suggested that this high performance originates from the presence of ferroelectricity in the perovskite, which is hypothesized to lower charge recombination in the device. Here, we investigate and quantify the influence of mesoscale ferroelectric polarization on the device performance of perovskite solar cells. We implement a 3D drift diffusion model to describe the solar cell operation. To account for the mesoscale ferroelectricity, we incorporate domains defined by polarization strength, P, in 3D space, forming different polarization landscapes or microstructures. Study of microstructures with highly-ordered polarized domains shows that charge transport and recombination in the solar cell depends significantly on the polarization landscape viz. the orientation of domain boundaries and the size of domains. In the case of the microstructure with random correlated polarization, a realistic scenario, we find indication of the existence of channels for efficient charge transport in the device which leads to lowering of charge recombination, as evidenced by the high fill factor (FF). However, the high open-circuit voltage (VOC), which is typical of high performance perovskite solar cells, is unlikely to be explained by the presence of ferroelectric polarization in the perovskite.
Bond-orientational analysis of hard-disk and hard-sphere structures.
Senthil Kumar, V; Kumaran, V
2006-05-28
We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.
Srikesavan, Cynthia Swarnalatha; Shay, Barbara; Robinson, David B; Szturm, Tony
2013-03-09
Significant restriction in the ability to participate in home, work and community life results from pain, fatigue, joint damage, stiffness and reduced joint range of motion and muscle strength in people with rheumatoid arthritis or osteoarthritis of the hand. With modest evidence on the therapeutic effectiveness of conventional hand exercises, a task-oriented training program via real life object manipulations has been developed for people with arthritis. An innovative, computer-based gaming platform that allows a broad range of common objects to be seamlessly transformed into therapeutic input devices through instrumentation with a motion-sense mouse has also been designed. Personalized objects are selected to target specific training goals such as graded finger mobility, strength, endurance or fine/gross dexterous functions. The movements and object manipulation tasks that replicate common situations in everyday living will then be used to control and play any computer game, making practice challenging and engaging. The ongoing study is a 6-week, single-center, parallel-group, equally allocated and assessor-blinded pilot randomized controlled trial. Thirty people with rheumatoid arthritis or osteoarthritis affecting the hand will be randomized to receive either conventional hand exercises or the task-oriented training. The purpose is to determine a preliminary estimation of therapeutic effectiveness and feasibility of the task-oriented training program. Performance based and self-reported hand function, and exercise compliance are the study outcomes. Changes in outcomes (pre to post intervention) within each group will be assessed by paired Student t test or Wilcoxon signed-rank test and between groups (control versus experimental) post intervention using unpaired Student t test or Mann-Whitney U test. The study findings will inform decisions on the feasibility, safety and completion rate and will also provide preliminary data on the treatment effects of the task-oriented training compared with conventional hand exercises in people with rheumatoid arthritis or osteoarthritis of the hand. ClinicalTrials.gov: NCT01635582.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Stratt, Richard M.
2018-05-01
Surprisingly long-ranged intermolecular correlations begin to appear in isotropic (orientationally disordered) phases of liquid crystal forming molecules when the temperature or density starts to close in on the boundary with the nematic (ordered) phase. Indeed, the presence of slowly relaxing, strongly orientationally correlated, sets of molecules under putatively disordered conditions ("pseudo-nematic domains") has been apparent for some time from light-scattering and optical-Kerr experiments. Still, a fully microscopic characterization of these domains has been lacking. We illustrate in this paper how pseudo-nematic domains can be studied in even relatively small computer simulations by looking for order-parameter tensor fluctuations much larger than one would expect from random matrix theory. To develop this idea, we show that random matrix theory offers an exact description of how the probability distribution for liquid-crystal order parameter tensors converges to its macroscopic-system limit. We then illustrate how domain properties can be inferred from finite-size-induced deviations from these random matrix predictions. A straightforward generalization of time-independent random matrix theory also allows us to prove that the analogous random matrix predictions for the time dependence of the order-parameter tensor are similarly exact in the macroscopic limit, and that relaxation behavior of the domains can be seen in the breakdown of the finite-size scaling required by that random-matrix theory.
Computer Modelling and Simulation of Solar PV Array Characteristics
NASA Astrophysics Data System (ADS)
Gautam, Nalin Kumar
2003-02-01
The main objective of my PhD research work was to study the behaviour of inter-connected solar photovoltaic (PV) arrays. The approach involved the construction of mathematical models to investigate different types of research problems related to the energy yield, fault tolerance, efficiency and optimal sizing of inter-connected solar PV array systems. My research work can be divided into four different types of research problems: 1. Modeling of inter-connected solar PV array systems to investigate their electrical behavior, 2. Modeling of different inter-connected solar PV array networks to predict their expected operational lifetimes, 3. Modeling solar radiation estimation and its variability, and 4. Modeling of a coupled system to estimate the size of PV array and battery-bank in the stand-alone inter-connected solar PV system where the solar PV system depends on a system providing solar radiant energy. The successful application of mathematics to the above-m entioned problems entailed three phases: 1. The formulation of the problem in a mathematical form using numerical, optimization, probabilistic and statistical methods / techniques, 2. The translation of mathematical models using C++ to simulate them on a computer, and 3. The interpretation of the results to see how closely they correlated with the real data. Array is the most cost-intensive component of the solar PV system. Since the electrical performances as well as life properties of an array are highly sensitive to field conditions, different characteristics of the arrays, such as energy yield, operational lifetime, collector orientation, and optimal sizing were investigated in order to improve their efficiency, fault-tolerance and reliability. Three solar cell interconnection configurations in the array - series-parallel, total-cross-tied, and bridge-linked, were considered. The electrical characteristics of these configurations were investigated to find out one that is comparatively less susceptible to the mismatches due to manufacturer's tolerances in cell characteristics, shadowing, soiling and aging of solar cells. The current-voltage curves and the values of energy yield characterized by maximum-power points and fill factors for these arrays were also obtained. Two different mathematical models, one for smaller size arrays and the other for the larger size arrays, were developed. The first model takes account of the partial differential equations with boundary value conditions, whereas the second one involves the simple linear programming concept. Based on the initial information on the values of short-circuit current and open-circuit voltage of thirty-six single-crystalline silicon solar cells provided by a manufacturer, the values of these parameters for up to 14,400 solar cells were generated randomly. Thus, the investigations were done for three different cases of array sizes, i.e., (6 x 6), (36 x 8) and (720 x 20), for each configuration. The operational lifetimes of different interconnected solar PV arrays and the improvement in their life properties through different interconnection and modularized configurations were investigated using a reliability-index model. Under normal conditions, the efficiency of a solar cell degrades in an exponential manner, and its operational life above a lowest admissible efficiency may be considered as the upper bound of its lifetime. Under field conditions, the solar cell may fail any time due to environmental stresses, or it may function up to the end of its expected lifetime. In view of this, the lifetime of a solar cell in an array was represented by an exponentially distributed random variable. At any instant of time t, this random variable was considered to have two states: (i) the cell functioned till time t, or (ii) the cell failed within time t. It was considered that the functioning of the solar cell included its operation at an efficiency decaying with time under normal conditions. It was assumed that the lifetime of a solar cell had lack of memory or aging property, which meant that no matter how long (say, t) the cell had been operational, the probability that it would last an additional time ?t was independent of t. The operational life of the solar cell above a lowest admissible efficiency was considered as the upper bound of its expected lifetime. The value of the upper bound on the expected life of solar cell was evaluated using the information provided by the manufacturers of the single-crystalline silicon solar cells. Then on the basis of these lifetimes, the expected operational lifetimes of the array systems were obtained. Since the investigations of the effects of collector orientation on the performance of an array require the continuous values of global solar radiation on a surface, a method to estimate the global solar radiation on a surface (horizontal or tilted) was also proposed. The cloudiness index was defined as the fraction of extraterrestrial radiation that reached the earth's surface when the sky above the location of interest was obscured by the cloud cover. The cloud cover at the location of interest during any time interval of a day was assumed to follow the fuzzy random phenomenon. The cloudiness index, therefore, was considered as a fuzzy random variable that accounted for the cloud cover at the location of interest during any time interval of a day. This variable was assumed to depend on four other fuzzy random variables that, respectively, accounted for the cloud cover corresponding to the 1) type of cloud group, 2) climatic region, 3) season with most of the precipitation, and 4) type of precipitation at the location of interest during any time interval. All possible types of cloud covers were categorized into five types of cloud groups. Each cloud group was considered to be a fuzzy subset. In this model, the cloud cover at the location of interest during a time interval was considered to be the clouds that obscure the sky above the location. The cloud covers, with all possible types of clouds having transmissivities corresponding to values in the membership range of a fuzzy subset (i.e., a type of cloud group), were considered to be the membership elements of that fuzzy subset. The transmissivities of different types of cloud covers in a cloud group corresponded to the values in the membership range of that cloud group. Predicate logic (i.e., if---then---, else---, conditions) was used to set the relationship between all the fuzzy random variables. The values of the above-mentioned fuzzy random variables were evaluated to provide the value of cloudiness index for each time interval at the location of interest. For each case of the fuzzy random variable, heuristic approach was used to identify subjectively the range ([a, b], where a and b were real numbers with in [0, 1] such that a
HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development
Jiang, Jihong; Kuan, Chia-Wei; Fotovati, Abbas; Chu, Tony LH; He, Zhengcheng; Lengyell, Tess C; Li, Huaibiao; Kroll, Torsten; Li, Amanda M; Goldowitz, Daniel; Frappart, Lucien; Ploubidou, Aspasia; Patel, Millan S; Pilarski, Linda M; Simpson, Elizabeth M; Lange, Philipp F; Allan, Douglas W
2017-01-01
Oriented cell division is one mechanism progenitor cells use during development and to maintain tissue homeostasis. Common to most cell types is the asymmetric establishment and regulation of cortical NuMA-dynein complexes that position the mitotic spindle. Here, we discover that HMMR acts at centrosomes in a PLK1-dependent pathway that locates active Ran and modulates the cortical localization of NuMA-dynein complexes to correct mispositioned spindles. This pathway was discovered through the creation and analysis of Hmmr-knockout mice, which suffer neonatal lethality with defective neural development and pleiotropic phenotypes in multiple tissues. HMMR over-expression in immortalized cancer cells induces phenotypes consistent with an increase in active Ran including defects in spindle orientation. These data identify an essential role for HMMR in the PLK1-dependent regulatory pathway that orients progenitor cell division and supports neural development. PMID:28994651
Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea
Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu
2015-01-01
Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf. PMID:25774486
Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea.
Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu
2015-03-16
Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf.
Goal-oriented robot navigation learning using a multi-scale space representation.
Llofriu, M; Tejera, G; Contreras, M; Pelc, T; Fellous, J M; Weitzenfeld, A
2015-12-01
There has been extensive research in recent years on the multi-scale nature of hippocampal place cells and entorhinal grid cells encoding which led to many speculations on their role in spatial cognition. In this paper we focus on the multi-scale nature of place cells and how they contribute to faster learning during goal-oriented navigation when compared to a spatial cognition system composed of single scale place cells. The task consists of a circular arena with a fixed goal location, in which a robot is trained to find the shortest path to the goal after a number of learning trials. Synaptic connections are modified using a reinforcement learning paradigm adapted to the place cells multi-scale architecture. The model is evaluated in both simulation and physical robots. We find that larger scale and combined multi-scale representations favor goal-oriented navigation task learning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schallhorn, Julie M; Holiman, Jeffrey D; Stoeger, Christopher G; Chamberlain, Winston
2016-03-01
To evaluate endothelial cell damage after eye bank preparation and passage through 1 of 2 different injectors for Descemet membrane endothelial keratoplasty grafts. Eighteen Descemet membrane endothelial keratoplasty grafts were prepared by Lions VisionGift with the standard partial prepeel technique and placement of an S-stamp for orientation. The grafts were randomly assigned to injection with either a glass-modified Jones tube injector (Gunther Weiss Scientific Glass) or a closed-system intraocular lens injector (Viscoject 2.2; Medicel). After injection, the grafts were stained with the vital fluorescent dye Calcein AM and digitally imaged. The percentage of cell loss was calculated by measuring the area of nonfluorescent pixels and dividing it by the total graft area pixels. Grafts injected using the modified Jones tube injector had an overall cell loss of 27% ± 5% [95% confidence interval, 21%-35%]. Grafts injected using the closed-system intraocular lens injector had a cell loss of 32% ± 8% (95% confidence interval, 21%-45%). This difference was not statistically significant (P = 0.3). Several damage patterns including damage due to S-stamp placement were observed, but they did not correlate with injector type. In this in vitro study, there was no difference in the cell loss associated with the injector method. Grafts in both groups sustained significant cell loss and displayed evidence of graft preparation and S-stamp placement. Improvement in graft preparation and injection methods may improve cell retention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zhiming; Chen, Hui; Qu, Jianfei
Here, chlorinated benzothiadiazide based polymers with multiple chlorine atoms has been designed and synthesized for polymer solar cells with enhanced open circuit voltage up to 0.85 V. The chlorine substitution is found to significantly adjust the band gap of the polymers, and change polymer’s orientation from random morphology of chlorine free PBT4T-2OD, to mixed face-on packing of one chlorine substituted PCBT4T-2OD, and finally to edge-on of two chlorine substituted PCCBT4T-2OD. The optimized chlorinated polymer, PCBT4T-2OD with only one chlorine atom substituted on BT moiety, has been founded to achieve the highest power conversion efficiency up to 8.20% with PC 71BM,more » which is about 68% higher than that of its non-chlorine analogues.« less
Tsend-Ayush, Enkhjargal; Dodge, Natasha; Mohr, Julia; Casey, Aaron; Himmelbauer, Heinz; Kremitzki, Colin L; Schatzkamer, Kyriena; Graves, Tina; Warren, Wesley C; Grützner, Frank
2009-02-01
In mammals, chromosomes occupy defined positions in sperm, whereas previous work in chicken showed random chromosome distribution. Monotremes (platypus and echidnas) are the most basal group of living mammals. They have elongated sperm like chicken and a complex sex chromosome system with homology to chicken sex chromosomes. We used platypus and chicken genomic clones to investigate genome organization in sperm. In chicken sperm, about half of the chromosomes investigated are organized non-randomly, whereas in platypus chromosome organization in sperm is almost entirely non-random. The use of genomic clones allowed us to determine chromosome orientation and chromatin compaction in sperm. We found that in both species chromosomes maintain orientation of chromosomes in sperm independent of random or non-random positioning along the sperm nucleus. The distance of loci correlated with the total length of sperm nuclei, suggesting that chromatin extension depends on sperm elongation. In platypus, most sex chromosomes cluster in the posterior region of the sperm nucleus, presumably the result of postmeiotic association of sex chromosomes. Chicken and platypus autosomes sharing homology with the human X chromosome located centrally in both species suggesting that this is the ancestral position. This suggests that in some therian mammals a more anterior position of the X chromosome has evolved independently.
Tsend-Ayush, Enkhjargal; Dodge, Natasha; Mohr, Julia; Casey, Aaron; Himmelbauer, Heinz; Kremitzki, Colin L.; Schatzkamer, Kyriena; Graves, Tina; Warren, Wesley C.
2013-01-01
In mammals, chromosomes occupy defined positions in sperm, whereas previous work in chicken showed random chromosome distribution. Monotremes (platypus and echidnas) are the most basal group of living mammals. They have elongated sperm like chicken and a complex sex chromosome system with homology to chicken sex chromosomes. We used platypus and chicken genomic clones to investigate genome organization in sperm. In chicken sperm, about half of the chromosomes investigated are organized non-randomly, whereas in platypus chromosome organization in sperm is almost entirely non-random. The use of genomic clones allowed us to determine chromosome orientation and chromatin compaction in sperm. We found that in both species chromosomes maintain orientation of chromosomes in sperm independent of random or non-random positioning along the sperm nucleus. The distance of loci correlated with the total length of sperm nuclei, suggesting that chromatin extension depends on sperm elongation. In platypus, most sex chromosomes cluster in the posterior region of the sperm nucleus, presumably the result of postmeiotic association of sex chromosomes. Chicken and platypus autosomes sharing homology with the human X chromosome located centrally in both species suggesting that this is the ancestral position. This suggests that in some therian mammals a more anterior position of the X chromosome has evolved independently. PMID:18726609
Hore, Victoria R A; Troy, John B; Eglen, Stephen J
2012-11-01
The receptive fields of on- and off-center parasol cell mosaics independently tile the retina to ensure efficient sampling of visual space. A recent theoretical model represented the on- and off-center mosaics by noisy hexagonal lattices of slightly different density. When the two lattices are overlaid, long-range Moiré interference patterns are generated. These Moiré interference patterns have been suggested to drive the formation of highly structured orientation maps in visual cortex. Here, we show that noisy hexagonal lattices do not capture the spatial statistics of parasol cell mosaics. An alternative model based upon local exclusion zones, termed as the pairwise interaction point process (PIPP) model, generates patterns that are statistically indistinguishable from parasol cell mosaics. A key difference between the PIPP model and the hexagonal lattice model is that the PIPP model does not generate Moiré interference patterns, and hence stimulated orientation maps do not show any hexagonal structure. Finally, we estimate the spatial extent of spatial correlations in parasol cell mosaics to be only 200-350 μm, far less than that required to generate Moiré interference. We conclude that parasol cell mosaics are too disordered to drive the formation of highly structured orientation maps in visual cortex.
Kress, Alla; Wang, Xiao; Ranchon, Hubert; Savatier, Julien; Rigneault, Hervé; Ferrand, Patrick; Brasselet, Sophie
2013-07-02
Fluorescence anisotropy and linear dichroism imaging have been widely used for imaging biomolecular orientational distributions in protein aggregates, fibrillar structures of cells, and cell membranes. However, these techniques do not give access to complete orientational order information in a whole image, because their use is limited to parts of the sample where the average orientation of molecules is known a priori. Fluorescence anisotropy is also highly sensitive to depolarization mechanisms such as those induced by fluorescence energy transfer. A fully excitation-polarization-resolved fluorescence microscopy imaging that relies on the use of a tunable incident polarization and a nonpolarized detection is able to circumvent these limitations. We have developed such a technique in confocal epifluorescence microscopy, giving access to new regions of study in the complex and heterogeneous molecular organization of cell membranes. Using this technique, we demonstrate morphological changes at the subdiffraction scale in labeled COS-7 cell membranes whose cytoskeleton is perturbed. Molecular orientational order is also seen to be affected by cholesterol depletion, reflecting the strong interplay between lipid-packing regions and their nearby cytoskeleton. This noninvasive optical technique can reveal local organization in cell membranes when used as a complement to existing methods such as generalized polarization. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Daple coordinates organ-wide and cell-intrinsic polarity to pattern inner-ear hair bundles
Siletti, Kimberly; Hudspeth, A. J.
2017-01-01
The establishment of planar polarization by mammalian cells necessitates the integration of diverse signaling pathways. In the inner ear, at least two systems regulate the planar polarity of sensory hair bundles. The core planar cell polarity (PCP) proteins coordinate the orientations of hair cells across the epithelial plane. The cell-intrinsic patterning of hair bundles is implemented independently by the G protein complex classically known for orienting the mitotic spindle. Although the primary cilium also participates in each of these pathways, its role and the integration of the two systems are poorly understood. We show that Dishevelled-associating protein with a high frequency of leucine residues (Daple) interacts with PCP and cell-intrinsic signals. Regulated by the cell-intrinsic pathway, Daple is required to maintain the polarized distribution of the core PCP protein Dishevelled and to position the primary cilium at the abneural edge of the apical surface. Our results suggest that the primary cilium or an associated structure influences the domain of cell-intrinsic signals that shape the hair bundle. Daple is therefore essential to orient and pattern sensory hair bundles. PMID:29229865
Hess, George P; Lewis, Ryan W; Chen, Yongli
2014-10-01
Various devices have been used to flow neurotransmitter solutions over cells containing receptors (e.g., ligand-gated ion channels) for whole-cell current recordings. With many of the devices, the orientation between the porthole of the flow device and the cell is not maintained absolutely constant. Orientation is critical for reproducibility in kinetic experiments. To be able to change the composition of the flowing solution during an experiment and still maintain a constant orientation, we use the cell-flow device described here. A peristaltic pump, a stainless steel U-tube, two different sizes of peristaltic tubing, and a solenoid valve are required to create a simple solution exchange system that can rapidly apply and remove solutions over the surface of a cell in tens of milliseconds. This system allows one to test multiple conditions on a cell containing the receptor of interest while constantly "washing" the cell with extracellular buffer solution between experimental applications. The use of the solenoid valve allows for the application of solutions to be precisely timed and controlled by a computer during electrophysiological current recording. © 2014 Cold Spring Harbor Laboratory Press.
Impact of physical confinement on nuclei geometry and cell division dynamics in 3D spheroids.
Desmaison, Annaïck; Guillaume, Ludivine; Triclin, Sarah; Weiss, Pierre; Ducommun, Bernard; Lobjois, Valérie
2018-06-08
Multicellular tumour spheroids are used as a culture model to reproduce the 3D architecture, proliferation gradient and cell interactions of a tumour micro-domain. However, their 3D characterization at the cell scale remains challenging due to size and cell density issues. In this study, we developed a methodology based on 3D light sheet fluorescence microscopy (LSFM) image analysis and convex hull calculation that allows characterizing the 3D shape and orientation of cell nuclei relative to the spheroid surface. By using this technique and optically cleared spheroids, we found that in freely growing spheroids, nuclei display an elongated shape and are preferentially oriented parallel to the spheroid surface. This geometry is lost when spheroids are grown in conditions of physical confinement. Live 3D LSFM analysis of cell division revealed that confined growth also altered the preferential cell division axis orientation parallel to the spheroid surface and induced prometaphase delay. These results provide key information and parameters that help understanding the impact of physical confinement on cell proliferation within tumour micro-domains.
NASA Astrophysics Data System (ADS)
Kemkemer, R.; Teichgräber, V.; Schrank-Kaufmann, S.; Kaufmann, D.; Gruler, H.
2000-10-01
In cell culture, liquid crystal analogues are formed by elongated, migrating, and interacting amoeboid cells. An apolar nematic liquid crystal analogue is formed by different cell types like human melanocytes (=pigment cells of the skin), human fibroblasts (=connective tissue cells), human osteoblasts (=bone cells), human adipocytes (=fat cells), etc. The nematic analogue is quite well described by i) a stochastic machine equation responsible for cell orientation and ii) a self-organized extracellular guiding signal, E_2, which is proportional to the orientational order parameter as well as to the cell density. The investigations were mainly made with melanocytes. The transition to an isotropic state analogue can be accomplished either by changing the strength of interaction (e.g. variation of the cell density) or by influencing the cellular machinery by an externally applied signal: i) An isotropic gaseous state analogue is observed at low cell density (ρ < 110melanocytes/mm^2) and a nematic liquid crystal state analogue at higher cell density. ii) The nematic state analogue disappears if the bipolar shaped melanocytes are forced to become a star-like shape (induced by colchicine or staurosporine). The analogy between nematic liquid crystal state analogue formed by elongated, migrating and interacting cells and the nematic liquid crystal phase formed by interacting elongated molecules is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josefsson, Gabriella; Gamstedt, E. Kristofer; Ahvenainen, Patrik
The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in amore » reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.« less
Electromagnetic Scattering by Fully Ordered and Quasi-Random Rigid Particulate Samples
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.
2016-01-01
In this paper we have analyzed circumstances under which a rigid particulate sample can behave optically as a true discrete random medium consisting of particles randomly moving relative to each other during measurement. To this end, we applied the numerically exact superposition T-matrix method to model far-field scattering characteristics of fully ordered and quasi-randomly arranged rigid multiparticle groups in fixed and random orientations. We have shown that, in and of itself, averaging optical observables over movements of a rigid sample as a whole is insufficient unless it is combined with a quasi-random arrangement of the constituent particles in the sample. Otherwise, certain scattering effects typical of discrete random media (including some manifestations of coherent backscattering) may not be accurately replicated.
Engineering of oriented carbon nanotubes in composite materials
Beigmoradi, Razieh; Mohebbi-Kalhori, Davod
2018-01-01
The orientation and arrangement engineering of carbon nanotubes (CNTs) in composite structures is considered a challenging issue. In this regard, two groups of in situ and ex situ techniques have been developed. In the first, the arrangement is achieved during CNT growth, while in the latter, the CNTs are initially grown in random orientation and the arrangement is then achieved during the device integration process. As the ex situ techniques are free from growth restrictions and more flexible in terms of controlling the alignment and sorting of the CNTs, they are considered by some as the preferred technique for engineering of oriented CNTs. This review focuses on recent progress in the improvement of the orientation and alignment of CNTs in composite materials. Moreover, the advantages and disadvantages of the processes are discussed as well as their future outlook. PMID:29515955
NASA Astrophysics Data System (ADS)
Sui, Tan; Landini, Gabriel; Korsunsky, Alexander M.
2011-10-01
High energy (>50keV) synchrotron X-ray scattering experiments were carried out on beamline I12 JEEP at the Diamond Light Source (DLS, Oxford, UK). Although a complete human tooth could be studied, in the present study attention was focused on coupons from the region of the Dentin-Enamel Junction (DEJ). Simultaneous high energy SAXS/WAXS measurements were carried out. Quantitative analysis of the results allows multiple length scale characterization of the nano-crystalline structure of dental tissues. SAXS patterns analysis provide insight into the mean thickness and orientation of hydroxyapatite particles, while WAXS (XRD) patterns allow the determination of the crystallographic unit cell parameters of the hydroxyapatite phase. It was found that the average particle thickness determined from SAXS interpretation varies as a function of position in the vicinity of the DEJ. Most mineral particles are randomly orientated within dentin, although preferred orientation emerges and becomes stronger on approach to the enamel. Within the enamel, texture is stronger than anywhere in the dentin, and the determination of lattice parameters can be accomplished by Pawley refinement of the multiple peak diffraction pattern. The results demonstrate the feasibility of using high energy synchrotron X-ray beams for the characterization of human dental tissues. This opens up the opportunity of studying thick samples (e.g., complete teeth) in complex sample environments (e.g., under saline solution). This opens new avenues for the application of high energy synchrotron X-ray scattering to dental research.
Photoinduced orientation in natural rubber
NASA Astrophysics Data System (ADS)
de Souza, Nara C.; Cavalheri, Adriana S.; Brito, Jackeline B.; Job, Aldo E.; Oliveira, Osvaldo N.; Giacometti, José A.; Silva, Josmary R.
2012-04-01
Azobenzene molecules and their derivatives have been widely investigated for their potential applications in optical and electrooptical devices. We have prepared a new guest-host system from natural rubber (NR) impregnated with azobenzene derivative Sudan Red B (SRB). The effects of stretching and immersion time on photoinduced orientation were investigated by birefringence signal measurements. We have found that the molecular orientation increase when the samples are stretched and decrease with the increase of immersion time. The first behavior was explained by using the random coil model and the latter was attributed to increase of the aggregation of SRB into NR matrix.
NASA Astrophysics Data System (ADS)
Seto, Keisuke; Pham, John; Furukawa, Yukio
2012-03-01
Solid-state structures of thin blend films of perylene and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) formed on the Au surface have been studied by a combination of infrared reflection-absorption spectroscopy and the RATIO method of Debe. In the blend films, PTCDA molecules take the face-on orientation in the whole range of PTCDA contents from 7.5 to 88 mol%. On the other hand, the molecular orientation of perylene molecules changes from edge-on toward random as the PTCDA content increases.
Bae, Won-Gyu; Kim, Jangho; Choung, Yun-Hoon; Chung, Yesol; Suh, Kahp Y; Pang, Changhyun; Chung, Jong Hoon; Jeong, Hoon Eui
2015-11-01
Inspired by the hierarchically organized protein fibers in extracellular matrix (ECM) as well as the physiological importance of multiscale topography, we developed a simple but robust method for the design and manipulation of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with an original wrinkling technique. In this study, based on our proposed fabrication technology, we approached a conceptual platform that can mimic the hierarchically multiscale topographical and orientation cues of the ECM for controlling cell structure and function. We patterned the polyurethane acrylate-based nanotopography with various orientations on the microgrooves, which could provide multiscale topography signals of ECM to control single and multicellular morphology and orientation with precision. Using our platforms, we found that the structures and orientations of fibroblast cells were greatly influenced by the nanotopography, rather than the microtopography. We also proposed a new approach that enables the generation of native ECM having nanofibers in specific three-dimensional (3D) configurations by culturing fibroblast cells on the multiscale substrata. We suggest that our methodology could be used as efficient strategies for the design and manipulation of various functional platforms, including well-defined 3D tissue structures for advanced regenerative medicine applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Preferred negative geotactic orientation in mobile cells: Tetrahymena results.
Noever, D A; Cronise, R; Matsos, H C
1994-01-01
For the protozoan species Tetrahymena a series of airplane experiments are reported, which varied gravity as an active laboratory parameter and tested for corresponding changes in geotaxic orientation of single cells. The airplane achieved alternating periods of low (0.01 g) and high (1.8 g; g = 980 cm/s) gravity by flying repeated Keplerian parabolas. The experimental design was undertaken to clearly distinguish gravity from competing aerodynamic and chemical gradients. In this way, each culture served as its own control, with gravity level alone determining the orientational changes. On average, 6.3% of the Tetrahymena oriented vertically in low gravity, while 27% oriented vertically in high-gravity phases. Simplified physical models are explored for describing these cell trajectories as a function of gravity, aerodynamic drag, and lift. The notable effect of gravity on turning behavior is emphasized as the biophysical cause of the observed negative geotaxis in Tetrahymena. A fundamental investigation of the biological gravity receptor (if it exists) and improved modeling for vertical migration in important types of ocean plankton motivate the present research. Images FIGURE 1 PMID:7858146
Preferred Negative Geotactic Orientation in Mobile Cells: Tetrahymena Results
NASA Technical Reports Server (NTRS)
Noever, David A.; Cronise, Raymond; Matsos, Helen C.
1994-01-01
For the protozoan species Tetrahymena a series of airplane experiments are reported, which varied gravity as an active laboratory parameter and tested for corresponding changes in geotaxic orientation of single cells. The airplane achieved altemating periods of low (0.01 g) and high (1.8 g, g = 980 cm/s) gravity by flying repeated Keplerian parabolas. The experimental design was undertaken to clearly distinguish gravity from competing aerodynamic and chemical gradients. In this way, each culture served as its own control, with gravity level alone determining the orientational changes. On average, 6.3% of the Tetrahymena oriented vertically in low gravity, while 27% oriented vertically in high-gravity phases. Simplified physical models are explored for describing these cell trajectores as a function of gravity, aerodynamic drag, and lift. The notable effect of gravity on turning behavior is emphasized as the biophysical cause of the observed negative geotaxis in Tetrahymena. A fundamental investigation of the biological gravity receptor (it it exists) and improved modeling for vertical migration in important types of ocean plankton motivate the present research.
Ringach, Dario L.; Hawken, Michael J.; Shapley, Robert M.
2011-01-01
One of the functions of the cerebral cortex is to increase the selectivity for stimulus features. Finding more about the mechanisms of increased cortical selectivity is important for understanding how the cortex works. Up to now, studies in multiple cortical areas have reported that suppressive mechanisms are involved in feature selectivity. However, the magnitude of the contribution of suppression to tuning selectivity is not yet determined. We use orientation selectivity in macaque primary visual cortex, V1, as an archetypal example of cortical feature selectivity and develop a method to estimate the magnitude of the contribution of suppression to orientation selectivity. The results show that untuned suppression, one form of cortical suppression, decreases the orthogonal-to-preferred response ratio (O/P ratio) of V1 cells from an average of 0.38 to 0.26. Untuned suppression has an especially large effect on orientation selectivity for highly selective cells (O/P < 0.2). Therefore, untuned suppression is crucial for the generation of highly orientation-selective cells in V1 cortex. PMID:22049440
Inscuteable Regulates the Pins-Mud Spindle Orientation Pathway
Mauser, Jonathon F.; Prehoda, Kenneth E.
2012-01-01
During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals). Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals) is required for full activity, whereas binding to Discs large (Dlg) is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg) before activation of spindle pulling forces by Dynein/Dynactin (via Mud). PMID:22253744
Wang, Qian; Huang, Hanyang; Wei, Kang; Zhao, Yi
2016-10-01
Mechanical stretching and topographical cues are both effective mechanical stimulations for regulating cell morphology, orientation, and behaviors. The competition of these two mechanical stimulations remains largely underexplored. Previous studies have suggested that a small cyclic mechanical strain is not able to reorient cells that have been pre-aligned by relatively large linear microstructures, but can reorient those pre-aligned by small linear micro/nanostructures if the characteristic dimension of these structures is below a certain threshold. Likewise, for micro/nanostructures with a given characteristic dimension, the strain must exceed a certain magnitude to overrule the topographic cues. There are however no in-depth investigations of such "thresholds" due to the lack of close examination of dynamic cell orientation during and shortly after the mechanical loading. In this study, the time-dependent combinatory effects of active and passive mechanical stimulations on cell orientation are investigated by developing a micromechanical stimulator. The results show that the cells pre-aligned by linear micro/nanostructures can be altered by cyclic in-plane strain, regardless of the structure size. During the loading, the micro/nanostructures can resist the reorientation effects by cyclic in-plane strain while the resistive capability (measured by the mean orientation angle change and the reorientation speed) increases with the increasing characteristic dimension. The micro/nanostructures also can recover the cell orientation after the cessation of cyclic in-plane strain, while the recovering capability increases with the characteristic dimension. The previously observed thresholds are largely dependent on the observation time points. In order to accurately evaluate the combinatory effects of the two mechanical stimulations, observations during the active loading with a short time interval or endpoint observations shortly after the loading are preferred. This study provides a microengineering solution to investigate the time-dependent combinatory effects of the active and passive mechanical stimulations and is expected to enhance our understanding of cell responses to complex mechanical environments. Biotechnol. Bioeng. 2016;113: 2191-2201. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Radiative transfer theory for active remote sensing of a forested canopy
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1989-01-01
A canopy is modeled as a two-layer medium above a rough interface. The upper layer stands for the forest crown, with the leaves modeled as randomly oriented and distributed disks and needles and the branches modeled as randomly oriented finite dielectric cylinders. The lower layer contains the tree trunks, modeled as randomly positioned vertical cylinders above the rough soil. Radiative-transfer theory is applied to calculate EM scattering from such a canopy, is expressed in terms of the scattering-amplitude tensors (SATs). For leaves, the generalized Rayleigh-Gans approximation is applied, whereas the branch and trunk SATs are obtained by estimating the inner field by fields inside a similar cylinder of infinite length. The Kirchhoff method is used to calculate the soil SAT. For a plane wave exciting the canopy, the radiative-transfer equations are solved by iteration to the first order in albedo of the leaves and the branches. Numerical results are illustrated as a function of the incidence angle.
Dielectric modelling of cell division for budding and fission yeast
NASA Astrophysics Data System (ADS)
Asami, Koji; Sekine, Katsuhisa
2007-02-01
The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast.
An adaptable neuromorphic model of orientation selectivity based on floating gate dynamics
Gupta, Priti; Markan, C. M.
2014-01-01
The biggest challenge that the neuromorphic community faces today is to build systems that can be considered truly cognitive. Adaptation and self-organization are the two basic principles that underlie any cognitive function that the brain performs. If we can replicate this behavior in hardware, we move a step closer to our goal of having cognitive neuromorphic systems. Adaptive feature selectivity is a mechanism by which nature optimizes resources so as to have greater acuity for more abundant features. Developing neuromorphic feature maps can help design generic machines that can emulate this adaptive behavior. Most neuromorphic models that have attempted to build self-organizing systems, follow the approach of modeling abstract theoretical frameworks in hardware. While this is good from a modeling and analysis perspective, it may not lead to the most efficient hardware. On the other hand, exploiting hardware dynamics to build adaptive systems rather than forcing the hardware to behave like mathematical equations, seems to be a more robust methodology when it comes to developing actual hardware for real world applications. In this paper we use a novel time-staggered Winner Take All circuit, that exploits the adaptation dynamics of floating gate transistors, to model an adaptive cortical cell that demonstrates Orientation Selectivity, a well-known biological phenomenon observed in the visual cortex. The cell performs competitive learning, refining its weights in response to input patterns resembling different oriented bars, becoming selective to a particular oriented pattern. Different analysis performed on the cell such as orientation tuning, application of abnormal inputs, response to spatial frequency and periodic patterns reveal close similarity between our cell and its biological counterpart. Embedded in a RC grid, these cells interact diffusively exhibiting cluster formation, making way for adaptively building orientation selective maps in silicon. PMID:24765062
Constraints on Martian Aerosol Particles Using MGS/TES and HST Data: Shapes
NASA Astrophysics Data System (ADS)
Wolff, M. J.; Clancy, R. T.; Pitman, K. M.; Bell, J. F.; James, P. B.
2001-12-01
In order to constrain the shape of water ice and dust aerosols, we have combined a numerical approach for axisymmetric particle shapes, i.e., cylinders, disks, spheroids (Waterman's T-Matrix approach as improved by Mishchenko and collaborators; cf., Mishchenko et al. 1997, JGR, 102, D14, 16,831), with a multiple-scattering radiative transfer algorithm. We utilize a two-stage iterative process. First, we empirically derive a scattering phase function for each aerosol component from radiative transfer models of Mars Global Surveyor Thermal Emission Spectrometer Emission Phase Function (EPF) sequences. Next, we perform a series of scattering calculations, adjusting our parameters to arrive at a ``best-fit'' theoretical phase function. It is important to note that in addition to randomly-oriented particles, we explicitly consider the possibility of (partially) aligned aerosol particles as well. Thus far, we have been analyzing the three empirically-derived presented by Clancy et al. (this meeting): dust, Type I ice particles (effective radii ~ 1-2 microns), and Type II ice particles (effective radii ~ 3-4 microns). We find that the ``dust'' phase function is best fit by randomly-oriented cylinders with an axial ratio (D/L = diameter-to-length) of either 2.3 or 0.6. Similarly, the shape of the Type II ice curve is reasonably reproduced by randomly-oriented spheroids with an axial ratio of either 0.7 or 1.4. However, neither of the two shapes (nor that of spheres or randomly-oriented hexagonal prisms) can reproduce the phase function derived for the Type I ice. This led to the direct consideration of oriented or aligned particles. which, at least qualitatively, have the ability to account for the phase function shapes for both Type I and II ice particles. The difference between these two phase functions may represent the degree of alignment, with the Type II particles being much less-aligned. The calculations for partially aligned particles is quite numerically intensive and this avenue of research is currently in progress. Additional work is also being done to further constrain the dust aerosol properties using both TES visible/IR and Hubble Space Telescope UV-NIR spectroscopy/imaging data of the recent (and ongoing) Martian global dust storm. Our work has been supported through NASA (MDAP) grant NAG5-9820, (MED) JPL contract 961471, STScI GO programs #8577 and #9052.
On the orientation of stripes in fish skin patterning.
Míguez, David G; Muñuzuri, Alberto P
2006-11-20
This paper is focused on the study of the stripes orientation in the fish skin patterns. Based on microscopic observations of the pigment cells behavior at the embryonic stage, the key aspects of the pigmentation process are implemented in an experimental reaction-diffusion system. The experiment consists of a photosensitive Turing pattern of stripes growing directionally in one direction with controlled velocity. Different growth velocities of the system rearrange the stripes in the same three possible orientations observed in the skin of the colored fishes: parallel, oblique, and perpendicular. Our results suggest that the spreading velocity of the pigment cells in the fish dermis selects the orientation in the patterning processes.
Three-dimensional simulations of the orientation and structure of reconnection X-lines
NASA Astrophysics Data System (ADS)
Schreier, R.; Swisdak, M.; Drake, J. F.; Cassak, P. A.
2010-11-01
This letter employs Hall magnetohydrodynamic simulations to study X-lines formed during the reconnection of magnetic fields with differing strengths and orientations embedded in plasmas of differing densities. Although random initial perturbations trigger the growth of X-lines with many orientations, a few robust X-lines sharing an orientation consistent with the direction of maximal outflow speed, as predicted by Swisdak and Drake [Geophys. Res. Lett. 34, L11106 (2007)] eventually dominate the system. Reconnection in the geometry examined here contradicts the suggestion of Sonnerup [J. Geophys. Res. 79, 1546 (1974)] that it occurs in a plane normal to the equilibrium current. At late time, the X-lines' growth stagnates, leaving them shorter than the simulation domain.
Social problem-solving among adolescents treated for depression.
Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S
2010-01-01
Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.
Carpiano, Richard M; Fitz, Nicholas S
2017-07-01
Child undervaccination is a complex public health problem and a contentious social and political issue. Efforts to increase vaccination coverage require understanding how the public evaluates different reasons for child undervaccination, which may influence attitudes, stigmatizing behaviors, and support for vaccination policies. We conducted a vignette experiment with a United States national online sample (n = 1469) to investigate how and why different undervaccination actions shape evaluations (blame, anger, sympathy, differentness, credibility, dangerousness), stigmatizing orientations (social distance, discrimination), and support for particular policies (e.g., research funding, belief exemptions, fines). Each participant was randomly assigned to read one of four vignettes that described a mother who either refused vaccines, delayed vaccines, encountered social barriers to obtaining vaccines, or was up-to-date on vaccines for her child. Compared to the up-to-date condition, each undervaccination action predicted significantly more negative evaluations and stigmatizing orientations. Vaccine refusal was the most negatively appraised. Differences in social distance and discrimination were explained by negative evaluations about the parent. These evaluations and orientations predicted support for a range of policies. Negative parental evaluations were associated with increased support for more severe policies. We discuss the implications of these findings for addressing undervaccination and informing health scholarship on stigma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gibbons, M C
2013-01-01
The rapid evolution in the world-wide use of Social Media tools suggests the emergence of a global phenomenon that may have implications in the Personal Health and Consumer Health Informatics domains. However the impact of these tools on health outcomes is not known. The goal of this research was to review the randomized controlled trial (RCT) evidence of the impact of health oriented Social Media informatics tools on health outcomes. Evaluations of Social Media consumer health tools were systematically reviewed. Research was limited to studies published in the English language, published in Medline, published in the calendar year 2012 and limited to studies that utilized a RCT methodological design. Two high quality Randomized Controlled Trials among over 600 articles published in Medline were identified. These studies indicate that Social Media interventions may be able to significantly improve pain control among patients with chronic pain and enhance weight loss maintenance among individuals attempting to lose weight. Significantly more research needs to be done to confirm these early findings, evaluate additional health outcomes and further evaluate emerging health oriented Social Media interventions. Chronic pain and weight control have both socially oriented determinants. These studies suggest that understanding the social component of a disease may ultimately provide novel therapeutic targets and socio-clinical interventional strategies.
Cell type-specific termination of transcription by transposable element sequences.
Conley, Andrew B; Jordan, I King
2012-09-30
Transposable elements (TEs) encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the extent to which TE sequences actually terminate transcription of human gene across the genome remains an open question. Using high-throughput sequencing data, we have characterized over 9,000 distinct TE-derived sequences that provide transcription termination sites for 5,747 human genes across eight different cell types. Rarefaction curve analysis suggests that there may be twice as many TE-derived termination sites (TE-TTS) genome-wide among all human cell types. The local chromatin environment for these TE-TTS is similar to that seen for 3' UTR canonical TTS and distinct from the chromatin environment of other intragenic TE sequences. However, those TE-TTS located within the introns of human genes were found to be far more cell type-specific than the canonical TTS. TE-TTS were much more likely to be found in the sense orientation than other intragenic TE sequences of the same TE family and TE-TTS in the sense orientation terminate transcription more efficiently than those found in the antisense orientation. Alu sequences were found to provide a large number of relatively weak TTS, whereas LTR elements provided a smaller number of much stronger TTS. TE sequences provide numerous termination sites to human genes, and TE-derived TTS are particularly cell type-specific. Thus, TE sequences provide a powerful mechanism for the diversification of transcriptional profiles between cell types and among evolutionary lineages, since most TE-TTS are evolutionarily young. The extent of transcription termination by TEs seen here, along with the preference for sense-oriented TE insertions to provide TTS, is consistent with the observed antisense orientation bias of human TEs.
Buonocore, Antimo; Fracasso, Alessio; Melcher, David
2017-01-01
We interact with complex scenes using eye movements to select targets of interest. Studies have shown that the future target of a saccadic eye movement is processed differently by the visual system. A number of effects have been reported, including a benefit for perceptual performance at the target (“enhancement”), reduced influences of backward masking (“un-masking”), reduced crowding (“un-crowding”) and spatial compression towards the saccade target. We investigated the time course of these effects by measuring orientation discrimination for targets that were spatially crowded or temporally masked. In four experiments, we varied the target-flanker distance, the presence of forward/backward masks, the orientation of the flankers and whether participants made a saccade. Masking and randomizing flanker orientation reduced performance in both fixation and saccade trials. We found a small improvement in performance on saccade trials, compared to fixation trials, with a time course that was consistent with a general enhancement at the saccade target. In addition, a decrement in performance (reporting the average flanker orientation, rather than the target) was found in the time bins nearest saccade onset when random oriented flankers were used, consistent with spatial pooling around the saccade target. We did not find strong evidence for un-crowding. Overall, our pattern of results was consistent with both an early, general enhancement at the saccade target and a later, peri-saccadic compression/pooling towards the saccade target. PMID:28614367
Watson, Dennis P; Ray, Bradley; Robison, Lisa; Xu, Huiping; Edwards, Rhiannon; Salyers, Michelle P; Hill, James; Shue, Sarah
2017-01-01
There is a lack of evidence-based substance use disorder treatment and services targeting returning inmates. Substance Use Programming for Person-Oriented Recovery and Treatment (SUPPORT) is a community-driven, recovery-oriented approach to substance abuse care which has the potential to address this service gap. SUPPORT is modeled after Indiana's Access to Recovery program, which was closed due to lack of federal support despite positive improvements in clients' recovery outcomes. SUPPORT builds on noted limitations of Indiana's Access to Recovery program. The ultimate goal of this project is to establish SUPPORT as an effective and scalable recovery-oriented system of care. A necessary step we must take before launching a large clinical trial is pilot testing the SUPPORT intervention. The pilot will take place at Public Advocates in Community Re-Entry (PACE), nonprofit serving individuals with felony convictions who are located in Marion County, Indiana (Indianapolis). The pilot will follow a basic parallel randomized design to compare clients receiving SUPPORT with clients receiving standard services. A total of 80 clients within 3 months of prison release will be recruited to participate and randomly assigned to one of the two intervention arms. Quantitative measures will be collected at multiple time points to understand SUPPORT's impact on recovery capital and outcomes. We will also collect qualitative data from SUPPORT clients to better understand their program and post-discharge experiences. Successful completion of this pilot will prepare us to conduct a multi-site clinical trial. The ultimate goal of this future work is to develop an evidence-based and scalable approach to treating substance use disorder among persons returning to society after incarceration. ClinicalTrials.gov (Clinical Trials ID: NCT03132753 and Protocol Number: 1511731907). Registered 28 April 2017.
SYNTHETIC STRANDS OF CARDIAC MUSCLE
Purdy, Joyce E.; Lieberman, Melvyn; Roggeveen, Anne E.; Kirk, R. Gary
1972-01-01
Spontaneously active bundles of cardiac muscle (synthetic strands) were prepared from isolated cells of 11–13-day old embryonic chick hearts which were disaggregated with trypsin. Linear orientation of the cells was obtained by plating them on agar-coated culture dishes in which either grooves were cut in the agar film or a thin line of palladium was deposited over the agar. The influence of cell-to-cell and cell-to-substrate interactions was observed with time lapse cinematography and the formation of the synthetic strand was shown to involve both random and guided cell movements, enlargement of aggregates by accretion and coalescence, and the compact linear arrangement of cells along paths of preferential adhesion. Electron microscope investigations of these strands showed that a dispersed population of heart cells organized into an inner core of muscle cells and an outer sheath of fibroblast-like cells. The muscle cells contained well-developed, but widely spaced myofibrils, a developing sarcoplasmic reticulum associated in part with the myofibrils and in part with the sarcolemma, an abundance of nonmembrane bound ribosomes and glycogen, and a prominent Golgi complex. Numerous specialized contacts were observed between the muscle cells in the strand, e.g., fasciae adherentes, desmosomes, and nexuses. A distinct type of muscle cell characterized by its pale appearance was regularly observed in the strand and was noted to be similar to Purkinje cells described in the adult avian conduction system and in developing chick myocardium. The present findings were compared with other observations of the developing myocardium, in situ, and it was concluded that, by a number or criteria, the muscle cells of the strand were differentiating normally and suitably organized for electrophysiological studies. PMID:4656702
Sakota, Daisuke; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu
2015-01-01
Turbidity variation is one of the major limitations in Raman spectroscopy for quantifying blood components, such as glucose, non-invasively. To overcome this limitation, we have developed a Raman scattering simulation using a photon-cell interactive Monte Carlo (pciMC) model that tracks photon migration in both the extra- and intracellular spaces without relying on the macroscopic scattering phase function and anisotropy factor. The interaction of photons at the plasma-cell boundary of randomly oriented three-dimensionally biconcave red blood cells (RBCs) is modeled using geometric optics. The validity of the developed pciMCRaman was investigated by comparing simulation and experimental results of Raman spectroscopy of glucose level in a bovine blood sample. The scattering of the excitation laser at a wavelength of 785 nm was simulated considering the changes in the refractive index of the extracellular solution. Based on the excitation laser photon distribution within the blood, the Raman photon derived from the hemoglobin and glucose molecule at the Raman shift of 1140 cm(-1) = 862 nm was generated, and the photons reaching the detection area were counted. The simulation and experimental results showed good correlation. It is speculated that pciMCRaman can provide information about the ability and limitations of the measurement of blood glucose level.
NASA Astrophysics Data System (ADS)
Hasan, Jafar; Jain, Shubham; Chatterjee, Kaushik
2017-01-01
We have developed a chlorine based reactive ion etching process to yield randomly oriented anisotropic nanostructures that render the titanium metal surface ‘black’ similar to that of black silicon. The surface appears black due to the nanostructures in contrast to the conventional shiny surface of titanium. The nanostructures were found to kill bacteria on contact by mechanically rupturing the cells as has been observed previously on wings of certain insects. The etching was optimized to yield nanostructures of ≈1 μm height for maximal bactericidal efficiency without compromising cytocompatibility. Within 4 hours of contact with the black titanium surface, 95% ± 5% of E. coli, 98% ± 2% of P. aeruginosa, 92% ± 5% of M. smegmatis and 22% ± 8% of S. aureus cells that had attached were killed. The killing efficiency for the S. aureus increased to 76% ± 4% when the cells were allowed to adhere up to 24 hours. The black titanium supported the attachment and proliferation of human mesenchymal stem cells and augmented osteogenic lineage commitment in vitro. Thus, the bioinspired nanostructures on black titanium impart multi-biofunctional properties toward engineering the next-generation biomaterials for orthopedic implants.
Hasan, Jafar; Jain, Shubham; Chatterjee, Kaushik
2017-01-01
We have developed a chlorine based reactive ion etching process to yield randomly oriented anisotropic nanostructures that render the titanium metal surface ‘black’ similar to that of black silicon. The surface appears black due to the nanostructures in contrast to the conventional shiny surface of titanium. The nanostructures were found to kill bacteria on contact by mechanically rupturing the cells as has been observed previously on wings of certain insects. The etching was optimized to yield nanostructures of ≈1 μm height for maximal bactericidal efficiency without compromising cytocompatibility. Within 4 hours of contact with the black titanium surface, 95% ± 5% of E. coli, 98% ± 2% of P. aeruginosa, 92% ± 5% of M. smegmatis and 22% ± 8% of S. aureus cells that had attached were killed. The killing efficiency for the S. aureus increased to 76% ± 4% when the cells were allowed to adhere up to 24 hours. The black titanium supported the attachment and proliferation of human mesenchymal stem cells and augmented osteogenic lineage commitment in vitro. Thus, the bioinspired nanostructures on black titanium impart multi-biofunctional properties toward engineering the next-generation biomaterials for orthopedic implants. PMID:28112235
Elastic light scattering from single cells: orientational dynamics in optical trap.
Watson, Dakota; Hagen, Norbert; Diver, Jonathan; Marchand, Philippe; Chachisvilis, Mirianas
2004-08-01
Light-scattering diagrams (phase functions) from single living cells and beads suspended in an optical trap were recorded with 30-ms time resolution. The intensity of the scattered light was recorded over an angular range of 0.5-179.5 degrees using an optical setup based on an elliptical mirror and rotating aperture. Experiments revealed that light-scattering diagrams from biological cells exhibit significant and complex time dependence. We have attributed this dependence to the cell's orientational dynamics within the trap. We have also used experimentally measured phase function information to calculate the time dependence of the optical radiation pressure force on the trapped particle and show how it changes depending on the orientation of the particle. Relevance of these experiments to potential improvement in the sensitivity of label-free flow cytometry is discussed.
Strain-based control of crystal anisotropy for perovskite oxides on semiconductor-based material
McKee, Rodney Allen; Walker, Frederick Joseph
2000-01-01
A crystalline structure and a semiconductor device includes a substrate of a semiconductor-based material and a thin film of an anisotropic crystalline material epitaxially arranged upon the surface of the substrate so that the thin film couples to the underlying substrate and so that the geometries of substantially all of the unit cells of the thin film are arranged in a predisposed orientation relative to the substrate surface. The predisposition of the geometries of the unit cells of the thin film is responsible for a predisposed orientation of a directional-dependent quality, such as the dipole moment, of the unit cells. The predisposed orientation of the unit cell geometries are influenced by either a stressed or strained condition of the lattice at the interface between the thin film material and the substrate surface.
Effect of NICU Department Orientation Program on Mother’s Anxiety: a Randomized Clinical Trial
Valizadeh, Leila; Hosseini, Mohammad Bager; Heydarpoor Damanabad, Zhilla; Rahkar Farshi, Mahni; Asgari Jafarabadi, Mohammad; Ranjbar Kochaksaraie, Fatemeh
2016-01-01
Introduction: Neonatal intensive care unit induces the high level of anxiety for mothers. The aim of this study was to evaluate the effectiveness of NICU orientation program on the anxiety of mothers who had preterm newborns hospitalized in NICU. Methods: This study was a randomized clinical trial (three parallel groups). Participants included 99 mothers with preterm newborns hospitalized in NICU of Al- Zahra hospital, affiliated to Tabriz University of Medical Sciences in 2015. Mothers were randomly assigned to one of three groups (film, booklet, and control). Mothers completed the State- Trait Anxiety Inventory before entering to the NICU, and then mothers in the experiment groups became familiar with the NICU environment through watching a film or reading booklet. After the first NICU visit, all mothers completed the STAI and Cattell's Anxiety Questionnaires. Data were analyzed using SPSS ver. 13 software. Results: There was no significant difference between three groups regarding state- trait anxiety before the intervention. After the first NICU visit, a significant reduction in maternal state anxiety was seen in the both experiment groups. There was no statistical significant difference regarding trait anxiety. Data obtained from Cattell's anxiety questionnaire after intervention, showed significant difference in state anxiety between groups. Conclusion: Employing film and booklet orientation strategy after preterm delivery can reduce the mother’s anxiety and beneficent for the mother, baby, family and health care system. PMID:27752486
Hodde, Dorothee; Gerardo-Nava, José; Wöhlk, Vanessa; Weinandy, Stefan; Jockenhövel, Stefan; Kriebel, Andreas; Altinova, Haktan; Steinbusch, Harry W M; Möller, Martin; Weis, Joachim; Mey, Jörg; Brook, Gary A
2016-02-01
The generation of complex three-dimensional bioengineered scaffolds that are capable of mimicking the molecular and topographical cues of the extracellular matrix found in native tissues is a field of expanding research. The systematic development of such scaffolds requires the characterisation of cell behaviour in response to the individual components of the scaffold. In the present investigation, we studied cell-substrate interactions between purified populations of Schwann cells and three-dimensional fibrin hydrogel scaffolds, in the presence or absence of multiple layers of highly orientated electrospun polycaprolactone nanofibres. Embedded Schwann cells remained viable within the fibrin hydrogel for up to 7 days (the longest time studied); however, cell behaviour in the hydrogel was somewhat different to that observed on the two-dimensional fibrin substrate: Schwann cells failed to proliferate in the fibrin hydrogel, whereas cell numbers increased steadily on the two-dimensional fibrin substrate. Schwann cells within the fibrin hydrogel developed complex process branching patterns, but, when presented with orientated nanofibres, showed a strong tendency to redistribute themselves onto the nanofibres, where they extended long processes that followed the longitudinal orientation of the nanofibres. The process length along nanofibre-containing fibrin hydrogel reached near-maximal levels (for the present experimental conditions) as early as 1 day after culturing. The ability of this three-dimensional, extracellular matrix-mimicking scaffold to support Schwann cell survival and provide topographical cues for rapid process extension suggest that it may be an appropriate device design for the bridging of experimental lesions of the peripheral nervous system. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
A management-oriented classification of pinyon-juniper woodlands of the Great Basin
Neil E. West; Robin J. Tausch; Paul T. Tueller
1998-01-01
A hierarchical framework for the classification of Great Basin pinyon-juniper woodlands was based on a systematic sample of 426 stands from a random selection of 66 of the 110 mountain ranges in the region. That is, mountain ranges were randomly selected, but stands were systematically located on mountain ranges. The National Hierarchical Framework of Ecological Units...
Sugimoto, K; Williamson, R E; Wasteneys, G O
2000-12-01
This article explores root epidermal cell elongation and its dependence on two structural elements of cells, cortical microtubules and cellulose microfibrils. The recent identification of Arabidopsis morphology mutants with putative cell wall or cytoskeletal defects demands a procedure for examining and comparing wall architecture and microtubule organization patterns in this species. We developed methods to examine cellulose microfibrils by field emission scanning electron microscopy and microtubules by immunofluorescence in essentially intact roots. We were able to compare cellulose microfibril and microtubule alignment patterns at equivalent stages of cell expansion. Field emission scanning electron microscopy revealed that Arabidopsis root epidermal cells have typical dicot primary cell wall structure with prominent transverse cellulose microfibrils embedded in pectic substances. Our analysis showed that microtubules and microfibrils have similar orientation only during the initial phase of elongation growth. Microtubule patterns deviate from a predominantly transverse orientation while cells are still expanding, whereas cellulose microfibrils remain transverse until well after expansion finishes. We also observed microtubule-microfibril alignment discord before cells enter their elongation phase. This study and the new technology it presents provide a starting point for further investigations on the physical properties of cell walls and their mechanisms of assembly.
Li, Guannan; Raza, Shan E Ahmed; Rajpoot, Nasir M
2017-04-01
It has been recently shown that recurrent miscarriage can be caused by abnormally high ratio of number of uterine natural killer (UNK) cells to the number of stromal cells in human female uterus lining. Due to high workload, the counting of UNK and stromal cells needs to be automated using computer algorithms. However, stromal cells are very similar in appearance to epithelial cells which must be excluded in the counting process. To exclude the epithelial cells from the counting process it is necessary to identify epithelial regions. There are two types of epithelial layers that can be encountered in the endometrium: luminal epithelium and glandular epithelium. To the best of our knowledge, there is no existing method that addresses the segmentation of both types of epithelium simultaneously in endometrial histology images. In this paper, we propose a multi-resolution Cell Orientation Congruence (COCo) descriptor which exploits the fact that neighbouring epithelial cells exhibit similarity in terms of their orientations. Our experimental results show that the proposed descriptors yield accurate results in simultaneously segmenting both luminal and glandular epithelium. Copyright © 2017 Elsevier B.V. All rights reserved.
Sensory-Targeted Ankle Rehabilitation Strategies for Chronic Ankle Instability.
McKeon, Patrick O; Wikstrom, Erik A
2016-05-01
Deficient sensory input from damaged ankle ligament receptors is thought to contribute to sensorimotor deficits in those with chronic ankle instability (CAI). Targeting other viable sensory receptors may then enhance sensorimotor control in these patients. The purpose of this randomized controlled trial was to evaluate the effects of 2 wk of sensory-targeted ankle rehabilitation strategies (STARS) on patient- and clinician-oriented outcomes in those with CAI. Eighty patients with self-reported CAI participated. All patients completed patient-oriented questionnaires capturing self-reported function as well as the weight-bearing lunge test and an eyes-closed single-limb balance test. After baseline testing, patients were randomly allocated to four STARS groups: joint mobilization, plantar massage, triceps surae stretching, or control. Each patient in the intervention groups received six 5-min treatments of their respective STARS over 2 wk. All subjects were reassessed on patient- and clinician-oriented measures immediately after the intervention and completed a 1-month follow-up that consisted of patient-oriented measures. Change scores of the three STARS groups were compared with the control using independent t-tests and Hedges' g effect sizes with 95% confidence intervals. The joint mobilization group had the greatest weight-bearing lunge test improvement. Plantar massage had the most meaningful single-limb balance improvement. All STARS groups improved patient-oriented outcomes with joint mobilization having the most meaningful effect immediately after the intervention and plantar massage at the 1-month follow-up. Each STARS treatment offers unique contributions to the patient- and clinician-oriented rehabilitation outcomes of those with CAI. Both joint mobilization and plantar massage appear to demonstrate the greatest potential to improve sensorimotor function in those with CAI.
Katayama, Mika; Ellersieck, Mark R.; Roberts, R. Michael
2010-01-01
The development of blastomeres separated from two-cell stage murine embryos has been compared. Blastomeres were removed from the zona pellucida (ZP) and cultured individually; the twin embryos were compared during their progression to blastocyst in terms of development rate, cell number, morphology, conformation at the four-cell stage, and CDX2 and POU5F1 (also known as OCT4) expression. In general, twin embryos, whether obtained from superovulated or normally bred dams, displayed comparable cell numbers as they advanced. They formed morulae and blastocysts more or less synchronously with each other and with control embryos, although possessing about half of the latter's cell number. Despite this apparent synchrony, the majority of twin blastocysts differed in terms of their relative complements of POU5F1+/CDX2− cells, which represent inner cell mass (ICM), and POU5F1+/CDX2+ cells, which identify trophectoderm (TE). Many, but not all, exhibited a disproportionately small ICM. By contrast, demiembryos retained within their ZP and created by randomly damaging one of the two blastomeres in two-cell stage embryos exhibited a more normal ratio of ICM to TE cells at blastocyst and significantly less variance in ICM cell number. One possible explanation is that ZP-free demiembryos only infrequently adopt the same conformation as their partners, including the favorable tetrahedral form, at the four-cell stage, suggesting that such embryos exhibit a high degree of plasticity with regard to the orientation of their first two cleavage planes and that a significant number likely deviate from paths that provide an optimal geometric progression to blastocyst. These data could explain the difficulty of creating monozygotic twins from two-cell stage embryos. PMID:20181620
Orientation-Selective Retinal Circuits in Vertebrates
Antinucci, Paride; Hindges, Robert
2018-01-01
Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such ‘orientation-selective’ neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates. PMID:29467629
Orientation-Selective Retinal Circuits in Vertebrates.
Antinucci, Paride; Hindges, Robert
2018-01-01
Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such 'orientation-selective' neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.
Dodel, M; Hemmati Nejad, N; Bahrami, S H; Soleimani, M; Hanaee-Ahvaz, H
2016-08-31
Tissue reconstruction is among the increasing applications of polymer nanofibers. Fibrous scaffolds (mats) can be easily produced using the electrospinning method with structure and biomechanical properties similar to those of a cellular matrix. Electrospinning is widely used in the production of nanofibers and the GAP-method electrospinning is one of the means of producing fully aligned nanofibers. In this research, using the GAP-method, knitted fibrous scaffolds were made of silk fibroin, which is a biocompatible and biodegradable polymer. To extract fibroin from cocoons, the sodium chloride solution as well as dialysis and freeze-drying techniques were employed. The molecular weight of the extracted fibroin was measured with the SDS-Page electrophoresis technique. Moreover, the pure fibroin structure was examined using the ATR-FTIR method, and the viscosity of the solution used for electrospinning was measured with the Brookfield rotational viscometer. The scaffolds were prepared through electrospinning of the silk fibroin in pure formic acid solution. The following three structures were electrospun: 1) a random structure; 2) a knitted structure with an interstitial angle of 60 degrees; 3) a knitted structure with an interstitial angle of 90 degrees. Morphology of the resulting fibers was studied with a SEM (scanning electron microscope). Fibroin scaffolds are degradable in water. Therefore, they were fixated through immersion in methanol to be prepared for assays. The mechanical properties of the scaffolds were also studied using a tensile strength test device. The effect of methanol on the strength properties of the samples was also assessed. The hydrophilic potential of the samples was measured via a contact angle test. To increase the hydrophilicity of the scaffold surfaces, the cold oxygen plasma technique was employed. Finally, the biocompatibility and cell adhesion of the resulting scaffolds were examined through a HEK 293 cell culture, and the results were analyzed through the MTT, DAPI staining, and SEM imaging techniques. Results revealed that the oriented knitted structure contributed to the increase in Young's modulus and the maximum strength of scaffolds as compared to the random samples. Moreover, this structure can also be a suitable alternative to the typical chemical means of increasing strength.
Anisotropy of the monomer random walk in a polymer melt: local-order and connectivity effects
NASA Astrophysics Data System (ADS)
Bernini, S.; Leporini, D.
2016-05-01
The random walk of a bonded monomer in a polymer melt is anisotropic due to local order and bond connectivity. We investigate both effects by molecular-dynamics simulations on melts of fully-flexible linear chains ranging from dimers (M = 2) up to entangled polymers (M = 200). The corresponding atomic liquid is also considered a reference system. To disentangle the influence of the local geometry and the bond arrangements, and to reveal their interplay, we define suitable measures of the anisotropy emphasising either the former or the latter aspect. Connectivity anisotropy, as measured by the correlation between the initial bond orientation and the direction of the subsequent monomer displacement, shows a slight enhancement due to the local order at times shorter than the structural relaxation time. At intermediate times—when the monomer displacement is comparable to the bond length—a pronounced peak and then decays slowly as t -1/2, becoming negligible when the displacement is as large as about five bond lengths, i.e. about four monomer diameters or three Kuhn lengths. Local-geometry anisotropy, as measured by the correlation between the initial orientation of a characteristic axis of the Voronoi cell and the subsequent monomer dynamics, is affected at shorter times than the structural relaxation time by the cage shape with antagonistic disturbance by the connectivity. Differently, at longer times, the connectivity favours the persistence of the local-geometry anisotropy, which vanishes when the monomer displacement exceeds the bond length. Our results strongly suggest that the sole consideration of the local order is not enough to understand the microscopic origin of the rattling amplitude of the trapped monomer in the cage of the neighbours.
Zhao, Xinxin; Irvine, Scott Alexander; Agrawal, Animesh; Cao, Ye; Lim, Pei Qi; Tan, Si Ying; Venkatraman, Subbu S
2015-10-01
The optimal bio-artificial blood vessel construct is one that has a compliant tubular core with circumferentially aligned smooth muscle cells (SMCs). Obtaining this well-aligned pattern of SMCs on a scaffold is highly beneficial as this cellular orientation preserves the SMC contractile phenotype. We used 3D patterning to create channels on a polycaprolactone (PCL) scaffold; SMCs were then found to be aligned within the microchannels. To preserve this alignment, and to provide a protective coating that could further incorporate cells, we evaluated the use of two hydrogels, one based on poly(ethylene glycol) diacrylate (PEGDA) and the other based on gelatin. Hydrogels were either physically coated on the PCL surfaces or covalently linked via suitable surface modification of PCL. For covalent immobilization of PEGDA hydrogel, alkene groups were introduced on PCL, while for gelatin covalent linkage, serum proteins were introduced. It is, however, crucial that the hydrogel coating does not disrupt the cellular patterning and distribution. We show in this work that both the process of coating as well as the nature of the coating are critical to preservation of the aligned SMCs. The covalent coating methods involving the crosslinking of hydrogels with the surface of PCL films promoted hydrogel retention time on the film as compared with physical deposition. Furthermore, subsequent hydrogel degradation is affected by the components of the cell culture medium, hinting at a possible route to in vivo biodegradation. Surface features control cellular orientation and subsequently influence their functionality, a useful effect for cellularized biomedical devices. Such devices also can benefit from protective and cell friendly hydrogel coatings. However, literature is lacking on the fate of cells that have endured hydrogel coating whilst orientated on a biomaterial surface. In particular, elucidation of the cells ability to remain adherent and orientated post hydrogel addition. Coating requires two procedures that may be deleterious to the orientated cells: the surface pretreatment for gel binding and the hydrogel crosslinking reaction. We compare transglutaminase gelatin crosslinking and UV initiated PEGDA crosslinking, coated onto smooth muscle cells orientated on patterned PCL surfaces. This original study will be of considerable use to the wider biomaterials community. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effects of orientation on Rey complex figure performance.
Ferraro, F Richard; Grossman, Jennifer; Bren, Amy; Hoverson, Allysa
2002-10-01
An experiment was performed that examined the impact of stimulus orientation on performance on the Rey complex figure. A total of 48 undergraduates (24 men, 24 women) were randomly assigned to one of four Rey figure orientation groups (0 degrees, 90 degrees, 180 degrees, and 270 degrees ). Participants followed standard procedures for the Rey figure, initially copying it in whatever orientation group they were assigned to. Next, all participants performed a 15-20 min lexical decision experiment, used as a filler task. Finally, and unbeknownest to them, participants were asked to recall as much of the figure as they could. As expected, results revealed a main effect of Task (F = 83.92, p < .01), in which copy performance was superior to recall performance. However, the main effect for orientation was not significant, nor did orientation interact with task (Fs < .68, ps > .57). The results are important from an applied setting, especially if testing conditions are less than optimal and a fixed stimulus position is not possible (e.g., testing at the bedside).
Chiverton, John P; Ige, Olubisi; Barnett, Stephanie J; Parry, Tony
2017-11-01
This paper is concerned with the modeling and analysis of the orientation and distance between steel fibers in X-ray micro-tomography data. The advantage of combining both orientation and separation in a model is that it helps provide a detailed understanding of how the steel fibers are arranged, which is easy to compare. The developed models are designed to summarize the randomness of the orientation distribution of the steel fibers both locally and across an entire volume based on multiscale entropy. Theoretical modeling, simulation, and application to real imaging data are shown here. The theoretical modeling of multiscale entropy for orientation includes a proof showing the final form of the multiscale taken over a linear range of scales. A series of image processing operations are also included to overcome interslice connectivity issues to help derive the statistical descriptions of the orientation distributions of the steel fibers. The results demonstrate that multiscale entropy provides unique insights into both simulated and real imaging data of steel fiber reinforced concrete.
NASA Technical Reports Server (NTRS)
Eberhard, Wynn L.
1993-01-01
Many lidar researchers have occasionally observed zenith-enhanced backscatter (ZEB) from middle and high clouds. The ZEB signature consists of strong backscatter when the lidar is pointed directly at zenith and a dramatic decline in backscatter as the zenith angle dips slightly off zenith. Mirror-like reflection from horizontal facets of oriented crystals (especially plates) is generally accepted as the cause. It was found during a 3-year observation program that approximately 50 percent of ice clouds had ZEB, regardless of cloud height. The orientation of crystals and the ZEB they cause are important to study and understand for several reasons. First, radiative transfer in clouds with oriented crystals is different than if the same particles were randomly oriented. Second, crystal growth depends partly on the orientation of the particles. Third, ZEB measurements may provide useful information about cirrus microphysical and radiative properties. Finally, the remarkable effect of ZEB on lidar signals should be understood in order to properly interpret lidar data.
ERP evidence for flexible adjustment of retrieval orientation and its influence on familiarity.
Ecker, Ullrich K H; Zimmer, Hubert D
2009-10-01
The assumption was tested that familiarity memory as indexed by a mid-frontal ERP old-new effect is modulated by retrieval orientation. A randomly cued category-based versus exemplar-specific recognition memory test, requiring flexible adjustment of retrieval orientation, was conducted. Results show that the mid-frontal ERP old-new effect is sensitive to the manipulation of study-test congruency-that is, whether the same object is repeated identically or a different category exemplar is presented at test. Importantly, the effect pattern depends on subjects' retrieval orientation. With a specific orientation, only same items elicited an early old-new effect (same > different = new), whereas in the general condition, the old-new effect was graded (same > different > new). This supports the view that both perceptual and conceptual processes can contribute to familiarity memory and demonstrates that the rather automatic process of familiarity is not only data driven but influenced by top-down retrieval orientation, which subjects are able to adjust on a flexible basis.
2010-03-08
This image, acquired 11-05-2007 by NASA Terra spacecraft, shows the city of Chateaubriant, France, surrounded by very old farmsteads. The surrounding countryside presents an interesting pattern of randomly oriented, small individual farmsteads.
Thoma, Nathan C; Cecero, John J
2009-12-01
This study sought to investigate the extent to which therapists endorse techniques outside of their self-identified orientation and which techniques are endorsed across orientations. A survey consisting of 127 techniques from 8 major theories of psychotherapy was administered via U.S. mail to a national random sample of doctoral-level psychotherapy practitioners. The 201 participants endorsed substantial numbers of techniques from outside their respective orientations. Many of these techniques were quite different from those of the core theories of the respective orientations. Further examining when and why experienced practitioners switch to techniques outside their primary orientation may help reveal where certain techniques fall short and where others excel, indicating a need for further research that taps the collective experience of practitioners. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
Tam, Leona; Bagozzi, Richard P; Spanjol, Jelena
2010-05-01
This study examined whether matching implementation intentions to people's regulatory orientation affects the effectiveness of changing unhealthy snacking habits. Participants' regulatory orientation was either measured (as a chronic trait) or manipulated (as a situational state), and participants were randomly assigned to implementation intention conditions to eat more healthy snacks or avoid eating unhealthy ones. A self-reported online food diary of healthy and unhealthy snacks over a 2-day period. Participants with weak unhealthy snacking habits consumed more healthy snacks when forming any type of implementation intentions (regardless of match or mismatch with their regulatory orientation), while participants with strong unhealthy snacking habits consumed more healthy snacks only when forming implementation intentions that matched their regulatory orientations. RESULTS suggest that implementation intentions that match regulatory orientation heighten motivation intensity and put snacking under intentional control for people with strong unhealthy snacking habits. (c) 2010 APA, all rights reserved.
Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.
2002-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT) with various orientations with respect to the bulk material coordinates. A nanotube, the local polymer adjacent to the nanotube, and the nanotube/polymer interface have been modeled as an equivalent-continuum fiber by using an equivalent-continuum modeling method. The equivalent-continuum fiber accounts for the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composite. As an example, the proposed approach is used for the constitutive modeling of a SWNT/LaRC-SI (with a PmPV interface) composite system, with aligned nanotubes, three-dimensionally randomly oriented nanotubes, and nanotubes oriented with varying degrees of axisymmetry. It is shown that the Young s modulus is highly dependent on the SWNT orientation distribution.
Norman, J Farley; Wiesemann, Elizabeth Y
2007-01-01
Younger and older observers' ability to perceive local surface orientation from optical patterns of shading and specular highlights was investigated in two experiments. On each trial, the observers viewed a randomly generated, smoothly curved 3-D object and manipulated an adjustable gauge figure until its orientation matched that of a specific local region on the object's surface (cf. Koenderink, van Doom, & Kappers, 1992). The performance of both age groups was facilitated by the presence of binocular disparity (Experiment 1) and object rotation in depth (Experiment 2). Observers in both age groups were able to judge the surface tilt component of orientation more precisely than the slant component. Significant, but modest, effects of age were found in Experiment 1, but not in Experiment 2. The ability to perceive local surface orientation appears to be relatively well preserved with increasing age, at least through the age of 80.
Understanding the role of emotion-oriented coping in women's motivation for change.
Wu, Qiong; Slesnick, Natasha; Zhang, Jing
2018-03-01
This study tested a sequential mediation model that emotion-oriented coping and motivation for change mediate the relations between anxiety and depressive symptoms and the change in substance use. Data included 183 substance using women, randomly assigned to family therapy (N=123) or individual therapy (N=60). They reported their baseline anxiety and depressive symptoms, emotion-oriented coping, as well as motivation for change throughout treatment, and substance use over a time period of 1.5years. Latent growth curve modeling showed that increased baseline motivation was associated with a faster decline in alcohol and drug use. Moreover, higher baseline anxiety and depressive symptoms were associated with a faster decrease in drug use through higher emotion-oriented coping and higher baseline motivation. This study underscores the importance of emotion-oriented coping in increasing clients' motivation and reducing their drug use. Copyright © 2017 Elsevier Inc. All rights reserved.
Taniguchi, Kiichiro; Kokuryo, Akihiko; Imano, Takao; Minami, Ryunosuke; Nakagoshi, Hideki; Adachi-Yamada, Takashi
2014-12-20
In standard cell division, the cells undergo karyokinesis and then cytokinesis. Some cells, however, such as cardiomyocytes and hepatocytes, can produce binucleate cells by going through mitosis without cytokinesis. This cytokinesis skipping is thought to be due to the inhibition of cytokinesis machinery such as the central spindle or the contractile ring, but the mechanisms regulating it are unclear. We investigated them by characterizing the binucleation event during development of the Drosophila male accessory gland, in which all cells are binucleate. The accessory gland cells arrested the cell cycle at 50 hours after puparium formation (APF) and in the middle of the pupal stage stopped proliferating for 5 hours. They then restarted the cell cycle and at 55 hours APF entered the M-phase synchronously. At this stage, accessory gland cells binucleated by mitosis without cytokinesis. Binucleating cells displayed the standard karyokinesis progression but also showed unusual features such as a non-round shape, spindle orientation along the apico-basal axis, and poor assembly of the central spindle. Mud, a Drosophila homolog of NuMA, regulated the processes responsible for these three features, the classical isoform Mud(PBD) and the two newly characterized isoforms Mud(L) and Mud(S) regulated them differently: Mud(L) repressed cell rounding, Mud(PBD) and Mud(S) oriented the spindle along the apico-basal axis, and Mud(S) and Mud(L) repressed central spindle assembly. Importantly, overexpression of Mud(S) induced binucleation even in standard proliferating cells such as those in imaginal discs. We characterized the binucleation in the Drosophila male accessory gland and examined mechanisms that regulated unusual morphologies of binucleating cells. We demonstrated that Mud, a microtubule binding protein regulating spindle orientation, was involved in this binucleation. We suggest that atypical functions exerted by three structurally different isoforms of Mud regulate cell rounding, spindle orientation and central spindle assembly in binucleation. We also propose that Mud(S) is a key regulator triggering cytokinesis skipping in binucleation processes.
Effect of leaf variables on visible, near-infrared and mid-infrared reflectance of excised leaves
NASA Technical Reports Server (NTRS)
Bell, R.; Labovitz, M. L.; Ludwig, R. W.
1983-01-01
Effects of an imposed (excised) leaf orientation, differing species and differing venation patterns on reflectance measurements in the LANDSAT-4 thematic mapper (TM) channels TM3 (0.63 to 0.69 microns), TM4 (0.76 to 0.90 microns), and TM5 (1.55 to 1.75 microns) were investigated. Orientation of leaves (random vs. systematic placement) was found to affect measurements in the TM4 channel, but not the TM3 and TM5 measurements. Venation caused no significant changes for any band. Azimuth of incident radiation was not a significant main effect, but in conjunction with changes in orientation, angle did have a significant effect on reflectance values in TM3, TM4 and TM5. Specific differences were highly significant (P f or = 0.006) in all but one borderline (P F or = 0.0222) case for TM5. For spectral examination of excised leaves, the sampling arrangement of the leaves should as closely approximate in situ positioning as possible (with respect to remote sensing instrumentation). This dictates a random rather than aligned arrangement.
Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys
NASA Astrophysics Data System (ADS)
Hecht, Ulrike; Witusiewicz, Victor T.
2017-12-01
Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.
Bachar, Eytan; Latzer, Yael; Kreitler, Shulamit; Berry, Elliot M.
1999-01-01
The authors investigated the applicability of self psychological treatment (SPT) and cognitive orientation treatment (COT) to the treatment of anorexia and bulimia. Thirty-three patients participated in this study. The bulimic patients (n = 25) were randomly assigned either to SPT, COT, or control/nutritional counseling only (C/NC). The anorexic patients (n = 8) were randomly assigned to either SPT or COT. Patients were administered a battery of outcome measures assessing eating disorders symptomatology, attitudes toward food, self structure, and general psychiatric symptoms. After SPT, significant improvement was observed. After COT, slight but nonsignificant improvement was observed. After C/NC, almost no changes could be detected.(The Journal of Psychotherapy Practice and Research 1999; 8:115–128) PMID:10079459
Tomich, Georgia Miranda; França, Danielle Corrêa; Diniz, Marco Túlio Costa; Britto, Raquel Rodrigues; Sampaio, Rosana Ferreira; Parreira, Verônica Franco
2010-01-01
To evaluate breathing pattern and thoracoabdominal motion during breathing exercises. Twenty-four patients with class II or III obesity (18 women; 6 men) were studied on the second postoperative day after gastroplasty. The mean age was 37 +/- 11 years, and the mean BMI was 44 +/- 3 kg/m(2). Diaphragmatic breathing, incentive spirometry with a flow-oriented device and incentive spirometry with a volume-oriented device were performed in random order. Respiratory inductive plethysmography was used in order to measure respiratory variables and thoracoabdominal motion. Comparisons among the three exercises showed significant differences: tidal volume was higher during incentive spirometry (with the flow-oriented device or with the volume-oriented device) than during diaphragmatic breathing; the respiratory rate was lower during incentive spirometry with the volume-oriented device than during incentive spirometry with the flow-oriented device; and minute ventilation was higher during incentive spirometry (with the flow-oriented device or with the volume-oriented device) than during diaphragmatic breathing. Rib cage motion did not vary during breathing exercises, although there was an increase in thoracoabdominal asynchrony, especially during incentive spirometry with the flow-oriented device. Among the breathing exercises evaluated, incentive spirometry with the volume-oriented device provided the best results, because it allowed slower, deeper inhalation.
Motion streaks in fast motion rivalry cause orientation-selective suppression.
Apthorp, Deborah; Wenderoth, Peter; Alais, David
2009-05-14
We studied binocular rivalry between orthogonally translating arrays of random Gaussian blobs and measured the strength of rivalry suppression for static oriented probes. Suppression depth was quantified by expressing monocular probe thresholds during dominance relative to thresholds during suppression. Rivalry between two fast motions or two slow motions was compared in order to test the suggestion that fast-moving objects leave oriented "motion streaks" due to temporal integration (W. S. Geisler, 1999). If fast motions do produce motion streaks, then fast motion rivalry might also entail rivalry between the orthogonal streak orientations. We tested this using a static oriented probe that was aligned either parallel to the motion trajectory (hence collinear with the "streaks") or was orthogonal to the trajectory, predicting that rivalry suppression would be greater for parallel probes, and only for rivalry between fast motions. Results confirmed that suppression depth did depend on probe orientation for fast motion but not for slow motion. Further experiments showed that threshold elevations for the oriented probe during suppression exhibited clear orientation tuning. However, orientation-tuned elevations were also present during dominance, suggesting within-channel masking as the basis of the extra-deep suppression. In sum, the presence of orientation-dependent suppression in fast motion rivalry is consistent with the "motion streaks" hypothesis.
Specificity of V1-V2 Orientation Networks in the Primate Visual Cortex
Roe, Anna W.; Ts'o, Daniel Y.
2015-01-01
The computation of texture and shape involves integration of features of various orientations. Orientation networks within V1 tend to involve cells which share similar orientation selectivity. However, emergent properties in V2 require the integration of multiple orientations. We now show that, unlike interactions within V1, V1-V2 orientation interactions are much less synchronized and are not necessarily orientation dependent. We find V1-V2 orientation networks are of two types: a more tightly synchronized, orientation-preserving network and a less synchronized orientation-diverse network. We suggest that such diversity of V1-V2 interactions underlies the spatial and functional integration required for computation of higher order contour and shape in V2. PMID:26314798