Two-dimensional hexagonally oriented CdCl2.H2O nanorod assembly: formation and replication.
Deng, Zhaoxiang; Mao, Chengde
2004-09-14
This paper reports a simple bottom-up method that can controllably fabricate 2D hexagonally oriented and randomly distributed CdCl(2).H(2)O nanorods on mica surfaces. The as-formed nanorod assemblies have been successfully replicated into various matrixes, including gold, poly(dimethylsiloxane), and polyurethane. Thus, this method is compatible with soft-lithography towards further applications.
Watt, J.P.; Peselnick, L.
1980-01-01
Bounds on the effective elastic moduli of randomly oriented aggregates of hexagonal, trigonal, and tetragonal crystals are derived using the variational principles of Hashin and Shtrikman. The bounds are considerably narrower than the widely used Voigt and Reuss bounds. The Voigt-Reuss-Hill average lies within the Hashin-Shtrikman bounds in nearly all cases. Previous bounds of Peselnick and Meister are shown to be special cases of the present results.
Snow Crystal Orientation Effects on the Scattering of Passive Microwave Radiation
NASA Technical Reports Server (NTRS)
Foster, J. L.; Barton, J. S.; Chang, A. T. C.; Hall, D. K.
1999-01-01
For this study, consideration is given to the role crystal orientation plays in scattering and absorbing microwave radiation. A discrete dipole scattering model is used to measure the passive microwave radiation, at two polarizations (horizontal and vertical), scattered by snow crystals oriented in random and non random positions, having various sizes (ranging between 1 micrometers to 10,000 micrometers in radius), and shapes (including spheroids, cylinders, hexagons). The model results demonstrate that for the crystal sizes typically found in a snowpack, crystal orientation is insignificant compared to crystal size in terms of scattering microwave energy in the 8,100 gm (37 GHz) region of the spectrum. Therefore, the assumption used in radiative transfer approaches, where snow crystals are modeled as randomly oriented spheres, is adequate to account for the transfer of microwave energy emanating from the ground and passing through a snowpack.
NASA Astrophysics Data System (ADS)
Du, Yingjie; Ma, Hu; Guo, Mingxuan; Gao, Tie; Li, Haibo
2018-05-01
In this work, two-step method has been employed to prepare random oriented hexagonal hydroxide nanoplates on graphene (Ni(OH)2@G) as binder free anode for lithium ion battery (LIB) with high capacity. The morphology, microstructure, crystal phase and elemental bonding have been characterized. When evaluated as anode for LIB, the Ni(OH)2@G exhibited high initial discharge capacity of 1318 mAh/g at the current density of 50 mA/g. After 80 cycles, the capacity was maintained at 834 mAh/g, implying 63.3% remaining. Even the charge rate was increased to 2000 mA/g, an impressive capacity of 141 mAh/g can be obtained, indicating good rate capability. The superior LIB behavior of Ni(OH)2@G is ascribed to the excellent combination between Ni(OH)2 nanoplates and graphene via both covalent chemical bonding and van der Waals interactions.
Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids.
Douliez, Jean-Paul
2010-07-06
It is presently shown that long chain (C14, C16, and C18) alkanoic (saturated fatty) acids can form magnetically oriented hexagonal phases in aqueous concentrated solutions in mixtures with tetrabutylammonium (TBAOH) as the counterion. The hexagonal phase occurred for a molar ratio, alkanoic acid/TBAOH, higher than 1, i.e., for an excess of fatty acid. The hexagonal phase melted to an isotropic phase (micelles) upon heating at a given temperature depending on the alkyl chain length. The self-orientation of the hexagonal phase occurred upon cooling from the "high-temperature" isotropic phase within the magnetic field. The long axis of the hexagonal phase was shown to self-orient parallel to the magnetic field as evidenced by deuterium solid-state NMR. This finding is expected to be of interest in the field of structural biology and materials chemistry for the synthesis of oriented materials.
Peselnick, L.; Meister, R.
1965-01-01
Variational principles of anisotropic elasticity have been applied to aggregates of randomly oriented pure-phase polycrystals having hexagonal symmetry and trigonal symmetry. The bounds of the effective elastic moduli obtained in this way show a considerable improvement over the bounds obtained by means of the Voigt and Reuss assumptions. The Hill average is found to be in most cases a good approximation when compared to the bounds found from the variational method. The new bounds reduce in their limits to the Voigt and Reuss values. ?? 1965 The American Institute of Physics.
Effect of intrinsic zinc oxide coating on the properties of Al-doped zinc oxide nanorod arrays
NASA Astrophysics Data System (ADS)
Saidi, S. A.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Yusoff, M. M.; Sin, N. D. Md.; Zoolfakar, A. S.; Khusaimi, Z.; Rusop, M.
2018-05-01
The aim of this study was to explore the influence of intrinsic zinc oxide (ZnO) coating fabricated by a simple immersion method. X-ray powder diffraction (XRD) analysis indicated that the Al-doped ZnO nanorod arrays films had a hexagonal wurtzite structure, similar to that of an intrinsic ZnO coating. Structural properties of the samples were characterised using field emission scanning electron microscopy (FESEM; JEOL JSM-7600F) and optical properties using X-ray diffraction (XRD). The XRD results showed that all films were crystallized under hexagonal wurtzite structure and presented a preferential orientation along the c-axis (002) was obtained. The XRD results showed that the intrinsic ZnO coating material had a strong orientation, whereas the ZnO was randomly oriented. Overall these results indicate that intrinsic ZnO coating are pontetial for the creation of functional materials such as barrier protection, optoelectronic devices, humidity sensor and ultraviolet photoconductive sensor.
Bond-orientational analysis of hard-disk and hard-sphere structures.
Senthil Kumar, V; Kumaran, V
2006-05-28
We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.
NASA Astrophysics Data System (ADS)
Shishko, Victor A.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Borovoi, Anatoli G.
2017-11-01
This work presents the estimation of contribution of the main types of optical beams to the light backscatter for randomly oriented hexagonal ice column, the right dihedral angle of which was distorted within the range of 0° (regular particle) to 10°. Calculations were obtained within the physical optics approximation. The wavelength was 532 nm and the refractive index was 1.3116. The results showed that the total contribution of the main types of optical beams to the total backscattering cross section reach the value of 85% at small distortion angle of the hexagonal column and at substantial distortion angle the total contribution of the main types of optical beams decrease up to 55% of the total backscattering cross section. The obtained conclusions can significantly reduce the calculation time in the case when there is no need for high accuracy of the calculation.
Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk
2016-05-11
Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.
NASA Astrophysics Data System (ADS)
Salawu, Emmanuel Oluwatobi; Hesse, Evelyn; Stopford, Chris; Davey, Neil; Sun, Yi
2017-11-01
Better understanding and characterization of cloud particles, whose properties and distributions affect climate and weather, are essential for the understanding of present climate and climate change. Since imaging cloud probes have limitations of optical resolution, especially for small particles (with diameter < 25 μm), instruments like the Small Ice Detector (SID) probes, which capture high-resolution spatial light scattering patterns from individual particles down to 1 μm in size, have been developed. In this work, we have proposed a method using Machine Learning techniques to estimate simulated particles' orientation-averaged projected sizes (PAD) and aspect ratio from their 2D scattering patterns. The two-dimensional light scattering patterns (2DLSP) of hexagonal prisms are computed using the Ray Tracing with Diffraction on Facets (RTDF) model. The 2DLSP cover the same angular range as the SID probes. We generated 2DLSP for 162 hexagonal prisms at 133 orientations for each. In a first step, the 2DLSP were transformed into rotation-invariant Zernike moments (ZMs), which are particularly suitable for analyses of pattern symmetry. Then we used ZMs, summed intensities, and root mean square contrast as inputs to the advanced Machine Learning methods. We created one random forests classifier for predicting prism orientation, 133 orientation-specific (OS) support vector classification models for predicting the prism aspect-ratios, 133 OS support vector regression models for estimating prism sizes, and another 133 OS Support Vector Regression (SVR) models for estimating the size PADs. We have achieved a high accuracy of 0.99 in predicting prism aspect ratios, and a low value of normalized mean square error of 0.004 for estimating the particle's size and size PADs.
The organization of the cone photoreceptor mosaic measured in the living human retina
Sawides, Lucie; de Castro, Alberto; Burns, Stephen A.
2016-01-01
The cone photoreceptors represent the initial fundamental sampling step in the acquisition of visual information. While recent advances in adaptive optics have provided increasingly precise estimates of the packing density and spacing of the cone photoreceptors in the living human retina, little is known about the local cone arrangement beyond a tendency towards hexagonal packing. We analyzed the cone mosaic in data from 10 normal subjects. A technique was applied to calculate the local average cone mosaic structure which allowed us to determine the hexagonality, spacing and orientation of local regions. Using cone spacing estimates, we find the expected decrease in cone density with retinal eccentricity and higher densities along the horizontal meridians as opposed to the vertical meridians. Orientation analysis reveals an asymmetry in the local cone spacing of the hexagonal packing, with cones having a larger local spacing along the horizontal direction. This horizontal/vertical asymmetry is altered at eccentricities larger than 2 degrees in the superior meridian and 2.5 degrees in the inferior meridian. Analysis of hexagon orientations in the central 1.4° of the retina show a tendency for orientation to be locally coherent, with orientation patches consisting of between 35 and 240 cones. PMID:27353225
Yang, Zhi-Yong; Zhang, Hui-Min; Yan, Cun-Ji; Li, Shan-Shan; Yan, Hui-Juan; Song, Wei-Guo; Wan, Li-Jun
2007-03-06
Two alkyl-substituted dual oligothiophenes, quarterthiophene (4T)-trimethylene (tm)-octithiophene (8T) and 4T-tm-4T, were used to fabricate molecular structures on highly oriented pyrolytic graphite and Au(111) surfaces. The resulted structures were investigated by scanning tunneling microscopy. The 4T-tm-8T and 4T-tm-4T molecules self-organize into long-range ordered structures with linear and/or quasi-hexagonal patterns on highly oriented pyrolytic graphite at ambient temperature. Thermal annealing induced a phase transformation from quasi-hexagonal to linear in 4T-tm-8T adlayer. The molecules adsorbed on Au(111) surface in randomly folded and linear conformation. Based on scanning tunneling microscopy results, the structural models for different self-organizations were proposed. Scanning tunneling spectroscopy measurement showed the electronic property of individual molecules in the patterns. These results are significant in understanding the chemistry of molecular structure, including its formation, transformation, and electronic properties. They also help to fabricate oligothiophene assemblies with desired structures for future molecular devices.
NASA Astrophysics Data System (ADS)
Sato, Kaori; Okamoto, Hajime
2006-11-01
Effect of density, shape, and orientation on radar reflectivity factor (Ze) and linear depolarization ratio (LDR) at 95 GHz are investigated by using the discrete dipole approximation (DDA) for ice cloud studies. We consider hexagonal plate, hollow hexagonal column, and hollow bullet rosette in horizontal (2-D) or three-dimensional (3-D) random orientation. We first validate a widely used method to take into account the density and shape effects by the combinational use of Mie theory with the Maxwell-Garnett mixing rule (the MG-Mie method). It is found that the MG-Mie method underestimates Ze and its applicability is limited to sizes smaller than 40 μm. On the basis of the DDA, it is possible to separately treat density, aspect ratio, orientation, and shape. Effect of density turns out to be minor. Orientation and shape are the major controlling factors for Ze especially at effective radius reff > 100 μm and LDR except for very large sizes where the effect of orientation in LDR diminishes. Comparison between the DDA results and the analytical solution for 3-D Rayleigh spheroids show that LDR in the small size range is characterized by the target boundary and aspect ratio. In the large size range, LDR reveals features of a single target element; for example, LDR of bullet rosette is similar to that of a single branch of the particle. Combinational use of Ze and LDR is effective in microphysics retrieval for LDR < -23 dB. For LDR > -23 dB, additional information such as Doppler velocity is required.
Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys
NASA Astrophysics Data System (ADS)
Hecht, Ulrike; Witusiewicz, Victor T.
2017-12-01
Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.
Quasi-random array imaging collimator
Fenimore, E.E.
1980-08-20
A hexagonally shaped quasi-random no-two-holes-touching imaging collimator. The quasi-random array imaging collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasing throughput by elimination of a substrate. The present invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.
Fenimore, E.E.
1980-08-22
A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.
A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1989-01-01
Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.
Stages in molecular beam epitaxy growth of GaAs nanowires studied by x-ray diffraction.
Mariager, Simon O; Lauridsen, Søren L; Sørensen, Claus B; Dohn, Asmus; Willmott, Phillip R; Nygård, Jesper; Feidenhans'l, Robert
2010-03-19
GaAs nanowires were grown by molecular beam epitaxy and studied by glancing-angle x-ray diffraction during five different stages of the growth process. An entire forest of randomly positioned epitaxial nanowires was sampled simultaneously and a large variation in the Au-Ga catalyst was found. Au, AuGa, AuGa(2) and the hexagonal beta phase were all identified in several orientations and in similar amounts. The nanowires are shown to consist of regular zinc blende crystal, its twin and the hexagonal wurtzite. The evolution of the various Au-Ga catalysts and the development in the twin to the wurtzite abundance ratio indicate that the Au catalyst is saturated upon initiation of growth leading to an increased amount of wurtzite structure in the wires. A specular x-ray scan identifies the various Au-Ga alloys, three Au lattice constants and a rough interface between nanowires and catalyst. Reciprocal space maps were obtained around Au Bragg points and show the development of the Au catalyst from a distribution largely oriented with respect to the lattice to a non-uniform distribution with several well-defined lattice constants.
The influence of abutment screw tightening on screw joint configuration.
Lang, Lisa A; Wang, Rui-Feng; May, Kenneth B
2002-01-01
Limiting abutment-to-implant hexagonal discrepancies and rotational movement of the abutment around the implant to less than 5 degrees would result in a more stable screw joint. However, the exact relationship after abutment screw tightening is unknown, as is the effect of a counter-torque device in limiting abutment movement during screw tightening. This study examined the orientation of the abutment hexagon to the implant hexagon after tightening of the abutment screw for several abutment systems with and without the use of a counter-torque device. Thirty conical self-tapping implants (3.75 x 10.0 mm) and 10 wide-platform Brånemark System implants (5.0 x 10.0 mm), along with 10 abutment specimens from the CeraOne, Estheticone, Procera, and AuraAdapt systems, were selected for this investigation. The implants were placed in a holding device prior to tightening of the abutments. When the tightening torque recommended for each abutment system was reached with the use of a torque controller, each implant abutment specimen was removed from the holding device and embedded in a hard resin medium. The specimens were sectioned in a horizontal direction at the level of the hexagons and cleansed of debris prior to examination. The hexagon orientations were assessed as the degree and direction of rotation of the abutment hexagon around the implant hexagon. The range of the maximum degrees of rotation for all 4 abutment groups tightened with or without the counter-torque device was slightly more than 3.53 degrees. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees with or without the use of the counter-torque device. The hexagon-to-hexagon orientation measured as rotational fit on all abutment systems was below the 5 degrees suggested as optimal for screw joint stability. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees regardless of whether the counter-torque device was used.
Wang, Guang; Garvey, Christopher J; Zhao, Han; Huang, Kang; Kong, Lingxue
2017-07-21
Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF) membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs) and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane.
Hore, Victoria R A; Troy, John B; Eglen, Stephen J
2012-11-01
The receptive fields of on- and off-center parasol cell mosaics independently tile the retina to ensure efficient sampling of visual space. A recent theoretical model represented the on- and off-center mosaics by noisy hexagonal lattices of slightly different density. When the two lattices are overlaid, long-range Moiré interference patterns are generated. These Moiré interference patterns have been suggested to drive the formation of highly structured orientation maps in visual cortex. Here, we show that noisy hexagonal lattices do not capture the spatial statistics of parasol cell mosaics. An alternative model based upon local exclusion zones, termed as the pairwise interaction point process (PIPP) model, generates patterns that are statistically indistinguishable from parasol cell mosaics. A key difference between the PIPP model and the hexagonal lattice model is that the PIPP model does not generate Moiré interference patterns, and hence stimulated orientation maps do not show any hexagonal structure. Finally, we estimate the spatial extent of spatial correlations in parasol cell mosaics to be only 200-350 μm, far less than that required to generate Moiré interference. We conclude that parasol cell mosaics are too disordered to drive the formation of highly structured orientation maps in visual cortex.
NASA Astrophysics Data System (ADS)
Borovoi, Anatoli G.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Veselovskii, Igor A.
2018-06-01
Backscattering Mueller matrix and the depolarization and color ratios for quasi-horizontally oriented hexagonal ice plates have been calculated within the framework of the physical optics approximation. In the case of a tilted lidar, the dependence of the color and depolarization ratios on polarization of the incident light has been analyzed. It is shown that the corner reflection effect inherent to the pristine hexagonal ice crystals results in sharp peaks of both the backscattering cross section and depolarization ratio at the lidar tilts of about 30° off zenith. The experimental results obtained recently by Veselovskii et al. [13] at the lidar tilt of 43° have been interpreted as a partial manifestation of the corner reflection effect. The retrieval of the vertical profile of the ice crystal fraction consisting of quasi-horizontally oriented hexagonal plates has been demonstrated.
Crystallography of ordered colloids using optical microscopy. 2. Divergent-beam technique.
Rogers, Richard B; Lagerlöf, K Peter D
2008-04-10
A technique has been developed to extract quantitative crystallographic data from randomly oriented colloidal crystals using a divergent-beam approach. This technique was tested on a series of diverse experimental images of colloidal crystals formed from monodisperse suspensions of sterically stabilized poly-(methyl methacrylate) spheres suspended in organic index-matching solvents. Complete sets of reciprocal lattice basis vectors were extracted in all but one case. When data extraction was successful, results appeared to be accurate to about 1% for lattice parameters and to within approximately 2 degrees for orientation. This approach is easier to implement than a previously developed parallel-beam approach with the drawback that the divergent-beam approach is not as robust in certain situations with random hexagonal close-packed crystals. The two techniques are therefore complimentary to each other, and between them it should be possible to extract quantitative crystallographic data with a conventional optical microscope from any closely index-matched colloidal crystal whose lattice parameters are compatible with visible wavelengths.
Tailoring Graphene Morphology and Orientation on Cu(100), Cu(110), and Cu(111)
NASA Astrophysics Data System (ADS)
Jacobberger, Robert; Arnold, Michael
2013-03-01
Graphene CVD on Cu is phenomenologically complex, yielding diverse crystal morphologies, such as lobes, dendrites, stars, and hexagons, of various orientations. We present a comprehensive study of the evolution of these morphologies as a function of Cu surface orientation, pressure, H2:CH4, and nucleation density. Growth was studied on ultra-smooth, epitaxial Cu films inside Cu enclosures to minimize factors that normally complicate growth. With low H2:CH4, Mullins-Sekerka instabilities propagate to form dendrites, indicating transport limited growth. In LPCVD, the dendrites extend hundreds of microns in the 100, 111, and 110 directions on Cu(100), (110), and (111) and are perturbed by twin boundaries. In APCVD, multiple preferred dendrite orientations exist. With increasing H2:CH4, the dendritic nature of growth is suppressed. In LPCVD, square, rectangle, and hexagon crystals form on Cu(100), (110) and (111), reflecting the Cu crystallography. In APCVD, the morphology becomes hexagonal on each surface. If given ample time, every growth regime yields high-quality monolayers with D:G Raman ratio <0.1. The understanding gained here provides a framework to rationally tailor the graphene crystal morphology and orientation.
An orthogonal oriented quadrature hexagonal image pyramid
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1987-01-01
An image pyramid has been developed with basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The pyramid operates on a hexagonal sample lattice. The set of seven basis functions consist of three even high-pass kernels, three odd high-pass kernels, and one low-pass kernel. The three even kernels are identified when rotated by 60 or 120 deg, and likewise for the odd. The seven basis functions occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. At the lowest level of the pyramid, the input lattice is the image sample lattice. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing sq rt 7 larger than the previous level, so that the number of coefficients is reduced by a factor of 7 at each level. The relationship between this image code and the processing architecture of the primate visual cortex is discussed.
Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.
2017-10-01
The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane.« less
NASA Astrophysics Data System (ADS)
Forster, Linda; Seefeldner, Meinhard; Wiegner, Matthias; Mayer, Bernhard
2017-07-01
Halo displays in the sky contain valuable information about ice crystal shape and orientation: e.g., the 22° halo is produced by randomly oriented hexagonal prisms while parhelia (sundogs) indicate oriented plates. HaloCam, a novel sun-tracking camera system for the automated observation of halo displays is presented. An initial visual evaluation of the frequency of halo displays for the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign from October to mid-November 2014 showed that sundogs were observed more often than 22° halos. Thus, the majority of halo displays was produced by oriented ice crystals. During the campaign about 27 % of the cirrus clouds produced 22° halos, sundogs or upper tangent arcs. To evaluate the HaloCam observations collected from regular measurements in Munich between January 2014 and June 2016, an automated detection algorithm for 22° halos was developed, which can be extended to other halo types as well. This algorithm detected 22° halos about 2 % of the time for this dataset. The frequency of cirrus clouds during this time period was estimated by co-located ceilometer measurements using temperature thresholds of the cloud base. About 25 % of the detected cirrus clouds occurred together with a 22° halo, which implies that these clouds contained a certain fraction of smooth, hexagonal ice crystals. HaloCam observations complemented by radiative transfer simulations and measurements of aerosol and cirrus cloud optical thickness (AOT and COT) provide a possibility to retrieve more detailed information about ice crystal roughness. This paper demonstrates the feasibility of a completely automated method to collect and evaluate a long-term database of halo observations and shows the potential to characterize ice crystal properties.
NASA Astrophysics Data System (ADS)
Wu, Huaping; Wu, Linzhi; Du, Shanyi
2008-04-01
The effective biaxial modulus (Meff) of fiber-textured hexagonal, tetragonal, and orthorhombic films is estimated by using the Voigt-Reuss-Hill and Vook-Witt grain-interaction models. The orientation distribution function with Gaussian distributions of the two Euler angles θ and ϕ is adopted to analyze the effect of texture dispersion degree on Meff. Numerical results that are based on ZnO, BaTiO3, and yttrium barium copper oxide (YBCO) materials show that the Vook-Witt average of Meff is identical to the Voigt-Reuss-Hill average of Meff for the (001) plane of ideally fiber-textured hexagonal and tetragonal films. The ϕ distribution has no influence on Meff of the (hkl)-fiber-textured hexagonal film at any θ distribution in terms of the isotropy in the plane perpendicular to the [001] direction. Comparably, tetragonal and orthorhombic films represent considerable actions of ϕ dispersion on Meff, and the effect of ϕ dispersion on Meff of a (001)-fiber-textured YBCO film is smaller than that for a (001)-fiber-textured BaTiO3 film since the shear anisotropic factor in the (001) shear plane of a YBCO film more closely approaches 1. Enhanced θ and ϕ distributions destroy the perfect fiber textures, and as a result, the films exhibit an evolution from ideal (hkl) fiber textures to random textures with varying full widths at half maximums of θ and ϕ.
Microstructure of Al2O3 scales formed on NiCrAl alloys. Ph.D. Thesis - Case Western Reserve Univ.
NASA Technical Reports Server (NTRS)
Smialek, J. L.
1981-01-01
The structure of transient scales formed on pure and Y or Zr-doped Ni-15Cr-13Al alloys oxidized for 0.1 hr at 1100 C was studied by the use of transmission electron microscopy. Crystallographically oriented scales were found on all three alloys, but especially for the Zr-doped NiCrAl. The oriented scales consisted of alpha-(Al,Cr)2O3, Ni(Al,Cr)2O4 and gamma-Al2O3. They were often found in intimate contact with each other such that the close-packed planes and directions of one oxide phase were aligned with those of another. The prominent structural features of the oriented scales were approximately equal to micrometer subgrains; voids, antiphase domain boundaries and aligned precipitates were also prevalent. Randomly oriented alpha-Al2O3 was also found and was the only oxide ever observed at the immediate oxide metal interface. These approximately 0.15 micrometer grains were populated by intragranular voids which decreased in size and number towards the oxide metal interface. A sequence of oxidation was proposed in which the composition of the growing scale changed from oriented oxides rich in Ni and Cr to oriented oxides rich in Al. At the same time the structure changed from cubic spinels to hexagonal corundums with apparent precipitates of one phase in the matrix of the other. Eventually randomly oriented pure alpha-Al2O3 formed as the stable oxide with an abrupt transition: there was no gradual loss of orientation, no gradual compositional change or no gradual decrease in precipitate density.
Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex
Coppola, David; White, Leonard E.; Wolf, Fred
2015-01-01
The architecture of iso-orientation domains in the primary visual cortex (V1) of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1’s intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point process, the predicted layouts remain distinct from experimental observations and resemble Gaussian random fields. We conclude that V1 layout invariants are specific quantitative signatures of visual cortical optimization, which cannot be explained by generic random feedforward-wiring models. PMID:26575467
Tetrahedral Arrangements of Perylene Bisimide Columns via Supramolecular Orientational Memory.
Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil
2017-01-24
Chiral, shape, and liquid crystalline memory effects are well-known to produce commercial macroscopic materials with important applications as springs, sensors, displays, and memory devices. A supramolecular orientational memory effect that provides complex nanoscale arrangements was only recently reported. This supramolecular orientational memory was demonstrated to preserve the molecular orientation and packing within supramolecular units of a self-assembling cyclotriveratrylene crown at the nanoscale upon transition between its columnar hexagonal and Pm3̅n cubic periodic arrays. Here we report the discovery of supramolecular orientational memory in a dendronized perylene bisimide (G2-PBI) that self-assembles into tetrameric crowns and subsequently self-organizes into supramolecular columns and spheres. This supramolecular orientation memory upon transition between columnar hexagonal and body-centered cubic (BCC) mesophases preserves the 3-fold cubic [111] orientations rather than the 4-fold [100] axes, generating an unusual tetrahedral arrangement of supramolecular columns. These results indicate that the supramolecular orientational memory concept may be general for periodic arrays of self-assembling dendrons and dendrimers as well as for other periodic and quasiperiodic nanoscale organizations comprising supramolecular spheres, generated from other organized complex soft matter including block copolymers and surfactants.
Indium hexagonal island as seed-layer to boost a-axis orientation of AlN thin films
NASA Astrophysics Data System (ADS)
Redjdal, N.; Salah, H.; Azzaz, M.; Menari, H.; Manseri, A.; Guedouar, B.; Garcia-Sanchez, A.; Chérif, S. M.
2018-06-01
Highly a-axis oriented aluminum nitride films have been grown on Indium coated (100) Si substrate by DC reactive magnetron sputtering. It is shown that In incorporated layer improve the extent of preferential growth along (100) axis and form dense AlN films with uniform surface and large grains, devoid of micro-cracks. As revealed by SEM cross section images, AlN structure consists of oriented columnar grains perpendicular to the Si surface, while AlN/In structure results in uniformely tilted column. SEM images also revealed the presence of In hexagonal islands persistent throughout the entire growth. Micro -Raman spectroscopy of the surface and the cross section of the AlN/In grown films evidenced their high degree of homogeneity and cristallinity.
Application of Effective Medium Theory to the Three-Dimensional Heterogeneity of Mantle Anisotropy
NASA Astrophysics Data System (ADS)
Song, X.; Jordan, T. H.
2015-12-01
A self-consistent theory for the effective elastic parameters of stochastic media with small-scale 3D heterogeneities has been developed using a 2nd-order Born approximation to the scattered wavefield (T. H. Jordan, GJI, in press). Here we apply the theory to assess how small-scale variations in the local anisotropy of the upper mantle affect seismic wave propagation. We formulate a anisotropic model in which the local elastic properties are specified by a constant stiffness tensor with hexagonal symmetry of arbitrary orientation. This orientation is guided by a Gaussian random vector field with transversely isotropic (TI) statistics. If the outer scale of the statistical variability is small compared to a wavelength, then the effective seismic velocities are TI and depend on two parameters, a horizontal-to-vertical orientation ratio ξ and a horizontal-to-vertical aspect ratio, η. If ξ = 1, the symmetry axis is isotropically distributed; if ξ < 1, it is vertical biased (bipolar distribution), and if ξ > 1, it is horizontally biased (girdle distribution). If η = 1, the heterogeneity is geometrically isotropic; as η à∞, the medium becomes a horizontal stochastic laminate; as η à0, the medium becomes a vertical stochastic bundle. Using stiffness tensors constrained by laboratory measurements of mantle xenoliths, we explore the dependence of the effective P and S velocities on ξ and η. The effective velocities are strongly controlled by the orientation ratio ξ; e.g., if the hexagonal symmetry axis of the local anisotropy is the fast direction of propagation, then vPH > vPV and vSH > vSV for ξ > 1. A more surprising result is the 2nd-order insensitivity of the velocities to the heterogeneity aspect ratio η. Consequently, the geometrical anisotropy of upper-mantle heterogeneity significantly enhances seismic-wave anisotropy only through local variations in the Voigt-averaged velocities, which depend primarily on rock composition and not deformation history.
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1990-01-01
All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.
NASA Astrophysics Data System (ADS)
Sadhukhan, B.; Nayak, A.; Mookerjee, A.
2017-12-01
In this communication we present together four distinct techniques for the study of electronic structure of solids: the tight-binding linear muffin-tin orbitals, the real space and augmented space recursions and the modified exchange-correlation. Using this we investigate the effect of random vacancies on the electronic properties of the carbon hexagonal allotrope, graphene, and the non-hexagonal allotrope, planar T graphene. We have inserted random vacancies at different concentrations, to simulate disorder in pristine graphene and planar T graphene sheets. The resulting disorder, both on-site (diagonal disorder) as well as in the hopping integrals (off-diagonal disorder), introduces sharp peaks in the vicinity of the Dirac point built up from localized states for both hexagonal and non-hexagonal structures. These peaks become resonances with increasing vacancy concentration. We find that in presence of vacancies, graphene-like linear dispersion appears in planar T graphene and the cross points form a loop in the first Brillouin zone similar to buckled T graphene that originates from π and π* bands without regular hexagonal symmetry. We also calculate the single-particle relaxation time, τ (ěc {q}) of ěc {q} labeled quantum electronic states which originates from scattering due to presence of vacancies, causing quantum level broadening.
NASA Astrophysics Data System (ADS)
Baran, A. J.; Hesse, Evelyn; Sourdeval, Odran
2017-03-01
Future satellite missions, from 2022 onwards, will obtain near-global measurements of cirrus at microwave and sub-millimetre frequencies. To realise the potential of these observations, fast and accurate light-scattering methods are required to calculate scattered millimetre and sub-millimetre intensities from complex ice crystals. Here, the applicability of the ray tracing with diffraction on facets method (RTDF) in predicting the bulk scalar optical properties and phase functions of randomly oriented hexagonal ice columns and hexagonal ice aggregates at millimetre frequencies is investigated. The applicability of RTDF is shown to be acceptable down to size parameters of about 18, between the frequencies of 243 and 874 GHz. It is demonstrated that RTDF is generally well within about 10% of T-matrix solutions obtained for the scalar optical properties assuming hexagonal ice columns. Moreover, on replacing electromagnetic scalar optical property solutions obtained for the hexagonal ice aggregate with the RTDF counterparts at size parameter values of about 18 or greater, the bulk scalar optical properties can be calculated to generally well within ±5% of an electromagnetic-based database. The RTDF-derived bulk scalar optical properties result in brightness temperature errors to generally within about ±4 K at 874 GHz. Differing microphysics assumptions can easily exceed such errors. Similar findings are found for the bulk scattering phase functions. This finding is owing to the scattering solutions being dominated by the processes of diffraction and reflection, both being well described by RTDF. The impact of centimetre-sized complex ice crystals on interpreting cirrus polarisation measurements at sub-millimetre frequencies is discussed.
Anticipation of Local Epidemics Management
NASA Astrophysics Data System (ADS)
Krivy, Ivan
2008-10-01
Local epidemics are systems where temporary elements (infected ones) are distributed over a hexagonal or rectangular network of permanent elements (humans). Their relation of being neighbors is considered to be constant. The systems of this type can occur in rest homes, institutes of social care, nursery schools, summer camps, prisons, etc. The process of the infection propagation depends on the neighborhood relation and on the actual distance of the neighbors. It is influenced by delays during the transitive affecting the people and by random effects, the size of which can be diminished by the intervention of health care service. The anticipation of the health care intervention effects was supported by simulation models implemented by means of the object-oriented programming.
Photonic mesophases from cut rod rotators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stelson, Angela C.; Liddell Watson, Chekesha M., E-mail: cml66@cornell.edu; Avendano, Carlos
2016-01-14
The photonic band properties of random rotator mesophases are calculated using supercell methods applied to cut rods on a hexagonal lattice. Inspired by the thermodynamic mesophase for anisotropic building blocks, we vary the shape factor of cut fraction for the randomly oriented basis. We find large, stable bandgaps with high gap isotropy in the inverted and direct structures as a function of cut fraction, dielectric contrast, and filling fraction. Bandgap sizes up to 34.5% are maximized at high dielectric contrast for rods separated in a matrix. The bandgaps open at dielectric contrasts as low as 2.0 for the transverse magneticmore » polarization and 2.25 for the transverse electric polarization. Additionally, the type of scattering that promotes the bandgap is correlated with the effect of disorder on bandgap size. Slow light properties are investigated in waveguide geometry and slowdown factors up to 5 × 10{sup 4} are found.« less
Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds
Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; Winey, J. M.; Gupta, Yogendra M.
2017-01-01
The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HD plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events. PMID:29098183
Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.
The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events.« less
Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds
Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; ...
2017-10-27
The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events.« less
NASA Technical Reports Server (NTRS)
Stamnes, S.; Ou, S. C.; Lin, Z.; Takano, Y.; Tsay, S. C.; Liou, K.N.; Stamnes, K.
2016-01-01
The reflection and transmission of polarized light for a cirrus cloud consisting of randomly oriented hexagonal columns were calculated by two very different vector radiative transfer models. The forward peak of the phase function for the ensemble-averaged ice crystals has a value of order 6 x 10(exp 3) so a truncation procedure was used to help produce numerically efficient yet accurate results. One of these models, the Vectorized Line-by-Line Equivalent model (VLBLE), is based on the doubling- adding principle, while the other is based on a vector discrete ordinates method (VDISORT). A comparison shows that the two models provide very close although not entirely identical results, which can be explained by differences in treatment of single scattering and the representation of the scattering phase matrix. The relative differences in the reflected I and Q Stokes parameters are within 0.5 for I and within 1.5 for Q for all viewing angles. In 1971 Hansen showed that for scattering by spherical particles the 3 x 3 approximation is sufficient to produce accurate results for the reflected radiance I and the degree of polarization (DOP), and he conjectured that these results would hold also for non-spherical particles. Simulations were conducted to test Hansen's conjecture for the cirrus cloud particles considered in this study. It was found that the 3 x 3 approximation also gives accurate results for the transmitted light, and for Q and U in addition to I and DOP. For these non-spherical ice particles the 3 x 3 approximation leads to an absolute error 2 x 10(exp -6) for the reflected and transmitted I, Q and U Stokes parameters. Hence, it appears to be an excellent approximation, which significantly reduces the computational complexity and burden required for multiple scattering calculations.
NASA Astrophysics Data System (ADS)
Stamnes, S.; Ou, S. C.; Lin, Z.; Takano, Y.; Tsay, S. C.; Liou, K. N.; Stamnes, K.
2017-05-01
The reflection and transmission of polarized light for a cirrus cloud consisting of randomly oriented hexagonal columns were calculated by two very different vector radiative transfer models. The forward peak of the phase function for the ensemble-averaged ice crystals has a value of order 6 ×103 so a truncation procedure was used to help produce numerically efficient yet accurate results. One of these models, the Vectorized Line-by-Line Equivalent model (VLBLE), is based on the doubling-adding principle, while the other is based on a vector discrete ordinates method (VDISORT). A comparison shows that the two models provide very close although not entirely identical results, which can be explained by differences in treatment of single scattering and the representation of the scattering phase matrix. The relative differences in the reflected I and Q Stokes parameters are within 0.5% for I and within 1.5% for Q for all viewing angles. In 1971 Hansen [1] showed that for scattering by spherical particles the 3×3 approximation is sufficient to produce accurate results for the reflected radiance I and the degree of polarization (DOP), and he conjectured that these results would hold also for non-spherical particles. Simulations were conducted to test Hansen's conjecture for the cirrus cloud particles considered in this study. It was found that the 3×3 approximation also gives accurate results for the transmitted light, and for Q and U in addition to I and DOP. For these non-spherical ice particles the 3×3 approximation leads to an absolute error < 2 ×10-6 for the reflected and transmitted I, Q and U Stokes parameters. Hence, it appears to be an excellent approximation, which significantly reduces the computational complexity and burden required for multiple scattering calculations.
Crystal structure of solid molecular hydrogen under high pressures
NASA Astrophysics Data System (ADS)
Cui, T.; Ma, Y.; Zou, G.
2002-11-01
In an effort to achieve a comprehensive understanding of the structure of dense H2, we have performed path-integral Monte Carlo simulations for three combinations of pressures and temperatures corresponding to three phases of solid hydrogen. Our results suggest three kinds of distribution of molecules: orientationally disordered hexagonal close packed (hcp), orientationally ordered hcp with Pa3-type local orientation order and orientationally ordered orthorhombic structure of Cmca symmetry, for the three phases.
Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex?
Schottdorf, Manuel; Eglen, Stephen J.; Wolf, Fred; Keil, Wolfgang
2014-01-01
It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex. PMID:24475081
Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?
Schottdorf, Manuel; Eglen, Stephen J; Wolf, Fred; Keil, Wolfgang
2014-01-01
It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.
Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks
Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho
2015-01-01
Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952
Oriented Attachment Is a Major Control Mechanism To Form Nail-like Mn-Doped ZnO Nanocrystals.
Patterson, Samuel; Arora, Priyanka; Price, Paige; Dittmar, Jasper W; Das, Vijay Kumar; Pink, Maren; Stein, Barry; Morgan, David Gene; Losovyj, Yaroslav; Koczkur, Kallum M; Skrabalak, Sara E; Bronstein, Lyudmila M
2017-12-26
Here, we present a controlled synthesis of Mn-doped ZnO nanoparticles (NPs) with predominantly nail-like shapes, whose formation occurs via tip-to-base-oriented attachment of initially formed nanopyramids, followed by leveling of sharp edges that lead to smooth single-crystalline "nails". This shape is prevalent in noncoordinating solvents such as octadecene and octadecane. Yet, the double bond in the former promotes oriented attachment. By contrast, Mn-doped ZnO NP synthesis in a weakly coordinating solvent, benzyl ether, results in dendritic structures because of random attachment of initial NPs. Mn-doped ZnO NPs possess a hexagonal wurtzite structure, and in the majority of cases, the NP surface is enriched with Mn, indicating a migration of Mn 2+ ions to the NP surface during the NP formation. When the NP formation is carried out without the addition of octadecyl alcohol, which serves as a surfactant and a reaction initiator, large, concave pyramid dimers are formed whose attachment takes place via basal planes. UV-vis and photoluminescence spectra of these NPs confirm the utility of controlling the NP shape to tune electro-optical properties.
Han, Gang Hee; Rodríguez-Manzo, Julio A.; Lee, Chan-Woo; Kybert, Nicholas J.; Lerner, Mitchell B.; Qi, Zhengqing John; Dattoli, Eric N.; Rappe, Andrew M.; Drndic, Marija; Charlie Johnson, A. T.
2013-01-01
Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to microscopy of nano-domains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric. PMID:24182310
Han, Gang Hee; Rodríguez-Manzo, Julio A; Lee, Chan-Woo; Kybert, Nicholas J; Lerner, Mitchell B; Qi, Zhengqing John; Dattoli, Eric N; Rappe, Andrew M; Drndic, Marija; Johnson, A T Charlie
2013-11-26
Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric.
Magnetic anisotropy in antiferromagnetic hexagonal MnTe
NASA Astrophysics Data System (ADS)
Kriegner, D.; Reichlova, H.; Grenzer, J.; Schmidt, W.; Ressouche, E.; Godinho, J.; Wagner, T.; Martin, S. Y.; Shick, A. B.; Volobuev, V. V.; Springholz, G.; Holý, V.; Wunderlich, J.; Jungwirth, T.; Výborný, K.
2017-12-01
Antiferromagnetic hexagonal MnTe is a promising material for spintronic devices relying on the control of antiferromagnetic domain orientations. Here we report on neutron diffraction, magnetotransport, and magnetometry experiments on semiconducting epitaxial MnTe thin films together with density functional theory (DFT) calculations of the magnetic anisotropies. The easy axes of the magnetic moments within the hexagonal basal plane are determined to be along 〈1 1 ¯00 〉 directions. The spin-flop transition and concomitant repopulation of domains in strong magnetic fields is observed. Using epitaxially induced strain the onset of the spin-flop transition changes from ˜2 to ˜0.5 T for films grown on InP and SrF2 substrates, respectively.
NASA Astrophysics Data System (ADS)
Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.
2017-11-01
The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.
Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates
NASA Astrophysics Data System (ADS)
Glad, X.; de Poucques, L.; Bougdira, J.
2015-12-01
A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.
Properties of solar generators with reflectors and radiators
NASA Astrophysics Data System (ADS)
Ebeling, W. D.; Rex, D.; Bierfischer, U.
1980-06-01
Radiation cooled concentrator systems using silicon and GaAs cells were studied. The principle of radiation cooling by the reflector surfaces is discussed for cylindrical parabolic reflectors (SARA), truncated hexagonal pyramids, and a small trough configuration. Beam paths, collection properties for imperfect orientation, and thermal optimization parameters were analyzed. The three concentrating systems with radiation cooling offer advantages over the plane panel and over the large trough. With silicon solar cells they exhibit considerably lower solar cell consumption per Kw and also lower mass per kW. With GaAs cells the SARA system reduces the number of solar cells needed per kW to less than 10%. Also in all other cases SARA offers the best values for alpha and F sub sol, as long as narrow angular tolerances of the panel orientation can be met. Analysis of the energy collecting properties for imperfect orientation shows the superiority of the hexagonal concentrator. This device can produce power for even large angles between the sun and the panel normal.
Constraints on Martian Aerosol Particles Using MGS/TES and HST Data: Shapes
NASA Astrophysics Data System (ADS)
Wolff, M. J.; Clancy, R. T.; Pitman, K. M.; Bell, J. F.; James, P. B.
2001-12-01
In order to constrain the shape of water ice and dust aerosols, we have combined a numerical approach for axisymmetric particle shapes, i.e., cylinders, disks, spheroids (Waterman's T-Matrix approach as improved by Mishchenko and collaborators; cf., Mishchenko et al. 1997, JGR, 102, D14, 16,831), with a multiple-scattering radiative transfer algorithm. We utilize a two-stage iterative process. First, we empirically derive a scattering phase function for each aerosol component from radiative transfer models of Mars Global Surveyor Thermal Emission Spectrometer Emission Phase Function (EPF) sequences. Next, we perform a series of scattering calculations, adjusting our parameters to arrive at a ``best-fit'' theoretical phase function. It is important to note that in addition to randomly-oriented particles, we explicitly consider the possibility of (partially) aligned aerosol particles as well. Thus far, we have been analyzing the three empirically-derived presented by Clancy et al. (this meeting): dust, Type I ice particles (effective radii ~ 1-2 microns), and Type II ice particles (effective radii ~ 3-4 microns). We find that the ``dust'' phase function is best fit by randomly-oriented cylinders with an axial ratio (D/L = diameter-to-length) of either 2.3 or 0.6. Similarly, the shape of the Type II ice curve is reasonably reproduced by randomly-oriented spheroids with an axial ratio of either 0.7 or 1.4. However, neither of the two shapes (nor that of spheres or randomly-oriented hexagonal prisms) can reproduce the phase function derived for the Type I ice. This led to the direct consideration of oriented or aligned particles. which, at least qualitatively, have the ability to account for the phase function shapes for both Type I and II ice particles. The difference between these two phase functions may represent the degree of alignment, with the Type II particles being much less-aligned. The calculations for partially aligned particles is quite numerically intensive and this avenue of research is currently in progress. Additional work is also being done to further constrain the dust aerosol properties using both TES visible/IR and Hubble Space Telescope UV-NIR spectroscopy/imaging data of the recent (and ongoing) Martian global dust storm. Our work has been supported through NASA (MDAP) grant NAG5-9820, (MED) JPL contract 961471, STScI GO programs #8577 and #9052.
NASA Technical Reports Server (NTRS)
Liou, K. N.; Cai, Q.; Pollack, J. B.; Cuzzi, J. N.
1983-01-01
In this paper, the geometric ray tracing theory for the scattering of light by hexagonal cylinders to cubes and parallelepipeds has been modified. Effects of the real and imaginary parts of the refractive index and aspect ratio of the particle on the scattering phase function and the degree of linear polarization are investigated. Causes of the physical features in the scattering polarization patterns are identified in terms of the scattering contribution due to geometric reflections and refractions. The single-scattering phase function and polarization data presented in this paper should be of some use for the interpretation of observed scattering and polarization data from planetary atmospheres and for the physical understanding of the transfer of radiation in an atmosphere containing nonspherical particles.
Epitaxial hexagonal materials on IBAD-textured substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matias, Vladimir; Yung, Christopher
2017-08-15
A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substratesmore » to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.« less
Magnetic topology of Co-based inverse opal-like structures
NASA Astrophysics Data System (ADS)
Grigoryeva, N. A.; Mistonov, A. A.; Napolskii, K. S.; Sapoletova, N. A.; Eliseev, A. A.; Bouwman, W.; Byelov, D. V.; Petukhov, A. V.; Chernyshov, D. Yu.; Eckerlebe, H.; Vasilieva, A. V.; Grigoriev, S. V.
2011-08-01
The magnetic and structural properties of a cobalt inverse opal-like crystal have been studied by a combination of complementary techniques ranging from polarized neutron scattering and superconducting quantum interference device (SQUID) magnetometry to x-ray diffraction. Microradian small-angle x-ray diffraction shows that the inverse opal-like structure (OLS) synthesized by the electrochemical method fully duplicates the three-dimensional net of voids of the template artificial opal. The inverse OLS has a face-centered cubic (fcc) structure with a lattice constant of 640±10 nm and with a clear tendency to a random hexagonal close-packed structure along the [111] axes. Wide-angle x-ray powder diffraction shows that the atomic cobalt structure is described by coexistence of 95% hexagonal close-packed and 5% fcc phases. The SQUID measurements demonstrate that the inverse OLS film possesses easy-plane magnetization geometry with a coercive field of 14.0 ± 0.5 mT at room temperature. The detailed picture of the transformation of the magnetic structure under an in-plane applied field was detected with the help of small-angle diffraction of polarized neutrons. In the demagnetized state the magnetic system consists of randomly oriented magnetic domains. A complex magnetic structure appears upon application of the magnetic field, with nonhomogeneous distribution of magnetization density within the unit element of the OLS. This distribution is determined by the combined effect of the easy-plane geometry of the film and the crystallographic geometry of the opal-like structure with respect to the applied field direction.
Fabrication of oriented hydroxyapatite film by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Hirata, Keishiro; Kubota, Takafumi; Koyama, Daisuke; Takayanagi, Shinji; Matsukawa, Mami
2017-08-01
Hydroxyapatite (HAp) is compatible with bone tissue and is used mainly as a bone prosthetic material, especially as the coating of implants. Oriented HAp film is expected to be a high-quality epitaxial scaffold of the neonatal bone. To fabricate highly oriented HAp thin films via the conventional plasma process, we deposited the HAp film on a Ti coated silica glass substrate using RF magnetron sputtering in low substrate temperature conditions. The X-ray diffraction pattern of the film sample consisted of an intense (002) peak, corresponding to the highly oriented HAp. The (002) peak in XRD diagrams can be attributed either to the monoclinic phase or the hexagonal phase. Pole figure analysis showed that the (002) plane grew parallel to the surface of the substrate, without inclination. Transmission Electron Microscope analysis also showed the fabrication of aligned HAp crystallites. The selected area diffraction patterns indicated the existence of monoclinic phase. The existence of hexagonal phase could not be judged. These results indicate the uniaxial films fabricated by this technique enable to be the epitaxial scaffold of the neonatal bone. This scaffold can be expected to promote connection with the surrounding bone tissue and recovery of the dynamic characteristics of the bone.
Cloud-property retrieval using merged HIRS and AVHRR data
NASA Technical Reports Server (NTRS)
Baum, Bryan A.; Wielicki, Bruce A.; Minnis, Patrick; Parker, Lindsay
1992-01-01
A technique is developed that uses a multispectral, multiresolution method to improve the overall retrieval of mid- to high-level cloud properties by combining HIRS sounding channel data with higher spatial resolution AVHRR radiometric data collocated with the HIRS footprint. Cirrus cloud radiative and physical properties are determined using satellite data, surface-based measurements provided by rawinsondes and lidar, and aircraft-based lidar data collected during the First International Satellite Cloud Climatology Program Regional Experiment in Wisconsin during the months of October and November 1986. HIRS cloud-height retrievals are compared to ground-based lidar and aircraft lidar when possible. Retrieved cloud heights are found to have close agreement with lidar for thin cloud, but are higher than lidar for optically thick cloud. The results of the reflectance-emittance relationships derived are compared to theoretical scattering model results for both water-droplet spheres and randomly oriented hexagonal ice crystals. It is found that the assumption of 10-micron water droplets is inadequate to describe the reflectance-emittance relationship for the ice clouds seen here. Use of this assumption would lead to lower cloud heights using the ISCCP approach. The theoretical results show that use of hexagonal ice crystal phase functions could lead to much improved results for cloud retrieval algorithms using a bispectral approach.
NASA Astrophysics Data System (ADS)
Tamai, Isao; Hasegawa, Hideki
2007-04-01
As a combination of novel hardware architecture and novel system architecture for future ultrahigh-density III-V nanodevice LSIs, the authors' group has recently proposed a hexagonal binary decision diagram (BDD) quantum circuit approach where gate-controlled path switching BDD node devices for a single or few electrons are laid out on a hexagonal nanowire network to realize a logic function. In this paper, attempts are made to establish a method to grow highly dense hexagonal nanowire networks for future BDD circuits by selective molecular beam epitaxy (MBE) on (1 1 1)B substrates. The (1 1 1)B orientation is suitable for BDD architecture because of the basic three-fold symmetry of the BDD node device. The growth experiments showed complex evolution of the cross-sectional structures, and it was explained in terms of kinetics determining facet boundaries. Straight arrays of triangular nanowires with 60 nm base width as well as hexagonal arrays of trapezoidal nanowires with a node density of 7.5×10 6 cm -2 were successfully grown with the aid of computer simulation. The result shows feasibility of growing high-density hexagonal networks of GaAs nanowires with precise control of the shape and size.
Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes
NASA Astrophysics Data System (ADS)
O'Brien, S. A.; Harvey, A.; Griffin, A.; Donnelly, T.; Mulcahy, D.; Coleman, J. N.; Donegan, J. F.; McCloskey, D.
2017-11-01
Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter—the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.
Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes.
O'Brien, S A; Harvey, A; Griffin, A; Donnelly, T; Mulcahy, D; Coleman, J N; Donegan, J F; McCloskey, D
2017-11-24
Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter-the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.
The Prevalence of the 22 deg Halo in Cirrus Clouds
NASA Technical Reports Server (NTRS)
Diedenhoven, vanBastiaan
2014-01-01
Halos at 22 deg from the sun attributed to randomly-orientated, pristine hexagonal crystals are frequently observed through ice clouds. These frequent sightings of halos formed by pristine crystals pose an apparent inconsistency with the dominance of distorted, nonpristine ice crystals indicated by in situ and remote sensing data. Furthermore, the 46 deg halo, which is associated with pristine hexagonal crystals as well, is observed far less frequently than the 22 deg halo. Considering that plausible mechanisms that could cause crystal distortion such as aggregation, sublimation, riming and collisions are stochastic processes that likely lead to distributions of crystals with varying distortion levels, here the presence of the 22 deg and 46 deg halo features in phase functions of mixtures of pristine and distorted hexagonal ice crystals is examined. We conclude that the 22 deg halo feature is generally present if the contribution by pristine crystals to the total scattering cross section is greater than only about 10% in the case of compact particles or columns, and greater than about 40% for plates. The 46 deg halo feature is present only if the mean distortion level is low and the contribution of pristine crystals to the total scattering cross section is above about 20%, 50% and 70%, in the case of compact crystals, plates and columns, respectively. These results indicate that frequent sightings of 22 deg halos are not inconsistent with the observed dominance of distorted, non-pristine ice crystals. Furthermore, the low mean distortion levels and large contributions by pristine crystals needed to produce the 461 halo features provide a potential explanation of the common sighting of the 22 deg halo without any detectable 46 deg halo.
NASA Astrophysics Data System (ADS)
Baran, Anthony J.; Ishimoto, Hiroshi; Sourdeval, Odran; Hesse, Evelyn; Harlow, Chawn
2018-02-01
The bulk single-scattering properties of various randomly oriented aggregate ice crystal models are compared and contrasted at a number of frequencies between 89 and 874 GHz. The model ice particles consist of the ten-branched plate aggregate, five-branched plate aggregate, eight-branched hexagonal aggregate, Voronoi ice aggregate, six-branched hollow bullet rosette, hexagonal column of aspect ratio unity, and the ten-branched hexagonal aggregate. The bulk single-scattering properties of the latter two ice particle models have been calculated using the light scattering methods described in Part I, which represent the two most extreme members of an ensemble model of cirrus ice crystals. In Part I, it was shown that the method of physical optics could be combined with the T-matrix at a size parameter of about 18 to compute the bulk integral ice optical properties and the phase function in the microwave to sufficient accuracy to be of practical value. Here, the bulk single-scattering properties predicted by the two ensemble model members and the Voronoi model are shown to generally bound those of all other models at frequencies between 89 and 874 GHz, thus representing a three-component model of ice cloud that can be generally applied to the microwave, rather than using many differing ice particle models. Moreover, the Voronoi model and hollow bullet rosette scatter similarly to each other in the microwave. Furthermore, from the various comparisons, the importance of assumed shapes of the particle size distribution as well as cm-sized ice aggregates is demonstrated.
Turneaure, Stefan J.; Sinclair, N.; Gupta, Y. M.
2016-07-20
Experimental determination of atomistic mechanisms linking crystal structures during a compression driven solid-solid phase transformation is a long standing and challenging scientific objective. Also, when using new capabilities at the Dynamic Compression Sector at the Advanced Photon Source, the structure of shocked Si at 19 GPa was identified as simple hexagonal and the lattice orientations between ambient cubic diamond and simple hexagonal structures were related. Furthermore, this approach is general and provides a powerful new method for examining atomistic mechanisms during stress-induced structural changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Zhipu; Dauter, Zbigniew; Gilski, Miroslaw
DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG) 2duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinicP2 1lattice of hexagonal metric. The various twinning criteria give somewhatmore » conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.« less
NASA Astrophysics Data System (ADS)
Hannachi, Amira; Maghraoui-Meherzi, Hager
2017-03-01
Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like.
Metallic rare-earth silicide nanowires on silicon surfaces.
Dähne, Mario; Wanke, Martina
2013-01-09
The formation, atomic structure, and electronic properties of self-assembled rare-earth silicide nanowires on silicon surfaces were studied by scanning tunneling microscopy and angle-resolved photoelectron spectroscopy. Metallic dysprosium and erbium silicide nanowires were observed on both the Si(001) and Si(557) surfaces. It was found that they consist of hexagonal rare-earth disilicides for both surface orientations. On Si(001), the nanowires are characterized by a one-dimensional band structure, while the electronic dispersion is two-dimensional for the nanowires formed on Si(557). This behavior is explained by the different orientations of the hexagonal c axis of the silicide leading to different conditions for the carrier confinement. By considering this carrier confinement it is demonstrated how the one-dimensional band structure of the nanowires on Si(001) can be derived from the two-dimensional one of the silicide monolayer on Si(111).
Cooperative nucleation modes in polycrystalline CoxPd1-x nanowires
NASA Astrophysics Data System (ADS)
Viqueira, M. S.; Pozo-López, G.; Urreta, S. E.; Condó, A. M.; Cornejo, D. R.; Fabietti, L. M.
2015-05-01
Polycrystalline CoxPd1-x (x = 1, 0.60, 0.45, 0.23, and 0.11) cylindrical nanowires (ø = 18-35 nm, about 1 μm length) are produced by AC electrodeposition into hexagonally ordered alumina pores. Single-phase nanowires of an fcc Co-Pd solid solution, with randomly oriented equiaxed grains (7-12 nm) are obtained; in all the cases, the grain size is smaller than the wire diameter. The coercive field and the reduced remanence of Co-rich nanowire arrays are hardly sensitive to temperature within the range varying from 4 K to 300 K. On the other hand, in Pd-rich nanowires both magnitudes are smaller and they largely increase when cooling below 100 K. This behavior also depends on the mean grain size. These facts are systematized considering two main aspects: the non-trivial temperature and composition dependence of the crystalline anisotropy and the saturation magnetostriction in Co-Pd alloys; and a random anisotropy effect, which defines a nucleation localization length that may involve more than a single grain, and thus promotes more cooperative nucleation modes.
Evaluation of handle design characteristics in a maximum screwdriving torque task.
Kong, Y-K; Lowe, B D; Lee, S-J; Krieg, E F
2007-09-01
The purpose of this study was to evaluate the effects of screwdriver handle shape, surface material and workpiece orientation on torque performance, finger force distribution and muscle activity in a maximum screwdriving torque task. Twelve male subjects performed maximum screw-tightening exertions using screwdriver handles with three longitudinal shapes (circular, hexagonal and triangular), four lateral shapes (cylindrical, double frustum, cone and reversed double frustum) and two surfaces (rubber and plastic). The average finger force contributions to the total hand force were 28.1%, 39.3%, 26.5% and 6.2%, in order from index to little fingers; the average phalangeal segment force contributions were 47.3%, 14.0%, 20.5% and 18.1% for distal, middle, proximal and metacarpal phalanges, respectively. The plastic surface handles were associated with 15% less torque output (4.86 Nm) than the rubber coated handles (5.73 Nm). In general, the vertical workpiece orientation was associated with higher torque output (5.9 Nm) than the horizontal orientation (4.69 Nm). Analysis of handle shapes indicates that screwdrivers designed with a circular or hexagonal cross-sectional shape result in greater torque outputs (5.49 Nm, 5.57 Nm), with less total finger force (95 N, 105 N). In terms of lateral shape, reversed double frustum handles were associated with less torque output (5.23 Nm) than the double frustum (5.44 Nm) and cone (5.37 Nm) handles. Screwdriver handles designed with combinations of circular or hexagonal cross-sectional shapes with double frustum and cone lateral shapes were optimal in this study.
Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae
2015-01-01
A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability. PMID:26537788
NASA Astrophysics Data System (ADS)
Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae
2015-11-01
A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability.
Structure and Growth of Hexagonal Boron Nitride on Ir(111).
Farwick Zum Hagen, Ferdinand H; Zimmermann, Domenik M; Silva, Caio C; Schlueter, Christoph; Atodiresei, Nicolae; Jolie, Wouter; Martínez-Galera, Antonio J; Dombrowski, Daniela; Schröder, Ulrike A; Will, Moritz; Lazić, Predrag; Caciuc, Vasile; Blügel, Stefan; Lee, Tien-Lin; Michely, Thomas; Busse, Carsten
2016-12-27
Using the X-ray standing wave method, scanning tunneling microscopy, low energy electron diffraction, and density functional theory, we precisely determine the lateral and vertical structure of hexagonal boron nitride on Ir(111). The moiré superstructure leads to a periodic arrangement of strongly chemisorbed valleys in an otherwise rather flat, weakly physisorbed plane. The best commensurate approximation of the moiré unit cell is (12 × 12) boron nitride cells resting on (11 × 11) substrate cells, which is at variance with several earlier studies. We uncover the existence of two fundamentally different mechanisms of layer formation for hexagonal boron nitride, namely, nucleation and growth as opposed to network formation without nucleation. The different pathways are linked to different distributions of rotational domains, and the latter enables selection of a single orientation only.
Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches
Chen, Lingxiu; He, Li; Wang, Hui Shan; Wang, Haomin; Tang, Shujie; Cong, Chunxiao; Xie, Hong; Li, Lei; Xia, Hui; Li, Tianxin; Wu, Tianru; Zhang, Daoli; Deng, Lianwen; Yu, Ting; Xie, Xiaoming; Jiang, Mianheng
2017-01-01
Graphene nanoribbons (GNRs) are ultra-narrow strips of graphene that have the potential to be used in high-performance graphene-based semiconductor electronics. However, controlled growth of GNRs on dielectric substrates remains a challenge. Here, we report the successful growth of GNRs directly on hexagonal boron nitride substrates with smooth edges and controllable widths using chemical vapour deposition. The approach is based on a type of template growth that allows for the in-plane epitaxy of mono-layered GNRs in nano-trenches on hexagonal boron nitride with edges following a zigzag direction. The embedded GNR channels show excellent electronic properties, even at room temperature. Such in-plane hetero-integration of GNRs, which is compatible with integrated circuit processing, creates a gapped channel with a width of a few benzene rings, enabling the development of digital integrated circuitry based on GNRs. PMID:28276532
Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tay, Roland Yingjie; Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798; Tsang, Siu Hon
Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random andmore » uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.« less
C-Axis-Oriented Hydroxyapatite Film Grown Using ZnO Buffer Layer
NASA Astrophysics Data System (ADS)
Sakoishi, Yasuhiro; Iguchi, Ryo; Nishikawa, Hiroaki; Hontsu, Shigeki; Hayami, Takashi; Kusunoki, Masanobu
2013-11-01
A method of fabricating c-axis-oriented hydroxyapatite film on a quartz crystal microbalance (QCM) sensor was investigated. ZnO was used as a template to obtain a hexagonal hydroxyapatite crystal of uniaxial orientation. The ZnO was grown as a c-axis film on a Au/quartz with the surface structure of a QCM sensor. Under optimized conditions, hydroxyapatite was deposited by pulsed laser deposition. X-ray diffraction showed the hydroxyapatite film to be oriented along the c-axis. Because Au and ZnO are applied to many devices, the anisotropic properties of hydroxyapatite may be incorporated into these devices as well as QCM sensors.
NASA Astrophysics Data System (ADS)
Yoo, Byungseok; Pines, Darryll J.
2018-05-01
This paper investigates the use of uniaxial comb-shaped Fe-Ga alloy (Galfenol) patches in the development of a Magnetostrictive Phased Array Sensor (MPAS) for the Guided Wave (GW) damage inspection technique. The MPAS consists of six highly-textured Galfenol patches with a <100> preferred orientation and a Hexagonal Magnetic Circuit Device (HMCD). The Galfenol patches individually aligned to distinct azimuthal directions were permanently attached to a thin aluminum plate specimen. The detachable HMCD encloses a biasing magnet and six sensing coils with unique directional sensing preferences, equivalent to the specific orientation of the discrete Galfenol patches. The preliminary experimental tests validated that the GW sensing performance and directional sensitivity of the Galfenol-based sensor were significantly improved by the magnetic shape anisotropy effect on the fabrication of uniaxial comb fingers to a Galfenol disc patch. We employed a series of uniaxial comb-shaped Galfenol patches to form an MPAS with a hexagonal sensor configuration, uniformly arranged within a diameter of 1". The Galfenol MPAS was utilized to identify structural damage simulated by loosening joint bolts used to fasten the plate specimen to a frame structure. We compared the damage detection results of the MPAS with those of a PZT Phased Array Sensor (PPAS) collocated to the back surface of the plate. The directional filtering characteristic of the Galfenol MPAS led to acquiring less complicated GW signals than the PPAS using omnidirectional PZT discs. However, due to the detection limit of the standard hexagonal patterned array, the two array sensors apparently identified only the loosened bolts located along one of the preferred orientations of the array configuration. The use of the fixed number of the Galfenol patches for the MPAS construction constrained the capability of sensing point multiplication of the HMCD by altering its rotational orientation, resulting in such damage detection limitation of the MPAS.
NASA Astrophysics Data System (ADS)
Sun, B.; Yang, P.; Kattawar, G. W.; Zhang, X.
2017-12-01
The ice cloud single-scattering properties can be accurately simulated using the invariant-imbedding T-matrix method (IITM) and the physical-geometric optics method (PGOM). The IITM has been parallelized using the Message Passing Interface (MPI) method to remove the memory limitation so that the IITM can be used to obtain the single-scattering properties of ice clouds for sizes in the geometric optics regime. Furthermore, the results associated with random orientations can be analytically achieved once the T-matrix is given. The PGOM is also parallelized in conjunction with random orientations. The single-scattering properties of a hexagonal prism with height 400 (in units of lambda/2*pi, where lambda is the incident wavelength) and an aspect ratio of 1 (defined as the height over two times of bottom side length) are given by using the parallelized IITM and compared to the counterparts using the parallelized PGOM. The two results are in close agreement. Furthermore, the integrated single-scattering properties, including the asymmetry factor, the extinction cross-section, and the scattering cross-section, are given in a completed size range. The present results show a smooth transition from the exact IITM solution to the approximate PGOM result. Because the calculation of the IITM method has reached the geometric regime, the IITM and the PGOM can be efficiently employed to accurately compute the single-scattering properties of ice cloud in a wide spectral range.
Effect of substrate temperature in the synthesis of BN nanostructures
NASA Astrophysics Data System (ADS)
Sajjad, M.; Zhang, H. X.; Peng, X. Y.; Feng, P. X.
2011-06-01
Boron nitride (BN) nanostructures were grown on molybdenum discs at different substrate temperatures using the short-pulse laser plasma deposition technique. Large numbers of randomly oriented nanorods of fiber-like structures were obtained. The variation in the length and diameter of the nanorods as a function of the substrate temperature was systematically studied. The surface morphologies of the samples were studied using scanning electron microscopy. Energy dispersive x-ray spectroscopy confirmed that both the elements boron and nitrogen are dominant in the nanostructure. The x-ray diffraction (XRD) technique was used to analyse BN phases. The XRD peak that appeared at 26° showed the presence of hexagonal BN phase, whereas the peak at 44° was related to cubic BN content in the samples. Raman spectroscopic analysis showed vibrational modes of sp2- and sp3-type bonding in the sample. The Raman spectra agreed well with XRD results.
NASA Astrophysics Data System (ADS)
Nishihara, Yu; Ohuchi, Tomohiro; Kawazoe, Takaaki; Seto, Yusuke; Maruyama, Genta; Higo, Yuji; Funakoshi, Ken-ichi; Tange, Yoshinori; Irifune, Tetsuo
2018-05-01
Shear and uniaxial deformation experiments on hexagonal close-packed iron (hcp-Fe) was conducted using a deformation-DIA apparatus at a pressure of 13-17 GPa and a temperature of 723 K to determine its deformation-induced crystallographic-preferred orientation (CPO). Development of the CPO in the deforming sample is determined in-situ based on two-dimensional X-ray diffraction using monochromatic synchrotron X-rays. In the shear deformation geometry, the <0001> and < 11 2 bar 0 > axes gradually align to be sub-parallel to the shear plane normal and shear direction, respectively, from the initial random texture. In the uniaxial compression and tensile geometry, the <0001> and < 11 2 bar 0 > axes, respectively, gradually align along the direction of the uniaxial deformation axis. These results suggest that basal slip (0001) < 11 2 bar 0 > is the dominant slip system in hcp-Fe under the studied deformation conditions. The P-wave anisotropy for a shear deformed sample was calculated using elastic constants at the inner core condition by recent ab-initio calculations. Strength of the calculated anisotropy was comparable to or higher than axisymmetric anisotropy in Earth's inner core.
Two-dimensional liquid crystalline growth within a phase-field-crystal model.
Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng
2015-07-01
By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings.
Nucleation and growth of zinc oxide nanorods directly on metal wire by sonochemical method.
Rayathulhan, Ruzaina; Sodipo, Bashiru Kayode; Aziz, Azlan Abdul
2017-03-01
ZnO nanorods were directly grown on four different wires (silver, nickel, copper, and tungsten) using sonochemical method. Zinc nitrate hexahydrate and hexamethylenetetramine (HMT) were used as precursors. Influence of growth parameters such as precursors' concentration and ultrasonic power on the grown nanorods were determined. The results demonstrated that the precursor concentration affected the growth structure and density of the nanorods. The morphology, distribution, and orientation of nanorods changed as the ultrasonic power changed. Nucleation of ZnO nanorods on the wire occurred at lower ultrasonic power and when the power increased, the formation and growth of ZnO nanorods on the wires were initiated. The best morphology, size, distribution, and orientation of the nanorods were observed on the Ag wire. The presence of single crystal nanorod with hexagonal shaped was obtained. This shape indicates that the ZnO nanorods corresponded to the hexagonal wurtzite structure with growth preferential towards the (002) direction. Copyright © 2016 Elsevier B.V. All rights reserved.
Bilican, Doga; Fornell, Jordina; Sort, Jordi; Pellicer, Eva
2017-01-01
Bismuth (Bi) electrodeposition was studied on Si/Ti/Au, FTO-, and ITO-coated glasses from acidic nitrate solutions with and without gluconate within a narrow potential window (ΔE = 80 mV). This potential range was sufficient to observe a change in particle shape, from polyhedrons (including hexagons) to dendrites, the trend being slightly different depending on substrate activity. In all cases, though, the formation of dendrites was favoured as the applied potential was made more negative. Bi particles were more uniformly distributed over the substrate when sodium gluconate was added to the electrolyte. X-ray diffraction analyses of dendrites grown at −0.28 V indicated that they exhibit the rhombohedral phase of Bi and are predominantly oriented along the (003) plane. This orientation is exacerbated at the lowest applied potential (−0.20 V vs. Ag|AgCl) on glass/ITO substrate, for which completed and truncated hexagons are observed from the top view scanning electron microscopy images. PMID:28772402
Inter-layer potential for hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded
2014-03-01
A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.
Hexagonal AlN Layers Grown on Sulfided Si(100) Substrate
NASA Astrophysics Data System (ADS)
Bessolov, V. N.; Gushchina, E. V.; Konenkova, E. V.; L'vova, T. V.; Panteleev, V. N.; Shcheglov, M. P.
2018-01-01
We have studied the influence of sulfide passivation on the initial stages of aluminum nitride (AlN)-layer nucleation and growth by hydride vapor-phase epitaxy (HVPE) on (100)-oriented single-crystalline silicon substrates. It is established that the substrate pretreatment in (NH4)2S aqueous solution leads to the columnar nucleation of hexagonal AlN crystals of two modifications rotated by 30° relative to each other. Based on the sulfide treatment, a simple method of oxide removal from and preparation of Si(100) substrate surface is developed that can be used for the epitaxial growth of group-III nitride layers.
Pre-stressed thermal protection systems
NASA Technical Reports Server (NTRS)
Dunn, T. J. (Inventor)
1984-01-01
A hexagonal protective and high temperature resistant system for the Space Shuttle Orbiter consists of a multiplicity of pockets formed by hexagonally oriented spacer bars secured on the vehicle substructure. A packing of low density insulating batt material 18 in each pocket, and a thin protective panel of laterally resilient advanced carbon-carbon material surmounting the peripherals bars and packing. Each panel has three stepped or offset lips on contiguous edges. At the center of each pocket is a fully insulated stanchion secured to and connecting the substructure and panel for flexing the panel toward the substructure and thereby prestressing the panel and forcing the panel edges firmly against the spacer bars.
Two-dimensional inorganic-organic perovskite hexagonal nanosheets: growth and mechanism
NASA Astrophysics Data System (ADS)
Shakya, Suman; Prakash, G. Vijaya
2015-03-01
In this era of novel technological materials, inorganic-organic (IO) materials has emerged as new class of materials for their application in photonic materials, miniaturized sensors, optoelectronic devices, non-linear optical apparatus by exploiting the properties of both constituents in a single entity. Here we present the formation and growth mechanism of two dimensional Inorganic-organic (IO) perovskite structures from anisotropically grown PbO hexagonal nanosheets, in three steps: Fabrication of hexagonal PbO nanosheets by the versatile bottom-up electrochemical deposition technique, iodinization of PbO into PbI2, followed by conversion of PbI2 into IO hybrid by the intercalation of organic moiety. A systematic and detailed structural study reveals that PbO nanosheet formation is more likely to result from an oriented attachment mechanism, in which the sheets formed by the reduction in surface area that happens during aggregation of small nanoparticle that each has a net dipole moment, which tends to form a self-assembled structure. Intercalation of organic moiety into the PbI2 layers yielded a selfassembled quantum-wells system of one of the IO hybrid, i.e. (C6H9C2H4NH3)2PbI4 (CHPI), sustaining the hexagonal shape.
NASA Astrophysics Data System (ADS)
Wang, Liping; Meyer, Clemens; Guibert, Edouard; Homsy, Alexandra; Whitlow, Harry J.
2017-08-01
Porous membranes are widely used as filters in a broad range of micro and nanofluidic applications, e.g. organelle sorters, permeable cell growth substrates, and plasma filtration. Conventional silicon fabrication approaches are not suitable for microporous membranes due to the low mechanical stability of thin film substrates. Other techniques like ion track etching are limited to the production of randomly distributed and randomly orientated pores with non-uniform pore sizes. In this project, we developed a procedure for fabricating high-transmission microporous membranes by proton beam writing (PBW) with a combination of spin-casting and soft lithography. In this approach, focused 2 MeV protons were used to lithographically write patterns consisting of hexagonal arrays of high-density pillars of few μm size in a SU-8 layer coated on a silicon wafer. After development, the pillars were conformably coated with a thin film of poly-para-xylylene (Parylene)-C release agent and spin-coated with polydimethylsiloxane (PDMS). To facilitate demolding, a special technique based on the use of a laser-cut sealing tape ring was developed. This method facilitated the successful delamination of 20-μm thick PDMS membrane with high-density micropores from the mold without rupture or damage.
NASA Astrophysics Data System (ADS)
Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi
2018-05-01
Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.
NASA Astrophysics Data System (ADS)
Ramazani, Saba; Jackson, Delvin L.; Selmic, Rastko R.
2013-05-01
In search and surveillance operations, deploying a team of mobile agents provides a robust solution that has multiple advantages over using a single agent in efficiency and minimizing exploration time. This paper addresses the challenge of identifying a target in a given environment when using a team of mobile agents by proposing a novel method of mapping and movement of agent teams in a cooperative manner. The approach consists of two parts. First, the region is partitioned into a hexagonal beehive structure in order to provide equidistant movements in every direction and to allow for more natural and flexible environment mapping. Additionally, in search environments that are partitioned into hexagons, mobile agents have an efficient travel path while performing searches due to this partitioning approach. Second, we use a team of mobile agents that move in a cooperative manner and utilize the Tabu Random algorithm to search for the target. Due to the ever-increasing use of robotics and Unmanned Aerial Vehicle (UAV) platforms, the field of cooperative multi-agent search has developed many applications recently that would benefit from the use of the approach presented in this work, including: search and rescue operations, surveillance, data collection, and border patrol. In this paper, the increased efficiency of the Tabu Random Search algorithm method in combination with hexagonal partitioning is simulated, analyzed, and advantages of this approach are presented and discussed.
Use of biomimetic hexagonal surface texture in friction against lubricated skin.
Tsipenyuk, Alexey; Varenberg, Michael
2014-05-06
Smooth contact pads that evolved in insects, amphibians and mammals to enhance the attachment abilities of the animals' feet are often dressed with surface micropatterns of different shapes that act in the presence of a fluid secretion. One of the most striking surface patterns observed in contact pads of these animals is based on a hexagonal texture, which is recognized as a friction-oriented feature capable of suppressing both stick-slip and hydroplaning while enabling friction tuning. Here, we compare this design of natural friction surfaces to textures developed for working in similar conditions in disposable safety razors. When slid against lubricated human skin, the hexagonal surface texture is capable of generating about twice the friction of its technical competitors, which is related to it being much more effective at channelling of the lubricant fluid out of the contact zone. The draining channel shape and contact area fraction are found to be the most important geometrical parameters governing the fluid drainage rate.
Interfaces between hexagonal and cubic oxides and their structure alternatives
Zhou, Hua; Wu, Lijun; Wang, Hui-Qiong; ...
2017-11-14
Multi-layer structure of functional materials often involves the integration of different crystalline phases. The film growth orientation thus frequently exhibits a transformation, owing to multiple possibilities caused by incompatible in-plane structural symmetry. Nevertheless, the detailed mechanism of the transformation has not yet been fully explored. Here we thoroughly probe the heteroepitaxially grown hexagonal zinc oxide (ZnO) films on cubic (001)-magnesium oxide (MgO) substrates using advanced scanning transition electron microscopy, X-ray diffraction and first principles calculations, revealing two distinct interface models of (001) ZnO/(001) MgO and (100) ZnO/(001) MgO. Here we have found that the structure alternatives are controlled thermodynamically bymore » the nucleation, while kinetically by the enhanced Zn adsorption and O diffusion upon the phase transformation. Finally, this work not only provides a guideline for the interface fabrication with distinct crystalline phases but also shows how polar and non-polar hexagonal ZnO films might be manipulated on the same cubic substrate.« less
Spatiotemporal configuration dependent pairing of nerve events in dark-adapted human vision
NASA Astrophysics Data System (ADS)
Bouman, Maarten A.
2002-02-01
In the model presented here, in the dark any single quantum absorption in a rod or cone produces a subliminal excitation. Subliminal excitations from both halves of a twin unit pair in the retina for the perception of light from the stimulus. A twin unit contains either two red or two green cones. The twin units are intertwined in triples of two red units and one green unit in a hexagon called a trion. P satellite rods surround each cone, P being approximately proportional to the square of eccentricity. A successful pairing for light perception represents-through the points of time and locations of the creation of its partners in the retina-a direction event with two possible polarities and with the orientation of the elongated shape of the twin unit. The polarity of the event depends on which of the two partners arrives first at the twin's pairing facility. Simultaneous events and successive events with the same polarity in adjacent units that are aligned along one of the three orientations of the hexagonal retinal mosaic pair in the cortex for the perception of edge and of movement. Inter-twin pairing products of the three differently oriented sets of aligned twins are independent of each other and sum vectorially in the cortex. This system of three sub-retinas is called the retrinet. Two one-quantum excitations in any of a twin's receptors make the percept colored. The odd blue cone produces already a blue signal for a single one-quantum excitation. Intra-receptor pairing in a rod, a red cone and a green cone is for white, red, and green respectively. Red and green cone products of a trion cross-pair in the retina and produce a yellow signal. Red and green cone products of a hexagon of adjacent trions cross-pair in the cortex and produce a white signal. This large hexagon with a total of seven trions is called a persepton. After subliminal excitations in a twin have paired successfully, further subliminal receptor excitations in neighboring and aligned twins are expressed to a certain extent in the percept's area, duration and color. Earlier experiments on absolute and color thresholds are the basis for this theory, which is developed in this paper.
Random telegraph noise in 2D hexagonal boron nitride dielectric films
NASA Astrophysics Data System (ADS)
Ranjan, A.; Puglisi, F. M.; Raghavan, N.; O'Shea, S. J.; Shubhakar, K.; Pavan, P.; Padovani, A.; Larcher, L.; Pey, K. L.
2018-03-01
This study reports the observation of low frequency random telegraph noise (RTN) in a 2D layered hexagonal boron nitride dielectric film in the pre- and post-soft breakdown phases using conductive atomic force microscopy as a nanoscale spectroscopy tool. The RTN traces of the virgin and electrically stressed dielectric (after percolation breakdown) were compared, and the signal features were statistically analyzed using the Factorial Hidden Markov Model technique. We observe a combination of both two-level and multi-level RTN signals in h-BN, akin to the trends commonly observed for bulk oxides such as SiO2 and HfO2. Experimental evidence suggests frequent occurrence of unstable and anomalous RTN traces in 2D dielectrics which makes extraction of defect energetics challenging.
Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu
2017-10-19
The self-assembly of a reformed symmetric H-shaped copolymer with four hydrophilic branches and one hydrophobic stem was systematically investigated. The existence of vacancies is vital to regulate the sizes of self-assembled cylinders to be able to form a hexagonal arrangement. With the introduction of horizontal-orientated confinement, a micellar structure is formed through a coalescence mechanism. The short acting distance and large influencing area of the confinement produces numerous small-sized micelles. Additionally, the cycled "contraction-expansion" change helps achieve hexagonal arrangement. In contrast, the introduction of lateral-oriented confinement with long acting distance and small influencing area cannot change the cylindrical structure. Under the fission mechanism, in which the larger cylinder splits into smaller ones, it is quite efficient to generate hierarchical-sized cylinders from larger-sized cylinders in the middle region and smaller-sized cylinders near both walls. The results indicate the possibility of regulating the characteristics of a nanomaterial by tuning the molecular structure of the copolymer and the parameters of the introduced confinement, which are closely related to the self-assembly structure.
STM/STS Study of LixCoO2 Single Crystals
NASA Astrophysics Data System (ADS)
Iwaya, Katsuya; Minato, Taketoshi; Miyoshi, Kiyotaka; Takeuchi, Jun; Kim, Yousoo; Hitosugi, Taro
2012-02-01
We have performed low temperature scanning tunneling microscopy/spectroscopy (STM/STS) measurements on LixCoO2 (x=0.66) single crystal surfaces. A (1x1) hexagonal lattice was clearly observed and found to be moved by changing bias-voltage polarity, indicating that this could be associated with Li ions on the surface. Under the (1x1) hexagonal lattice, we imaged almost randomly distributed bright dots that were strongly dependent on bias-voltage, with insulating spectroscopic features. Different area on the surface showed a (2x2) hexagonal lattice that could be related to an ordering of Co^3+ and Co^4+ ions. These results suggest the electronic structure of LixCoO2 surface is inhomogeneous possibly due to segregation of Li ions.
Nagpure, Suraj; Das, Saikat; Garlapalli, Ravinder K.; ...
2015-09-11
In this study, the mechanism of forming orthogonally oriented hexagonal close packed (o-HCP) mesostructures during aging of surfactant-templated titania thin films is elucidated using in situ grazing incidence small-angle x-ray scattering (GISAXS) in a controlled-environment chamber. To promote orthogonal orientation, glass slides are modified with crosslinked Pluronic P123, to provide surfaces chemically neutral towards both blocks of mesophase template P123. At 4 °C and 80% RH, the o-HCP mesophase emerges in thin (~60 nm) films by a direct disorder-to-order transition, with no intermediate ordered mesophase. The Pluronic/titania o-HCP GISAXS intensity emerges only after ~10-12 minutes, much slower than previously reportedmore » for smallmolecule surfactants. The Avrami model applied to the data suggests 2D growth with nucleation at the start of the process with a half-life of 39.7 minutes for the aging time just after the induction period of 7 minutes followed by a period consistent with 1D growth kinetics. Surprisingly, films that are thicker (~250 nm) or cast on unmodified slides form o-HCP mesophase domains, but by a different mechanism (2D growth with continuous nucleation) with faster and less complete orthogonal alignment. Thus, the o-HCP mesophase is favored not only 2 by modifying the substrate, but also by aging at 4 °C, which is below the lower consolute temperature (LCST) of the poly(propylene oxide) block of P123. Consistent with this, in situ GISAXS shows that films aged at room temperature (above the LCST of the PPO block) have randomly oriented HCP mesostructure.« less
Functional electrospun membranes
NASA Astrophysics Data System (ADS)
Ognibene, G.; Fragalà, M. E.; Cristaldi, D. A.; Blanco, I.; Cicala, G.
2016-05-01
In this study we combined electrospun PES nanofibers with ZnO nanostructures in order to obtain a hierarchical nanostructured hybrid material to be use for active water filtration membranes. It benefits of flexibility and high surface area of the polymeric nanofibers as well as of additional functionalities of ZnOnanostructures. First, randomly oriented nanofibers with diameters of 716nm ±365 nm were electrospun on a glass fibers substrate from a solution of PES and DMF-TOL(1:1). ZnO nanorods were grown onto the surface of electrospun PES fibers by a Chemical Bath Deposition (CBD) process. It was preceed by a seeding process necessary to form nucleation sites for the subsequent radially aligned growth of ZnO nanowires. The morfology of the fibers and the effect of the seeding time have been analysed by SEM. The amount of ZnO nanowires grown over electrospun nanofibers was determined as 45% by weight. The high purity and crystallinity of the asobtained products are confirmed by XRD since all reflection peaks can be indexed to hexagonal wurtzite ZnO.
NASA Astrophysics Data System (ADS)
Liu, X. Y.; Kitamura, K.; Liu, Y. M.; Ohuchi, F. S.; Li, J. Y.
2011-09-01
Thermal-induced domain wall motion of tip-inverted micro/nanodomains in near-stoichiometric LiNbO3 single crystals was investigated using piezoresponse force microscopy (PFM). The domain wall motion was observed in PFM phase and amplitude images at room temperature after the sample was subjected to a thermal process at a heating temperature higher than 100 °C. In hexagonal domains with only y walls, predetermined nucleation with layer-by-layer growth is the main mechanism for the domain wall motion. In the domains composed of both x walls and y walls, the x walls are more mobile than the y walls, and the domain wall motion starts from the random nucleation of steps along the x walls that finally grow into y walls. The domain wall motion in the near-stoichiometric LiNbO3 crystal is attributed to the energy-preferable domain wall orientation, the pyroelectric effect, and the screening charge variation caused by the thermal process.
NASA Astrophysics Data System (ADS)
Losurdo, M.; Giangregorio, M. M.; Sacchetti, A.; Capezzuto, P.; Bruno, G.; Malandrino, G.; Fragalà, I. L.
2007-07-01
Thin films of ZnO have been grown by plasma assisted metal-organic chemical vapour deposition (PA-MOCVD) using a 13.56 MHz O 2 plasma and the Zn(TTA)•tmed (HTTA=2-thenoyltrifluoroacetone, TMED=N,N,N',N'-tetramethylethylendiamine) precursor. The effects of growth parameters such as the plasma activation, the substrate, the surface temperature, and the ratio of fluxes of precursors on the structure, morphology, and optical and electrical properties of ZnO thin films have been studied. Under a very low plasma power of 20 W, c-axis oriented hexagonal ZnO thin films are grown on hexagonal sapphire (0001), cubic Si(001) and amorphous quartz substrates. The substrate temperature mainly controls grain size.
Random location of fuel treatments in wildland community interfaces: a percolation approach
Michael Bevers; Philip N. Omi; John G. Hof
2004-01-01
We explore the use of spatially correlated random treatments to reduce fuels in landscape patterns that appear somewhat natural while forming fully connected fuelbreaks between wildland forests and developed protection zones. From treatment zone maps partitioned into grids of hexagonal forest cells representing potential treatment sites, we selected cells to be treated...
Multilayer hexagonal silicon forming in slit nanopore
He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying
2015-01-01
The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties. PMID:26435518
Thermodynamic Behavior of Nano-sized Gold Clusters on the (001) Surface
NASA Technical Reports Server (NTRS)
Paik, Sun M.; Yoo, Sung M.; Namkung, Min; Wincheski, Russell A.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
We have studied thermal expansion of the surface layers of the hexagonally reconstructed Au (001) surface using a classical Molecular Dynamics (MD) simulation technique with an Embedded Atomic Method (EAM) type many-body potential. We find that the top-most hexagonal layer contracts as temperature increases, whereas the second layer expands or contracts depending on the system size. The magnitude of expansion coefficient of the top layer is much larger than that of the other layers. The calculated thermal expansion coefficients of the top-most layer are about -4.93 x 10(exp -5)Angstroms/Kelvin for the (262 x 227)Angstrom cluster and -3.05 x 10(exp -5)Angstroms/Kelvin for (101 x 87)Angstrom cluster. The Fast Fourier Transform (FFT) image of the atomic density shows that there exists a rotated domain of the top-most hexagonal cluster with rotation angle close to 1 degree at temperature T less than 1000Kelvin. As the temperature increases this domain undergoes a surface orientational phase transition. These predictions are in good agreement with previous phenomenological theories and experimental studies.
Structure and strain relaxation mechanisms of ultrathin epitaxial Pr2O3 films on Si(111)
NASA Astrophysics Data System (ADS)
Schroeder, T.; Lee, T.-L.; Libralesso, L.; Joumard, I.; Zegenhagen, J.; Zaumseil, P.; Wenger, C.; Lupina, G.; Lippert, G.; Dabrowski, J.; Müssig, H.-J.
2005-04-01
The structure of ultrathin epitaxial Pr2O3 films on Si(111) was studied by synchrotron radiation-grazing incidence x-ray diffraction. The oxide film grows as hexagonal Pr2O3 phase with its (0001) plane attached to the Si(111) substrate. The hexagonal (0001) Pr2O3 plane matches the in-plane symmetry of the hexagonal Si(111) surface unit cell by aligning the ⟨101¯0⟩Pr2O3 along the ⟨112¯⟩ Si directions. The small lattice mismatch of 0.5% results in the growth of pseudomorphic oxide films of high crystalline quality with an average domain size of about 50 nm. The critical thickness tc for pseudomorphic growth amounts to 3.0±0.5nm. The relaxation of the oxide film from pseudomorphism to bulk behavior beyond tc causes the introduction of misfit dislocations, the formation of an in-plane small angle mosaicity structure, and the occurence of a phase transition towards a (111) oriented cubic Pr2O3 film structure. The observed phase transition highlights the influence of the epitaxial interface energy on the stability of Pr2O3 phases on Si(111). A mechanism is proposed which transforms the hexagonal (0001) into the cubic (111) Pr2O3 epilayer structure by rearranging the oxygen network but leaving the Pr sublattice almost unmodified.
ERIC Educational Resources Information Center
Koenig, Emma; Jacobs, Ari; Lisensky, George
2017-01-01
Semiconductors are an important class of materials; preparing ZnO nanorods allows semiconducting properties to be easily observed. The week before lab, groups of four students take 15 min to setup two fluorine-doped tin oxide glass (FTO) slides in a zinc nitrate and hexamethylenetetramine solution stored at 90°C until the next lab. Hexagonal ZnO…
Wet formation and structural characterization of quasi-hexagonal monolayers.
Batys, Piotr; Weroński, Paweł; Nosek, Magdalena
2016-01-01
We have presented a simple and efficient method for producing dense particle monolayers with controlled surface coverage. The method is based on particle sedimentation, manipulation of the particle-substrate electrostatic interaction, and gentle mechanical vibration of the system. It allows for obtaining quasi-hexagonal structures under wet conditions. Using this method, we have produced a monolayer of 3 μm silica particles on a glassy carbon substrate. By optical microscopy, we have determined the coordinates of the particles and surface coverage of the obtained structure to be 0.82. We have characterized the monolayer structure by means of the pair-correlation function and power spectrum. We have also compared the results with those for a 2D hexagonal monolayer and monolayer generated by random sequential adsorption at the coverage 0.50. We have found the surface fractal dimension to be 2.5, independently of the monolayer surface coverage. Copyright © 2015 Elsevier Inc. All rights reserved.
Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy
NASA Astrophysics Data System (ADS)
Friedli, Jonathan; Fife, J. L.; di Napoli, P.; Rappaz, M.
2013-12-01
Upon solidification, most metallic alloys form dendritic structures that grow along directions corresponding to low index crystal axes, e.g., directions in fcc aluminum. However, recent findings[1,2] have shown that an increase in the zinc content in Al-Zn alloys continuously changes the dendrite growth direction from to in {100} planes. At intermediate compositions, between 25 wt pct and 55 wt pct Zn, dendrites and textured seaweeds were reported. The reason for this dendrite orientation transition is that this system exhibits a large solubility of zinc, a hexagonal metal, in the primary fcc aluminum phase, thus modifying its weak solid-liquid interfacial energy anisotropy. Owing to the complexity of the phenomenology, there is still no satisfactory theory that predicts all the observed microstructures. The current study is thus aimed at better understanding the formation of these structures. This is provided by the access to their 3D morphologies via synchrotron-based X-ray tomographic microscopy of quenched Bridgman solidified specimens in combination with the determination of the crystal orientation of the dendrites by electron-backscattered diffraction. Most interestingly, all alloys with intermediate compositions were shown to grow as seaweeds, constrained to grow mostly in a (001) symmetry plane, by an alternating growth direction mechanism. Thus, these structures are far from random and are considered less hierarchically ordered than common dendrites.
NASA Astrophysics Data System (ADS)
Wright, N.; Mateo-Feliciano, D.; Ostoski, A.; Mukherjee, P.; Witanachchi, S.
Nanosphere lithography is a combination of different methods to nanofabrication. In this work nanosphere lithography is used to study the growth of Zinc Oxide Nano-columns (ZnO NCs) on different diameter Silica Nanosphere (SNS) self-assembled templates. ZnO NCs are promising building blocks for many existing and emerging optical, electrical, and piezoelectric devices, specifically, the seeded growth of other oxide materials. Recently, reports have shown a ferroelectric phase of zinc stannate (ZnSnO3) and while lead zirconium titanate oxide (PZT) has been the main material of interest in ferroelectric and piezoelectric applications, the toxicity of lead has been of great concern. The possibility of developing lead free piezoelectric materials is of great interest in the ferroelectric community. Langmuir-Blodgett method was used to construct a self-assembled monolayer of SNSs on silicon substrates. Oriented ZnO NCs were grown on top of the spheres using the glancing angle pulsed laser deposition technique. Columns were formed in a spatially ordered closed-packed hexagonal configuration. Growth of ZnO NCs was studied as function of ambient Oxygen pressure with SNS size ranging from 250-1000 nm. Cross-sectional Scanning Electron Microscopy and X-ray diffraction (XRD) were used to study the template structure. Relative aspect ratios were studied and showed tunability of column dimensions with sphere size. XRD revealed ZnO NC arrays were c-axis oriented with hexagonal wurtzite structure.
NASA Astrophysics Data System (ADS)
Iyyappa Rajan, P.; Judith Vijaya, J.; Jesudoss, S. K.; Kaviyarasu, K.; Lee, Seung-Cheol; John Kennedy, L.; Jothiramalingam, R.; Al-Lohedan, Hamad A.; Mahamad Abdullah, M.
2018-03-01
The theme of this work is to highlight the significance of green plant extracts in the synthesis of nanostructures. In asserting this statement, herein, we report our obtained results on the synthesis of hexagonal CdSe nanorods preferably oriented along (0002) plane through henna leaf extract-mediated reaction along with a discussion about the structural, morphological and optical properties of the synthesized nanorods. The possible mechanism for the synthesis of CdSe nanorods was explored. The formation of nanorods along (0002) plane was confirmed by the relatively high intensity of the (0002) peak in X-ray diffraction pattern. To account for the experimentally realistic condition, we have calculated the surface energies of hexagonal CdSe surface slabs along the low indexed (0002), (10 1 ¯ 0 ) and (11 2 ¯ 0 ) plane surfaces using density functional theory approach and the calculated surface energy value for (0002) surface is 802.7 mJ m-2, which is higher than (11 2 ¯ 0 ) and (10 1 ¯ 0 ) surfaces. On realizing the calculated surface energies of these slabs, we determined that the combination of (11 2 ¯ 0 ) and (10 1 ¯ 0 ) planes with lower surface energies will lead to the formation of CdSe nanorods growth along (0002) orientation. Finally, we argue that the design of new greener route for the synthesis of novel functional nanomaterials is highly desired.
Tile Patterns with Logo--Part I: Laying Tile with Logo.
ERIC Educational Resources Information Center
Clason, Robert G.
1990-01-01
Described is a method for drawing periodic tile patterns using LOGO. Squares, triangles, hexagons, shape filling, and random tile laying are included. These activities incorporate problem solving, programing methods, and the geometry of angles and polygons. (KR)
Investigation on the formation of lonsdaleite from graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greshnyakov, V. A.; Belenkov, E. A., E-mail: belenkov@csu.ru
2017-02-15
Structural stability and the possible pathways to experimental formation of lonsdaleite—a hexagonal 2H polytype of diamond—have been studied in the framework of the density functional theory (DFT). It is established that the structural transformation of orthorhombic Cmmm graphite to 2H polytype of diamond must take place at a pressure of 61 GPa, while the formation of lonsdaleite from hexagonal P6/mmm graphite must take place at 56 GPa. The minimum potential barrier height separating the 2H polytype state from graphite is only 0.003 eV/atom smaller than that for the cubic diamond. The high potential barrier is indicative of the possibility ofmore » stable existence of the hexagonal diamond under normal conditions. In this work, we have also analyzed the X-ray diffraction and electron-microscopic data available for nanodiamonds found in meteorite impact craters in search for the presence of hexagonal diamond. Results of this analysis showed that pure 3C and 2H polytypes are not contained in the carbon materials of impact origin, the structure of nanocrystals found representing diamonds with randomly packed layers. The term “lonsdaleite,” used to denote carbon materials found in meteorite impact craters and diamond crystals with 2H polytype structure, is rather ambiguous, since no pure hexagonal diamond has been identified in carbon phases found at meteorite fall sites.« less
Sleczkowski, Piotr; Katsonis, Nathalie; Kapitanchuk, Oleksiy; Marchenko, Alexandr; Mathevet, Fabrice; Croset, Bernard; Lacaze, Emmanuelle
2014-11-11
We investigate the expression of chirality in a monolayer formed spontaneously by 2,3,6,7,10,11-pentyloxytriphenylene (H5T) on Au(111). We resolve its interface morphology by combining scanning tunneling microscopy (STM) with theoretical calculations of intermolecular and interfacial interaction potentials. We observe two commensurate structures. While both of them belong to a hexagonal space group, analogical to the triangular symmetry of the molecule and the hexagonal symmetry of the substrate surface, they surprisingly reveal a 2D chiral character. The corresponding breaking of symmetry arises for two reasons. First it is due to the establishment of a large molecular density on the substrate, which leads to a rotation of the molecules with respect to the molecular network crystallographic axes to avoid steric repulsion between neighboring alkoxy chains. Second it is due to the molecule-substrate interactions, leading to commensurable large crystallographic cells associated with the large size of the molecule. As a consequence, molecular networks disoriented with respect to the high symmetry directions of the substrate are induced. The high simplicity of the intermolecular and molecule-substrate van der Waals interactions leading to these observations suggests a generic character for this kind of symmetry breaking. We demonstrate that, for similar molecular densities, only two kinds of molecular networks are stabilized by the molecule-substrate interactions. The most stable network favors the interfacial interactions between terminal alkoxy tails and Au(111). The metastable one favors a specific orientation of the triphenylene core with its symmetry axes collinear to the Au⟨110⟩. This specific orientation of the triphenylene cores with respect to Au(111) appears associated with an energy advantage larger by at least 0.26 eV with respect to the disoriented core.
Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buršík, J., E-mail: bursik@iic.cas.cz; Kužel, R.; Knížek, K.
2013-07-15
Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature rampmore » were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −1 −1]{sub ST}.« less
Broadening and shifting of Bragg reflections of nanoscale-microtwinned LT-Ni3Sn2
NASA Astrophysics Data System (ADS)
Leineweber, Andreas; Krumeich, Frank
2013-12-01
The effect of nanoscale microtwinning of long-range ordered domains in LT-Ni3Sn2 on its diffraction behaviour was studied by X-ray powder diffraction and electron microscopy. LT-Ni3Sn2 exhibits a Ni2In/NiAs-type structure with a superstructure breaking the symmetry relative to the hexagonal high-temperature (HT) to the orthorhombic low-temperature (LT) phase, implying three different twin-domain orientations. The microstructure was generated by annealing HT-Ni3Sn2 considerably below the order-disorder transition temperature, establishing the LT phase avoiding too much domain coarsening. High-resolution electron microscopy reveals domain sizes of 100-200 Å compatible with the Scherrer broadening of the superstructure reflections recorded by X-ray diffraction. Whereas the orthorhombic symmetry of the LT phase leads in powder-diffraction patterns from coarse-domain size material to splitting of the fundamental reflections, this splitting does not occur for the LT-Ni3Sn2 with nanoscale domains. Instead, a (pseudo)hexagonal indexing is possible giving hexagonal lattice parameters, which are, however, incompatible with the positions of the superstructure reflections. This can be attributed to interference between X-rays scattered by the differently oriented, truly orthorhombic domains leading to merging of the fundamental reflections. These show pronounced anisotropic microstrain-like broadening, where the integral breadths ? on the reciprocal d-spacing scale of a series of higher order reflection increase in a non-linear fashion with upward curvature with the reciprocal d-spacings ? of these reflections. Such a type of unusual microstrain broadening appears to be typical for microstructures which are inhomogeneous on the nanoscale, and in which the structural inhomogeneities lead to small phase shifts of the scattered radiation from different locations (e.g. domains).
NASA Astrophysics Data System (ADS)
Liu, Limin
A viscous lyotropic crystalline mesophase containing bis (2-ethylhexyl) sodium sulfosuccinate (AOT), alpha-phosphatidylcholine (lecithin), with comparable volume fractions of isooctane and water was characterized by Fourier-transform 31P and 1H nuclear magnetic resonance (NMR) spectroscopy. Shear alignment on the reverse hexagonal mesophase was reflected through both 31P NMR and 1H NMR spectra. A complicated 31P spectrum was observed as a result of superposition of chemical shifts according to the distribution of crystalline domains prior to shear. The initially disordered samples with polydomain structures became macroscopically aligned after Couette shear and the alignment retained for a long period of time. 31P NMR chemical shift anisotropy characteristics were used to elucidate orientation of the hexagonal phase. Interestingly, 1H NMR of the water, methyl and methylene groups exhibited spectral changes upon shear alignment closely corresponding with that of 31P NMR spectra. A reverse hexagonal to lamellar phase transition was manifested as an expanding of the expressed 31P NMR chemical shift anisotropy and an apparent reversal of the powder pattern with increasing water content and/or temperature. Correspondingly, 1H NMR spectra also experienced a spectral pattern transition as the water content or temperature was increased. These observations complement the findings of mesophase alignment obtained using small angle neutron scattering (SANS) and imply that 31P and 1H NMR spectroscopy can be used as probes to define microstructure and monitor orientation changes in this binary surfactant system. This is especially beneficial if these mesophases are used as templates for materials synthesis. The mesophase retains its alignment for extended periods allowing materials synthesis to be decoupled from the application of shear. Highly aligned string-like silica nanostructures were obtained through templated synthesis in the columnar hexagonal structure of the viscous lyotropic crystalline mesophase. A two-step procedure was used to first shear-align the surfactant mesophase, and then conduct synthesis under quiescent conditions in the mesophase. Polystyrene was post-grafted to the silica surface without disturbing its nanostring morphology. The coupling of materials synthesis in surfactant mesophases with processing techniques (e.g. extrusion) may result in functional materials, such as new catalyst support and membrane nanoarchitectures.
Orientation-dependent integral equation theory for a two-dimensional model of water
NASA Astrophysics Data System (ADS)
Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Dill, K. A.
2003-03-01
We develop an integral equation theory that applies to strongly associating orientation-dependent liquids, such as water. In an earlier treatment, we developed a Wertheim integral equation theory (IET) that we tested against NPT Monte Carlo simulations of the two-dimensional Mercedes Benz model of water. The main approximation in the earlier calculation was an orientational averaging in the multidensity Ornstein-Zernike equation. Here we improve the theory by explicit introduction of an orientation dependence in the IET, based upon expanding the two-particle angular correlation function in orthogonal basis functions. We find that the new orientation-dependent IET (ODIET) yields a considerable improvement of the predicted structure of water, when compared to the Monte Carlo simulations. In particular, ODIET predicts more long-range order than the original IET, with hexagonal symmetry, as expected for the hydrogen bonded ice in this model. The new theoretical approximation still errs in some subtle properties; for example, it does not predict liquid water's density maximum with temperature or the negative thermal expansion coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hong, E-mail: h-yu@seu.edu.cn; Chen, Hong-Bo
In this article, a new semi-continuum model is built to describe the fundamental vibration frequency of the silicon nanowires in <111> orientation. The Keating potential model and the discrete nature in the width and the thickness direction of the silicon nanowires in <111> orientation are applied in the new semi-continuum model. Based on the Keating model and the principle of conservation of energy, the vibration frequency of the silicon nanowires with the triangle, the rhombus, and the hexagon cross sections are derived. It is indicated that the calculation results based on this new model are accordant with the simulation resultsmore » of the software based on molecular dynamics (MD).« less
NASA Astrophysics Data System (ADS)
Kunj, Saurabh; Sreenivas, K.
2016-05-01
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunj, Saurabh, E-mail: saurabhkunj22@gmail.com; Sreenivas, K.
2016-05-23
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O{sub 2}/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
Analysis of NiAlTa precipitates in beta-NiAl + 2 at. pct Ta alloy
NASA Technical Reports Server (NTRS)
Pathare, V.; Michal, G. M.; Vedula, K.; Nathal, M. V.
1987-01-01
Results are reported from experiments performed to identify the precipitates, and their orientation in the matrix, in a beta-NiAl alloy containing 2 at. pct. Ta after undergoing creep test at 1300 K. Test specimens formed by extruding hot powders were compressed at 1300 K for about 50 hr at a strain rate averaging 6/1 million per sec. The specimens were then thinned and examined under an electron microscope and by X-ray diffractometry. An intermetallic NiAlTa compound with a hexagonal Cl4 structure appeared as second phase precipitates in the samples, exhibiting plate-like shapes and a habit plane close to (012). The prism planes of the hexagonal NiAlTa precipitates paralleled the closest packed planes in the cubic beta-NiAl matrix.
Information theory analysis of sensor-array imaging systems for computer vision
NASA Technical Reports Server (NTRS)
Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.; Self, M. O.
1983-01-01
Information theory is used to assess the performance of sensor-array imaging systems, with emphasis on the performance obtained with image-plane signal processing. By electronically controlling the spatial response of the imaging system, as suggested by the mechanism of human vision, it is possible to trade-off edge enhancement for sensitivity, increase dynamic range, and reduce data transmission. Computational results show that: signal information density varies little with large variations in the statistical properties of random radiance fields; most information (generally about 85 to 95 percent) is contained in the signal intensity transitions rather than levels; and performance is optimized when the OTF of the imaging system is nearly limited to the sampling passband to minimize aliasing at the cost of blurring, and the SNR is very high to permit the retrieval of small spatial detail from the extensively blurred signal. Shading the lens aperture transmittance to increase depth of field and using a regular hexagonal sensor-array instead of square lattice to decrease sensitivity to edge orientation also improves the signal information density up to about 30 percent at high SNRs.
Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.
Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei
2013-02-01
High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.
Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals
NASA Astrophysics Data System (ADS)
Pavlovskii, N. S.; Dubrovskii, A. A.; Nikitin, S. E.; Semenov, S. V.; Terent'ev, K. Yu.; Shaikhutdinov, K. A.
2018-03-01
We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction Δ L/L. The measured Δ L/L( H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the Δ L/L( H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4-100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.
Growth of Ferromagnetic Epitaxial Film of Hexagonal FeGe on (111) Ge Surface
NASA Astrophysics Data System (ADS)
Kumar, Dushyant; Joshi, P. C.; Hossain, Z.; Budhani, R. C.
2014-03-01
The realization of semiconductors showing ferromagnetic order at easily accessible temperatures has been of interest due to their potential use in spintronic devices where long spin life times are of key interest. We have realized the growth of FeGe thin films on Ge (111) wafers using pulsed laser deposition (PLD). The stoichiometric and single phase FeGe target used in PLD chamber has been made by arc melting. A typical θ-2 θ diffraction spectra performed on 40 nm thick FeGe film suggests the stabilization of β-Ni2In (B82-type) hexagonal phase with an epitaxial orientation of (0001)FeGe ||(111)Ge and [11-20]FeGe ||[-110]Ge. SEM images shows a granular structure with the formation of very large grains of about 100 to 500 nm in lateral dimension. The magnetization vs. temperature data taken from SQUID reveal the TC of ~ 270K. Since, PLD technique makes it easier to stabilize the B82 (Ni2In) hexagonal phase in thin FeGe films, this work opens opportunities to reinvestigate many conflicting results on various properties of the FeGe system.
Effect of substrate orientation on CdS homoepitaxy by molecular dynamics
Almeida, S.; Chavez, J. J.; Zhou, X. W.; ...
2016-02-10
CdS homoepitaxy growth was performed by molecular dynamics using different substrate orientations and structures in order to analyze the CdS crystallinity. As anticipated from thermodynamics of homoepitaxy, highly crystalline films with only point defects were obtained on substrates with rectangular surface geometries, including View the MathML source[112¯] zinc blende (ZB), [101¯0] wurtzite (WZ), [112¯0] WZ, [110][110] ZB, [010][010] ZB, and View the MathML source[1101110] ZB. In contrast, films grown on substrates with hexagonal surface geometries, corresponding to the [0001][0001] WZ and [111][111] ZB growth directions, showed structures with a large number of defects including; anti-sites, vacancies, stacking faults, twinning, andmore » polytypism. WZ and ZB transitions and grain boundaries are identified using a lattice identification algorithm and represented graphically in a structural map. A dislocation analysis was performed to detect, identify, and quantify linear defects within the atomistic data. Systematic simulations using different temperatures, deposition rates, and substrate polarities were perform to analyze the trends of dislocation densities on [0001][0001] WZ direction and showed persistent polytypism. As a result, the polytypism observed in the films grown on the substrates with hexagonal surface geometry is attributed to the similar formation energies of the WZ and ZB phases.« less
NASA Astrophysics Data System (ADS)
Aksay, S.; Polat, M.; Özer, T.; Köse, S.; Gürbüz, G.
2011-09-01
CdS and CdS/Co films have been deposited on glass substrates by an ultrasonic spray pyrolysis method. The effects of Co incorporation on the structural, optical, morphological, elemental and vibrational properties of these films were investigated. XRD analysis confirmed the hexagonal wurtzite structure of all films and had no impurity phase. While CdS film has (0 0 2) as the preferred orientation, CdS/Co films have (1 1 0) as the preferred orientation. The direct optical band gap was found to decrease from 2.42 to 2.39 eV by Co incorporation. The decrease of the direct energy gaps by increasing Co contents is mainly due to the sp-d exchange interaction between the localized d-electrons of Co2+ ions and band electrons of CdS. After the optical investigations, it was seen that the transmittance of CdS films decreased by Co content. The Raman measurements revealed two peaks corresponding to the 1LO and 2LO modes of hexagonal CdS. The vibrational modes of Cd-S were obtained in the wavenumber range (590-715 cm-1) using Fourier transform infrared spectroscopy (FTIR). The elemental analysis of the film was done by energy dispersive X-ray spectrometry.
Macke, A; Mishchenko, M I
1996-07-20
We ascertain the usefulness of simple ice particle geometries for modeling the intensity distribution of light scattering by atmospheric ice particles. To this end, similarities and differences in light scattering by axis-equivalent, regular and distorted hexagonal cylindric, ellipsoidal, and circular cylindric ice particles are reported. All the results pertain to particles with sizes much larger than a wavelength and are based on a geometrical optics approximation. At a nonabsorbing wavelength of 0.55 µm, ellipsoids (circular cylinders) have a much (slightly) larger asymmetry parameter g than regular hexagonal cylinders. However, our computations show that only random distortion of the crystal shape leads to a closer agreement with g values as small as 0.7 as derived from some remote-sensing data analysis. This may suggest that scattering by regular particle shapes is not necessarily representative of real atmospheric ice crystals at nonabsorbing wavelengths. On the other hand, if real ice particles happen to be hexagonal, they may be approximated by circular cylinders at absorbing wavelengths.
Kinetic Monte Carlo simulations of GaN homoepitaxy on c- and m-plane surfaces
Xu, Dongwei; Zapol, Peter; Stephenson, G. Brian; ...
2017-04-12
The surface orientation can have profound effects on the atomic-scale processes of crystal growth and is essential to such technologies as GaN-based light-emitting diodes and high-power electronics. We investigate the dependence of homoepitaxial growth mechanisms on the surface orientation of a hexagonal crystal using kinetic Monte Carlo simulations. To model GaN metal-organic vapor phase epitaxy, in which N species are supplied in excess, only Ga atoms on a hexagonal close-packed (HCP) lattice are considered. The results are thus potentially applicable to any HCP material. Growth behaviors on c-plane (0001) and m-plane (011¯0) surfaces are compared. We present a reciprocal spacemore » analysis of the surface morphology, which allows extraction of growth mode boundaries and direct comparison with surface X-ray diffraction experiments. For each orientation, we map the boundaries between 3-dimensional, layer-by-layer, and step flow growth modes as a function of temperature and growth rate. Two models for surface diffusion are used, which produce different effective Ehrlich-Schwoebel step-edge barriers and different adatom diffusion anisotropies on m-plane surfaces. Simulation results in agreement with observed GaN island morphologies and growth mode boundaries are obtained. These indicate that anisotropy of step edge energy, rather than adatom diffusion, is responsible for the elongated islands observed on m-plane surfaces. As a result, island nucleation spacing obeys a power-law dependence on growth rate, with exponents of –0.24 and –0.29 for the m- and c-plane, respectively.« less
Kinetic Monte Carlo simulations of GaN homoepitaxy on c- and m-plane surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Dongwei; Zapol, Peter; Stephenson, G. Brian
The surface orientation can have profound effects on the atomic-scale processes of crystal growth and is essential to such technologies as GaN-based light-emitting diodes and high-power electronics. We investigate the dependence of homoepitaxial growth mechanisms on the surface orientation of a hexagonal crystal using kinetic Monte Carlo simulations. To model GaN metal-organic vapor phase epitaxy, in which N species are supplied in excess, only Ga atoms on a hexagonal close-packed (HCP) lattice are considered. The results are thus potentially applicable to any HCP material. Growth behaviors on c-plane (0001) and m-plane (011¯0) surfaces are compared. We present a reciprocal spacemore » analysis of the surface morphology, which allows extraction of growth mode boundaries and direct comparison with surface X-ray diffraction experiments. For each orientation, we map the boundaries between 3-dimensional, layer-by-layer, and step flow growth modes as a function of temperature and growth rate. Two models for surface diffusion are used, which produce different effective Ehrlich-Schwoebel step-edge barriers and different adatom diffusion anisotropies on m-plane surfaces. Simulation results in agreement with observed GaN island morphologies and growth mode boundaries are obtained. These indicate that anisotropy of step edge energy, rather than adatom diffusion, is responsible for the elongated islands observed on m-plane surfaces. As a result, island nucleation spacing obeys a power-law dependence on growth rate, with exponents of –0.24 and –0.29 for the m- and c-plane, respectively.« less
Raman spectroscopy measurement of bilayer graphene's twist angle to boron nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Bin; Wang, Peng; Pan, Cheng
2015-07-20
When graphene is placed on hexagonal boron nitride with a twist angle, new properties develop due to the resulting moiré superlattice. Here, we report a method using Raman spectroscopy to make rapid, non-destructive measurements of the twist angle between bilayer graphene and hexagonal boron nitride. The lattice orientation is determined by using flakes with both bilayer and monolayer regions, and using the known Raman signature for the monolayer to measure the twist angle of the entire flake. The widths of the second order Raman peaks are found to vary linearly in the superlattice period and are used to determine themore » twist angle. The results are confirmed by using transport measurements to infer the superlattice period by the charge density required to reach the secondary resistance peaks. Small twist angles are also found to produce a significant modification of the first order Raman G band peak.« less
Using Transverse Optical Patterns for Ultra-Low-Light All-Optical Switching
2008-01-01
handling devices from cellular telephones to supercomputers. The de - velopment of the internet (world-wide-web) was enabled by personal computers and...increase in response time for de - creasing power that is qualitatively similar to experimental observations. To facilitate comparison to Fig. 5.8(a...wells and of the entire ring correspond to the preference of the system to emit light in a hexagonal pattern. To de - scribe the pattern orientation using
NASA Astrophysics Data System (ADS)
Itagaki, Norikazu; Saito, Shin; Takahashi, Migaku
2009-04-01
Through analyzing the growth mechanism of the Ru layer in a nonmagnetic intermediate layer (NMIL) for perpendicular magnetic recording media, a concept for the NMIL is proposed in order to realize a recording layer of small, highly c-plane oriented grains with no intergranular exchange coupling. It was found that (1) fast Fourier transform analysis of plan-view transmission electron microscopy lattice images of Ru layers revealed that hexagonal close packed Ru grains in a c-plane oriented film readily coalesce with each other due to the disappearance of low-angle tilt boundaries. (2) A promising candidate for a NMIL consists of three individual epitaxially grown functional layers: a large-grain seed layer with a highly oriented sheet texture, a first interlayer of small grains, and a second interlayer of nonmagnetic grains isolated by a segregated oxide. (3) The Ru-SiO2/Ru/Mg NMIL based on the proposed concept exhibited small (diameter: 4.8 nm) Ru grains while retaining a narrow orientation distribution of 4.1°.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, He-Lou; Li, Xiao; Ren, Jiaxing
Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase-separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of themore » PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value.« less
Tolerance measurements on internal- and external-hexagon implants.
Braian, Michael; De Bruyn, Hugo; Fransson, Håkan; Christersson, Cecilia; Wennerberg, Ann
2014-01-01
To measure the horizontal machining tolerances of the interface between internal- and external-hexagon implants and analogs with corresponding components after delivery from the manufacturer. These values may be a valuable tool for evaluating increasing misfit caused by fabrication, processing, and wear. Seven implants and seven analogs with external- and internal-hexagon connections (Biomet 3i) with corresponding prefabricated gold cylinders and gold screws, prefabricated cylindric plastic cylinders, and laboratory screws were studied. One set of components from the external and internal groups was measured manually and digitally. Measurements from the test subjects were compared with identical measurements from the virtual model to obtain threshold values. The virtual model was then used to obtain optimally oriented cuts. The horizontal machining tolerances for castable plastic abutments on external implants were 12 ± 89 μm, and for internal implants they were 86 ± 47 μm. Tolerance measurements on prefabricated gold abutments for external implants were 44 ± 9 μm, and for internal implants they were 58 ± 28 μm. The groups with metallic components showed the smallest tolerance at < 50 μm for the external group and < 90 μm for the internal group. The prefabricated plastic cylinder groups ranged from < 100 μm for external and < 130 μm for internal connection.
Hyperfine fields and anisotropy of the orbital moment in epitaxial Mn5Ge3 films studied by 55Mn NMR
NASA Astrophysics Data System (ADS)
Kalvig, R.; Jedryka, E.; Wojcik, M.; Allodi, G.; De Renzi, R.; Petit, M.; Michez, L.
2018-05-01
55Mn NMR was used to perform the atomic-scale study of the anisotropic properties of Mn5Ge3 /Ge(111) epitaxial films with thicknesses between 9 and 300 nm. The NMR spectra have been recorded as a function of strong external magnetic field applied in the film plane and perpendicular to it. Two 55Mn NMR resonances have been observed, corresponding to the two manganese sites 4 d and 6 g , in the hexagonal D 88 structure; in zero field their frequency is centered around 207.5 and 428 MHz, respectively. The anisotropy of 55Mn hyperfine fields between the hexagonal c direction and the c plane at both Mn sites was evidenced and attributed to the anisotropic term due to the unquenched Mn orbital momentum. The anisotropy of the orbital contribution to hyperfine fields was determined as 1.52 T in the 4 d site and up to 2.77 T in the 6 g site. The 4 d site reveals a quadrupolar interaction due to the strong electric field gradient: Vz z=5.3 ×1019V/m2 in this site, which is shown to be oriented along the hexagonal c axis.
Insights Into the Solution Crystallization of Oriented Alq3 and Znq2 Microprisms and Nanorods.
Boulet, Joel; Mohammadpour, Arash; Shankar, Karthik
2015-09-01
Optimized solution-based methods to grow high quality micro- and nanocrystals of organic semi-conductors with defined size, shape and orientation are important to a variety of optoelectronic applications. In this context, we report the growth of single crystal micro- and nanostructures of the organic semiconductors Tris(8-hydroxyquinoline)aluminum (Alq3) and bis(8-hydroxyquinoline)zinc (Znq2) terminating in flat crystal planes using a combination of evaporative and antisolvent crystallization. By controlling substrate-specific nucleation and optimizing the conditions of growth, we generate vertically-oriented hexagonal prism arrays of Alq3, and vertical half-disks and sharp-edged rectangular prisms of Znq2. The effect of process variables such as ambient vapour pressure, choice of anti-solvent and temperature on the morphology and crystal habit of the nanostructures were studied and the results of varying them catalogued to gain a better understanding of the mechanism of growth.
Pezzotti, Giuseppe; Zhu, Wenliang; Boffelli, Marco; Adachi, Tetsuya; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato
2015-05-01
The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.
Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu
Liu, Chien-Min; Lin, Han-Wen; Huang, Yi-Sa; Chu, Yi-Cheng; Chen, Chih; Lyu, Dian-Rong; Chen, Kuan-Neng; Tu, King-Ning
2015-01-01
Direct Cu-to-Cu bonding was achieved at temperatures of 150–250 °C using a compressive stress of 100 psi (0.69 MPa) held for 10–60 min at 10−3 torr. The key controlling parameter for direct bonding is rapid surface diffusion on (111) surface of Cu. Instead of using (111) oriented single crystal of Cu, oriented (111) texture of extremely high degree, exceeding 90%, was fabricated using the oriented nano-twin Cu. The bonded interface between two (111) surfaces forms a twist-type grain boundary. If the grain boundary has a low angle, it has a hexagonal network of screw dislocations. Such network image was obtained by plan-view transmission electron microscopy. A simple kinetic model of surface creep is presented; and the calculated and measured time of bonding is in reasonable agreement. PMID:25962757
Variability of the contrail radiative forcing due to crystal shape
NASA Astrophysics Data System (ADS)
Markowicz, K. M.; Witek, M. L.
2011-12-01
The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be determined. Two cases are discussed here: a 1% homogeneous contrail cover and the contrail cover provided by Rädel and Shine (2008). In the second distribution case, a more realistic contrail cover is taken into account. This model combines the AERO2K flight inventory with meteorological data and normalizes it with respect to the contrail cover derived from satellite observations. Simulations performed by the Fu-Liou model show significant variability of the shortwave, longwave, and net radiative forcing with crystal shape. The nonspherical crystals have smaller net forcing in contrary to spherical particles. The differences in net radiative forcing between optical models reach up to 50%. The hexagonal column and hexagonal plate particles show the smallest net radiative forcing while the largest forcing is obtained for the spheres. The global and annual mean shortwave, longwave, and net contrail radiative forcing, average over all crystal models and assuming an optical depth of 0.3 at visible wavelengths, is -5.7, 16.8, and 11.1 mW/m2, respectively. A ratio of the radiative forcings' standard deviation to the mean value, derived using 10 different ice particle models, is about 0.2 for the shortwave, 0.14 for the longwave, and 0.23 for the net radiation.
NASA Astrophysics Data System (ADS)
Aguiar, Ivana; Olivera, Alvaro; Mombrú, Maia; Bentos Pereira, Heinkel; Fornaro, Laura
2017-01-01
Bismuth tri-iodide is a layered compound semiconductor which has suitable properties as material for ionizing radiation detection devices. Monocrystals and polycrystalline thin films have been studied for this application, but only recently, the development of nanostructures of this compound has emerged as an interesting alternative for using such nanostructures in new types of radiation detectors or for including them in other applications. Considering this, we present in this work BiI3 nanoparticles successfully synthesized by the hydrothermal method, using a Teflon-lined stainless steel autoclave, at a temperature of 180 °C during 8-20 h, with BiCl3 and NaI as source materials. We characterized the nanoparticles by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron dispersive spectroscopy (EDS). We obtained small rounded or hexagonal particles (10-20 nm in size) and larger structures. The maximum orientation of the nanostructures is along the (0 0 l) family planes and occurs after 16 h of synthesis, which arises as the best condition for obtaining BiI3 oriented nanostructures. When a 100 kV TEM electron beam was converged on the larger structures, we obtained highly oriented BiI3 hexagonal and rod shaped nanostructures. We found that particles' shape does not depend on the synthesis time. In addition, results were compared with the ones obtained for nanoparticles synthesized from solution. The present work is an advance in the synthesis of BiI3 nanostructures by the hydrothermal method, and is also the first step on seeking the amenable control of morphology and size of such structures using electron beam irradiation. This last process may be particularly appropriate for producing nanostructures for future applications in new devices.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Yurkin, Maxim A.
2017-01-01
Although the model of randomly oriented nonspherical particles has been used in a great variety of applications of far-field electromagnetic scattering, it has never been defined in strict mathematical terms. In this Letter we use the formalism of Euler rigid-body rotations to clarify the concept of statistically random particle orientations and derive its immediate corollaries in the form of most general mathematical properties of the orientation-averaged extinction and scattering matrices. Our results serve to provide a rigorous mathematical foundation for numerous publications in which the notion of randomly oriented particles and its light-scattering implications have been considered intuitively obvious.
1991-09-01
nickel zinc ferrite films and (2) sputtering of barium hexaferrites with C-axis oriented normally to the film plane. The SSP tech- nique potential for...M-Wave, Components, Ferrites, Films , Yig, Nickel, Zinc , Hexagonal, R96E Measurements, Frequency, Magnetic, Barium Ferrite 17. SECURITY CLASSIFICATION...techniques to integrate millimeter-wave ferrite devices with GaAs VI&Cs. APPROACH Our approach was to deposit ferrite thin films on GaAs sub- strates in a
Chang, Tzu-Hsuan; Xiong, Shisheng; Liu, Chi-Chun; Liu, Dong; Nealey, Paul F; Ma, Zhenqiang
2017-09-01
The direct self-assembly of cylinder-forming poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) block copolymer is successfully assembled into two orientations, according to the underlying guiding pattern in different areas. Lying-down and perpendicular cylinders are formed, respectively, depending on the design of chemical pattern: sparse line/space pattern or hexagonal dot array. The first chemical pattern composed of prepatterned cross-linked polystyrene (XPS) line/space structure has a period (L S ) equal to twice the intercylinder period of the block copolymer (L 0 ). The PS-b-PMMA thin film on the prepared chemical template after thermal annealing forms a lying-down cylinder morphology when the width of the PS strips is less than the width of PS block in the PS-b-PMMA block copolymer. The morphology is only applicable at the discrete thickness of the PS-b-PMMA film. In addition to forming the lying-down cylinders directly on the XPS guiding pattern, the cylinder-forming block copolymer can also be assembled in a perpendicular way on the second guiding pattern (the hexagonal dot array). The block copolymer films are registered into two orientations in a single directed self-assembly process. The features of the assembled patterns are successfully transferred down to the silicon oxide substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ram, S. D. Gopal; Ravi, G.; Athimoolam, A.; Mahalingam, T.; Kulandainathan, M. Anbu
2011-12-01
Tuning the morphology, size and aspect ratio of free standing ZnO nanostructured arrays by a simple hydrothermal method is reported. Pre-coated ZnO seed layers of two different thicknesses (≈350 nm or 550 nm) were used as substrates to grow ZnO nanostructures for the study. Various parameters such as chemical ambience, pH of the solution, strength of the Zn2+ atoms and thickness of seed bed are varied to analyze their effects on the resultant ZnO nanostructures. Vertically oriented hexagonal nanorods, multi-angular nanorods, hexagonal diskette and popcorn-like nanostructures are obtained by altering the experimental parameters. All the produced nanostructures were analysed by X-ray powder diffraction analysis and found to be grown in the (002) orientation of wurtzite ZnO. The texture co-efficient of ZnO layer was improved by combining a thick seed layer with higher cationic strength. Surface morphological studies reveal various nanostructures such as nanorods, diskettes and popcorn-like structures based on various preparation conditions. The optical property of the closest packed nanorods array was recorded by UV-VIS spectrometry, and the band gap value simulated from the results reflect the near characteristic band gap of ZnO. The surface roughness profile taken from the Atomic Force Microscopy reveals a roughness of less than 320 nm.
NASA Astrophysics Data System (ADS)
Velázquez, Daniel; Seibert, Rachel; Man, Hamdi; Spentzouris, Linda; Terry, Jeff
2016-03-01
We report on the growth of 1-10 ML films of hexagonal boron nitride (h-BN), also known as white graphene, on fiber-oriented Ag buffer films on SrTiO3(001) by pulsed laser deposition. The Ag buffer films of 40 nm thickness were used as substitutes for expensive single crystal metallic substrates. In-situ, reflection high-energy electron diffraction was used to monitor the surface structure of the Ag films and to observe the formation of the characteristic h-BN diffraction pattern. Further evidence of the growth of h-BN was provided by attenuated total reflectance spectroscopy, which showed the characteristic h-BN peaks at ˜780 cm-1 and 1367.4 cm-1. Ex-situ photoelectron spectroscopy showed that the surface of the h-BN films is stoichiometric. The physical structure of the films was confirmed by scanning electron microscopy. The h-BN films grew as large, sub-millimeter sheets with nano- and micro-sheets scattered on the surface. The h-BN sheets can be exfoliated by the micromechanical adhesive tape method. Spectral analysis was performed by energy dispersive spectroscopy in order to identify the h-BN sheets after exfoliation. The use of thin film Ag allows for reduced use of Ag and makes it possible to adjust the surface morphology of the thin film prior to h-BN growth.
NASA Astrophysics Data System (ADS)
Kanazawa, Ken; Yamawaki, Kazuma; Sekita, Naoya; Nishio, Yôtarô; Kuroda, Shinji; Mitome, Masanori; Bando, Yoshio
2015-04-01
We investigated the structural and magnetic properties of Cr1-δTe thin films grown on CdTe(001) layers by molecular beam epitaxy (MBE) with systematic variations of the ratio between Cr and Te fluxes and the substrate temperature Ts during the growth. Cr1-δTe of the hexagonal structure (hex-Cr1-δTe) was always formed irrespective of the growth conditions, but the growth orientation was different depending on the Cr/Te flux ratio and Ts. Hex-Cr1-δTe was grown in the [0001] axis in the range of small Cr/Te ratios and high Ts while it was also grown in the direction normal to the (1-102) plane at larger Cr/Te ratios or lower Ts. Hex-Cr1-δTe films grown in the both orientations show ferromagnetism, but they exhibit a clear contrast in the field dependence of perpendicular magnetization at 2 K; a square hysteretic loop in the film grown in the [0001] axis versus a round-shape loop in the film grown in the direction normal to the (1-102) plane. Moreover, the films grown in the [0001] axis at the smallest Cr/Te ratio show variations of ferromagnetic properties with Curie temperature (Tc) and the coercivity (Hc) varying according to the value of Ts.
Modelling heat conduction in polycrystalline hexagonal boron-nitride films
Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon
2015-01-01
We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820
NASA Astrophysics Data System (ADS)
Cao, Yali; Hu, Pengfei; Jia, Dianzeng
2013-01-01
Hydrothermal strategies were successfully used to control the phases and morphologies of CdS nanocrystals. In the absence of an external direction-controlling process, the hexagonal and cubic phase well-defined leaf- and flower-like CdS nanocrystals were controlled obtained via adjusting the reaction duration or the concentration of surfactant. Oriented attachment growth modes were suggested for the formation of CdS superstructures, which was clarified through the tracing of temporal evolution of CdS nanoparticles. The CdS superstructures were structured by primary building nanoparticles, and held excellent visible emission with a peak in the green regions. This strategy is very helpful for studying the phase and morphology controlled fabrication of sulfides nanocrystals.
Tungsten-encapsulated gadolinium nanoislands with enhanced magnetocaloric response
Logan, Jonathan M.; Rosenmann, Daniel; Sangpo, Tenzin; ...
2017-07-03
Here, we report a method for growing chemically pure, oxide-free, air-stable Gd nanoislands with enhanced magnetic properties. These nanoislands are grown by solid-state dewetting and are fully encapsulated in tungsten such that they remain stable in ambient environments. They display good crystalline properties with hexagonally close-packed crystal structure and strong preferential orientation. We show that the choice of substrate strongly affects their shape, crystal orientation, and magnetic properties. The temperature-dependent magnetic coercivity and remanence of the Gd islands can vary by as much as a factor of three depending on the substrate used. The magneto- caloric properties of Gd islandsmore » grown on a sapphire substrate exceed those of high-quality Gd thin films.« less
Conductivity of Nanowire Arrays under Random and Ordered Orientation Configurations
Jagota, Milind; Tansu, Nelson
2015-01-01
A computational model was developed to analyze electrical conductivity of random metal nanowire networks. It was demonstrated for the first time through use of this model that a performance gain in random metal nanowire networks can be achieved by slightly restricting nanowire orientation. It was furthermore shown that heavily ordered configurations do not outperform configurations with some degree of randomness; randomness in the case of metal nanowire orientations acts to increase conductivity. PMID:25976936
Asymptotic Solutions for Optical Properties of Large Particles with Strong Absorption
NASA Technical Reports Server (NTRS)
Yang, Ping; Gao, Bo-Cai; Baum, Bryan A.; Hu, Yong X.; Wiscombe, Warren J.; Mishchenko, Michael I.; Winker, Dave M.; Nasiri, Shaima L.; Einaudi, Franco (Technical Monitor)
2000-01-01
For scattering calculations involving nonspherical particles such as ice crystals, we show that the transverse wave condition is not applicable to the refracted electromagnetic wave in the context of geometric optics when absorption is involved. Either the TM wave condition (i.e., where the magnetic field of the refracted wave is transverse with respect to the wave direction) or the TE wave condition (i.e., where the electric field is transverse with respect to the propagating direction of the wave) may be assumed for the refracted wave in an absorbing medium to locally satisfy the electromagnetic boundary condition in the ray tracing calculation. The wave mode assumed for the refracted wave affects both the reflection and refraction coefficients. As a result, a nonunique solution for these coefficients is derived from the electromagnetic boundary condition. In this study we have identified the appropriate solution for the Fresnel reflection/refraction coefficients in light scattering calculation based on the ray tracing technique. We present the 3 x 2 refraction or transmission matrix that completely accounts for the inhomogeneity of the refracted wave in an absorbing medium. Using the Fresnel coefficients for an absorbing medium, we derive an asymptotic solution in an analytical format for the scattering properties of a general polyhedral particle. Numerical results are presented for hexagonal plates and columns with both preferred and random orientations. The asymptotic theory can produce reasonable accuracy in the phase function calculations in the infrared window region (wavelengths near 10 micron) if the particle size (in diameter) is on the order of 40 micron or larger. However, since strong absorption is assumed in the computation of the single-scattering albedo in the asymptotic theory, the single scattering albedo does not change with variation of the particle size. As a result, the asymptotic theory can lead to substantial errors in the computation of single-scattering albedo for small and moderate particle sizes. However, from comparison of the asymptotic results with the FDTD solution, it is expected that a convergence between the FDTD results and the asymptotic theory results can be reached when the particle size approaches 200 micron. We show that the phase function at side-scattering and backscattering angles is insensitive to particle shape if the random orientation condition is assumed. However, if preferred orientations are assumed for particles, the phase function has a strong dependence on scattering azimuthal angle. The single-scattering albedo also shows very strong dependence on the inclination angle of incident radiation with respect to the rotating axis for the preferred particle orientations.
Role of critical fluctuations in the formation of a skyrmion lattice in MnSi
NASA Astrophysics Data System (ADS)
Chubova, N. M.; Moskvin, E. V.; Dyad'kin, V. A.; Dewhurst, Ch.; Maleev, S. V.; Grigor'ev, S. V.
2017-11-01
The region in the H- T phase diagram near the critical temperature ( T c ) of the cubic helicoidal MnSi magnet is comprehensively studied by small-angle neutron diffraction. Magnetic field H is applied along the [111] axis. The experimental geometry is chosen to simultaneously observe the following three different magnetic states of the system: (a) critical fluctuations of a spin spiral with randomly orientated wavevector k f , (b) conical structure with k c ǁ H, and (c) hexagonal skyrmion lattice with k sk ⊥ H. Both states (conical structure, and skyrmion lattice) are shown to exist above critical temperature T c = 29 K against the background of the critical fluctuations of a spin spiral. The conical lattice is present up to the temperatures where fluctuation correlation length ξ becomes comparable with pitch of spiral d s . The skyrmion lattice is localized near T c and is related to the fluctuations of a spiral with correlation length ξ ≈ 2 d s , and the propagation vector is normal to the field ( k sk ⊥ H). These spiral fluctuations are assumed to be the defects that stabilize the skyrmion lattice and promote its formation.
The structural properties of Sn-doped zinc oxide synthesized by hot-tube thermal evaporation
NASA Astrophysics Data System (ADS)
Suhaimi, Syahida; Sakrani, Samsudi; Yatim, Nadhrah Md.; Hashim, Mohd Azman
2018-06-01
The growth of Sn:ZnO nanowires on a silicon substrate using a low thermal evaporation method is reported. A horizontal quartz tube with controlled supply of O2 gas were used to fabricate the samples where Zn and Sn metal powders were previously mixed and heated at 500°C. This allows the reactant vapours to deposit onto the substrate, which placed at a certain distance from the source materials. The samples were characterized using FESEM, EDX and HRTEM measurements. Randomly oriented nanowires were formed with varying dopant concentrations from 3 to 15 at%. It was observed that from FESEM images, when the dopant concentrations were increased, a hexagonal rod with a wire extended at its end was clearly formed and the best images of nanowires were shown at the highest concentration of 15 at% measuring between 26 to 35 nm and roughly 500 nm in diameter and length respectively. The doping process played an important role in order to alter the morphological properties of Sn:ZnO nanowires. Sn:ZnO nanowires have large potential in many applications such as in selected sensor technology including gaseous sensors, liquid sensors and others.
Role of stacking disorder in ice nucleation
NASA Astrophysics Data System (ADS)
Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H.; Molinero, Valeria
2017-11-01
The freezing of water affects the processes that determine Earth’s climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.
Role of stacking disorder in ice nucleation.
Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H; Molinero, Valeria
2017-11-08
The freezing of water affects the processes that determine Earth's climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.
Self-assembly and continuous growth of hexagonal graphene flakes on liquid Cu
NASA Astrophysics Data System (ADS)
Cho, Seong-Yong; Kim, Min-Sik; Kim, Minsu; Kim, Ki-Ju; Kim, Hyun-Mi; Lee, Do-Joong; Lee, Sang-Hoon; Kim, Ki-Bum
2015-07-01
Graphene growth on liquid Cu has received great interest, owing to the self-assembly behavior of hexagonal graphene flakes with aligned orientation and to the possibility of forming a single grain of graphene through a commensurate growth of these graphene flakes. Here, we propose and demonstrate a two-step growth process which allows the formation of self-assembled, completely continuous graphene on liquid Cu. After the formation of full coverage on the liquid Cu, grain boundaries were revealed via selective hydrogen etching and the original grain boundaries were clearly resolved. This result indicates that, while the flakes self-assembled with the same orientation, there still remain structural defects, gaps and voids that were not resolved by optical microscopy or scanning electron microscopy. To overcome this limitation, the two-step growth process was employed, consisting of a sequential process of a normal single-layer graphene growth and self-assembly process with a low carbon flux, followed by the final stage of graphene growth at a high degree of supersaturation with a high carbon flux. Continuity of the flakes was verified via hydrogen etching and a NaCl-assisted oxidation process, as well as by measuring the electrical properties of the graphene grown by the two-step process. Two-step growth can provide a continuous graphene layer, but commensurate stitching should be further studied.Graphene growth on liquid Cu has received great interest, owing to the self-assembly behavior of hexagonal graphene flakes with aligned orientation and to the possibility of forming a single grain of graphene through a commensurate growth of these graphene flakes. Here, we propose and demonstrate a two-step growth process which allows the formation of self-assembled, completely continuous graphene on liquid Cu. After the formation of full coverage on the liquid Cu, grain boundaries were revealed via selective hydrogen etching and the original grain boundaries were clearly resolved. This result indicates that, while the flakes self-assembled with the same orientation, there still remain structural defects, gaps and voids that were not resolved by optical microscopy or scanning electron microscopy. To overcome this limitation, the two-step growth process was employed, consisting of a sequential process of a normal single-layer graphene growth and self-assembly process with a low carbon flux, followed by the final stage of graphene growth at a high degree of supersaturation with a high carbon flux. Continuity of the flakes was verified via hydrogen etching and a NaCl-assisted oxidation process, as well as by measuring the electrical properties of the graphene grown by the two-step process. Two-step growth can provide a continuous graphene layer, but commensurate stitching should be further studied. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03352g
Unexpected Magnetic Domain Behavior in LTP-MnBi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, PK; Jin, S; Berkowitz, AE
2013-07-01
Low-temperature-phase MnBi (LTP-MnBi) has attracted much interest as a potential rare-earth-free permanent magnet material because of its high uniaxial magnetocrystalline anisotropy at room temperature, K approximate to 10(7) ergs/cc, and the unusual increase of anisotropy with increasing temperature, with an accompanying increasing coercive force (H-C) with temperature. However, due to the complex Mn-Bi phase diagram, bulk samples of LTP-MnBi with the optimum saturation moment, similar to 75-76 emu/g have been achieved only with zone-refined single crystals. We have prepared polycrystalline samples of LTP-MnBi by induction melting and annealing at 300 degrees C. The moment in 70 kOe is 73.5 emu/g,more » but H-C is only 50 Oe. This is quite surprising-the high saturation moment indicates the dominating presence of LTP-MnBi. Therefore, an H-C c of some significant fraction of 2K/M-S approximate to 30 kOe would seem reasonable in this polycrystalline sample. By examining "Bitter" patterns, we show that the sample is composed of similar to 50 - 100 mu m crystallites. The randomly oriented crystallites exhibit the variety of magnetic domain structures and orientations expected from the hexagonal-structured MnBi with its strong uniaxial anisotropy. Clearly, the reversal of magnetization in the sample proceeds by the low-field nucleation of reversed magnetization in each crystallite, rather than by a wall-pinning mechanism. When the annealed sample was milled into fine particles, H-C increased by several orders of magnitude, as expected.« less
Effect of aluminium doping on structural and optical properties of ZnO thin films by sol-gel method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayaprasath, G.; Murugan, R.; Ravi, G., E-mail: raviganesa@rediffmail.com, E-mail: gravicrc@gmail.com
2015-06-24
We systematically investigated the structural, morphological and optical properties of 0.05 mol % Al doped ZnO (Al:ZnO) thin films deposited on glass substrates by sol-gel spin coating method. The influences of Al doping in ZnO thin films are characterized by Powder X-ray diffraction study. ZnO and Al:ZnO thin films have showed hexagonal wurtzite structure without any secondary phase in c-axis (002) orientation. The SEM images also proved the hexagonal rod like morphologies for both films. All the films exhibited transmittance of 70-80% in the visible range up to 800 nm and cut-off wavelength observed at ∼390 nm corresponding to the fundamental absorption ofmore » ZnO. The band gap of the ZnO thin films slightly widened with the Al doping. The photoluminescence properties have been studied for Al: ZnO thin films and the results are presented in detail.« less
Effect of cobalt substitution on magnetic properties of Ba4Ni2-xCoxFe36O60 hexaferrite
NASA Astrophysics Data System (ADS)
Jiang, Xiaona; Li, Songze; Yu, Zhong; Harris, Vincent G.; Su, Zhijuan; Sun, Ke; Wu, Chuanjian; Guo, Rongdi; Lan, Zhongwen
2018-05-01
Co-substituted U-type hexagonal ferrite bulks, with composition of Ba4Ni2-xCoxFe36O60 (x=0.2, 0.4, 0.6, 0.8), were prepared by a conventional ceramic method. Saturation magnetization (4πMs), coercivity (Hc), and Curie temperature (Tc) were investigated. Anisotropy constant (K1) was calculated by fitting the magnetization curve (M-H) according to the law of approach to saturation, and anisotropy field (Ha) was calculated accordingly. The results reveal that all the samples possess the U-type hexagonal crystallographic structure. With increasing cobalt substitution content (x), the lattice parameters (a and c) almost remain the same owing to the similar radii of Ni2+ (0.72 Å) Co2+ (0.74 Å) ions. 4πMs goes up, while Hc Hc shows an opposite trend. K1 and Ha monotonously decrease resulting from that cobalt substitution weakens the c-axis orientation. Additionally, Tc increases from 467 °C to 484 °C.
Partial glass isosymmetry transition in multiferroic hexagonal ErMn O 3
Barbour, A.; Alatas, A.; Liu, Y.; ...
2016-02-08
Ferroelectric transitions of a hexagonal multiferroic, ErMnO 3, are studied by x-ray scattering techniques. An isosymmetry transition, similar to that previously observed for YMnO 3, approximately 300 K below the well-known ferroic transition temperature is investigated. The partial glassy behavior of the isosymmetry transition is identified by appearance of quasi-elastic scattering lines in high-energy-resolution scans. The glassy behavior is further supported by the increased interlayer decorrelation of (√3×√3)R30º ordering below the isosymmetry transition. The transition behavior is considered for possible hidden sluggish modes and two-step phase transitions theoretically predicted for the stacked triangular antiferromagnets. The in-plane azimuthal (orientational) ordering behaviorsmore » were also compared to the theoretical predictions. Coherent x-ray speckle measurements show unambiguously that the domain sizes decrease anomalously near both the isosymmetry and ferroic transitions. However, domain boundary fluctuations increase monotonically with an Arrhenius form with an activation energy of 0.54(5) eV through both transitions.« less
Noncollinear antiferromagnetic Mn3Sn films
NASA Astrophysics Data System (ADS)
Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.
2018-05-01
Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.
Liao, Wei-Qiang; Ye, Heng-Yun; Zhang, Yi; Xiong, Ren-Gen
2015-06-21
A new organic-inorganic hexagonal perovskite-type compound with the formula ABX3, thiazolium tribromocadmate(ii) (1), in which thiazolium cations are situated in the space between the one-dimensional chains of face-sharing CdBr(6) octahedra, has been successfully synthesized. Systematic characterizations including differential scanning calorimetry measurements, variable-temperature structural analyses, and dielectric measurements reveal that it undergoes two structural phase transitions, at 180 and 146 K. These phase transitions are accompanied by remarkable dielectric relaxation and anisotropy. The thiazolium cations remain orientationally disordered during the two phase transition processes. The origins of the phase transitions at 180 and 146 K are ascribed to the slowing down and reorientation of the molecular motions of the cations, respectively. Moreover, the dielectric relaxation process well described by the Cole-Cole equation and the prominent dielectric anisotropy are also connected with the dynamics of the dipolar thiazolium cations.
Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains.
Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae
2018-03-23
In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H 2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.
Uniform hexagonal graphene flakes and films grown on liquid copper surface.
Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi
2012-05-22
Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm(2)), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 ± 200 Ω and saturation current density of 0.96 ± 0.15 mA/μm, demonstrating their good conductivity and capability for carrying high current density.
Uniform hexagonal graphene flakes and films grown on liquid copper surface
Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi
2012-01-01
Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm2), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 ± 200 Ω and saturation current density of 0.96 ± 0.15 mA/μm, demonstrating their good conductivity and capability for carrying high current density. PMID:22509001
Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains
NASA Astrophysics Data System (ADS)
Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae
2018-03-01
In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.
In situ observation of shear-driven amorphization in silicon crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yang; Zhong, Li; Fan, Feifei
Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in themore » newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.« less
Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys
Wu, Wei; Gao, Yanfei; Oak Ridge National Lab.; ...
2016-09-11
We present that deformation twinning plays a critical role on improving metals or alloys ductility, especially for hexagonal close-packed materials with low symmetry crystal structure. A rolled Mg alloy was selected as a model system to investigate the extension twinning behaviors and characteristics of parent-twin interactions by nondestructive in situ 3D synchrotron X-ray microbeam diffraction. Besides twinning- detwinning process, the twinning-like lattice reorientation process was captured within an individual grain inside a bulk material during the strain reversal. The distributions of parent, twin, and reorientated grains and sub-micron level strain variation across the twin boundary are revealed. A theoretical calculationmore » of the lattice strain confirms that the internal strain distribution in parent and twinned grains correlates with the experimental setup, grain orientation of parent, twin, and surrounding grains, as well as the strain path changes. In conclusion, the study suggests a novel deformation mechanism within the hexagonal close-packed structure that cannot be determined from surface-based characterization methods.« less
Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryanto, Didik, E-mail: didi027@lipi.go.id; Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah; Marwoto, Putut
Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtainedmore » at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.« less
NASA Astrophysics Data System (ADS)
Jokubavicius, Valdas; Sun, Jianwu; Liu, Xinyu; Yazdi, Gholamreza; Ivanov, Ivan. G.; Yakimova, Rositsa; Syväjärvi, Mikael
2016-08-01
We demonstrate growth of thick SiC layers (100-200 μm) on nominally on-axis hexagonal substrates using sublimation epitaxy in vacuum (10-5 mbar) at temperatures varying from 1700 to 1975 °C with growth rates up to 270 μm/h and 70 μm/h for 6H- and 4H-SiC, respectively. The stability of hexagonal polytypes are related to process growth parameters and temperature profile which can be engineered using different thermal insulation materials and adjustment of the induction coil position with respect to the graphite crucible. We show that there exists a range of growth rates for which single-hexagonal polytype free of foreign polytype inclusions can be maintained. Further on, foreign polytypes like 3C-SiC can be stabilized by moving out of the process window. The applicability of on-axis growth is demonstrated by growing a 200 μm thick homoepitaxial 6H-SiC layer co-doped with nitrogen and boron in a range of 1018 cm-3 at a growth rate of about 270 μm/h. Such layers are of interest as a near UV to visible light converters in a monolithic white light emitting diode concept, where subsequent nitride-stack growth benefits from the on-axis orientation of the SiC layer.
Hexagonal boron nitride and water interaction parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu; Wagner, Lucas K.
2016-04-28
The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics andmore » ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.« less
Dai, Siyuan; Ma, Qiong; Yang, Yafang; Rosenfeld, Jeremy; Goldflam, Michael D; McLeod, Alex; Sun, Zhiyuan; Andersen, Trond I; Fei, Zhe; Liu, Mengkun; Shao, Yinming; Watanabe, Kenji; Taniguchi, Takashi; Thiemens, Mark; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M; Basov, D N
2017-09-13
We investigated phonon-polaritons in hexagonal boron nitride-a naturally hyperbolic van der Waals material-by means of the scattering-type scanning near-field optical microscopy. Real-space nanoimages we have obtained detail how the polaritons are launched when the light incident on a thin hexagonal boron nitride slab is scattered by various intrinsic and extrinsic inhomogeneities, including sample edges, metallic nanodisks deposited on its top surface, random defects, and surface impurities. The scanned tip of the near-field microscope is itself a polariton launcher whose efficiency proves to be superior to all the other types of polariton launchers we studied. Our work may inform future development of polaritonic nanodevices as well as fundamental studies of collective modes in van der Waals materials.
Molecular Packing of Amiphiphiles with Crown Polar Heads at the Air-Water Interface
NASA Astrophysics Data System (ADS)
Larson, K.; Vaknin, D.; Villavicencio, O.; McGrath, D.; Tsukruk, V. V.
2002-03-01
An amphiphilic compound containing a benzyl-15-crown-5 focal point, azobenzene spacer, and a dodecyl tail as a peripheral group has been investigated at the air-water interface. X-ray grazing incident diffraction and reflectivity were preformed on the Langmuir monolayers to elucidate molecular packing and orientation. At high surface pressure, we observed intralayer packing of the alkyl tails with doubling parameters of the conventional orthorhombic unit cell (supercell) and long-range positional ordering. High tilt of the alkyl tails of about 58º from the surface normal was a signature of molecular packing caused by a large mismatch between the cross-sectional areas of the polar heads and the alkyl tail. Higher generation molecules of the same series display straight tail orientation and hexagonal lateral packing.
On the dynamical nature of Saturn's North Polar hexagon
NASA Astrophysics Data System (ADS)
Rostami, Masoud; Zeitlin, Vladimir; Spiga, Aymeric
2017-11-01
An explanation of long-lived Saturn's North Polar hexagonal circumpolar jet in terms of instability of the coupled system polar vortex - circumpolar jet is proposed in the framework of the rotating shallow water model, where scarcely known vertical structure of the Saturn's atmosphere is averaged out. The absence of a hexagonal structure at Saturn's South Pole is explained similarly. By using the latest state-of-the-art observed winds in Saturn's polar regions a detailed linear stability analysis of the circumpolar jet is performed (i) excluding (;jet-only; configuration), and (2) including (;jet + vortex; configuration) the north polar vortex in the system. A domain of parameters: latitude of the circumpolar jet and curvature of its azimuthal velocity profile, where the most unstable mode of the system has azimuthal wavenumber 6, is identified. Fully nonlinear simulations are then performed, initialized either with the most unstable mode of small amplitude, or with the random combination of unstable modes. It is shown that developing barotropic instability of the ;jet+vortex; system produces a long-living structure akin to the observed hexagon, which is not the case of the ;jet-only; system, which was studied in this context in a number of papers in literature. The north polar vortex, thus, plays a decisive dynamical role. The influence of moist convection, which was recently suggested to be at the origin of Saturn's North Polar vortex system in the literature, is investigated in the framework of the model and does not alter the conclusions.
On the dynamical nature of Saturn's North Polar hexagon
NASA Astrophysics Data System (ADS)
Rostami, Masoud; Zeitlin, Vladimir; Spiga, Aymeric
2017-04-01
An explanation of long-lived Saturn's North Pole hexagonal circumpolar jet in terms of instability of the coupled system polar vortex - circumpolar jet is proposed in the framework of the rotating shallow water model, where scarcely known vertical structure of the Saturn's atmosphere is averaged out. The absence of a hexagonal structure at the Saturn's South Pole is explained along the same lines. By using the latest state-of-the-art observed winds in Saturn's polar regions a detailed linear stability analysis of the circumpolar jet is performed (i) excluding (``jet-only" configuration), and (2) including (``jet+vortex" configuration) the north polar vortex in the system. A domain of parameters: latitude of the circumpolar jet and curvature of its azimuthal velocity profile, where the most unstable mode of the system has azimuthal wavenumber 6, is identified. Fully nonlinear simulations are then performed, initialized either with the most unstable mode of small amplitude, or with the random combination of unstable modes. It is shown that developing barotropic instability of the ``jet+vortex" system produces a long-living structure akin to the observed hexagon, which is not the case of the ``jet-only" system, which was studied in this context in a number of papers in literature. The north polar vortex, thus, plays a decisive dynamical role. The influence of moist convection, which was recently suggested to be at the origin of Saturn's north polar vortex system in the literature, is investigated in the framework of the model and does not alter the conclusions.
Lattice preferred orientation of hcp-iron induced by shear deformation
NASA Astrophysics Data System (ADS)
Nishihara, Y.; Ohuchi, T.; Kawazoe, T.; Maruyama, G.; Higo, Y.; Funakoshi, K. I.; Seto, Y.
2015-12-01
Many hypotheses have been proposed for origin of seismic anisotropy in the Earth's inner core which consists of solid metal. Plastic deformation of constituent material (most probably hexagonal-close-packed (hcp) iron) is one of the candidate processes to form the inner core anisotropy. Thus knowledge of deformation-induced lattice preferred orientation (LPO) of hcp-iron is important for understanding of nature of the inner core. In this study, we have carried out shear deformation experiments on hcp-iron and determined its deformation induced LPO. Since it is impossible to recover hcp-iron to ambient condition, both deformation and measurement of LPO have to be done at high-pressure conditions. Shear deformation experiments of hcp-iron were carried out using a deformation-DIA apparatus at high-pressure and high-temperature condition where hcp-iron is stable (9-18 GPa, 723 K). Development of LPO in the deforming sample was observed in-situ based on two-dimensional X-ray diffraction using an imaging plate detector and monochromatized synchrotron X-ray. In shear deformation of hcp-iron, <0001> and <112‾0> axes gradually aligned to be sub-parallel to shear plane normal and shear direction, respectively, from initial random orientation. The <0001> and <112‾0> axes are back-rotated from shear direction by 30°. The above results suggest basal slip <112‾0>{0001} is the dominant slip system under the studied deformation conditions. It has been shown that Earth's inner core has an axisymmetric anisotropy with P-wave traveling 3% faster along polar paths than along equatorial directions. Although elastic anisotropy of hcp-iron at the inner core conditions is still controversial, recent theoretical studies consistently shows that P-wave velocity of hcp-iron is fastest along <0001> direction at least at low-temperatures. Our experimental results could be suggesting that most part of the inner core deforms with shear plane sub-parallel to equatorial plane.
Qiu, Peiyu; Sun, Rongjin; Gao, Guo; Zhang, Chunlei; Chen, Bin; Yan, Naishun; Yin, Ting; Liu, Yanlei; Zhang, Jingjing; Yang, Yao; Cui, Daxiang
2015-01-01
Rare-earth (RE)-doped upconversion nanocrystals (UCNCs) are deemed as the promising candidates of luminescent nanoprobe for biological imaging and labeling. A number of methods have been used for the fabrication of UCNCs, but their assembly into porous architectures with desired size, shape and crystallographic phase remains a long-term challenging task. Here we report a facile, anion-induced hydrothermal oriented-explosive method to simultaneously control size, shape and phase of porous UCNCs. Our results confirmed the anion-induced hydrothermal oriented-explosion porous structure, size and phase transition for the cubic/hexagonal phase of NaLuF4 and NaGdF4 nanocrystals with various sizes and shapes. This general method is very important not only for successfully preparing lanthanide doped porous UCNCs, but also for clarifying the formation process of porous UCNCs in the hydrothermal system. The synthesized UCNCs were used for in vitro and in vivo CT imaging, and could be acted as the potential CT contrast agents. PMID:25767613
NASA Astrophysics Data System (ADS)
Yuan, Qinghong; Song, Guangyao; Sun, Deyan; Ding, Feng
2014-10-01
Grain boundaries (GBs) in graphene prepared by chemical vapor deposition (CVD) greatly degrade the electrical and mechanical properties of graphene and thus hinder the applications of graphene in electronic devices. The seamless stitching of graphene flakes can avoid GBs, wherein the identical orientation of graphene domain is required. In this letter, the graphene orientation on one of the most used catalyst surface -- Cu(100) surface, is explored by density functional theory (DFT) calculations. Our calculation demonstrates that a zigzag edged hexagonal graphene domain on a Cu(100) surface has two equivalent energetically preferred orientations, which are 30 degree away from each other. Therefore, the fusion of graphene domains on Cu(100) surface during CVD growth will inevitably lead to densely distributed GBs in the synthesized graphene. Aiming to solve this problem, a simple route, that applies external strain to break the symmetry of the Cu(100) surface, was proposed and proved efficient.
Structure of ice crystallized from supercooled water
Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.
2012-01-01
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652
Structure of ice crystallized from supercooled water.
Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G
2012-01-24
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.
Columnar to Nematic Mesophase Transition: Binary Mixtures of Unlike Copper Soaps
NASA Astrophysics Data System (ADS)
Seghrouchni, R.; Skoulios, A.
1995-10-01
Copper (II) soaps are known to produce columnar mesophases at high temperature. The polar groups of the soap molecules are stacked over one another within columns surrounded by the alkyl chains in a disordered conformation and laterally arranged according to a two-dimensional hexagonal lattice. The present work studies the mesomorphic behaviour of binary mixtures of copper soaps using differential scanning calorimetry, polarizing microscopy, and X-ray diffraction. When the soaps are of comparable molecular sizes the mixtures are homogeneous and columnar at all compositions. The columns of the two soaps, remaining intact in the mixture, are distributed randomly on the nodes of a hexagonal Bravais lattice. Crystallographic homogeneity is obtained by transfer of methylene groups from cell to cell. When, on the other hand, the soaps are different enough in molecular sizes, the columnar structure of the mixtures is interrupted in the middle range of compositions for the benefit of a nematic one. The transfer of methylene groups gets indeed harder to achieve and the distortion of the hexagonal units cells becomes important. The columnar to nematic phase transition is discussed on a molecular and a topological level.
Vertical transport in graphene-hexagonal boron nitride heterostructure devices
Bruzzone, Samantha; Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe
2015-01-01
Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that tunneling through a single barrier exhibit a weak dependence on energy. We also show that in double barriers separated by a graphene layer we do not observe resonant tunneling, but a significant increase of the tunneling probability with respect to a single barrier of thickness equal to the sum of the two barriers. This is due to the fact that the graphene layer acts as an effective phase randomizer, suppressing resonant tunneling and effectively letting a double-barrier structure behave as two single-barriers in series. Finally, we use multiscale simulations to reproduce a current-voltage characteristics resembling that of a resonant tunneling diode, that has been experimentally observed in single barrier structure. The peak current is obtained when there is perfect matching between the densities of states of the cathode and anode graphene regions. PMID:26415656
Fernandes, Henrique; Zhang, Hai; Figueiredo, Alisson; Malheiros, Fernando; Ignacio, Luis Henrique; Sfarra, Stefano; Ibarra-Castanedo, Clemente; Guimaraes, Gilmar; Maldague, Xavier
2018-01-19
The use of fiber reinforced materials such as randomly-oriented strands has grown in recent years, especially for manufacturing of aerospace composite structures. This growth is mainly due to their advantageous properties: they are lighter and more resistant to corrosion when compared to metals and are more easily shaped than continuous fiber composites. The resistance and stiffness of these materials are directly related to their fiber orientation. Thus, efficient approaches to assess their fiber orientation are in demand. In this paper, a non-destructive evaluation method is applied to assess the fiber orientation on laminates reinforced with randomly-oriented strands. More specifically, a method called pulsed thermal ellipsometry combined with an artificial neural network, a machine learning technique, is used in order to estimate the fiber orientation on the surface of inspected parts. Results showed that the method can be potentially used to inspect large areas with good accuracy and speed.
Maldague, Xavier
2018-01-01
The use of fiber reinforced materials such as randomly-oriented strands has grown in recent years, especially for manufacturing of aerospace composite structures. This growth is mainly due to their advantageous properties: they are lighter and more resistant to corrosion when compared to metals and are more easily shaped than continuous fiber composites. The resistance and stiffness of these materials are directly related to their fiber orientation. Thus, efficient approaches to assess their fiber orientation are in demand. In this paper, a non-destructive evaluation method is applied to assess the fiber orientation on laminates reinforced with randomly-oriented strands. More specifically, a method called pulsed thermal ellipsometry combined with an artificial neural network, a machine learning technique, is used in order to estimate the fiber orientation on the surface of inspected parts. Results showed that the method can be potentially used to inspect large areas with good accuracy and speed. PMID:29351240
Li, Yingzi; Naveed, Hammad; Kachalo, Sema; Xu, Lisa X.; Liang, Jie
2014-01-01
Regulation of cell growth and cell division plays fundamental roles in tissue morphogenesis. However, the mechanisms of regulating tissue elongation through cell growth and cell division are still not well understood. The wing imaginal disc of Drosophila provides a model system that has been widely used to study tissue morphogenesis. Here we use a recently developed two-dimensional cellular model to study the mechanisms of regulating tissue elongation in Drosophila wing. We simulate the effects of directional cues on tissue elongation. We also computationally analyze the role of reduced cell size. Our simulation results indicate that oriented cell divisions, oriented mechanical forces, and reduced cell size can all mediate tissue elongation, but they function differently. We show that oriented cell divisions and oriented mechanical forces act as directional cues during tissue elongation. Between these two directional cues, oriented mechanical forces have a stronger influence than oriented cell divisions. In addition, we raise the novel hypothesis that reduced cell size may significantly promote tissue elongation. We find that reduced cell size alone cannot drive tissue elongation. However, when combined with directional cues, such as oriented cell divisions or oriented mechanical forces, reduced cell size can significantly enhance tissue elongation in Drosophila wing. Furthermore, our simulation results suggest that reduced cell size has a short-term effect on cell topology by decreasing the frequency of hexagonal cells, which is consistent with experimental observations. Our simulation results suggest that cell divisions without cell growth play essential roles in tissue elongation. PMID:24504016
Nonlinear random response prediction using MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Robinson, J. H.; Chiang, C. K.; Rizzi, S. A.
1993-01-01
An equivalent linearization technique was incorporated into MSC/NASTRAN to predict the nonlinear random response of structures by means of Direct Matrix Abstract Programming (DMAP) modifications and inclusion of the nonlinear differential stiffness module inside the iteration loop. An iterative process was used to determine the rms displacements. Numerical results obtained for validation on simple plates and beams are in good agreement with existing solutions in both the linear and linearized regions. The versatility of the implementation will enable the analyst to determine the nonlinear random responses for complex structures under combined loads. The thermo-acoustic response of a hexagonal thermal protection system panel is used to highlight some of the features of the program.
New crystal structures in hexagonal CuInS2 nanocrystals
NASA Astrophysics Data System (ADS)
Shen, Xiao; Hernández-Pagan, Emil A.; Zhou, Wu; Puzyrev, Yevgeniy S.; Idrobo, Juan C.; MacDonald, Janet E.; Pennycook, Stephen J.; Pantelides, Sokrates T.
2013-03-01
CuInS2 is one of the best candidate materials for solar energy harvesting. Its nanocrystals with a hexagonal lattice structure that is different from the bulk chalcopyrite phase have been synthesized by many groups. The structure of these CuInS2 nanocrystals has been previously identified as the wurtzite structure in which the copper and indium atoms randomly occupy the cation sites. Using first-principles total energy and electronic structure calculations based on density functional theory, UV-vis absorption spectroscopy, X-ray diffraction, and atomic resolution Z-contrast images obtained in an aberration-corrected scanning transmission electron microscope, we show that CuInS2 nanocrystals do not form random wurtzite structure. Instead, the CuInS2 nanocrystals consist of several wurtzite- related crystal structures with ordered cation sublattices, some of which are reported for the first time here. This work is supported by the NSF TN-SCORE (JEM), by NSF (WZ), by ORNL's Shared Research Equipment User Program (JCI) sponsored by DOE BES, by DOE BES Materials Sciences and Engineering Division (SJP, STP), and used resources of the National Energy Research Scientific Computing Center, supported by the DOE Office of Science under Contract No. DE-AC02-05CH11231.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knaapila, M.; Lyons, B.P.; Foreman, J.P.
We report on an experimental study of the self-organization and phase behavior of hairy-rod {pi}-conjugated branched side-chain polyfluorene, poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl] - i.e., poly[2,7-(9,9-bis(2-ethylhexyl)fluorene] (PF2/6) - as a function of molecular weight (M{sub n}). The results have been compared to those of phenomenological theory. Samples for which M{sub n}=3-147 kg/mol were used. First, the stiffness of PF2/6, the assumption of the theory, has been probed by small-angle neutron scattering in solution. Thermogravimetry has been used to show that PF2/6 is thermally stable over the conditions studied. Second, the existence of nematic and hexagonal phases has been phenomenologically identified for lower and highermore » M{sub n} (LMW, M{sub n}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernier, Nicolas, E-mail: n.bernier@yahoo.fr; Xhoffer, Chris; Van De Putte, Tom, E-mail: tom.vandeputte@arcelormittal.com
We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters ofmore » aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn{sup 2+} and Mn{sup 3+} are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN){sub x}(SiMn{sub 0.25}N{sub y}O{sub z}){sub 1−x} with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn{sup 2+} and Mn{sup 3+}. • Oxygen incorporation is invoked to account for the thermal stability of (Al,Si,Mn)N.« less
Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Gaohua; Department of Applied Physics and Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082; Luo, Ning
We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands showmore » rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.« less
Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires
NASA Astrophysics Data System (ADS)
Liao, Gaohua; Luo, Ning; Yang, Zhihu; Chen, Keqiu; Xu, H. Q.
2015-09-01
We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands show rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com; Mummoorthi, M.
Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.
Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics
2015-08-13
of highly oriented pyrolytic graphite ( HOPG ) flake. Two electrode system containing platinum as counter electrode and HOPG as working electrode is... XRD ) patterns of the HOPG , exfoliated graphene, PyDop1-ɤ-Fe2O3 and PyDop1-ɤ-Fe2O3-graphene are given in Figure 1e. HOPG show a very sharp diffraction...atoms arranged in hexagonal pattern in honey comb crystal lattice, (c) TEM (d) HRTEM image of graphene- PyDop1-MNP hybrid, (e) XRD pattern of the HOPG
Long Range In-Plane Order of Oriented Diblock Copolymer Thin Films by Graphoepitaxy
NASA Astrophysics Data System (ADS)
Fontana, Scott; Dadmun, Mark; Lowndes, Douglas
2003-03-01
Previous work by Russell and coworkers has demonstrated that controlling the interfacial energies and wetting behavior of an asymmetric diblock copolymer enables the control of the orientation of its microphases. In particular the cylindrical phase can be readily aligned perpendicular to a substrate when it is placed on a surface that is neutral to both components of the copolymer. The minor phase, PMMA may then be removed using UV radiation leaving a nanoporous template. In this work, we will report long range, in-plane ordering of the hexagonally packed nanopores that is achieved using graphoepitaxy. The long range ordered and vertically aligned diblock copolymer film can be used to produce arrays of catalytic nickel dots, which grow vertically aligned carbon nano-fibers (VACNF), resulting in a well ordered array of VACNFs.
Role of alloying elements on twin growth and twin transmission in magnesium alloys
Kumar, Mariyappan Arul; Beyerlein, Irene Jane; Lebensohn, Ricardo A.; ...
2017-08-24
A spatially-resolved crystal plasticity Fast Fourier Transform (FFT)-based model is employed to study the effect of alloying addition on twin thickening and twin transmission in hexagonal close packed (HCP) magnesium. In the simulations, the influence of alloying additions is represented through the differences in the critical resolved shear stress (CRSS) of different slip and twinning modes. The results show that for the same grain orientation, twin type and boundary conditions, anisotropy in the CRSS values have a significant effect on twin thickening and twin transmission. Those with large differences in CRSS favor both twin thickening and twin transmission, and vicemore » versa for those with small differences. Furthermore, less difference among the CRSS values enhances the dependence of thickening and transmission on the neighboring grain orientation.« less
Shultz, Mary Jane; Brumberg, Alexandra; Bisson, Patrick J.; Shultz, Ryan
2015-01-01
The ability to prepare single-crystal faces has become central to developing and testing models for chemistry at interfaces, spectacularly demonstrated by heterogeneous catalysis and nanoscience. This ability has been hampered for hexagonal ice, Ih––a fundamental hydrogen-bonded surface––due to two characteristics of ice: ice does not readily cleave along a crystal lattice plane and properties of ice grown on a substrate can differ significantly from those of neat ice. This work describes laboratory-based methods both to determine the Ih crystal lattice orientation relative to a surface and to use that orientation to prepare any desired face. The work builds on previous results attaining nearly 100% yield of high-quality, single-crystal boules. With these methods, researchers can prepare authentic, single-crystal ice surfaces for numerous studies including uptake measurements, surface reactivity, and catalytic activity of this ubiquitous, fundamental solid. PMID:26512102
Role of alloying elements on twin growth and twin transmission in magnesium alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mariyappan Arul; Beyerlein, Irene Jane; Lebensohn, Ricardo A.
A spatially-resolved crystal plasticity Fast Fourier Transform (FFT)-based model is employed to study the effect of alloying addition on twin thickening and twin transmission in hexagonal close packed (HCP) magnesium. In the simulations, the influence of alloying additions is represented through the differences in the critical resolved shear stress (CRSS) of different slip and twinning modes. The results show that for the same grain orientation, twin type and boundary conditions, anisotropy in the CRSS values have a significant effect on twin thickening and twin transmission. Those with large differences in CRSS favor both twin thickening and twin transmission, and vicemore » versa for those with small differences. Furthermore, less difference among the CRSS values enhances the dependence of thickening and transmission on the neighboring grain orientation.« less
NASA Astrophysics Data System (ADS)
Kadlec, C.; Goian, V.; Rushchanskii, K. Z.; Kužel, P.; Ležaić, M.; Kohn, K.; Pisarev, R. V.; Kamba, S.
2011-11-01
Terahertz and far-infrared electric and magnetic responses of hexagonal piezomagnetic YMnO3 single crystals are investigated. Antiferromagnetic resonance is observed in the spectra of magnetic permeability μa [H(ω) oriented within the hexagonal plane] below the Néel temperature TN. This excitation softens from 41 to 32 cm-1 upon heating and finally disappears above TN. An additional weak and heavily-damped excitation is seen in the spectra of complex dielectric permittivity ɛc within the same frequency range. This excitation contributes to the dielectric spectra in both antiferromagnetic and paramagnetic phases. Its oscillator strength significantly increases upon heating toward room temperature, thus providing evidence of piezomagnetic or higher-order couplings to polar phonons. Other heavily-damped dielectric excitations are detected near 100 cm-1 in the paramagnetic phase in both ɛc and ɛa spectra, and they exhibit similar temperature behavior. These excitations appearing in the frequency range of magnon branches well below polar phonons could remind electromagnons, however their temperature dependence is quite different. We have used density functional theory for calculating phonon dispersion branches in the whole Brillouin zone. A detailed analysis of these results and of previously published magnon dispersion branches brought us to the conclusion that the observed absorption bands stem from phonon-phonon and phonon-paramagnon differential absorption processes. The latter is enabled by strong short-range in-plane spin correlations in the paramagnetic phase.
Electron backscatter diffraction studies of focused ion beam induced phase transformation in cobalt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, H.G., E-mail: helen.jones@npl.co.uk
A focused ion beam microscope was used to induce cubic to hexagonal phase transformation in a cobalt alloy, of similar composition to that of the binder phase in a hardmetal, in a controlled manner at 0°, 45° and 80° ion incident angles. The cobalt had an average grain size of ~ 20 μm, allowing multiple orientations to be studied, exposed to a range of doses between 6 × 10{sup 7} and 2 × 10{sup 10} ions/μm{sup 2}. Electron backscatter diffraction (EBSD) was used to determine the original and induced phase orientations, and area fractions, before and after the ion beammore » exposure. On average, less phase transformation was observed at higher incident angles and after lower ion doses. However there was an orientation effect where grains with an orientation close to (111) planes were most susceptible to phase transformation, and (101) the least, where grains partially and fully transformed at varying ion doses. - Highlights: •Ion-induced phase change in FCC cobalt was observed at multiple incidence angles. •EBSD was used to study the relationship between grain orientation and transformation. •Custom software analysed ion dose and phase change with respect to grain orientation. •A predictive capability of ion-induced phase change in cobalt was enabled.« less
Orientational order as the origin of the long-range hydrophobic effect.
Banerjee, Saikat; Singh, Rakesh S; Bagchi, Biman
2015-04-07
The long range attractive force between two hydrophobic surfaces immersed in water is observed to decrease exponentially with their separation-this distance-dependence of effective force is known as the hydrophobic force law (HFL). We explore the microscopic origin of HFL by studying distance-dependent attraction between two parallel rods immersed in 2D Mercedes Benz model of water. This model is found to exhibit a well-defined HFL. Although the phenomenon is conventionally explained by density-dependent theories, we identify orientation, rather than density, as the relevant order parameter. The range of density variation is noticeably shorter than that of orientational heterogeneity. The latter is comparable to the observed distances of hydrophobic force. At large separation, attraction between the rods arises primarily from a destructive interference among the inwardly propagating oppositely oriented heterogeneity generated in water by the two rods. As the rods are brought closer, the interference increases leading to a decrease in heterogeneity and concomitant decrease in free energy of the system, giving rise to the effective attraction. We notice formation of hexagonal ice-like structures at the onset of attractive region which suggests that metastable free energy minimum may play a role in the origin of HFL.
Visualization of air flow around soccer ball using a particle image velocimetry
Hong, Sungchan; Asai, Takeshi; Seo, Kazuya
2015-01-01
A traditional soccer ball is constructed using 32 pentagonal and hexagonal panels. In recent years, however, the likes of the Teamgeist and Jabulani balls, constructed from 14 and 8 panels, respectively, have entered the field, marking a significant departure from conventionality in terms of shape and design. Moreover, the recently introduced Brazuca ball features a new 6-panel design and has already been adopted by many soccer leagues. However, the shapes of the constituent panels of these balls differ substantially from those of conventional balls. Therefore, this study set out to investigate the flight and aerodynamic characteristics of different orientations of the soccer ball, which is constructed from panels of different shapes. A wind tunnel test showed substantial differences in the aerodynamic forces acting on the ball, depending on its orientation. Substantial differences were also observed in the aerodynamic forces acting on the ball in different directions, corresponding to its orientation and rotation. Moreover, two-dimensional particle image velocimetry (2D-PIV) measurements showed that the boundary separation varies depending on the orientation of the ball. Based on these results, we can conclude that the shape of the panels of a soccer ball substantially affects its flight trajectory. PMID:26446616
Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.
2016-01-01
We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081
Orientational order as the origin of the long-range hydrophobic effect
NASA Astrophysics Data System (ADS)
Banerjee, Saikat; Singh, Rakesh S.; Bagchi, Biman
2015-04-01
The long range attractive force between two hydrophobic surfaces immersed in water is observed to decrease exponentially with their separation—this distance-dependence of effective force is known as the hydrophobic force law (HFL). We explore the microscopic origin of HFL by studying distance-dependent attraction between two parallel rods immersed in 2D Mercedes Benz model of water. This model is found to exhibit a well-defined HFL. Although the phenomenon is conventionally explained by density-dependent theories, we identify orientation, rather than density, as the relevant order parameter. The range of density variation is noticeably shorter than that of orientational heterogeneity. The latter is comparable to the observed distances of hydrophobic force. At large separation, attraction between the rods arises primarily from a destructive interference among the inwardly propagating oppositely oriented heterogeneity generated in water by the two rods. As the rods are brought closer, the interference increases leading to a decrease in heterogeneity and concomitant decrease in free energy of the system, giving rise to the effective attraction. We notice formation of hexagonal ice-like structures at the onset of attractive region which suggests that metastable free energy minimum may play a role in the origin of HFL.
Doping induced c-axis oriented growth of transparent ZnO thin film
NASA Astrophysics Data System (ADS)
Mistry, Bhaumik V.; Joshi, U. S.
2018-04-01
c-Axis oriented In doped ZnO (IZO) transparent conducting thin films were optimized on glass substrate using sol gel spin coating method. The Indium content in ZnO was varied systematically and the structural parameters were studied. Along with the crystallographic properties, the optoelectronic and electrical properties of IZO thin films were investigated in detail. The IZO thin films revealed hexagonal wurtzite structure. It was found that In doping in ZnO promotes the c-axis oriented growth of the thin films deposited on amorphous substrate. The particle size of the IZO films were increase as doping content increases from 2% to 5%. The 2% In doped ZnO film show electrical resistivity of 0.11 Ω cm, which is far better than the reported value for ZnO thin film. Better than 75% average optical transmission was estimated in the wavelength range from 400-800 nm. Systematic variartions in the electron concentration and band gap was observed with increasing In doping. Note worthy finding is that, with suitable amount of In doping improves not only transparency and conductivity but also improves the preferred orientation of the oxide thin film.
Visualization of air flow around soccer ball using a particle image velocimetry
NASA Astrophysics Data System (ADS)
Hong, Sungchan; Asai, Takeshi; Seo, Kazuya
2015-10-01
A traditional soccer ball is constructed using 32 pentagonal and hexagonal panels. In recent years, however, the likes of the Teamgeist and Jabulani balls, constructed from 14 and 8 panels, respectively, have entered the field, marking a significant departure from conventionality in terms of shape and design. Moreover, the recently introduced Brazuca ball features a new 6-panel design and has already been adopted by many soccer leagues. However, the shapes of the constituent panels of these balls differ substantially from those of conventional balls. Therefore, this study set out to investigate the flight and aerodynamic characteristics of different orientations of the soccer ball, which is constructed from panels of different shapes. A wind tunnel test showed substantial differences in the aerodynamic forces acting on the ball, depending on its orientation. Substantial differences were also observed in the aerodynamic forces acting on the ball in different directions, corresponding to its orientation and rotation. Moreover, two-dimensional particle image velocimetry (2D-PIV) measurements showed that the boundary separation varies depending on the orientation of the ball. Based on these results, we can conclude that the shape of the panels of a soccer ball substantially affects its flight trajectory.
Magnetic hysteresis in small-grained CoxPd1-x nanowire arrays
NASA Astrophysics Data System (ADS)
Viqueira, M. S.; Pozo-López, G.; Urreta, S. E.; Condó, A. M.; Cornejo, D. R.; Fabietti, L. M.
2015-11-01
Co-Pd nanowires with small grain size are fabricated by AC electrodeposition into hexagonally ordered alumina pores, 20-35 nm in diameter and about 1 μm long. The effects of the alloy composition, the nanowire diameter and the grain size on the hysteresis properties are considered. X-ray diffraction indicates that the nanowires are single phase, a fcc Co-Pd solid solution; electron microscopy results show that they are polycrystalline, with randomly oriented grains (7-12 nm), smaller than the wire diameter. Nanowire arrays are ferromagnetic, with an easy magnetization axis parallel to the nanowire long axis. Both, the coercive field and the loop squareness monotonously increase with the Co content and with the grain size, but no clear correlation with the wire diameter is found. The Co and Co-rich nanowire arrays exhibit coercive fields and reduced remanence values quite insensitive to temperature in the range 4 K-300 K; on the contrary, in Pd-rich nanowires both magnitudes are smaller and they largely increase during cooling below 100 K. These behaviors are systematized by considering the strong dependences displayed by the magneto-crystalline anisotropy and the saturation magnetostriction on composition and temperature. At low temperatures the effective anisotropy value and the domain-wall width to grain size ratio drastically change, promoting less cooperative and harder nucleation modes.
Electronic transport in the quantum spin Hall state due to the presence of adatoms in graphene
NASA Astrophysics Data System (ADS)
Lima, Leandro; Lewenkopf, Caio
Heavy adatoms, even at low concentrations, are predicted to turn a graphene sheet into a topological insulator with substantial gap. The adatoms mediate the spin-orbit coupling that is fundamental to the quantum spin Hall effect. The adatoms act as local spin-orbit scatterer inducing hopping processes between distant carbon atoms giving origin to transverse spin currents. Although there are effective models that describe spectral properties of such systems with great detail, quantitative theoretical work for the transport counterpart is still lacking. We developed a multiprobe recursive Green's function technique with spin resolution to analyze the transport properties for large geometries. We use an effective tight-binding Hamiltonian to describe the problem of adatoms randomly placed at the center of the honeycomb hexagons, which is the case for most transition metals. Our choice of current and voltage probes is favorable to experiments since it filters the contribution of only one spin orientation, leading to a quantized spin Hall conductance of e2 / h . We also discuss the electronic propagation in the system by imaging the local density of states and the electronic current densities. The authors acknowledge the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.
Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Gao, Yanfei; Li, Nan
2016-12-01
Deformation twinning plays a critical role on improving metals or alloys ductility, especially for hexagonal close-packed materials with low symmetry crystal structure. A rolled Mg alloy was selected as a model system to investigate the extension twinning behaviors and characteristics of parent-twin interactions by nondestructive in situ 3D synchrotron X-ray microbeam diffraction. Besides twinning-detwinning process, the "twinning-like" lattice reorientation process was captured within an individual grain inside a bulk material during the strain reversal. The distributions of parent, twin, and reorientated grains and sub-micron level strain variation across the twin boundary are revealed. A theoretical calculation of the lattice strainmore » confirms that the internal strain distribution in parent and twinned grains correlates with the experimental setup, grain orientation of parent, twin, and surrounding grains, as well as the strain path changes. The study suggests a novel deformation mechanism within the hexagonal close-packed structure that cannot be determined from surface-based characterization methods. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
The self-organization of grid cells in 3D
Stella, Federico; Treves, Alessandro
2015-01-01
Do we expect periodic grid cells to emerge in bats, or perhaps dolphins, exploring a three-dimensional environment? How long will it take? Our self-organizing model, based on ring-rate adaptation, points at a complex answer. The mathematical analysis leads to asymptotic states resembling face centered cubic (FCC) and hexagonal close packed (HCP) crystal structures, which are calculated to be very close to each other in terms of cost function. The simulation of the full model, however, shows that the approach to such asymptotic states involves several sub-processes over distinct time scales. The smoothing of the initially irregular multiple fields of individual units and their arrangement into hexagonal grids over certain best planes are observed to occur relatively quickly, even in large 3D volumes. The correct mutual orientation of the planes, though, and the coordinated arrangement of different units, take a longer time, with the network showing no sign of convergence towards either a pure FCC or HCP ordering. DOI: http://dx.doi.org/10.7554/eLife.05913.001 PMID:25821989
Grain size constraints on twin expansion in hexagonal close packed crystals
Kumar, Mariyappan Arul; Beyerlein, Irene Jane; Tome, Carlos N.
2016-10-20
Deformation twins are stress-induced transformed domains of lamellar shape that form when polycrystalline hexagonal close packed metals, like Mg, are strained. Several studies have reported that the propensity of deformation twinning reduces as grain size decreases. Here, we use a 3D crystal plasticity based micromechanics model to calculate the effect of grain size on the driving forces responsible for expanding twin lamellae. The calculations reveal that constraints from the neighboring grain where the grain boundary and twin lamella meet induce a stress reversal in the twin lamella. A pronounced grain size effect arises as reductions in grain size cause thesemore » stress-reversal fields from twin/grain boundary junctions to affect twin growth. We further show that the severity of this neighboring grain constraint depends on the crystallographic orientation and plastic response of the neighboring grain. We show that these stress-reversal fields from twin/grain boundary junctions will affect twin growth, below a critical parent grain size. Finally, these results reveal an unconventional yet influential role that grain size and grain neighbors can play on deformation twinning.« less
Mathematical modeling of polymer flooding using the unstructured Voronoi grid
NASA Astrophysics Data System (ADS)
Kireev, T. F.; Bulgakova, G. T.; Khatmullin, I. F.
2017-12-01
Effective recovery of unconventional oil reserves necessitates development of enhanced oil recovery techniques such as polymer flooding. The study investigated the model of polymer flooding with effects of adsorption and water salinity. The model takes into account six components that include elements of the classic black oil model. These components are polymer, salt, water, dead oil, dry gas and dissolved gas. Solution of the problem is obtained by finite volume method on unstructured Voronoi grid using fully implicit scheme and the Newton’s method. To compare several different grid configurations numerical simulation of polymer flooding is performed. The oil rates obtained by a hexagonal locally refined Voronoi grid are shown to be more accurate than the oil rates obtained by a rectangular grid with the same number of cells. The latter effect is caused by high solution accuracy near the wells due to the local grid refinement. Minimization of the grid orientation effect caused by the hexagonal pattern is also demonstrated. However, in the inter-well regions with large Voronoi cells flood front tends to flatten and the water breakthrough moment is smoothed.
First-Principles Study on the Structural and Magnetic Properties of Iron Hydride
NASA Astrophysics Data System (ADS)
Tsumuraya, Takao; Matsuura, Yasuyuki; Shishidou, Tatsuya; Oguchi, Tamio
2012-06-01
The magnetic and structural properties of iron hydride FeH with the double hexagonal close-packed (dhcp) and hexagonal close-packed (hcp) structures are investigated by first-principles density-functional theory calculations with a spin-polarized form of generalized gradient approximation. All the calculations are performed using all-electron full-potential linearized augmented plane wave method. Both dhcp and hcp FeH are ferromagnetic at ambient pressure. The ferromagnetic ordering of the dhcp structure collapses at a pressure of 48 GPa, while that of the hcp structure vanishes gradually from 48 GPa. The modification in the density of states (DOS) due to the applied pressure causes the collapse of the magnetization. The difference in magnetic moment reduction between dhcp and hcp FeH is attributed to their DOS around the Fermi level. The calculated magnetocrystalline anisotropy energies between in-plane and out-of-plane spin orientations are found to be 124 μeV/Fe for the dhcp structure, and 100 μeV/Fe for the hcp structure. The easy axis is in-plane direction for both structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannachi, Amira, E-mail: amira.hannachi88@gmail.com; Maghraoui-Meherzi, Hager
Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferentialmore » orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like. - Graphical Abstract: We report the preparation of different phases of manganese sulfide thin films (γ, β and α-MnS) by chemical bath deposition method. The effects of deposition parameters such as deposition time and temperature, concentrations of precursors and multi-layer deposition on MnS thin films structure and morphology were investigated. The influence of thermal annealing under nitrogen atmosphere at different temperature on MnS properties was also studied. Different manganese precursors as well as different complexing agent were also used. - Highlights: • γ and β-MnS films were deposited on substrate using the chemical bath deposition. • The effect of deposition parameters on MnS film properties has been investigated. • Multi-layer deposition was also studied to increase film thickness. • The effect of annealing under N{sub 2} at different temperature was investigated.« less
Synthesis of ZnO Hexagonal Micro Discs on Glass Substrates Using the Spray Pyrolysis Technique
NASA Astrophysics Data System (ADS)
Ikhmayies, Shadia J.; Zbib, Mohamad B.
2017-07-01
Zinc oxide (ZnO) is an important transparent conducting oxide of potential use in solar cells, electronics, photoelectronics, and sensors. In this work ZnO micro discs were synthesized in thin film form on glass substrates using the low cost spray pyrolysis method. The films were prepared from a precursor solution of ZnCl2 in distilled water at a substrate temperature of 300 ± 5°C. The as-synthesized samples were analyzed with x-ray diffraction, scanning electron microscopy, and x-ray energy dispersive spectroscopy (EDS). The morphology of the films showed randomly distributed micro discs of hexagonal shape. The EDS reports showed that the films contained Cl and Fe. Size analysis was performed using ImageJ software, where the average diameter was found to be 4.8 ± 0.9 μm, and the average thickness was found to be 254 ± 43 nm.
Spatial Factors in the Integration of Speed Information
NASA Technical Reports Server (NTRS)
Verghese, P.; Stone, L. S.; Hargens, Alan R. (Technical Monitor)
1995-01-01
We reported that, for a 21FC task with multiple Gabor patches in each interval, thresholds for speed discrimination decreased with the number of patches, while simply increasing the area of a single patch produced no such effect. This result could be explained by multiple patches reducing spatial uncertainty. However, the fact that thresholds decrease with number even when the patches are in fixed positions argues against this explanation. We therefore performed additional experiments to explore the lack of an area effect. Three observers did a 21FC speed discrimination task with 6 Gabor patches in each interval, and were asked to pick the interval in which the gratings moved faster. The 50% contrast patches were placed on a circle at 4 deg. eccentricity, either equally spaced and maximally separated (hexagonal array), or closely-spaced, in consecutive positions (string of pearls). For the string-of-pearls condition, the grating phases were either random, or consistent with a full-field grating viewed through multiple Gaussian windows. When grating phases were random, the thresholds for the hexagonal and string-of-pearls layouts were indistinguishable. For the string-of-pearls layout, thresholds in the consistent-phase condition were higher by 15 +/- 6% than in the random-phase condition. (Thresholds increased by 57 +/- 7% in going from 6 patches to a single patch of equivalent area.). For random-phase patches, the lower thresholds for 6 patches does not depend on a specific spacing or spatial layout. Multiple, closely-spaced, consistent-phase patches that can be interpreted as a single grating, result in thresholds closer to that produced by a single patch. Together, our results suggest that object segmentation may play a role in the integration of speed information.
Geometric Modeling of Inclusions as Ellipsoids
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.
2008-01-01
Nonmetallic inclusions in gas turbine disk alloys can have a significant detrimental impact on fatigue life. Because large inclusions that lead to anomalously low lives occur infrequently, probabilistic approaches can be utilized to avoid the excessively conservative assumption of lifing to a large inclusion in a high stress location. A prerequisite to modeling the impact of inclusions on the fatigue life distribution is a characterization of the inclusion occurrence rate and size distribution. To help facilitate this process, a geometric simulation of the inclusions was devised. To make the simulation problem tractable, the irregularly sized and shaped inclusions were modeled as arbitrarily oriented, three independent dimensioned, ellipsoids. Random orientation of the ellipsoid is accomplished through a series of three orthogonal rotations of axes. In this report, a set of mathematical models for the following parameters are described: the intercepted area of a randomly sectioned ellipsoid, the dimensions and orientation of the intercepted ellipse, the area of a randomly oriented sectioned ellipse, the depth and width of a randomly oriented sectioned ellipse, and the projected area of a randomly oriented ellipsoid. These parameters are necessary to determine an inclusion s potential to develop a propagating fatigue crack. Without these mathematical models, computationally expensive search algorithms would be required to compute these parameters.
Unidirectional self-assembly of soft templated mesoporous carbons by zone annealing
NASA Astrophysics Data System (ADS)
Xue, Jiachen; Singh, Gurpreet; Qiang, Zhe; Karim, Alamgir; Vogt, Bryan D.
2013-08-01
Surfactant or block copolymer-templated mesoporous films have been extensively explored, but achieving mesostructure coherence and unidirectional orientation over macroscopic dimensions has remained quite challenging for these self-assembled systems. Here, we extend the concepts associated with zone refinement of crystalline materials to soft templated mesoporous carbon films based on the cooperative assembly of commercial non-ionic surfactants (block copolymers) and phenolic resin oligomers (resol) to provide macroscopic alignment of both cubic (FDU-16) and hexagonal (FDU-15) mesostructures. The average orientation of these mesophases is determined from rotation grazing incidence small angle X-ray scattering (GISAXS) measurements. For FDU-15 templated by Pluronic P123, the orientation factor for the zone-annealed film is 0.98 based on the average of the second Legendre polynomial, but this orientation deteriorates significantly during carbonization. Notably, a thermal stabilization step following zone annealing preserves the orientation of the mesostructure during carbonization. The orientation factor for an isotropic cubic structure (FDU-16 templated by Pluronic F127) is only 0.48 (based on the 111 reflection with incident angle 0.15°) for the same zone annealing protocol, but this illustrates the versatility of zone annealing to different mesostructures. Unexpectedly, zone annealing of FDU-15 templated by Pluronic F127 leads to stabilization of the mesostructure through carbonization, whereas this structure collapses fully during carbonization even after extended oven annealing; despite no clear macroscopic orientation of the cylindrical mesostructure from zone annealing. Thermal zone annealing provides a simple methodology to produce highly ordered and macroscopically oriented stable mesoporous carbon films, but the efficacy is strongly tied to the mobility of the template during the zone annealing.Surfactant or block copolymer-templated mesoporous films have been extensively explored, but achieving mesostructure coherence and unidirectional orientation over macroscopic dimensions has remained quite challenging for these self-assembled systems. Here, we extend the concepts associated with zone refinement of crystalline materials to soft templated mesoporous carbon films based on the cooperative assembly of commercial non-ionic surfactants (block copolymers) and phenolic resin oligomers (resol) to provide macroscopic alignment of both cubic (FDU-16) and hexagonal (FDU-15) mesostructures. The average orientation of these mesophases is determined from rotation grazing incidence small angle X-ray scattering (GISAXS) measurements. For FDU-15 templated by Pluronic P123, the orientation factor for the zone-annealed film is 0.98 based on the average of the second Legendre polynomial, but this orientation deteriorates significantly during carbonization. Notably, a thermal stabilization step following zone annealing preserves the orientation of the mesostructure during carbonization. The orientation factor for an isotropic cubic structure (FDU-16 templated by Pluronic F127) is only 0.48 (based on the 111 reflection with incident angle 0.15°) for the same zone annealing protocol, but this illustrates the versatility of zone annealing to different mesostructures. Unexpectedly, zone annealing of FDU-15 templated by Pluronic F127 leads to stabilization of the mesostructure through carbonization, whereas this structure collapses fully during carbonization even after extended oven annealing; despite no clear macroscopic orientation of the cylindrical mesostructure from zone annealing. Thermal zone annealing provides a simple methodology to produce highly ordered and macroscopically oriented stable mesoporous carbon films, but the efficacy is strongly tied to the mobility of the template during the zone annealing. Electronic supplementary information (ESI) available: GISAXS profiles for the FDU-15-F127 at φ = 0° and φ = 90° is included along with 2D GISAXS data for all azimuthal data associated with FDU-15-P123 to illustrate the azimuthal dependence on the diffraction patterns. See DOI: 10.1039/c3nr02821f
Modeling the effect of neighboring grains on twin growth in HCP polycrystals
Kumar, M. Arul; Beyerlein, I. J.; Lebensohn, R. A.; ...
2017-08-04
In this paper, we study the dependence of neighboring grain orientation on the local stress state around a deformation twin in a hexagonal close packed (HCP) crystal and its effects on the resistance against twin thickening. We use a recently developed, full-field elasto-visco-plastic formulation based on fast Fourier transforms that accounts for the twinning shear transformation imposed by the twin lamella. The study is applied to Mg, Zr and Ti, since these HCP metals tend to deform by activation of different types of slip modes. The analysis shows that the local stress along the twin boundary are strongly controlled bymore » the relative orientation of the easiest deformation modes in the neighboring grain with respect to the twin lamella in the parent grain. A geometric expression that captures this parent-neighbor relationship is proposed and incorporated into a larger scale, mean-field visco-plastic self-consistent model to simulate the role of neighboring grain orientation on twin thickening. We demonstrate that the approach improves the prediction of twin area fraction distribution when compared with experimental observations.« less
Modeling the effect of neighboring grains on twin growth in HCP polycrystals
NASA Astrophysics Data System (ADS)
Kumar, M. Arul; Beyerlein, I. J.; Lebensohn, R. A.; Tomé, C. N.
2017-09-01
In this paper, we study the dependence of neighboring grain orientation on the local stress state around a deformation twin in a hexagonal close packed (HCP) crystal and its effects on the resistance against twin thickening. We use a recently developed, full-field elasto-visco-plastic formulation based on fast Fourier transforms that account for the twinning shear transformation imposed by the twin lamella. The study is applied to Mg, Zr and Ti, since these HCP metals tend to deform by activation of different types of slip modes. The analysis shows that the local stress along the twin boundary are strongly controlled by the relative orientation of the easiest deformation modes in the neighboring grain with respect to the twin lamella in the parent grain. A geometric expression that captures this parent-neighbor relationship is proposed and incorporated into a larger scale, mean-field visco-plastic self-consistent model to simulate the role of neighboring grain orientation on twin thickening. We demonstrate that the approach improves the prediction of twin area fraction distribution when compared with experimental observations.
Hybrid Surface Patterns Mimicking the Design of the Adhesive Toe Pad of Tree Frog.
Xue, Longjian; Sanz, Belén; Luo, Aoyi; Turner, Kevin T; Wang, Xin; Tan, Di; Zhang, Rui; Du, Hang; Steinhart, Martin; Mijangos, Carmen; Guttmann, Markus; Kappl, Michael; Del Campo, Aránzazu
2017-10-24
Biological materials achieve directional reinforcement with oriented assemblies of anisotropic building blocks. One such example is the nanocomposite structure of keratinized epithelium on the toe pad of tree frogs, in which hexagonal arrays of (soft) epithelial cells are crossed by densely packed and oriented (hard) keratin nanofibrils. Here, a method is established to fabricate arrays of tree-frog-inspired composite micropatterns composed of polydimethylsiloxane (PDMS) micropillars embedded with polystyrene (PS) nanopillars. Adhesive and frictional studies of these synthetic materials reveal a benefit of the hierarchical and anisotropic design for both adhesion and friction, in particular, at high matrix-fiber interfacial strengths. The presence of PS nanopillars alters the stress distribution at the contact interface of micropillars and therefore enhances the adhesion and friction of the composite micropattern. The results suggest a design principle for bioinspired structural adhesives, especially for wet environments.
Hybrid Surface Patterns Mimicking the Design of the Adhesive Toe Pad of Tree Frog
2017-01-01
Biological materials achieve directional reinforcement with oriented assemblies of anisotropic building blocks. One such example is the nanocomposite structure of keratinized epithelium on the toe pad of tree frogs, in which hexagonal arrays of (soft) epithelial cells are crossed by densely packed and oriented (hard) keratin nanofibrils. Here, a method is established to fabricate arrays of tree-frog-inspired composite micropatterns composed of polydimethylsiloxane (PDMS) micropillars embedded with polystyrene (PS) nanopillars. Adhesive and frictional studies of these synthetic materials reveal a benefit of the hierarchical and anisotropic design for both adhesion and friction, in particular, at high matrix–fiber interfacial strengths. The presence of PS nanopillars alters the stress distribution at the contact interface of micropillars and therefore enhances the adhesion and friction of the composite micropattern. The results suggest a design principle for bioinspired structural adhesives, especially for wet environments. PMID:28885831
NASA Astrophysics Data System (ADS)
Marsden, A. J.; Phillips, M.; Wilson, N. R.
2013-06-01
At a single atom thick, it is challenging to distinguish graphene from its substrate using conventional techniques. In this paper we show that friction force microscopy (FFM) is a simple and quick technique for identifying graphene on a range of samples, from growth substrates to rough insulators. We show that FFM is particularly effective for characterizing graphene grown on copper where it can correlate the graphene growth to the three-dimensional surface topography. Atomic lattice stick-slip friction is readily resolved and enables the crystallographic orientation of the graphene to be mapped nondestructively, reproducibly and at high resolution. We expect FFM to be similarly effective for studying graphene growth on other metal/locally crystalline substrates, including SiC, and for studying growth of other two-dimensional materials such as molybdenum disulfide and hexagonal boron nitride.
Teschke, Omar; Soares, David Mendez
2016-03-29
Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.
Catalytic activity of Cu4-cluster to adsorb H2S gas: h-BN nanosheet
NASA Astrophysics Data System (ADS)
Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh
2018-05-01
We have investigated the electronic properties, adsorptions strength and charge transfer using first principles calculations using density functional theory (DFT). The hexagonal boron nitride (h-BN) substrate shows metallic behavior, which helps to enhance the absorption process. The adsorption of three different orientations (S, D and T) of the H2S gas molecules to analyze the maximum adsorption strength from them onto a copper cluster (Cu4) based on h-BN nanosheet. The maximum adsorption energy of the H2S gas molecule is -1.50 eV for the S orientation and for D and U, it is -0.71 eV and -0.78 eV, respectively. The results show that Cu4 cluster helps to capture H2S gas from the environment and results are useful for the cleaning environment from the toxic gases.
High quality factor GaAs-based photonic crystal microcavities by epitaxial re-growth.
Prieto, Ivan; Herranz, Jesús; Wewior, Lukasz; González, Yolanda; Alén, Benito; González, Luisa; Postigo, Pablo A
2013-12-16
We investigate L7 photonic crystal microcavities (PCMs) fabricated by epitaxial re-growth of GaAs pre-patterned substrates, containing InAs quantum dots. The resulting PCMs show hexagonal shaped nano-holes due to the development of preferential crystallographic facets during the re-growth step. Through a careful control of the fabrication processes, we demonstrate that the photonic modes are preserved throughout the process. The quality factor (Q) of the photonic modes in the re-grown PCMs strongly depends on the relative orientation between photonic lattice and crystallographic directions. The optical modes of the re-grown PCMs preserve the linear polarization and, for the most favorable orientation, a 36% of the Q measured in PCMs fabricated by the conventional procedure is observed, exhibiting values up to ~6000. The results aim to the future integration of site-controlled QDs with high-Q PCMs for quantum photonics and quantum integrated circuits.
Epitaxial growth of aligned AlGalnN nanowires by metal-organic chemical vapor deposition
Han, Jung; Su, Jie
2008-08-05
Highly ordered and aligned epitaxy of III-Nitride nanowires is demonstrated in this work. <1010> M-axis is identified as a preferential nanowire growth direction through a detailed study of GaN/AlN trunk/branch nanostructures by transmission electron microscopy. Crystallographic selectivity can be used to achieve spatial and orientational control of nanowire growth. Vertically aligned (Al)GaN nanowires are prepared on M-plane AlN substrates. Horizontally ordered nanowires, extending from the M-plane sidewalls of GaN hexagonal mesas or islands demonstrate new opportunities for self-aligned nanowire devices, interconnects, and networks.
ZnO-based transparent conductive thin films via sonicated-assisted sol-gel technique
NASA Astrophysics Data System (ADS)
Malek, M. F.; Mamat, M. H.; Ismail, A. S.; Yusoff, M. M.; Mohamed, R.; Rusop, M.
2018-05-01
We report on the growth of Al-doped ZnO (AZO) thin films onto Corning 7740 glass substrates via sonicated-assisted sol-gel technique. The influence of Al dopant on crystallisation behavior, optical and electrical properties of AZO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction <002>. All films exhibit a transmittance above than 80-90 % along the visible range up to 800 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO.
EphA2 and Src regulate equatorial cell morphogenesis during lens development
Cheng, Catherine; Ansari, Moham M.; Cooper, Jonathan A.; Gong, Xiaohua
2013-01-01
High refractive index and transparency of the eye lens require uniformly shaped and precisely aligned lens fiber cells. During lens development, equatorial epithelial cells undergo cell-to-cell alignment to form meridional rows of hexagonal cells. The mechanism that controls this morphogenesis from randomly packed cuboidal epithelial cells to highly organized hexagonal fiber cells remains unknown. In Epha2-/- mouse lenses, equatorial epithelial cells fail to form precisely aligned meridional rows; moreover, the lens fulcrum, where the apical tips of elongating epithelial cells constrict to form an anchor point before fiber cell differentiation and elongation at the equator, is disrupted. Phosphorylated Src-Y424 and cortactin-Y466, actin and EphA2 cluster at the vertices of wild-type hexagonal epithelial cells in organized meridional rows. However, phosphorylated Src and phosphorylated cortactin are not detected in disorganized Epha2-/- cells with altered F-actin distribution. E-cadherin junctions, which are normally located at the basal-lateral ends of equatorial epithelial cells and are diminished in newly differentiating fiber cells, become widely distributed in the apical, lateral and basal sides of epithelial cells and persist in differentiating fiber cells in Epha2-/- lenses. Src-/- equatorial epithelial cells also fail to form precisely aligned meridional rows and lens fulcrum. These results indicate that EphA2/Src signaling is essential for the formation of the lens fulcrum. EphA2 also regulates Src/cortactin/F-actin complexes at the vertices of hexagonal equatorial cells for cell-to-cell alignment. This mechanistic information explains how EphA2 mutations lead to disorganized lens cells that subsequently contribute to altered refractive index and cataracts in humans and mice. PMID:24026120
The structure of ice crystallized from supercooled water
NASA Astrophysics Data System (ADS)
Murray, Benjamin
2013-03-01
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. Traditionally ice was thought to exist in two well-crystalline forms: stable hexagonal ice and metastable cubic ice. It has recently been shown, using X-ray diffraction data, that ice which crystallizes homogeneously and heterogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd) . This result is consistent with a number of computational studies of the crystallization of water. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder, which raises the question of whether cubic ice exists. New data will be presented which shows significant stacking disorder (or stacking faults on the order of 1 in every 100 layers of ice Ih) in droplets which froze heterogeneously as warm as 257 K. The identification of stacking-disordered ice from heterogeneous ice nucleation supports the hypothesis that the structure of ice that initially crystallises from supercooled water is stacking-disordered ice I, independent of nucleation mechanism, but this ice can relax to the stable hexagonal phase subject to the kinetics of recrystallization. The formation and persistence of stacking disordered ice in the Earth's atmosphere will also be discussed. Funded by the European Research Council (FP7, 240449 ICE)
Phase behavior and orientational ordering in block copolymers doped with anisotropic nanoparticles
NASA Astrophysics Data System (ADS)
Osipov, M. A.; Gorkunov, M. V.; Berezkin, A. V.; Kudryavtsev, Y. V.
2018-04-01
A molecular field theory and coarse-grained computer simulations with dissipative particle dynamics have been used to study the spontaneous orientational ordering of anisotropic nanoparticles in the lamellar and hexagonal phases of diblock copolymers and the effect of nanoparticles on the phase behavior of these systems. Both the molecular theory and computer simulations indicate that strongly anisotropic nanoparticles are ordered orientationally mainly in the boundary region between the domains and the nematic order parameter possesses opposite signs in adjacent domains. The orientational order is induced by the boundary and by the interaction between nanoparticles and the monomer units in different domains. In simulations, sufficiently long and strongly selective nanoparticles are ordered also inside the domains. The nematic order parameter and local concentration profiles of nanoparticles have been calculated numerically using the model of a nanoparticle with two interaction centers and also determined using the results of computer simulations. A number of phase diagrams have been obtained which illustrate the effect of nanoparticle selectivity and molar fraction of the stability ranges of various phases. Different morphologies have been identified by analyzing the static structure factor and a phase diagram has been constructed in coordinates' nanoparticle concentration-copolymer composition. Orientational ordering of even a small fraction of nanoparticles may result in a significant increase of the dielectric anisotropy of a polymer nanocomposite, which is important for various applications.
NASA Astrophysics Data System (ADS)
Weng, Jingmeng; Wen, Weidong; Cui, Haitao; Chen, Bo
2018-06-01
A new method to generate the random distribution of fibers in the transverse cross-section of fiber reinforced composites with high fiber volume fraction is presented in this paper. Based on the microscopy observation of the transverse cross-sections of unidirectional composite laminates, hexagon arrangement is set as the initial arrangement status, and the initial velocity of each fiber is arbitrary at an arbitrary direction, the micro-scale representative volume element (RVE) is established by simulating perfectly elastic collision. Combined with the proposed periodic boundary conditions which are suitable for multi-axial loading, the effective elastic properties of composite materials can be predicted. The predicted properties show reasonable agreement with experimental results. By comparing the stress field of RVE with fibers distributed randomly and RVE with fibers distributed periodically, the predicted elastic modulus of RVE with fibers distributed randomly is greater than RVE with fibers distributed periodically.
Sworen, John C; Smith, Jason A; Wagener, Kenneth B; Baugh, Lisa S; Rucker, Steven P
2003-02-26
The structure of random ethylene/propylene (EP) copolymers has been modeled using step polymerization chemistry. Six ethylene/propylene model copolymers have been prepared via acyclic diene metathesis (ADMET) polymerization and characterized for primary and higher level structure using in-depth NMR, IR, DSC, WAXD, and GPC analysis. These copolymers possess 1.5, 7.1, 13.6, 25.0, 43.3, and 55.6 methyl branches per 1000 carbons. Examination of these macromolecules by IR and WAXD analysis has demonstrated the first hexagonal phase in EP copolymers containing high ethylene content (90%) without the influence of sample manipulation (temperature, pressure, or radiation). Thermal behavior studies have shown that the melting point and heat of fusion decrease as the branch content increases. Further, comparisons have been made between these random ADMET EP copolymers, random EP copolymers made by typical chain addition techniques, and precisely branched ADMET EP copolymers.
DeWitt, S.; Hahn, N.; Zavadil, K.; ...
2015-12-30
Here a new model of electrodeposition and electrodissolution is developed and applied to the evolution of Mg deposits during anode cycling. The model captures Butler-Volmer kinetics, facet evolution, the spatially varying potential in the electrolyte, and the time-dependent electrolyte concentration. The model utilizes a diffuse interface approach, employing the phase field and smoothed boundary methods. Scanning electron microscope (SEM) images of magnesium deposited on a gold substrate show the formation of faceted deposits, often in the form of hexagonal prisms. Orientation-dependent reaction rate coefficients were parameterized using the experimental SEM images. Three-dimensional simulations of the growth of magnesium deposits yieldmore » deposit morphologies consistent with the experimental results. The simulations predict that the deposits become narrower and taller as the current density increases due to the depletion of the electrolyte concentration near the sides of the deposits. Increasing the distance between the deposits leads to increased depletion of the electrolyte surrounding the deposit. Two models relating the orientation-dependence of the deposition and dissolution reactions are presented. Finally, the morphology of the Mg deposit after one deposition-dissolution cycle is significantly different between the two orientation-dependence models, providing testable predictions that suggest the underlying physical mechanisms governing morphology evolution during deposition and dissolution.« less
NASA Astrophysics Data System (ADS)
Zhang, Ziming; Zheng, Lu; Khurram, Muhammad; Yan, Qingfeng
2017-10-01
Few-layer black phosphorus, also known as phosphorene, is a new two-dimensional material which is of enormous interest for applications, mainly in electronics and optoelectronics. Herein, we for the first time employ phosphorene for directing the self-assembly of asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) thin film to form the perpendicular orientation of sub-10 nm PS nanopore arrays in a hexagonal fashion normal to the interface. We experimentally demonstrate that none of the PS and PMMA blocks exhibit preferential affinity to the phosphorene-modified surface. Furthermore, the perpendicularly-oriented PS nanostructures almost stay unchanged with the variation of number of layers of few-layer phosphorene nanoflakes between 15-30 layers. Differing from the neutral polymer brushes which are widely used for chemical modification of the silicon substrate, phosphorene provides a novel physical way to control the interfacial interactions between the asymmetric PS-b-PMMA BCP thin film and the silicon substrate. Based on our results, it is possible to build a new scheme for producing sub-10 nm PS nanopore arrays oriented perpendicularly to the few-layer phosphorene nanoflakes. Furthermore, the nanostructural microdomains could serve as a promising nanolithography template for surface patterning of phosphorene nanoflakes.
Why do Hematite FORCs Look Weird?
NASA Astrophysics Data System (ADS)
Harrison, R. J.
2017-12-01
Although much progress has been made in the modelling of first-order reversal curve (FORC) diagrams for ensembles of interacting single domain (SD) magnetite particles with cubic and uniaxial anisotropy, a comprehensive understanding of FORC diagrams for magnetic minerals with other forms of anisotropy is currently lacking. For example, it has long been recognised that FORC diagrams for hematite display a range of unexplained features, including one or more of the following: 1) a kidney-shaped positive peak that is negatively offset from the horizontal axis; 2) a negative peak that sits below the offset positive peak; and 3) a negative-positive streak that extends at a steep negative angle to the horizontal axis. Here we demonstrate that many of the diagnostic features of hematite FORCs can be explained as an intrinsic consequence of hexagonal anisotropy operating within the basal plane. Simulations are performed for an ensemble of identical, randomly oriented, non-interacting SD particles, with easy axes located at 60° to each other within a basal plane. In the general case, there are six stable or metastable solutions for the magnetic state of a particle, with different critical fields for switching into and out of the corresponding hysteresis branch. Downward switching between branches at the reversal field is paired with either symmetrical or asymmetrical upward switching between branches at the measurement field. Paired switching events lead to both symmetrical (central ridge) and asymmetrical (negatively shifted) signals in the FORC diagram. A downward transition out of one branch means the corresponding upward transition from that branch is no longer accessible, leading to a negative contribution to the FORC distribution. At the same time, an upward transition from a different branch becomes newly accessible, leading to a paired positive contribution to the FORC distribution. Simulations of interacting SD particles with hexagonal anisotropy and a broad range of switching fields reproduce many of the features typically associated with hematite FORC diagrams, demonstrating that key features can largely be explained as an intrinsic effect caused by the availability of multiple hysteresis branches.
The growth mechanism of grain boundary carbide in Alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui, E-mail: huili@shu.edu.cn; Institute of Materials, Shanghai University, Shanghai 200072; Xia, Shuang
2013-07-15
The growth mechanism of grain boundary M{sub 23}C{sub 6} carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M{sub 23}C{sub 6} and matrix was curved, and did not lie on any specific crystal plane. The M{sub 23}C{sub 6} carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M{sub 23}C{submore » 6} carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M{sub 23}C{sub 6}: (111){sub matrix}//(0001){sub transition}//(111){sub carbide}, <112{sup ¯}>{sub matrix}//<21{sup ¯}10>{sub transition}//<112{sup ¯}>{sub carbide}. The crystal lattice constants of transition phase are c{sub transition}=√(3)×a{sub matrix} and a{sub transition}=√(6)/2×a{sub matrix}. Based on the experimental results, the growth mechanism of M{sub 23}C{sub 6} and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M{sub 23}C{sub 6} and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M{sub 23}C{sub 6}. • The M{sub 23}C{sub 6} transforms from the matrix directly at the incoherent phase interface.« less
NASA Astrophysics Data System (ADS)
Cui, Mingjun; Ren, Siming; Chen, Jia; Liu, Shuan; Zhang, Guangan; Zhao, Haichao; Wang, Liping; Xue, Qunji
2017-03-01
Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT-) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT-, as proved by Raman and UV-vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 106 Ω cm2) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.
Detector shape in hexagonal sampling grids
NASA Astrophysics Data System (ADS)
Baronti, Stefano; Capanni, Annalisa; Romoli, Andrea; Santurri, Leonardo; Vitulli, Raffaele
2001-12-01
Recent improvements in CCD technology make hexagonal sampling attractive for practical applications and bring a new interest on this topic. In the following the performances of hexagonal sampling are analyzed under general assumptions and compared with the performances of conventional rectangular sampling. This analysis will take into account both the lattice form (squared, rectangular, hexagonal, and regular hexagonal), and the pixel shape. The analyzed hexagonal grid will not based a-priori on a regular hexagon tessellation, i.e., no constraints will be made on the ratio between the sampling frequencies in the two spatial directions. By assuming an elliptic support for the spectrum of the signal being sampled, sampling conditions will be expressed for a generic hexagonal sampling grid, and a comaprison with the well-known sampling conditions for a comparable rectangular lattice will be performed. Further, by considering for sake of clarity a spectrum with a circular support, the comparison will be performed under the assumption of same number of pixels for unity of surface, and the particular case of regular hexagonal sampling grid will also be considered. Regular hexagonal lattice with regular hexagonal sensitivity shape of the detector elements will result as the best trade-off between the proposed sampling requirement. Concerning the detector shape, the hexagonal is more advantageous than the rectangular. To show that a figure of merit is defined which takes into account that the MTF (modulation transfer function) of a hexagonal detector is not separable, conversely from that of a rectangular detector. As a final result, octagonal shape detectors are compared to those with rectangular and hexagonal shape in the two hypotheses of equal and ideal fill factor, respectively.
Effect of morphology evolution on the thermoelectric properties of oxidized ZnO thin films
NASA Astrophysics Data System (ADS)
Liu, Shiying; Li, Guojian; Xiao, Lin; Jia, Baohai; Gao, Yang; Wang, Qiang
2018-04-01
The effects of nanowire content on the thermoelectric properties of ZnO films were investigated. The nanowire content of ZnO films was tuned by thermal oxidation of evaporated Zn films. The results showed that hexagonal and polyhedral morphologies on the surface of Zn films can be used to tune the nanowire content of ZnO films. Hexagonal nanoplates with a diameter of 100-350 nm readily grew ZnO nanowires with c-axis preferential orientation. Conversely, it was difficult to grow nanowires on polyhedral nanoparticles with diameters of 500-750 nm because the meeting of ZnO (101) and (001) facets suppressed nanowire growth. Thermoelectric parameters were strongly affected by nanowire content. In particular, carrier concentration increased with nanowire content. Carrier mobility also increased with nanowire content because the nanowires behaved as channels for electronic migration. The band gap of the films narrowed with increasing nanowire content because the binding energy of O 1s electrons with oxygen vacancies decreased. The maximum power factor of the film with high nanowire content (8.80 μW/m K2 at 530 K) was approximately 300% higher than that of the film with low nanowire content.
Phase transformation in tantalum under extreme laser deformation
Lu, C. -H.; Hahn, E. N.; Remington, B. A.; ...
2015-10-19
The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centeredmore » cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. In conclusion, molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).« less
Extended arrays for nonlinear susceptibility magnitude imaging
Ficko, Bradley W.; Giacometti, Paolo; Diamond, Solomon G.
2016-01-01
This study implements nonlinear susceptibility magnitude imaging (SMI) with multifrequency intermodulation and phase encoding. An imaging grid was constructed of cylindrical wells of 3.5-mm diameter and 4.2-mm height on a hexagonal two-dimensional 61-voxel pattern with 5-mm spacing. Patterns of sample wells were filled with 40-μl volumes of Fe3O4 starch-coated magnetic nanoparticles (mNPs) with a hydrodynamic diameter of 100 nm and a concentration of 25 mg/ml. The imaging hardware was configured with three excitation coils and three detection coils in anticipation that a larger imaging system will have arrays of excitation and detection coils. Hexagonal and bar patterns of mNP were successfully imaged (R2 > 0.9) at several orientations. This SMI demonstration extends our prior work to feature a larger coil array, enlarged field-of-view, effective phase encoding scheme, reduced mNP sample size, and more complex imaging patterns to test the feasibility of extending the method beyond the pilot scale. The results presented in this study show that nonlinear SMI holds promise for further development into a practical imaging system for medical applications. PMID:26124044
Phase Transformation in Tantalum under Extreme Laser Deformation
Lu, C.-H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.
2015-01-01
The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear). PMID:26478106
NASA Astrophysics Data System (ADS)
Ying, Hao; Li, Xiuting; Li, Deshuai; Huang, Mingqiang; Wan, Wen; Yao, Qian; Chen, Xiangping; Wang, Zhiwei; Wu, Yanqing; Wang, Le; Chen, Shanshan
2018-04-01
The scalable synthesis of two-dimensional (2D) hexagonal boron nitride (h-BN) is of great interest for its numerous applications in novel electronic devices. Highly-crystalline h-BN films, with single-crystal sizes up to hundreds of microns, are demonstrated via a novel Ni foam assisted technique reported here for the first time. The nucleation density of h-BN domains can be significantly reduced due to the high boron solubility, as well as the large specific surface area of the Ni foam. The crystalline structure of the h-BN domains is found to be well aligned with, and therefore strongly dependent upon, the underlying Pt lattice orientation. Growth-time dependent experiments confirm the presence of a surface mediated self-limiting growth mechanism for monolayer h-BN on the Pt substrate. However, utilizing remote catalysis from the Ni foam, bilayer h-BN films can be synthesized breaking the self-limiting effect. This work provides further understanding of the mechanisms involved in the growth of h-BN and proposes a facile synthesis technique that may be applied to further applications in which control over the crystal alignment, and the numbers of layers is crucial.
Structural phase transition in monolayer MoTe2 driven by electrostatic doping
NASA Astrophysics Data System (ADS)
Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang
2017-10-01
Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.
Prados-Privado, María; Gehrke, Sérgio A; Rojo, Rosa; Prados-Frutos, Juan Carlos
2018-06-11
The aim of this study was to fully characterize the mechanical behavior of an external hexagonal implant connection (ø3.5 mm, 10-mm length) with an in vitro study, a three-dimensional finite element analysis, and a probabilistic fatigue study. Ten implant-abutment assemblies were randomly divided into two groups, five were subjected to a fracture test to obtain the maximum fracture load, and the remaining were exposed to a fatigue test with 360,000 cycles of 150 ± 10 N. After mechanical cycling, all samples were attached to the torque-testing machine and the removal torque was measured in Newton centimeters. A finite element analysis (FEA) was then executed in ANSYS® to verify all results obtained in the mechanical tests. Finally, due to the randomness of the fatigue phenomenon, a probabilistic fatigue model was computed to obtain the probability of failure associated with each cycle load. FEA demonstrated that the fracture corresponded with a maximum stress of 2454 MPa obtained in the in vitro fracture test. Mean life was verified by the three methods. Results obtained by the FEA, the in vitro test, and the probabilistic approaches were in accordance. Under these conditions, no mechanical etiology failure is expected to occur up to 100,000 cycles. Graphical abstract ᅟ.
Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D
2015-11-01
Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.
Wave propagation modeling in composites reinforced by randomly oriented fibers
NASA Astrophysics Data System (ADS)
Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw
2018-02-01
A new method for prediction of elastic constants in randomly oriented fiber composites is proposed. It is based on mechanics of composites, the rule of mixtures and total mass balance tailored to the spectral element mesh composed of 3D brick elements. Selected elastic properties predicted by the proposed method are compared with values obtained by another theoretical method. The proposed method is applied for simulation of Lamb waves in glass-epoxy composite plate reinforced by randomly oriented fibers. Full wavefield measurements conducted by the scanning laser Doppler vibrometer are in good agreement with simulations performed by using the time domain spectral element method.
NASA Astrophysics Data System (ADS)
Akazawa, Housei; Ueno, Yuko
2014-10-01
We report how the crystallinity and orientation of hydroxyapatite (HAp) films deposited on sapphire substrates depend on the crystallographic planes. Both solid-phase crystallization of amorphous HAp films and crystallization during sputter deposition at elevated temperatures were examined. The low-temperature epitaxial phase on C-plane sapphire substrates has c-axis orientated HAp crystals regardless of the crystallization route, whereas the preferred orientation switches to the (310) direction at higher temperatures. Only the symmetric stretching mode (ν1) of PO43- units appears in the Raman scattering spectra, confirming well-ordered crystalline domains. In contrast, HAp crystals grown on A-plane sapphire substrates are always oriented toward random orientations. Exhibiting all vibrational modes (ν1, ν3, and ν4) of PO43- units in the Raman scattering spectra reflects random orientation, violating the Raman selection rule. If we assume that Raman intensities of PO43- units represent the crystallinity of HAp films, crystallization terminating the surface with the C-plane is hindered by the presence of excess H2O and OH species in the film, whereas crystallization at random orientations on the A-plane sapphire is rather promoted by these species. Such contrasting behaviors between C-plane and A-plane substrates will reflect surface-plane dependent creation of crystalline seeds and eventually determine the orientation of resulting HAp films.
Imaging graphite in air by scanning tunneling microscopy - Role of the tip
NASA Technical Reports Server (NTRS)
Colton, R. J.; Baker, S. M.; Driscoll, R. J.; Youngquist, M. G.; Baldeschwieler, J. D.; Kaiser, W. J.
1988-01-01
Atomically resolved images of highly oriented pyrolytic graphite (HOPG) in air at point contact have been obtained. Direct contact between tip and sample or contact through a contamination layer provides a conduction mechanism in addition to the exponential tunneling mechanism responsible for scanning tunneling microscopy (STM) imaging. Current-voltage (I-V) spectra were obtained while scanning in the current imaging mode with the feedback circuit interrupted in order to study the graphite imaging mechanism. Multiple tunneling tips are probably responsible for images without the expected hexagonal or trigonal symmetry. The observations indicate that the use of HOPG for testing and calibration of STM instrumentation may be misleading.
NASA Astrophysics Data System (ADS)
Akimenko, S. S.; Fefelov, V. F.; Myshlyavtsev, A. V.; Stishenko, P. V.
2018-02-01
The model of dimers adsorption on hexagonal lattice with different orientations to surface and hard-spheres lateral interactions has been studied at nonzero temperature. The transfer-matrix method was used as the main one and the Monte Carlo method was used for checking of some extreme cases. Adsorption isotherms, dependencies of the entropy from the density of the adsorption layer and of the energy from the system temperature at certain points of the phase space, were computed. It was found that at least the first ten phases of the ground state still persist at nonzero temperatures.
Structural phase transition at high temperatures in solid molecular hydrogen and deuterium
NASA Astrophysics Data System (ADS)
Cui, T.; Takada, Y.; Cui, Q.; Ma, Y.; Zou, G.
2001-07-01
We study the effect of temperature up to 1000 K on the structure of dense molecular para-hydrogen (p-H2) and ortho-deuterium (o-D2), using the path-integral Monte Carlo method. We find a structural phase transition from orientationally disordered hexagonal close packed (hcp) to an orthorhombic structure of Cmca symmetry before melting. The transition is basically induced by thermal fluctuations, but quantum fluctuations of protons (deuterons) are important in determining the transition temperature through effectively hardening the intermolecular interaction. We estimate the phase line between hcp and Cmca phases as well as the melting line of the Cmca solid.
Free Vibration of Uncertain Unsymmetrically Laminated Beams
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Goyal, Vijay K.
2001-01-01
Monte Carlo Simulation and Stochastic FEA are used to predict randomness in the free vibration response of thin unsymmetrically laminated beams. For the present study, it is assumed that randomness in the response is only caused by uncertainties in the ply orientations. The ply orientations may become random or uncertain during the manufacturing process. A new 16-dof beam element, based on the first-order shear deformation beam theory, is used to study the stochastic nature of the natural frequencies. Using variational principles, the element stiffness matrix and mass matrix are obtained through analytical integration. Using a random sequence a large data set is generated, containing possible random ply-orientations. This data is assumed to be symmetric. The stochastic-based finite element model for free vibrations predicts the relation between the randomness in fundamental natural frequencies and the randomness in ply-orientation. The sensitivity derivatives are calculated numerically through an exact formulation. The squared fundamental natural frequencies are expressed in terms of deterministic and probabilistic quantities, allowing to determine how sensitive they are to variations in ply angles. The predicted mean-valued fundamental natural frequency squared and the variance of the present model are in good agreement with Monte Carlo Simulation. Results, also, show that variations between plus or minus 5 degrees in ply-angles can affect free vibration response of unsymmetrically and symmetrically laminated beams.
NASA Astrophysics Data System (ADS)
Clark, Ted Michael
Order-disorder phenomena have been examined by means of Mossbauer spectroscopy in a variety of materials, including (a) tektites and other silicate glasses, (b) magnetic materials such as natural and synthetic magnetoplumbite, M-type hexagonal ferrites and magnetite, and (c) nanocrystalline zinc ferrite. A methodology has been established for the analysis of the local crystal/chemical structures of iron in tektites and its application has reconfirmed a low ferric/ferrous ratio of approximately 0.10 for tektites. Additionally, a greater degree of submirocscopic heterogeneity has been established for Muong Nong tektites in comparison with splash form tektites. The dynamics of the 2b site in hexagonal ferrites has been studied above and below the Curie temperature for magnetoplumbite and its synthetic analogs, and also for polycrystalline and oriented single-crystals of MeFesb{12}Osb{19} (Me=Ba, Sr, Pb). Cation ordering on this site is shown to be dependent on the thermal history of the material, while the dynamic disorder of the 2b site for the end-member hexagonal ferrites is shown to be influenced by the divalent heavy metal species, Me. The influence of chemical composition on the morphology of magnetite has been shown to depend on the site preference of impurity cations: Substitutional impurities with tetrahedral site preferences are postulated to result in the seldom-observed cubic habit. Based on the cation distributions of bulk and nanocrystalline material it is held that the enhanced magnetic moments and susceptibilities of nanocrystalline zinc ferrite are shown to be consistent with surface phenomena, independent of synthesis methodology, and contrary to claims of special effects resulting from a particular synthesis methodology.
Investigation and characterization of ZnO single crystal microtubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Liu, Guizhen
2016-04-15
Morphological, structural, and optical characterization of microwave synthesized ZnO single crystal microtubes were investigated in this work. The structure and morphology of the ZnO microtubes are characterized using X-ray diffraction (XRD), single crystal diffraction (SCD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results reveal that the as-synthesized ZnO microtube has a highly regular hexagonal cross section and smooth surfaces with an average length of 650–700 μm, an average outer diameter of 50 μm and wall thickness of 1–3 μm, possessing a single crystal wurtzite hexagonal structure. Optical properties of ZnOmore » single crystal microtubes were investigated by photoluminescence (PL) and ultraviolet-visible (UV-vis) absorption techniques. Room-temperature PL spectrum of the microtube reveal a strong UV emission peak at around 375.89 nm and broad and a weak visible emission with a main peak identified at 577 nm, which was assigned to the nearest band-edge emission and the deep-level emission, respectively. The band gap energy of ZnO microtube was found to be 3.27 eV. - Highlights: • ZnO microtube length of 650–700 μm, diameter of 50 μm, wall thickness of 1–3 μm • ZnO microtube possesses a single crystal wurtzite hexagonal structure. • The crystal system is hexahedral oriented along a-axis with indices of (100). • A strong and sharp UV emission at 375.89 nm (3.29 eV) • One prominent absorption band around 378.88 nm (3.27 eV)« less
NASA Astrophysics Data System (ADS)
Xie, Jiayi; Ritzwoller, Michael H.; Shen, Weisen; Wang, Weitao
2017-04-01
Two types of surface wave anisotropy are observed regularly by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We show that a new data set of Love and Rayleigh wave isotropic phase speeds and Rayleigh wave azimuthal anisotropy observed within and surrounding eastern Tibet can be explained simultaneously by modeling the crust as a depth-dependent tilted hexagonally symmetric (THS) medium. We specify the THS medium with depth-dependent hexagonally symmetric elastic tensors tilted and rotated through dip and strike angles and estimate these quantities using a Bayesian Monte Carlo inversion to produce a 3-D model of the crust and uppermost mantle on a 0.5° × 0.5° spatial grid. In the interior of eastern Tibet and in the Yunnan-Guizhou plateau, we infer a steeply dipping THS upper crustal medium overlying a shallowly dipping THS medium in the middle-to-lower crust. Such vertical stratification of anisotropy may reflect a brittle to ductile transition in which shallow fractures and faults control upper crustal anisotropy and the crystal-preferred orientation of anisotropic (perhaps micaceous) minerals governs the anisotropy of the deeper crust. In contrast, near the periphery of the Tibetan Plateau the anisotropic medium is steeply dipping throughout the entire crust, which may be caused by the reorientation of the symmetry axes of deeper crustal anisotropic minerals as crustal flows are rotated near the borders of Tibet.
NASA Astrophysics Data System (ADS)
Muslimin, A. N.; Sugiarti, E.; Aritonang, T.; Purawiardi, R. I.; Desiati, R. D.
2018-03-01
Ni-based superalloy is widely used for high performance components in power generation turbine due to its excellent mechanical properties. However, Ni-based superalloy has low oxidation resistantance. Therefore, surface coating is required to improve oxidation resistance at high temperatures. Al-Si as a coting material was successfully co-deposited on Ni-based substrate by pack cementation method at 900 °C for about 4 hours. The oxidation test was carried out at high temperature of 1000 °C for 100 hours. Micro structural characterization and analysis on crystal orientation were perfomed by using Field Emission Scanning Electron Microscope (FE-SEM) and Electron Back Scatter Diffraction (EBSD) technique, respectively. The results showed that the coating layer with a homogenous layer and had a thickness of 53 μm consisting of β-NiAl with cubic structure and Ni2Al3 with hexagonal structure. TGO layer was developed after oxidation and had a thickness of about 5 μm consisting of α-Al2O3 and spinel NiCr2O4. The phase composition map and crystal orientation acquired by EBSD technique was also discussed both in TGO and coating layers.
NASA Astrophysics Data System (ADS)
Burke, Christopher; Reddy, Abhiram; Prasad, Ishan; Grason, Gregory
Block copolymer (BCP) melts form a number of symmetric microphases, e.g. columnar or double gyroid phases. BCPs with a block composed of chiral monomers are observed to form bulk phases with broken chiral symmetry e.g. a phase of hexagonally ordered helical mesodomains. Other new structures may be possible, e.g. double gyroid with preferred chirality which has potential photonic applications. One approach to understanding chirality transfer from monomer to the bulk is to use self consistent field theory (SCFT) and incorporate an orientational order parameter with a preference for handed twist in chiral block segments, much like the texture of cholesteric liquid crystal. Polymer chains in achiral BCPs exhibit orientational ordering which couples to the microphase geometry; a spontaneous preference for ordering may have an effect on the geometry. The influence of a preference for chiral polar (vectorial) segment order has been studied to some extent, though the influence of coupling to chiral tensorial (nematic) order has not yet been developed. We present a computational approach using SCFT with vector and tensor order which employs well developed pseudo-spectral methods. Using this we explore how tensor order influences which structures form, and if it can promote chiral phases.
Ultrasonic Characterization of Superhard Material: Osmium Diboride
NASA Astrophysics Data System (ADS)
Yadawa, P. K.
2012-12-01
Higher order elastic constants have been calculated in hexagonal structured superhard material OsB2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB2 has many industrial applications, such as abrasives, cutting tools and hard coatings.
How Escherichia coli lands and forms cell clusters on a surface: a new role of surface topography
Gu, Huan; Chen, Aaron; Song, Xinran; Brasch, Megan E.; Henderson, James H.; Ren, Dacheng
2016-01-01
Bacterial response to surface topography during biofilm formation was studied using 5 μm tall line patterns of poly (dimethylsiloxane) (PDMS). Escherichia coli cells attached on top of protruding line patterns were found to align more perpendicularly to the orientation of line patterns when the pattern narrowed. Consistently, cell cluster formation per unit area on 5 μm wide line patterns was reduced by 14-fold compared to flat PDMS. Contrasting the reduced colony formation, cells attached on narrow patterns were longer and had higher transcriptional activities, suggesting that such unfavorable topography may present a stress to attached cells. Results of mutant studies indicate that flagellar motility is involved in the observed preference in cell orientation on narrow patterns, which was corroborated by the changes in cell rotation pattern before settling on different surface topographies. These findings led to a set of new design principles for creating antifouling topographies, which was validated using 10 μm tall hexagonal patterns. PMID:27412365
Controllable dimension of ZnO nanowalls on GaN/c-Al2O3 substrate by vapor phase epitaxy method.
Song, W Y; Shin, T I; Kang, S M; Kim, S W; Yang, J H; Park, M H; Yang, C W; Yoon, D H
2008-09-01
Vertically well-aligned ZnO nanowalls were successfully synthesized at 950-1050 degrees C. Ar gas was introduced into the furnace at a flow rate of 2000-2500 sccm. An Au thin film with a thickness of 3 nm was used as a catalyst. The ZnO nanowalls were successfully grown on the substrate and most of them had nearly the same thickness and were oriented perpendicular to the substrate. The morphology and chemical composition of the ZnO nanowalls were examined as a function of the growth conditions examined. It was found that the grown ZnO nanowalls have a single-crystalline hexagonal structure and preferred c-axis growth orientation based on the X-ray diffraction and high-resolution transmission electron microscope measurements. The room temperature photoluminescence showed a strong free-exciton emission band with negligible deep level emission, indicating the high optical property of our ZnO nanowall samples.
Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures.
Mishchenko, A; Tu, J S; Cao, Y; Gorbachev, R V; Wallbank, J R; Greenaway, M T; Morozov, V E; Morozov, S V; Zhu, M J; Wong, S L; Withers, F; Woods, C R; Kim, Y-J; Watanabe, K; Taniguchi, T; Vdovin, E E; Makarovsky, O; Fromhold, T M; Fal'ko, V I; Geim, A K; Eaves, L; Novoselov, K S
2014-10-01
Recent developments in the technology of van der Waals heterostructures made from two-dimensional atomic crystals have already led to the observation of new physical phenomena, such as the metal-insulator transition and Coulomb drag, and to the realization of functional devices, such as tunnel diodes, tunnel transistors and photovoltaic sensors. An unprecedented degree of control of the electronic properties is available not only by means of the selection of materials in the stack, but also through the additional fine-tuning achievable by adjusting the built-in strain and relative orientation of the component layers. Here we demonstrate how careful alignment of the crystallographic orientation of two graphene electrodes separated by a layer of hexagonal boron nitride in a transistor device can achieve resonant tunnelling with conservation of electron energy, momentum and, potentially, chirality. We show how the resonance peak and negative differential conductance in the device characteristics induce a tunable radiofrequency oscillatory current that has potential for future high-frequency technology.
Ge, Wanyin; Kawahara, Kenji; Tsuji, Masaharu; Ago, Hiroki
2013-07-07
We report ambient pressure chemical vapor deposition (CVD) growth of single-crystalline NbS2 nanosheets with controlled orientation. On Si and SiO2 substrates, NbS2 nanosheets grow almost perpendicular to the substrate surface. However, when we apply transferred CVD graphene on SiO2 as a substrate, NbS2 sheets grow laterally lying on the graphene. The NbS2 sheets show the triangular and hexagonal shapes with a thickness of about 20-200 nm and several micrometres in the lateral dimension. Analyses based on X-ray diffraction and Raman spectroscopy indicate that the NbS2 nanosheets are single crystalline 3R-type with a rhombohedral structure of R3m space group. Our findings on the formation of highly aligned NbS2 nanosheets on graphene give new insight into the formation mechanism of NbS2 and would contribute to the templated growth of various layered materials.
Mączka, Mirosław; Pietraszko, Adam; Macalik, Bogusław; Hermanowicz, Krzysztof
2014-01-21
We report the synthesis, crystal structure, thermal, dielectric, IR, and Raman studies of [NH4][Mg(HCOO)3] formate. Single-crystal X-ray diffraction shows that it crystallizes in the hexagonal space group P6322, with orientationally disordered NH4(+) ions located in the cages of the network. Upon cooling, [NH4][Mg(HCOO)3] undergoes a phase transition at around 255 K to the ferroelectric P63 structure. Raman and IR spectra show a strong increase in intensity of the N-H stretching bands as well as narrowing of the bands related to the NH4(+) ions upon cooling. These changes indicate that the phase transition is due to orientational ordering of the NH4(+) ions. Analysis of the Raman data show, however, that the rotational and translational motions of NH4(+) do not freeze completely at the phase transition but exhibit further slowing down below 255 K, and the motional freezing becomes nearly complete below 140 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jin Sik; Chang, Young Jun; Woo, Sungjong
Deformation normal to the surface is intrinsic in two-dimensional materials due to phononic thermal fluctuations at finite temperatures. Graphene's negative thermal expansion coefficient is generally explained by such an intrinsic property. Recently, friction measurements on graphene exfoliated on a silicon oxide surface revealed an anomalous anisotropy whose origin was believed to be the formation of ripple domains. Here, we uncover the atomistic origin of the observed friction domains using a cantilever torsion microscopy in conjunction with angle-resolved photoemission spectroscopy. We experimentally demonstrate that ripples on graphene are formed along the zigzag direction of the hexagonal lattice. The formation of zigzagmore » directional ripple is consistent with our theoretical model that takes account of the atomic-scale bending stiffness of carbon-carbon bonds and the interaction of graphene with the substrate. Lastly, the correlation between micrometer-scale ripple alignment and atomic-scale arrangement of exfoliated monolayer graphene is first discovered and suggests a practical tool for measuring lattice orientation of graphene.« less
Choi, Jin Sik; Chang, Young Jun; Woo, Sungjong; ...
2014-12-01
Deformation normal to the surface is intrinsic in two-dimensional materials due to phononic thermal fluctuations at finite temperatures. Graphene's negative thermal expansion coefficient is generally explained by such an intrinsic property. Recently, friction measurements on graphene exfoliated on a silicon oxide surface revealed an anomalous anisotropy whose origin was believed to be the formation of ripple domains. Here, we uncover the atomistic origin of the observed friction domains using a cantilever torsion microscopy in conjunction with angle-resolved photoemission spectroscopy. We experimentally demonstrate that ripples on graphene are formed along the zigzag direction of the hexagonal lattice. The formation of zigzagmore » directional ripple is consistent with our theoretical model that takes account of the atomic-scale bending stiffness of carbon-carbon bonds and the interaction of graphene with the substrate. Lastly, the correlation between micrometer-scale ripple alignment and atomic-scale arrangement of exfoliated monolayer graphene is first discovered and suggests a practical tool for measuring lattice orientation of graphene.« less
Choi, Jin Sik; Chang, Young Jun; Woo, Sungjong; Son, Young-Woo; Park, Yeonggu; Lee, Mi Jung; Byun, Ik-Su; Kim, Jin-Soo; Choi, Choon-Gi; Bostwick, Aaron; Rotenberg, Eli; Park, Bae Ho
2014-12-01
Deformation normal to the surface is intrinsic in two-dimensional materials due to phononic thermal fluctuations at finite temperatures. Graphene's negative thermal expansion coefficient is generally explained by such an intrinsic property. Recently, friction measurements on graphene exfoliated on a silicon oxide surface revealed an anomalous anisotropy whose origin was believed to be the formation of ripple domains. Here, we uncover the atomistic origin of the observed friction domains using a cantilever torsion microscopy in conjunction with angle-resolved photoemission spectroscopy. We experimentally demonstrate that ripples on graphene are formed along the zigzag direction of the hexagonal lattice. The formation of zigzag directional ripple is consistent with our theoretical model that takes account of the atomic-scale bending stiffness of carbon-carbon bonds and the interaction of graphene with the substrate. The correlation between micrometer-scale ripple alignment and atomic-scale arrangement of exfoliated monolayer graphene is first discovered and suggests a practical tool for measuring lattice orientation of graphene.
Melting of 2D colloidal crystals
NASA Astrophysics Data System (ADS)
Maret, G.; Eisenmann, C.; Gasser, U.; Vongruenberg, H. H.; Keim, P.; Zahn, K.
2004-11-01
We study melting of 2D crystals of super-paramagnetic colloidal particles confined by gravity to a flat air-water interface. The effective system temperature is given by the strength of the dipolar inter-particle interaction controlled by an external magnetic field B. Particle positions are obtained by video-microscopy. In vertical B-field crystals are hexagonal and we find all features of the 2-step melting scenario predicted by KTHNY-theory. In particular, quantitative agreement is found for the translational and orientational order parameters related to bound and isolated dislocations and disclinations. From particle position fluctuations wave-vector (q) dependent normal-mode spring constants are obtained in agreement with phonon band structure calculations. The elastic constants (q=0 limit) soften near melting in quantitative agreement with KTHNY. By tilting B away from vertical anisotropic 2D crystals are generated; at small tilting angles they melt through a quasi-hexatic phase, while at higher tilts a centered rectangular phase is found which melts into a 2D smectic-like phase through orientation-dependent dislocations.
NASA Astrophysics Data System (ADS)
Wang, Kai; Wei, Ming; Zhang, Lijun; Du, Yong
2016-04-01
We realized a three-dimensional visualization of the morphology evolution and the growth behavior of the octahedral primary silicon in hypereutectic Al-20wtpctSi alloy during solidification in a real length scale by utilizing the phase-field simulation coupled with CALPHAD databases, and supported by key experiments. Moreover, through two-dimensional cut of the octahedral primary silicon at random angles, different morphologies observed in experiments, including triangle, square, trapezoid, rhombic, pentagon, and hexagon, were well reproduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yi; Chen, Wei; Xu, Hongyi
To provide a seamless integration of manufacturing processing simulation and fiber microstructure modeling, two new stochastic 3D microstructure reconstruction methods are proposed for two types of random fiber composites: random short fiber composites, and Sheet Molding Compounds (SMC) chopped fiber composites. A Random Sequential Adsorption (RSA) algorithm is first developed to embed statistical orientation information into 3D RVE reconstruction of random short fiber composites. For the SMC composites, an optimized Voronoi diagram based approach is developed for capturing the substructure features of SMC chopped fiber composites. The proposed methods are distinguished from other reconstruction works by providing a way ofmore » integrating statistical information (fiber orientation tensor) obtained from material processing simulation, as well as capturing the multiscale substructures of the SMC composites.« less
Oriented antibody immobilization on self-assembled monolayers applied as impedance biosensors
NASA Astrophysics Data System (ADS)
Tsugimura, Kaiki; Ohnuki, Hitoshi; Wu, Haiyun; Endo, Hideaki; Tsuya, Daiju; Izumi, Mitsuru
2017-11-01
Oriented immobilization of antibodies on a sensor chip is crucial for enhancing both the sensitivity and antigen-binding capacity of immunosensors. Here, we report a comparative study of the effect of oriented and random antibody immobilization on the binding efficiency by electrochemical impedance spectroscopy (EIS). Oriented immobilization of anti-myoglobin immunoglobulin G (anti-Myo IgG) was achieved by bonding to an Fc receptor of protein G (PrG) on a self-assembled monolayer (SAM), which results in the myoglobin (Myo) binding sites being exposed outside the sensing surface. Random immobilization of anti-Myo IgG was achieved by direct covalent attachment to the SAM surface. Both immobilizations were applied to interdigitated electrodes to enhance the electrochemical signal, and the Myo biosensor performance was then evaluated by a series of EIS measurements. We found that (i) the rate of the normalized charge transfer resistance for the oriented sample was 3 times higher than that for the random sample and (ii) the detection limit was 0.001 ng/mL, which is the lowest recorded detection limit among Myo immunosensors based on EIS. These findings indicate that oriented antibody immobilization is crucial for preparing highly sensitive EIS-based biosensors.
de Obaldia, Enrique Escobar; Jeong, Chanhue; Grunenfelder, Lessa Kay; Kisailus, David; Zavattieri, Pablo
2015-08-01
Many biomineralized organisms have evolved highly oriented nanostructures to perform specific functions. One key example is the abrasion-resistant rod-like microstructure found in the radular teeth of Chitons (Cryptochiton stelleri), a large mollusk. The teeth consist of a soft core and a hard shell that is abrasion resistant under extreme mechanical loads with which they are subjected during the scraping process. Such remarkable mechanical properties are achieved through a hierarchical arrangement of nanostructured magnetite rods surrounded with α-chitin. We present a combined biomimetic approach in which designs were analyzed with additive manufacturing, experiments, analytical and computational models to gain insights into the abrasion resistance and toughness of rod-like microstructures. Staggered configurations of hard hexagonal rods surrounded by thin weak interfacial material were printed, and mechanically characterized with a cube-corner indenter. Experimental results demonstrate a higher contact resistance and stiffness for the staggered alignments compared to randomly distributed fibrous materials. Moreover, we reveal an optimal rod aspect ratio that lead to an increase in the site-specific properties measured by indentation. Anisotropy has a significant effect (up to 50%) on the Young's modulus in directions parallel and perpendicular to the longitudinal axis of the rods, and 30% on hardness and fracture toughness. Optical microscopy suggests that energy is dissipated in the form of median cracks when the load is parallel to the rods and lateral cracks when the load is perpendicular to the rods. Computational models suggest that inelastic deformation of the rods at early stages of indentation can vary the resistance to penetration. As such, we found that the mechanical behavior of the system is influenced by interfacial shear strain which influences the lateral load transfer and therefore the spread of damage. This new methodology can help to elucidate the evolutionary designs of biomineralized microstructures and understand the tolerance to fracture and damage of chiton radular teeth. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rotating non-Boussinesq convection: oscillating hexagons
NASA Astrophysics Data System (ADS)
Moroz, Vadim; Riecke, Hermann; Pesch, Werner
2000-11-01
Within weakly nonlinear theory hexagon patterns are expected to undergo a Hopf bifurcation to oscillating hexagons when the chiral symmetry of the system is broken. Quite generally, the oscillating hexagons are expected to exhibit bistability of spatio-temporal defect chaos and periodic dynamics. This regime is described by the complex Ginzburg-Landau equation, which has been investigated theoretically in great detail. Its complex dynamics have, however, not been observed in experiments. Starting from the Navier-Stokes equations with realistic boundary conditions, we derive the three coupled real Ginzburg-Landau equations describing hexagons in rotating non-Boussinesq convection. We use them to provide quantitative results for the wavenumber range of stability of the stationary hexagons as well as the range of existence and stability of the oscillating hexagons. Our investigation is complemented by direct numerical simulations of the Navier-Stokes equations.
[Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].
Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan
2016-03-01
To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.
Population gratings in saturable optical fibers with randomly oriented rare-earth ions
NASA Astrophysics Data System (ADS)
Stepanov, S.; Martinez, L. M.; Hernandez, E. H.; Agruzov, P.; Shamray, A.
2015-07-01
Formation of the dynamic population gratings in optical fibers with randomly oriented rare-earth ions is analyzed with a special interest to the grating component for readout with the orthogonal light polarization. It is shown that as compared with a simple model case of the collinearly oriented dipole-like centers their random orientation leads to approximately 2-times growth of the effective saturation power P sat when it is estimated from the incident power dependence of the fiber absorption or from that of the fluorescence intensity. An optimal incident power, for which the maximum of the dynamic population grating amplitude for collinear light polarization is observed, also follows this change in P sat, while formation of the grating for orthogonal polarization needs essentially higher light power. The reduced anisotropy of the active centers, which is in charge of the experimentally observed weakening of the polarization hole burning (PHB) and of the fluorescence polarization, compensates in some way the effect of random ion orientation. The ratio between the maximum conventional (i.e. for the interacting waves collinear polarizations) two-wave mixing (TWM) amplitude and the initial not saturable fiber optical density proves to be, however, nearly the same as in the model case of collinearly oriented dipoles. The ratio between the PHB effect and the amplitude of the anisotropic grating, which is responsible for TWM of the orthogonally polarized waves, is also not influenced significantly by the reduced anisotropy of ions.
Development of Low-cost, High Energy-per-unit-area Solar Cell Modules
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.; Rhee, S. S.
1978-01-01
The development of two hexagonal solar cell process sequences, a laserscribing process technique for scribing hexagonal and modified hexagonal solar cells, a large through-put diffusion process, and two surface macrostructure processes suitable for large scale production is reported. Experimental analysis was made on automated spin-on anti-reflective coating equipment and high pressure wafer cleaning equipment. Six hexagonal solar cell modules were fabricated. Also covered is a detailed theoretical analysis on the optimum silicon utilization by modified hexagonal solar cells.
Xu, Jun; Yang, Xia; Yang, Qingdan; Zhang, Wenjun; Lee, Chun-Sing
2014-09-24
In this work, we report a simple and low-temperature approach for the controllable synthesis of ternary Cu-S-Se alloys featuring tunable crystal structures, compositions, morphologies, and optical properties. Hexagonal CuS(y)Se(1-y) nanoplates and face centered cubic (fcc) Cu(2-x)S(y)Se(1-y) single-crystal-like stacked nanoplate assemblies are synthesized, and their phase conversion mechanism is well investigated. It is found that both copper content and chalcogen composition (S/Se atomic ratio) of the Cu-S-Se alloys are tunable during the phase conversion process. Formation of the unique single-crystal-like stacked nanoplate assemblies is resulted from oriented stacking coupled with the Ostwald ripening effect. Remarkably, optical tuning for continuous red shifts of both the band-gap absorption and the near-infrared localized surface plasmon resonance are achieved. Furthermore, the novel Cu-S-Se alloys are utilized for the first time as highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells (QDSSCs), showing outstanding electrocatalytic activity for polysulfide electrolyte regeneration and yielding a 135% enhancement in power conversion efficiency (PCE) as compared to the noble metal Pt counter electrode.
Jany, B. R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K. H. W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; Krok, F.
2017-01-01
Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium. PMID:28195226
NASA Astrophysics Data System (ADS)
Jany, B. R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K. H. W.; Janas, A.; Szajna, K.; Verbeeck, J.; van Aert, S.; van Tendeloo, G.; Krok, F.
2017-02-01
Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium.
Landry, Nicholas W.; Knezevic, Marko
2015-01-01
Property closures are envelopes representing the complete set of theoretically feasible macroscopic property combinations for a given material system. In this paper, we present a computational procedure based on fast Fourier transforms (FFTs) for delineation of elastic property closures for hexagonal close packed (HCP) metals. The procedure consists of building a database of non-zero Fourier transforms for each component of the elastic stiffness tensor, calculating the Fourier transforms of orientation distribution functions (ODFs), and calculating the ODF-to-elastic property bounds in the Fourier space. In earlier studies, HCP closures were computed using the generalized spherical harmonics (GSH) representation and an assumption of orthotropic sample symmetry; here, the FFT approach allowed us to successfully calculate the closures for a range of HCP metals without invoking any sample symmetry assumption. The methodology presented here facilitates for the first time computation of property closures involving normal-shear coupling stiffness coefficients. We found that the representation of these property linkages using FFTs need more terms compared to GSH representations. However, the use of FFT representations reduces the computational time involved in producing the property closures due to the use of fast FFT algorithms. Moreover, FFT algorithms are readily available as opposed to GSH codes. PMID:28793566
NASA Astrophysics Data System (ADS)
Oliveira, Camilla; Matos, Matheus; Mazzoni, Mário; Chacham, Hélio; Neves, Bernardo
2013-03-01
Hexagonal boron nitride (h-BN) is a two-dimensional compound from III-V family, with the atoms of boron and nitrogen arranged in a honeycomb lattice, similar to graphene. Unlike graphene though, h-BN is an insulator material, with a gap larger than 5 eV. Here, we use Electric Force Microscopy (EFM) to study the electrical response of mono and few-layers of h-BN to an electric field applied by the EFM tip. Our results show an anomalous behavior in the dielectric response for h-BN for different bias orientation: for a positive bias applied to the tip, h-BN layers respond with a larger dielectric constant than the dielectric constant of the silicon dioxide substrate; while for a negative bias, the h-BN dielectric constant is smaller than the dielectric constant of the substrate. Based on first-principles calculations, we showed that this anomalous response may be interpreted as a macroscopic consequence of confinement of a thin water layer between h-BN and substrate. These results were confirmed by sample annealing and also also by a comparative analysis with h-BN on a non-polar substrate. All the authors acknowledge financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono.
Wang, Eryin; Lu, Xiaobo; Ding, Shijie; ...
2016-08-22
Graphene/hexagonal boron nitride (h-BN) has emerged as a model van der Waals heterostructure as the superlattice potential, which is induced by lattice mismatch and crystal orientation, gives rise to various novel quantum phenomena, such as the self-similar Hofstadter butterfly states. Although the newly generated second-generation Dirac cones (SDCs) are believed to be crucial for understanding such intriguing phenomena, fundamental knowledge of SDCs, such as locations and dispersion, and the effect of inversion symmetry breaking on the gap opening, still remains highly debated due to the lack of direct experimental results. In this work we report direct experimental results on themore » dispersion of SDCs in 0°-aligned graphene/h-BN heterostructures using angle-resolved photoemission spectroscopy. Our data unambiguously reveal SDCs at the corners of the superlattice Brillouin zone, and at only one of the two superlattice valleys. Moreover, gaps of approximately 100 meV and approximately 160 meV are observed at the SDCs and the original graphene Dirac cone, respectively. Our work highlights the important role of a strong inversion-symmetry-breaking perturbation potential in the physics of graphene/h-BN, and fills critical knowledge gaps in the band structure engineering of Dirac fermions by a superlattice potential.« less
Predicting bending stiffness of randomly oriented hybrid panels
Laura Moya; William T.Y. Tze; Jerrold E. Winandy
2010-01-01
This study was conducted to develop a simple model to predict the bending modulus of elasticity (MOE) of randomly oriented hybrid panels. The modeling process involved three modules: the behavior of a single layer was computed by applying micromechanics equations, layer properties were adjusted for densification effects, and the entire panel was modeled as a three-...
Alcohol-assisted debridement in PRK with intraoperative mitomycin C.
Nassiri, Nader; Sheibani, Kourosh; Safi, Sare; Haghnegahdar, Maryam; Nassiri, Saman; Panahi, Nekoo; Mehravaran, Shiva; Nassiri, Nariman
2014-09-01
To compare corneal stromal and endothelial cells after photorefractive keratectomy with intraoperative mitomycin C in alcohol-assisted versus mechanical epithelial debridement using confocal microscopy. This prospective randomized comparative study was performed on 88 eyes (44 patients) with myopia up to -6.00 diopters. The right eye of each patient was randomly assigned to either mechanical or alcohol-assisted groups, and the left eye was assigned to the alternate group. Confocal microscopy was performed preoperatively and at 3 months postoperatively. The main outcome measures were epithelial thickness; number of keratocytes in the anterior, mid-, and posterior stroma; and characteristics of the central corneal endothelial cells in terms of density, mean cell area, and polymegathism and hexagonality. Three months after surgery, no statistically significant difference was noted between the study groups in terms of epithelial thickness. We also found no statistically significant difference in central corneal endothelial cells regarding cell density, mean cell area, hexagonality, or polymegathism. Compared with baseline values, the density of mid- and posterior stromal keratocytes showed no significant change in either group, whereas it decreased significantly in the anterior stroma in both groups 3 months after surgery. We found that the adverse effects of photorefractive keratectomy with mitomycin C on central corneal endothelial cells were comparable between the mechanical and alcohol-assisted epithelial debridement groups and the significant decrease in postoperative keratocyte density in anterior stroma was comparable between the two groups. The choice of their application could be left to the discretion of the ophthalmologist.
Liu, Qingkun; Cui, Yanxia; Gardner, Dennis; Li, Xin; He, Sailing; Smalyukh, Ivan I
2010-04-14
We demonstrate the bulk self-alignment of dispersed gold nanorods imposed by the intrinsic cylindrical micelle self-assembly in nematic and hexagonal liquid crystalline phases of anisotropic fluids. External magnetic field and shearing allow for alignment and realignment of the liquid crystal matrix with the ensuing long-range orientational order of well-dispersed plasmonic nanorods. This results in a switchable polarization-sensitive plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The device-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of properties arising from combining the switchable nanoscale structure of anisotropic fluids with the surface plasmon resonance properties of the plasmonic nanorods.
NASA Astrophysics Data System (ADS)
Chunbo, Yuan; Ying, Wu; Yueming, Sun; Zuhong, Lu; Juzheng, Liu
1997-12-01
Molecularly resolved atomic force microscopic images of phosphatidic acid Langmuir-Blodgett bilayers show that phosphate groups in polar region of the films are packing in a distorted hexagonal organization with long-range orientational and positional order. Intermolecular hydrogen bonding interactions, which should be responsible for the ordering and stability of bilayers, are visualized directly between adjacent phosphate groups in the polar region of the bilayer. Some adjacent phosphatidic acid molecules link each other through the formation of intermolecular hydrogen bonds between phosphate groups in polar region to form local supramolecules, which provide the bilayer's potential as a functionized film in the investigation on the lateral conductions of protons in the biological bilayers.
Modeling of hydride precipitation and re-orientation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikare, Veena; Weck, Philippe F.; Mitchell, John Anthony
In this report, we present a thermodynamic-based model of hydride precipitation in Zr-based claddings. The model considers the state of the cladding immediately following drying, after removal from cooling-pools, and presents the evolution of precipitate formation upon cooling as follows: The pilgering process used to form Zr-based cladding imparts strong crystallographic and grain shape texture, with the basal plane of the hexagonal α-Zr grains being strongly aligned in the rolling-direction and the grains are elongated with grain size being approximately twice as long parallel to the rolling direction, which is also the long axis of the tubular cladding, as itmore » is in the orthogonal directions.« less
Asymmetrical edges induced strong current-polarization in embedded graphene nanoribbons
NASA Astrophysics Data System (ADS)
Li, Kuanhong; Zhang, Xiang-Hua
2018-05-01
We investigate the electronic structures and transport properties of the embedded zigzag graphene nanoribbon (E-ZGNR) in hexagonal boron nitride trenches, which are achievable in recent experiments. Our first principles results show that the E-ZGNR has a significant enhanced conductivity relative to common ZGNRs due to the existence of asymmetrical edge structures. Moreover, only one spin-orientation electrons possess a widely opened band gap at the magnetic ground state with anti-ferromagnetic configuration, resulting in a full current-polarization at low bias region. Our findings indicate that the state-of-the-art embedding technology is quite useful for tuning the electronic structure of ZGNR and building possible spin injection and spin filter devices in spintronics.
NASA Astrophysics Data System (ADS)
Venkatesh, Lakshmi Narayanan; Suresh Babu, Pitchuka; Gundakaram, Ravi Chandra; Doherty, Roger D.; Joshi, Shrikant V.; Samajdar, Indradev
2017-04-01
Microstructural evolution with superheating was studied in chromium carbide-nickel coatings deposited by laser cladding. At lower superheating, selective growth of <0001> direction from the high density of Cr7C3 grains nucleated resulted in a columnar structure with (0001) texture. Increased superheating lead to the loss of columnar structure as well as the (0001) texture. The hexagonal Cr7C3 showed an unusual isotropic nanoindentation hardness evidently correlated with its low c/ a ratio. However, the rod-like morphology of the carbide dendrites resulted in significant anisotropy in the hardness of the composite.
Laser Demonstration of Diode-Pumped Nd3+-Doped Fluorapatite Anisotropic Ceramics
NASA Astrophysics Data System (ADS)
Akiyama, Jun; Sato, Yoichi; Taira, Takunori
2011-02-01
We report the first demonstration of a diode-pumped anisotropic ceramic laser that uses microdomain-controlled neodymium-doped hexagonal fluorapatite [Nd3+:Ca10(PO4)6F2, Nd:FAP] polycrystalline ceramics as the gain medium, which were fabricated by the rare-earth-assisted magnetic grain-orientation control method, as a step toward achieving giant micro photonics. The laser delivers 1063.10 and 1063.22 nm output beams when pumped with a central wavelength of 807.5 nm and a 2 nm bandwidth diode laser operating in quasi-continuous-wave (QCW) mode. We obtained a maximum QCW peak power of 255 mW with an uncoated 2 at. % Nd:FAP material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Fuxue, E-mail: yanfuxue@126.com; Han, Kai, E-
2017-02-15
C-axis oriented La{sub 0.67}Sr{sub 0.33}MnO{sub 3}(LSMO)/PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}(PZT) films are fabricated successfully by sol-gel method on LaAlO{sub 3} (00l) substrates. The structure, composition and morphology of the films are investigated by X-ray diffractometer (XRD, θ-2θ scan, ω-scan and ϕ-scan), X-ray photoelectron spectroscope (XPS), field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). The electric and magnetic properties of randomly and c-axis oriented LSMO/PZT films are studied comparably using ferroelectric testing apparatus and physical property measurement system (PPMS). It is found that the epitaxial LSMO/PZT composite films show well controlled growth along c-axis, and much bettermore » magnetoelectric properties than the randomly oriented ones. The ME voltage coefficient increases from 23 mV cm{sup −1} Oe{sup −1} for the randomly oriented LSMO/PZT composite films to 52 mV cm{sup −1} Oe{sup −1} for c-axis oriented ones prepared using the low cost sol-gel method presented in this study, which shows high potential in promising applications. - Highlights: •Epitaxial LSMO/PZT films were fabricated successfully by sol-gel method on LAO (00l) substrate. •The prepared films exhibit well-defined multiferroic properties for the epitaxial LSMO/PZT films. •Epitaxial LSMO/PZT films show superior magnetoelectric properties to the randomly oriented ones.« less
Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems
NASA Technical Reports Server (NTRS)
Asano, S.; Sato, M.; Hansen, J. E.
1979-01-01
A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius.
Lattice sites of ion-implanted Mn, Fe and Ni in 6H-SiC
NASA Astrophysics Data System (ADS)
Costa, A. R. G.; Wahl, U.; Correia, J. G.; David-Bosne, E.; Amorim, L. M.; Augustyns, V.; Silva, D. J.; da Silva, M. R.; Pereira, L. M. C.
2018-01-01
Using radioactive isotopes produced at the CERN-ISOLDE facility, the lattice location of the implanted transition metal (TM) ions 56Mn, 59Fe and 65Ni in n-type single-crystalline hexagonal 6H-SiC was studied by means of the emission channeling technique. TM probes on carbon coordinated tetrahedral interstitial sites (T C) and on substitutional silicon sites (S Si,h+k ) were identified. We tested for but found no indication that the TM distribution on S Si sites deviates from the statistical mixture of 1/3 hexagonal and 2/3 cubic sites present in the 6H crystal. The TM atoms partially disappear from T C positions during annealing at temperatures between 500 °C and 700 °C which is accompanied by an increase on S Si and random sites. From the temperature associated with these site changes, interstitial migration energies of 1.7-2.7 eV for Mn and Ni, and 2.3-3.2 eV for Fe were estimated. TM lattice locations are compared to previous results obtained in 3C-SiC using the same technique.
Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel
2018-04-05
Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.
NASA Astrophysics Data System (ADS)
Huang, Xiaoping; Zhang, Peifeng; Lin, En; Wang, Peng; Mei, Mingwei; Huang, Qiuying; Jiao, Jiao; Zhao, Qing
2017-09-01
We present the design and fabrication of a novel regularly arrayed plasmonic nanolasers. This main microstructure of the device is composed of a hexagonal array of n-ZnO/p-GaN nanoheterojunctions fabricated using the micro-fabrication method. Furthermore, the optically pumped lasing in the device is demonstrated. The spectroscopy characterization results of the device show that the surface plasmon excited around the NWs surface can be used to stimulate and strongly compress the optical modes in the NW cavity. This electromagnetic confinement effect is employed to optimize the beam quality and increase the light intensity compared to the laser fabricated with the bare NWs array. The impact of the array arrangement on the coherent combining efficiency of the arrayed nanolasers has been numerically studied. The results show that the arrayed hexagonal nanolasers could improve the combining efficiency compared to the nanolaser with the randomly positioned array. Qualitatively, these calculated results agree well with the experimental results of the laser beam spot mapping. This demonstrates the scope for using such architectures to improve the combination efficiency of the arrayed nanolasers.
Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media
Chen, Zhen; Dorfman, Kevin D.
2013-01-01
Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such “tilted” post arrays is superior to the standard “un-tilted” approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the “free path”, i.e., the average distance of ballistic trajectories of point sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. PMID:23868490
Children's Engagement and Competence in Personal Recollection: Effects of Parents' Reminiscing Goals
ERIC Educational Resources Information Center
Cleveland, Emily Sutcliffe; Reese, Elaine; Grolnick, Wendy S.
2007-01-01
Parents' goal orientations in parent-child reminiscing were examined in this study, where 28 preschoolers (mean age = 46 months) experienced a standardized event. Dyads discussed the event that evening, with parents randomly assigned to either an "outcome-oriented" or a "process-oriented" condition. Outcome-oriented parents, who were told that…
Modeling and Predicting the Stress Relaxation of Composites with Short and Randomly Oriented Fibers
Obaid, Numaira; Sain, Mohini
2017-01-01
The addition of short fibers has been experimentally observed to slow the stress relaxation of viscoelastic polymers, producing a change in the relaxation time constant. Our recent study attributed this effect of fibers on stress relaxation behavior to the interfacial shear stress transfer at the fiber-matrix interface. This model explained the effect of fiber addition on stress relaxation without the need to postulate structural changes at the interface. In our previous study, we developed an analytical model for the effect of fully aligned short fibers, and the model predictions were successfully compared to finite element simulations. However, in most industrial applications of short-fiber composites, fibers are not aligned, and hence it is necessary to examine the time dependence of viscoelastic polymers containing randomly oriented short fibers. In this study, we propose an analytical model to predict the stress relaxation behavior of short-fiber composites where the fibers are randomly oriented. The model predictions were compared to results obtained from Monte Carlo finite element simulations, and good agreement between the two was observed. The analytical model provides an excellent tool to accurately predict the stress relaxation behavior of randomly oriented short-fiber composites. PMID:29053601
Face perception is tuned to horizontal orientation in the N170 time window.
Jacques, Corentin; Schiltz, Christine; Goffaux, Valerie
2014-02-07
The specificity of face perception is thought to reside both in its dramatic vulnerability to picture-plane inversion and its strong reliance on horizontally oriented image content. Here we asked when in the visual processing stream face-specific perception is tuned to horizontal information. We measured the behavioral performance and scalp event-related potentials (ERP) when participants viewed upright and inverted images of faces and cars (and natural scenes) that were phase-randomized in a narrow orientation band centered either on vertical or horizontal orientation. For faces, the magnitude of the inversion effect (IE) on behavioral discrimination performance was significantly reduced for horizontally randomized compared to vertically or nonrandomized images, confirming the importance of horizontal information for the recruitment of face-specific processing. Inversion affected the processing of nonrandomized and vertically randomized faces early, in the N170 time window. In contrast, the magnitude of the N170 IE was much smaller for horizontally randomized faces. The present research indicates that the early face-specific neural representations are preferentially tuned to horizontal information and offers new perspectives for a description of the visual information feeding face-specific perception.
A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jambure, S.B.; Patil, S.J.; Deshpande, A.R.
2014-01-01
Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. Themore » X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.« less
Chain hexagonal cacti with the extremal eccentric distance sum.
Qu, Hui; Yu, Guihai
2014-01-01
Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.
Viral assembly of oriented quantum dot nanowires
NASA Astrophysics Data System (ADS)
Mao, Chuanbin; Flynn, Christine E.; Hayhurst, Andrew; Sweeney, Rozamond; Qi, Jifa; Georgiou, George; Iverson, Brent; Belcher, Angela M.
2003-06-01
The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly, heterostructured nucleation was achieved with a dual-peptide virus engineered to express two distinct peptides within the same viral capsid. This work represents a genetically controlled biological synthesis route to a semiconductor nanoscale heterostructure.
Viral assembly of oriented quantum dot nanowires.
Mao, Chuanbin; Flynn, Christine E; Hayhurst, Andrew; Sweeney, Rozamond; Qi, Jifa; Georgiou, George; Iverson, Brent; Belcher, Angela M
2003-06-10
The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly, heterostructured nucleation was achieved with a dual-peptide virus engineered to express two distinct peptides within the same viral capsid. This work represents a genetically controlled biological synthesis route to a semiconductor nanoscale heterostructure.
Rossi, Andre L; Campos, Andrea P C; Barroso, Madalena M S; Klautau, Michelle; Archanjo, Bráulio S; Borojevic, Radovan; Farina, Marcos; Werckmann, Jacques
2014-09-01
We investigated the ultrastructure and crystallographic orientation of spicules from the calcareous sponge Paraleucilla magna (subclass Calcaronea) by transmission and scanning electron microscopy using two different methods of sample preparation: ultramicrotomy and focused ion beam (FIB). It was found that the unpaired actine from the spicules was oriented in the [211] zone axis. The plane that contains the unpaired actine and divides symmetrically the paired actines is the (-120). This plane is a mirror plane of the hexagonal lattice system. All the spicule types analyzed presented the same crystallographic orientation. Electron nanodiffraction maps from 4μm×4μm regions prepared by FIB showed disorientation of <2° between diffraction patterns obtained from neighbor regions, indicating the presence of a unique, highly aligned calcite crystalline phase. Among the eight FIB sections obtained, four presented high pore density. In one section perpendicular to the actine axis pores were observed only in the center of the spicule aligned in a circular pattern and surrounded by a faint circular contour with a larger radius. The presence of amorphous carbon representative of organic molecules detected by electron energy loss spectroscopy was correlated neither with porosity nor with specific lattice planes. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Enhancing the isotropy of lateral resolution in coherent structured illumination microscopy
Park, Joo Hyun; Lee, Jae Yong; Lee, Eun Seong
2014-01-01
We present a method to improve the isotropy of spatial resolution in a structured illumination microscopy (SIM) implemented for imaging non-fluorescent samples. To alleviate the problem of anisotropic resolution involved with the previous scheme of coherent SIM that employs the two orthogonal standing-wave illumination, referred to as the orthogonal SIM, we introduce a hexagonal-lattice illumination that incorporates three standing-wave fields simultaneously superimposed at the orientations equally divided in the lateral plane. A theoretical formulation is worked out rigorously for the coherent image formation with such a simultaneous multiple-beam illumination and an explicit Fourier-domain framework is derived for reconstructing an image with enhanced resolution. Using a computer-synthesized resolution target as a 2D coherent sample, we perform numerical simulations to examine the imaging characteristics of our three-angle SIM compared with the orthogonal SIM. The investigation on the 2D resolving power with the various test patterns of different periods and orientations reveal that the orientation-dependent undulation of lateral resolution can be reduced from 27% to 8% by using the three-angle SIM while the best resolution (0.54 times the resolution limit of conventional coherent imaging) in the directions of structured illumination is slightly deteriorated by 4.6% from that of the orthogonal SIM. PMID:24940548
NASA Astrophysics Data System (ADS)
Naradikian, H.; Petrov, M.; Katranchev, B.; Milenov, T.; Tinchev, S.
2017-01-01
Diamond-like carbon (DLC) and amorphous carbon films are very promising type of semiconductor materials. Depending on the hybridization sp2/sp3 ratio, the material’s band gap varies between 0.8 and 3 eV. Moreover carbon films possess different interesting for practice properties: comparable to the Silicon, Diamond like structure has 22-time better thermal conductivity etc. Here we present one type of implementation of such type nanostructure. That is one attempt for orientation of dimeric LC by using of pre-deposited DLC layer with different ratio of sp2/sp3 hybridized carbon content. It could be expected a pronounced π1-π2interaction between s and p orbital levels on the surface and the dimeric ring of LC. We present comparison of surface anchoring strengths of both orientation inter-surfaces DLC/dimeric LC and single wall carbon nanotubes (SWCNT)/dimeric LC. The mechanism of interaction of dimeric LC and activated surfaces with DLC or SWCNT will be discussed. In both cases we have π-π interaction, which in combination with hydrogen bonding, typical for the dimeric LCs, influence the LC alignment. The Raman spectroscopy data evidenced the presence of charge transfer between contacting hexagonal rings of DLC and the C = O groups of the LC molecules.
An Explanation for Saturn's Hexagon
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-08-01
For over three decades, weve been gathering observations of the mysterious hexagonal cloud pattern encircling Saturns north pole. Now, researchers believe they have a model that can better explain its formation.Fascinating GeometrySaturns northern Hexagon is a cloud band circling Saturns north pole at 78 N, first observed by the Voyager flybys in 198081. This remarkable pattern has now persisted for more than a Saturn year (29.5 Earth years).Eight frames demonstrating the motion within Saturns Hexagon. Click to watch the animation! The view is from a reference frame rotating with Saturn. [NASA/JPL-Caltech/SSI/Hampton University]Observations by Voyager and, more recently, Cassini have helped to identify many key characteristics of this bizarre structure. Two interesting things weve learned are:The Hexagon is associated with an eastward zonal jet moving at more than 200 mph.The cause of the Hexagon is believed to be a jet stream, similar to the ones that we experience on Earth. The path of the jet itself appears to follow the hexagons outline.The Hexagon rotates at roughly the same rate as Saturns overall rotation.While we observe individual storms and cloud patterns moving at different speeds within the Hexagon, the vertices of the Hexagon move at almost exactly the same rotational speed as that of Saturn itself.Attempts to model the formation of the Hexagon with a jet stream have yet to fully reproduce all of the observed features and behavior. But now, a team led by Ral Morales-Juberas of the New Mexico Institute of Mining and Technology believes they have created a model that better matches what we see.Simulating a Meandering JetThe team ran a series of simulations of an eastward, Gaussian-profile jet around Saturns pole. They introduced small perturbations to the jet and demonstrated that, as a result of the perturbations, the jet can meander into a hexagonal shape. With the initial conditions of the teams model, the meandering jet is able to settle into a stable hexagonal shape that rotates with very nearly the same period as Saturns rotational period.The formation of this hexagon depends on factors such as the initial amplitude and curvature of the jet. The models treatment of the wind profile within Saturns atmosphere is another key component that allowed them to match the observed characteristics of the Hexagon, such as its shape, vorticity behavior, temperature gradient, and seasonal stability.BonusThe gif below shows part of an animation the authors produced of the jet evolution in their model. You can see a hexagon begin to develop at around 230 days into the simulation, and by about 400 days it becomes stable and non-rotating (were looking at it from a reference frame rotating with Saturn). The full animation can be viewed here. [Morales-Juberas et al., 2015]CitationR. Morales-Juberas et al.2015 ApJ 806 L18 doi:10.1088/2041-8205/806/1/L18
Acoustic Panel Liner for an Engine Nacelle
NASA Technical Reports Server (NTRS)
Nark, Douglas M. (Inventor); Ayle, Earl (Inventor); Jones, Michael G. (Inventor); Ichihashi, Fumitaka (Inventor)
2016-01-01
An acoustic panel liner includes a face sheet, back plate, and liner core positioned there-between, which may be used in an engine nacelle. Elongated chambers contain variable amounts of septa at a calibrated depth or depths. The septa may have varying DC flow resistance. The chambers may have a hexagonal or other polygonal cross sections. The septa, such as mesh caps, may be bonded to an inner wall of a corresponding chamber. The insertion depths may be the same or different. If different, the pattern of distribution of the depths may be randomized.
Method and apparatus for enhancing vortex pinning by conformal crystal arrays
Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan
2015-07-14
Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.
Carvalho, Marco Aurélio; Sotto-Maior, Bruno Salles; Del Bel Cury, Altair Antoninha; Pessanha Henriques, Guilherme Elias
2014-11-01
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Flake Orientation Effects On Physical and Mechanical Properties of Sweetgum Flakeboard
T.F. Shupe; Chung-Yun Hse; E.W. Price
2001-01-01
Research was initiated to determine the effect of flake orientation on the physical and mechanical properties offlakeboard. The panel fabrication techniques investigated were single-layer panels with random and oriented flake distribution, three-layer, five-layer, and seven-layer panels. Single-layer oriented panels had panel directional property ratios of 11.8 and 12....
Scattering from randomly oriented circular discs with application to vegetation
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1984-01-01
A vegetation layer is modeled by a collection of randomly oriented circular discs over a half space. The backscattering coefficient from such a half space is computed using the radiative transfer theory. It is shown that significantly different results are obtained from this theory as compared with some earlier investigations using the same modeling approach but with restricted disc orientations. In particular, the backscattered cross polarized returns cannot have a fast increasing angular trend which is inconsistent with measurements. By setting the appropriate angle of orientation to zero the theory reduces to previously published results. Comparisons are shown with measurements taken from milo, corn and wheat and good agreements are obtained for both polarized and cross polarized returns.
Scattering from randomly oriented circular discs with application to vegetation
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1983-01-01
A vegetation layer is modeled by a collection of randomly oriented circular discs over a half space. The backscattering coefficient from such a half space is computed using the radiative transfer theory. It is shown that significantly different results are obtained from this theory as compared with some earlier investigations using the same modeling approach but with restricted disc orientations. In particular, the backscattered cross-polarized returns cannot have a fast increasing angular trend which is inconsistent with measurements. By setting the appropriate angle of orientation to zero the theory reduces to previously published results. Comparisons are shown with measurements taken from milo, corn and wheat and good agreements are obtained for both polarized and cross-polarized returns.
Adaptive cellular structures and devices with internal features for enhanced structural performance
NASA Astrophysics Data System (ADS)
Pontecorvo, Michael Eugene
This dissertation aims to develop a family of cellular and repeatable devices that exhibit a variety of force-displacement behaviors. It is envisioned that these cellular structures might be used either as stand-alone elements, or combined and repeated to create multiple types of structures (i.e. buildings, ship hulls, vehicle subfloors, etc.) with the ability to passively or actively perform multiple functions (harmonic energy dissipation, impact mitigation, modulus change) over a range of loading types, amplitudes, and frequencies. To accomplish this goal, this work combines repeatable structural frameworks, such as that provided by a hexagonal cellular structure, with internal structural elements such as springs, viscous dampers, buckling plates, bi-stable von Mises trusses (VMTs), and pneumatic artificial muscles (PAMs). The repeatable framework serves to position damping and load carrying elements throughout the structure, and the configuration of the internal elements allow each cell to be tuned to exhibit a desired force-displacement response. Therefore, gradient structures or structures with variable load paths can be created for an optimal global response to a range of loads. This dissertation focuses on the development of cellular structures for three functions: combined load-carrying capability with harmonic energy dissipation, impact mitigation, and cell modulus variation. One or more conceptual designs are presented for devices that can perform each of these functions, and both experimental measurements and simulations are used to gain a fundamental understanding of each device. Chapter 2 begins with a presentation of a VMT model that is the basis for many of the elements. The equations of motion for the VMT are derived and the static and dynamic behavior of the VMT are discussed in detail. Next, two metrics for the energy dissipation of the VMT - hysteresis loop area and loss factor - are presented. The responses of the VMT to harmonic displacement and force inputs are contrasted in relation to these metrics. The key innovation to the early structural elements presented here is the combination of the VMT with the pin-jointed hexagonal cell. Chapter 3 explores several prototypes of repeatable structural elements for simultaneous load-carrying capability and energy dissipation that are based on this innovation. The final demonstration prototype presented in this chapter is a column-like element that is based on a hexagonal cell containing two horizontal springs and one vertical damper. The unit is enclosed by a pair of buckling plates that serve to give the prototype a high initial stiffness and load carrying capability. The prototype is tested in both displacement and force input and its behavior is compared to simulation. Chapter 4 builds on the conceptual designs of Chapter 3 with the introduction of a plate-like element, that contains two compact VMTs connected by a horizontally oriented damper. Pre-loaded springs are used in the prototype to perform the same load carrying function as the buckling plates in the column-like prototype with increased predictability. The plate-like prototype is studied under impact to demonstrate its effectiveness as a protective layer. It is shown to reduce peak impact loads transmitted to the base of the device by over 60%. In most cases, the prototype compares well with a conventional protective rubber layer, and in cases of extreme impact loads, it exceeds the performance of the rubber layer. In addition to impact testing, the prototype is also experimentally tested under harmonic displacement input, and is simulated under both harmonic displacement and force input. The experiments illustrate that while the VMT parameters of a single layer can be optimized to a particular harmonic load amplitude, having two layers with softer and stiffer VMTs allows the system to show good energy dissipation characteristics at different harmonic load amplitude levels. Chapter 5 examines using PAM inclusions within planar hexagonal cells as variable stiffness springs to create a variable modulus cellular structure. The proposed concept is envisioned as a first step toward a structural unit cell whose in-plane modulus in a given direction can be tuned based on the orientation of PAMs within the cell and the pressure supplied to the individual muscles. To begin, a pin-jointed cell is considered, loaded in the horizontal direction, with three PAMs (one vertical PAM and two horizontal PAMs) oriented in an "H" configuration between the vertices of the cell. A method for calculation of the hexagonal cell modulus is introduced, as is an expression for the balance of tensile forces between the horizontal and vertical PAMs. An aluminum hexagonal unit cell is fabricated and simulation of the hexagonal cell with PAM inclusions is then compared to experimental measurement of the unit cell modulus in the horizontal direction over a pressure range up to 682 kPa. An increase in cell modulus of 200% and a corresponding change in cell angle of 1.53 degrees are demonstrated experimentally. A design study via simulation predicts that differential pressurization of the PAMs up to 1992 kPa can increase the cell modulus in the horizontal direction by a factor of 6.66 with a change in cell angle of only 2.75 degrees. Additionally, simulation predicts that variation of unpressurized cell equilibrium angle and vertical wall length coefficient can result in changes in cell modulus greater than 1000%. A drawback of the pin-jointed cell with PAM inclusions is that it is inherently underconstrained. To solve this problem, the pin-jointed cell walls are replaced with a continuous Delrin hexagon which gives the cell kinematic stability and allows for experimental measurement of modulus in both the horizontal and vertical directions. The Delrin cell is designed to have a modulus on the same order as that of the pin-jointed cell at zero pressure and is experimentally measured without the PAM inclusions. These measurements validate the use of a combined flexural/hinging analytical model that accurately simulates the cell modulus. This analysis is then combined with the PAM force equations to model the complete hexagonal cell with PAM inclusions. Simulation and experimental measurement of the cell modulus with the PAM inclusions are compared in both the horizontal and vertical directions over an expanded pressure range up to 1302 kPa. The interplay between the contraction ratio and pressure in orthogonal sets of PAMs is highlighted as the primary driver of overall cell modulus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, David S.
2017-06-13
We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although amore » large T c value is unlikely.« less
NASA Astrophysics Data System (ADS)
Tahir, Muhammad Nawaz; Herzberger, Jana; Natalio, Filipe; Köhler, Oskar; Branscheid, Robert; Mugnaioli, Enrico; Ksenofontov, Vadim; Panthöfer, Martin; Kolb, Ute; Frey, Holger; Tremel, Wolfgang
2016-05-01
One endeavour of nanochemistry is the bottom-up synthesis of functional mesoscale structures from basic building blocks. We report a one-pot wet chemical synthesis of Ni@γ-Fe2O3 superparticles containing Ni cores densely covered with highly oriented γ-Fe2O3 (maghemite) nanorods (NRs) by controlled reduction/decomposition of nickel acetate (Ni(ac)2) and Fe(CO)5. Automated diffraction tomography (ADT) of the Ni-Fe2O3 interface in combination with Mössbauer spectroscopy showed that selective and oriented growth of the γ-Fe2O3 nanorods on the Ni core is facilitated through the formation of a Fe0.05Ni0.95 alloy and the appearance of superstructure features that may reduce strain at the Ni-Fe2O3 interface. The common orientation of the maghemite nanorods on the Ni core of the superparticles leads to a greatly enhanced magnetization. After functionalization with a catechol-functional polyethylene glycol (C-PEG) ligand the Ni@γ-Fe2O3 superparticles were dispersible in water.One endeavour of nanochemistry is the bottom-up synthesis of functional mesoscale structures from basic building blocks. We report a one-pot wet chemical synthesis of Ni@γ-Fe2O3 superparticles containing Ni cores densely covered with highly oriented γ-Fe2O3 (maghemite) nanorods (NRs) by controlled reduction/decomposition of nickel acetate (Ni(ac)2) and Fe(CO)5. Automated diffraction tomography (ADT) of the Ni-Fe2O3 interface in combination with Mössbauer spectroscopy showed that selective and oriented growth of the γ-Fe2O3 nanorods on the Ni core is facilitated through the formation of a Fe0.05Ni0.95 alloy and the appearance of superstructure features that may reduce strain at the Ni-Fe2O3 interface. The common orientation of the maghemite nanorods on the Ni core of the superparticles leads to a greatly enhanced magnetization. After functionalization with a catechol-functional polyethylene glycol (C-PEG) ligand the Ni@γ-Fe2O3 superparticles were dispersible in water. Electronic supplementary information (ESI) available: Synthesis scheme of catechol-PEG (Scheme S1), GPC trace (RI, DMF, PEG standard) of CA-PEG67 (Fig. S1) 1H NMR spectrum (400 MHz, methanol-d4) of catechol-PEG (C-PEG67) (Fig. S2), EDX spectrum of Ni0.95Fe0.05 precursors (Fig. S3), HRTEM of a superparticle in two view directions (Fig. S4), TEM images of Ni0.95 Fe0.05@γ-Fe2O3 nanoparticles at different growth stages (Fig. S5), digital photograph of reaction mixture at different temperatures (Fig. S6), orientation of the lattice of the Ni0.95Fe0.05 core with respect to that of triangular and hexagonal superparticles (Fig. S7), geometrical relations between hexagonal lattice of the Ni0.95Fe0.05 core and cubic cell of Ni (Fig. S8), magnetic properties of the Ni@γ-Fe2O3 core shell nanoparticles (Fig. S9). See DOI: 10.1039/c6nr00065g
ERIC Educational Resources Information Center
Chan, Matthew
2017-01-01
This study provides an overview and a snapshot of new student orientation (NSO) and new student e-orientation (NSEO) programs, with a focus on the content and feature analysis of the NSEOs. It offers an overview of currently available NSO programs of 100 randomly selected community colleges from a master list of nearly 900 community colleges in…
NASA Astrophysics Data System (ADS)
Kasukabe, S.; Mihama, K.
1986-12-01
Magnesium ultrafine particles have clear-cut habits such as hexagonal plates and polyhedra. When magnesium is evaporated downwards using a tube with holes at the bottom, hexagonal plates are formed exclusively throughout the smoke. Their size is controlled by selecting an inert gas. The growth process of an hexagonal plate can be considered to be a coalescent growth of other hexagonal plates.
Thermal conductivity of hexagonal Si, Ge, and Si1-xGex alloys from first-principles
NASA Astrophysics Data System (ADS)
Gu, Xiaokun; Zhao, C. Y.
2018-05-01
Hexagonal Si and Ge with a lonsdaleite crystal structure are allotropes of silicon and germanium that have recently been synthesized. These materials as well as their alloys are promising candidates for novel applications in optoelectronics. In this paper, we systematically study the phonon transport and thermal conductivity of hexagonal Si, Ge, and their alloys by using the first-principle-based Peierls-Boltzmann transport equation approach. Both three-phonon and four-phonon scatterings are taken into account in the calculations as the phonon scattering mechanisms. The thermal conductivity anisotropy of these materials is identified. While the thermal conductivity parallel to the hexagonal plane for hexagonal Si and Ge is found to be larger than that perpendicular to the hexagonal plane, alloying effectively tunes the thermal conductivity anisotropy by suppressing the thermal conductivity contributions from the middle-frequency phonons. The importance of four-phonon scatterings is assessed by comparing the results with the calculations without including four-phonon scatterings. We find that four-phonon scatterings cannot be ignored in hexagonal Si and Ge as the thermal conductivity would be overestimated by around 10% (40%) at 300 K (900) K. In addition, the phonon mean free path distribution of hexagonal Si, Ge, and their alloys is also discussed.
Electromagnetic wave extinction within a forested canopy
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1989-01-01
A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.
Random waves in the brain: Symmetries and defect generation in the visual cortex
NASA Astrophysics Data System (ADS)
Schnabel, M.; Kaschube, M.; Löwel, S.; Wolf, F.
2007-06-01
How orientation maps in the visual cortex of the brain develop is a matter of long standing debate. Experimental and theoretical evidence suggests that their development represents an activity-dependent self-organization process. Theoretical analysis [1] exploring this hypothesis predicted that maps at an early developmental stage are realizations of Gaussian random fields exhibiting a rigorous lower bound for their densities of topological defects, called pinwheels. As a consequence, lower pinwheel densities, if observed in adult animals, are predicted to develop through the motion and annihilation of pinwheel pairs. Despite of being valid for a large class of developmental models this result depends on the symmetries of the models and thus of the predicted random field ensembles. In [1] invariance of the orientation map's statistical properties under independent space rotations and orientation shifts was assumed. However, full rotation symmetry appears to be broken by interactions of cortical neurons, e.g. selective couplings between groups of neurons with collinear orientation preferences [2]. A recently proposed new symmetry, called shift-twist symmetry [3], stating that spatial rotations have to occur together with orientation shifts in order to be an appropriate symmetry transformation, is more consistent with this organization. Here we generalize our random field approach to this important symmetry class. We propose a new class of shift-twist symmetric Gaussian random fields and derive the general correlation functions of this ensemble. It turns out that despite strong effects of the shift-twist symmetry on the structure of the correlation functions and on the map layout the lower bound on the pinwheel densities remains unaffected, predicting pinwheel annihilation in systems with low pinwheel densities.
Chromosome Gene Orientation Inversion Networks (GOINs) of Plasmodium Proteome.
Quevedo-Tumailli, Viviana F; Ortega-Tenezaca, Bernabé; González-Díaz, Humbert
2018-03-02
The spatial distribution of genes in chromosomes seems not to be random. For instance, only 10% of genes are transcribed from bidirectional promoters in humans, and many more are organized into larger clusters. This raises intriguing questions previously asked by different authors. We would like to add a few more questions in this context, related to gene orientation inversions. Does gene orientation (inversion) follow a random pattern? Is it relevant to biological activity somehow? We define a new kind of network coined as the gene orientation inversion network (GOIN). GOIN's complex network encodes short- and long-range patterns of inversion of the orientation of pairs of gene in the chromosome. We selected Plasmodium falciparum as a case of study due to the high relevance of this parasite to public health (causal agent of malaria). We constructed here for the first time all of the GOINs for the genome of this parasite. These networks have an average of 383 nodes (genes in one chromosome) and 1314 links (pairs of gene with inverse orientation). We calculated node centralities and other parameters of these networks. These numerical parameters were used to study different properties of gene inversion patterns, for example, distribution, local communities, similarity to Erdös-Rényi random networks, randomness, and so on. We find clues that seem to indicate that gene orientation inversion does not follow a random pattern. We noted that some gene communities in the GOINs tend to group genes encoding for RIFIN-related proteins in the proteome of the parasite. RIFIN-like proteins are a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Consequently, we used these centralities as input of machine learning (ML) models to predict the RIFIN-like activity of 5365 proteins in the proteome of Plasmodium sp. The best linear ML model found discriminates RIFIN-like from other proteins with sensitivity and specificity 70-80% in training and external validation series. All of these results may point to a possible biological relevance of gene orientation inversion not directly dependent on genetic sequence information. This work opens the gate to the use of GOINs as a tool for the study of the structure of chromosomes and the study of protein function in proteome research.
NASA Astrophysics Data System (ADS)
Niwase, Keisuke; Terasawa, Mititaka; Honda, Shin-ichi; Niibe, Masahito; Hisakuni, Tomohiko; Iwata, Tadao; Higo, Yuji; Hirai, Takeshi; Shinmei, Toru; Ohfuji, Hiroaki; Irifune, Tetsuo
2018-04-01
The super hard material of "compressed graphite" (CG) has been reported to be formed under compression of graphite at room temperature. However, it returns to graphite under decompression. Neutron-irradiated graphite, on the other hand, is a unique material for the synthesis of a new carbon phase, as reported by the formation of an amorphous diamond by shock compression. Here, we investigate the change of structure of highly oriented pyrolytic graphite (HOPG) irradiated with neutrons to a fluence of 1.4 × 1024 n/m2 under static pressure. The neutron-irradiated HOPG sample was compressed to 15 GPa at room temperature and then the temperature was increased up to 1500 °C. X-ray diffraction, high-resolution transmission electron microscopy on the recovered sample clearly showed the formation of a significant amount of quenchable-CG with ordinary graphite. Formation of hexagonal and cubic diamonds was also confirmed. The effect of irradiation-induced defects on the synthesis of quenchable-CG under high pressure and high temperature treatment was discussed.
Novel Gas Sensor Based on ZnO Nanorod Circular Arrays for C2H5OH Gas Detection.
Jianjiao, Zhang; Hongyan, Yue; Erjun, Guo; Shaolin, Zhang; Liping, Wang; Chunyu, Zhang; Xin, Gao; Jing, Chang; Hong, Zhang
2015-03-01
Novel side-heating gas sensor based on ZnO nanorod circular arrays was firstly fabricated by hydrothermal treatment assisted with a kind of simple dip-coating technique. The structure and morphologies of ZnO nanorods were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), respectively. XRD result indicates that the obtained ZnO nanorods have good crystalline with the hexagonal wurtzite structure. SEM result indicates that ZnO nanorod arrays are vertically growth on the surface of ceramic tube of side-heating sensor with controlled diameter and length, narrow size distribution and high orientation. The gas sensing properties of ZnO nanorod circular arrays are also evaluated. Comparative to the sensor based on scattered ZnO nanorods responding to 25 ppm H2, CO, C6H5CH3 and C2H5OH gas, respectively, the sensing values of high orientation gas sensor are generally increased by 5%. This novel sensor has good application promising for the fabrication of cost effective and high performance gas sensors.
Catalyst shape engineering for anisotropic cross-sectioned nanowire growth
NASA Astrophysics Data System (ADS)
Calahorra, Yonatan; Kelrich, Alexander; Cohen, Shimon; Ritter, Dan
2017-01-01
The ability to engineer material properties at the nanoscale is a crucial prerequisite for nanotechnology. Hereunder, we suggest and demonstrate a novel approach to realize non-hemispherically shaped nanowire catalysts, subsequently used to grow InP nanowires with a cross section anisotropy ratio of up to 1:1.8. Gold was deposited inside high aspect ratio nanotrenches in a 5 nm thick SiNx selective area mask; inside the growth chamber, upon heating to 455 °C, the thin gold stripes agglomerated, resulting in an ellipsoidal dome (hemiellipsoid). The initial shape of the catalyst was preserved during growth to realize asymmetrically cross-sectioned nanowires. Moreover, the crystalline nature of the nanowire side facets was found to depend on the nano-trench orientation atop the substrate, resulting in hexagonal or octagonal cross-sections when the nano-trenches are aligned or misaligned with the [1¯10] orientation atop a [111]B substrate. These results establish the role of catalyst shape as a unique tool to engineer nanowire growth, potentially allowing further control over its physical properties.
NASA Astrophysics Data System (ADS)
Yoon, Im Taek; Cho, Hak Dong; Lee, Sejoon; Roshchupkin, Dmitry V.
2018-02-01
We have fabricated as-grown ZnO nanorods (NRs) and carbon-assisted NR arrays on semi-insulating (100)-oriented Si substrates. We compared the structural and luminescent properties of them. High-resolution transmission microscopy, field emission scanning electron microscopy, x-ray diffraction and energy-dispersive x-ray revealed that the as-grown ZnO NRs and carbon-assisted ZnO NRs were single crystals with a hexagonal wurtzite structure, and grew with a c-axis orientation perpendicular to the Si substrate. These measurements show that the carbon-assisted ZnO NRs were better synthesized vertically on an Si substrate compared to the as-grown ZnO NRs. Photoluminescence measurements showed that luminescence intensity of the carbon-assisted ZnO NRs was enhanced compared to the as-grown ZnO NRs. The enhanced luminescence intensity of the carbon-assisted ZnO demonstrates the possible improvement in the performance of photovoltaic nanodevices based on ZnO-like materials. This method can be applied to the fabrication of well-aligned ZnO NRs used widely in optoelectronic devices.
NASA Astrophysics Data System (ADS)
Chen, Daming; Chen, Zhuo; Wang, Guijuan; Chen, Yong; Li, Yuanxun; Liu, Yingli
2017-12-01
The microstructure, magnetic and millimeter-wave properties of high oriented barium hexaferrite (BaAlxFe12-xO19) thin films with Al doping level x from 0 to 2 are reported. The films were grown on Pt/TiO2/SiO2/Si substrate by Sol-gel method. It is found that with increasing x from 0 to 2 the hexagonal grain disappear, together with Curie temperature dropped from 449 °C to 332 °C and saturated magnetization (4πMs) decreased from 3.8 kG to 1.9 kG, it is attributed to the fact that the Fe ions were substituted by non-magnetic Al ions, leading to the Fe3+-O-Fe3+ super-exchange interaction became weak. The ferromagnetic resonance (FMR) measurement showed that the FMR linewidths is as low as 113 Oe @ 58 GHz, and the FMR frequency shifted to higher frequency range when increasing Al doping level. These result offer the potential application of barium ferrite thin films in tunable millimeter wave devices such as filter, circulator and isolator.
Molecular dynamics of the water liquid-vapor interface
NASA Technical Reports Server (NTRS)
Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)
1987-01-01
The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K.
Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Schutter, B., E-mail: deschutter.bob@ugent.be; Detavernier, C.; Van Stiphout, K.
2016-04-07
We studied the solid-phase reaction between a thin Ni film and a single crystal Ge(001) or Ge(111) substrate during a ramp anneal. The phase formation sequence was determined using in situ X-ray diffraction and in situ Rutherford backscattering spectrometry (RBS), while the nature and the texture of the phases were studied using X-ray pole figures and transmission electron microscopy. The phase sequence is characterized by the formation of a single transient phase before NiGe forms as the final and stable phase. X-ray pole figures were used to unambiguously identify the transient phase as the ϵ-phase, a non-stoichiometric Ni-rich germanide withmore » a hexagonal crystal structure that can exist for Ge concentrations between 34% and 48% and which forms with a different epitaxial texture on both substrate orientations. The complementary information gained from both RBS and X-ray pole figure measurements revealed a simultaneous growth of both the ϵ-phase and NiGe over a small temperature window on both substrate orientations.« less
Micro-structure and motion of two-dimensional dense short spherocylinder liquids
NASA Astrophysics Data System (ADS)
Wang, Wen; Lin, Jyun-Ting; Su, Yen-Shuo; I, Lin
2018-03-01
We numerically investigate the micro-structure and motion of 2D liquids composed of dense short spherocylinders, by reducing the shape aspect ratio from 3. It is found that reducing shape aspect ratio from 3 causes a smooth transition from heterogeneous structures composed of crystalline ordered domains with good tetratic alignment order to those with good hexagonal bond-orientational order at an aspect ratio equaling 1.35. In the intermediate regime, both structural orders are strongly deteriorated, and the translational hopping rate reaches a maximum due to the poor particle interlocking of the disordered structure. Shortening rod length allows easier rotation, induces monotonic increase of rotational hopping rates, and resumes the separation of rotational and translational hopping time scales at the small aspect ratio end, after the crossover of their rates in the intermediate regime. At the large shape aspect ratio end, the poor local tetratic order has the same positive effects on facilitating local rotational and translational hopping. In contrast, at the small shape aspect ratio end, the poor local bond orientational order has the opposite effects on facilitating local rotational and translational hopping.
Landau level splitting due to graphene superlattices
NASA Astrophysics Data System (ADS)
Pal, G.; Apel, W.; Schweitzer, L.
2012-06-01
The Landau level spectrum of graphene superlattices is studied using a tight-binding approach. We consider noninteracting particles moving on a hexagonal lattice with an additional one-dimensional superlattice made up of periodic square potential barriers, which are oriented along the zigzag or along the armchair directions of graphene. In the presence of a perpendicular magnetic field, such systems can be described by a set of one-dimensional tight-binding equations, the Harper equations. The qualitative behavior of the energy spectrum with respect to the strength of the superlattice potential depends on the relation between the superlattice period and the magnetic length. When the potential barriers are oriented along the armchair direction of graphene, we find for strong magnetic fields that the zeroth Landau level of graphene splits into two well-separated sublevels, if the width of the barriers is smaller than the magnetic length. In this situation, which persists even in the presence of disorder, a plateau with zero Hall conductivity can be observed around the Dirac point. This Landau level splitting is a true lattice effect that cannot be obtained from the generally used continuum Dirac-fermion model.
Effect of Sm content on energy product of rapidly quenched and oriented SmCo5 ribbons
NASA Astrophysics Data System (ADS)
Zhang, Wenyong; Li, Xingzhong; Valloppilly, Shah
2015-03-01
The Sm-content dependence of phase composition, anisotropy, and other magnetic properties of Sm1+ δ Co5 ( δ ≤ 0.12) ribbons melt spun at 10 m/s has been studied. The samples consist of hexagonal SmCo5 grains whose c axes are preferentially aligned along the long direction of the ribbon. The lattice parameter a and the cell volume ( V) increase with increasing Sm content δ, whereas c decreases. Sm addition appears to improve the degree of the preferred orientation of the c-axis and to increase the mean grain size, which weakens the effective intergranular exchange coupling. Therefore, the remanence ratio, coercivity, and squareness of the hysteresis loops are significantly enhanced. The remanence ratio of 0.91 and the maximum energy product of 21.2 MGOe, which is the highest value reported so far for Sm-Co ribbons, are achieved for δ = 0.06. High performance in combination with simple processing may facilitate high-temperature applications for anisotropic Sm1+ δ Co5 ribbons.
Lyotropic chromonic liquid crystals as materials for optical and biosensing applications
NASA Astrophysics Data System (ADS)
Tortora, L.; Park, H.-S.; Antion, K.; Finotello, D.; Lavrentovich, O. D.
2007-02-01
Lyotropic chromonic liquid crystals (LCLCs) are formed by molecules with rigid polyaromatic cores and ionic groups at the periphery that form aggregates while in water. Most of the LCLCs are not toxic to the biological cells and can be used as an amplifying medium in real-time biosensors. The detector is based on the principle that the immune aggregates growing in the LCLC bulk trigger the director distortions. Self-assembly of LCLC molecules into oriented structures allows one to use them in various structured films. For example, layer-by-layer electrostatic deposition produces monomolecular layers and stacks of layers of LCLC with long-range in-plane orientational order which sets them apart from the standard Langmuir-Blodgett films. We demonstrate that divalent and multivalent salts as well as acidic and basic materials that alter pH of the LCLC water solutions, are drastically modifying the phase diagrams of LCLC, from shifting the phase transition temperatures by tens of degrees, to causing condensation of the LCLC aggregates into more compact structures, such as birefringent bundles or formation of a columnar hexagonal phase from the nematic phase.
NASA Astrophysics Data System (ADS)
He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo
2018-05-01
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.
De, Anulekha; Mondal, Sucheta; Sahoo, Sourav; Barman, Saswati; Otani, Yoshichika; Mitra, Rajib Kumar
2018-01-01
Ferromagnetic antidot arrays have emerged as a system of tremendous interest due to their interesting spin configuration and dynamics as well as their potential applications in magnetic storage, memory, logic, communications and sensing devices. Here, we report experimental and numerical investigation of ultrafast magnetization dynamics in a new type of antidot lattice in the form of triangular-shaped Ni80Fe20 antidots arranged in a hexagonal array. Time-resolved magneto-optical Kerr effect and micromagnetic simulations have been exploited to study the magnetization precession and spin-wave modes of the antidot lattice with varying lattice constant and in-plane orientation of the bias-magnetic field. A remarkable variation in the spin-wave modes with the orientation of in-plane bias magnetic field is found to be associated with the conversion of extended spin-wave modes to quantized ones and vice versa. The lattice constant also influences this variation in spin-wave spectra and spin-wave mode profiles. These observations are important for potential applications of the antidot lattices with triangular holes in future magnonic and spintronic devices. PMID:29719763
Li, Yiping; Dai, Xiaohan; Bai, Yunyang; Liu, Yun; Wang, Yuehong; Liu, Ousheng; Yan, Fei; Tang, Zhangui; Zhang, Xuehui; Deng, Xuliang
2017-01-01
It has been proven that the surface topographic cues of fiber arrangement can induce osteogenic differentiation of mesenchymal stem cells. However, this effect alone is weak and insufficient to meet the needs of regenerative medicine. In this work, electroactivity concept was introduced to enhance the osteoinductivity of fibrous scaffolds. The randomly oriented and aligned electroactive fibrous scaffolds of poly-(l-lactic acid) (PLLA) with incorporation of ferroelectric ceramic BaTiO3 (BTO) nanoparticles (NPs) were fabricated by electrospinning. Physicochemical properties, including fiber morphology, microstructure, composition, thermal stability, surface roughness, and surface wettability, of these fibrous scaffolds were studied. The dielectric properties of the scaffolds were evaluated. The results showed that the randomly oriented BTO/PLLA composite fibrous scaffolds had the highest dielectric permittivity of 1.19, which is of the same order of magnitude as the natural bone. The combined effects of fiber orientation and electrical activity on the osteogenic responses of bone marrow mesenchymal stem cells (BM-MSCs) were specifically investigated. Randomly oriented composite fibrous scaffolds significantly promoted polygonal spreading and encouraged early osteogenic differentiation in BM-MSCs, whereas aligned composite fibrous scaffolds promoted cell elongation and discouraged osteogenic differentiation. These results evidenced that randomly fiber orientation and biomimetic electric activity have combining effects on osteogenic differentiation of BM-MSCs. Our findings indicate that coupling effects of multi-physical properties should be paid more attention to mimic the microenvironment for enhancing osteogenic differentiation of BM-MSCs. PMID:28603415
Pattern formations and optimal packing.
Mityushev, Vladimir
2016-04-01
Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.
Comparison of presumptive blood test kits including hexagon OBTI.
Johnston, Emma; Ames, Carole E; Dagnall, Kathryn E; Foster, John; Daniel, Barbara E
2008-05-01
Four presumptive blood tests, Hexagon OBTI, Hemastix(R), Leucomalachite green (LMG), and Kastle-Meyer (KM) were compared for their sensitivity in the identification of dried bloodstains. Stains of varying blood dilutions were subjected to each presumptive test and the results compared. The Hexagon OBTI buffer volume was also reduced to ascertain whether this increased the sensitivity of the kit. The study found that Hemastix(R) was the most sensitive test for trace blood detection. Only with the reduced buffer volume was the Hexagon OBTI kit as sensitive as the LMG and KM tests. However, the Hexagon OBTI kit has the advantage of being a primate specific blood detection kit. This study also investigated whether the OBTI buffer within the kit could be utilized for DNA profiling after presumptive testing. The results show that DNA profiles can be obtained from the Hexagon OBTI kit buffer directly.
NASA Astrophysics Data System (ADS)
Luo, Kang; Wu, Jian; Yi, Hong-Liang; Liu, Lin-Hua; Tan, He-Ping
2018-05-01
A regular hexagonal pattern of three-dimensional electroconvective flow induced by unipolar injection in dielectric liquids is numerically observed by solving the fully coupled governing equations using the lattice Boltzmann method. A small-amplitude perturbation in the form of a spatially periodic pattern of hexagonal cells is introduced initially. The transient development of convective cells that undergo a sequence of transitions agrees with the idea of flow seeking an optimal scale. Stable hexagonal convective cells and their subcritical bifurcation together with a hysteresis loop are clearly observed. In addition, the stability of the hexagonal flow pattern is analyzed in a wide range of relevant parameters, including the electric Rayleigh number T , nondimensional mobility M , and wave number k . It is found that centrally downflowing hexagonal cells, which are characterized by the central region being empty of charge, are preferred in the system.
NASA Astrophysics Data System (ADS)
Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.
2018-05-01
Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.
Control of Nanomaterial Self-Assembly in Ultrasonically Levitated Droplets.
Seddon, Annela M; Richardson, Sam J; Rastogi, Kunal; Plivelic, Tomás S; Squires, Adam M; Pfrang, Christian
2016-04-07
We demonstrate that acoustic trapping can be used to levitate and manipulate droplets of soft matter, in particular, lyotropic mesophases formed from self-assembly of different surfactants and lipids, which can be analyzed in a contact-less manner by X-ray scattering in a controlled gas-phase environment. On the macroscopic length scale, the dimensions and the orientation of the particle are shaped by the ultrasonic field, while on the microscopic length scale the nanostructure can be controlled by varying the humidity of the atmosphere around the droplet. We demonstrate levitation and in situ phase transitions of micellar, hexagonal, bicontinuous cubic, and lamellar phases. The technique opens up a wide range of new experimental approaches of fundamental importance for environmental, biological, and chemical research.
NASA Astrophysics Data System (ADS)
Vermaak, J. S.; Raubenheimer, D.
1988-01-01
An in-situ electron microscope technique was utilized to observe directly the amorphous-to-crystalline phase transformation, the isothermal growth rates, as well as the orientation and structure of the recrystallized films for the Te1-xSex alloy system for x=0.2, 0.3 and 0.4. Activation energies of E=0.91, 0.93 and 0.96 eV and crystallization temperatures of Tc=-14, 81.5 and 85°C for the three alloys, respectively, were found. In all three cases the crystallization process originated from single crystalline nuclei with a hexagonal structure and with the c-axis in general parallel to the substrate surface.
Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.
Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung
2007-01-01
GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along <111> directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs<111> nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N, Rekha T.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in
Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistributionmore » of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.« less
Zn nanoparticle formation in FIB irradiated single crystal ZnO
NASA Astrophysics Data System (ADS)
Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.
2018-03-01
We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.
NASA Astrophysics Data System (ADS)
Arjmand, Yaser; Eshghi, Hosein
2016-03-01
In this paper, ZnO nanostructures have been synthesized by thermal evaporation process using metallic zinc powder in the presence of oxygen on p-Si (100) at different distances from the boat. The structural and optical characterizations have been carried out. The morphological study shows various shape nanostructures. XRD data indicate that all samples have a polycrystalline wurtzite hexagonal structure in such a way that the closer sample has a preferred orientation along (101) while the ones farther are grown along (002) direction. From the structural and optical data analysis, we found that the induced strains are the main parameter controlling the UV/green peaks ratios in the PL spectra of the studied samples.
Refusing to Twist: Demonstration of a Line Hexatic Phase in DNA Liquid Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strey, H. H.; NICHD/LPSB, National Institutes of Health, Building 12A/2041, Bethesda, Maryland 20892-5626; Wang, J.
2000-04-03
We report conclusive high resolution small angle x-ray scattering evidence that long DNA fragments form an untwisted line hexatic phase between the cholesteric and the crystalline phases. The line hexatic phase is a liquid-crystalline phase with long-range hexagonal bond-orientational order, long-range nematic order, but liquidlike, i.e., short-range, positional order. So far, it has not been seen in any other three dimensional system. By line-shape analysis of x-ray scattering data we found that positional order decreases when the line hexatic phase is compressed. We suggest that such anomalous behavior is a result of the chiral nature of DNA molecules. (c) 2000more » The American Physical Society.« less
NASA Astrophysics Data System (ADS)
Yu, Z. X.; Ma, Y. Z.; Zhao, Y. L.; Huang, J. B.; Wang, W. Z.; Moliere, M.; Liao, H. L.
2017-08-01
Solution precursor plasma spraying (SPPS) as a novel thermal spray method was employed to deposit nano-structured ZnO thin film using different formulations of the precursor solution. This article focuses on the influence of the solution composition on the preferential orientation of crystal growth, on crystal size and surface morphology of the resulting ZnO films. The trend of preferential growth along (002) lattice plane of ZnO film was studied by slow scanning X-ray diffraction using a specific coefficient P(002). It appears that the thermal spray process promotes the buildup of ZnO films preferentially oriented along the c-axis. The shape of single particle tends to change from round shaped beads to hexagonal plates by increasing the volume ratio of ethanol in the solvent. Both cauliflower and honeycomb-like surface morphologies featuring high specific surface area and roughness were obtained through the SPPS process by varying solution composition. These ZnO films are hydrophobic with contact angle as high as 136°, which is seemingly associated with micro reliefs developing high surface specific area. Then the gas sensing performances of ZnO films preferentially oriented along (002) face were tentatively predicted using the "first principle calculation method" and were compared with those of conventional films that are mainly oriented along the (101) face. The (002) face displays better hydrogen adsorption capability than the (101) face with much larger resulting changes in electrical resistance. In conclusion, the c-axis oriented ZnO films obtained through SSPS have favorable performances to be used as sensitive layer in gas sensing applications.
The lizard celestial compass detects linearly polarized light in the blue.
Beltrami, Giulia; Parretta, Antonio; Petrucci, Ferruccio; Buttini, Paola; Bertolucci, Cristiano; Foà, Augusto
2012-09-15
The present study first examined whether ruin lizards, Podarcis sicula, are able to orientate using plane-polarized light produced by an LCD screen. Ruin lizards were trained and tested indoors, inside a hexagonal Morris water maze positioned under an LCD screen producing white polarized light with a single E-vector, which provided an axial cue. White polarized light did not include wavelengths in the UV. Lizards orientated correctly either when tested with E-vector parallel to the training axis or after 90 deg rotation of the E-vector direction, thus validating the apparatus. Further experiments examined whether there is a preferential region of the light spectrum to perceive the E-vector direction of polarized light. For this purpose, lizards reaching learning criteria under white polarized light were subdivided into four experimental groups. Each group was tested for orientation under a different spectrum of plane-polarized light (red, green, cyan and blue) with equalized photon flux density. Lizards tested under blue polarized light orientated correctly, whereas lizards tested under red polarized light were completely disoriented. Green polarized light was barely discernible by lizards, and thus insufficient for a correct functioning of their compass. When exposed to cyan polarized light, lizard orientation performances were optimal, indistinguishable from lizards detecting blue polarized light. Overall, the present results demonstrate that perception of linear polarization in the blue is necessary - and sufficient - for a proper functioning of the sky polarization compass of ruin lizards. This may be adaptively important, as detection of polarized light in the blue improves functioning of the polarization compass under cloudy skies, i.e. when the alternative celestial compass based on detection of the sun disk is rendered useless because the sun is obscured by clouds.
Metastable phases of silver and gold in hexagonal structure
NASA Astrophysics Data System (ADS)
Jona, F.; Marcus, P. M.
2004-07-01
Metastable phases of silver and gold in hexagonal close-packed structures are investigated by means of first-principles total-energy calculations. Two different methods are employed to find the equilibrium states: determination of the minima along the hexagonal epitaxial Bain path, and direct determination of minima of the total energy by a new minimum-path procedure. Both metals have two equilibrium states at different values of the hexagonal axial ratio c/a. For both metals, the elastic constants show that the high-c/a states are stable, hence, since the ground states are face-centred cubic, these states represent hexagonal close-packed metastable phases. The elastic constants of the low-c/a states show that they are unstable.
1990-10-01
to economic, technological, spatial or logistic concerns, or involve training, man-machine interfaces, or integration into existing systems. Once the...probabilistic reasoning, mixed analysis- and simulation-oriented, mixed computation- and communication-oriented, nonpreemptive static priority...scheduling base, nonrandomized, preemptive static priority scheduling base, randomized, simulation-oriented, and static scheduling base. The selection of both
Orienting apples for imaging using their inertial properties and random apple loading
USDA-ARS?s Scientific Manuscript database
The inability to control apple orientation during imaging has hindered development of automated systems for sorting apples for defects such as bruises and for safety issues such as fecal contamination. Recently, a potential method for orienting apples based on their inertial properties was discovere...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Fei, E-mail: long.drf@gmail.com; Chi, Shangsen; Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083
Wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) hexagonal prisms were synthesized by a simple ultrasound-microwave solvothermal method. The product was characterized by XRD, FESEM, EDS, TEM, Raman and UV–vis spectrometer. The hexagonal prisms were 0.5–2 μm wide and 5–12 μm long. The PVP played an important role in the formation of the CZTS hexagonal prisms. In addition, the ultrasound-assisted microwave process was helpful for synthesis of wurtzite rather than kesterite phase CZTS. A nucleation–dissolution–recrystallization mechanism was also proposed to explain the growth of the CZTS hexagonal prisms. - Graphical abstract: Wurtzite Cu{sub 2}ZnSnS{sub 4} hexagonal prisms were synthesized by ultrasound-microwave solvothermal method.more » The ultrasound-assisted microwave process and PVP were useful to the growth of CZTS. A nucleation–dissolution–recrystallization growth mechanism was also proposed. - Highlights: • Wurtzite Cu{sub 2}ZnSnS{sub 4} was prepared by ultrasound-assisted microwave solvothermal method. • The wurtzite CZTS hexagonal prisms are demonstrated a band gap of 1.49 eV. • Synergistic effect of ultrasound and microwave is helpful to prepare Wurtzite CZTS. • PVP plays an important role in the formation of the CZTS hexagonal prisms. • Nucleation–dissolution–recrystallization growth mechanism of the CZTS was proposed.« less
Topographic Independent Component Analysis reveals random scrambling of orientation in visual space
Martinez-Garcia, Marina; Martinez, Luis M.
2017-01-01
Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps. PMID:28640816
Topographic Independent Component Analysis reveals random scrambling of orientation in visual space.
Martinez-Garcia, Marina; Martinez, Luis M; Malo, Jesús
2017-01-01
Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps.
Yang, Xiaomin; Wan, Lei; Xiao, Shuaigang; Xu, Yuan; Weller, Dieter K
2009-07-28
The directed self-assembly of block copolymer (BCP) offers a new route to perfect nanolithographic patterning at sub-50 nm length scale with molecular scale precision. We have explored the feasibility of using the BCP approach versus the conventional electron beam (e-beam) lithography to create highly dense dot patterns for bit-patterned media (BPM) applications. Cylinder-forming poly(styrene-b-methyl methacrylate) (PS-b-PMMA) directly self-assembled on a chemically prepatterned substrate. The nearly perfect hexagonal arrays of perpendicularly oriented cylindrical pores at a density of approximately 1 Terabit per square inch (Tb/in.(2)) are achieved over an arbitrarily large area. Considerable gains in the BCP process are observed relative to the conventional e-beam lithography in terms of the dot size variation, the placement accuracy, the pattern uniformity, and the exposure latitude. The maximum dimensional latitude in the cylinder-forming BCP patterns and the maximum skew angle that the BCP can tolerate have been investigated for the first time. The dimensional latitude restricts the formation of more than one lattice configuration in certain ranges. More defects in BCP patterns are observed when using low molecular weight BCP materials or on non-hexagonal prepatterns due to the dimensional latitude restriction. Finally, the limitations and challenges in the BCP approach that are associated with BPM applications will be briefly discussed.
Radiative Transfer and Satellite Remote Sensing of Cirrus Clouds Using FIRE-2-IFO Data
NASA Technical Reports Server (NTRS)
2000-01-01
Under the support of the NASA grant, we have developed a new geometric-optics model (GOM2) for the calculation of the single-scattering and polarization properties for arbitrarily oriented hexagonal ice crystals. From comparisons with the results computed by the finite difference time domain (FDTD) method, we show that the novel geometric-optics can be applied to the computation of the extinction cross section and single-scattering albedo for ice crystals with size parameters along the minimum dimension as small as approximately 6. We demonstrate that the present model converges to the conventional ray tracing method for large size parameters and produces single-scattering results close to those computed by the FDTD method for size parameters along the minimum dimension smaller than approximately 20. We demonstrate that neither the conventional geometric optics method nor the Lorenz-Mie theory can be used to approximate the scattering, absorption, and polarization features for hexagonal ice crystals with size parameters from approximately 5 to 20. On the satellite remote sensing algorithm development and validation, we have developed a numerical scheme to identify multilayer cirrus cloud systems using AVHRR data. We have applied this scheme to the satellite data collected over the FIRE-2-IFO area during nine overpasses within seven observation dates. Determination of the threshold values used in the detection scheme are based on statistical analyses of these satellite data.
Synthesis and energy applications of oriented metal oxide nanoporous films
NASA Astrophysics Data System (ADS)
Wu, Qingliu
This dissertation mainly addresses the synthesis of well-ordered mesoporous titania thin films by dip coating with PEO-PPO-PEO triblock copolymer surfactant template P123. Because P123 is composed of poly(ethylene oxide) [PEO] and poly(propylene oxide) [PPO] blocks, concentrations of ingredients are adjusted to tune the films' wall thickness, pore size and mesophase. Structural changes are consistent with partitioning of species among PEO blocks, PPO blocks, and the PEO/PPO interface. Titanates localize near PEO and increase wall thickness (by 5 nm to 7 nm). Depending on aging temperature, PPG either swells the PPO cores (when it is hydrophobic) or introduces large (>200 nm) voids (when it is hydrophilic but phase separates during heating). 1-butanol localizes at the PEO/PPO interface to favor a 3D hexagonal mesostructure. In another approach, anodizing Ti foils yields vertically aligned titania nanotubes arrays with exceptional stabilities as anodes in lithium ion batteries; they maintain capacities of 130-230 mAhg-1 over 200 cycles. No microstructural changes are induced by battery cycling and good electrical contact is maintained. A diffusion induced stress model suggests that thin-walled nanotubes arrays should be stable under testing conditions, and that ordered hexagonal columnar pore arrays should have both high charge/discharge rates and low stress development. KEY WORDS: materials synthesis, porous, thin film, alternative energy, self-assembly
Piezoelectric domains in the AlGaN hexagonal microrods: Effect of crystal orientations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivadasan, A. K., E-mail: sivankondazhy@gmail.com, E-mail: gm@igcar.gov.in, E-mail: dhara@igcar.gov.in; Dhara, Sandip, E-mail: sivankondazhy@gmail.com, E-mail: gm@igcar.gov.in, E-mail: dhara@igcar.gov.in; Mangamma, G., E-mail: sivankondazhy@gmail.com, E-mail: gm@igcar.gov.in, E-mail: dhara@igcar.gov.in
2016-05-07
Presently, the piezoelectric materials are finding tremendous applications in the micro-mechanical actuators, sensors, and self-powered devices. In this context, the studies pertaining to piezoelectric properties of materials in the different size ranges are very important for the scientific community. The III-nitrides are exceptionally important, not only for optoelectronic but also for their piezoelectric applications. In the present study, we synthesized AlGaN via self-catalytic vapor-solid mechanism by atmospheric pressure chemical vapor deposition technique on AlN base layer over intrinsic Si(100) substrate. The growth process is substantiated using X-ray diffraction and X-ray photoelectron spectroscopy. The Raman and photoluminescence studies reveal the formationmore » of AlGaN microrods in the wurtzite phase and ensure the high optical quality of the crystalline material. The single crystalline, direct wide band gap and hexagonally shaped AlGaN microrods are studied for understanding the behavior of the crystallites under the application of constant external electric field using the piezoresponse force microscopy. The present study is mainly focused on understanding the behavior of induced polarization for the determination of piezoelectric coefficient of AlGaN microrod along the c-axis and imaging of piezoelectric domains in the sample originating because of the angular inclination of AlGaN microrods with respect to its AlN base layers.« less
NASA Astrophysics Data System (ADS)
Ghafouri, Vahid; Shariati, Mohsen; Ebrahimzad, Akbar
2014-03-01
High-quality polycrystalline and single crystalline Indium-doped ZnO (ZnO:In) nanorods (NRs) have been synthesized on Si (100) substrates via a vapor transfer route in an oxygen-rich tube furnace. The morphology of the nanostructures and their distribution on the surface is highly related to distance between the substrate and evaporation sources. The morphology can be adjusted from micro-porous film to the vertically aligned hexagonal NRs by this distance. The diameter of the grown NRs varies between 50 and 200 nm, and their length mostly changes from 1 to 3 mm. EDS analysis indicated the presence of zinc, oxygen, and indium in the structures. FTIR measurements confirmed the existence of Zn-O and In-O bands in ZnO:In NRs. X-ray diffractions and SAED patterns showed that the vertically aligned hexagonal NRs have a preferential orientation along the (002) direction. Room-temperature photoluminescence (PL) spectra of NRs are dominated by a green band emission between 420 and 700 nm. The peak of the green emission has shifted in different samples, which is probably due to indium impurity. The results of the electrical transport measurement of the NRs showed that the amount of In impurity is effective in the increase of samples' conductivity.
An integral sunshade for optical reception antennas
NASA Technical Reports Server (NTRS)
Kerr, E. L.
1988-01-01
Optical reception antennas (telescopes) must be capable of receiving communications even when the deep-space laser source is located within a small angle of the Sun. Direst sunlight must not be allowed to shine on the primary reflector of an optical reception antenna, because too much light would be scattered into the signal detectors. A conventional sunshade that does not obstruct the antenna aperture would have to be about five times longer than its diameter in order to receive optical communications at a solar elongation of 12 degrees without interference. Such a long sunshade could not be accommodated within the dome of any existing large-aperture astronomical facility, and providing a new dome large enough would be prohibitively expensive. It is also desirable to reduce the amount of energy a space-based large-aperture optical reception facility would expend orienting a structure with such a sizable moment of inertia. Since a large aperture optical reception antenna will probably have a hexagonally segmented primary reflector, a sunshade consisting of hexagonal tubes can be mounted in alignment with the segmentation without producing any additional geometric obstruction. An analysis of the duration and recurrence of solar-conjunction communications outages (caused when a deep-space probe near an outer planet appears to be closer to the Sun than a given minimum solar elongation), and the design equations for the integral sunshade are appended.
NASA Astrophysics Data System (ADS)
Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi
2015-04-01
Considering only isotropic wave propagation and neglecting anisotropy in teleseismic tomography studies is a simplification obviously incongruous with current understanding of the mantle-lithosphere plate dynamics. Furthermore, in solely isotropic high-resolution tomography results, potentially significant artefacts (i.e., amplitude and/or geometry distortions of 3D velocity heterogeneities) may result from such neglect. Therefore, we have undertaken to develop a code for anisotropic teleseismic tomography (AniTomo), which will allow us to invert the relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. To accomplish that, we have modified frequently-used isotropic teleseismic tomography code Telinv (e.g., Weiland et al., JGR, 1995; Lippitsch, JGR, 2003; Karousova et al., GJI, 2013). Apart from isotropic velocity heterogeneities, a weak hexagonal anisotropy is assumed as well to be responsible for the observed P-wave travel-time residuals. Moreover, no limitations to orientation of the symmetry axis are prescribed in the code. We allow a search for anisotropy oriented generally in 3D, which represents a unique approach among recent trials that otherwise incorporate only azimuthal anisotopy into the body-wave tomography. The presented code for retrieving anisotropy in 3D thus enables its direct applications to datasets from tectonically diverse regions. In this contribution, we outline the theoretical background of the AniTomo anisotropic tomography code. We parameterize the mantle lithosphere and asthenosphere with an orthogonal grid of nodes with various values of isotropic velocities, as well as of strength and orientation of anisotropy in 3D, which is defined by azimuth and inclination of either fast or slow symmetry axis of the hexagonal approximation of the media. Careful testing of the new code on synthetics, concentrating on code functionality, strength and weaknesses, is a necessary step before AniTomo is applied to real datasets. We examine various aspects coming along with anisotropic tomography such as setting a starting anisotropic model and parameters controlling the inversion, and particularly influence of a ray coverage on resolvability of individual anisotropic parameters. Synthetic testing also allows investigation of the well-known trade-off between effects of P-wave anisotropy and isotropic heterogeneities. Therefore, the target synthetic models are designed to represent schematically different heterogeneous anisotropic structures of the upper mantle. Testing inversion mode of the AniTomo code, considering an azimuthally quasi-equal distribution of rays and teleseismic P-wave incidences, shows that a separation of seismic anisotropy and isotropic velocity heterogeneities is plausible and that the correct orientation of the symmetry axes in a model can be found within three iterations for well-tuned damping factors.
NASA Astrophysics Data System (ADS)
Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie
2009-10-01
Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of concept for hexagonal which has great dominance.
Novel high pressure hexagonal OsB2 by mechanochemistry
NASA Astrophysics Data System (ADS)
Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.
2014-07-01
Hexagonal OsB2, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB2 phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from -225 °C to 1050 °C. The hexagonal OsB2 powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB2 at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods.
A scattering model for forested area
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1988-01-01
A forested area is modeled as a volume of randomly oriented and distributed disc-shaped, or needle-shaped leaves shading a distribution of branches modeled as randomly oriented finite-length, dielectric cylinders above an irregular soil surface. Since the radii of branches have a wide range of sizes, the model only requires the length of a branch to be large compared with its radius which may be any size relative to the incident wavelength. In addition, the model also assumes the thickness of a disc-shaped leaf or the radius of a needle-shaped leaf is much smaller than the electromagnetic wavelength. The scattering phase matrices for disc, needle, and cylinder are developed in terms of the scattering amplitudes of the corresponding fields which are computed by the forward scattering theorem. These quantities along with the Kirchoff scattering model for a randomly rough surface are used in the standard radiative transfer formulation to compute the backscattering coefficient. Numerical illustrations for the backscattering coefficient are given as a function of the shading factor, incidence angle, leaf orientation distribution, branch orientation distribution, and the number density of leaves. Also illustrated are the properties of the extinction coefficient as a function of leaf and branch orientation distributions. Comparisons are made with measured backscattering coefficients from forested areas reported in the literature.
Kolambkar, Yash M.; Bajin, Mehmet; Wojtowicz, Abigail; Hutmacher, Dietmar W.; García, Andrés J.
2014-01-01
Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration. PMID:24020454
Loh, Ne-Te Duane
2011-08-01
These 2000 single-shot diffraction patterns include were either background-scattering only or hits (background-scattering plus diffraction signal from sub-micron ellipsoidal particles at random, undetermined orientations). Candidate hits were identified by eye, and the remainder were presumed as background. 54 usable, background-subtracted hits in this set (procedure in referenced article) were used to reconstruct the 3D diffraction intensities of the average ellipsoidal particle.
Pyramidal dislocation induced strain relaxation in hexagonal structured InGaN/AlGaN/GaN multilayer
NASA Astrophysics Data System (ADS)
Yan, P. F.; Du, K.; Sui, M. L.
2012-10-01
Due to the special dislocation slip systems in hexagonal lattice, dislocation dominated deformations in hexagonal structured multilayers are significantly different from that in cubic structured systems. In this work, we have studied the strain relaxation mechanism in hexagonal structured InGaN/AlGaN/GaN multilayers with transmission electron microscopy. Due to lattice mismatch, the strain relaxation was found initiated with the formation of pyramidal dislocations. Such dislocations locally lie at only one preferential slip direction in the hexagonal lattice. This preferential slip causes a shear stress along the basal planes and consequently leads to dissociation of pyramidal dislocations and operation of the basal plane slip system. The compressive InGaN layers and "weak" AlGaN/InGaN interfaces stimulate the dissociation of pyramidal dislocations at the interfaces. These results enhance the understanding of interactions between dislocations and layer interfaces and shed new lights on deformation mechanism in hexagonal-lattice multilayers.
NASA Astrophysics Data System (ADS)
Supatutkul, C.; Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.
2017-09-01
This work reports the structures and electronic properties of two-dimensional (2D) ZnO in hexagonal, (4,8)-tetragonal, and (4,4)-tetragonal monolayer using GGA and HSE-hybrid functional. The calculated results show that the band gaps of 2D ZnO sheets are wider than those of the bulk ZnO. The hexagonal and (4,8)-tetragonal phases yield direct band gaps, which are 4.20 eV, and 4.59 eV respectively, while the (4,4)-tetragonal structure has an indirect band gap of 3.02 eV. The shrunken Zn-O bond lengths in the hexagonal and (4,8)-tetragonal indicate that they become more ionic in comparison with the bulk ZnO. In addition, the hexagonal ZnO sheet is the most energetically favourable. The total energy differences of (4,8)-tetragonal and (4,4)-tetragonal sheets from that of hexagonal monolayer (per formula unit) are 197 meV and 318 meV respectively.
Simultaneous and coordinated rotational switching of all molecular rotors in a network
Zhang, Y.; Kersell, H.; Stefak, R.; ...
2016-05-09
A range of artificial molecular systems have been created that can exhibit controlled linear and rotational motion. In the development of such systems, a key step is the addition of communication between molecules in a network. Here, we show that a two-dimensional array of dipolar molecular rotors can undergo simultaneous rotational switching by applying an electric field from the tip of a scanning tunnelling microscope. Several hundred rotors made from porphyrin-based double-decker complexes can be simultaneously rotated when in a hexagonal rotor network on a Cu(111) surface by applying biases above ±1 V at 80 K. The phenomenon is observedmore » only in a hexagonal rotor network due to the degeneracy of the ground state dipole rotational energy barrier of the system. Defects are essential to increase electric torque on the rotor network and to stabilize the switched rotor domains. At low biases and low initial rotator angles, slight reorientations of individual rotors can occur resulting in the rotator arms pointing in different directions. In conclusion, analysis reveals that the rotator arm directions here are not random, but are coordinated to minimize energy via cross talk among the rotors through dipolar interactions.« less
Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.
Chen, Zhen; Dorfman, Kevin D
2014-02-01
Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis
NASA Astrophysics Data System (ADS)
Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.
2016-07-01
Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.
Sensory enhancing insoles improve athletic performance during a hexagonal agility task.
Miranda, Daniel L; Hsu, Wen-Hao; Gravelle, Denise C; Petersen, Kelsey; Ryzman, Rachael; Niemi, James; Lesniewski-Laas, Nicholas
2016-05-03
Athletes incorporate afferent signals from the mechanoreceptors of their plantar feet to provide information about posture, stability, and joint position. Sub-threshold stochastic resonance (SR) sensory enhancing insoles have been shown to improve balance and proprioception in young and elderly participant populations. Balance and proprioception are correlated with improved athletic performance, such as agility. Agility is defined as the ability to quickly change direction. An athlete's agility is commonly evaluated during athletic performance testing to assess their ability to participate in a competitive sporting event. Therefore, the purpose of this study was to examine the effects of SR insoles during a hexagonal agility task routinely used by coaches and sports scientists. Twenty recreational athletes were recruited to participate in this study. Each athlete was asked to perform a set of hexagonal agility trials while SR stimulation was either on or off. Vicon motion capture was used to measure feet position during six successful trials for each stimulation condition. Stimulation condition was randomized in a pairwise fashion. The study outcome measures were the task completion time and the positional accuracy of footfalls. Pairwise comparisons revealed a 0.12s decrease in task completion time (p=0.02) with no change in hopping accuracy (p=0.99) when SR stimulation was on. This is the first study to show athletic performance benefits while wearing proprioception and balance improving equipment on healthy participants. With further development, a self-contained sensory enhancing insole device could be used by recreational and professional athletes to improve movements that require rapid changes in direction. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wang, Liang-Wei; Cheng, Chung-Fu; Liao, Jung-Wei; Wang, Chiu-Yen; Wang, Ding-Shuo; Huang, Kuo-Feng; Lin, Tzu-Ying; Ho, Rong-Ming; Chen, Lih-Juann; Lai, Chih-Huang
2016-02-21
A design for the fabrication of metallic nanoparticles is presented by thermal dewetting with a chemically heterogeneous nano-template. For the template, we fabricate a nanostructured polystyrene-b-polydimethylsiloxane (PS-b-PDMS) film on a Si|SiO2 substrate, followed by a thermal annealing and reactive ion etching (RIE) process. This gives a template composed of an ordered hexagonal array of SiOC hemispheres emerging in the polystyrene matrix. After the deposition of a FePt film on this template, we utilize the rapid thermal annealing (RTA) process, which provides in-plane stress, to achieve thermal dewetting and structural ordering of FePt simultaneously. Since the template is composed of different composition surfaces with periodically varied morphologies, it offers more tuning knobs to manipulate the nanostructures. We show that both the decrease in the area of the PS matrix and the increase in the strain energy relaxation transfer the dewetted pattern from the randomly distributed nanoparticles into a hexagonal periodic array of L10 FePt nanoparticles. Transmission electron microscopy with the in situ heating stage reveals the evolution of the dewetting process, and confirms that the positions of nanoparticles are aligned with those of the SiOC hemispheres. The nanoparticles formed by this template-dewetting show an average diameter and center-to-center distance of 19.30 ± 2.09 nm and 39.85 ± 4.80 nm, respectively. The hexagonal array of FePt nanoparticles reveals a large coercivity of 1.5 T, much larger than the nanoparticles fabricated by top-down approaches. This approach offers an efficient pathway toward self-assembled nanostructures in a wide range of material systems.
Thermodynamics of dilute 3He-4He solid solutions with hcp structure
NASA Astrophysics Data System (ADS)
Chishko, K. A.
2018-02-01
To interpret the anomalies in heat capacity CV(T) and temperature-dependent pressure P(T) of solid hexagonal close-packed (hcp) 4He we exploit the model of hcp crystalline polytype with specific lattice degrees of freedom and describe the thermodynamics of impurity-free 4He solid as superposition of phononic and polytypic contributions. The hcp-based polytype is a stack of 2D basal atomic monolayers on triangular lattice packed with arbitrary long (up to infinity) spatial period along the hexagonal c axis perpendicular to the basal planes. It is a crystal with perfect ordering along the layers, but without microscopic translational symmetry in perpendicular direction (which remains, nevertheless, the rotational crystallographic axis of third order, so that the polytype can be considered as semidisordered system). Each atom of the hcp polytype has twelve crystallographic neighbors in both first and second coordination spheres at any arbitrary packing order. It is shown that the crystal of such structure behaves as anisotropic elastic medium with specific dispersion law of phonon excitations along c axis. The free energy and the heat capacity consist of two terms: one of them is a normal contribution [with CV(T) ˜ T3] from phonon excitations in an anisotropic lattice of hexagonal symmetry, and another term (an "excessive" heat) is a contribution resulted by packing entropy from quasi-one-dimensional system of 2D basal planes on triangular lattice stacked randomly along c axis without braking the closest pack between neighboring atomic layers. The excessive part of the free energy has been treated within 1D quasi-Ising (lattice gas) model using the transfer matrix approach. This model makes us possible to interpret successfully the thermodynamic anomaly (heat capacity peak in hcp 4He) observed experimentally.
Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation.
García-Rodríguez, J; Martínez-Reina, J
2017-02-01
Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions' orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young's modulus [Formula: see text] GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young's modulus in the preferential direction of 9-16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.
Anchieta, Rodolfo B; Machado, Lucas S; Hirata, Ronaldo; Coelho, Paulo G; Bonfante, Estevam A
2016-10-01
This study evaluated the probability of survival (reliability) of platform-switched fixed dental prostheses (FDPs) cemented on different implant-abutment connection designs. Eighty-four-three-unit FDPs (molar pontic) were cemented on abutments connected to two implants of external or internal hexagon connection. Four groups (n = 21 each) were established: external hexagon connection and regular platform (ERC); external hexagon connection and switched platform (ESC); internal hexagon and regular platform (IRC); and internal hexagon and switched platform (ISC). Prostheses were subjected to step-stress accelerated life testing in water. Weibull curves and probability of survival for a mission of 100,000 cycles at 400 N (two-sided 90% CI) were calculated. The beta values of 0.22, 0.48, 0.50, and 1.25 for groups ERC, ESC, IRC, and ISC, respectively, indicated a limited role of fatigue in damage accumulation, except for group ISC. Survival decreased for both platform-switched groups (ESC: 74%, and ISC: 59%) compared with the regular matching platform counterparts (ERC: 95%, and IRC: 98%). Characteristic strength was higher only for ERC compared with ESC, but not different between internal connections. Failures chiefly involved the abutment screw. Platform switching decreased the probability of survival of FDPs on both external and internal connections. The absence in loss of characteristic strength observed in internal hexagon connections favor their use compared with platform-switched external hexagon connections. © 2016 Eur J Oral Sci.
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming B.; Somers, Marcel A. J.
2017-10-01
Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe-22.7Cr-2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic elements between austenite and nitrides, with chromium contents of about 80 wt.% in the precipitates. XRD analysis indicated that the Chromium-rich nitride precipitates are hexagonal (Cr, Mo)2N. Based on the TEM studies, (Cr, Mo)2N precipitates presented a (1 1 1)γ//(0 0 2)(Cr, Mo)2N, ?γ//?(Cr, Mo)2N orientation relationship with respect to the austenite matrix. EBSD studies revealed that the austenite in the regions that have transformed into austenite and (Cr, Mo)2N have no orientation relation to the untransformed austenite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhoumi, A., E-mail: amira-barhoumi@yahoo.fr; Guermazi, S.; Leroy, G.
2014-05-28
Al-doped ZnO thin films (AZO) have been deposited on amorphous glass substrates by DC sputtering at different substrate temperatures T{sub s}. X-Ray diffraction results reveal that AZO thin films have a hexagonal wurtzite structure with (002) preferred orientation. (002) peaks indicate that the crystalline structure of the films is oriented with c-axis perpendicular to the substrate. Three-dimensional (3D) atomic force microscopy images of AZO thin films deposited on glass substrate at 200 °C, 300 °C, and 400 °C, respectively, shows the improvement of the crystallinity and the homogeneity of AZO thin films with T{sub s} which is in agreement with the noise measurements.more » The noise was characterized between 1 Hz and 100 kHz and we have obtained 1/f spectra. The noise is very sensitive to the crystal structure especially to the orientation of the crystallites which is perpendicular to the substrate and to the grain boundaries which generate a high current flow and a sharp increase in noise. Through time, R{sub sh} and [αμ]{sub eff} increase with the modification of the crystallinity of AZO thin films. Study of noise aging shows that the noise is more sensitive than resistivity for all AZO thin films.« less
NASA Astrophysics Data System (ADS)
Schroer, M. A.; Gutt, C.; Grübel, G.
2014-07-01
Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.
Hsieh, Yu-Wei; Wu, Ching-Yi; Wang, Wei-En; Lin, Keh-Chung; Chang, Ku-Chou; Chen, Chih-Chi; Liu, Chien-Ting
2017-02-01
To investigate the treatment effects of bilateral robotic priming combined with the task-oriented approach on motor impairment, disability, daily function, and quality of life in patients with subacute stroke. A randomized controlled trial. Occupational therapy clinics in medical centers. Thirty-one subacute stroke patients were recruited. Participants were randomly assigned to receive bilateral priming combined with the task-oriented approach (i.e., primed group) or to the task-oriented approach alone (i.e., unprimed group) for 90 minutes/day, 5 days/week for 4 weeks. The primed group began with the bilateral priming technique by using a bimanual robot-aided device. Motor impairments were assessed by the Fugal-Meyer Assessment, grip strength, and the Box and Block Test. Disability and daily function were measured by the modified Rankin Scale, the Functional Independence Measure, and actigraphy. Quality of life was examined by the Stroke Impact Scale. The primed and unprimed groups improved significantly on most outcomes over time. The primed group demonstrated significantly better improvement on the Stroke Impact Scale strength subscale ( p = 0.012) and a trend for greater improvement on the modified Rankin Scale ( p = 0.065) than the unprimed group. Bilateral priming combined with the task-oriented approach elicited more improvements in self-reported strength and disability degrees than the task-oriented approach by itself. Further large-scale research with at least 31 participants in each intervention group is suggested to confirm the study findings.
Measuring market orientation: further evidence on Narver and Slater's three-component scale.
Chakrabarty, Subhra; Rogé, Joseph N
2003-12-01
A mail survey of a national random sample of 2,000 marketing managers was conducted. The data provided by 222 respondents were analyzed to assess the dimensionality of Narver and Slater's 15-item measure of market orientation. A confirmatory factor analysis, using LISREL 8.53, provided support for each of the separate dimensions of customer orientation, competitor orientation, and interfunctional coordination. However, a combined 3-factor model of market orientation was not supported. Directions for research are suggested.
Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
Rogers, John A; Cao, Qing; Alam, Muhammad; Pimparkar, Ninad
2015-02-03
The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.
Defect chaos of oscillating hexagons in rotating convection
Echebarria; Riecke
2000-05-22
Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the band center a transition to a frozen vortex state is found.
NASA Astrophysics Data System (ADS)
Siahlo, Andrei I.; Poklonski, Nikolai A.; Lebedev, Alexander V.; Lebedeva, Irina V.; Popov, Andrey M.; Vyrko, Sergey A.; Knizhnik, Andrey A.; Lozovik, Yurii E.
2018-03-01
Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.
Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles
NASA Astrophysics Data System (ADS)
Raya-Moreno, Martí; Aramberri, Hugo; Seijas-Bellido, Juan Antonio; Cartoixà, Xavier; Rurali, Riccardo
2017-07-01
We calculate the thermal conductivity, κ, of the recently synthesized hexagonal diamond (lonsdaleite) Si using first-principles calculations and solving the Boltzmann Transport Equation. We find values of κ which are around 40% lower than in the common cubic diamond polytype of Si. The trend is similar for [111] Si nanowires, with reductions of the thermal conductivity that are even larger than in the bulk in some diameter range. The Raman active modes are identified, and the role of mid-frequency optical phonons that arise as a consequence of the reduced symmetry of the hexagonal lattice is discussed. We also show briefly that popular classic potentials used in molecular dynamics might not be suited to describe hexagonal polytypes, discussing the case of the Tersoff potential.
Engineering and Localization of Quantum Emitters in Large Hexagonal Boron Nitride Layers.
Choi, Sumin; Tran, Toan Trong; Elbadawi, Christopher; Lobo, Charlene; Wang, Xuewen; Juodkazis, Saulius; Seniutinas, Gediminas; Toth, Milos; Aharonovich, Igor
2016-11-02
Hexagonal boron nitride is a wide-band-gap van der Waals material that has recently emerged as a promising platform for quantum photonics experiments. In this work, we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of micrometers wide) of hexagonal boron nitride. The emitters can be activated in as-grown hexagonal boron nitride by electron irradiation or high-temperature annealing, and the emitter formation probability can be increased by ion implantation or focused laser irradiation of the as-grown material. Interestingly, we show that the emitters are always localized at the edges of the flakes, unlike most luminescent point defects in three-dimensional materials. Our results constitute an important step on the roadmap of deploying hexagonal boron nitride in nanophotonics applications.
Early Visual Cortex Dynamics during Top-Down Modulated Shifts of Feature-Selective Attention.
Müller, Matthias M; Trautmann, Mireille; Keitel, Christian
2016-04-01
Shifting attention from one color to another color or from color to another feature dimension such as shape or orientation is imperative when searching for a certain object in a cluttered scene. Most attention models that emphasize feature-based selection implicitly assume that all shifts in feature-selective attention underlie identical temporal dynamics. Here, we recorded time courses of behavioral data and steady-state visual evoked potentials (SSVEPs), an objective electrophysiological measure of neural dynamics in early visual cortex to investigate temporal dynamics when participants shifted attention from color or orientation toward color or orientation, respectively. SSVEPs were elicited by four random dot kinematograms that flickered at different frequencies. Each random dot kinematogram was composed of dashes that uniquely combined two features from the dimensions color (red or blue) and orientation (slash or backslash). Participants were cued to attend to one feature (such as color or orientation) and respond to coherent motion targets of the to-be-attended feature. We found that shifts toward color occurred earlier after the shifting cue compared with shifts toward orientation, regardless of the original feature (i.e., color or orientation). This was paralleled in SSVEP amplitude modulations as well as in the time course of behavioral data. Overall, our results suggest different neural dynamics during shifts of attention from color and orientation and the respective shifting destinations, namely, either toward color or toward orientation.
Vaccaro, Christine M; Crisp, Catrina C; Fellner, Angela N; Jackson, Christopher; Kleeman, Steven D; Pavelka, James
2013-01-01
The objective of this study was to compare the effect of virtual reality simulation training plus robotic orientation versus robotic orientation alone on performance of surgical tasks using an inanimate model. Surgical resident physicians were enrolled in this assessor-blinded randomized controlled trial. Residents were randomized to receive either (1) robotic virtual reality simulation training plus standard robotic orientation or (2) standard robotic orientation alone. Performance of surgical tasks was assessed at baseline and after the intervention. Nine of 33 modules from the da Vinci Skills Simulator were chosen. Experts in robotic surgery evaluated each resident's videotaped performance of the inanimate model using the Global Rating Scale (GRS) and Objective Structured Assessment of Technical Skills-modified for robotic-assisted surgery (rOSATS). Nine resident physicians were enrolled in the simulation group and 9 in the control group. As a whole, participants improved their total time, time to incision, and suture time from baseline to repeat testing on the inanimate model (P = 0.001, 0.003, <0.001, respectively). Both groups improved their GRS and rOSATS scores significantly (both P < 0.001); however, the GRS overall pass rate was higher in the simulation group compared with the control group (89% vs 44%, P = 0.066). Standard robotic orientation and/or robotic virtual reality simulation improve surgical skills on an inanimate model, although this may be a function of the initial "practice" on the inanimate model and repeat testing of a known task. However, robotic virtual reality simulation training increases GRS pass rates consistent with improved robotic technical skills learned in a virtual reality environment.
Motivation and Cognition: The Impact of Ego and Task-Involvement on Levels of Processing.
ERIC Educational Resources Information Center
Golan, Shari; Graham, Sandra
To study the effects of motivation on cognition, 55 fifth- and sixth-grade students were randomly assigned to 3 motivational treatment groups: (1) ego-involved (ability oriented); (2) task-involved (mastery oriented); and (3) control (no orientation). The ego-involvement treatment attempted to make subjects feel that their abilities on the tasks…
Order - disorder transitions in granular sphere packings
NASA Astrophysics Data System (ADS)
Panaitescu, Andreea M.
Granular materials are ubiquitous in many industrial and natural processes, yet their complex behaviors characterized by unusual static and dynamic properties are still poorly understood. In this dissertation we investigate both the geometrical structure and the dynamical properties (the response to shear deformations, disorder-order transition and crystallization) of packings of mono-sized spheres as a function of the packing volume fraction. Different average packing fractions were obtained by submitting a dense granular material to periodic shear deformations and by epitaxy. Using advanced imaging techniques including the refractive index matched imaging (RIM) and X-ray computed tomography (CT) enables us to determine the three dimensional particles position inside the packing. From positions we obtain the Voronoi tessellation corresponding to the particles in the bulk and calculate the radial distribution and the bond-order metric. These two parameters are widely used to quantify the structure of the spherical particle systems. A granular packing undergoing periodic shear deformations is observed to slowly evolve towards crystallization and the packing fraction is correspondingly observed to increase smoothly from loose packing fraction, 0.59, well above the random close packing fraction, 0.637. Tracking the particles over several shear cycles allows us to obtain the probability distributions of particle displacements and the mean-square displacements and to compute the components of the diffusion tensor. We find that in a shear flow, the initial self-diffusion of the particles is anisotropic with diffusion greater in the flow direction compared with the velocity gradient direction which in turn is greater than in the vorticity direction. We further find that the granular matter under cyclic shear shows reversible as well as irreversible or plastic response for small enough strain amplitude. The appearance and the propagation of the crystalline order were studied using the orientational order metric. By following the evolution of the nucleating crystallites, we identified critical nuclei, determined their size and symmetry, and measured the average surface free energy. The structure of the nuclei was found to be random hexagonal close-packed, their average shape was non-spherical and they were oriented preferentially along the shear axis. When the packing volume fraction approaches a value close to the random close packing, crystallites with face centered cubic (fcc) order are observed with increasing probability, and ordered domains grow rapidly. A polycrystalline phase with domains of fcc and hcp order is obtained after hundreds of thousands of shear cycles. Depositing spheres on a substrate under the influence of gravity gives rise to a wide range of volume fractions and packing structures by simply controlling the nature of the substrate, the deposition rate and the energy of the particles. We analyzed the structures formed and investigate the development of the disordered phases as a function of the deposition rate. Furthermore, by comparing these structures with packings obtained by cyclic shear we showed that the structure of a granular packing depends strongly on the protocol used.
NASA Astrophysics Data System (ADS)
Huang, Chen-Yu; Hu, Keng-Hsiang; Wei, Zung-Hang
2016-12-01
Electrospinning technique is able to create nanofibers with specific orientation. Poly(vinyl alcohol) (PVA) have good mechanical stability but poor cell adhesion property due to the low affinity of protein. In this paper, extracellular matrix, gelatin is incorporated into PVA solution to form electrospun PVA-gelatin nanofibers membrane. Both randomly oriented and aligned nanofibers are used to investigate the topography-induced behavior of fibroblasts. Surface morphology of the fibers is studied by optical microscopy and scanning electron microscopy (SEM) coupled with image analysis. Functional group composition in PVA or PVA-gelatin is investigated by Fourier Transform Infrared (FTIR). The morphological changes, surface coverage, viability and proliferation of fibroblasts influenced by PVA and PVA-gelatin nanofibers with randomly orientated or aligned configuration are systematically compared. Fibroblasts growing on PVA-gelatin fibers show significantly larger projected areas as compared with those cultivated on PVA fibers which p-value is smaller than 0.005. Cells on PVA-gelatin aligned fibers stretch out extensively and their intracellular stress fiber pull nucleus to deform. Results suggest that instead of the anisotropic topology within the scaffold trigger the preferential orientation of cells, the adhesion of cell membrane to gelatin have substantial influence on cellular behavior.
Wei, Kun; Zhong, Suchuan
2017-08-01
Phenomenologically inspired by dolphins' unihemispheric sleep, we introduce a minimal model for random walks with physiological memory. The physiological memory consists of long-term memory which includes unconscious implicit memory and conscious explicit memory, and working memory which serves as a multi-component system for integrating, manipulating and managing short-term storage. The model assumes that the sleeping state allows retrievals of episodic objects merely from the episodic buffer where these memory objects are invoked corresponding to the ambient objects and are thus object-oriented, together with intermittent but increasing use of implicit memory in which decisions are unconsciously picked up from historical time series. The process of memory decay and forgetting is constructed in the episodic buffer. The walker's risk attitude, as a product of physiological heuristics according to the performance of objected-oriented decisions, is imposed on implicit memory. The analytical results of unihemispheric random walks with the mixture of object-oriented and time-oriented memory, as well as the long-time behavior which tends to the use of implicit memory, are provided, indicating the common sense that a conservative risk attitude is inclinable to slow movement.
Shear-driven phase transformation in silicon nanowires
NASA Astrophysics Data System (ADS)
Vincent, L.; Djomani, D.; Fakfakh, M.; Renard, C.; Belier, B.; Bouchier, D.; Patriarche, G.
2018-03-01
We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.
Shear-driven phase transformation in silicon nanowires.
Vincent, L; Djomani, D; Fakfakh, M; Renard, C; Belier, B; Bouchier, D; Patriarche, G
2018-03-23
We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.
Wang, Li; Ou-Yang, Liangyue; Yau, Shueh-Lin
2008-01-01
Electrochemical scanning tunneling microscopy (ECSTM) has been used to examine the adlayer of octa-alkoxy-substituted copper(II) phthalocyanines (CuPc(OC(8)H(17))(8)) on Au(111) in 0.1 M HClO(4), where the molecular adlayer was prepared by spontaneous adsorption from a benzene solution containing this molecule. Topography STM scans revealed long-range ordered, interweaved arrays of CuPc(OC(8)H(17))(8) with coexistent rectangular and hexagonal symmetries. High-quality STM molecular resolution yielded the internal molecular structure and the orientation of CuPc(OC(8)H(17))(8) admolecules. These STM results could shed insight into the method of generating ordered molecular assemblies of phthalocyanine molecules with long-chained substitutes on metal surface. 2007 Wiley-Liss, Inc
Magnetic and electronic properties of SrMnO3 thin films
NASA Astrophysics Data System (ADS)
Mandal, Arup Kumar; Panchal, Gyanendra; Choudhary, R. J.; Phase, D. M.
2018-05-01
Single phase hexagonal bulk SrMnO3 (SMO) was prepared by solid state route and it was used for depositing thin films by pulsed laser deposition (PLD) technique on single crystalline (100) oriented SrTiO3 (STO) substrate. X-ray diffraction shows that the thin film is deposited in cubic SrMnO3 phase. From X-ray absorption at the Mn L edge we observed the mixed valency of Mn (Mn3+& Mn4+) due to strain induced by the lattice mismatching between SMO and STO. Due to this mixed valency of Mn ion in SMO film, the ferromagnetic nature is observed at lower temperature because of double exchange. After post annealing with very low oxygen partial pressure, magnetic and electronic property of SMO films are effectively modified.
Charge transfer properties of pentacene adsorbed on silver: DFT study
NASA Astrophysics Data System (ADS)
N, Rekha T.; Rajkumar, Beulah J. M.
2015-06-01
Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.
Microtribological Mechanisms of Tungsten and Aluminum Nitride Films
NASA Astrophysics Data System (ADS)
Zhao, Hongjian; Mu, Chunyan; Ye, Fuxing
2016-04-01
Microtribology experiments were carried out on the W1- x Al x N films, deposited by radio frequency magnetron reactive sputtering on 304 stainless steel substrates and Si(100). Film wear mechanisms were investigated from the evolution of the friction coefficient and scanning electron microscopy observations. The results show that the WAlN films consist of a mixture of face-centered cubic W(Al)N and hexagonal wurtzite structure AlN phases and the preferred orientation changes from (111) to (200). The film damage after sliding test is mainly attributed to the composition and microstructure of the films. The amount of debris generated by friction is linked to the crack resistance. The better tribological properties for W1- x Al x N films ( x < 0.4) are mainly determined by the higher toughness.
Wei, Chengzhen; Cheng, Cheng; Wang, Shanshan; Xu, Yazhou; Wang, Jindi; Pang, Huan
2015-08-01
A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium-doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium-doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g(-1) at a current density of 1.2 A g(-1) . Furthermore, the porous sodium-doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid-state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg(-1) and a good cycling stability after 5000 cycles, which confirms that the porous sodium-doped Ni2P2 O7 hexagonal tablets are promising active materials for flexible supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-temperature molecular dynamics simulation of aragonite.
Miyake, Akira; Kawano, Jun
2010-06-09
For molecular dynamics simulations using aragonite structure as the initial state, a new phase of space group P6₃22 (hexagonal aragonite) appeared at temperatures above 510 K at a pressure of 1 atm. It was a first-order phase transition which occurs metastably within the stable region of calcite and the dT/dP slope of the phase boundary between orthorhombic and hexagonal aragonite was about 1.25 × 10³ K GPa⁻¹. In the hexagonal aragonite structure, CO₃ groups were rotated by 30° around the c axis and move up and down along the c axis from their position in aragonite, and Ca ions were six-coordinated as they are in calcite. The CaO₆ octahedron of hexagonal aragonite was strongly distorted, whereas in the calcite structure it is an almost ideal octahedron. The transition between hexagonal and orthorhombic aragonite involves only small movements of CO₃ groups. Therefore, it is possible that hexagonal aragonite plays an important part in the metastable formation of aragonite within the stability field of calcite and in the development of sector trilling in aragonite.
Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhaoming; Pan, Haihua; Zhu, Genxing
2016-07-19
Assembly of nanoparticles building blocks during single crystal growth is widely observed in both natural and synthetic environments. Although this form of non-classical crystallization is generally described by oriented attachment, random aggregation of building blocks leading to single crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation-based growth initially produces a non-oriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single crystal formation via grain boundary migration. This mechanism is corroborated by measurementsmore » of orientation rate vs external stress, demonstrating a predictive relationship between the two. These findings advance our understanding of aggregation-based growth of natural minerals by nanocrystals, and suggest an approach to material synthesis that takes advantage of stress induced co-alignment.« less
Olson, Daniel W.; Dutta, Sarit; Laachi, Nabil; Tian, Mingwei; Dorfman, Kevin D.
2011-01-01
Using the two-state, continuous-time random walk model, we develop expressions for the mobility and the plate height during DNA electrophoresis in an ordered post array that delineate the contributions due to (i) the random distance between collisions and (ii) the random duration of a collision. These contributions are expressed in terms of the means and variances of the underlying stochastic processes, which we evaluate from a large ensemble of Brownian dynamics simulations performed using different electric fields and molecular weights in a hexagonal array of 1 μm posts with a 3 μm center-to-center distance. If we fix the molecular weight, we find that the collision frequency governs the mobility. In contrast, the average collision duration is the most important factor for predicting the mobility as a function of DNA size at constant Péclet number. The plate height is reasonably well-described by a single post rope-over-pulley model, provided that the extension of the molecule is small. Our results only account for dispersion inside the post array and thus represent a theoretical lower bound on the plate height in an actual device. PMID:21290387
Lemmens, Ryanne J. M.; Timmermans, Annick A. A.; Janssen-Potten, Yvonne J. M.; Pulles, Sanne A. N. T. D.; Geers, Richard P. J.; Bakx, Wilbert G. M.; Smeets, Rob J. E. M.; Seelen, Henk A. M.
2014-01-01
Purpose This study aims to assess the extent to which accelerometers can be used to determine the effect of robot-supported task-oriented arm-hand training, relative to task-oriented arm-hand training alone, on the actual amount of arm-hand use of chronic stroke patients in their home situation. Methods This single-blind randomized controlled trial included 16 chronic stroke patients, randomly allocated using blocked randomization (n = 2) to receive task-oriented robot-supported arm-hand training or task-oriented (unsupported) arm-hand training. Training lasted 8 weeks, 4 times/week, 2×30 min/day using the (T-)TOAT ((Technology-supported)-Task-Oriented-Arm-Training) method. The actual amount of arm-hand use, was assessed at baseline, after 8 weeks training and 6 months after training cessation. Duration of use and intensity of use of the affected arm-hand during unimanual and bimanual activities were calculated. Results Duration and intensity of use of the affected arm-hand did not change significantly during and after training, with or without robot-support (i.e. duration of use of unimanual use of the affected arm-hand: median difference of −0.17% in the robot-group and −0.08% in the control group between baseline and after training cessation; intensity of the affected arm-hand: median difference of 3.95% in the robot-group and 3.32% in the control group between baseline and after training cessation). No significant between-group differences were found. Conclusions Accelerometer data did not show significant changes in actual amount of arm-hand use after task-oriented training, with or without robot-support. Next to the amount of use, discrimination between activities performed and information about quality of use of the affected arm-hand are essential to determine actual arm-hand performance. Trial Registration Controlled-trials.com ISRCTN82787126 PMID:24823925
Algebraic Approximations to Extinction from Randomly Oriented Circular and Elliptical Cylinders
1995-06-01
amplitude (Ref. 3). The strict limit of validity of the formula is therefore the region where ( n - 1) < < 1. The cylinder is in effect treated as a slit... cylinders , l¢1x = 2Im -1lx << 1. This occurs since what we have been calling an edge effect is in fact the field distortion around the boundaries of the...ALGERBRAIC APPROXIMATIONS TO EXTINCTION FROM RANDOMLY ORIENTED CIRCULAR AND ELLIPTICAL CYLINDERS system Number: Patron Number: Requester: Notes
Gil, Francisco Javier; Aparicio, Conrado; Manero, Jose M; Padros, Alejandro
2009-01-01
This study evaluated the effect of external hexagon height and commonly applied surface treatments on the fatigue life of titanium dental implants. Electropolished commercially pure titanium dental implants (seven implants per group) with three different external hexagon heights (0.6, 1.2, and 1.8 mm) and implants with the highest external hexagon height (1.8 mm) and different surface treatments (electropolishing, grit blasting with aluminium oxide, and acid etching with sulfuric acid) were tested to evaluate their mechanical fatigue life. To do so, 10-Hz triangular flexural load cycles were applied at 37 degrees C in artificial saliva, and the number of load cycles until implant fracture was determined. Tolerances of the hexagon/abutment fit and implant surface roughness were analyzed by scanning electron microscopy and light interferometry. Transmission electron microscopy and electron diffraction analyses of titanium hydrides were performed. First, the fatigue life of implants with the highest hexagon (8,683 +/- 978 load cycles) was more than double that of the implants with the shortest hexagons (3,654 +/- 789 load cycles) (P < .02). Second, the grit-blasted implants had the longest fatigue life of the tested materials (21,393 +/- 2,356 load cycles), which was significantly greater than that of the other surfaces (P < .001). The compressive surface residual stresses induced when blasting titanium are responsible for this superior mechanical response. Third, precipitation of titanium hydrides in grain boundaries of titanium caused by hydrogen adsorption from the acid solution deteriorates the fatigue life of acid-etched titanium dental implants. These implants had the shortest fatigue life (P < .05). The fatigue life of threaded root-form dental implants varies with the height of the external hexagon and/or the surface treatment of the implant. An external hexagon height of 1.8 mm and/or a blasting treatment appear to significantly increase fatigue life of dental implants.
NASA Astrophysics Data System (ADS)
Pakhira, Santanu; Kundu, Asish K.; Mazumdar, Chandan; Ranganathan, R.
2018-05-01
In this work, we report the effect of random magnetic anisotropy (RMA) on the valence, magnetocaloric and resistivity properties in a glassy intermetallic material Sm2Ni0.87Si2.87. On the basis of detailed studies on the valence band and core level electronic structure, we have established that both the Sm3+ and Sm2+ ions are present in the system, suggesting the compound to be of mixed valence in nature. The significant observation of positive magnetic entropy change in zero-field cooled measurement has been argued due to the presence of RMA that develops due to local electronic environmental variations between the rare-earth ions in the system. The quantum interference effect caused by the elastic electron–electron interaction is responsible for the resistivity upturn at low-temperature for this disordered metallic conductor.
Robinson, Thomas N; Jones, Edward L; Dunn, Christina L; Dunne, Bruce; Johnson, Elizabeth; Townsend, Nicole T; Paniccia, Alessandro; Stiegmann, Greg V
2015-06-01
The monopolar "Bovie" is used in virtually every laparoscopic operation. The active electrode and its cord emit radiofrequency energy that couples (or transfers) to nearby conductive material without direct contact. This phenomenon is increased when the active electrode cord is oriented parallel to another wire/cord. The parallel orientation of the "Bovie" and laparoscopic camera cords cause transfer of energy to the camera cord resulting in cutaneous burns at the camera trocar incision. We hypothesized that separating the active electrode/camera cords would reduce thermal injury occurring at the camera trocar incision in comparison to parallel oriented active electrode/camera cords. In this prospective, blinded, randomized controlled trial, patients undergoing standardized laparoscopic cholecystectomy were randomized to separated active electrode/camera cords or parallel oriented active electrode/camera cords. The primary outcome variable was thermal injury determined by histology from skin biopsied at the camera trocar incision. Eighty-four patients participated. Baseline demographics were similar in the groups for age, sex, preoperative diagnosis, operative time, and blood loss. Thermal injury at the camera trocar incision was lower in the separated versus parallel group (31% vs 57%; P = 0.027). Separation of the laparoscopic camera cord from the active electrode cord decreases thermal injury from antenna coupling at the camera trocar incision in comparison to the parallel orientation of these cords. Therefore, parallel orientation of these cords (an arrangement promoted by integrated operating rooms) should be abandoned. The findings of this study should influence the operating room setup for all laparoscopic cases.
Texture and anisotropy in ferroelectric lead metaniobate
NASA Astrophysics Data System (ADS)
Iverson, Benjamin John
Ferroelectric lead metaniobate, PbNb2O6, is a piezoelectric ceramic typically used because of its elevated Curie temperature and anisotropic properties. However, the piezoelectric constant, d33, is relatively low in randomly oriented ceramics when compared to other ferroelectrics. Crystallographic texturing is often employed to increase the piezoelectric constant because the spontaneous polarization axes of grains are better aligned. In this research, crystallographic textures induced through tape casting are distinguished from textures induced through electrical poling. Texture is described using multiple quantitative approaches utilizing X-ray and neutron time-of-flight diffraction. Tape casting lead metaniobate with an inclusion of acicular template particles induces an orthotropic texture distribution. Templated grain growth from seed particles oriented during casting results in anisotropic grain structures. The degree of preferred orientation is directly linked to the shear behavior of the tape cast slurry. Increases in template concentration, slurry viscosity, and casting velocity lead to larger textures by inducing more particle orientation in the tape casting plane. The maximum 010 texture distributions were two and a half multiples of a random distribution. Ferroelectric texture was induced by electrical poling. Electric poling increases the volume of material oriented with the spontaneous polarization direction in the material. Samples with an initial paraelectric texture exhibit a greater change in the domain volume fraction during electrical poling than randomly oriented ceramics. In tape cast samples, the resulting piezoelectric response is proportional to the 010 texture present prior to poling. This results in property anisotropy dependent on initial texture. Piezoelectric properties measured on the most textured ceramics were similar to those obtained with a commercial standard.
Wu, Mao-Sung; Huang, Kuo-Chih
2011-11-28
A nickel hydroxide electrode with open-ended hexagonal nanotube arrays, prepared by hydrolysis of nickel chloride in the presence of hexagonal ZnO nanorods, shows a very high capacitance of 1328 F g(-1) at a discharge current density of 1 A g(-1) due to the significantly improved ion transport.
Das, Saikat; Nagpure, Suraj; Garlapalli, Ravinder K.; ...
2016-12-17
The mesostructure loss kinetics are measured as a function of the orientation of micelles in 2D hexagonal close packed (HCP) columnar mesostructured titania thin films using in situ grazing incidence small angle x-ray scattering (GISAXS). Complementary supporting information is provided by ex situ scanning electron microscopy. Pluronic surfactant P123 acts as the template to synthesize HCP structured titania thin films. When the glass substrates are modified with crosslinked P123, the micelles of the HCP mesophase align orthogonal to the films, whereas a mix of parallel and orthogonal alignment is found on unmodified glass. The rate of mesostructure loss of orthogonallymore » oriented (o-HCP) thin films (~60 nm thickness) prepared on modified substrate is consistently found to be less by a factor of 2.5 ± 0.35 than that measured for mixed orientation HCP films on unmodified substrates. The activation energy for mesostructure loss is only slightly greater for films on modified glass (155 ± 25 kJ/mol -1) than on unmodified (128 kJ/mol -1), which implies that the rate difference stems a greater activation entropy for mesostructure loss in o-HCP titania films. Nearly perfect orthogonal orientation of micelles on modified surfaces contributes to the lower rate of mesostructure loss by supporting the anisotropic stresses that develop within the films during annealing due to continuous curing, sintering and crystallization into the anatase phase during high temperature calcination (>450 °C). Because the film thickness dictates the propagation of orientation throughout the films and the degree of confinement, thicker (~250 nm) films cast onto P123-modified substrates have a much lower activation energy for mesostructure loss (89 ± 27 kJ/mol -1) due to the mix of orientations found in the films. Thus, in conclusion, this kinetic study shows that thin P123- templated o-HCP titania films are not only better able to achieve good orthogonal alignment of 3 the mesophase relative to thicker films or films on unmodified substrates, but that alignment of the mesophase in the films stabilizes the mesophase against thermally-induced mesostructure loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saikat; Nagpure, Suraj; Garlapalli, Ravinder K.
The mesostructure loss kinetics are measured as a function of the orientation of micelles in 2D hexagonal close packed (HCP) columnar mesostructured titania thin films using in situ grazing incidence small angle x-ray scattering (GISAXS). Complementary supporting information is provided by ex situ scanning electron microscopy. Pluronic surfactant P123 acts as the template to synthesize HCP structured titania thin films. When the glass substrates are modified with crosslinked P123, the micelles of the HCP mesophase align orthogonal to the films, whereas a mix of parallel and orthogonal alignment is found on unmodified glass. The rate of mesostructure loss of orthogonallymore » oriented (o-HCP) thin films (~60 nm thickness) prepared on modified substrate is consistently found to be less by a factor of 2.5 ± 0.35 than that measured for mixed orientation HCP films on unmodified substrates. The activation energy for mesostructure loss is only slightly greater for films on modified glass (155 ± 25 kJ/mol -1) than on unmodified (128 kJ/mol -1), which implies that the rate difference stems a greater activation entropy for mesostructure loss in o-HCP titania films. Nearly perfect orthogonal orientation of micelles on modified surfaces contributes to the lower rate of mesostructure loss by supporting the anisotropic stresses that develop within the films during annealing due to continuous curing, sintering and crystallization into the anatase phase during high temperature calcination (>450 °C). Because the film thickness dictates the propagation of orientation throughout the films and the degree of confinement, thicker (~250 nm) films cast onto P123-modified substrates have a much lower activation energy for mesostructure loss (89 ± 27 kJ/mol -1) due to the mix of orientations found in the films. Thus, in conclusion, this kinetic study shows that thin P123- templated o-HCP titania films are not only better able to achieve good orthogonal alignment of 3 the mesophase relative to thicker films or films on unmodified substrates, but that alignment of the mesophase in the films stabilizes the mesophase against thermally-induced mesostructure loss.« less
NASA Astrophysics Data System (ADS)
Erić, M.; Petrović, S.; Kokkoris, M.; Lagoyannis, A.; Paneta, V.; Harissopulos, S.; Telečki, I.
2012-03-01
This work reports on the experimentally obtained depth profiles of 4 MeV 14N2+ ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals. The ion fluence was 1017 particles/cm2. The nitrogen depth profiling has been performed using the Nuclear Reaction Analysis (NRA) method, via the study of 14N(d,α0)12C and 14N(d,α1)12C nuclear reactions, and with the implementation of SRIM 2010 and SIMNRA computer simulation codes. For the randomly oriented silicon crystal, change of the density of silicon matrix and the nitrogen "bubble" formation have been proposed as the explanation for the difference between the experimental and simulated nitrogen depth profiles. During the implantation, the RBS/C spectra were measured on the nitrogen implanted and on the virgin crystal spots. These spectra provide information on the amorphization of the silicon crystals induced by the ion implantation.
Internal Stress and Microstructure of Zinc Oxide Films Sputter-Deposited with Carbon Dioxide Gas
NASA Astrophysics Data System (ADS)
Toru Ashida,; Kazuhiro Kato,; Hideo Omoto,; Atsushi Takamatsu,
2010-06-01
The internal stress and microstructure of ZnO films were investigated as a function of carbon dioxide (CO2) gas flow ratio [CO2/(O2+CO2)] during sputter deposition. The internal stress of the ZnO films decreased with increasing CO2 gas flow ratio. The carbon concentration in the films deposited using CO2 gas increased by up to 4.0 at. %. Furthermore, the ZnO films deposited without CO2 gas exhibited a preferred orientation of (002); however, the C-doped ZnO films exhibited random orientations. These findings suggest that the C atoms incorporated in the ZnO crystal lattice induce this random orientation, thereby relaxing the internal stress of C-doped ZnO films.
Visual search accelerates during adolescence.
Burggraaf, Rudolf; van der Geest, Jos N; Frens, Maarten A; Hooge, Ignace T C
2018-05-01
We studied changes in visual-search performance and behavior during adolescence. Search performance was analyzed in terms of reaction time and response accuracy. Search behavior was analyzed in terms of the objects fixated and the duration of these fixations. A large group of adolescents (N = 140; age: 12-19 years; 47% female, 53% male) participated in a visual-search experiment in which their eye movements were recorded with an eye tracker. The experiment consisted of 144 trials (50% with a target present), and participants had to decide whether a target was present. Each trial showed a search display with 36 Gabor patches placed on a hexagonal grid. The target was a vertically oriented element with a high spatial frequency. Nontargets differed from the target in spatial frequency, orientation, or both. Search performance and behavior changed during adolescence; with increasing age, fixation duration and reaction time decreased. Response accuracy, number of fixations, and selection of elements to fixate upon did not change with age. Thus, the speed of foveal discrimination increases with age, while the efficiency of peripheral selection does not change. We conclude that the way visual information is gathered does not change during adolescence, but the processing of visual information becomes faster.
He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng; ...
2018-02-05
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less
AACSD: An atomistic analyzer for crystal structure and defects
NASA Astrophysics Data System (ADS)
Liu, Z. R.; Zhang, R. F.
2018-01-01
We have developed an efficient command-line program named AACSD (Atomistic Analyzer for Crystal Structure and Defects) for the post-analysis of atomic configurations generated by various atomistic simulation codes. The program has implemented not only the traditional filter methods like the excess potential energy (EPE), the centrosymmetry parameter (CSP), the common neighbor analysis (CNA), the common neighborhood parameter (CNP), the bond angle analysis (BAA), and the neighbor distance analysis (NDA), but also the newly developed ones including the modified centrosymmetry parameter (m-CSP), the orientation imaging map (OIM) and the local crystallographic orientation (LCO). The newly proposed OIM and LCO methods have been extended for all three crystal structures including face centered cubic, body centered cubic and hexagonal close packed. More specially, AACSD can be easily used for the atomistic analysis of metallic nanocomposite with each phase to be analyzed independently, which provides a unique pathway to capture their dynamic evolution of various defects on the fly. In this paper, we provide not only a throughout overview on various theoretical methods and their implementation into AACSD program, but some critical evaluations, specific testing and applications, demonstrating the capability of the program on each functionality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less
Super-resolved Mirau digital holography by structured illumination
NASA Astrophysics Data System (ADS)
Ganjkhani, Yasaman; Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Moradi, Ali-Reza
2017-12-01
In this paper, we apply structured illumination toward super-resolved 3D imaging in a common-path digital holography arrangement. Digital holographic microscopy (DHM) provides non-invasive 3D images of transparent samples as well as 3D profiles of reflective surfaces. A compact and vibration-immune arrangement for DHM may be obtained through the use of a Mirau microscope objective. However, high-magnification Mirau objectives have a low working distance and are expensive. Low-magnification ones, on the other hand, suffer from low lateral resolution. Structured illumination has been widely used for resolution improvement of intensity images, but the technique can also be readily applied to DHM. We apply structured illumination to Mirau DHM by implementing successive sinusoidal gratings with different orientations onto a spatial light modulator (SLM) and forming its image on the specimen. Moreover, we show that, instead of different orientations of 1D gratings, alternative single 2D gratings, e.g. checkerboard or hexagonal patterns, can provide resolution enhancement in multiple directions. Our results show a 35% improvement in the resolution power of the DHM. The presented arrangement has the potential to serve as a table-top device for high resolution holographic microscopy.
NASA Astrophysics Data System (ADS)
Wang, Yu; Liu, Yingli; Zhang, Huaiwu; Li, Jie; Gao, Liwen; Chen, Daming; Chen, Yong
2018-02-01
In this paper, a wet magnetizing orientation process was applied to synthesize c-axis-textured, M-type barium ferrite (BaFe12O19 or BaM), which is widely used to produce hard magnetic materials. To modify the magnetic properties of the BaM ferrite and make it suitable for certain operating frequencies, Sc3+ was substituted into Fe3+ sites of the BaM crystal structure. A BaSc x Fe12- x O19 ferrite with a typical relative density of ˜ 75% was successfully obtained. We used x-ray diffraction, scanning electronic microscopy, and a vibrating sample magnetometer to obtain phase information, detail of the microstructure, and magnetic properties of the BaSc x Fe12- x O19, respectively. The composition BaSc x Fe12- x O19 ( x = 0.1) featured a superior squareness ratio of ˜ 67% and a saturation magnetization ( M S) of ˜ 5300 Gauss in magnetic hysteresis loop measurements. These features match well with requirements for self-biased passive devices. Moreover, the site preference of Sc3+ in the hexagonal crystal structure was investigated.
An enhancement of photoluminescence property of Ag doped La2O3 thin films at room temperature
NASA Astrophysics Data System (ADS)
Jbeli, R.; Boukhachem, A.; Ben Jemaa, I.; Mahdhi, N.; Saadallah, F.; Elhouichet, H.; Alleg, S.; Amlouk, M.; Ezzaouïa, H.
2017-09-01
Metal transition doped oxide thin films or nanocomposites have recently emerged at the forefront of potentials research. With the focus mainly on efficiency, the aspect of stability against optical irradiation of such materials has so far not been thoroughly addressed. This work covers the synthesis of silver doped lanthanum oxide thin films (La2O3:Ag) which have been prepared by the spray pyrolysis technique on glass substrates at 460 °C. Then, Ag thin films were grown on lanthanum oxide thin films by thermal evaporation. The present work aims to reach the synthesis of La2O3:Ag thin films using both the spray pyrolysis and thermal evaporation techniques. First, X-ray diffraction analysis shows that undoped and Ag doped films crystallize in a mixture of hexagonal and cubic phase with crystallites oriented along (001) direction. Raman spectroscopy shows the bands positions corresponding to hexagonal and cubic phases. On the other hand, an attempt regarding their optical properties has been carried out by means of photoluminescence measurements. Second, from electrical conductivity measurements, the activation energy decreases from 1.42 to 1.09 eV with the increase of annealing time and the charge carriers are following the CBH model as dominant charge transport mechanism. Finally, the annealing time influences the surface wettability property and transforms La2O3 character from hydrophobic (θ > 90°) to hydrophilic (θ < 90°).
Influence of solution viscosity on hydrothermally grown ZnO thin films for DSSC applications
NASA Astrophysics Data System (ADS)
Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Surya, S.
2016-10-01
Zinc oxide (ZnO) nanowire arrays (NWAs) were grown onto zinc oxide-titanium dioxide (ZnO-TiO2) seeded fluorine doped tin oxide (FTO) conductive substrate by hydrothermal technique. X-ray diffraction (XRD) patterns depict that ZnO thin films are preferentially oriented along the (002) plane with hexagonal wurtzite structure. Viscosity measurements reveal that viscosity of the solutions linearly increases as the concentrations of the polyvinyl alcohol (PVA) increase in the growth solution. Field emission scanning electron microscope (FE-SEM) images show that the NWAs are vertically grown to seeded FTO substrate with hexagonal structure, and the growth of NWAs decreases as the concentration of the PVA increases. Stylus profilometer and atomic force microscopic (AFM) studies predict that the thickness and roughness of the films decrease with increasing the PVA concentrations. The NWAs prepared at 0.1% of PVA exhibits a lower transmittance and higher absorbance than that of the other films. The band gap of the optimized films prepared at 0.0 and 0.1% of PVA is found to be 3.270 and 3.268 eV, respectively. The photo to current conversion efficiency of the DSSC based on photoanodes prepared at 0.0 and 0.1% of PVA exhibits about 0.64 and 0.82%, respectively. Electrochemical impedance spectra reveal that the DSSC based on photoanode prepared at 0.1% of PVA has the highest charge transfer recombination resistance.
An enhancement of photoluminescence property of Ag doped La2O3 thin films at room temperature.
Jbeli, R; Boukhachem, A; Ben Jemaa, I; Mahdhi, N; Saadallah, F; Elhouichet, H; Alleg, S; Amlouk, M; Ezzaouïa, H
2017-09-05
Metal transition doped oxide thin films or nanocomposites have recently emerged at the forefront of potentials research. With the focus mainly on efficiency, the aspect of stability against optical irradiation of such materials has so far not been thoroughly addressed. This work covers the synthesis of silver doped lanthanum oxide thin films (La 2 O 3 :Ag) which have been prepared by the spray pyrolysis technique on glass substrates at 460°C. Then, Ag thin films were grown on lanthanum oxide thin films by thermal evaporation. The present work aims to reach the synthesis of La 2 O 3 :Ag thin films using both the spray pyrolysis and thermal evaporation techniques. First, X-ray diffraction analysis shows that undoped and Ag doped films crystallize in a mixture of hexagonal and cubic phase with crystallites oriented along (001) direction. Raman spectroscopy shows the bands positions corresponding to hexagonal and cubic phases. On the other hand, an attempt regarding their optical properties has been carried out by means of photoluminescence measurements. Second, from electrical conductivity measurements, the activation energy decreases from 1.42 to 1.09eV with the increase of annealing time and the charge carriers are following the CBH model as dominant charge transport mechanism. Finally, the annealing time influences the surface wettability property and transforms La 2 O 3 character from hydrophobic (θ>90°) to hydrophilic (θ<90°). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Frentrup, Martin; Hatui, Nirupam; Wernicke, Tim; Stellmach, Joachim; Bhattacharya, Arnab; Kneissl, Michael
2013-12-01
In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances dhkl is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112¯2) AlκGa1-κN epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.
Mantha, Sriteja; McDaniel, Jesse G; Perroni, Dominic V; Mahanthappa, Mahesh K; Yethiraj, Arun
2017-01-26
Gemini surfactants comprise two single-tailed surfactants connected by a linker at or near the hydrophilic headgroup. They display a variety of water-concentration-dependent lyotropic liquid crystal morphologies that are sensitive to surfactant molecular structure and the nature of the headgroups and counterions. Recently, an interesting dependence of the aqueous-phase behavior on the length of the linker has been discovered; odd-numbered linker length surfactants exhibit characteristically different phase diagrams than even-numbered linker surfactants. In this work, we investigate this "odd/even effect" using computer simulations, focusing on experimentally studied gemini dicarboxylates with Na + counterions, seven nonterminal carbon atoms in the tails, and either three, four, five, or six carbon atoms in the linker (denoted Na-73, Na-74, Na-75, and Na-76, respectively). We find that the relative electrostatic repulsion between headgroups in the different morphologies is correlated with the qualitative features of the experimental phase diagrams, predicting destabilization of hexagonal phases as the cylinders pack close together at low water content. Significant differences in the relative headgroup orientations of Na-74 and Na-76 compared to those of Na-73 and Na-75 surfactants lead to differences in linker-linker packing and long-range headgroup-headgroup electrostatic repulsion, which affects the delicate electrostatic balance between the hexagonal and gyroid phases. Much of the fundamental insight presented in this work is enabled by the ability to computationally construct and analyze metastable phases that are not observable in experiments.
Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation
Rusli, Nurul Izni; Tanikawa, Masahiro; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf
2012-01-01
The formation of high-density zinc oxide (ZnO) nanorods on porous silicon (PS) substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn) powder in the presence of oxygen (O2) gas was systematically investigated. The high-density growth of ZnO nanorods with (0002) orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.
Deformational characteristics of thermoplastic elastomers
NASA Astrophysics Data System (ADS)
Indukuri, Kishore K.
This thesis focuses primarily on the structure-property relationships of poly (styrene-ethylene-butylene-styrene) triblock copolymer TPEs. First evidence for strain-induced crystallization occurring in certain SEBS block copolymers has been established using unique techniques like deformation calorimetry, combined in-situ small angle X-ray and wide angle X-ray diffraction (SAXD/WAXD). Also the ramifications of such strain-induced crystallization on the mechanical properties like cyclic hysteresis, stress relaxation/creep retention of these SEBS systems have been studied. In addition, the structural changes in the morphology of these systems on deformation have been investigated using combined SAXD/WAXD setup. Small angle X-ray diffraction probed the changes at the nano-scale of polystyrene (PS) cylinders, while wide angle X-ray diffraction probed the changes at molecular length scales of the amorphous/crystalline domains of the elastomeric mid-block in these systems. New structural features at both these length scales have been observed and incorporated into the overall deformation mechanisms of the material. Continuous processing techniques like extrusion have been used to obtain ultra long-range order and orientation in these SEBS systems. Thus well ordered crystal like hexagonal packing of cylinders, where in each element in this hexagonal lattice can be individually addressed without any grain boundaries can be realized using these robust techniques. The effect of long-range order/orientation on the mechanical properties has been studied. In addition, these well ordered systems serve as model systems for evaluating deformation mechanisms of these SEBS systems, where the relative contributions of each of the phases can be estimated. EPDM/i-PP thermoplastic vulcanizates (TPVs) have micron size scale phase separated morphologies of EPDM rubber dispersed in a semicrystalline i-PP matrix as a result of the dynamic vulcanization process. Confocal microscopy studies, along with scanning electron microscopy (SEM) studies show that the morphology of these EPDM/i-PP systems resembles a microcellular "filled" foam in which i-PP occupies the strut regions and EPDM the inner core. Based on this, an analytical model has been developed that takes into account composition information, molecular weight, cure state and morphology into account.
NASA Technical Reports Server (NTRS)
Rubin, I. (Inventor)
1978-01-01
A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.
Non-Reciprocal on Wafer Microwave Devices
2015-05-27
filter uses a barium hexagonal ferrite film incorporated into the dielectric layer of a microstrip transmission line. The zero-field operational...Fal,, Robert E. Camley. Millimeter wave phase shifter based on ferromagnetic resonancein a hexagonal barium ferrite thin film, Applied Physics...materials for on-wafer microwave devices concentrated on barium hexagonal ferrite (BaM) films grown on Si because these material is a good candidate
Rubin, Irwin
1978-01-01
A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.
Sadeh, Sadra; Rotter, Stefan
2014-01-01
Neurons in the primary visual cortex are more or less selective for the orientation of a light bar used for stimulation. A broad distribution of individual grades of orientation selectivity has in fact been reported in all species. A possible reason for emergence of broad distributions is the recurrent network within which the stimulus is being processed. Here we compute the distribution of orientation selectivity in randomly connected model networks that are equipped with different spatial patterns of connectivity. We show that, for a wide variety of connectivity patterns, a linear theory based on firing rates accurately approximates the outcome of direct numerical simulations of networks of spiking neurons. Distance dependent connectivity in networks with a more biologically realistic structure does not compromise our linear analysis, as long as the linearized dynamics, and hence the uniform asynchronous irregular activity state, remain stable. We conclude that linear mechanisms of stimulus processing are indeed responsible for the emergence of orientation selectivity and its distribution in recurrent networks with functionally heterogeneous synaptic connectivity. PMID:25469704
Self-Assembly of a [1+1] Ionic Hexagonal Macrocycle and its Antiproliferative Activity
NASA Astrophysics Data System (ADS)
Singh, Khushwant; Gangrade, Ankit; Bhowmick, Sourav; Jana, Achintya; Mandal, Biman B.; Das, Neeladri
2018-04-01
A unique irregular hexagon was self-assembled using an organic donor clip (bearing terminal pyridyl units) and a complementary organometallic acceptor clip. The resulting metallamacrocycle was characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Molecular modeling confirmed hexagonal shaped cavity for this metallamacrocycle which is a unique example of a discrete hexagonal framework self-assembled from only two building blocks. Cytotoxicity of the Pt-based acceptor tecton and the self-assembled PtII-based macrocycle was evaluated using three cancer cell lines and results were compared with cisplatin. Results confirmed a positive effect of the metallamacrocycle formation on cell growth inhibition.
Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets.
Wang, Qisheng; Safdar, Muhammad; Xu, Kai; Mirza, Misbah; Wang, Zhenxing; He, Jun
2014-07-22
Van der Waals epitaxy (vdWE) is of great interest due to its extensive applications in the synthesis of ultrathin two-dimensional (2D) layered materials. However, vdWE of nonlayered functional materials is still not very well documented. Here, although tellurium has a strong tendency to grow into one-dimensional nanoarchitecture due to its chain-like structure, we successfully realize 2D hexagonal tellurium nanoplates on flexible mica sheets via vdWE. Chemically inert mica surface is found to be crucial for the lateral growth of hexagonal tellurium nanoplates since it (1) facilitates the migration of tellurium adatoms along mica surface and (2) allows a large lattice mismatch. Furthermore, 2D tellurium hexagonal nanoplates-based photodetectors are in situ fabricated on flexible mica sheets. Efficient photoresponse is obtained even after bending the device for 100 times, indicating 2D tellurium hexagonal nanoplates-based photodetectors on mica sheets have a great application potential in flexible and wearable optoelectronic devices. We believe the fundamental understanding of vdWE effect on the growth of 2D tellurium hexagonal nanoplate can pave the way toward leveraging vdWE as a useful channel to realize the 2D geometry of other nonlayered materials.
Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition
NASA Astrophysics Data System (ADS)
Fan, Lili; Li, Zhen; Li, Xiao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei
2011-12-01
Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed.Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed. Electronic supplementary information (ESI) available: Schematics of CVD setups for graphene growth, Raman spectra and SEM images. See DOI: 10.1039/c1nr11480h
Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.
Mhatre, Himanshu; Gorchetchnikov, Anatoli; Grossberg, Stephen
2012-02-01
Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. It has previously been shown how a self-organizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? This article describes a simple and general mathematical property of the trigonometry of spatial navigation which favors hexagonal patterns. The article also develops a neural model that can learn to exploit this trigonometric relationship. This GRIDSmap self-organizing map model converts path integration signals into hexagonal grid cell patterns of multiple scales. GRIDSmap creates only grid cell firing patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support an emerging unified computational framework based on a hierarchy of self-organizing maps for explaining how entorhinal-hippocampal interactions support spatial navigation. Copyright © 2010 Wiley Periodicals, Inc.
Orientation of Hittite Monuments
NASA Astrophysics Data System (ADS)
González-García, A. César; Belmonte, Juan Antonio
The possible astronomical or topographical orientations of the Hittite monuments of the Bronze Age has remained unexplored until recently. This would provide an important insight into how temporality was imprinted by this culture in sacred spaces and in the landscape. The authors' analysis of a statistically significant sample of Hittite temples - and a few monumental gates - has demonstrated that ancient Hittite monuments were not randomly orientated as previously thought. On the contrary, there were well-defined patterns of orientation that can be interpreted within the context of Hittite culture and religion.
Dynamics of charged particles in a Paul radio-frequency quadrupole trap
NASA Technical Reports Server (NTRS)
Prestage, J. D.; Williams, A.; Maleki, L.; Djomehri, M. J.; Harabetian, E.
1991-01-01
A molecular-dynamics simulation of hundreds of ions confined in a Paul trap has been performed. The simulation includes the trapped particles' micromotion and interparticle Coulomb interactions. A random walk in velocity was implemented to bring the secular motion to a given temperature which was numerically measured. When the coupling Gamma is large the ions from concentric shells which undergo a quadrupole oscillation at the RF frequency, while the ions within a shell form a 2D hexagonal lattice. Ion clouds at 5 mK show no RF heating for q(z) less than about 0.6, whereas rapid heating is seen for qz = 0.8.
Evolution of plastic anisotropy for high-strain-rate computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, S.K.; Maudlin, P.J.
1994-12-01
A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texturemore » code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.« less
Development of a Model Competency-Based Orientation Program
1988-05-01
S. (1938). Basic writings of Sigmund Freud . New York: Random House. Hagerty, B.K. (1986). A competency-based orientation program for psychiatric...education, and nursing will be presented. • ..... Beginning with the field of psychology, Freud (1938) described motivation using the concept of psychic...Gosnell, D.J. (1987). Comparing two methods of hospital orientation for cost effective- ness. Journal of Nursing Staff Development, 3 , 3-8. Freud
Heck, Nicholas C; Mirabito, Lucas A; LeMaire, Kelly; Livingston, Nicholas A; Flentje, Annesa
2017-01-01
The current study examined the frequency with which randomized controlled trials (RCTs) of behavioral and psychological interventions for anxiety and depression include data pertaining to participant sexual orientation and nonbinary gender identities. Using systematic review methodology, the databases PubMed and PsycINFO were searched to identify RCTs published in 2004, 2009, and 2014. Random selections of 400 articles per database per year (2,400 articles in total) were considered for inclusion in the review. Articles meeting inclusion criteria were read and coded by the research team to identify whether the trial reported data pertaining to participant sexual orientation and nonbinary gender identities. Additional trial characteristics were also identified and indexed in our database (e.g., sample size, funding source). Of the 232 articles meeting inclusion criteria, only 1 reported participants' sexual orientation, and zero articles included nonbinary gender identities. A total of 52,769 participants were represented in the trials, 93 of which were conducted in the United States, and 43 acknowledged the National Institutes of Health as a source of funding. Despite known mental health disparities on the basis of sexual orientation and nonbinary gender identification, researchers evaluating interventions for anxiety and depression are not reporting on these important demographic characteristics. Reporting practices must change to ensure that our interventions generalize to lesbian, gay, bisexual, and transgender persons. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.; Zheng, Z.; Phukan, H.
Knowledge of the critical resolved shear stress (CRSS) values of different slip modes is important for accurately modeling plastic deformation of hexagonal materials. Here, we demonstrate that CRSS can be directly measured with an in-situ high energy X-ray diffraction microscopy (HEDM) experiment. A commercially pure Ti tensile specimen was deformed up to 2.6% strain. In-situ far-field HEDM experiments were carried out to track the evolution of crystallographic orientations, centers of masses, and stress states of 1153 grains in a material volume of 1.1mm×1mm×1mm. Predominant prismatic slip was identified in 18 grains, where the orientation change occurred primarily by rotation aroundmore » the c-axis during specimen deformation. By analyzing the resolved shear stress on individual slip systems, the estimated CRSS for prismatic slip is 96±18 MPa. Predominant basal slip was identified in 22 other grains, where the 2 orientation change occurred primarily by tilting the c-axis about an axis in the basal plane. The estimated CRSS for basal slip is 127±33 MPa. The ratio of CRSS basal/CRSS prismatic is in the range of 1.7-2.1. From indirect assessment, the CRSS for pyramidal < c+a > slip is likely greater than 240MPa. Lastly, grain size and free surface effects on the CRSS value in different grains are also examined.« less
Nagpure, Suraj; Browning, James F.; Rankin, Stephen E.
2016-11-03
Here, the incorporation of hole conducting polymer poly(3-hexyl thiophene) (P3HT) into the 8-9 nm cylindrical nanopores of titania is investigated using films with a unique orthogonally oriented hexagonal close packed mesostructure. The films are synthesized using evaporation induced self-assembly (EISA) with Pluronic triblock copolymer F127 as the structure directing agent. The orthogonally oriented cylindrical nanopore structure was chosen over a cubic structure because confinement in uniform cylindrical channels is hypothesized to enhance hole conductivity of P3HT by inducing local polymer chain ordering. Orthogonal orientation of the cylindrical nanopores is achieved by modifying the substrate (FTO-coated glass slides) with crosslinked F127.more » After thermal treatment to remove organic templates from the films, P3HT is infiltrated into the nanopores by spin coating a 1 wt% P3HT solution in chlorobenzene onto the titania films followed by thermal annealing under vacuum at 200 °C. The results show that infiltration is essentially complete after 30 minutes of annealing, with little or no further infiltration thereafter. A final infiltration depth of ~14 nm is measured for P3HT into the nanopores of titania using neutron reflectometry measurements. Photoluminescence measurements demonstrate that charge transfer at the P3HT-TiO 2 interface improves as the P3HT is infiltrated into the pores, suggesting that an active organic-inorganic heterojuction is formed in the materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagpure, Suraj; Browning, James F.; Rankin, Stephen E.
Here, the incorporation of hole conducting polymer poly(3-hexyl thiophene) (P3HT) into the 8-9 nm cylindrical nanopores of titania is investigated using films with a unique orthogonally oriented hexagonal close packed mesostructure. The films are synthesized using evaporation induced self-assembly (EISA) with Pluronic triblock copolymer F127 as the structure directing agent. The orthogonally oriented cylindrical nanopore structure was chosen over a cubic structure because confinement in uniform cylindrical channels is hypothesized to enhance hole conductivity of P3HT by inducing local polymer chain ordering. Orthogonal orientation of the cylindrical nanopores is achieved by modifying the substrate (FTO-coated glass slides) with crosslinked F127.more » After thermal treatment to remove organic templates from the films, P3HT is infiltrated into the nanopores by spin coating a 1 wt% P3HT solution in chlorobenzene onto the titania films followed by thermal annealing under vacuum at 200 °C. The results show that infiltration is essentially complete after 30 minutes of annealing, with little or no further infiltration thereafter. A final infiltration depth of ~14 nm is measured for P3HT into the nanopores of titania using neutron reflectometry measurements. Photoluminescence measurements demonstrate that charge transfer at the P3HT-TiO 2 interface improves as the P3HT is infiltrated into the pores, suggesting that an active organic-inorganic heterojuction is formed in the materials.« less
Buckling reversal of the Si(111) bilayer termination of 2-dimensional ErSi2 upon H dosing
NASA Astrophysics Data System (ADS)
Wetzel, P.; Pirri, C.; Gewinner, G.
1997-05-01
Hydrogen-induced reconstruction of 2-dimensional (2D) ErSi2 epitaxially grown on Si(111) is studied by Auger-electron diffraction (AED) and low-energy electron diffraction (LEED). The intensity of the Er MNN Auger line is measured vs. polar angle along the [1 - 2 1] and [- 1 2 - 1] azimuths for clean and H-saturated (1 × 1) ErSi2 silicides. The atomic structure of clean 2D silicide, previously established by AED as well as other techniques, consists of a hexagonal monolayer of Er located underneath a buckled Si layer comparable to the Si(111) substrate double layers. Moreover, for clean 2D ErSi2 only the B-type orientation is observed, i.e. the buckled Si top layer is always rotated by 180° around the surface normal relative to the relevant double layers of the substrate. After atomic H saturation, AED reveals drastic changes in the silicide structure involving a major most remarkable reconstruction of the Si bilayer termination. The latter is found to switch from B-type to A-type orientation upon H dosing, i.e. H-saturated 2D ErSi2 exhibits a buckled Si top layer oriented in the same way as the substrate double layers. A comparison with single scattering cluster simulations demonstrates that the latter phenomenon is accompanied by a large expansion of the Er-Si interlayer spacing close to 0.3 Å.
NASA Astrophysics Data System (ADS)
Shakirov, T.; Paul, W.
2018-04-01
What is the thermodynamic driving force for the crystallization of melts of semiflexible polymers? We try to answer this question by employing stochastic approximation Monte Carlo simulations to obtain the complete thermodynamic equilibrium information for a melt of short, semiflexible polymer chains with purely repulsive nonbonded interactions. The thermodynamics is obtained based on the density of states of our coarse-grained model, which varies by up to 5600 orders of magnitude. We show that our polymer melt undergoes a first-order crystallization transition upon increasing the chain stiffness at fixed density. This crystallization can be understood by the interplay of the maximization of different entropy contributions in different spatial dimensions. At sufficient stiffness and density, the three-dimensional orientational interactions drive the orientational ordering transition, which is accompanied by a two-dimensional translational ordering transition in the plane perpendicular to the chains resulting in a hexagonal crystal structure. While the three-dimensional ordering can be understood in terms of Onsager theory, the two-dimensional transition can be understood in terms of the liquid-hexatic transition of hard disks. Due to the domination of lateral two-dimensional translational entropy over the one-dimensional translational entropy connected with columnar displacements, the chains form a lamellar phase. Based on this physical understanding, orientational ordering and translational ordering should be separable for polymer melts. A phenomenological theory based on this understanding predicts a qualitative phase diagram as a function of volume fraction and stiffness in good agreement with results from the literature.
Wang, L.; Zheng, Z.; Phukan, H.; ...
2017-05-07
Knowledge of the critical resolved shear stress (CRSS) values of different slip modes is important for accurately modeling plastic deformation of hexagonal materials. Here, we demonstrate that CRSS can be directly measured with an in-situ high energy X-ray diffraction microscopy (HEDM) experiment. A commercially pure Ti tensile specimen was deformed up to 2.6% strain. In-situ far-field HEDM experiments were carried out to track the evolution of crystallographic orientations, centers of masses, and stress states of 1153 grains in a material volume of 1.1mm×1mm×1mm. Predominant prismatic slip was identified in 18 grains, where the orientation change occurred primarily by rotation aroundmore » the c-axis during specimen deformation. By analyzing the resolved shear stress on individual slip systems, the estimated CRSS for prismatic slip is 96±18 MPa. Predominant basal slip was identified in 22 other grains, where the 2 orientation change occurred primarily by tilting the c-axis about an axis in the basal plane. The estimated CRSS for basal slip is 127±33 MPa. The ratio of CRSS basal/CRSS prismatic is in the range of 1.7-2.1. From indirect assessment, the CRSS for pyramidal < c+a > slip is likely greater than 240MPa. Lastly, grain size and free surface effects on the CRSS value in different grains are also examined.« less
The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions
NASA Astrophysics Data System (ADS)
Tzioufas, Achillefs
2018-04-01
We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.
The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions
NASA Astrophysics Data System (ADS)
Tzioufas, Achillefs
2018-06-01
We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.
Source polarization effects in an optical fiber fluorosensor
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1992-01-01
The exact field solution of a step-index profile fiber was used to determine the injection efficiency of a thin-film distribution of polarized sources located in the cladding of an optical fiber. Previous results for random source orientation were confirmed. The behavior of the power efficiency, P(eff), of a polarized distribution of sources was found to be similar to the behavior of a fiber with sources with random orientation. However, for sources polarized in either the x or y direction, P(eff) was found to be more efficient.
STIR: Novel Electronic States by Gating Strongly Correlated Materials
2016-03-01
plan built on my group’s recent demonstration of electrolyte gating in Strontium Titanate, using an atomically thin hexagonal Boron Nitride barrier to...demonstration of electrolyte gating in Strontium Titanate, using an atomically thin hexagonal Boron Nitride barrier to prevent disorder and chemical...techniques and learned to apply thin hexagonal Boron Nitride to single crystals of materials expected to show some of the most exciting correlated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, S; Vedantham, S; Karellas, A
Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square pixels provides high-resolution imaging suitable for fluoroscopy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Sixuan; Latturner, Susan E., E-mail: latturner@chem.fsu.edu
The intermetallic compounds RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were synthesized from the reaction of germanium and aluminum in RE/Co eutectic flux. These phases crystallize with the Nd{sub 6}Co{sub 5}Ge{sub 2.2} structure type in hexagonal space group P-6m2 (a=9.203(2)Å, c=4.202(1) Å, R{sub 1}=0.0109 for Pr{sub 6}Co{sub 5}Ge{sub 1.80}Al{sub 2.20}; and a=9.170(3) Å, c=4.195(1) Å, R{sub 1}=0.0129 for Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26}). The structure features chains of face-sharing Ge@RE{sub 9} clusters intersecting hexagonal cobalt nets linked by aluminum atoms. Magnetic susceptibility measurements indicate that both phases exhibit ferromagnetic ordering of the cobalt layers with T{sub C} in themore » range of 130–140 K. The magnetic moments of the rare earth ions order at lower temperature (30–40 K). Magnetic measurements on oriented crystals of Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26} show a strong preference of the moments to order along the c-axis. - Graphical abstract: RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were grown as large crystals from reactions of Ge and Al in RE/Co eutectic melts. Magnetic measurements indicate ordering of the 2-D cobalt nets at 130–140 K, and ordering of the rare earth moments at 30–40 K. Display Omitted - Highlights: • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) grown as large crystals from RE/Co eutectic flux. • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} structure features hexagonal cobalt nets stacked along c-axis. • Cobalt layers order ferromagnetically with T{sub c}=130–140 K. • Rare earth magnetic moments order at low temperature (30–40 K).« less
NASA Astrophysics Data System (ADS)
Pertaya, Natalya; Celik, Yeliz; Di Prinzio, Carlos L.; Wettlaufer, J. S.; Davies, Peter L.; Braslavsky, Ido
2007-10-01
Here we describe studies of the crystallization behavior of ice in an aqueous solution of spruce budworm antifreeze protein (sbwAFP) at atmospheric pressure. SbwAFP is an ice binding protein with high thermal hysteresis activity, which helps protect Choristoneura fumiferana (spruce budworm) larvae from freezing as they overwinter in the spruce and fir forests of the north eastern United States and Canada. Different types of ice binding proteins have been found in many other species. They have a wide range of applications in cryomedicine and cryopreservation, as well as the potential to protect plants and vegetables from frost damage through genetic engineering. However, there is much to learn regarding the mechanism of action of ice binding proteins. In our experiments, a solution containing sbwAFP was rapidly frozen and then melted back, thereby allowing us to produce small single crystals. These maintained their hexagonal shapes during cooling within the thermal hysteresis gap. Melt-growth-melt sequences in low concentrations of sbwAFP reveal the same shape transitions as are found in pure ice crystals at low temperature (-22 °C) and high pressure (2000 bar) (Cahoon et al 2006 Phys. Rev. Lett. 96 255502) while both growth and melt shapes display faceted hexagonal morphology, they are rotated 30° relative to one another. Moreover, the initial melt shape and orientation is recovered in the sequence. To visualize the binding of sbwAFP to ice, we labeled the antifreeze protein with enhanced green fluorescent protein (eGFP) and observed the sbwAFP-GFP molecules directly on ice crystals using confocal microscopy. When cooling the ice crystals, facets form on the six primary prism planes (slowest growing planes) that are evenly decorated with sbwAFP-GFP. During melting, apparent facets form on secondary prism planes (fastest melting planes), leaving residual sbwAFP at the six corners of the hexagon. Thus, the same general growth-melt behavior of an apparently rotated crystal that is observed in pure ice under high pressure and low temperature is reproduced in ice under the influence of sbwAFP at ambient pressure and temperatures near 0 °C.
NASA Astrophysics Data System (ADS)
Pan, Chengbin; Miranda, Enrique; Villena, Marco A.; Xiao, Na; Jing, Xu; Xie, Xiaoming; Wu, Tianru; Hui, Fei; Shi, Yuanyuan; Lanza, Mario
2017-06-01
Despite the enormous interest raised by graphene and related materials, recent global concern about their real usefulness in industry has raised, as there is a preoccupying lack of 2D materials based electronic devices in the market. Moreover, analytical tools capable of describing and predicting the behavior of the devices (which are necessary before facing mass production) are very scarce. In this work we synthesize a resistive random access memory (RRAM) using graphene/hexagonal-boron-nitride/graphene (G/h-BN/G) van der Waals structures, and we develop a compact model that accurately describes its functioning. The devices were fabricated using scalable methods (i.e. CVD for material growth and shadow mask for electrode patterning), and they show reproducible resistive switching (RS). The measured characteristics during the forming, set and reset processes were fitted using the model developed. The model is based on the nonlinear Landauer approach for mesoscopic conductors, in this case atomic-sized filaments formed within the 2D materials system. Besides providing excellent overall fitting results (which have been corroborated in log-log, log-linear and linear-linear plots), the model is able to explain the dispersion of the data obtained from cycle-to-cycle in terms of the particular features of the filamentary paths, mainly their confinement potential barrier height.
Horst, Renata; Maicki, Tomasz; Trąbka, Rafał; Albrecht, Sindy; Schmidt, Katharina; Mętel, Sylwia; von Piekartz, Harry
2017-05-01
To compare the short- and long-term effects of a structural-oriented (convential) with an activity-oriented physiotherapeutic treatment in patients with frozen shoulder. Double-blinded, randomized, experimental study. Outpatient clinic. We included patients diagnosed with a limited range of motion and pain in the shoulder region, who had received a prescription for physiotherapy treatment, without additional symptoms of dizziness, a case history of headaches, pain and/or limited range of motion in the cervical spine and/or temporomandibular joint. The study group received treatment during the performance of activities. The comparison group was treated with manual therapy and proprioceptive neuromuscular facilitation (conventional therapy). Both groups received 10 days of therapy, 30 minutes each day. Range of motion, muscle function tests, McGill pain questionnaire and modified Upper Extremity Motor Activity Log were measured at baseline, after two weeks of intervention and after a three-month follow-up period without therapy. A total of 66 patients were randomized into two groups: The activity-oriented group ( n = 33, mean = 44 years, SD = 16 years) including 20 male (61%) and the structural-oriented group ( n = 33, mean = 47 years, SD = 17 years) including 21 male (64%). The activity-oriented group revealed significantly greater improvements in the performance of daily life activities and functional and structural tests compared with the group treated with conventional therapy after 10 days of therapy and at the three-month follow-up ( p < 0.05). Therapy based on performing activities seems to be more effective for pain reduction and the ability to perform daily life activities than conventional treatment methods.
Montero, Ramon B.; Vial, Ximena; Nguyen, Dat Tat; Farhand, Sepehr; Reardon, Mark; Pham, Si M.; Tsechpenakis, Gavriil; Andreopoulos, Fotios M.
2011-01-01
Current therapeutic angiogenesis strategies are focused on the development of biologically responsive scaffolds that can deliver multiple angiogenic cytokines and/or cells in ischemic regions. Herein, we report on a novel electrospinning approach to fabricate cytokine-containing nanofibrous scaffolds with tunable architecture to promote angiogenesis. Fiber diameter and uniformity were controlled by varying the concentration of the polymeric (i.e. gelatin) solution, the feed rate, needle to collector distance, and electric field potential between the collector plate and injection needle. Scaffold fiber orientation (random vs. aligned) was achieved by alternating the polarity of two parallel electrodes placed on the collector plate thus dictating fiber deposition patterns. Basic fibroblast growth factor (bFGF) was physically immobilized within the gelatin scaffolds at variable concentrations and human umbilical vein endothelial cells (HUVEC) were seeded on the top of the scaffolds. Cell proliferation and migration was assessed as a function of growth factor loading and scaffold architecture. HUVECs successfully adhered onto gelatin B scaffolds and cell proliferation was directly proportional to the loading concentrations of the growth factor (0–100 bFGF ng/mL). Fiber orientation had a pronounced effect on cell morphology and orientation. Cells were spread along the fibers of the electrospun scaffolds with the aligned orientation and developed a spindle-like morphology parallel to the scaffold's fibers. In contrast, cells seeded onto the scaffolds with random fiber orientation, did not demonstrate any directionality and appeared to have a rounder shape. Capillary formation (i.e. sprouts length and number of sprouts per bead), assessed in a 3-D in vitro angiogenesis assay, was a function of bFGF loading concentration (0 ng, 50 ng and 100 ng per scaffold) for both types of electrospun scaffolds (i.e. with aligned or random fiber orientation). PMID:22200610
Ikuno, Koki; Kawaguchi, Saori; Kitabeppu, Shinsuke; Kitaura, Masaki; Tokuhisa, Kentaro; Morimoto, Shigeru; Matsuo, Atsushi; Shomoto, Koji
2012-11-01
To investigate the feasibility of peripheral sensory nerve stimulation combined with task-oriented training in patients with stroke during inpatient rehabilitation. A pilot randomized crossover trial. Two rehabilitation hospitals. Twenty-two patients with subacute stroke. Participants were randomly assigned to two groups and underwent two weeks of training in addition to conventional inpatient rehabilitation. The immediate group underwent peripheral sensory nerve stimulation combined with task-oriented training in the first week, followed by another week with task-oriented training alone. The delayed group underwent the same training in reverse order. Outcome measures were the level of fatigue and Wolf Motor Function Test. Patients were assessed at baseline, one and two weeks. All participants completed the study with no adverse events. There was no significant difference in level of fatigue between each treatment. From baseline to one week, the immediate group showed larger improvements than the delayed groups in the Wolf Motor Function Test (decrease in mean time (± SD) from 41.9 ± 16.2 seconds to 30.6 ± 11.4 seconds versus from 46.8 ± 19.4 seconds to 42.9 ± 14.7 seconds, respectively) but the difference did not reach significance after Bonferroni correction (P = 0.041). Within-group comparison showed significant improvements in the Wolf Motor Function Test mean time after the peripheral sensory nerve stimulation combined with task-oriented training periods in each group (P < 0.01). Peripheral sensory nerve stimulation is feasible in clinical settings and may enhance the effects of task-oriented training in patients with subacute stroke.
Feed mechanism and method for feeding minute items
Stringer, Timothy Kent; Yerganian, Simon Scott
2012-11-06
A feeding mechanism and method for feeding minute items, such as capacitors, resistors, or solder preforms. The mechanism is adapted to receive a plurality of the randomly-positioned and randomly-oriented extremely small or minute items, and to isolate, orient, and position the items in a specific repeatable pickup location wherefrom they may be removed for use by, for example, a computer-controlled automated assembly machine. The mechanism comprises a sliding shelf adapted to receive and support the items; a wiper arm adapted to achieve a single even layer of the items; and a pushing arm adapted to push the items into the pickup location. The mechanism can be adapted for providing the items with a more exact orientation, and can also be adapted for use in a liquid environment.
Feed mechanism and method for feeding minute items
Stringer, Timothy Kent [Bucyrus, KS; Yerganian, Simon Scott [Lee's Summit, MO
2009-10-20
A feeding mechanism and method for feeding minute items, such as capacitors, resistors, or solder preforms. The mechanism is adapted to receive a plurality of the randomly-positioned and randomly-oriented extremely small or minute items, and to isolate, orient, and position one or more of the items in a specific repeatable pickup location wherefrom they may be removed for use by, for example, a computer-controlled automated assembly machine. The mechanism comprises a sliding shelf adapted to receive and support the items; a wiper arm adapted to achieve a single even layer of the items; and a pushing arm adapted to push the items into the pickup location. The mechanism can be adapted for providing the items with a more exact orientation, and can also be adapted for use in a liquid environment.
Center of mass perception and inertial frames of reference.
Bingham, G P; Muchisky, M M
1993-11-01
Center of mass perception was investigated by varying the shape, size, and orientation of planar objects. Shape was manipulated to investigate symmetries as information. The number of reflective symmetry axes, the amount of rotational symmetry, and the presence of radial symmetry were varied. Orientation affected systematic errors. Judgments tended to undershoot the center of mass. Random errors increased with size and decreased with symmetry. Size had no effect on random errors for maximally symmetric objects, although orientation did. The spatial distributions of judgments were elliptical. Distribution axes were found to align with the principle moments of inertia. Major axes tended to align with gravity in maximally symmetric objects. A functional and physical account was given in terms of the repercussions of error. Overall, judgments were very accurate.
Anomalous fast dynamics of adsorbate overlayers near an incommensurate structural transition.
Granato, Enzo; Ying, S C; Elder, K R; Ala-Nissila, T
2013-09-20
We investigate the dynamics of a compressively strained adsorbed layer on a periodic substrate via a simple two-dimensional model that admits striped and hexagonal incommensurate phases. We show that the mass transport is superfast near the striped-hexagonal phase boundary and in the hexagonal phase. For an initial step profile separating a bare substrate region (or "hole") from the rest of a striped incommensurate phase, the superfast domain wall dynamics leads to a bifurcation of the initial step profile into two interfaces or profiles propagating in opposite directions with a hexagonal phase in between. This yields a theoretical understanding of the recent experiments for the Pb/Si(111) system.
Experimental static aerodynamics of a regular hexagonal prism in a low density hypervelocity flow
NASA Technical Reports Server (NTRS)
Guy, R. W.; Mueller, J. N.; Lee, L. P.
1972-01-01
A regular hexagonal prism, having a fineness ratio of 1.67, has been tested in a wind tunnel to determine its static aerodynamic characteristics in a low-density hypervelocity flow. The prism tested was a 1/4-scale model of the graphite heat shield which houses the radioactive fuel for the Viking spacecraft auxiliary power supply. The basic hexagonal prism was also modified to simulate a prism on which ablation of one of the six side flats had occurred. This modified hexagonal prism was tested to determine the effects on the aerodynamic characteristics of a shape change caused by ablation during a possible side-on stable reentry.
Effect of hexagonal hillock on luminescence characteristic of multiple quantum wells structure
NASA Astrophysics Data System (ADS)
Du, Jinjuan; Xu, Shengrui; Li, Peixian; Zhang, Jincheng; Zhao, Ying; Peng, Ruoshi; Fan, Xiaomeng; Hao, Yue
2018-04-01
GaN based ultraviolet multiple quantum well structures grown on a c-plane sapphire substrate by metal organic chemical deposition showed a microstructure with a large amount of huge hexagonal hillocks. The polarity of the sample is confirmed by etching with sodium hydroxide solution. The luminous intensity distribution of a typical hexagonal hillock was investigated by the phototluminescent mapping and the luminous intensity at hillock top regions was found to be 15 times higher than that of the regions around hillocks. The reduction of dislocations, the decreasing of the quantum confirmed stack effect caused by semipolar plane and the inclination of the sidewalls of the hexagonal hillock were responsible for the enhancement of luminous intensity.
Variability of Young’s modulus and Poisson’s ratio of hexagonal crystals
NASA Astrophysics Data System (ADS)
Komarova, M. A.; Gorodtsov, V. A.; Lisovenko, D. S.
2018-04-01
In this paper, the variability of elastic characteristics (Young’s modulus and Poisson’s ratio) of hexagonal crystals has been studied. Analytic expressions for Young’s modulus and Poisson’s ratio are obtained. Stationary values for these elastic characteristics are found. Young’s modulus has three stationary values, and Poisson’s ratio has eight stationary values. Numerical analysis of these elastic characteristics for hexagonal crystals is given based on the experimental data from the Landolt-Börnstein handbook. Global extrema of Young’s modulus and Poisson’s ratio for hexagonal crystals are found. Crystals are found in which the maximum values exceeds the upper limit for isotropic materials.
Enhanced Graphene Photodetector with Fractal Metasurface.
Fang, Jieran; Wang, Di; DeVault, Clayton T; Chung, Ting-Fung; Chen, Yong P; Boltasseva, Alexandra; Shalaev, Vladimir M; Kildishev, Alexander V
2017-01-11
Graphene has been demonstrated to be a promising photodetection material because of its ultrabroadband optical absorption, compatibility with CMOS technology, and dynamic tunability in optical and electrical properties. However, being a single atomic layer thick, graphene has intrinsically small optical absorption, which hinders its incorporation with modern photodetecting systems. In this work, we propose a gold snowflake-like fractal metasurface design to realize broadband and polarization-insensitive plasmonic enhancement in graphene photodetector. We experimentally obtain an enhanced photovoltage from the fractal metasurface that is an order of magnitude greater than that generated at a plain gold-graphene edge and such an enhancement in the photovoltage sustains over the entire visible spectrum. We also observed a relatively constant photoresponse with respect to polarization angles of incident light, as a result of the combination of two orthogonally oriented concentric hexagonal fractal geometries in one metasurface.
Band alignment and optical response of facile grown NiO/ZnO nano-heterojunctions
NASA Astrophysics Data System (ADS)
Sultan, Muhammad; Mumtaz, Sundas; Ali, Asad; Khan, Muhammad Yaqoob; Iqbal, Tahir
2017-12-01
ZnO nanorods decorated by NiO nanostructures were fabricated using facile chemical route. The nanorods of ZnO were prepared by using chemical bath deposition technique and subsequently decorated by NiO using sol-gel spin coating. The density and orientation of the ZnO nanorods was controlled through the seed layer with preferential growth along c-axis and hexagonal face. X-Ray Photoelectron Spectroscopy (XPS) analysis was used to confirm stoichiometry of the materials and band alignment study of the heterostructures. Type-II band alignment was observed from the experimental results. The IV characteristics of the device depicting rectifying behavior at different temperatures were observed with photocurrent generation in response to light excitation. The electrical properties reported in this study are in line with earlier work where heterojunctions were fabricated by physical deposition techniques.
NASA Astrophysics Data System (ADS)
Castagnède, Bernard; Jenkins, James T.; Sachse, Wolfgang; Baste, Stéphane
1990-03-01
A method is described to optimally determine the elastic constants of anisotropic solids from wave-speeds measurements in arbitrary nonprincipal planes. For such a problem, the characteristic equation is a degree-three polynomial which generally does not factorize. By developing and rearranging this polynomial, a nonlinear system of equations is obtained. The elastic constants are then recovered by minimizing a functional derived from this overdetermined system of equations. Calculations of the functional are given for two specific cases, i.e., the orthorhombic and the hexagonal symmetries. Some numerical results showing the efficiency of the algorithm are presented. A numerical method is also described for the recovery of the orientation of the principal acoustical axes. This problem is solved through a double-iterative numerical scheme. Numerical as well as experimental results are presented for a unidirectional composite material.
NASA Technical Reports Server (NTRS)
Barainca, J. W.
1984-01-01
A microgravity growth chamber was designed to investigate the phototropic response of radish seedlings. Enclosed in a one fourth inch thick, hexagonal, fiberglass-foam spacepak nineteen inches across corners, the experiment consists of a growth chamber and germination tray, a water reservoir and solenoid valve, a fluorescent light for photo simulation, a Minolta X700 camera with programmable back, a 50 mm macro lens and flash, a battery pack, and a computer controller. Two temperature sensors and one light sensor located in the walls of the growth chamber provide temperature and illumination data. A computer provides 8 K command and 34 K data storage capability. The experiment was not activated during the STS flight because a malfunctioning latching relay stuck and reduced the battery power level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammad, Sabah M., E-mail: Sabahaskari14@gmail.com; Ahmed, Naser M.; Abd-Alghafour, Nabeel M.
Vertically, well-aligned and high density ZnO nanorods were successfully hydrothermally grown on glass and silicon substrates using a simple and low cost system. The mechanism of synthesis of ZnO nanorods, generated with our system under hydrothermal conditions, is investigated in this report. Field-emission scanning electron microscopy indicated that the fabricated ZnO nanorods on both substrates have hexagonal shape with diameters ranging from 20 nm to 70 nm which grew vertically from the substrate. XRD analysis confirms the formation of wurtzite ZnO phase with a preferred orientation along (002) direction perpendicular on the substrate and enhanced crystallinity. The low value ofmore » the tensile strain (0.126 %) revealed that ZnO nanorods preferred to grow along the c-axis for both substrates. Photoluminescence spectra exhibited a strong, sharp UV near band edge emission peak with narrow FWHM values for both samples.« less
Synthesis of Large-grain, Single-crystalline Monolayer and AB-stacking Bilayer Graphene
NASA Astrophysics Data System (ADS)
Zhang, Luyao; Lin, Yung-Chen; Zhang, Yi; Chang, Han-Wen; Yeh, Wen-Cheng; Zhou, Chongwu; USC Nanotechnology Research Laboratory Team
2013-03-01
We report the growth of large-grain, single-crystalline monolayer and AB-stacking bilayer graphene by the combination of ambient pressure chemical vapor deposition and low pressure chemical vapor deposition. The shape of the monolayer graphene was modified to be either hexagons or flowers under different growth conditions. The size of the bilayer graphene region was enlarged under ambient pressure growth conditions with low methane concentration. Raman spectra and selected area electron diffraction of individual graphene grain indicated that the each graphene grain is single-crystalline. With electron beam lithography patterned PMMA seeds, graphene nucleation can be controlled and graphene monolayer and bilayer arrays were synthesized on copper foil. Electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Mork Family Department of Chemical Engineering and Materials Science
Growth of GaN micro/nanolaser arrays by chemical vapor deposition.
Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng
2016-09-02
Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm(-2). The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.
NASA Astrophysics Data System (ADS)
Kim, Doyoung; Kang, Hyemin; Kim, Jae-Min; Kim, Hyungjun
2011-02-01
Zinc oxide (ZnO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD) using oxygen plasma as a reactant and the properties were compared with those of thermal atomic layer deposition (TH-ALD) ZnO thin films. While hexagonal wurzite phase with preferential (0 0 2) orientation was obtained for both cases, significant differences were observed in various aspects of film properties including resistivity values between these two techniques. Photoluminescence (PL) measurements have shown that high resistivity of PE-ALD ZnO thin films is due to the oxygen interstitials at low growth temperature of 200 °C, whose amount decreases with increasing growth temperature. Thin film transistors (TFT) using TH- and PE-ALD ZnO as an active layer were also fabricated and the device properties were evaluated comparatively.
NASA Astrophysics Data System (ADS)
Cheng, Zongzhe; Hanke, Michael; Vogt, Patrick; Bierwagen, Oliver; Trampert, Achim
2017-10-01
Heteroepitaxial Ga2O3 was deposited on c-plane and a-plane oriented sapphire by plasma-assisted molecular beam epitaxy and probed by ex-situ and in-situ synchrotron-based x-ray diffraction. The investigation on c-plane sapphire determined a critical thickness of around 33 Å, at which the monoclinic β-phase forms on top of the hexagonal α-phase. A 143 Å thick single phase α-Ga2O3 was observed on a-plane sapphire, much thicker than the α-Ga2O3 on c-plane sapphire. The α-Ga2O3 relaxed very fast in the first 30 Å in both out-of-plane and in-plane directions as measured by the in-situ study.
Hemispherical Anisotropic Patterns of the Earth's Inner Core
NASA Astrophysics Data System (ADS)
Mattesini, M.; Belonoshko, A. B.; Buforn, E.; Ramirez, M.; Simak, S. I.; Udias, A.; Mao, H.; Ahuja, R.
2010-12-01
It has been shown that the Earth's inner core has an axisymmetric anisotropic structure with seismic waves travelling ˜3% faster along polar paths than along equatorial directions. However, hemispherical anisotropic patterns of solid Earth's core are rather complex, and the commonly used hexagonal-close-packed (hcp) iron phase might be insufficient to account for seismological observations. We show that the data we collected are in good agreement with the presence of two anisotropically specular east and west core hemispheres. The detected travel-time anomalies can only be disclosed by a lattice preferred orientation of a body-centered-cubic iron aggregate (bcc), having a fraction of their [111] crystal axes parallel to the Earth's rotation axis. This is a compelling evidence for the presence of a body-centered-cubic Fe phase at the top 100 km of the Earth's inner core.
NASA Astrophysics Data System (ADS)
Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin
2014-08-01
We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data.
Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin
2014-08-05
We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data.
Shao, Yongliang; Zhang, Lei; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Tian, Yuan; Huo, Qin
2014-01-01
We report a method to obtain the stress of crystalline materials directly from lattice deformation by Hooke's law. The lattice deformation was calculated using the crystallographic orientations obtained from electron backscatter diffraction (EBSD) technology. The stress distribution over a large area was obtained efficiently and accurately using this method. Wurtzite structure gallium nitride (GaN) crystal was used as the example of a hexagonal crystal system. With this method, the stress distribution of a GaN crystal was obtained. Raman spectroscopy was used to verify the stress distribution. The cause of the stress distribution found in the GaN crystal was discussed from theoretical analysis and EBSD data. Other properties related to lattice deformation, such as piezoelectricity, can also be analyzed by this novel approach based on EBSD data. PMID:25091314
Contour symmetry detection: the influence of axis orientation and number of objects.
Friedenberg, J; Bertamini, M
2000-09-01
Participants discriminated symmetrical from random contours connected by straight lines to form part of one- or two-objects. In experiment one, symmetrical contours were translated or reflected and presented at vertical, horizontal, and oblique axis orientations with orientation constant within blocks. Translated two-object contours were detected more easily than one, replicating a "lock-and-key" effect obtained previously for vertical orientations only [M. Bertamini, J.D. Friedenberg, M. Kubovy, Acta Psychologica, 95 (1997) 119-140]. A second experiment extended these results to a wider variety of axis orientations under mixed block conditions. The pattern of performance for translation and reflection at different orientations corresponded in both experiments, suggesting that orientation is processed similarly in the detection of these symmetries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Sijun, E-mail: sluo1@tulane.edu; Riggs, Brian C.; Shipman, Joshua T.
Direct integration of proton conductor films on Pt-coated substrates opens the way to film-based proton transport devices. Columnar SrZr{sub 0.95}Y{sub 0.05}O{sub 3−δ} (SZY) films with dense microstructure were deposited on Pt-coated MgO(100) substrates at 830 °C by pulsed laser deposition. The optimal window of ambient O{sub 2} pressure for good crystallinity of SZY films is from 400 to 600 mTorr. The ambient O{sub 2} compresses the plasma plume of SZY and increases the deposition rate. The 10 nm thick Ti adhesion layer on MgO(100) greatly affects the orientation of the sputtered Pt layers. Pt deposited directly on MgO shows a highly (111)-preferredmore » orientation and leads to preferentially oriented SZY films while the addition of a Ti adhesion layer makes Pt show a less preferential orientation that leads to randomly oriented SZY films. The RMS surface roughness of preferentially oriented SZY films is larger than that of randomly oriented SZY films deposited under the same ambient O{sub 2} pressure. As the O{sub 2} pressure increased, the RMS surface roughness of preferentially oriented SZY films increased, reaching 45.7 nm (2.61% of film thickness) at 600 mTorr. This study revealed the ambient O{sub 2} pressure and orientation dependent surface roughness of SZY films grown on Pt-coated MgO substrates, which provides the potential to control the surface microstructure of SZY films for electrochemical applications in film-based hydrogen devices.« less
Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH
NASA Astrophysics Data System (ADS)
Zhang, Li; Yuan, Hongsheng; Meng, Yue; Mao, Ho-kwang
2018-03-01
A deep lower-mantle (DLM) water reservoir depends on availability of hydrous minerals which can store and transport water into the DLM without dehydration. Recent discoveries found hydrous phases AlOOH (Z = 2) with a CaCl2-type structure and FeOOH (Z = 4) with a cubic pyrite-type structure stable under the high-pressure–temperature (P-T) conditions of the DLM. Our experiments at 107–136 GPa and 2,400 K have further demonstrated that (Fe,Al)OOH is stabilized in a hexagonal lattice. By combining powder X-ray-diffraction techniques with multigrain indexation, we are able to determine this hexagonal hydrous phase with a = 10.5803(6) Å and c = 2.5897(3) Å at 110 GPa. Hexagonal (Fe,Al)OOH can transform to the cubic pyrite structure at low T with the same density. The hexagonal phase can be formed when δ-AlOOH incorporates FeOOH produced by reaction between water and Fe, which may store a substantial quantity of water in the DLM.
Bi2Te3 thin hexagonal nanoplatelets: Synthesis and its characterization studies
NASA Astrophysics Data System (ADS)
Vinoth, S.; Balaganapathi, T.; KaniAmuthan, B.; Arun, T.; Muthuselvam, I. Panneer; Chou, Fang-Cheng; Thilakan, P.
2017-08-01
Solvothermal synthesis and optimization of pure Bismuth telluride (Bi2Te3) hexagonal nanoplatelets was carried out from Bismuth Oxide (Bi2O3) and Tellurium dioxide (TeO2). XRD measurements revealed a sensitive change in crystallization behaviour in correlation with variation in Te/Bi stoichiometry identified through the exchange in intensities between (10 10 ̅) and (110) peaks. Further, Energy Dispersive X-ray (EDAX) analysis revealed the variation in Te/Bi ratio with respect to autoclave temperature. Field emission scanning electron Microscope (FESEM) and the high resolution transmission electron Microscope (HRTEM) studies show the complete growth of hexagonal nanoplatelets at 200 °C. Confocal Micro-Raman measurements revealed the occurrence of symmetry breaking in the synthesized hexagonal nanoplatelets. The electrical conductivity and the activation energy were recorded as 6.01×10-3 S/m and 0.042 eV respectively. Highest maximum absolute value of Seebeck coefficient of -355 μV/K was obtained for the hexagonal nanoplatelets.
NASA Astrophysics Data System (ADS)
Sono, Tleyane J.; Riziotis, Christos; Mailis, Sakellaris; Eason, Robert W.
2017-09-01
Fabrication capabilities of high optical quality hexagonal superstructures by chemical etching of inverted ferroelectric domains in lithium niobate platform suggests a route for efficient implementation of compact hexagonal microcavities. Such nonlinear optical hexagonal micro-resonators are proposed as a platform for second harmonic generation (SHG) by the combined mechanisms of total internal reflection (TIR) and quasi-phase-matching (QPM). The proposed scheme for SHG via TIR-QPM in a hexagonal microcavity can improve the efficiency and also the compactness of SHG devices compared to traditional linear-type based devices. A simple theoretical model based on six-bounce trajectory and phase matching conditions was capable for obtaining the optimal cavity size. Furthermore numerical simulation results based on finite difference time domain beam propagation method analysis confirmed the solutions obtained by demonstrating resonant operation of the microcavity for the second harmonic wave produced by TIR-QPM. Design aspects, optimization issues and characteristics of the proposed nonlinear device are presented.
Surfactant-assisted growth and optical properties of ZnO hexagonal bilayer disk-like microstructures
NASA Astrophysics Data System (ADS)
Zhu, Q. P.; Shen, X. Y.; Wang, L. L.; Zhu, L. P.; Wang, L. J.; Liao, G. H.
2018-01-01
ZnO hexagonal bilayer disk-like microstructures are successfully fabricated using a simple solvothermal method assisted with surfactant. The structure and morphology were investigated by XRD, SEM, and EDS. XRD result indicated that the as-obtained samples were well-crystallized wurtzite hexagonal ZnO structure. SEM images showed that the ZnO hexagonal bilayer disk-like assembles consist of two uniform and smooth disks with an average edge length of 6 μm and thickness of ˜4 μm. UV-vis spectrum reveals that ZnO sampls show an appreciable red shift and the band gap energy of the obtained ZnO samples were about 3.15 eV. A very strong UV emission at the ultraviolet (UV) region was observed in the photoluminescence (PL) spectrum of the as-prepared ZnO samples tested at room-temperature. A possible growth process of the ZnO hexagonal bilayer disk-like microstructures was schematically illustrated.
Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?
Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun
2015-02-21
Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.
Intrinsic ferromagnetism in hexagonal boron nitride nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng
2014-05-28
Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstratemore » such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.« less
Algebraic signal processing theory: 2-D spatial hexagonal lattice.
Pünschel, Markus; Rötteler, Martin
2007-06-01
We develop the framework for signal processing on a spatial, or undirected, 2-D hexagonal lattice for both an infinite and a finite array of signal samples. This framework includes the proper notions of z-transform, boundary conditions, filtering or convolution, spectrum, frequency response, and Fourier transform. In the finite case, the Fourier transform is called discrete triangle transform. Like the hexagonal lattice, this transform is nonseparable. The derivation of the framework makes it a natural extension of the algebraic signal processing theory that we recently introduced. Namely, we construct the proper signal models, given by polynomial algebras, bottom-up from a suitable definition of hexagonal space shifts using a procedure provided by the algebraic theory. These signal models, in turn, then provide all the basic signal processing concepts. The framework developed in this paper is related to Mersereau's early work on hexagonal lattices in the same way as the discrete cosine and sine transforms are related to the discrete Fourier transform-a fact that will be made rigorous in this paper.
Biomimetic light-harvesting funnels for re-directioning of diffuse light.
Pieper, Alexander; Hohgardt, Manuel; Willich, Maximilian; Gacek, Daniel Alexander; Hafi, Nour; Pfennig, Dominik; Albrecht, Andreas; Walla, Peter Jomo
2018-02-14
Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption <0.5%. Efficient donor-pool energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.
Corrigan, Patrick W; Powell, Karina J; Al-Khouja, Maya A
2015-11-01
Health communication campaigns often seek to diminish stigma and promote care seeking, with public service announcements (PSAs) frequently prominent in these campaigns. One example is the Australian-based beyondblue campaign. As an alternative approach, campaigns may seek to reduce stigma by promoting stories of recovery. Participants completed measures of stigmatizing and empowering attitudes at pre-, post-, and 72-hour follow-up after being randomized to a PSA recovery-oriented video, treatable disease-oriented video (beyondblue), or control. When exposed to the recovery-oriented PSA, participants showed significant reduction in stigmatizing attitudes from pre- to posttest than beyondblue or the control group with the emergence of nonsignificant trends identified at follow-up. Findings suggest a recovery-oriented video leads to better change on measures of stigma and affirming attitudes than beyondblue. Despite the aforementioned findings, results failed to show either the recovery or beyondblue videos had a significant impact on intent to seek treatment.
Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.
2015-03-24
Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COFmore » films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.« less
Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.
2015-02-17
Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COFmore » films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.« less
The organization of repeating units in mitochondrial DNA from yeast petite mutants.
Bos, J L; Heyting, C; Van der Horst, G; Borst, P
1980-04-01
We have reinvestigated the linkage orientation of repeating units in mtDNAs of yeast ρ(-) petite mutants containing an inverted duplication. All five petite mtDNAs studied contain a continuous segment of wild-type mtDNA, part of which is duplicated and present in inverted form in the repeat. We show by restriction enzyme analysis that the non-duplicated segments between the inverted duplications are present in random orientation in all five petite mtDNAs. There is no segregation of sub-types with unique orientation. We attribute this to the high rate of intramolecular recombination between the inverted duplications. The results provide additional evidence for the high rate of recombination of yeast mtDNA even in haploid ρ(-) petite cells.We conclude that only two types of stable sequence organization exist in petite mtDNA: petites without an inverted duplication have repeats linked in straight head-to-tail arrangement (abcabc); petites with an inverted duplication have repeats in which the non-duplicated segments are present in random orientation.
Surface engineering with functional random copolymers for nanolithographic applications
NASA Astrophysics Data System (ADS)
Sparnacci, Katia; Antonioli, Diego; Gianotti, Valentina; Lupi, Federico Ferrarese; Giammaria, Tommaso Jacopo; Seguini, Gabriele; Perego, Michele; Laus, Michele
2016-05-01
Hydroxyl-terminated P(S-r-MMA) random copolymers with molecular weight ranging from 1.7 to 69 kg/mol and a styrene unit fraction of 61% were grafted onto a silicon oxide surface and subsequently used to study the orientation of domains with respect to the substrate, in cylinder-forming PS-b-PMMA block copolymer thin films. When the thickness (H) of the grafted layer is greater than 5-6 nm, a perpendicular orientation is always observed because of the efficient decoupling of the BCP film from the polar SiO2 surface. Conversely, if H is less than 5 nm, the critical thickness of the grafted layer, which allows the neutralization of the substrate and promotion of the perpendicular orientation of the nanodomains in the BCP film, is found to depend on the Mn of the RCP. In particular, when Mn = 1700, a 2.0 nm thick grafted layer is sufficient to promote the perpendicular orientation of the PMMA cylinders in the PS-b-PMMA BCP film.
Monson, H.O.
1961-01-24
A radiator-type fuel block assembly is described. It has a hexagonal body of neutron fissionable material having a plurality of longitudinal equal- spaced coolant channels therein aligned in rows parallel to each face of the hexagonal body. Each of these coolant channels is hexagonally shaped with the corners rounded and enlarged and the assembly has a maximum temperature isothermal line around each channel which is approximately straight and equidistant between adjacent channels.
Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deb, Moumita, E-mail: moumitadeb44@gmail.com; Ghosh, Asim Kumar, E-mail: asimkumar96@yahoo.com
2016-05-23
Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu{sub 3}WO{sub 6}.
NASA Astrophysics Data System (ADS)
Shea, Thomas; Krimer, Daniel; Costa, Fidel; Hammer, Julia
2014-05-01
One of the achievements in recent years in volcanology is the determination of time-scales of magmatic processes via diffusion in minerals and its addition to the petrologists' and volcanologists' toolbox. The method typically requires one-dimensional modeling of randomly cut crystals from two-dimensional thin sections. Here we address the question whether using 1D (traverse) or 2D (surface) datasets exploited from randomly cut 3D crystals introduces a bias or dispersion in the time-scales estimated, and how this error can be improved or eliminated. Computational simulations were performed using a concentration-dependent, finite-difference solution to the diffusion equation in 3D. The starting numerical models involved simple geometries (spheres, parallelepipeds), Mg/Fe zoning patterns (either normal or reverse), and isotropic diffusion coefficients. Subsequent models progressively incorporated more complexity, 3D olivines possessing representative polyhedral morphologies, diffusion anisotropy along the different crystallographic axes, and more intricate core-rim zoning patterns. Sections and profiles used to compare 1, 2 and 3D diffusion models were selected to be (1) parallel to the crystal axes, (2) randomly oriented but passing through the olivine center, or (3) randomly oriented and sectioned. Results show that time-scales estimated on randomly cut traverses (1D) or surfaces (2D) can be widely distributed around the actual durations of 3D diffusion (~0.2 to 10 times the true diffusion time). The magnitude over- or underestimations of duration are a complex combination of the geometry of the crystal, the zoning pattern, the orientation of the cuts with respect to the crystallographic axes, and the degree of diffusion anisotropy. Errors on estimated time-scales retrieved from such models may thus be significant. Drastic reductions in the uncertainty of calculated diffusion times can be obtained by following some simple guidelines during the course of data collection (i.e. selection of crystals and concentration profiles, acquisition of crystallographic orientation data), thus allowing derivation of robust time-scales.
NASA Astrophysics Data System (ADS)
Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.
2010-02-01
We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.
Task oriented training improves the balance outcome & reducing fall risk in diabetic population.
Ghazal, Javeria; Malik, Arshad Nawaz; Amjad, Imran
2016-01-01
The objective was to determine the balance impairments and to compare task oriented versus traditional balance training in fall reduction among diabetic patients. The randomized control trial with descriptive survey and 196 diabetic patients were recruited to assess balance impairments through purposive sampling technique. Eighteen patients were randomly allocated into two groups; task oriented balance training group TOB (n=8) and traditional balance training group TBT (n=10). The inclusion criteria were 30-50 years age bracket and diagnosed cases of Diabetes Mellitus with neuropathy. The demographics were taken through standardized & valid assessment tools include Berg Balance Scale and Functional Reach Test. The measurements were obtained at baseline, after 04 and 08 weeks of training. The mean age of the participants was 49 ±6.79. The result shows that 165(84%) were at moderate risk of fall and 31(15%) were at mild risk of fall among total 196 diabetic patients. There was significant improvement (p <0.05) in task oriented balance training group for dynamic balance, anticipatory balance and reactive balance after 8 weeks of training as compare to traditional balance training. Task oriented balance training is effective in improving the dynamic, anticipator and reactive balance. The task oriented training reduces the risk of falling through enhancing balance outcome.
Task oriented training improves the balance outcome & reducing fall risk in diabetic population
Ghazal, Javeria; Malik, Arshad Nawaz; Amjad, Imran
2016-01-01
Objectives: The objective was to determine the balance impairments and to compare task oriented versus traditional balance training in fall reduction among diabetic patients. Methods: The randomized control trial with descriptive survey and 196 diabetic patients were recruited to assess balance impairments through purposive sampling technique. Eighteen patients were randomly allocated into two groups; task oriented balance training group TOB (n=8) and traditional balance training group TBT (n=10). The inclusion criteria were 30-50 years age bracket and diagnosed cases of Diabetes Mellitus with neuropathy. The demographics were taken through standardized & valid assessment tools include Berg Balance Scale and Functional Reach Test. The measurements were obtained at baseline, after 04 and 08 weeks of training. Results: The mean age of the participants was 49 ±6.79. The result shows that 165(84%) were at moderate risk of fall and 31(15%) were at mild risk of fall among total 196 diabetic patients. There was significant improvement (p <0.05) in task oriented balance training group for dynamic balance, anticipatory balance and reactive balance after 8 weeks of training as compare to traditional balance training. Conclusion: Task oriented balance training is effective in improving the dynamic, anticipator and reactive balance. The task oriented training reduces the risk of falling through enhancing balance outcome. PMID:27648053
Au, Mei K; Chan, Wai M; Lee, Lin; Chen, Tracy Mk; Chau, Rosanna Mw; Pang, Marco Yc
2014-10-01
To compare the effectiveness of a core stability program with a task-oriented motor training program in improving motor proficiency in children with developmental coordination disorder (DCD). Randomized controlled pilot trial. Outpatient unit in a hospital. Twenty-two children diagnosed with DCD aged 6-9 years were randomly allocated to the core stability program or the task-oriented motor program. Both groups underwent their respective face-to-face training session once per week for eight consecutive weeks. They were also instructed to carry out home exercises on a daily basis during the intervention period. Short Form of the Bruininks-Oseretsky Test of Motor Proficiency (Second Edition) and Sensory Organization Test at pre- and post-intervention. Intention-to-treat analysis revealed no significant between-group difference in the change of motor proficiency standard score (P=0.717), and composite equilibrium score derived from the Sensory Organization Test (P=0.100). Further analysis showed significant improvement in motor proficiency in both the core stability (mean change (SD)=6.3(5.4); p=0.008) and task-oriented training groups (mean change(SD)=5.1(4.0); P=0.007). The composite equilibrium score was significantly increased in the task-oriented training group (mean change (SD)=6.0(5.5); P=0.009), but not in the core stability group (mean change(SD) =0.0(9.6); P=0.812). In the task-oriented training group, compliance with the home program was positively correlated with change in motor proficiency (ρ=0.680, P=0.030) and composite equilibrium score (ρ=0.638, P=0.047). The core stability exercise program is as effective as task-oriented training in improving motor proficiency among children with DCD. © The Author(s) 2014.