Sample records for range elastic interactions

  1. Substrate strain induced interaction of adatoms on W (110)

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    1980-09-01

    The interaction of adatoms due to elastic strains created in an elastically isotropic substrate is investigated. For cases where the adatoms occupy sites with low symmetry, an angular dependent interaction results which falls off as s-3 at large distances. An exact expression is given for the long range interaction in terms of an anisotropy parameter of the force dipole tensor. The short range interaction is calculated by introducing a smooth cutoff. Interactions of adatoms on near neighbour sites on W (110) are given.

  2. Elasticity and dislocation anelasticity of crystals

    NASA Astrophysics Data System (ADS)

    Nikanorov, S. P.; Kardashev, B. K.

    The book is concerned with the application of the results of physical acoustic studies of elasticity and dislocation anelasticity to the investigation of interatomic interactions and interactions between lattice defects. The analysis of the potential functions determining the energy of interatomic interactions is based on a study of the elastic properties of crystals over a wide temperature range; data on the dislocation structure and on the interaction between dislocations and point defects are based mainly on a study of inelastic effects. Particular attention is given to the relationship between microplastic effects and the initial stage of plastic deformation under conditions of elastic oscillations, when the multiplication of dislocations is negligible.

  3. Impact of interaction range and curvature on crystal growth of particles confined to spherical surfaces.

    PubMed

    Paquay, Stefan; Both, Gert-Jan; van der Schoot, Paul

    2017-07-01

    When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal. Here we report on computer simulations in which we observe both the formation of ribbons at short interaction ranges and packings that incorporate defects if the interaction is longer-ranged. The ribbons only form above some critical crystal size, below which the nucleus is disk-shaped. We find that the scaling of the critical crystal size differs slightly from the one proposed in the literature, and we argue that this is because the actual morphology transition is caused by the competition between line tension and elastic stress, rather than the competition between chemical potential and elastic stress.

  4. Impact of interaction range and curvature on crystal growth of particles confined to spherical surfaces

    NASA Astrophysics Data System (ADS)

    Paquay, Stefan; Both, Gert-Jan; van der Schoot, Paul

    2017-07-01

    When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal. Here we report on computer simulations in which we observe both the formation of ribbons at short interaction ranges and packings that incorporate defects if the interaction is longer-ranged. The ribbons only form above some critical crystal size, below which the nucleus is disk-shaped. We find that the scaling of the critical crystal size differs slightly from the one proposed in the literature, and we argue that this is because the actual morphology transition is caused by the competition between line tension and elastic stress, rather than the competition between chemical potential and elastic stress.

  5. Static and sliding contact of rough surfaces: Effect of asperity-scale properties and long-range elastic interactions

    NASA Astrophysics Data System (ADS)

    Hulikal, Srivatsan; Lapusta, Nadia; Bhattacharya, Kaushik

    2018-07-01

    Friction in static and sliding contact of rough surfaces is important in numerous physical phenomena. We seek to understand macroscopically observed static and sliding contact behavior as the collective response of a large number of microscopic asperities. To that end, we build on Hulikal et al. (2015) and develop an efficient numerical framework that can be used to investigate how the macroscopic response of multiple frictional contacts depends on long-range elastic interactions, different constitutive assumptions about the deforming contacts and their local shear resistance, and surface roughness. We approximate the contact between two rough surfaces as that between a regular array of discrete deformable elements attached to a elastic block and a rigid rough surface. The deformable elements are viscoelastic or elasto/viscoplastic with a range of relaxation times, and the elastic interaction between contacts is long-range. We find that the model reproduces the main macroscopic features of evolution of contact and friction for a range of constitutive models of the elements, suggesting that macroscopic frictional response is robust with respect to the microscopic behavior. Viscoelasticity/viscoplasticity contributes to the increase of friction with contact time and leads to a subtle history dependence. Interestingly, long-range elastic interactions only change the results quantitatively compared to the meanfield response. The developed numerical framework can be used to study how specific observed macroscopic behavior depends on the microscale assumptions. For example, we find that sustained increase in the static friction coefficient during long hold times suggests viscoelastic response of the underlying material with multiple relaxation time scales. We also find that the experimentally observed proportionality of the direct effect in velocity jump experiments to the logarithm of the velocity jump points to a complex material-dependent shear resistance at the microscale.

  6. Elasticity and dislocation inelasticity of crystals

    NASA Astrophysics Data System (ADS)

    Nikanorov, S. P.; Kardashev, B. K.

    The use of methods of physical acoustics for studying the elasticity and dislocation inelasticity of crystals is discussed, as is the application of the results of such studies to the analysis of interatomic and lattice defect interactions. The analysis of the potential functions determining the energy of interatomic interactions is based on an analysis of the elastic properties of crystals over a wide temperature range. The data on the dislocation structure and the interaction between dislocations and point defects are obtained from a study of inelastic effects. Particular attention is given to the relationship between microplastic effects under conditions of elastic oscillations and the initial stage of plastic deformation.

  7. Elastic parabolic equation solutions for oceanic T-wave generation and propagation from deep seismic sources.

    PubMed

    Frank, Scott D; Collis, Jon M; Odom, Robert I

    2015-06-01

    Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid-elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.

  8. A Generalized Weizsacker-Williams Method Applied to Pion Production in Proton-Proton Collisions

    NASA Technical Reports Server (NTRS)

    Ahern, Sean C.; Poyser, William J.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    A new "Generalized" Weizsacker-Williams method (GWWM) is used to calculate approximate cross sections for relativistic peripheral proton-proton collisions. Instead of a mass less photon mediator, the method allows for the mediator to have mass for short range interactions. This method generalizes the Weizsacker-Williams method (WWM) from Coulomb interactions to GWWM for strong interactions. An elastic proton-proton cross section is calculated using GWWM with experimental data for the elastic p+p interaction, where the mass p+ is now the mediator. The resulting calculated cross sections is compared to existing data for the elastic proton-proton interaction. A good approximate fit is found between the data and the calculation.

  9. Elastic interaction of hydrogen atoms on graphene: A multiscale approach from first principles to continuum elasticity

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Vastola, Guglielmo; Jhon, Mark H.; Sullivan, Michael B.; Shenoy, Vivek B.; Srolovitz, David J.

    2016-10-01

    The deformation of graphene due to the chemisorption of hydrogen atoms on its surface and the long-range elastic interaction between hydrogen atoms induced by these deformations are investigated using a multiscale approach based on first principles, empirical interactions, and continuum modeling. Focus is given to the intrinsic low-temperature structure and interactions. Therefore, all calculations are performed at T =0 , neglecting possible temperature or thermal fluctuation effects. Results from different methods agree well and consistently describe the local deformation of graphene on multiple length scales reaching 500 Å . The results indicate that the elastic interaction mediated by this deformation is significant and depends on the deformation of the graphene sheet both in and out of plane. Surprisingly, despite the isotropic elasticity of graphene, within the linear elastic regime, atoms elastically attract or repel each other depending on (i) the specific site they are chemisorbed; (ii) the relative position of the sites; (iii) and if they are on the same or on opposite surface sides. The interaction energy sign and power-law decay calculated from molecular statics agree well with theoretical predictions from linear elasticity theory, considering in-plane or out-of-plane deformations as a superposition or in a coupled nonlinear approach. Deviations on the exact power law between molecular statics and the linear elastic analysis are evidence of the importance of nonlinear effects on the elasticity of monolayer graphene. These results have implications for the understanding of the generation of clusters and regular formations of hydrogen and other chemisorbed atoms on graphene.

  10. Elastic interaction among transition metals in one-dimensional spin-crossover solids

    NASA Astrophysics Data System (ADS)

    Boukheddaden, K.; Miyashita, S.; Nishino, M.

    2007-03-01

    We present an exact examination of a one-dimensional (1D) spin-phonon model describing the thermodynamical properties of spin-crossover (SC) solids. This model has the advantage of giving a physical mechanism for the interaction between the SC units. The origin of the interaction comes from the fact that the elastic constant of the spring linking two atoms depends on their electronic states. This leads to local variation of the elastic constant. Up to now, all the statistical studies of this model have been performed in the frame of the mean-field (MF) approach, which is not adequate to describe 1D systems with short-range interactions. An alternative method, based on the variational approach and taking into account the short-range correlations between neighboring molecules, was also suggested, but it consists in an extension of the previous MF approximation. Here, we solve exactly this Hamiltonian in the frame of classical statistical mechanics using the transfer-matrix technique. The temperature dependence of the high spin fraction and that of the total energy are obtained analytically. Our results clearly show that there is a clear tendency to a sharp transition when we tune the elastic constants adequately, which indicates that first-order phase transition takes place at higher dimensions. In addition, we demonstrate the existence of an interesting isomorphism between the present model and Ising model under effective interaction and effective ligand field energy, in which both depend linearly on temperature and both come from the phonon contribution. We have also studied the effect of the pressure (the tension) on the thermodynamical properties of the high spin (HS) fraction and have found a nontrivial pressure effect that while for weak tension values, the low spin state is stabilized for the pressure above a threshold value, it enhances the interaction between the HS states. Finally, we have also introduced elastic interactions between the chains. Treating exactly (in mean field) the intrachain (interchain) contributions, we found that our model leads us to obtain first-order spin transitions when both short- and long-range interactions are ferroelastic. We show also that competing (antiferroelastic short-range and ferroelastic long-range) interactions between spin-state ions reproduce qualitatively the two-step-like spin-crossover transitions.

  11. Liquid drops attract or repel by the inverted Cheerios effect.

    PubMed

    Karpitschka, Stefan; Pandey, Anupam; Lubbers, Luuk A; Weijs, Joost H; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H

    2016-07-05

    Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the "Cheerios effect." The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.

  12. Distribution of Steps with Finite-Range Interactions: Analytic Approximations and Numerical Results

    NASA Astrophysics Data System (ADS)

    GonzáLez, Diego Luis; Jaramillo, Diego Felipe; TéLlez, Gabriel; Einstein, T. L.

    2013-03-01

    While most Monte Carlo simulations assume only nearest-neighbor steps interact elastically, most analytic frameworks (especially the generalized Wigner distribution) posit that each step elastically repels all others. In addition to the elastic repulsions, we allow for possible surface-state-mediated interactions. We investigate analytically and numerically how next-nearest neighbor (NNN) interactions and, more generally, interactions out to q'th nearest neighbor alter the form of the terrace-width distribution and of pair correlation functions (i.e. the sum over n'th neighbor distribution functions, which we investigated recently.[2] For physically plausible interactions, we find modest changes when NNN interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  13. Three-body interactions and the elastic constants of hcp solid 4He

    NASA Astrophysics Data System (ADS)

    Barnes, Ashleigh L.; Hinde, Robert J.

    2017-09-01

    The effect of three-body interactions on the elastic properties of hexagonal close packed solid 4He is investigated using variational path integral (VPI) Monte Carlo simulations. The solid's nonzero elastic constants are calculated, at T = 0 K and for a range of molar volumes from 7.88 cm3/mol to 20.78 cm3/mol, from the bulk modulus and the three pure shear constants C0, C66, and C44. Three-body interactions are accounted for using our recently reported perturbative treatment based on the nonadditive three-body potential of Cencek et al. Previous studies have attempted to account for the effect of three-body interactions on the elastic properties of solid 4He; however, these calculations have treated zero point motions using either the Einstein or Debye approximations, which are insufficient in the molar volume range where solid 4He is characterized as a quantum solid. Our VPI calculations allow for a more accurate treatment of the zero point motions which include atomic correlation. From these calculations, we find that agreement with the experimental bulk modulus is significantly improved when three-body interactions are considered. In addition, three-body interactions result in non-negligible differences in the calculated pure shear constants and nonzero elastic constants, particularly at higher densities, where differences of up to 26.5% are observed when three-body interactions are included. We compare to the available experimental data and find that our results are generally in as good or better agreement with experiment as previous theoretical investigations.

  14. Surface folding-induced attraction and motion of particles in a soft elastic gel: cooperative effects of surface tension, elasticity, and gravity.

    PubMed

    Chakrabarti, Aditi; Chaudhury, Manoj K

    2013-12-17

    We report some experimental observations regarding a new type of long-range interaction between rigid particles that prevails when they are suspended in an ultrasoft elastic gel. A denser particle submerges itself to a considerable depth inside the gel and becomes elasto-buoyant by balancing its weight against the elastic force exerted by the surrounding medium. By virtue of a large elasto-capillary length, the surface of the gel wraps around the particle and closes to create a line singularity connecting the particle to the free surface of the gel. A substantial amount of tensile strain is thus developed in the gel network parallel to the free surface that penetrates to a significant depth inside the gel. The field of this tensile strain is rather long-range because of a large gravito-elastic correlation length and sufficiently strong to pull two submerged particles into contact. The particles move toward each other with an effective force following an inverse linear distance law. When more monomers or dimers of the particles are released inside the gel, they orient rather freely inside the capsules where they are located and attract each other to form closely packed clusters. Eventually, these clusters themselves interact and coalesce. This is an emergent phenomenon in which gravity, capillarity, and elasticity work in tandem to create a long-range interaction. We also present the results of a related experiment, in which a particle suspended inside a thickness-graded gel moves accompanied by the continuous folding and the relaxation of the gel's surface.

  15. The exact solution of a four-body Coulomb problem

    NASA Astrophysics Data System (ADS)

    Ray, Hasi

    2018-03-01

    The elastic collision between two H-like atoms utilizing an ab initio static-exchange model (SEM) in the center of mass (CM) frame considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly, is studied thoroughly. A coupled-channel methodology in momentum space is used to solve Lippman-Schwinger equation following the integral approach. The new SEM code [Ray, Pramana 83, 907 (2014)] in which the Born-Oppenheimer (BO) scattering amplitude acts as input to derive the SEM amplitude using partial wave analysis, is utilized to study the s-, p-, d-wave elastic phase shifts and the corresponding partial cross sections. An augmented-Born approximation is used to include the contribution of higher partial waves more accurately to determine the total/integrated elastic cross sections. The effective range theory is used to determine the scattering lengths and effective ranges in the s-wave elastic scattering. The systems studied are Ps-Ps, Ps-Mu, Ps-H, Ps-D, Ps-T, Mu-Mu, Mu-H, Mu-D, Mu-T, H-H, H-D, H-T, D-D, D-T, T-T. The SEM includes the non-adiabatic short-range effects due to exchange. The MSEM code [Ray, Pramana 83, 907 (2014)] is used to study the effect of the long-range van der Waals interaction due to induced dipole polarizabilities of the atoms in H(1s)-H(1s) elastic collision. The dependence of scattering length on the reduced mass of the system and the dependence of scattering length on the strength of long-range van der Waals interaction that varies with the minimum interatomic distance are observed. Contribution to the Topical Issue "Low Energy Positron and Electron Interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.

  16. Intrinsically Disordered Titin PEVK as a Molecular Velcro: Salt-Bridge Dynamics and Elasticity

    NASA Astrophysics Data System (ADS)

    Forbes, Jeffrey; Tsai, Wanxia; Wittebort, Richard; Wang, Kuan

    2009-03-01

    Titin is a giant modular protein (3-4 MDa) found in the muscle sarcomere, where the intrinsically disordered and elastic PEVK segment plays a major role in the passive tension of skeletal and heart tissues. We have proposed that salt-bridges play a central role in the elasticity of PEVK. The 50 kDa engineered PEVK polyprotein shows well-resolved NMR spectra at all concentrations. From long-range NOE's, we observed stable K to E salt-bridges. Simulated annealing with NMR restraints yielded a manifold of structures for an exon 172 trimer. Steered molecular dynamics simulations were done to study how the manifold of salt-bridges evolves during the stretching experiment. Repeated SMD simulations at slow velocity (0.0005 nm/ps) showed force spectra consistent with experimental AFM force spectra of the polyprotein. SMD shows that salt-bridges occur even at high degrees of stretch and that these short range interactions are in integral part of the mechanical properties of PEVK. We propose that the long-range, non-stereospecific nature of electrostatic interactions provide a facile mechanism to tether and untether the flexible chains, which in turn affect elasticity as well as control the accessibility of protein-protein interaction to these nanogel-like proteins.

  17. Scale transition using dislocation dynamics and the nudged elastic band method

    DOE PAGES

    Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...

    2017-08-01

    Microstructural features such as precipitates or irradiation-induced defects impede dislocation motion and directly influence macroscopic mechanical properties such as yield point and ductility. In dislocation-defect interactions both atomic scale and long range elastic interactions are involved. Thermally assisted dislocation bypass of obstacles occurs when thermal fluctuations and driving stresses contribute sufficient energy to overcome the energy barrier. The Nudged Elastic Band (NEB) method is typically used in the context of atomistic simulations to quantify the activation barriers for a given reaction. In this work, the NEB method is generalized to coarse-grain continuum representations of evolving microstructure states beyond the discretemore » particle descriptions of first principles and atomistics. The method we employed enables the calculation of activation energies for a View the MathML source glide dislocation bypassing a [001] self-interstitial atom loop of size in the range of 4-10 nm with a spacing larger than 150nm in α-iron for a range of applied stresses and interaction geometries. This study is complemented by a comparison between atomistic and continuum based prediction of barriers.« less

  18. Theoretical analysis of the structural phase transformation from B3 to B1 in BeO under high pressure

    NASA Astrophysics Data System (ADS)

    Jain, Arvind; Verma, Saligram; Nagarch, R. K.; Shah, S.; Kaurav, Netram

    2018-05-01

    We have performed the phase transformation and elastic properties of BeO at high pressure by formulating effective interionic interaction potential. The elastic constants, including the long-range Coulomb and van der Waals (vdW) interactions and the short-range repulsive interaction of up to second-neighbor ions within the Hafemeister and Flygare approach, are derived. Assuming that both the ions are polarizable, we employed the Slater-Kirkwood variational method to estimate the vdW coefficients, a structural phase transition (Pt) from ZnS structure (B3) to NaCl structure (B1) at 108 GPa has been predicted for BeO. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the theoretical data. The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of ZnS type structure family.

  19. Structural and elastic properties of InX (X = P, As, Sb) at pressure and room temperature

    NASA Astrophysics Data System (ADS)

    Pawar, Pooja; Singh, Sadhna

    2018-06-01

    We have investigated the pressure-induced phase transition of InX (X = P, As, Sb) from Zinc-Blende (ZB) to NaCl structure by using realistic interaction potential model involving the effect of temperature. This model consists of Coulomb interaction, three-body interaction and short-range overlap repulsive interaction upto the second nearest neighbor involving temperature. Phase-transition pressure is associated with a sudden collapse in volume, showing the incidence of first-order phase transition. The phase-transition pressure is associated with volume collapses, and the elastic constants obtained from the present model indicate good agreement with the available experimental and theoretical data.

  20. Optical-model potential for electron and positron elastic scattering by atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvat, Francesc

    2003-07-01

    An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkurmore » approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from {approx}100 eV up to {approx}5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.« less

  1. Quasistatic elastoplasticity via Peridynamics: existence and localization

    NASA Astrophysics Data System (ADS)

    Kružík, Martin; Mora-Corral, Carlos; Stefanelli, Ulisse

    2018-04-01

    Peridynamics is a nonlocal continuum mechanical theory based on minimal regularity on the deformations. Its key trait is that of replacing local constitutive relations featuring spacial differential operators with integrals over differences of displacement fields over a suitable positive interaction range. The advantage of such perspective is that of directly including nonregular situations, in which discontinuities in the displacement field may occur. In the linearized elastic setting, the mechanical foundation of the theory and its mathematical amenability have been thoroughly analyzed in the last years. We present here the extension of Peridynamics to linearized elastoplasticity. This calls for considering the time evolution of elastic and plastic variables, as the effect of a combination of elastic energy storage and plastic energy dissipation mechanisms. The quasistatic evolution problem is variationally reformulated and solved by time discretization. In addition, by a rigorous evolutive Γ -convergence argument we prove that the nonlocal peridynamic model converges to classic local elastoplasticity as the interaction range goes to zero.

  2. Elastic strain relaxation in interfacial dislocation patterns: II. From long- and short-range interactions to local reactions

    NASA Astrophysics Data System (ADS)

    Vattré, A.

    2017-08-01

    The long- and short-range interactions as well as planar reactions between two infinitely periodic sets of crossing dislocations are investigated using anisotropic elasticity theory in face- (fcc) and body- (bcc) centered cubic materials. Two preliminary cases are proposed to examine the substantial changes in the elastic stress states and the corresponding strain energies due to a slight rearrangement in the internal dislocation geometries and characters. In general, significant differences and discrepancies resulting from the considered cubic crystal structure and the approximation of isotropic elasticity are exhibited. In a third scenario, special attention is paid to connecting specific internal dislocation structures from the previous cases with non-equilibrium configurations predicted by the quantized Frank-Bilby equation for the (111) fcc and (110) bcc twist grain boundaries. The present solutions lead to the formation of energetically favorable dislocation junctions with non-randomly strain-relaxed configurations of lower energy. In particular, the local dislocation interactions and reactions form equilibrium hexagonal-shaped patterns with planar three-fold dislocation nodes without producing spurious far-field stresses.Numerical application results are presented from a selection of cubic metals including aluminum, copper, tantalum, and niobium. In contrast to the fcc materials, asymmetric dislocation nodes occur in the anisotropic bcc cases, within which the minimum-energy paths for predicting the fully strain-relaxed dislocation patterns depend on the Zener anisotropic factor with respect to unity. The associated changes in the dislocation structures as well as the removal of the elastic strain energy upon relaxations are quantified and also discussed.

  3. Effect of Prestresses on the Dispersion of Quasi-Lamb Waves in the System Consisting of an Ideal Liquid Layer and a Compressible Elastic Layer

    NASA Astrophysics Data System (ADS)

    Bagno, A. M.

    2017-03-01

    The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic-fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed

  4. Effects of the interaction range on structural phases of flexible polymers.

    PubMed

    Gross, J; Neuhaus, T; Vogel, T; Bachmann, M

    2013-02-21

    We systematically investigate how the range of interaction between non-bonded monomers influences the formation of structural phases of elastic, flexible polymers. Massively parallel replica-exchange simulations of a generic, coarse-grained model, performed partly on graphics processing units and in multiple-gaussian modified ensembles, pave the way for the construction of the structural phase diagram, parametrized by interaction range and temperature. Conformational transitions between gas-like, liquid, and diverse solid (pseudo) phases are identified by microcanonical statistical inflection-point analysis. We find evidence for finite-size effects that cause the crossover of "collapse" and "freezing" transitions for very short interaction ranges.

  5. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    NASA Astrophysics Data System (ADS)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  6. Theoretical analysis of the structural phase transformation in the ZnO under high pressure

    NASA Astrophysics Data System (ADS)

    Verma, Saligram; Jain, Arvind; Nagarch, R. K.; Shah, S.; Kaurav, Netram

    2018-05-01

    We report a phenomenological model based calculation of pressure-induced structural phase transition and elastic properties of ZnO compound. Gibb's free energy is obtained as a function of pressure by applying an effective inter ionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. From the present study, we predict a structural phase transition from ZnS structure (B3) to NaCl structure (B1) at 8.5 GPa. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data. The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of ZnS type structure family.

  7. Fast algorithms for evaluating the stress field of dislocation lines in anisotropic elastic media

    NASA Astrophysics Data System (ADS)

    Chen, C.; Aubry, S.; Oppelstrup, T.; Arsenlis, A.; Darve, E.

    2018-06-01

    In dislocation dynamics (DD) simulations, the most computationally intensive step is the evaluation of the elastic interaction forces among dislocation ensembles. Because the pair-wise interaction between dislocations is long-range, this force calculation step can be significantly accelerated by the fast multipole method (FMM). We implemented and compared four different methods in isotropic and anisotropic elastic media: one based on the Taylor series expansion (Taylor FMM), one based on the spherical harmonics expansion (Spherical FMM), one kernel-independent method based on the Chebyshev interpolation (Chebyshev FMM), and a new kernel-independent method that we call the Lagrange FMM. The Taylor FMM is an existing method, used in ParaDiS, one of the most popular DD simulation softwares. The Spherical FMM employs a more compact multipole representation than the Taylor FMM does and is thus more efficient. However, both the Taylor FMM and the Spherical FMM are difficult to derive in anisotropic elastic media because the interaction force is complex and has no closed analytical formula. The Chebyshev FMM requires only being able to evaluate the interaction between dislocations and thus can be applied easily in anisotropic elastic media. But it has a relatively large memory footprint, which limits its usage. The Lagrange FMM was designed to be a memory-efficient black-box method. Various numerical experiments are presented to demonstrate the convergence and the scalability of the four methods.

  8. Emergent ultra–long-range interactions between active particles in hybrid active–inactive systems

    PubMed Central

    Steimel, Joshua P.; Aragones, Juan L.; Hu, Helen; Qureshi, Naser; Alexander-Katz, Alfredo

    2016-01-01

    Particle–particle interactions determine the state of a system. Control over the range of such interactions as well as their magnitude has been an active area of research for decades due to the fundamental challenges it poses in science and technology. Very recently, effective interactions between active particles have gathered much attention as they can lead to out-of-equilibrium cooperative states such as flocking. Inspired by nature, where active living cells coexist with lifeless objects and structures, here we study the effective interactions that appear in systems composed of active and passive mixtures of colloids. Our systems are 2D colloidal monolayers composed primarily of passive (inactive) colloids, and a very small fraction of active (spinning) ferromagnetic colloids. We find an emergent ultra–long-range attractive interaction induced by the activity of the spinning particles and mediated by the elasticity of the passive medium. Interestingly, the appearance of such interaction depends on the spinning protocol and has a minimum actuation timescale below which no attraction is observed. Overall, these results clearly show that, in the presence of elastic components, active particles can interact across very long distances without any chemical modification of the environment. Such a mechanism might potentially be important for some biological systems and can be harnessed for newer developments in synthetic active soft materials. PMID:27071096

  9. Collision cross sections and transport coefficients of O-, O2 -, O3 - and O4 - negative ions in O2, N2 and dry air for non-thermal plasmas modelling

    NASA Astrophysics Data System (ADS)

    Hennad, Ali; Yousfi, Mohammed

    2018-02-01

    The ions interaction data such as interaction potential parameters, elastic and inelastic collision cross sections and the transport coefficients (reduced mobility and diffusion coefficients) have been determined and analyzed in the case of the main negative oxygen ions (O-, O2 -, O3 - and O4 -) present in low temperature plasma at atmospheric pressure when colliding O2, N2 and dry air. The ion transport has been determined from an optimized Monte Carlo simulation using calculated elastic and experimentally fitted inelastic collision cross sections. The elastic momentum transfer collision cross sections have been calculated from a semi-classical JWKB approximation based on a ( n-4) rigid core interaction potential model. The cross sections sets involving elastic and inelastic processes were then validated using measured reduced mobility data and also diffusion coefficient whenever available in the literature. From the sets of elastic and inelastic collision cross sections thus obtained for the first time for O3-/O2, O2 -/N2, O3 -/N2, and O4 -/N2 systems, the ion transport coefficients were calculated in pure gases and dry air over a wide range of the density reduced electric field E/N.

  10. Elastic interactions between two-dimensional geometric defects

    NASA Astrophysics Data System (ADS)

    Moshe, Michael; Sharon, Eran; Kupferman, Raz

    2015-12-01

    In this paper, we introduce a methodology applicable to a wide range of localized two-dimensional sources of stress. This methodology is based on a geometric formulation of elasticity. Localized sources of stress are viewed as singular defects—point charges of the curvature associated with a reference metric. The stress field in the presence of defects can be solved using a scalar stress function that generalizes the classical Airy stress function to the case of materials with nontrivial geometry. This approach allows the calculation of interaction energies between various types of defects. We apply our methodology to two physical systems: shear-induced failure of amorphous materials and the mechanical interaction between contracting cells.

  11. Guest Programmable Multistep Spin Crossover in a Porous 2-D Hofmann-Type Material.

    PubMed

    Murphy, Michael J; Zenere, Katrina A; Ragon, Florence; Southon, Peter D; Kepert, Cameron J; Neville, Suzanne M

    2017-01-25

    The spin crossover (SCO) phenomenon defines an elegant class of switchable materials that can show cooperative transitions when long-range elastic interactions are present. Such materials can show multistepped transitions, targeted both fundamentally and for expanded data storage applications, when antagonistic interactions (i.e., competing ferro- and antiferro-elastic interactions) drive concerted lattice distortions. To this end, a new SCO framework scaffold, [Fe II (bztrz) 2 (Pd II (CN) 4 )]·n(guest) (bztrz = (E)-1-phenyl-N-(1,2,4-triazol-4-yl)methanimine, 1·n(guest)), has been prepared that supports a variety of antagonistic solid state interactions alongside a distinct dual guest pore system. In this 2-D Hofmann-type material we find that inbuilt competition between ferro- and antiferro-elastic interactions provides a SCO behavior that is intrinsically frustrated. This frustration is harnessed by guest exchange to yield a very broad array of spin transition characters in the one framework lattice (one- (1·(H 2 O,EtOH)), two- (1·3H 2 O) and three-stepped (1·∼2H 2 O) transitions and SCO-deactivation (1)). This variety of behaviors illustrates that the degree of elastic frustration can be manipulated by molecular guests, which suggests that the structural features that contribute to multistep switching may be more subtle than previously anticipated.

  12. Forces and torques on rigid inclusions in an elastic environment: Resulting matrix-mediated interactions, displacements, and rotations

    NASA Astrophysics Data System (ADS)

    Puljiz, Mate; Menzel, Andreas M.

    2017-05-01

    Embedding rigid inclusions into elastic matrix materials is a procedure of high practical relevance, for instance, for the fabrication of elastic composite materials. We theoretically analyze the following situation. Rigid spherical inclusions are enclosed by a homogeneous elastic medium under stick boundary conditions. Forces and torques are directly imposed from outside onto the inclusions or are externally induced between them. The inclusions respond to these forces and torques by translations and rotations against the surrounding elastic matrix. This leads to elastic matrix deformations, and in turn results in mutual long-ranged matrix-mediated interactions between the inclusions. Adapting a well-known approach from low-Reynolds-number hydrodynamics, we explicitly calculate the displacements and rotations of the inclusions from the externally imposed or induced forces and torques. Analytical expressions are presented as a function of the inclusion configuration in terms of displaceability and rotateability matrices. The role of the elastic environment is implicitly included in these relations. That is, the resulting expressions allow a calculation of the induced displacements and rotations directly from the inclusion configuration, without having to explicitly determine the deformations of the elastic environment. In contrast to the hydrodynamic case, compressibility of the surrounding medium is readily taken into account. We present the complete derivation based on the underlying equations of linear elasticity theory. In the future, the method will, for example, be helpful to characterize the behavior of externally tunable elastic composite materials, to accelerate numerical approaches, as well as to improve the quantitative interpretation of microrheological results.

  13. Folding model analyses of 12C-12C and 16O-16O elastic scattering using the density-dependent LOCV-averaged effective interaction

    NASA Astrophysics Data System (ADS)

    Rahmat, M.; Modarres, M.

    2018-03-01

    The averaged effective two-body interaction (AEI), which can be generated through the lowest order constrained variational (LOCV) method for symmetric nuclear matter (SNM) with the input [Reid68, Ann. Phys. 50, 411 (1968), 10.1016/0003-4916(68)90126-7] nucleon-nucleon potential, is used as the effective nucleon-nucleon potential in the folding model to describe the heavy-ion (HI) elastic scattering cross sections. The elastic scattering cross sections of 12C-12C and 16O-16O systems are calculated in the above framework. The results are compared with the corresponding calculations coming from the fitting procedures with the input finite range D D M 3 Y 1 -Reid potential and the available experimental data at different incident energies. It is shown that a reasonable description of the elastic 12C-12C and 16O-16O scattering data at the low and medium energies can be obtained by using the above LOCV AEI, without any need to define a parametrized density-dependent function in the effective nucleon-nucleon potential, which is formally considered in the typical D D M 3 Y 1 -Reid interactions.

  14. Cross sections for electron scattering by carbon disulfide in the low- and intermediate-energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brescansin, L. M.; Iga, I.; Lee, M.-T.

    2010-01-15

    In this work, we report a theoretical study on e{sup -}-CS{sub 2} collisions in the low- and intermediate-energy ranges. Elastic differential, integral, and momentum-transfer cross sections, as well as grand total (elastic + inelastic) and absorption cross sections, are reported in the 1-1000 eV range. A recently proposed complex optical potential composed of static, exchange, and correlation-polarization plus absorption contributions is used to describe the electron-molecule interaction. The Schwinger variational iterative method combined with the distorted-wave approximation is applied to calculate the scattering amplitudes. The comparison between our calculated results and the existing experimental and/or theoretical results is encouraging.

  15. Elastic fields, dipole tensors, and interaction between self-interstitial atom defects in bcc transition metals

    NASA Astrophysics Data System (ADS)

    Dudarev, S. L.; Ma, Pui-Wai

    2018-03-01

    Density functional theory (DFT) calculations show that self-interstitial atom (SIA) defects in nonmagnetic body-centered-cubic (bcc) metals adopt strongly anisotropic configurations, elongated in the <111 > direction [S. Han et al., Phys. Rev. B 66, 220101 (2002), 10.1103/PhysRevB.66.220101; D. Nguyen-Manh et al., Phys. Rev. B 73, 020101 (2006), 10.1103/PhysRevB.73.020101; P. M. Derlet et al., Phys. Rev. B 76, 054107 (2007), 10.1103/PhysRevB.76.054107; S. L. Dudarev, Annu. Rev. Mater. Res. 43, 35 (2013), 10.1146/annurev-matsci-071312-121626]. Elastic distortions, associated with such anisotropic atomic structures, appear similar to distortions around small prismatic dislocation loops, although the extent of this similarity has never been quantified. We derive analytical formulas for the dipole tensors of SIA defects, which show that, in addition to the prismatic dislocation looplike character, the elastic field of a SIA defect also has a significant isotropic dilatation component. Using empirical potentials and DFT calculations, we parametrize dipole tensors of <111 > defects for all the nonmagnetic bcc transition metals. This enables a quantitative evaluation of the energy of elastic interaction between the defects, which also shows that in a periodic three-dimensional simple cubic arrangement of crowdions, long-range elastic interactions between a defect and all its images favor a <111 > orientation of the defect.

  16. Elasticity-induced force reversal between active spinning particles in dense passive media

    PubMed Central

    Aragones, J. L.; Steimel, J. P.; Alexander-Katz, A.

    2016-01-01

    The self-organization of active particles is governed by their dynamic effective interactions. Such interactions are controlled by the medium in which such active agents reside. Here we study the interactions between active agents in a dense non-active medium. Our system consists of actuated, spinning, active particles embedded in a dense monolayer of passive, or non-active, particles. We demonstrate that the presence of the passive monolayer alters markedly the properties of the system and results in a reversal of the forces between active spinning particles from repulsive to attractive. The origin of such reversal is due to the coupling between the active stresses and elasticity of the system. This discovery provides a mechanism for the interaction between active agents in complex and structured media, opening up opportunities to tune the interaction range and directionality via the mechanical properties of the medium. PMID:27112961

  17. FAST TRACK COMMUNICATION: Oscillation structures in elastic and electron capture cross sections for H+-H collisions in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, J. G.; Krstic, P. S.; Janev, R. K.

    2010-10-01

    We find that the number of vibrational states in the ground potential of a H2+ molecular ion embedded in the Debye plasma and the number of Regge oscillations in the resonant charge transfer cross section of the H+ + H collision system in the plasma are quasi-conserved when the Debye radius D is larger than 1.4a0. The elastic and resonant charge transfer processes in the H+ + H collision have been studied in the 0.1 meV-100 eV collision energy range for a wide range of Debye radii using a highly accurate calculation based on the modified ab initio multireference configuration interaction code. Remarkable plasma screening effects have been found in both the molecular structure and the collision dynamics of this system. Shape resonances, Regge and glory oscillations have been found in the integral cross sections in the considered energy range even for strong interaction screening, showing their ubiquitous nature.

  18. Interaction of chiral rafts in self-assembled colloidal membranes

    NASA Astrophysics Data System (ADS)

    Xie, Sheng; Hagan, Michael F.; Pelcovits, Robert A.

    2016-03-01

    Colloidal membranes are monolayer assemblies of rodlike particles that capture the long-wavelength properties of lipid bilayer membranes on the colloidal scale. Recent experiments on colloidal membranes formed by chiral rodlike viruses showed that introducing a second species of virus with different length and opposite chirality leads to the formation of rafts—micron-sized domains of one virus species floating in a background of the other viruses [Sharma et al., Nature (London) 513, 77 (2014), 10.1038/nature13694]. In this article we study the interaction of such rafts using liquid crystal elasticity theory. By numerically minimizing the director elastic free energy, we predict the tilt angle profile for both a single raft and two rafts in a background membrane, and the interaction between two rafts as a function of their separation. We find that the chiral penetration depth in the background membrane sets the scale for the range of the interaction. We compare our results with the experimental data and find good agreement for the strength and range of the interaction. Unlike the experiments, however, we do not observe a complete collapse of the data when rescaled by the tilt angle at the raft edge.

  19. Reconfigurable interactions and three-dimensional patterning of colloidal particles and defects in lamellar soft media

    PubMed Central

    Trivedi, Rahul P.; Klevets, Ivan I.; Senyuk, Bohdan; Lee, Taewoo; Smalyukh, Ivan I.

    2012-01-01

    Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena typically encountered in atomic crystals and glasses. New applications—such as nanoantennas, plasmonic sensors, and nanocircuits—pose a challenge of achieving sparse colloidal assemblies with tunable interparticle separations that can be controlled at will. We demonstrate reconfigurable multiscale interactions and assembly of colloids mediated by defects in cholesteric liquid crystals that are probed by means of laser manipulation and three-dimensional imaging. We find that colloids attract via distance-independent elastic interactions when pinned to the ends of cholesteric oily streaks, line defects at which one or more layers are interrupted. However, dislocations and oily streaks can also be optically manipulated to induce kinks, allowing one to lock them into the desired configurations that are stabilized by elastic energy barriers for structural transformation of the particle-connecting defects. Under the influence of elastic energy landscape due to these defects, sublamellar-sized colloids self-assemble into structures mimicking the cores of dislocations and oily streaks. Interactions between these defect-embedded colloids can be varied from attractive to repulsive by optically introducing dislocation kinks. The reconfigurable nature of defect–particle interactions allows for patterning of defects by manipulation of colloids and, in turn, patterning of particles by these defects, thus achieving desired colloidal configurations on scales ranging from the size of defect core to the sample size. This defect-colloidal sculpturing may be extended to other lamellar media, providing the means for optically guided self-assembly of mesoscopic composites with predesigned properties. PMID:22411822

  20. Fe-Mg substitution in aluminate spinels: effects on elastic properties investigated by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Bruschini, Enrico; Speziale, Sergio; Bosi, Ferdinando; Andreozzi, Giovanni B.

    2018-03-01

    We investigated by a multi-analytical approach (Brillouin scattering, X-ray diffraction and electron microprobe) the dependence of the elastic properties on the chemical composition of six spinels in the series (Mg1-x ,Fe x )Al2O4 (0 ≤ x ≤ 0.5). With the exception of C 12, all the elastic moduli (C 11, C 44, K S0 and G) are insensitive to chemical composition for low iron concentration, while they decrease linearly for higher Fe2+ content. Only C 12 shows a continuous linear increase with increasing Fe2+ across the whole compositional range under investigation. The high cation disorder showed by the sample with x = 0.202 has little or no influence on the elastic parameters. The range 0.202 < x < 0.388 bounds the percolation threshold (p c) for nearest neighbor interaction of Fe in the cation sublattices of the spinel structure. Below x = 0.202, the iron atoms are diluted in the system and far from each other, and the elastic moduli are nearly constant. Above x = 0.388, Fe atoms form extended interconnected clusters and show a cooperative behavior thus affecting the single-crystal elastic moduli. The elastic anisotropy largely increases with the introduction of Fe2+ in substitution of magnesium in spinel. This behavior is different with respect to other spinels containing transition metals such as Mn2+ and Co2+.

  1. Cotunneling and polaronic effect in granular systems

    NASA Astrophysics Data System (ADS)

    Ioselevich, A. S.; Sivak, V. V.

    2017-06-01

    We theoretically study the conductivity in arrays of metallic grains due to the variable-range multiple cotunneling of electrons with short-range (screened) Coulomb interaction. The system is supposed to be coupled to random stray charges in the dielectric matrix that are only loosely bounded to their spatial positions by elastic forces. The flexibility of the stray charges gives rise to a polaronic effect, which leads to the onset of Arrhenius-type conductivity behavior at low temperatures, replacing conventional Mott variable-range hopping. The effective activation energy logarithmically depends on temperature due to fluctuations of the polaron barrier heights. We present the unified theory that covers both weak and strong polaron effect regimes of hopping in granular metals and describes the crossover from elastic to inelastic cotunneling.

  2. Investigation of structural and mechanical properties of rare-earth bismuthide (RBi, R=Ce & Pr) with the NaCl structure at high pressure

    NASA Astrophysics Data System (ADS)

    Yaduvanshi, Namrata; Kapoor, Shilpa; Singh, Sadhna

    2018-05-01

    We have investigated the structural and mechanical properties of Cerium and Praseodymium Bismuthides under pressure by means of a three body interaction potential model which includes long range columbic interaction, three body interactions and short range overlap repulsive interaction operative up to second nearest neighbor. These compounds shows transition from NaCl structure to body-centered tetragonal (BCT) structure (distorted CsCl-type P4/mmm). The elastic constants and their properties are also reported. Our calculated results of phase transitions and volume collapses of these compounds show a good agreement with available theoretical and experimental results.

  3. Search for neutrino oscillations in the MINOS experiment by using quasi-elastic interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piteira, Rodolphe

    2005-09-29

    The enthusiasm of the scientific community for studying oscillations of neutrinos is equaled only by the mass of their detectors. The MINOS experiment determines and compares the near spectrum of muonic neutrinos from the NUMI beam to the far one, in order to measure two oscillation parameters: Δmmore » $$2\\atop{23}$$ and sin 2 (2θ 23). The spectra are obtained by analyzing the charged current interactions which difficulty lies in identifying the interactions products (e.g. muons). An alternative method identifying the traces of muons, bent by the magnetic field of the detectors, and determining their energies is presented in this manuscript. The sensitivity of the detectors is optimal for the quasi-elastic interactions, for which a selection method is proposed, to study their oscillation. Even though it reduces the statistics, such a study introduces fewer systematic errors, constituting the ideal method on the long range.« less

  4. Differential Cross Sections for Proton-Proton Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.

    2009-01-01

    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.

  5. Absorption effects in electron-sulfur-dioxide collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machado, L. E.; Sugohara, R. T.; Santos, A. S. dos

    2011-09-15

    A joint experimental-theoretical study on electron-SO{sub 2} collisions in the low and intermediate energy range is reported. More specifically, experimental elastic differential, integral, and momentum transfer cross sections in absolute scale are measured in the 100-1000 eV energy range using the relative-flow technique. Calculated elastic differential, integral, and momentum transfer cross sections as well as grand-total and total absorption cross sections are also presented in the 1-1000 eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics, whereas the Schwinger variational iterative method combined with the distorted-wave approximation is used to solve the scattering equations.more » Comparison of the present results is made with the theoretical and experimental results available in the literature.« less

  6. Filamentary structures that self-organize due to adhesion

    NASA Astrophysics Data System (ADS)

    Sengab, A.; Picu, R. C.

    2018-03-01

    We study the self-organization of random collections of elastic filaments that interact adhesively. The evolution from an initial fully random quasi-two-dimensional state is controlled by filament elasticity, adhesion and interfilament friction, and excluded volume. Three outcomes are possible: the system may remain locked in the initial state, may organize into isolated fiber bundles, or may form a stable, connected network of bundles. The range of system parameters leading to each of these states is identified. The network of bundles is subisostatic and is stabilized by prestressed triangular features forming at bundle-to-bundle nodes, similar to the situation in foams. Interfiber friction promotes locking and expands the parametric range of nonevolving systems.

  7. Strain-induced intervortex interaction and vortex lattices in tetragonal superconductors

    DOE PAGES

    Lin, Shi -Zeng; Kogan, Vladimir G.

    2017-02-22

    In superconductors with strong coupling between superconductivity and elasticity manifested in a strong dependence of transition temperature on pressure, there is an additional contribution to intervortex interactions due to the strain field generated by vortices. When vortex lines are along the c axis of a tetragonal crystal, a square vortex lattice (VL) is favored at low vortex densities, because the vortex-induced strains contribution to the intervortex interactions is long range. At intermediate magnetic fields, the triangular lattice is stabilized. Furthermore, the triangular lattice evolves to the square lattice upon increasing magnetic field, and eventually the system locks to the squaremore » structure. We argue, however, that as magnetic field approaches the upper critical field H c2 the elastic intervortex interactions disappear faster than the standard London interactions, so that VL should return to the triangular structure. Our results are compared to VLs observed in the heavy fermion superconductor CeCoIn 5.« less

  8. Titin PEVK segment: charge-driven elasticity of the open and flexible polyampholyte

    PubMed Central

    FORBES, JEFFREY G.; JIN, ALBERT J.; MA, KAN; GUTIERREZ-CRUZ, GUSTAVO; TSAI, WANXIA L.; WANG, KUAN

    2015-01-01

    The giant protein titin spans half of the sarcomere length and anchors the myosin thick filament to the Z-line of skeletal and cardiac muscles. The passive elasticity of muscle at a physiological range of stretch arises primarily from the extension of the PEVK segment, which is a polyampholyte with dense and alternating-charged clusters. Force spectroscopy studies of a 51 kDa fragment of the human fetal titin PEVK domain (TP1) revealed that when charge interactions were reduced by raising the ionic strength from 35 to 560 mM, its mean persistence length increased from 0.30±0.04 nm to 0.60±0.07 nm. In contrast, when the secondary structure of TP1 was altered drastically by the presence of 40 and 80% (v/v) of trifluoroethanol, its force-extension behavior showed no significant shift in the mean persistence length of ~0.18±0.03 nm at the ionic strength of 15 mM. Additionally, the mean persistence length also increased from 0.29 to 0.41 nm with increasing calcium concentration from pCa 5–8 to pCa 3–4. We propose that PEVK is not a simple entropic spring as is commonly assumed, but a highly evolved, gel-like enthalpic spring with its elasticity dominated by the sequence-specific charge interactions. A single polyampholyte chain may be fine-tuned to generate a broad range of molecular elasticity by varying charge pairing schemes and chain configurations. PMID:16465472

  9. Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals.

    PubMed

    Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua

    2016-04-18

    We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.

  10. Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.

    PubMed

    Shin, Homin; Schweizer, Kenneth S

    2013-02-28

    We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens.

  11. Linear Elastic Waves - Series: Cambridge Texts in Applied Mathematics (No. 26)

    NASA Astrophysics Data System (ADS)

    Harris, John G.

    2001-10-01

    Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are free of the complications of their excitation and are governed primarily by their propagation environments. The topics covered include reflection, refraction, the propagation of interfacial waves, integral representations, radiation and diffraction, and propagation in closed and open waveguides. Linear Elastic Waves is an advanced level textbook directed at applied mathematicians, seismologists, and engineers. Aimed at beginning graduate students Includes examples and exercises Has application in a wide range of disciplines

  12. Effects of long-range interactions on curvature energies of viral shells

    NASA Astrophysics Data System (ADS)

    Shojaei, Hamid R.; Božič, Anže Lošdorfer; Muthukumar, Murugappan; Podgornik, Rudolf

    2016-05-01

    We formulate a theory of the effects of long-range interactions on the surface tension and spontaneous curvature of proteinaceous shells based on the general Deryaguin-Landau-Verwey-Overbeek mesoscale approach to colloid stability. We derive the full renormalization formulas for the elastic properties of the shell and consider in detail the renormalization of the spontaneous curvature as a function of the corresponding Hamaker coefficient, inner and outer capsid charges, and bathing solution properties. The renormalized spontaneous curvature is found to be a nonmonotonic function of several parameters describing the system.

  13. Adhesive Properties of Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Flanigan, Cynthia; Shull, Kenneth

    1998-03-01

    Soft, low-modulus gels provide an interesting opportunity to examine small adhesive interactions between two bodies in contact. As shown through dynamic rheological studies, our materials undergo a rapid gelation as they are cooled from a viscous liquid at elevated temperatures to a soft, elastic solid at room temperature. At low temperatures, the gels exhibit a linearly elastic response and display moduli close to 100Pa, thereby forming materials with great potential for quantifying weak adhesive interactions with a variety of bodies ranging from polymer surfaces to biological entities. Our current studies focus on investigating interfacial effects by performing axisymmetric adhesion tests with a model polyacrylate gel formed by diluting the copolymer poly(methyl methacrylate)-poly(n-butyl acrylate)-poly(methyl methacrylate) to a 5-15 percent solution in 2-ethyl hexanol, a selective solvent for the midblock. We have explored two different experimental geometries including a hemispherical rigid indenter of glass pressed into a gel layer of varying thicknesses, and a soft, gel cap in contact with a rigid polymer surface. By simultaneously measuring the applied load, displacement between the two bodies, and contact area during loading cycles, we are able to employ a linearly elastic fracture mechanics analysis to obtain estimates of the gel's modulus over a range of polymer concentrations, and G, the energy release rate.

  14. Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels.

    PubMed

    Hsiao, Lilian C; Newman, Richmond S; Glotzer, Sharon C; Solomon, Michael J

    2012-10-02

    We report a simple correlation between microstructure and strain-dependent elasticity in colloidal gels by visualizing the evolution of cluster structure in high strain-rate flows. We control the initial gel microstructure by inducing different levels of isotropic depletion attraction between particles suspended in refractive index matched solvents. Contrary to previous ideas from mode coupling and micromechanical treatments, our studies show that bond breakage occurs mainly due to the erosion of rigid clusters that persist far beyond the yield strain. This rigidity contributes to gel elasticity even when the sample is fully fluidized; the origin of the elasticity is the slow Brownian relaxation of rigid, hydrodynamically interacting clusters. We find a power-law scaling of the elastic modulus with the stress-bearing volume fraction that is valid over a range of volume fractions and gelation conditions. These results provide a conceptual framework to quantitatively connect the flow-induced microstructure of soft materials to their nonlinear rheology.

  15. Elasticity improves handgrip performance and user experience during visuomotor control

    PubMed Central

    Rinne, Paul; Liardon, Jean-Luc; Uhomoibhi, Catherine; Bentley, Paul; Burdet, Etienne

    2017-01-01

    Passive rehabilitation devices, providing motivation and feedback, potentially offer an automated and low-cost therapy method, and can be used as simple human–machine interfaces. Here, we ask whether there is any advantage for a hand-training device to be elastic, as opposed to rigid, in terms of performance and preference. To address this question, we have developed a highly sensitive and portable digital handgrip, promoting independent and repetitive rehabilitation of grasp function based around a novel elastic force and position sensing structure. A usability study was performed on 66 healthy subjects to assess the effect of elastic versus rigid handgrip control during various visuomotor tracking tasks. The results indicate that, for tasks relying either on feedforward or on feedback control, novice users perform significantly better with the elastic handgrip, compared with the rigid equivalent (11% relative improvement, 9–14% mean range; p < 0.01). Furthermore, there was a threefold increase in the number of subjects who preferred elastic compared with rigid handgrip interaction. Our results suggest that device compliance is an important design consideration for grip training devices. PMID:28386448

  16. Elasticity improves handgrip performance and user experience during visuomotor control.

    PubMed

    Mace, Michael; Rinne, Paul; Liardon, Jean-Luc; Uhomoibhi, Catherine; Bentley, Paul; Burdet, Etienne

    2017-02-01

    Passive rehabilitation devices, providing motivation and feedback, potentially offer an automated and low-cost therapy method, and can be used as simple human-machine interfaces. Here, we ask whether there is any advantage for a hand-training device to be elastic, as opposed to rigid, in terms of performance and preference. To address this question, we have developed a highly sensitive and portable digital handgrip, promoting independent and repetitive rehabilitation of grasp function based around a novel elastic force and position sensing structure. A usability study was performed on 66 healthy subjects to assess the effect of elastic versus rigid handgrip control during various visuomotor tracking tasks. The results indicate that, for tasks relying either on feedforward or on feedback control, novice users perform significantly better with the elastic handgrip, compared with the rigid equivalent (11% relative improvement, 9-14% mean range; p  < 0.01). Furthermore, there was a threefold increase in the number of subjects who preferred elastic compared with rigid handgrip interaction. Our results suggest that device compliance is an important design consideration for grip training devices.

  17. Solitons, Bäcklund transformation and Lax pair for a (2+1)-dimensional B-type Kadomtsev-Petviashvili equation in the fluid/plasma mechanics

    NASA Astrophysics Data System (ADS)

    Lan, Zhong-Zhou; Gao, Yi-Tian; Yang, Jin-Wei; Su, Chuan-Qi; Wang, Qi-Min

    2016-09-01

    Under investigation in this paper is a (2+1)-dimensional B-type Kadomtsev-Petviashvili equation for the shallow water wave in a fluid or electrostatic wave potential in a plasma. Bilinear form, Bäcklund transformation and Lax pair are derived based on the binary Bell polynomials. Multi-soliton solutions are constructed via the Hirota’s method. Propagation and interaction of the solitons are illustrated graphically: (i) Through the asymptotic analysis, elastic and inelastic interactions between the two solitons are discussed analytically and graphically, respectively. The elastic interaction, amplitudes, velocities and shapes of the two solitons remain unchanged except for a phase shift. However, in the area of the inelastic interaction, amplitudes of the two solitons have a linear superposition. (ii) Elastic interactions among the three solitons indicate that the properties of the elastic interactions among the three solitons are similar to those between the two solitons. Moreover, oblique and overtaking interactions between the two solitons are displayed. Oblique interactions among the three solitons and interactions among the two parallel solitons and a single one are presented as well. (iii) Inelastic-elastic interactions imply that the interaction between the inelastic region and another one is elastic.

  18. On the the Contact Lens Problem: Modeling Rigid and Elastic Beams on Thin Films

    NASA Astrophysics Data System (ADS)

    Trinh, Philippe; Wilson, Stephen; Stone, Howard

    2011-11-01

    Generally, contact lenses are prescribed by the practitioner to fit each individual patient's eye, but these fitting-philosophies are based on empirical studies and a certain degree of trial-and-error. A badly fitted lens can cause a range of afflictions, which varies from mild dry-eye-discomfort, to more serious corneal diseases. Thus, at this heart of this problem, is the question of how a rigid or elastic plate interacts with the free-surface of a thin viscous film. In this talk, we present several mathematical models for the study of these plate-and-fluid problems. Asymptotic and numerical results are described, and we explain the role of elasticity, surface tension, viscosity, and pressure in determining the equilibrium solutions. Finally, we discuss the implications of our work on the contact lens problem, as well as on other coating processes which involve elastic substrates.

  19. Elasto-capillary interactions of drops and particles

    NASA Astrophysics Data System (ADS)

    Snoeijer, Jacco; Pandey, Anupam; Karpitschka, Stefan; Nawijn, Charlotte; Botto, Lorenzo; Andreotti, Bruno

    2017-11-01

    The interaction of solid particles floating on a liquid interface is popularly known as the Cheerios effect. Here we present similar interactions for particles and droplets on elastic surfaces, mediated by elastic deformation. We start with the Inverted Cheerios effect, by considering liquid drops on a solid gel. Remarkably, the interaction can be tuned from attractive to repulsive, as shown experimentally and theoretically. We then turn to more general cases of particles on elastic layers, for which new interaction laws are derived. An overview is given on the various regimes, including the crossover from purely elastic to purely capillary interfaces. ERC Consolidator Grant 616918.

  20. Effective elastic properties of a van der Waals molecular monolayer at a metal surface

    NASA Astrophysics Data System (ADS)

    Sun, Dezheng; Kim, Dae-Ho; Le, Duy; Borck, Øyvind; Berland, Kristian; Kim, Kwangmoo; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Wyrick, Jonathan; Cheng, Zhihai; Einstein, T. L.; Rahman, Talat S.; Hyldgaard, Per; Bartels, Ludwig

    2010-11-01

    Adsorbing anthracene on a Cu(111) surface results in a wide range of complex and intriguing superstructures spanning a coverage range from 1 per 17 to 1 per 15 substrate atoms. In accompanying first-principles density-functional theory calculations we show the essential role of van der Waals interactions in estimating the variation in anthracene adsorption energy and height across the sample. We can thereby evaluate the compression of the anthracene film in terms of continuum elastic properties, which results in an effective Young’s modulus of 1.5 GPa and a Poisson ratio ≈0.1 . These values suggest interpretation of the molecular monolayer as a porous material—in marked congruence with our microscopic observations.

  1. Equilibrium, metastability, and hysteresis in a model spin-crossover material with nearest-neighbor antiferromagnetic-like and long-range ferromagnetic-like interactions

    NASA Astrophysics Data System (ADS)

    Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji; Omand, Conor; Nishino, Masamichi

    2016-02-01

    Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean-field method for a simplified model of a spin-crossover material with a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S =1 /2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley (equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shaped regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. We believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.

  2. Phase diagrams and free-energy landscapes for model spin-crossover materials with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-11-01

    We present phase diagrams, free-energy landscapes, and order-parameter distributions for a model spin-crossover material with a two-step transition between the high-spin and low-spin states (a square-lattice Ising model with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions) [P. A. Rikvold et al., Phys. Rev. B 93, 064109 (2016), 10.1103/PhysRevB.93.064109]. The results are obtained by a recently introduced, macroscopically constrained Wang-Landau Monte Carlo simulation method [Phys. Rev. E 95, 053302 (2017), 10.1103/PhysRevE.95.053302]. The method's computational efficiency enables calculation of thermodynamic quantities for a wide range of temperatures, applied fields, and long-range interaction strengths. For long-range interactions of intermediate strength, tricritical points in the phase diagrams are replaced by pairs of critical end points and mean-field critical points that give rise to horn-shaped regions of metastability. The corresponding free-energy landscapes offer insights into the nature of asymmetric, multiple hysteresis loops that have been experimentally observed in spin-crossover materials characterized by competing short-range interactions and long-range elastic interactions.

  3. Coulomb-like elastic interaction induced by symmetry breaking in nematic liquid crystal colloids.

    PubMed

    Lee, Beom-Kyu; Kim, Sung-Jo; Kim, Jong-Hyun; Lev, Bohdan

    2017-11-21

    It is generally thought that colloidal particles in a nematic liquid crystal do not generate the first multipole term called deformation elastic charge as it violates the mechanical equilibrium. Here, we demonstrate theoretically and experimentally that this is not the case, and deformation elastic charges, as well as dipoles and quadrupoles, can be induced through anisotropic boundary conditions. We report the first direct observation of Coulomb-like elastic interactions between colloidal particles in a nematic liquid crystal. The behaviour of two spherical colloidal particles with asymmetric anchoring conditions induced by asymmetric alignment is investigated experimentally; the interaction of two particles located at the boundary of twist and parallel aligned regions is observed. We demonstrate that such particles produce deformation elastic charges and interact by Coulomb-like interactions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji

    Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean- field method for a simplified model of a spin-crossovermaterialwith a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S = 1/2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley ( equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shapedmore » regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. As a result, we believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.« less

  5. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies

    NASA Astrophysics Data System (ADS)

    Dasbiswas, K.; Alster, E.; Safran, S. A.

    2016-06-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development.

  6. Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry.

    PubMed

    Glynne-Jones, Peter; Mishra, Puja P; Boltryk, Rosemary J; Hill, Martyn

    2013-04-01

    A finite element based method is presented for calculating the acoustic radiation force on arbitrarily shaped elastic and fluid particles. Importantly for future applications, this development will permit the modeling of acoustic forces on complex structures such as biological cells, and the interactions between them and other bodies. The model is based on a non-viscous approximation, allowing the results from an efficient, numerical, linear scattering model to provide the basis for the second-order forces. Simulation times are of the order of a few seconds for an axi-symmetric structure. The model is verified against a range of existing analytical solutions (typical accuracy better than 0.1%), including those for cylinders, elastic spheres that are of significant size compared to the acoustic wavelength, and spheroidal particles.

  7. New insights on strain energies in hexagonal systems

    NASA Astrophysics Data System (ADS)

    Thuinet, Ludovic; Besson, Rémy

    2012-06-01

    The preferential habit planes of coherent precipitates, strongly influencing alloy properties, can be investigated by direct-space elasticity methods, providing new insight into delicate issues such as elastic inhomogeneities or anharmonicity. Focusing on the poorly known hexagonal system, this work enlightens important trends overlooked hitherto, such as the critical role of C44, leading to the identification of distinct families of hexagonal alloys for precipitation. Moreover, it demonstrates the complex influence of inhomogeneities for real, finite-thickness morphologies. Finally, it provides the missing material required for atomic-scale studies of precipitation in low-symmetry systems with long-range interactions.

  8. Muscle activity during knee-extension strengthening exercise performed with elastic tubing and isotonic resistance.

    PubMed

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Bandholm, Thomas; Thorborg, Kristian; Zebis, Mette K; Andersen, Lars L

    2012-12-01

    While elastic resistance training, targeting the upper body is effective for strength training, the effect of elastic resistance training on lower body muscle activity remains questionable. The purpose of this study was to evaluate the EMG-angle relationship of the quadriceps muscle during 10-RM knee-extensions performed with elastic tubing and an isotonic strength training machine. 7 women and 9 men aged 28-67 years (mean age 44 and 41 years, respectively) participated. Electromyographic (EMG) activity was recorded in 10 muscles during the concentric and eccentric contraction phase of a knee extension exercise performed with elastic tubing and in training machine and normalized to maximal voluntary isometric contraction (MVC) EMG (nEMG). Knee joint angle was measured during the exercises using electronic inclinometers (range of motion 0-90°). When comparing the machine and elastic resistance exercises there were no significant differences in peak EMG of the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM) during the concentric contraction phase. However, during the eccentric phase, peak EMG was significantly higher (p<0.01) in RF and VM when performing knee extensions using the training machine. In VL and VM the EMG-angle pattern was different between the two training modalities (significant angle by exercise interaction). When using elastic resistance, the EMG-angle pattern peaked towards full knee extension (0°), whereas angle at peak EMG occurred closer to knee flexion position (90°) during the machine exercise. Perceived loading (Borg CR10) was similar during knee extensions performed with elastic tubing (5.7±0.6) compared with knee extensions performed in training machine (5.9±0.5). Knee extensions performed with elastic tubing induces similar high (>70% nEMG) quadriceps muscle activity during the concentric contraction phase, but slightly lower during the eccentric contraction phase, as knee extensions performed using an isotonic training machine. During the concentric contraction phase the two different conditions displayed reciprocal EMG-angle patterns during the range of motion. 5.

  9. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.

    PubMed

    Frank, Scott D; Odom, Robert I; Collis, Jon M

    2013-03-01

    Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.

  10. {alpha}+{alpha} scattering reexamined in the context of the Sao Paulo potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamon, L. C.; Gasques, L. R.; Carlson, B. V.

    2011-03-15

    We have analyzed a large set of {alpha}+{alpha} elastic scattering data for bombarding energies ranging from 0.6 to 29.5 MeV. Because of the complete lack of open reaction channels, the optical interaction at these energies must have a vanishing imaginary part. Thus, this system is particularly important because the corresponding elastic scattering cross sections are very sensitive to the real part of the interaction. The data were analyzed in the context of the velocity-dependent Sao Paulo potential, which is a successful theoretical model for the description of heavy-ion reactions from sub-barrier to intermediate energies. We have verified that, even inmore » this low-energy region, the velocity dependence of the model is quite important for describing the data of the {alpha}+{alpha} system.« less

  11. Equilibrium, metastability, and hysteresis in a model spin-crossover material with nearest-neighbor antiferromagnetic-like and long-range ferromagnetic-like interactions

    DOE PAGES

    Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji; ...

    2016-02-16

    Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean- field method for a simplified model of a spin-crossovermaterialwith a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S = 1/2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley ( equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shapedmore » regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. As a result, we believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.« less

  12. Adsorption of β-casein-surfactant mixed layers at the air-water interface evaluated by interfacial rheology.

    PubMed

    Maestro, Armando; Kotsmar, Csaba; Javadi, Aliyar; Miller, Reinhard; Ortega, Francisco; Rubio, Ramón G

    2012-04-26

    This work presents a detailed study of the dilational viscoelastic moduli of the adsorption layers of the milk protein β-casein (BCS) and a surfactant at the liquid/air interface, over a broad frequency range. Two complementary techniques have been used: a drop profile tensiometry technique and an excited capillary wave method, ECW. Two different surfactants were studied: the nonionic dodecyldimethylphosphine oxide (C12DMPO) and the cationic dodecyltrimethylammonium bromide (DoTAB). The interfacial dilational elasticity and viscosity are very sensitive to the composition of protein-surfactant mixed adsorption layers at the air/water interface. Two different dynamic processes have been observed for the two systems studied, whose characteristic frequencies are close to 0.01 and 100 Hz. In both systems, the surface elasticity was found to show a maximum when plotted versus the surfactant concentration. However, at frequencies above 50 Hz the surface elasticity of BCS + C12DMPO is higher than the one of the aqueous BCS solution over most of the surfactant concentration range, whereas for the BCS + DoTAB it is smaller for high surfactant concentrations and higher at low concentrations. The BCS-surfactant interaction modifies the BCS random coil structure via electrostatic and/or hydrophobic interactions, leading to a competitive adsorption of the BCS-surfactant complexes with the free, unbound surfactant molecules. Increasing the surfactant concentration decreases the adsorbed proteins. However, the BCS molecules are rather strongly bound to the interface due to their large adsorption energy. The results have been fitted to the model proposed by C. Kotsmar et al. ( J. Phys. Chem. B 2009 , 113 , 103 ). Even though the model describes well the concentration dependence of the limiting elasticity, it does not properly describe its frequency dependence.

  13. Elastic properties of magnetorheological elastomer: description with the two-particle mesoscopic model

    NASA Astrophysics Data System (ADS)

    Biller, A. M.; Stolbov, O. V.; Raikher, Yu L.

    2017-06-01

    A pair of magnetizable solid particles embedded in a cylinder made of high-elasticity material is considered as a model of a mesoscopic structure element of a magnetorheological elastomer. An applied magnetic field induces ponderomotive interaction of the particles making them to move relative to one another so as to balance the counteracting magnetic and elastic forces. In a certain parameter range, the system exhibits bistability due to which under the increase / decrease of the field, the interparticle distance changes in a hysteretic manner. This behavior has a significant effect on the ability of the mesoscopic element to resist external load. Using the developed two-particle model prone to the magnetomechanical hysteresis, we extend it to the case of a virtually macroscopic sample presenting the latter as a superposition of such elements with distributed interparticle distances. In spite of its simplicity, this scheme in a generally correct way describes the field-induced changes of the internal structure and elastic modulus of the magnetorheological composites.

  14. Experimental and theoretical electron-scattering cross-section data for dichloromethane

    NASA Astrophysics Data System (ADS)

    Krupa, K.; Lange, E.; Blanco, F.; Barbosa, A. S.; Pastega, D. F.; Sanchez, S. d'A.; Bettega, M. H. F.; García, G.; Limão-Vieira, P.; Ferreira da Silva, F.

    2018-04-01

    We report on a combination of experimental and theoretical investigations into the elastic differential cross sections (DCSs) and integral cross sections for electron interactions with dichloromethane, C H2C l2 , in the incident electron energy over the 7.0-30 eV range. Elastic electron-scattering cross-section calculations have been performed within the framework of the Schwinger multichannel method implemented with pseudopotentials (SMCPP), and the independent-atom model with screening-corrected additivity rule including interference-effects correction (IAM-SCAR+I). The present elastic DCSs have been found to agree reasonably well with the results of IAM-SCAR+I calculations above 20 eV and also with the SMC calculations below 30 eV. Although some discrepancies were found for 7 eV, the agreement between the two theoretical methodologies is remarkable as the electron-impact energy increases. Calculated elastic DCSs are also reported up to 10000 eV for scattering angles from 0° to 180° together with total cross section within the IAM-SCAR+I framework.

  15. Curvature Forces in Membrane Lipid-Protein Interactions

    PubMed Central

    Brown, Michael F.

    2012-01-01

    Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes of membrane proteins—involving folding, stability, and membrane shape transitions—potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics, and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function. PMID:23163284

  16. Including Delbrück scattering in GEANT4

    NASA Astrophysics Data System (ADS)

    Omer, Mohamed; Hajima, Ryoichi

    2017-08-01

    Elastic scattering of γ-rays is a significant interaction among γ-ray interactions with matter. Therefore, the planning of experiments involving measurements of γ-rays using Monte Carlo simulations usually includes elastic scattering. However, current simulation tools do not provide a complete picture of elastic scattering. The majority of these tools assume Rayleigh scattering is the primary contributor to elastic scattering and neglect other elastic scattering processes, such as nuclear Thomson and Delbrück scattering. Here, we develop a tabulation-based method to simulate elastic scattering in one of the most common open-source Monte Carlo simulation toolkits, GEANT4. We collectively include three processes, Rayleigh scattering, nuclear Thomson scattering, and Delbrück scattering. Our simulation more appropriately uses differential cross sections based on the second-order scattering matrix instead of current data, which are based on the form factor approximation. Moreover, the superposition of these processes is carefully taken into account emphasizing the complex nature of the scattering amplitudes. The simulation covers an energy range of 0.01 MeV ≤ E ≤ 3 MeV and all elements with atomic numbers of 1 ≤ Z ≤ 99. In addition, we validated our simulation by comparing the differential cross sections measured in earlier experiments with those extracted from the simulations. We find that the simulations are in good agreement with the experimental measurements. Differences between the experiments and the simulations are 21% for uranium, 24% for lead, 3% for tantalum, and 8% for cerium at 2.754 MeV. Coulomb corrections to the Delbrück amplitudes may account for the relatively large differences that appear at higher Z values.

  17. Microscopic Approach to the Nonlinear Elasticity of Compressed Emulsions

    NASA Astrophysics Data System (ADS)

    Jorjadze, Ivane; Pontani, Lea-Laetitia; Brujic, Jasna

    2013-01-01

    Using confocal microscopy, we measure the packing geometry and interdroplet forces as a function of the osmotic pressure in a 3D emulsion system. We assume a harmonic interaction potential over a wide range of volume fractions and attribute the observed nonlinear elastic response of the pressure with density to the first corrections to the scaling laws of the microstructure away from the critical point. The bulk modulus depends on the excess contacts created under compression, which leads to the correction exponent α=1.5. Microscopically, the nonlinearities manifest themselves as a narrowing of the distribution of the pressure per particle as a function of the global pressure.

  18. Robustness Elasticity in Complex Networks

    PubMed Central

    Matisziw, Timothy C.; Grubesic, Tony H.; Guo, Junyu

    2012-01-01

    Network robustness refers to a network’s resilience to stress or damage. Given that most networks are inherently dynamic, with changing topology, loads, and operational states, their robustness is also likely subject to change. However, in most analyses of network structure, it is assumed that interaction among nodes has no effect on robustness. To investigate the hypothesis that network robustness is not sensitive or elastic to the level of interaction (or flow) among network nodes, this paper explores the impacts of network disruption, namely arc deletion, over a temporal sequence of observed nodal interactions for a large Internet backbone system. In particular, a mathematical programming approach is used to identify exact bounds on robustness to arc deletion for each epoch of nodal interaction. Elasticity of the identified bounds relative to the magnitude of arc deletion is assessed. Results indicate that system robustness can be highly elastic to spatial and temporal variations in nodal interactions within complex systems. Further, the presence of this elasticity provides evidence that a failure to account for nodal interaction can confound characterizations of complex networked systems. PMID:22808060

  19. Contact interaction of thin-walled elements with an elastic layer and an infinite circular cylinder under torsion

    NASA Astrophysics Data System (ADS)

    Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.

    2018-04-01

    We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.

  20. Caracterisation mecanique dynamique de materiaux poro-visco-elastiques

    NASA Astrophysics Data System (ADS)

    Renault, Amelie

    Poro-viscoelastic materials are well modelled with Biot-Allard equations. This model needs a number of geometrical parameters in order to describe the macroscopic geometry of the material and elastic parameters in order to describe the elastic properties of the material skeleton. Several characterisation methods of viscoelastic parameters of porous materials are studied in this thesis. Firstly, quasistatic and resonant characterization methods are described and analyzed. Secondly, a new inverse dynamic characterization of the same modulus is developed. The latter involves a two layers metal-porous beam, which is excited at the center. The input mobility is measured. The set-up is simplified compared to previous methods. The parameters are obtained via an inversion procedure based on the minimisation of the cost function comparing the measured and calculated frequency response functions (FRF). The calculation is done with a general laminate model. A parametric study identifies the optimal beam dimensions for maximum sensitivity of the inversion model. The advantage of using a code which is not taking into account fluid-structure interactions is the low computation time. For most materials, the effect of this interaction on the elastic properties is negligible. Several materials are tested to demonstrate the performance of the method compared to the classical quasi-static approaches, and set its limitations and range of validity. Finally, conclusions about their utilisation are given. Keywords. Elastic parameters, porous materials, anisotropy, vibration.

  1. Upper limits on resonance contributions to proton-proton elastic scattering in the c.m. mass range 2.05-2.85 GeV/ c2

    NASA Astrophysics Data System (ADS)

    Rohdjeß, H.; Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Busch, M.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Eyser, K. O.; Felden, O.; Gebel, R.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Langkau, R.; Lindlein, J.; Maier, R.; Mosel, F.; Prasuhn, D.; von Rossen, P.; Scheid, N.; Schulz-Rojahn, M.; Schwandt, F.; Schwarz, V.; Scobel, W.; Trelle, H.-J.; Ulbrich, K.; Weise, E.; Wellinghausen, A.; Woller, K.; Ziegler, R.

    2006-04-01

    Recently published excitation functions in proton-proton ( pp) elastic scattering observables in the laboratory energy range 0.5-2.5GeV provide an excellent data base to establish firm upper limits on the elasticities ηel = Γel/Γtot of possible isovector resonant contributions to the nucleon-nucleon ( NN) system. Such contributions have been predicted to arise from dibaryonic states, with c.m. masses between 2.1-2.9GeV/c2, but have not been confirmed experimentally. A method to determine quantitatively the maximum value of ηel compatible with experimental data is presented. We use energy-dependent phase shift fits to the pp data base to model the non-resonant interaction. Based upon the differential cross-section data measured by the EDDA Collaboration an unbiased statistical test is constructed to obtain upper limits on ηel, that exclude larger values with a 99% confidence level. Results in the c.m. mass range 2.05-2.85GeV/c2 and total widths of 10-100MeV/c2 in the partial waves 1 S 0, 1 D 2, 3 P 0, 3 P 1, and 3 F 3 are presented and discussed.

  2. Implications of non-covalent interactions in zein-starch dough and bread quality

    USDA-ARS?s Scientific Manuscript database

    Breads made from non-wheat flours are made from thick batters and are lower quality than wheat bread. The development of visco-elastic doughs from non-wheat proteins would allow a wider range of gluten-free products and would improve the quality of such foods. Only recently has the mechanism of zei...

  3. Superclimbing dislocation with a Coulomb-type interaction between jogs

    NASA Astrophysics Data System (ADS)

    Liu, Longxiang; Kuklov, Anatoly B.

    2018-03-01

    The main candidate for the superfluid pathways in solid 4He are dislocations with Burgers vector along the hcp symmetry axis. Here we focus on the quantum behavior of a generic edge dislocation which can perform superclimb; that is, it can climb due to the superflow along its core. The role of the long-range elastic interactions between jogs is addressed by Monte Carlo simulations. It is found that such interactions do not change qualitatively the phase diagram found without accounting for the long-range forces. Their main effect consists of renormalizing the effective scale determining the compressibility of the dislocation in the Tomonaga-Luttinger liquid phase. It is also found that the quantum rough phase of the dislocation can be well described within the Gaussian approximation which features off-diagonal long-range order (ODLRO) in one dimension for the superfluid order parameter along the core.

  4. Toward lattice fractional vector calculus

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  5. Structural stability and mechanical properties of technetium mononitride (TcN)

    NASA Astrophysics Data System (ADS)

    Soni, Shubhangi; Choudhary, K. K.; Kaurav, Netram

    2018-05-01

    Among the nitrides, 3d and 4d transition metal nitrides have been investigated both experimentally and theoretically due to their predominant performances and enormous applications. In the present paper, we have attempted to predict the structural stability and mechanical properties of technetium mononitride (TcN) using an effective interionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. Our theoretical approach reveals the structural phase transition of the TcN B3 to B1 structure, wherein, the Gibbs' free energies of both the structures were minimized. The variations of elastic constants with pressure follow a systematic trend identical to that observed in other compounds of ZnS type structure family.

  6. Pressure induced structural phase transition from NaCl-type (B1) to CsCl-type (B2) structure in sodium chloride

    NASA Astrophysics Data System (ADS)

    Jain, Aayushi; Dixit, R. C.

    2018-05-01

    Pressure induced structural phase transition of NaCl-type (B1) to CsCl-type (B2) structure in Sodium Chloride NaCl are presented. An effective interionic interaction potential (EIOP) with long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge is reported here. The reckon value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are compatible as compared with reported data. The variations of elastic constants and their combinations with pressure follow ordered behavior. The present approach has also succeeded in predicting the Born and relative stability criteria.

  7. Molecular modeling of proteinlike inclusions in lipid bilayers: lipid-mediated interactions.

    PubMed

    Kik, Richard A; Leermakers, Frans A M; Kleijn, J Mieke

    2010-02-01

    We investigated the insertion of transmembrane structures in a lipid bilayer and their interactions using self-consistent field theory. The lipids are coarse-grained on a united-atom level and consist of a phosphatidylcholinelike headgroup and two hydrophobic tails. The inclusions, acting as simple models for proteins that span biological membranes, are rigid rods (radius R ) with a hydrophobic surface and hydrophilic end caps. The insertion free energy Omega of an individual rod is strongly regulated by the affinity between its hydrophobic surface and the lipid tails. This affinity also controls the best match of the hydrophobic length of the rod with that of the bilayer. The line tension tau(=Omega/2piR) is practically independent of R . The perturbations in the bilayer as a function of distance from the inclusion, have the shape of a damped oscillation. The wavelength and decay length are related to the elastic properties of the bilayer and do not depend on R . These results are used to analyze how the lipid matrix affects the interaction between transmembrane objects, for computational reasons considering the limit of R-->infinity . Contributions on different length scales can be distinguished: (i) a long-range elastic interaction, which is an exponentially decaying oscillation; (ii) an exponentially decaying repulsion on an intermediate length scale, resulting from the loss of conformational entropy of the lipid tails; and (iii) a short-range interaction due to the finite compressibility of the lipid tails, which manifests either as a depletion attraction if there is no affinity between the tails and the inclusions' surface or, otherwise, as an oscillatory structural force.

  8. Muon neutrino CCQE at MINERvA

    DOE PAGES

    Betancourt, M.

    2016-12-13

    A precise understanding of quasi-elastic interactions is crucial to measure neutrino oscillations. The MINERvA experiment is currently working on different analyses of muon neutrino charged current quasi-elastic interactions. Here, we present updates to the previous quasi-elastic measurement, using a new flux, and we present the status of several analyses in progress; including double differential cross sections, a study of final state interactions using a sample with muon and a proton and the status of the CCQE analysis in the medium energy neutrino beam.

  9. Relationships between elastic anisotropy and thermal expansion in A 2Mo 3O 12 materials

    DOE PAGES

    Romao, Carl P.; Donegan, S. P.; Zwanziger, J. W.; ...

    2016-10-24

    Here, we report calculated elastic tensors, axial Grüneisen parameters, and thermal stress distributions in Al 2Mo 3O 12, ZrMgMo 3O 12, Sc 2Mo 3O 12, and Y 2Mo 3O 12, a series of isomorphic materials for which the coefficients of thermal expansion range from low-positive to negative. Thermal stress in polycrystalline materials arises from interactions between thermal expansion and mechanical properties, and both can be highly anisotropic. Thermal expansion anisotropy was found to be correlated with elastic anisotropy: axes with negative thermal expansion were less compliant. Calculations of axial Grüneisen parameters revealed that the thermal expansion anisotropy in these materialsmore » is in part due to the Poisson effect. Models of thermal stress due to thermal expansion anisotropy in polycrystals following cooling showed thermal stresses of sufficient magnitude to cause microcracking in all cases. The thermal expansion anisotropy was found to couple to elastic anisotropy, decreasing the bulk coefficient of thermal expansion and leading to lognormal extremes of the thermal stress distributions.« less

  10. Relationships between elastic anisotropy and thermal expansion in A 2Mo 3O 12 materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romao, Carl P.; Donegan, S. P.; Zwanziger, J. W.

    Here, we report calculated elastic tensors, axial Grüneisen parameters, and thermal stress distributions in Al 2Mo 3O 12, ZrMgMo 3O 12, Sc 2Mo 3O 12, and Y 2Mo 3O 12, a series of isomorphic materials for which the coefficients of thermal expansion range from low-positive to negative. Thermal stress in polycrystalline materials arises from interactions between thermal expansion and mechanical properties, and both can be highly anisotropic. Thermal expansion anisotropy was found to be correlated with elastic anisotropy: axes with negative thermal expansion were less compliant. Calculations of axial Grüneisen parameters revealed that the thermal expansion anisotropy in these materialsmore » is in part due to the Poisson effect. Models of thermal stress due to thermal expansion anisotropy in polycrystals following cooling showed thermal stresses of sufficient magnitude to cause microcracking in all cases. The thermal expansion anisotropy was found to couple to elastic anisotropy, decreasing the bulk coefficient of thermal expansion and leading to lognormal extremes of the thermal stress distributions.« less

  11. XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.

    2017-12-01

    Elastic scattering of electromagnetic pulses on atoms in XUV and soft x-ray ranges is considered for ultra-short pulses. The inclusion of the retardation term, non-dipole interaction and an efficient scattering tensor approximation allowed studying the scattering probability in dependence of the pulse duration for different carrier frequencies. Numerical calculations carried out for Mg, Al and Fe atoms demonstrate that the scattering probability is a highly nonlinear function of the pulse duration and has extrema for pulse carrier frequencies in the vicinity of the resonance-like features of the polarization charge spectrum. Closed expressions for the non-dipole correction and the angular dependence of the scattered radiation are obtained.

  12. What if GE^s is Zero? Implications for GM^s and GA^s

    NASA Astrophysics Data System (ADS)

    Schaub, John; Pate, Stephen

    2008-04-01

    Because strange quarks are the lightest quarks present in nucleons via only vacuum fluctuations, studying their activities in nucleons gives us insight to the vacuum's effects on nucleon properties. These contributions can be accessed through electroweak interactions---in particular through parity-violating eN and νN elastic scattering. Recent data from parity-violating eN elastic scattering (HAPPEX, PVA4) suggests that the strange contribution to the proton electric form factor, GE^s , may be nearly zero in the range 0 < Q^2 < 1 GeV^2. We assume that GE^s is small and use existing νN data to explore the consequences for GM^s and GA^s .

  13. The Electric Propulsion Interactions Code (EPIC): A Member of the NASA Space Environment and Effects Program (SEE) Toolset

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Mandell, Myron J.; Kuharski, Robert A.; Davis, D. A.; Gardner, Barbara M.; Minor, Jody

    2003-01-01

    Science Applications International Corporation is currently developing the Electric Propulsion Interactions Code, EPIC, as part of a project sponsored by the Space Environments and Effects Program at NASA Marshall Space Flight Center. Now in its second year of development, EPIC is an interactive computer toolset that allows the construction of a 3-D spacecraft model, and the assessment of a variety of interactions between its subsystems and the plume from an electric thruster. This paper reports on the progress of EPZC including the recently added ability to exchange results the NASA Charging Analyzer Program, Nascap-2k. The capability greatly enhances EPIC's range of applicability. Expansion of the toolset's various physics models proceeds in parallel with the overall development of the software. Also presented are recent upgrades of the elastic scattering algorithm in the electric propulsion Plume Tool. These upgrades are motivated by the need to assess the effects of elastically scattered ions on the SIC for ion beam energies that exceed loo0 eV. Such energy levels are expected in future high-power (>10 kW) ion propulsion systems empowered by nuclear sources.

  14. Hydrodynamic and elastic interactions of sedimenting flexible fibers

    NASA Astrophysics Data System (ADS)

    Ekiel-Jezewska, Maria L.; Bukowicki, Marek

    2017-11-01

    Dynamics of flexible micro and nano filaments in fluids is intensively investigated in many laboratories, with a perspective of numerous applications in biology, medicine or modern technology. In the literature, different theoretical models of elastic interactions between flexible fiber segments are applied. The task of this work is to examine the impact of a chosen elastic model on the dynamics of fibers settling in a viscous fluid under low Reynolds number. To this goal, we construct two trumbbells, each made of three beads connected by springs and with a bending resistance, and we describe hydrodynamic interactions of the beads in terms of the Rotne-Prager mobility tensors. Using the harmonic bending potential, and coupling it to the spring potential by the Young's modulus, we find simple benchmark solutions: stable stationary configurations of a single elastic trumbbell and a fast horizontal attraction of two elastic trumbbells towards a periodic long-lasting orbit. We show that for sufficiently large bending angles, other models of bending interactions can lead to qualitatively and quantitatively different spurious effects. We also demonstrate examples of essential differences between the dynamics of elastic dumbbells and trumbbells. This work was supported in part by Narodowe Centrum Nauki under Grant No. 2014/15/B/ST8/04359.

  15. Elastic and thermal expansion asymmetry in dense molecular materials.

    PubMed

    Burg, Joseph A; Dauskardt, Reinhold H

    2016-09-01

    The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.

  16. A measurement of the neutral current neutrino-nucleon elastic cross section at MiniBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, David Christopher

    2008-02-01

    The neutral current neutrino-nucleon elastic interaction v N → v N is a fundamental process of the weak interaction ideally suited for characterizing the structure of the nucleon neutral weak current. This process comprises ~18% of neutrino events in the neutrino oscillation experiment, MiniBooNE, ranking it as the experiment's third largest process. Using ~10% of MiniBooNE's available neutrino data, a sample of these events were identified and analyzed to determine the differential cross section as a function of the momentum transfer of the interaction, Q 2. This is the first measurement of a differential cross section with MiniBooNE data. Frommore » this analysis, a value for the nucleon axial mass M A was extracted to be 1.34 ± 0.25 GeV consistent with previous measurements. The integrated cross section for the Q 2 range 0.189 → 1.13 GeV 2 was calculated to be (8.8 ± 0.6(stat) ± 0.2(syst)) x 10 -40 cm 2.« less

  17. Crossed-beam experiment for the scattering of low- and intermediate-energy electrons from BF{sub 3}: A comparative study with XF{sub 3} (X = C, N, and CH) molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, M., E-mail: masami-h@sophia.ac.jp; Suga, A.; Kato, H.

    2015-07-14

    Absolute differential cross sections (DCSs) for electron interaction with BF{sub 3} molecules have been measured in the impact energy range of 1.5–200 eV and recorded over a scattering angle range of 15°–150°. These angular distributions have been normalized by reference to the elastic DCSs of the He atom and integrated by employing a modified phase shift analysis procedure to generate integral cross sections (ICSs) and momentum transfer cross sections (MTCSs). The calculations of DCSs and ICSs have been carried out using an independent atom model under the screening corrected additivity rule (IAM-SCAR). The present elastic DCSs have been found tomore » agree well with the results of IAM-SCAR calculation above 20 eV, and also with a recent Schwinger multichannel calculation below 30 eV. Furthermore, in the comparison with the XF{sub 3} (X = B, C, N, and CH) molecules, the elastic DCSs reveal a similar angular distribution which are approximately equal in magnitude from 30 to 200 eV. This feature suggests that the elastic scattering is dominated virtually by the 3-outer fluorine atoms surrounding the XF{sub 3} molecules. The vibrational DCSs have also been obtained in the energy range of 1.5–15 eV and vibrational analysis based on the angular correlation theory has been carried out to explain the nature of the shape resonances. Limited experiments on vibrational inelastic scattering confirmed the existence of a shape resonance with a peak at 3.8 eV, which is also observed in the vibrational ICS. Finally, the estimated elastic ICSs, MTCSs, as well as total cross sections are compared with the previous cross section data available.« less

  18. Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles

    NASA Astrophysics Data System (ADS)

    Yin, H. M.; Sun, L. Z.; Chen, J. S.

    2006-05-01

    Magneto-elastic behavior is investigated for two-phase composites containing chain-structured magnetostrictive particles under both magnetic and mechanical loading. To derive the local magnetic and elastic fields, three modified Green's functions are derived and explicitly integrated for the infinite domain containing a spherical inclusion with a prescribed magnetization, body force, and eigenstrain. A representative volume element containing a chain of infinite particles is introduced to solve averaged magnetic and elastic fields in the particles and the matrix. Effective magnetostriction of composites is derived by considering the particle's magnetostriction and the magnetic interaction force. It is shown that there exists an optimal choice of the Young's modulus of the matrix and the volume fraction of the particles to achieve the maximum effective magnetostriction. A transversely isotropic effective elasticity is derived at the infinitesimal deformation. Disregarding the interaction term, this model provides the same effective elasticity as Mori-Tanaka's model. Comparisons of model results with the experimental data and other models show the efficacy of the model and suggest that the particle interactions have a considerable effect on the effective magneto-elastic properties of composites even for a low particle volume fraction.

  19. The Development of A Squeeze Film Damper Parametric Model in the Context of a Fluid-structural Interaction Task

    NASA Astrophysics Data System (ADS)

    Novikov, Dmitrii K.; Diligenskii, Dmitrii S.

    2018-01-01

    The article considers the work of some squeeze film damper with elastic rings parts. This type of damper is widely used in gas turbine engines supports. Nevertheless, modern analytical solutions have a number of limitations. The article considers the behavior of simple hydrodynamic damping systems. It describes the analysis of fluid-solid interaction simulation applicability for the defying properties of hydrodynamic damper with elastic rings (“allison ring”). There are some recommendations on the fluid structural interaction analysis of the hydrodynamic damper with elastic rings.

  20. Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling

    NASA Astrophysics Data System (ADS)

    Balcerzak, T.; Szałowski, K.; Jaščur, M.

    2018-04-01

    Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic, vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs potential and the set of equations of state are derived, from which all thermodynamic functions are self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some parameters of interaction potential and electron concentration corresponding to antiferromagnetic phase, the existence of negative thermal expansion coefficient is predicted.

  1. Neutrino Nucleon Elastic Scattering in MiniBooNE

    NASA Astrophysics Data System (ADS)

    Cox, D. Christopher

    2007-12-01

    Neutrino nucleon elastic scattering νN→νN is a fundamental process of the weak interaction, and can be used to study the structure of the nucleon. This is the third largest scattering process in MiniBooNE comprising ˜15% of all neutrino interactions. Analysis of this sample has yielded a neutral current elastic differential cross section as a function of Q2 that agrees within errors to model predictions.

  2. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  3. Analysis of fluid-structure interaction in a frame pipe undergoing plastic deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khamlichi, A.; Jezequel, L.; Jacques, Y.

    1995-11-01

    Water hammer pressure waves of sufficiently large magnitude can cause plastic flexural deformations in a frame pipe. In this study, the authors propose a modelization of this problem based on plane wave approximation for the fluid equations and approximation of the structure motion by a single-degree-of-freedom elastic-plastic oscillator. Direct analytical integration of elastic-plastic equations through pipe sections, then over the pipe length is performed in order to identify the oscillator parameters. Comparison of the global load-displacement relationship obtained with the finite element solution was considered and has shown good agreement. Fluid-structure coupling is achieved by assuming elbows to act likemore » plane monopole sources, where localized jumps of fluid velocity occur and where net pressure forces are exerted on the structure. The authors have applied this method to analyze the fluid-structure interaction in this range of deformations. Energy exchange between the fluid and the structure and energy dissipation are quantified.« less

  4. Origins of phase contrast in the atomic force microscope in liquids

    PubMed Central

    Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L.; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind

    2009-01-01

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage ϕ29 virions in buffer solutions using the phase-contrast images. PMID:19666560

  5. Origins of phase contrast in the atomic force microscope in liquids.

    PubMed

    Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind

    2009-08-18

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage 29 virions in buffer solutions using the phase-contrast images.

  6. Modeling of monolayer charge-stabilized colloidal crystals with static hexagonal crystal lattice

    NASA Astrophysics Data System (ADS)

    Nagatkin, A. N.; Dyshlovenko, P. E.

    2018-01-01

    The mathematical model of monolayer colloidal crystals of charged hard spheres in liquid electrolyte is proposed. The particles in the monolayer are arranged into the two-dimensional hexagonal crystal lattice. The model enables finding elastic constants of the crystals from the stress-strain dependencies. The model is based on the nonlinear Poisson-Boltzmann differential equation. The Poisson-Boltzmann equation is solved numerically by the finite element method for any spatial configuration. The model has five geometrical and electrical parameters. The model is used to study the crystal with particles comparable in size with the Debye length of the electrolyte. The first- and second-order elastic constants are found for a broad range of densities. The model crystal turns out to be stable relative to small uniform stretching and shearing. It is also demonstrated that the Cauchy relation is not fulfilled in the crystal. This means that the pair effective interaction of any kind is not sufficient to proper model the elasticity of colloids within the one-component approach.

  7. Dynamics of an elastic sphere containing a thin creeping region and immersed in an acoustic region for similar viscous-elastic and acoustic time- and length-scales

    NASA Astrophysics Data System (ADS)

    Gat, Amir; Friedman, Yonathan

    2017-11-01

    The characteristic time of low-Reynolds number fluid-structure interaction scales linearly with the ratio of fluid viscosity to solid Young's modulus. For sufficiently large values of Young's modulus, both time- and length-scales of the viscous-elastic dynamics may be similar to acoustic time- and length-scales. However, the requirement of dominant viscous effects limits the validity of such regimes to micro-configurations. We here study the dynamics of an acoustic plane wave impinging on the surface of a layered sphere, immersed within an inviscid fluid, and composed of an inner elastic sphere, a creeping fluid layer and an external elastic shell. We focus on configurations with similar viscous-elastic and acoustic time- and length-scales, where the viscous-elastic speed of interaction between the creeping layer and the elastic regions is similar to the speed of sound. By expanding the linearized spherical Reynolds equation into the relevant spectral series solution for the hyperbolic elastic regions, a global stiffness matrix of the layered elastic sphere was obtained. This work relates viscous-elastic dynamics to acoustic scattering and may pave the way to the design of novel meta-materials with unique acoustic properties. ISF 818/13.

  8. Description of alpha-nucleus interaction cross sections for cosmic ray shielding studies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1993-01-01

    Nuclear interactions of high-energy alpha particles with target nuclei important for cosmic ray studies are discussed. Models for elastic, quasi-elastic, and breakup reactions are presented and compared with experimental data. Energy-dependent interaction cross sections and secondary spectra are presented based on theoretical models and the limited experimental data base.

  9. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-03

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  10. Local structure controls the nonaffine shear and bulk moduli of disordered solids

    NASA Astrophysics Data System (ADS)

    Schlegel, M.; Brujic, J.; Terentjev, E. M.; Zaccone, A.

    2016-01-01

    Paradigmatic model systems, which are used to study the mechanical response of matter, are random networks of point-atoms, random sphere packings, or simple crystal lattices; all of these models assume central-force interactions between particles/atoms. Each of these models differs in the spatial arrangement and the correlations among particles. In turn, this is reflected in the widely different behaviours of the shear (G) and compression (K) elastic moduli. The relation between the macroscopic elasticity as encoded in G, K and their ratio, and the microscopic lattice structure/order, is not understood. We provide a quantitative analytical connection between the local orientational order and the elasticity in model amorphous solids with different internal microstructure, focusing on the two opposite limits of packings (strong excluded-volume) and networks (no excluded-volume). The theory predicts that, in packings, the local orientational order due to excluded-volume causes less nonaffinity (less softness or larger stiffness) under compression than under shear. This leads to lower values of G/K, a well-documented phenomenon which was lacking a microscopic explanation. The theory also provides an excellent one-parameter description of the elasticity of compressed emulsions in comparison with experimental data over a broad range of packing fractions.

  11. Importance of elastic finite-size effects: Neutral defects in ionic compounds

    DOE PAGES

    Burr, P. A.; Cooper, M. W. D.

    2017-09-15

    Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less

  12. Importance of elastic finite-size effects: Neutral defects in ionic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, P. A.; Cooper, M. W. D.

    Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less

  13. Importance of elastic finite-size effects: Neutral defects in ionic compounds

    NASA Astrophysics Data System (ADS)

    Burr, P. A.; Cooper, M. W. D.

    2017-09-01

    Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.

  14. Many-Body Physics in Long-Range Interacting Quantum Systems

    NASA Astrophysics Data System (ADS)

    Zhu, Bihui

    Ultracold atomic and molecular systems provide a useful platform for understanding quantum many-body physics. Recent progresses in AMO experiments enable access to systems exhibiting long-range interactions, opening a window for exploring the interplay between long-range interactions and dissipation. In this thesis, I develop theoretical approaches to study non-equilibrium dynamics in systems where such interplay is crucial. I first focus on a system of KRb molecules, where dipolar interactions and fast chemical reactions coexist. Using a classical kinetic theory and Monte Carlo methods, I study the evaporative cooling in a quasi-two-dimensional trap, and develop a protocol to reach quantum degeneracy. I also study the case where molecules are loaded into an optical lattice, and show that the strong dissipation induces a quantum Zeno effect, which suppresses the molecule loss. The analysis requires including multiple bands to explain recent experimental measurements, and can be used to determine the molecular filling fraction. I also investigate a system of radiating atoms, which experience long-range elastic and dissipative interactions. I explore the collective behavior of atoms and the role of atomic motion. The model is validated by comparison with a recent light scattering experiment using Sr atoms. I also show that incoherently pumped dipoles can undergo a dynamical phase transition to synchronization, and study its signature in the quantum regime.

  15. Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj

    2013-09-01

    We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the <100>, <110>, <111> in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.

  16. Polysoaps: Configurations and Elasticity

    NASA Astrophysics Data System (ADS)

    Halperin, A.

    1997-03-01

    Simple polymers are very long, flexible, linear molecules. Amphiphiles, soaps, are small molecules comprising of a part that prefers water over oil and a part that prefers oil over water. By combining the two we arrive at an interesting, little explored, class of materials: Polysoaps. These comprise of a water soluble backbone incorporating, at intervals, covalently bound amphiphilic monomers. In water, the polymerised amphiphiles aggregate into self assembled units known as micelles. This induces a dramatic modification of the spatial configurations of the polymers. What were featureless random coils now exhibit intramolecular, hierachial self organisation. Due to this self organisation it is necessary to modify the paradigms describing the large scale behaviour of these polymers: Their configurations, dimensions and elasticity. Understanding the behaviour of these polymers is of practical interest because of their wide range of industrial applications, ranging from cosmetics to paper coating. It is of fundamental interest because polysoaps are characterised by a rugged free energy landscape that is reminiscent of complex systems such as proteins and glasses. The talk concerns theoretical arguments regarding the following issues: (i) The design parameters that govern the spatial configurations of the polysoaps, (ii) The interaction between polysoaps and free amphiphiles, (iii) The effect of the intramolecular self organisation on the elasticity of the chains.

  17. Chiral liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Martinez, Angel; Senyuk, Bohdan; Tasinkevych, Mykola; Smalyukh, Ivan I.

    2018-01-01

    Colloidal particles disturb the alignment of rod-like molecules of liquid crystals, giving rise to long-range interactions that minimize the free energy of distorted regions. Particle shape and topology are known to guide this self-assembly process. However, how chirality of colloidal inclusions affects these long-range interactions is unclear. Here we study the effects of distortions caused by chiral springs and helices on the colloidal self-organization in a nematic liquid crystal using laser tweezers, particle tracking and optical imaging. We show that chirality of colloidal particles interacts with the nematic elasticity to predefine chiral or racemic colloidal superstructures in nematic colloids. These findings are consistent with numerical modelling based on the minimization of Landau-de Gennes free energy. Our study uncovers the role of chirality in defining the mesoscopic order of liquid crystal colloids, suggesting that this feature may be a potential tool to modulate the global orientated self-organization of these systems.

  18. Nuclear structure research at the Triangle Universities Nuclear Laboratory

    NASA Astrophysics Data System (ADS)

    Mitchell, G. E.

    1992-10-01

    Studies of fundamental symmetries by the TRIPLE collaboration using the unique capabilities at LAMTF have found unexpected systematics in the parity-violating amplitudes for epithermal-neutron scattering. Tests to lower the present limits on time-reversal-invariance violation in the strong interaction are being made at in experiments on the scattering of polarized fast neutrons from aligned holmium targets. Studies of few-nucleon systems have received increasing emphasis over the past year, involving a broad program for testing the low- to medium-energy internucleon interactions, from the tensor component in n-p scattering and the n-n scattering lengths, through three-nucleon systems and the alpha particle, on up to Be-8. Of particular interest are three-nucleon systems, both in elastic scattering and in three-body breakup. Beam requirements range from production of intense and highly-polarized neutron beams to tensor-polarized beams for measurements at both very low energies (25-80 keV) and at tandem energies for definitive measurements of D-state components of the triton, He-3, and He-4 obtained from transfer reactions. The program in nuclear astrophysics expanded during 1991-1992. Several facets of the nuclear many-body problem and of excitation mechanisms of the nucleus are being elucidated, including measurements and analyses to elucidate the neutron-nucleus elastic-scattering interaction over a wide range of nuclei and energies. Several projects involved developments in electronuclear physics, instrumentation, RF-transition units, and low-temperature bolometric particle detectors.

  19. Non-collinear interaction of guided elastic waves in an isotropic plate

    NASA Astrophysics Data System (ADS)

    Ishii, Yosuke; Biwa, Shiro; Adachi, Tadaharu

    2018-04-01

    The nonlinear wave propagation in a homogeneous and isotropic elastic plate is analyzed theoretically to investigate the non-collinear interaction of plate wave modes. In the presence of two primary plate waves (Rayleigh-Lamb or shear horizontal modes) propagating in arbitrary directions, an explicit expression for the modal amplitude of nonlinearly generated wave fields with the sum or difference frequency of the primary modes is derived by using the perturbation analysis. The modal amplitude is shown to grow in proportion with the propagation distance when the resonance condition is satisfied, i.e., when the wavevector of secondary wave coincides with the sum or difference of those of primary modes. Furthermore, the non-collinear interaction of two symmetric or two antisymmetric modes is shown to produce the secondary wave fields consisting only of the symmetric modes, while a pair of symmetric and antisymmetric primary modes is shown to produce only the antisymmetric modes. The influence of the intersection angle, the primary frequencies, and the mode combinations on the modal amplitude of secondary wave is examined for a low-frequency range where the lowest-order symmetric and antisymmetric Rayleigh-Lamb waves and the lowest-order symmetric shear horizontal wave are the only propagating modes.

  20. Measurement of the Antineutrino Double-Differential Charged-Current Quasi-Elastic Scattering Cross Section at MINERvA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick, Cheryl

    Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure charge-parity (CP) violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. We present the MINERvA experiment's first double-differential scattering cross sections for antineutrinos on scintillator, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also present total antineutrino-scintillator quasi-elastic crossmore » sections as a function of energy, which we compare to measurements from previous experiments. As well as being useful to help reduce oscillation experiments' uncertainty, our data can also be used to study the prevalence of various cor relation and final-state interaction effects within the nucleus. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models.« less

  1. Determining the elastic properties of aptamer-ricin single molecule multiple pathway interactions

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Park, Bosoon; Kwon, Yongkuk; Xu, Bingqian

    2014-05-01

    We report on the elastic properties of ricin and anti-ricin aptamer interactions, which showed three stable binding conformations, each of which has its special elastic properties. These different unbinding pathways were investigated by the dynamic force spectroscopy. A series-spring model combining the worm-like-chain model and Hook's law was used to estimate the apparent spring constants of the aptamer and linker molecule polyethylene glycol. The aptamer in its three different unbinding pathways showed different apparent spring constants. The two reaction barriers in the unbinding pathways also influence the apparent spring constant of the aptamer. This special elastic behavior of aptamer was used to distinguish its three unbinding pathways under different loading rates. This method also offered a way to distinguish and discard the non-specific interactions in single molecule experiments.

  2. On some problems in a theory of thermally and mechanically interacting continuous media. Ph.D. Thesis; [linearized theory of interacting mixture of elastic solid and viscous fluid

    NASA Technical Reports Server (NTRS)

    Lee, Y. M.

    1971-01-01

    Using a linearized theory of thermally and mechanically interacting mixture of linear elastic solid and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation relates the solution of one initial-boundary value problem with a given set of initial and boundary data to the solution of a second initial-boundary value problem corresponding to a different initial and boundary data for a given interacting mixture. From this general integral relation, reciprocity relations are derived for a heat-conducting linear elastic solid, and for a heat-conducting viscous fluid. An initial-boundary value problem is posed and solved for the mixture of linear elastic solid and viscous fluid. With the aid of the Laplace transform and the contour integration, a real integral representation for the displacement of the solid constituent is obtained as one of the principal results of the analysis.

  3. Atomic dark matter with hyperfine interactions

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Kaplinghat, Manoj; Kwa, Anna; Peter, Annika H. G.

    2017-11-01

    We consider dark matter as an analog of hydrogen in a secluded sector and study its astrophysical implications. The self interactions between dark matter particles include elastic scatterings as well as inelastic processes from hyperfine transitions. We show that for a dark hydrogen mass in the 10-100 GeV range and a dark fine-structure constant larger than 0.01, the self-interaction cross section has the right magnitude and velocity dependence to explain the low dark matter density cores seen in small galaxies while being consistent with all constraints from observations of galaxy clusters. Excitations to the hyperfine state and subsequent decays, however, may cause significant cooling losses and affect the evolution of low-mass halos. We also find minimum halo masses in the range of 103.5-107 M⊙, which are significantly larger than the typical predictions for weakly interacting dark matter models. This pattern of observables in structure formation is unique to this model, making it possible to determine the viability of hidden-sector hydrogen as a dark matter candidate.

  4. Impact of long-range interactions on the disordered vortex lattice

    NASA Astrophysics Data System (ADS)

    Koopmann, J. A.; Geshkenbein, V. B.; Blatter, G.

    2003-07-01

    The interaction between the vortex lines in a type-II superconductor is mediated by currents. In the absence of transverse screening this interaction is long ranged, stiffening up the vortex lattice as expressed by the dispersive elastic moduli. The effect of disorder is strongly reduced, resulting in a mean-squared displacement correlator ≡<[u(R,L)-u(0,0)]2> characterized by a mere logarithmic growth with distance. Finite screening cuts the interaction on the scale of the London penetration depth λ and limits the above behavior to distances R<λ. Using a functional renormalization-group approach, we derive the flow equation for the disorder correlation function and calculate the disorder-averaged mean-squared relative displacement ∝ ln2σ(R/a0). The logarithmic growth (2σ=1) in the perturbative regime at small distances [A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979)] crosses over to a sub-logarithmic growth with 2σ=0.348 at large distances.

  5. Long-Range Interaction Forces between Polymer-Supported Lipid Bilayer Membranes

    PubMed Central

    Seitz, Markus; Park, Chad K.; Wong, Joyce Y.

    2009-01-01

    Much of the short-range forces and structures of softly supported DMPC bilayers has been described previously. However, one interesting feature of the measured force–distance profile that remained unexplained is the presence of a long-range exponentially decaying repulsive force that is not observed between rigidly supported bilayers on solid mica substrate surfaces. This observation is discussed in detail here based on recent static and dynamic surface force experiments. The repulsive forces in the intermediate distance regime (mica–mica separations from 15 to 40 nm) are shown to be due not to an electrostatic force between the bilayers but to compression (deswelling) of the underlying soft polyelectrolyte layer, which may be thought of as a model cytoskeleton. The experimental data can be fit by simple theoretical models of polymer interactions from which the elastic properties of the polymer layer can be deduced. PMID:21359166

  6. The thermostimulated luminescence of radiation defects in KCl, KBr and KI crystals at elastic and plastic deformation

    NASA Astrophysics Data System (ADS)

    Shunkeyev, K.; Myasnikova, L.; Barmina, A.; Zhanturina, N.; Sagimbaeva, Sh; Aimaganbetova, Z.; Sergeyev, D.

    2017-05-01

    The efficiency of radiation defects formation in alkali halide crystals (AHC) was studied by the method of absorption spectroscopy. However, it is not possible to study the deformation-stimulated processes in detail by the absorption spectrum of radiation defects due to the limited sensitivity compared with luminescent spectroscopy. In this regard, thermally stimulated luminescence (TSL) of radiation defects at elastic and plastic deformation was applied in AHC. In the absence of deformation, the dominant peaks in TSL are ≤ft( {X_3^ - } \\right)aca^0-centers. After elastic deformation, low temperature peaks of TSL corresponding to F‧-, VK- and VF-centers became dominant. After plastic deformation, the peaks of TSL corresponding to ≤ft( {X_3^ - } \\right)aca^0-centers became dominant. The elastic deformation contributes to the increase in concentration of low-temperature F‧-, VK- and VF-centers, and the plastic one contributes to that of high temperature ≤ft( {X_3^ - } \\right)aca^0-centers (peaks of TSL in KCl at 360K, in KBr at 365K, in KI at 340K), composed by divacancies created by plastic deformation. At elastic deformation, unrelaxed interstitial halogen atoms are converted into VK- and VF-centers, and due to this fact the long-range interaction is absent, the result of which are the X_3^ - -centers.

  7. New Frontier in Probing Fluid Transport in Low-Permeability Geomedia: Applications of Elastic and Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Sussman, A. J.

    2016-12-01

    Low-permeability geomedia are prevalent in subsurface environments. They have become increasingly important in a wide range of applications such as CO2-sequestration, hydrocarbon recovery, enhanced geothermal systems, legacy waste stewardship, high-level radioactive waste disposal, and global security. The flow and transport characteristics of low-permeability geomedia are dictated by their exceedingly low permeability values ranging from 10-6 to 10-12 darcy with porosities dominated by nanoscale pores. Developing new characterization methods and robust computational models that allow estimation of transport properties of low-permeability geomedia has been identified as a critical basic research and technology development need for controlling subsurface and fluids flow. Due to its sensibility to hydrogen and flexible sample environment, neutron based elastic and inelastic scattering can, through various techniques, interrogate all the nanoscale pores in the sample whether they are fluid accessible or not, and readily characterize interfacial waters. In this presentation, we will present two studies revealing the effects of nanoscale pore confinement on fluid dynamics in geomedia. In one study, we use combined (ultra-small)/small-angle elastic neutron scatterings to probe nanoporous features responses in geological materials to transport processes. In the other study, incoherent inelastic neutron scattering was used to distingwish between intergranular pore water and fluid inclusion moisture in bedded rock salt, and to explore their thermal stablibility. Our work demonstrates that neutron based elastic and inelastic scatterings are techniques of choice for in situ probing hydrocarbon and water behavior in nanoporous materials, providing new insights into water-rock interaction and fluids transport in low-permeability geomaterials.

  8. A loosely-coupled scheme for the interaction between a fluid, elastic structure and poroelastic material

    NASA Astrophysics Data System (ADS)

    Bukač, M.

    2016-05-01

    We model the interaction between an incompressible, viscous fluid, thin elastic structure and a poroelastic material. The poroelastic material is modeled using the Biot's equations of dynamic poroelasticity. The fluid, elastic structure and the poroelastic material are fully coupled, giving rise to a nonlinear, moving boundary problem with novel energy estimates. We present a modular, loosely coupled scheme where the original problem is split into the fluid sub-problem, elastic structure sub-problem and poroelasticity sub-problem. An energy estimate associated with the stability of the scheme is derived in the case where one of the coupling parameters, β, is equal to zero. We present numerical tests where we investigate the effects of the material properties of the poroelastic medium on the fluid flow. Our findings indicate that the flow patterns highly depend on the storativity of the poroelastic material and cannot be captured by considering fluid-structure interaction only.

  9. Shatter cones - An outstanding problem in shock mechanics. [geological impact fracture surface in cratering

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1977-01-01

    Shatter cone characteristics are surveyed. Shatter cones, a form of rock fracture in impact structures, apparently form as a shock front interacts with inhomogeneities or discontinuities in the rock. Topics discussed include morphology, conditions of formation, shock pressure of formation, and theories of formation. It is thought that shatter cones are produced within a limited range of shock pressures extending from about 20 to perhaps 250 kbar. Apical angles range from less than 70 deg to over 120 deg. Tentative hypotheses concerning the physical process of shock coning are considered. The range in shock pressures which produce shatter cones might correspond to the range in which shock waves decompose into elastic and deformational fronts.

  10. Interaction of Lamb Waves with Fatigue Cracks in Aluminum

    DTIC Science & Technology

    2011-09-01

    Interaction of Lamb Waves with Fatigue Cracks in Aluminum E. D. SWENSON, C. T. OWENS and C. ALLEN ABSTRACT Elastic waves can travel across...the interaction of Lamb waves with both open and closed low-cycle fatigue cracks in aluminum plates using a three-dimensional laser Doppler vibrometer...and antisymmetric Lamb wave modes differ upon encountering fatigue cracks. INTRODUCTION The use of guided elastic waves (Lamb waves) has shown

  11. Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: From ab initio calculations to grain-scale interactions

    NASA Astrophysics Data System (ADS)

    Holec, D.; Tasnádi, F.; Wagner, P.; Friák, M.; Neugebauer, J.; Mayrhofer, P. H.; Keckes, J.

    2014-11-01

    Despite the fast development of computational material modeling, the theoretical description of macroscopic elastic properties of textured polycrystalline aggregates starting from basic principles remains a challenging task. In this study we use a supercell-based approach to obtain the elastic properties of a random solid solution cubic Zr1 -xAlxN system as a function of the metallic sublattice composition and texture descriptors. The employed special quasirandom structures are optimized not only with respect to short-range-order parameters, but also to make the three cubic directions [1 0 0 ] , [0 1 0 ] , and [0 0 1 ] as similar as possible. In this way, only a small spread of elastic constant tensor components is achieved and an optimum trade-off between modeling of chemical disorder and computational limits regarding the supercell size and calculational time is proposed. The single-crystal elastic constants are shown to vary smoothly with composition, yielding x ≈0.5 an alloy constitution with an almost isotropic response. Consequently, polycrystals with this composition are suggested to have Young's modulus independent of the actual microstructure. This is indeed confirmed by explicit calculations of polycrystal elastic properties, both within the isotropic aggregate limit and with fiber textures with various orientations and sharpness. It turns out that for low AlN mole fractions, the spread of the possible Young's modulus data caused by the texture variation can be larger than 100 GPa. Consequently, our discussion of Young's modulus data of cubic Zr1 -xAlxN contains also the evaluation of the texture typical for thin films.

  12. Interaction of Droplets Separated by an Elastic Film.

    PubMed

    Liu, Tianshu; Xu, Xuejuan; Nadermann, Nichole; He, Zhenping; Jagota, Anand; Hui, Chung-Yuen

    2017-01-10

    The Laplace pressure of a droplet placed on one side of an elastic thin film can cause significant deformation in the form of a bulge on its opposite side. Here, we show that this deformation can be detected by other droplets suspended on the opposite side of the film, leading to interaction between droplets separated by the solid (but deformable) film. The interaction is repulsive when the drops have a large overlap and attractive when they have a small overlap. Thus, if two identical droplets are placed right on top of each other (one on either side of the thin film), they tend to repel each other, eventually reaching an equilibrium configuration where there is a small overlap. This observation can be explained by analyzing the energy landscape of the droplets interacting via an elastically deformed film. We further demonstrate this idea by designing a pattern comprising a big central drop with satellite droplets. This phenomenon can lead to techniques for directed motion of droplets confined to one side of a thin elastic membrane by manipulations on the other side.

  13. A simplified method in comparison with comprehensive interaction incremental dynamic analysis to assess seismic performance of jacket-type offshore platforms

    NASA Astrophysics Data System (ADS)

    Zolfaghari, M. R.; Ajamy, A.; Asgarian, B.

    2015-12-01

    The primary goal of seismic reassessment procedures in oil platform codes is to determine the reliability of a platform under extreme earthquake loading. Therefore, in this paper, a simplified method is proposed to assess seismic performance of existing jacket-type offshore platforms (JTOP) in regions ranging from near-elastic to global collapse. The simplified method curve exploits well agreement between static pushover (SPO) curve and the entire summarized interaction incremental dynamic analysis (CI-IDA) curve of the platform. Although the CI-IDA method offers better understanding and better modelling of the phenomenon, it is a time-consuming and challenging task. To overcome the challenges, the simplified procedure, a fast and accurate approach, is introduced based on SPO analysis. Then, an existing JTOP in the Persian Gulf is presented to illustrate the procedure, and finally a comparison is made between the simplified method and CI-IDA results. The simplified method is very informative and practical for current engineering purposes. It is able to predict seismic performance elasticity to global dynamic instability with reasonable accuracy and little computational effort.

  14. Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate

    PubMed Central

    Stan, Gheorghe; Adams, George G.

    2016-01-01

    In this work the frictionless, adhesive contact between a rigid spherical indenter and an elastic multi-layer coated half-space was investigated by means of an integral transform formulation. The indented multi-layer coats were considered as made of isotropic layers that are perfectly bonded to each other and to an isotropic substrate. The adhesive interaction between indenter and contacting surface was treated as Maugis-type adhesion to provide general applicability within the entire range of adhesive interactions. By using a transfer matrix method, the stress-strain equations of the system were reduced to two coupled integral equations for the stress distribution under the indenter and the ratio between the adhesion radius and the contact radius, respectively. These resulting integral equations were solved through a numerical collocation technique, with solutions for the load dependencies of the contact radius and indentation depth for various values of the adhesion parameter and layer composition. The method developed here can be used to calculate the force-distance response of adhesive contacts on various inhomogeneous half-spaces that can be modeled as multi-layer coated half-spaces. PMID:27574338

  15. Metamaterials: supra-classical dynamic homogenization

    NASA Astrophysics Data System (ADS)

    Caleap, Mihai; Drinkwater, Bruce W.

    2015-12-01

    Metamaterials are artificial composite structures designed for controlling waves or fields, and exhibit interaction phenomena that are unexpected on the basis of their chemical constituents. These phenomena are encoded in effective material parameters that can be electronic, magnetic, acoustic, or elastic, and must adequately represent the wave interaction behavior in the composite within desired frequency ranges. In some cases—for example, the low frequency regime—there exist various efficient ways by which effective material parameters for wave propagation in metamaterials may be found. However, the general problem of predicting frequency-dependent dynamic effective constants has remained unsolved. Here, we obtain novel mathematical expressions for the effective parameters of two-dimensional metamaterial systems valid at higher frequencies and wavelengths than previously possible. By way of an example, random configurations of cylindrical scatterers are considered, in various physical contexts: sound waves in a compressible fluid, anti-plane elastic waves, and electromagnetic waves. Our results point towards a paradigm shift in our understanding of these effective properties, and metamaterial designs with functionalities beyond the low-frequency regime are now open for innovation. Dedicated with gratitude to the memory of Prof Yves C Angel.

  16. Differences in price elasticities of demand for health insurance: a systematic review.

    PubMed

    Pendzialek, Jonas B; Simic, Dusan; Stock, Stephanie

    2016-01-01

    Many health insurance systems apply managed competition principles to control costs and quality of health care. Besides other factors, managed competition relies on a sufficient price-elastic demand. This paper presents a systematic review of empirical studies on price elasticity of demand for health insurance. The objective was to identify the differing international ranges of price elasticity and to find socio-economic as well as setting-oriented factors that influence price elasticity. Relevant literature for the topic was identified through a two-step identification process including a systematic search in appropriate databases and further searches within the references of the results. A total of 45 studies from countries such as the USA, Germany, the Netherlands, and Switzerland were found. Clear differences in price elasticity by countries were identified. While empirical studies showed a range between -0.2 and -1.0 for optional primary health insurance in the US, higher price elasticities between -0.6 and -4.2 for Germany and around -2 for Switzerland were calculated for mandatory primary health insurance. Dutch studies found price elasticities below -0.5. In consideration of all relevant studies, age and poorer health status were identified to decrease price elasticity. Other socio-economic factors had an unclear impact or too limited evidence. Premium level, range of premiums, homogeneity of benefits/coverage and degree of forced decision were found to have a major influence on price elasticity in their settings. Further influence was found from supplementary insurance and premium-dependent employer contribution.

  17. An Unusual Hydrophobic Core Confers Extreme Flexibility to HEAT Repeat Proteins

    PubMed Central

    Kappel, Christian; Zachariae, Ulrich; Dölker, Nicole; Grubmüller, Helmut

    2010-01-01

    Alpha-solenoid proteins are suggested to constitute highly flexible macromolecules, whose structural variability and large surface area is instrumental in many important protein-protein binding processes. By equilibrium and nonequilibrium molecular dynamics simulations, we show that importin-β, an archetypical α-solenoid, displays unprecedentedly large and fully reversible elasticity. Our stretching molecular dynamics simulations reveal full elasticity over up to twofold end-to-end extensions compared to its bound state. Despite the absence of any long-range intramolecular contacts, the protein can return to its equilibrium structure to within 3 Å backbone RMSD after the release of mechanical stress. We find that this extreme degree of flexibility is based on an unusually flexible hydrophobic core that differs substantially from that of structurally similar but more rigid globular proteins. In that respect, the core of importin-β resembles molten globules. The elastic behavior is dominated by nonpolar interactions between HEAT repeats, combined with conformational entropic effects. Our results suggest that α-solenoid structures such as importin-β may bridge the molecular gap between completely structured and intrinsically disordered proteins. PMID:20816072

  18. Cluster structure and Coulomb shift in two-center mirror systems

    NASA Astrophysics Data System (ADS)

    Nakao, M.; Umehara, H.; Sonoda, S.; Ebata, S.; Ito, M.

    2017-11-01

    The α + 14C elastic scattering and the nuclear structure of its compound systems, 18O = α + 14C, are analyzed on the basis of the semi-microscopic model. The α + 14C interaction potential is constructed from the double folding (DF) model with the effective nucleon-nucleon interaction of the density-dependent Michigan 3-range Yukawa. The DF potential is applied to the α+14C elastic scattering in the energy range of Eα/Aα = 5.5 8.8 MeV, and the observed differential cross sections are reasonably reproduced. The energy spectra of 18O are calculated by employing the orthogonality condition model (OCM) plus the absorbing boundary condition (ABC). The OCM + ABC calculation predicts the formation of the 0+ resonance around E = 3MeV with respect to the α threshold, which seems to correspond to the resonance identified in the recent experiment. We also apply the OCM + ABC calculation to the mirror system, such as 18Ne = α+14O, and the Coulomb shift of 18O - 18Ne is evaluated. We have found that the Coulomb shift is clearly reduced in the excited 0+ state due to the development of the α cluster structure. This result strongly supports that the Coulomb shift is a candidate of new probe to identify the clustering phenomena.

  19. Revisiting Marshall's Third Law: Why Does Labor's Share Interact with the Elasticity of Substitution to Decrease the Elasticity of Labor Demand?

    ERIC Educational Resources Information Center

    Hoffman, Saul D.

    2009-01-01

    The third Marshall-Hicks-Allen rule of elasticity of derived demand purports to show that labor demand is less elastic when labor is a smaller share of total costs. As Hicks, Allen, and then Bronfenbrenner showed, this rule is not quite correct, and actually is complicated by an unexpected negative relationship involving labor's share of total…

  20. Shear Strength of Square Graphene Nanoribbons beyond Wrinkling

    NASA Astrophysics Data System (ADS)

    Ragab, Tarek; Basaran, Cemal

    2018-04-01

    Atomistic modeling of armchair and zigzag graphene nanoribbons (GNRs) has been performed to investigate the post-wrinkling behavior under in-plane (x-y) shear deformation. Simulations were performed at 300 K for square GNRs with size ranging from 2.5 nm to 20 nm. Shear stresses led only to diagonal tension, and wrinkling was not accompanied by any diagonal compressive force. Once the diagonal tension reached its ultimate elastic level, three major stress-relaxing phenomena were observed. The type of stress-relaxing phenomenon involved greatly affected the mechanical behavior in terms of the slope of the stress-strain diagram beyond the elastic range. The results showed that the average slope of the stress-strain relation beyond the ultimate elastic stress decreased with the increase of the GNR size. Moreover, the slope of the shear stress-strain curve beyond the ultimate elastic stress was always greater for armchair than for zigzag GNRs. GNRs can sustain very high plastic shear strains beyond 100% before failure. The ultimate elastic stress can range from 20 GPa to 50 GPa, occurring at shear strain ranging from 52% to 19%. The ultimate elastic stress and strain were inversely proportional to the size of the GNR with a power factor ranging from 0.261 for armchair GNRs to 0.354 for zigzag GNRs due to the decrease in the effective width for diagonal tension.

  1. Shear Strength of Square Graphene Nanoribbons beyond Wrinkling

    NASA Astrophysics Data System (ADS)

    Ragab, Tarek; Basaran, Cemal

    2018-07-01

    Atomistic modeling of armchair and zigzag graphene nanoribbons (GNRs) has been performed to investigate the post-wrinkling behavior under in-plane ( x- y) shear deformation. Simulations were performed at 300 K for square GNRs with size ranging from 2.5 nm to 20 nm. Shear stresses led only to diagonal tension, and wrinkling was not accompanied by any diagonal compressive force. Once the diagonal tension reached its ultimate elastic level, three major stress-relaxing phenomena were observed. The type of stress-relaxing phenomenon involved greatly affected the mechanical behavior in terms of the slope of the stress-strain diagram beyond the elastic range. The results showed that the average slope of the stress-strain relation beyond the ultimate elastic stress decreased with the increase of the GNR size. Moreover, the slope of the shear stress-strain curve beyond the ultimate elastic stress was always greater for armchair than for zigzag GNRs. GNRs can sustain very high plastic shear strains beyond 100% before failure. The ultimate elastic stress can range from 20 GPa to 50 GPa, occurring at shear strain ranging from 52% to 19%. The ultimate elastic stress and strain were inversely proportional to the size of the GNR with a power factor ranging from 0.261 for armchair GNRs to 0.354 for zigzag GNRs due to the decrease in the effective width for diagonal tension.

  2. σ-Hole and π-Hole Synthon Mimicry in Third-Generation Crystal Engineering: Design of Elastic Crystals.

    PubMed

    Saha, Subhankar; Desiraju, Gautam R

    2017-04-06

    Designing elastic crystals is a difficult task and is of relevance in potential applications from materials to biology. Here, multi-step crystal engineering based on σ-hole and π-hole synthon mimicry is performed to obtain binary organic molecular crystals with a high degree of flexibility. A structural model is proposed based only on σ-hole-oriented type-II halogen bonds with their characteristic orthogonal geometry. These σ-hole contacts are then partly replaced by chemically and geometrically similar π-hole synthons to obtain new crystals in the second step. In the final step, all the σ-hole interactions are replaced with π-hole interactions and elastic crystals of non-halogenated compounds are obtained. All the crystals obtained according to our protocols are found to be elastic. When crystals that do not conform to the desired structure type appeared, they were found to be brittle. This underlines the role of orthogonal-type interactions, whether they are of the σ-hole or π-hole type, in achieving elasticity. This is the first report in which π-hole interactions are used for property engineering. This example may illustrate a new generation of crystal engineering in which a particular property is associated more with topological rather than chemical attributes, although the significance of the latter cannot be completely excluded. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Study of p-4He total reaction cross-section using Glauber and Coulomb-modified Glauber models

    NASA Astrophysics Data System (ADS)

    Tag El-Din, Ibrahim M. A.; Taha, M. M.; Hassan, Samia S. A.

    2014-02-01

    The total nuclear reaction cross-section σR for p-4He in the energy range from 25 MeV to 1000 MeV is calculated within Glauber and Coulomb-modified Glauber models. The Coulomb-modified Glauber model (CMGM) is introduced via modification of the Coulomb trajectory of the projectile from a straight line, and calculation of the effective radius of interaction. The effects of in-medium nucleon-nucleon (NN) total cross-section, phase variation, high order momentum transfer component of nucleon-nucleon elastic scattering amplitude and Pauli blocking are studied. It is pointed out that the phase variation of the nucleon-nucleon amplitude plays a significant role in describing σR with γ = -1.6 fm2 at in-medium nuclear density ϱ = 0 and γ = -2 fm2 at ϱ = 0.17 fm-3 in the whole energy range. A remarkable fit to the available experimental data is obtained by invoking Pauli blocking and high order momentum transfer of nucleon-nucleon (NN) elastic scattering amplitude for Ep < 100 MeV.

  4. Snoek Relaxation in Fe-Cr Alloys and Interstitial-Substitutional Interaction

    NASA Astrophysics Data System (ADS)

    Golovin, I. S.; Blanter, M. S.; Schaller, R.

    1997-03-01

    The internal friction (IF) spectra of -Fe, Fe-Cr ferritic alloys and Cr have been investigated in a frequency range of 0.01 to 10 Hz. A Snoek-type relaxation was found in all the investigated C doped Fe-Cr alloys, starting from pure Fe and finishing with pure Cr. The temperature location of the Snoek peak (Tmax) in -Fe was found to be 315 K (1 Hz). The activation energy deduced from the T - f shift was 0.81 eV. Tmax in Cr was 433 K with an activation energy of 1.11 eV. The Snoek-type peaks in Fe-Cr alloys are much wider than in pure Fe or pure Cr. The temperature location of the peak versus chromium content curve exhibits a maximum in the vicinity of 35 wt% Cr (Tmax was 573 to 578 K, f 1.2 Hz and the activation energy was about 1.45 eV). It is important that Cr atoms in α-Fe have a more pronounced influence on the temperature location of the peak than Fe atoms have in chromium. A new model based on the atomic interactions is proposed to explain the influence of composition on Snoek peak location. The internal friction has been simulated by a Monte Carlo method, using C-C and C-substitutional atom (s) interaction energies. A model of long-range strain-induced (elastic) interaction supplemented by the chemical interaction in the two nearest coordination shells around an immobile substitutional atom was used for the C-s interaction. The interatomic interaction was supposed to affect IF by changing both the carbon atom arrangement (short-range order) and the energy of C atoms in octahedral interstices, and therefore the activation energy of IF. The peak temperatue calculated coincides well with the experimental ones if the value for the chemical interaction in the first coordination shell (Hchem) for C-Cr in Fe is - 0.15 eV and for C-Fe in Cr +0.15 eV. The difference in the influence of Cr in α-Fe and Fe in Cr is accounted for by a difference in the elastic and chemical interaction both between the carbon atoms and the substitutional atoms. The relaxation process in chromium Fe-based alloys is due to the carbon atom diffusion under stress between octahedral interstices of first and second coordination shells around the Cr atoms, and in Cr-based alloys, between second and third shells around the Fe atoms.

  5. On the contact interaction of two identical stringers with an elastic semi-infinite continuous or vertically cracked plate

    NASA Astrophysics Data System (ADS)

    Grigoryan, M. S.

    2018-04-01

    This paper considers two connected contact problems on the interaction of stringers with an elastic semi-infinite plate. In the first problem, an elastic half-infinite continuous plate is reinforced on its boundary by two identical stringers exposed to a tensile external force. In the second problem, in the presence of the same stringers, the plate contains a collinear system of cracks on its vertical axis. The solution of both problems is reduced to the solution of singular integral equations (SIE) that are solved by a known numerical-analytical method.

  6. Elastic Cheerios effect: Self-assembly of cylinders on a soft solid

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Aditi; Ryan, Louis; Chaudhury, Manoj K.; Mahadevan, L.

    2015-12-01

    A rigid cylinder placed on a soft gel deforms its surface. When multiple cylinders are placed on the surface, they interact with each other via the topography of the deformed gel which serves as an energy landscape; as they move, the landscape changes which in turn changes their interaction. We use a combination of experiments, simple scaling estimates and numerical simulations to study the self-assembly of cylinders in this elastic analog of the "Cheerios Effect", which describes capillary interactions on a fluid interface. Our results show that the effective two-body interaction can be well described by an exponential attraction potential as a result of which the dynamics also show an exponential behavior with respect to the separation distance. When many cylinders are placed on the gel, the cylinders cluster together if they are not too far apart; otherwise their motion gets elastically arrested.

  7. Reflection of shear elastic waves from the interface of a ferromagnetic half–space

    NASA Astrophysics Data System (ADS)

    Atoyan, L. H.; Terzyan, S. H.

    2018-04-01

    In this paper, the problems of reflection and refraction of a pure elastic wave incident from a nonmagnetic medium on the surface of contact between two semi-infinite media of an infinite nonmagnetic/magnetic structure are considered. The resonance character of the interaction between elastic and magnetic waves is shown, and the dependence of the magnetoelastic wave amplitudes on the the incident elastic wave amplitude is also established.

  8. Discontinuous Galerkin method for coupled problems of compressible flow and elastic structures

    NASA Astrophysics Data System (ADS)

    Kosík, A.; Feistauer, M.; Hadrava, M.; Horáček, J.

    2013-10-01

    This paper is concerned with the numerical simulation of the interaction of 2D compressible viscous flow and an elastic structure. We consider the model of dynamical linear elasticity. Each individual problem is discretized in space by the discontinuous Galerkin method (DGM). For the time discretization we can use either the BDF (backward difference formula) method or also the DGM. The time dependence of the domain occupied by the fluid is given by the deformation of the elastic structure adjacent to the flow domain. It is treated with the aid of the Arbitrary Lagrangian-Eulerian (ALE) method. The fluid-structure interaction, given by transient conditions, is realized by an iterative process. The developed method is applied to the simulation of the biomechanical problem containing the onset of the voice production.

  9. Numerical study of two disks settling in an Oldroyd-B fluid: From periodic interaction to chaining

    NASA Astrophysics Data System (ADS)

    Pan, Tsorng-Whay; Glowinski, Roland

    2017-12-01

    In this article, we present a numerical study of the dynamics of two disks sedimenting in a narrow vertical channel filled with an Oldroyd-B fluid. Two kinds of particle dynamics are observed: (i) a periodic interaction between the two disks, and (ii) the formation of a two-disk chain. For the periodic interaction of the two disks, two different motions are observed: (a) the two disks stay far apart and interact periodically, and (b) the two disks interact closely and then far apart in a periodic way, like the drafting, kissing, and tumbling of two disks sedimenting in a Newtonian fluid, due to a weak elastic force. Concerning the formation of a two-disk chain occurring at higher values of the elasticity number, either a tilted chain or a vertical chain is observed. Our simulations show that, as expected, the values of the elasticity and Mach numbers are the determining factors concerning the particle chain formation and its orientation.

  10. Numerical study of two disks settling in an Oldroyd-B fluid: From periodic interaction to chaining.

    PubMed

    Pan, Tsorng-Whay; Glowinski, Roland

    2017-12-01

    In this article, we present a numerical study of the dynamics of two disks sedimenting in a narrow vertical channel filled with an Oldroyd-B fluid. Two kinds of particle dynamics are observed: (i) a periodic interaction between the two disks, and (ii) the formation of a two-disk chain. For the periodic interaction of the two disks, two different motions are observed: (a) the two disks stay far apart and interact periodically, and (b) the two disks interact closely and then far apart in a periodic way, like the drafting, kissing, and tumbling of two disks sedimenting in a Newtonian fluid, due to a weak elastic force. Concerning the formation of a two-disk chain occurring at higher values of the elasticity number, either a tilted chain or a vertical chain is observed. Our simulations show that, as expected, the values of the elasticity and Mach numbers are the determining factors concerning the particle chain formation and its orientation.

  11. Measuring the nonlinear elastic properties of tissue-like phantoms.

    PubMed

    Erkamp, Ramon Q; Skovoroda, Andrei R; Emelianov, Stanislav Y; O'Donnell, Matthew

    2004-04-01

    A direct mechanical system simultaneously measuring external force and deformation of samples over a wide dynamic range is used to obtain force-displacement curves of tissue-like phantoms under plain strain deformation. These measurements, covering a wide deformation range, then are used to characterize the nonlinear elastic properties of the phantom materials. The model assumes incompressible media, in which several strain energy potentials are considered. Finite-element analysis is used to evaluate the performance of this material characterization procedure. The procedures developed allow calibration of nonlinear elastic phantoms for elasticity imaging experiments and finite-element simulations.

  12. Dynamic modulus estimation and structural vibration analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, A.

    1998-11-18

    Often the dynamic elastic modulus of a material with frequency dependent properties is difficult to estimate. These uncertainties are compounded in any structural vibration analysis using the material properties. Here, different experimental techniques are used to estimate the properties of a particular elastomeric material over a broad frequency range. Once the properties are determined, various structures incorporating the elastomer are analyzed by an interactive finite element method to determine natural frequencies and mode shapes. Then, the finite element results are correlated with results obtained by experimental modal analysis.

  13. Polymorphism and Elastic Response of Molecular Materials from First Principles: How Hard Can it Be?

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony; Tkatchenko, Alexandre

    2014-03-01

    Molecular materials are of great fundamental and applied importance in science and industry, with numerous applications in pharmaceuticals, electronics, sensing, and catalysis. A key challenge for theory has been the prediction of their stability, polymorphism and response to perturbations. While pairwise models of van der Waals (vdW) interactions have improved the ability of density functional theory (DFT) to model these systems, substantial quantitative and even qualitative failures remain. In this contribution we show how a many-body description of vdW interactions can dramatically improve the accuracy of DFT for molecular materials, yielding quantitative description of stabilities and polymorphism for these challenging systems. Moreover, the role of many-body vdW interactions goes beyond stabilities to response properties. In particular, we have studied the elastic properties of a series of molecular crystals, finding that many-body vdW interactions can account for up to 30% of the elastic response, leading to quantitative and qualitative changes in elastic behavior. We will illustrate these crucial effects with the challenging case of the polymorphs of aspirin, leading to a better understanding of the conflicting experimental and theoretical studies of this system.

  14. Multi-soliton interaction of a generalized Schrödinger-Boussinesq system in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Xue-Hui; Tian, Bo; Chai, Jun; Wu, Xiao-Yu; Guo, Yong-Jiang

    2017-04-01

    Under investigation in this paper is a generalized Schrödinger-Boussinesq system, which describes the stationary propagation of coupled upper-hybrid waves and magnetoacoustic waves in a magnetized plasma. Bilinear forms, one-, two- and three-soliton solutions are derived by virtue of the Hirota method and symbolic computation. Propagation and interaction for the solitons are illustrated graphically: Coefficients β1^{} and β2^{} can affect the velocities and propagation directions of the solitary waves. Amplitude, velocity and shape of the one solitary wave keep invariant during the propagation, implying that the transport of the energy is stable in the upper-hybrid and magnetoacoustic waves, and amplitude of the upper-hybrid wave is bigger than that of the magnetoacoustic wave. For the upper-hybrid and magnetoacoustic waves, head-on, overtaking and bound-state interaction between the two solitary waves are asymptotically depicted, respectively, indicating that the interaction between the two solitary waves is elastic. Elastic interaction between the bound-state soliton and a single one soliton is also displayed, and interaction among the three solitary waves is all elastic.

  15. Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy

    NASA Astrophysics Data System (ADS)

    Pascuet, M. I.; Fernández, J. R.

    2015-12-01

    Interaction for both pure Al and Al-U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al-U interaction fits various properties of the Al2U, Al3U and Al4U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al3U intermetallic in the Al/U interface in agreement with experimental evidence.

  16. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton

    PubMed Central

    Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu

    2018-01-01

    To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human–robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human–robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility. PMID:29562684

  17. Spheres settling in an Oldroyd-B fluid

    NASA Astrophysics Data System (ADS)

    Pan, Tsorng-Whay; Glowinski, Roland

    2017-11-01

    In this talk we present a numerical study of the dynamics of balls settling in a vertical channel with a square cross-section filled with an Oldroyd-B fluid. For the case of two balls, two typical kinds of particle dynamics are obtained: (i) periodic interaction between two balls and (ii) the formation of a vertical chain of two balls. For the periodic interaction of two balls occurred at lower values of the elasticity number, two balls draft, kiss and break away periodically and the chain is not formed due to not strong enough elastic force. For slightly higher values of the elasticity number, two balls draft, kiss and break away a couple times first and then form a chain. Such chain finally becomes a vertical one after the oscillation damps out. For higher values of the elasticity number, two balls draft, kiss and form a vertical chain right away. The formation of three ball chain can be obtained at higher values of the elasticity number. This work was supported by NSF (Grant DMS-1418308).

  18. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton.

    PubMed

    Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu

    2018-03-19

    To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human-robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human-robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility.

  19. Ciliary contact interactions dominate surface scattering of swimming eukaryotes

    PubMed Central

    Kantsler, Vasily; Dunkel, Jörn; Polin, Marco; Goldstein, Raymond E.

    2013-01-01

    Interactions between swimming cells and surfaces are essential to many microbiological processes, from bacterial biofilm formation to human fertilization. However, despite their fundamental importance, relatively little is known about the physical mechanisms that govern the scattering of flagellated or ciliated cells from solid surfaces. A more detailed understanding of these interactions promises not only new biological insights into structure and dynamics of flagella and cilia but may also lead to new microfluidic techniques for controlling cell motility and microbial locomotion, with potential applications ranging from diagnostic tools to therapeutic protein synthesis and photosynthetic biofuel production. Due to fundamental differences in physiology and swimming strategies, it is an open question of whether microfluidic transport and rectification schemes that have recently been demonstrated for pusher-type microswimmers such as bacteria and sperm cells, can be transferred to puller-type algae and other motile eukaryotes, because it is not known whether long-range hydrodynamic or short-range mechanical forces dominate the surface interactions of these microorganisms. Here, using high-speed microscopic imaging, we present direct experimental evidence that the surface scattering of both mammalian sperm cells and unicellular green algae is primarily governed by direct ciliary contact interactions. Building on this insight, we predict and experimentally verify the existence of optimal microfluidic ratchets that maximize rectification of initially uniform Chlamydomonas reinhardtii suspensions. Because mechano-elastic properties of cilia are conserved across eukaryotic species, we expect that our results apply to a wide range of swimming microorganisms. PMID:23297240

  20. Elastic parabolic equation and normal mode solutions for seismo-acoustic propagation in underwater environments with ice covers.

    PubMed

    Collis, Jon M; Frank, Scott D; Metzler, Adam M; Preston, Kimberly S

    2016-05-01

    Sound propagation predictions for ice-covered ocean acoustic environments do not match observational data: received levels in nature are less than expected, suggesting that the effects of the ice are substantial. Effects due to elasticity in overlying ice can be significant enough that low-shear approximations, such as effective complex density treatments, may not be appropriate. Building on recent elastic seafloor modeling developments, a range-dependent parabolic equation solution that treats the ice as an elastic medium is presented. The solution is benchmarked against a derived elastic normal mode solution for range-independent underwater acoustic propagation. Results from both solutions accurately predict plate flexural modes that propagate in the ice layer, as well as Scholte interface waves that propagate at the boundary between the water and the seafloor. The parabolic equation solution is used to model a scenario with range-dependent ice thickness and a water sound speed profile similar to those observed during the 2009 Ice Exercise (ICEX) in the Beaufort Sea.

  1. Controlling coupled bending-twisting vibrations of anisotropic composite wing

    NASA Astrophysics Data System (ADS)

    Ryabov, Victor; Yartsev, Boris

    2018-05-01

    The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance because it enables approximate analysis of real composite wings with complex geometry in the existing commercial software packages.

  2. Linking scales in sea ice mechanics

    PubMed Central

    Weiss, Jérôme; Dansereau, Véronique

    2017-01-01

    Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell–elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025300

  3. Linking scales in sea ice mechanics

    NASA Astrophysics Data System (ADS)

    Weiss, Jérôme; Dansereau, Véronique

    2017-02-01

    Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell-elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws. This article is part of the themed issue 'Microdynamics of ice'.

  4. Elastic properties of Sr- and Mg-doped lanthanum gallate at elevated temperature

    NASA Astrophysics Data System (ADS)

    Okamura, T.; Shimizu, S.; Mogi, M.; Tanimura, M.; Furuya, K.; Munakata, F.

    The elastic moduli, i.e., Young's modulus, shear modulus and Poisson's ratio, of a sintered La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ bulk have been experimentally determined in the temperature range from room temperature to 1373 K using a resonance technique. Anomalous elastic properties were observed over a wide temperature range from 473 to 1173 K. In the results for internal friction and in X-ray diffraction measurements at elevated temperature, two varieties of structural changes were seen in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ in the examined temperature range. The results agreed with the findings of a previous crystallographic study of the same composition system by Slater et al. In addition, the temperature range in which a successive structural change occurred in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ was the same as that exhibiting the anomalous elastic properties. Taking all the results together, it can be inferred that the successive structural change in the significant temperature range is responsible for the elastic property anomaly of La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ.

  5. A model for adatom structures

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    1981-06-01

    A model concerning adatom structures is proposed. Attractive nearest neighbour interactions, which may be of electronic nature lead to 2-dimensional condensation. Every pair bond causes and elastic dipole. The elastic dipoles interact via substrate strains with an anisotropic s -3 power law. Different types of adatoms or sites are permitted and many-body effects result, from the assumptions. Electric dipole interactions of adatoms are included for comparison. The model is applied to the W(110) surface and compared with superstructures experimentally found in the W(110)-0 system. It is found that there is still lack for an additional next-nearest neighbour interaction.

  6. Interface stresses in fiber-reinforced materials with regular fiber arrangements

    NASA Astrophysics Data System (ADS)

    Mueller, W. H.; Schmauder, S.

    The theory of linear elasticity is used here to analyze the stresses inside and at the surface of fiber-reinforced composites. Plane strain, plane stress, and generalized plane strain are analyzed using the shell model and the BHE model and are numerically studied using finite element analysis. Interface stresses are shown to depend weakly on Poisson's ratio. For equal values of the ratio, generalized plane strain and plane strain results are identical. For small volume fractions up to 40 vol pct of fibers, the shell and the BHE models predict the interface stresses very well over a wide range of elastic mismatches and for different fiber arrangements. At higher volume fractions the stresses are influenced by interactions with neighboring fibers. Introducing an external pressure into the shell model allows the prediction of interface stresses in real composite with isolated or regularly arranged fibers.

  7. Cross-section measurement for quasi-elastic production of charmed baryons in νN interactions

    NASA Astrophysics Data System (ADS)

    Kayis-Topaksu, A.; Onengüt, G.; van Dantzig, R.; de Jong, M.; Melzer, O.; Oldeman, R. G. C.; Pesen, E.; Spada, F. R.; Visschers, J. L.; Güler, M.; Köse, U.; Serin-Zeyrek, M.; Sever, R.; Tolun, P.; Zeyrek, M. T.; Catanesi, M. G.; de Serio, M.; Ieva, M.; Muciaccia, M. T.; Radicioni, E.; Simone, S.; Bülte, A.; Winter, K.; van de Vyver, B.; Vilain, P.; Wilquet, G.; Pittoni, G. L.; Saitta, B.; di Capua, E.; Ogawa, S.; Shibuya, H.; Artamonov, A.; Chizhov, M.; Doucet, M.; Hristova, I. R.; Kawamura, T.; Kolev, D.; Meinhard, H.; Panman, J.; Papadopoulos, I. M.; Ricciardi, S.; Rozanov, A.; Tsenov, R.; Uiterwijk, J. W. E.; Zucchelli, P.; Goldberg, J.; Chikawa, M.; Arik, E.; Song, J. S.; Yoon, C. S.; Kodama, K.; Ushida, N.; Aoki, S.; Hara, T.; Delbar, T.; Favart, D.; Grégoire, G.; Kalinin, S.; Maklioueva, I.; Gorbunov, P.; Khovansky, V.; Shamanov, V.; Tsukerman, I.; Bruski, N.; Frekers, D.; Hoshino, K.; Kawada, J.; Komatsu, M.; Miyanishi, M.; Nakamura, M.; Nakano, T.; Narita, K.; Niu, K.; Niwa, K.; Nonaka, N.; Sato, O.; Toshito, T.; Buontempo, S.; Cocco, A. G.; D'Ambrosio, N.; de Lellis, G.; De Rosa, G.; di Capua, F.; Ereditato, A.; Fiorillo, G.; Marotta, A.; Messina, M.; Migliozzi, P.; Pistillo, C.; Scotto Lavina, L.; Strolin, P.; Tioukov, V.; Nakamura, K.; Okusawa, T.; Dore, U.; Loverre, P. F.; Ludovici, L.; Righini, P.; Rosa, G.; Santacesaria, R.; Satta, A.; Barbuto, E.; Bozza, C.; Grella, G.; Romano, G.; Sirignano, C.; Sorrentino, S.; Sato, Y.; Tezuka, I.; CHORUS Collaboration

    2003-11-01

    A study of quasi-elastic production of charmed baryons in charged-current interactions of neutrinos with the nuclear emulsion target of CHORUS is presented. In a sample of about 46 000 interactions located in the emulsion, candidates for decays of short-lived particles were identified by using new automatic scanning systems and later confirmed through visual inspection. Criteria based both on the topological and kinematical characteristics of quasi-elastic charm production allowed a clear separation between events of this type and those in which charm is produced in deep inelastic processes. A final sample containing 13 candidates consistent with quasi-elastic production of a charmed baryon with an estimated background of 1.7 events was obtained. At the average neutrino energy of 27 GeV the cross-section for the total quasi-elastic production of charmed baryons relative to the νN charged-current cross-section was measured to be σ(QE)/σ(CC)=(0.23+0.12-0.06(stat)+0.02-0.03(syst))×10-2. Through an analysis of the topology at the production and decay vertices the relative cross-sections were measured separately for singly (Λc+,Σc+,Σc+∗) and doubly (Σc++,Σc++∗) charged baryons.

  8. Lattice Mechanical Properties of Noble and Transition Metals

    NASA Astrophysics Data System (ADS)

    Baria, J. K.

    2004-04-01

    A model pseudopotential depending on an effective core radius but otherwise parameter free is used to study the interatomic interactions, phonon dispersion curves (in q and r-space analysis), phonon density of states, mode Grüneisen parameters, dynamical elastic constants ( C 11, C 12 and C 44), bulk modulus ( B), shear modulus ( C'), deviation from Cauchy relation ( C 12 C 44), Poisson’s ratio ( σ), Young’s modulus ( Y), behavior of phonon frequencies in the elastic limit independent of the direction ( Y 1), limiting value in the [110] direction ( Y 2), degree of elastic anisotropy ( A), maximum frequency ω max, mean frequency < ω>, < ω 2>1/2=(< ω>/< ω -1>)1/2, fundamental frequency < ω 2>, and propagation velocities of the elastic constants in Cu, Ag, Au, Ni, Pd, and Pt. The contribution of s-like electrons is calculated in the second-order perturbation theory for the model potential while that of d-like electrons is taken into account by introducing repulsive short-range Born-Mayer like term. Very recently proposed screening function due to Sarkar et al. has been used to obtain the screened form factor. The theoretical results are compared with experimental findings wherever possible. A good agreement between theoretical investigations and experimental findings has proved the ability of our model potential for predicting a large number of physical properties of transition metals.

  9. Decoherence as a way to measure extremely soft collisions with dark matter

    NASA Astrophysics Data System (ADS)

    Riedel, C. Jess; Yavin, Itay

    2017-07-01

    A new frontier in the search for dark matter (DM) is based on the idea of detecting the decoherence caused by DM scattering against a mesoscopic superposition of normal matter. Such superpositions are uniquely sensitive to very small momentum transfers from new particles and forces, especially DM with a mass below 100 MeV. Here we investigate what sorts of dark sectors are inaccessible with existing methods but would induce noticeable decoherence in the next generation of matter interferometers. We show that very soft but medium range (0.1 nm - 1 μ m ) elastic interactions between nuclei and DM are particularly suitable. We construct toy models for such interactions, discuss existing constraints, and delineate the expected sensitivity of forthcoming experiments. The first hints of DM in these devices would appear as small variations in the anomalous decoherence rate with a period of one sidereal day. This is a generic signature of interstellar sources of decoherence, clearly distinguishing it from terrestrial backgrounds. The OTIMA experiment under development in Vienna will begin to probe Earth-thermalizing DM once sidereal variations in the background decoherence rate are pushed below one part in a hundred for superposed 5-nm gold nanoparticles. The proposals by Bateman et al. and Geraci et al. could be similarly sensitive although they would require at least a month of data taking. DM that is absorbed or elastically reflected by the Earth, and so avoids a greenhouse density enhancement, would not be detectable by those three experiments. On the other hand, the aggressive proposals of the MAQRO collaboration and Pino et al. would immediately open up many orders of magnitude in DM mass, interaction range, and coupling strength, regardless of how DM behaves in bulk matter.

  10. Temperature and pressure effects on elastic properties of relaxor ferroelectrics and thermoelectrics: A resonant ultrasound spectroscopy study

    NASA Astrophysics Data System (ADS)

    Tennakoon, Sumudu P.

    Relaxor ferroelectric lead magnesium niobate-lead titanate (PMN-PT) material exhibits exceptional electromechanical properties. The material undergoes a series of structural phase transitions with changes in temperature and the chemical composition. The work covered in this dissertation seek to gain insight into the phase diagram of PMN-PT using temperature and pressure dependence of the elastic properties. Single crystal PMN-PT with a composition near morphotropic phase boundary (MPB) was investigated using a resonant ultrasound spectroscopy (RUS) methodologies in the temperature range of 293 K - 800 K and the pressure range from near vacuum to 3.4 MPa. At atmospheric pressure, significantly high acoustic attenuation of PMN-PT is observed at temperatures below 400 K. A strong stiffening is observed in the temperature range of 400 K - 673 K, followed by a gradual softening at higher temperatures. With varying pressure, an increased pressure sensitivity of the elastic properties of PMN-PT is observed at the temperatures in the stiffening phase. Elastic behavior at elevated temperatures and pressures were studied for correlations with the ferroelectric domains at temperatures below the Curie temperature (TC), the locally polarized nano-regions, and an existence of pseudo-cubic crystalline at higher temperatures between (TC and TB). Thermoelectric lanthanum tellurides and skutterudites are being investigated by NASA's Jet Propulsion Laboratory for advanced thermoelectric generates (TEGs). Effects of nickel (Ni) doping on elastic properties of lanthanum tellurides at elevated temperatures were investigated in the temperature range of 293 K - 800 K. A linear stiffening was observed with increasing the Ni content in the material. Elastic properties of p-type and n-type bismuth-based skutterudites were investigated in the temperature range of 293 K - 723 K. Elastic properties of rare-earth doped strontium titanate were also investigated in the temperature range of 293 K - 750 K.

  11. FY16 Status Report on Development of Integrated EPP and SMT Design Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jetter, R. I.; Sham, T. -L.; Wang, Y.

    2016-08-01

    The goal of the Elastic-Perfectly Plastic (EPP) combined integrated creep-fatigue damage evaluation approach is to incorporate a Simplified Model Test (SMT) data based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The EPP methodology is based on the idea that creep damage and strain accumulation can be bounded by a properly chosen “pseudo” yield strength used in an elastic-perfectly plastic analysis, thus avoiding the need for stress classification. The originalmore » SMT approach is based on the use of elastic analysis. The experimental data, cycles to failure, is correlated using the elastically calculated strain range in the test specimen and the corresponding component strain is also calculated elastically. The advantage of this approach is that it is no longer necessary to use the damage interaction, or D-diagram, because the damage due to the combined effects of creep and fatigue are accounted in the test data by means of a specimen that is designed to replicate or bound the stress and strain redistribution that occurs in actual components when loaded in the creep regime. The reference approach to combining the two methodologies and the corresponding uncertainties and validation plans are presented. Results from recent key feature tests are discussed to illustrate the applicability of the EPP methodology and the behavior of materials at elevated temperature when undergoing stress and strain redistribution due to plasticity and creep.« less

  12. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity.

    PubMed

    Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine

    2015-08-01

    Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (<60% of Maximal Voluntary Contraction, MVC). This measurement can therefore be used to estimate changes in individual muscle force. However, it is not known if this relationship remains valid for higher intensities. The aim of this study was to determine: (i) the relationship between muscle shear elastic modulus and muscle torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Self and transport diffusivity of CO2 in the metal-organic framework MIL-47(V) explored by quasi-elastic neutron scattering experiments and molecular dynamics simulations.

    PubMed

    Salles, Fabrice; Jobic, Hervé; Devic, Thomas; Llewellyn, Philip L; Serre, Christian; Férey, Gérard; Maurin, Guillaume

    2010-01-26

    Quasi-elastic neutron scattering measurements are combined with molecular dynamics simulations to determine the self-diffusivity, corrected diffusivity, and transport diffusivity of CO(2) in the metal-organic framework MIL-47(V) (MIL = Materials Institut Lavoisier) over a wide range of loading. The force field used for describing the host/guest interactions is first validated on the thermodynamics of the MIL-47(V)/CO(2) system, prior to being transferred to the investigations of the dynamics. A decreasing profile is then deduced for D(s) and D(o) whereas D(t) presents a non monotonous evolution with a slight decrease at low loading followed by a sharp increase at higher loading. Such decrease of D(t) which has never been evidenced in any microporous systems comes from the atypical evolution of the thermodynamic correction factor that reaches values below 1 at low loading. This implies that, due to intermolecular interactions, the CO(2) molecules in MIL-47(V) do not behave like an ideal gas. Further, molecular simulations enabled us to elucidate unambiguously a 3D diffusion mechanism within the pores of MIL-47(V).

  14. Variation of nanostructures, molecular interactions, and anisotropic elastic moduli of lignocellulosic cell walls with moisture

    Treesearch

    S. Youssefian; J. E. Jakes; N. Rahbar

    2017-01-01

    A combination of experimental, theoretical and numerical studies is used to investigate the variation of elastic moduli of lignocellulosic (bamboo) fiber cell walls with moisture content (MC). Our Nanoindentation results show that the longitudinal elastic modulus initially increased to a maximum value at about 3% MC and then decreased linearly with increasing MC. In...

  15. Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids.

    PubMed

    Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A

    2003-06-01

    Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.

  16. Handling qualities of large flexible control-configured aircraft

    NASA Technical Reports Server (NTRS)

    Swaim, R. L.

    1980-01-01

    The effects on handling qualities of low frequency symmetric elastic mode interaction with the rigid body dynamics of a large flexible aircraft was analyzed by use of a mathematical pilot modeling computer simulation. An extension of the optimal control model for a human pilot was made so that the mode interaction effects on the pilot's control task could be assessed. Pilot ratings were determined for a longitudinal tracking task with parametric variations in the undamped natural frequencies of the two lowest frequency symmetric elastic modes made to induce varying amounts of mode interaction. Relating numerical performance index values associated with the frequency variations used in several dynamic cases, to a numerical Cooper-Harper pilot rating has proved successful in discriminating when the mathematical pilot can or cannot separate rigid from elastic response in the tracking task.

  17. On the buckling of an elastic holey column

    PubMed Central

    Hazel, A. L.; Pihler-Puzović, D.

    2017-01-01

    We report the results of a numerical and theoretical study of buckling in elastic columns containing a line of holes. Buckling is a common failure mode of elastic columns under compression, found over scales ranging from metres in buildings and aircraft to tens of nanometers in DNA. This failure usually occurs through lateral buckling, described for slender columns by Euler’s theory. When the column is perforated with a regular line of holes, a new buckling mode arises, in which adjacent holes collapse in orthogonal directions. In this paper, we firstly elucidate how this alternate hole buckling mode coexists and interacts with classical Euler buckling modes, using finite-element numerical calculations with bifurcation tracking. We show how the preferred buckling mode is selected by the geometry, and discuss the roles of localized (hole-scale) and global (column-scale) buckling. Secondly, we develop a novel predictive model for the buckling of columns perforated with large holes. This model is derived without arbitrary fitting parameters, and quantitatively predicts the critical strain for buckling. We extend the model to sheets perforated with a regular array of circular holes and use it to provide quantitative predictions of their buckling. PMID:29225498

  18. A finite difference analysis of the field present behind an acoustically impenetrable two-layer barrier.

    PubMed

    Hurrell, Andrew M

    2008-06-01

    The interaction of an incident sound wave with an acoustically impenetrable two-layer barrier is considered. Of particular interest is the presence of several acoustic wave components in the shadow region of this barrier. A finite difference model capable of simulating this geometry is validated by comparison to the analytical solution for an idealized, hard-soft barrier. A panel comprising a high air-content closed cell foam backed with an elastic (metal) back plate is then examined. The insertion loss of this panel was found to exceed the dynamic range of the measurement system and was thus acoustically impenetrable. Experimental results from such a panel are shown to contain artifacts not present in the diffraction solution, when acoustic waves are incident upon the soft surface. A finite difference analysis of this experimental configuration replicates the presence of the additional field components. Furthermore, the simulated results allow the additional components to be identified as arising from the S(0) and A(0) Lamb modes traveling in the elastic plate. These Lamb mode artifacts are not found to be present in the shadow region when the acoustic waves are incident upon the elastic surface.

  19. Dynamic load mitigation using dissipative elastic metamaterials with multiple Maxwell-type oscillators

    NASA Astrophysics Data System (ADS)

    Alamri, Sagr; Li, Bing; Tan, K. T.

    2018-03-01

    Dissipative elastic metamaterials have attracted increased attention in recent times. This paper presents the development of a dissipative elastic metamaterial with multiple Maxwell-type resonators for stress wave attenuation. The mechanism of the dissipation effect on the vibration characteristics is systematically investigated by mass-spring-damper models with single and dual resonators. Based on the parameter optimization, it is revealed that a broadband wave attenuation region (stopping band) can be obtained by properly utilizing interactions from resonant motions and viscoelastic effects of the Maxwell-type oscillators. The relevant numerical verifications are conducted for various cases, and excellent agreement between the numerical and theoretical frequency response functions is shown. The design of this dissipative metamaterial system is further applied for dynamic load mitigation and blast wave attenuation. Moreover, the transient response in the continuum model is designed and analyzed for more robust design. By virtue of the bandgap merging effect induced by the Maxwell-type damper, the transient blast wave can be almost completely suppressed in the low frequency range. A significantly improved performance of the proposed dissipative metamaterials for stress wave mitigation is verified in both time and frequency domains.

  20. Numerical investigation of active porous composites with enhanced acoustic absorption

    NASA Astrophysics Data System (ADS)

    Zieliński, Tomasz G.

    2011-10-01

    The paper presents numerical analysis - involving an advanced multiphysics modeling - of the concept of active porous composite sound absorbers. Such absorbers should be made up of a layer or layers of poroelastic material (porous foams) with embedded elastic inclusions having active (piezoelectric) elements. The purpose of such active composite material is to significantly absorb the energy of acoustic waves in a wide frequency range, particularly, at lower frequencies. At the same time the total thickness of composite should be very moderate. The active parts of composites are used to adapt the absorbing properties of porous layers to different noise conditions by affecting the so-called solid-borne wave - originating mainly from the vibrations of elastic skeleton of porous medium - to counteract the fluid-borne wave - resulting mainly from the vibrations of air in the pores; both waves are strongly coupled, especially, at lower frequencies. In fact, since the traction between the air and the solid frame of porous medium is the main absorption mechanism, the elastic skeleton is actively vibrated in order to adapt and improve the dissipative interaction of the skeleton and air in the pores. Passive and active performance of such absorbers is analyzed to test the feasibility of this approach.

  1. Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion

    NASA Astrophysics Data System (ADS)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian

    2014-11-01

    A simple and reproducible analog experiment was used to simulate fracture formation in a low-permeability elastic solid during internal fluid/gas production, with the objective of developing a better understanding of the mechanisms that control the dynamics of fracturing, fracture opening and closing, and fluid transport. In the experiment, nucleation, propagation, and coalescence of fractures within an elastic gelatin matrix, confined in a Hele-Shaw cell, occurred due to CO2 production via fermentation of sugar, and it was monitored by optical means. We first quantified how a fracture network develops, and then how intermittent fluid transport is controlled by the dynamics of opening and closing of fractures. The gas escape dynamics exhibited three characteristic behaviors: (1) Quasiperiodic release of gas with a characteristic frequency that depends on the gas production rate but not on the system size. (2) A 1 /f power spectrum for the fluctuations in the total open fracture area over an intermediate range of frequencies (f ), which we attribute to collective effects caused by interaction between fractures in the drainage network. (3) A 1 /f2 power spectrum was observed at high frequencies, which can be explained by the characteristic behavior of single fractures.

  2. Soliton excitations and interactions for the three-coupled fourth-order nonlinear Schrödinger equations in the alpha helical proteins

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Rong; Tian, Bo; Wang, Yu-Feng; Zhen, Hui-Ling

    2015-06-01

    Three-coupled fourth-order nonlinear Schrödinger equations describe the dynamics of alpha helical proteins with the interspine coupling at the higher order. Through symbolic computation and binary Bell-polynomial approach, bilinear forms and N-soliton solutions for such equations are constructed. Key point lies in the introduction of auxiliary functions in the Bell-polynomial expression. Asymptotic analysis is applied to investigate the elastic interaction between the two solitons: two solitons keep their original amplitudes, energies and velocities invariant after the interaction except for the phase shifts. Soliton amplitudes are related to the energy distributed in the solitons of the three spines. Overtaking interaction, head-on interaction and bound-state solitons of two solitons are given. Bound states of three bright solitons arise when all of them propagate in parallel. Elastic interaction between the bound-state solitons and one bright soliton is shown. Increase of the lattice parameter can lead to the increase of the soliton velocity, that is, the interaction period becomes shorter. The solitons propagating along the neighbouring spines are found to interact elastically. Those solitons, exhibited in this paper, might be viewed as a possible carrier of bio-energy transport in the protein molecules.

  3. Quasi-static analysis of elastic behavior for some systems having higher fracture densities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J.G.; Aydin, A.

    2009-10-15

    Elastic behavior of geomechanical systems with interacting (but not intersecting) fractures is treated using generalizations of the Backus and the Schoenberg-Muir methods for analyzing layered systems whose layers are intrinsically anisotropic due to locally aligned fractures. By permitting the axis of symmetry of the locally anisotropic compliance matrix for individual layers to differ from that of the layering direction, we derive analytical formulas for interacting fractured regions with arbitrary orientations to each other. This procedure provides a systematic tool for studying how contiguous, but not yet intersecting, fractured domains interact, and provides a direct (though approximate) means of predicting whenmore » and how such interactions lead to more dramatic weakening effects and ultimately to failure of these complicated systems. The method permits decomposition of the system elastic behavior into specific eigenmodes that can all be analyzed, and provides a better understanding about which of these specific modes are expected to be most important to the evolving failure process.« less

  4. Elastic behavior of brain simulants in comparison to porcine brain at different loading velocities.

    PubMed

    Falland-Cheung, Lisa; Scholze, Mario; Hammer, Niels; Waddell, J Neil; Tong, Darryl C; Brunton, Paul A

    2018-01-01

    Blunt force impacts to the head and the resulting internal force transmission to the brain and other cranial tissue are difficult to measure. To model blunt force impact scenarios, the compressive properties resembling tissue elasticity are of importance. Therefore, this study investigated and compared the elastic behavior of gelatin, alginate, agar/glycerol and agar/glycerol/water simulant materials to that of porcine brain in a fresh and unfixed condition. Specimens, 10 × 10 × 10mm 3 , were fabricated and tested at 22°C, apart from gelatin which was conditioned to 4°C prior to testing. For comparison, fresh porcine brains were sourced and prepared to the same dimensions as the simulants. Specimens underwent compression tests at crosshead displacement rates of 2.5, 10 and 16mms -1 (equivalent to strain rates of 0.25, 1 and 1.6s -1 ), obtaining apparent elastic moduli values at different strain rate intervals (0-0.2, 0.2-0.4 and 0.4-0.5). The results of this study indicate that overall all simulant materials had an apparent elastic moduli similar in magnitude across all strain ranges compared to brain, even though comparatively higher, especially the apparent elastic moduli values of alginate. In conclusion, while agar/glycerol/water and agar/glycerol had similar apparent elastic moduli in magnitude and the closest apparent elastic moduli in the initial strain range (E 1 ), gelatin showed the most similar values to fresh porcine brain at the transitional (E 2 ) and higher strain range (E 3 ). The simulant materials and the fresh porcine brain exhibited strain rate dependent behavior, with increasing elastic moduli upon increasing loading velocities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The effect of long-range order on the elastic properties of Cu3Au

    NASA Astrophysics Data System (ADS)

    Wang, Gui-Sheng; Krisztina Delczeg-Czirjak, Erna; Hu, Qing-Miao; Kokko, Kalevi; Johansson, Börje; Vitos, Levente

    2013-02-01

    Ab initio calculations, based on the exact muffin-tin orbitals method are used to determine the elastic properties of Cu-Au alloys with Au/Cu ratio 1/3. The compositional disorder is treated within the coherent potential approximation. The lattice parameters and single-crystal elastic constants are calculated for different partially ordered structures ranging from the fully ordered L12 to the random face centered cubic lattice. It is shown that the theoretical elastic constants follow a clear trend with the degree of chemical order: namely, C11 and C12 decrease, whereas C44 remains nearly constant with increasing disorder. The present results are in line with the experimental findings that the impact of the chemical ordering on the fundamental elastic parameters is close to the resolution of the available experimental and theoretical tools.

  6. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

    NASA Astrophysics Data System (ADS)

    DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

    2018-03-01

    A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

  7. Experimental investigation of flow field around the elastic flag flapping in periodic state

    NASA Astrophysics Data System (ADS)

    Jia, Yongxia; Jia, Lichao; Su, Zhuang; Yuan, Huijing

    2018-05-01

    The flapping of a flag in the wind is a classical fluid-structure problem that concerns the interaction of elastic bodies with ambient fluid. We focus on the desirable experimental results of the flow around the flapping flag. By immersing the elastic yet self-supporting heavy flag into water flow, we use particle image velocimetry (PIV) techniques to obtain the whole flow field around the midspan of the flag interacting with a fluid in periodic state. A unique PIV image processing method is used to measure near-wall flow velocities around a moving elastic flag. There exists a thin flow circulation region on the suction side of the flag in periodic state. This observation suggests that viscous flow models may be needed to improve the theoretical predictions of the flapping flag in periodic state, especially in a large amplitude.

  8. Selection of the elastic scattering events in interactions of the NICA colliding proton (deuteron) beams

    NASA Astrophysics Data System (ADS)

    Sharov, Vasily

    2017-03-01

    The features of the kinematics of elastic pp (dd) scattering in the collider system, as well as some issues concerning registration and selection of elastic scattering events in the NICA colliding beams are considered. Equality and the opposite direction of the scattered particle momenta provide a powerful selection criterion for elastic collisions. Variants of the organization of the trigger signal for recording tracks of secondary particles and DAQ system are given. The estimates of the characteristics of elastic NN processes are obtained from available dσ/dΩCM data for the elastic pp and np scattering. The paper presents examples of simulations using the Monte-Carlo of elastic pp scattering in the colliding proton beams and quasi-elastic np scattering in the colliding deuteron beams and evaluates the outputs of these processes at the NICA collider.

  9. First-principles supercell calculations of small polarons with proper account for long-range polarization effects

    NASA Astrophysics Data System (ADS)

    Kokott, Sebastian; Levchenko, Sergey V.; Rinke, Patrick; Scheffler, Matthias

    2018-03-01

    We present a density functional theory (DFT) based supercell approach for modeling small polarons with proper account for the long-range elastic response of the material. Our analysis of the supercell dependence of the polaron properties (e.g., atomic structure, binding energy, and the polaron level) reveals long-range electrostatic effects and the electron–phonon (el–ph) interaction as the two main contributors. We develop a correction scheme for DFT polaron calculations that significantly reduces the dependence of polaron properties on the DFT exchange-correlation functional and the size of the supercell in the limit of strong el–ph coupling. Using our correction approach, we present accurate all-electron full-potential DFT results for small polarons in rocksalt MgO and rutile TiO2.

  10. Bright and dark N-soliton solutions for the (2 + 1)-dimensional Maccari system

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Yuan, Yu-Qiang; Sun, Yan

    2018-02-01

    Under investigation in this paper is the (2 + 1) -dimensional Maccari system, which is related to the Kadomtsev-Petviashvili (KP) equation. Bright and dark N -soliton solutions in terms of the Gramian are obtained via the KP hierarchy reduction. Oblique and parallel interactions between the bright solitons and between the dark solitons are studied analytically and graphically. We find that there are elastic and inelastic interactions for the bright solitons, but there are only elastic interactions for the dark solitons. Resonance, breather, attraction and repulsion structures are presented. It is expected that these soliton interactions have potential applications in fluid dynamics, nonlinear optics and plasma physics.

  11. Finite element solution of transient fluid-structure interaction problems

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.

    1991-01-01

    A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.

  12. Richtmyer-Meshkov flow in elastic solids.

    PubMed

    Piriz, A R; López Cela, J J; Tahir, N A; Hoffmann, D H H

    2006-09-01

    Richtmyer-Meshkov flow is studied by means of an analytical model which describes the asymptotic oscillations of a corrugated interface between two perfectly elastic solids after the interaction with a shock wave. The model shows that the flow stability is due to the restoring effect of the elastic force. It provides a simple approximate but still very accurate formula for the oscillation period. It also shows that as it is observed in numerical simulations, the amplitude oscillates around a mean value equal to the post-shock amplitude, and that this is a consequence of the stress free conditions of the material immediately after the shock interaction. Extensive numerical simulations are presented to validate the model results.

  13. High pressure and temperature induced structural and elastic properties of lutetium chalcogenides

    NASA Astrophysics Data System (ADS)

    Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh

    2018-04-01

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.

  14. Proton elastic scattering from tin isotopes at 295 MeV and systematic change of neutron density distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terashima, S.; Sakaguchi, H.; Takeda, H.

    Cross sections and analyzing powers for proton elastic scattering from {sup 116,118,120,122,124}Sn at 295 MeV have been measured for a momentum transfer of up to about 3.5 fm{sup -1} to deduce systematic changes of the neutron density distribution. We tuned the relativistic Love-Franey interaction to explain the proton elastic scattering of a nucleus whose density distribution is well known. Then, we applied this interaction to deduce the neutron density distributions of tin isotopes. The result of our analysis shows the clear systematic behavior of a gradual increase in the neutron skin thickness of tin isotopes with mass number.

  15. High-speed broadband elastic actuator in water using induced-charge electro-osmosis with a skew structure.

    PubMed

    Sugioka, Hideyuki; Nakano, Naoki

    2018-01-01

    An artificial cilium using ac electro-osmosis (ACEO) is attractive because of its large potentiality for innovative microfluidic applications. However, the ACEO cilium has not been probed experimentally and has a shortcoming that the working frequency range is very narrow. Thus, we here propose an ACEO elastic actuator having a skew structure that broadens a working frequency range and experimentally demonstrate that the elastic actuator in water can be driven with a high-speed (∼10 Hz) and a wide frequency range (∼0.1 to ∼10 kHz). Moreover, we propose a simple self-consistent model that explains the broadband characteristic due to the skew structure with other characteristics. By comparing the theoretical results with the experimental results, we find that they agree fairly well. We believe that our ACEO elastic actuator will play an important role in microfluidics in the future.

  16. High-speed broadband elastic actuator in water using induced-charge electro-osmosis with a skew structure

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki; Nakano, Naoki

    2018-01-01

    An artificial cilium using ac electro-osmosis (ACEO) is attractive because of its large potentiality for innovative microfluidic applications. However, the ACEO cilium has not been probed experimentally and has a shortcoming that the working frequency range is very narrow. Thus, we here propose an ACEO elastic actuator having a skew structure that broadens a working frequency range and experimentally demonstrate that the elastic actuator in water can be driven with a high-speed (˜10 Hz) and a wide frequency range (˜0.1 to ˜10 kHz). Moreover, we propose a simple self-consistent model that explains the broadband characteristic due to the skew structure with other characteristics. By comparing the theoretical results with the experimental results, we find that they agree fairly well. We believe that our ACEO elastic actuator will play an important role in microfluidics in the future.

  17. Flow Interpretation Implications for Poro-Elastic Modeling

    DTIC Science & Technology

    2010-06-01

    interpretation of acoustical inversions based on poro-elastic models . I. INTRODUCTION Poro-elastic models for acoustic propagation in sediments arose out of the...porous solid. ii. higher freqency range, J. Acoust . Soc. America, 28, 179– 191, 1956. [11] Bear, J., and Y. Bachmat (Eds.), Introduction to Modeling of...Flow interpretation implications for Poro-Elastic Modeling James K. Fulford Naval Research Laboratory Stennis Space Center Stennis Space Center

  18. Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates

    NASA Astrophysics Data System (ADS)

    Franciosi, Patrick; Spagnuolo, Mario; Salman, Oguz Umut

    2018-04-01

    Composites comprising included phases in a continuous matrix constitute a huge class of meta-materials, whose effective properties, whether they be mechanical, physical or coupled, can be selectively optimized by using appropriate phase arrangements and architectures. An important subclass is represented by "network-reinforced matrices," say those materials in which one or more of the embedded phases are co-continuous with the matrix in one or more directions. In this article, we present a method to study effective properties of simple such structures from which more complex ones can be accessible. Effective properties are shown, in the framework of linear elasticity, estimable by using the global mean Green operator for the entire embedded fiber network which is by definition through sample spanning. This network operator is obtained from one of infinite planar alignments of infinite fibers, which the network can be seen as an interpenetrated set of, with the fiber interactions being fully accounted for in the alignments. The mean operator of such alignments is given in exact closed form for isotropic elastic-like or dielectric-like matrices. We first exemplify how these operators relevantly provide, from classic homogenization frameworks, effective properties in the case of 1D fiber bundles embedded in an isotropic elastic-like medium. It is also shown that using infinite patterns with fully interacting elements over their whole influence range at any element concentration suppresses the dilute approximation limit of these frameworks. We finally present a construction method for a global operator of fiber networks described as interpenetrated such bundles.

  19. A fluid-structure interaction model of soft robotics using an active strain approach

    NASA Astrophysics Data System (ADS)

    Hess, Andrew; Lin, Zhaowu; Gao, Tong

    2017-11-01

    Soft robotic swimmers exhibit rich dynamics that stem from the non-linear interplay of the fluid and immersed soft elastic body. Due to the difficulty of handling the nonlinear two-way coupling of hydrodynamic flow and deforming elastic body, studies of flexible swimmers often employ either one-way coupling strategies with imposed motions of the solid body or some simplified elasticity models. To explore the nonlinear dynamics of soft robots powered by smart soft materials, we develop a computational model to deal with the two-way fluid/elastic structure interactions using the fictitious domain method. To mimic the dynamic response of the functional soft material under external actuations, we assume the solid phase to be neo-Hookean, and employ an active strain approach to incorporate actuation, which is based on the multiplicative decomposition of the deformation gradient tensor. We demonstrate the capability of our algorithm by performing a series of numerical explorations that manipulate an elastic structure with finite thickness, starting from simple rectangular or circular plates to soft robot prototypes such as stingrays and jellyfish.

  20. Global Low Frequency Protein Motions in Long-Range Allosteric Signaling

    NASA Astrophysics Data System (ADS)

    McLeish, Tom; Rogers, Thomas; Townsend, Philip; Burnell, David; Pohl, Ehmke; Wilson, Mark; Cann, Martin; Richards, Shane; Jones, Matthew

    2015-03-01

    We present a foundational theory for how allostery can occur as a function of low frequency dynamics without a change in protein structure. Elastic inhomogeneities allow entropic ``signalling at a distance.'' Remarkably, many globular proteins display just this class of elastic structure, in particular those that support allosteric binding of substrates (long-range co-operative effects between the binding sites of small molecules). Through multi-scale modelling of global normal modes we demonstrate negative co-operativity between the two cAMP ligands without change to the mean structure. Crucially, the value of the co-operativity is itself controlled by the interactions around a set of third allosteric ``control sites.'' The theory makes key experimental predictions, validated by analysis of variant proteins by a combination of structural biology and isothermal calorimetry. A quantitative description of allostery as a free energy landscape revealed a protein ``design space'' that identified the key inter- and intramolecular regulatory parameters that frame CRP/FNR family allostery. Furthermore, by analyzing naturally occurring CAP variants from diverse species, we demonstrate an evolutionary selection pressure to conserve residues crucial for allosteric control. The methodology establishes the means to engineer allosteric mechanisms that are driven by low frequency dynamics.

  1. Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy.

    PubMed

    Klocke, Michael; Wolf, Dietrich E

    2016-01-01

    A molecular dynamics model is presented, which adds harmonic potentials to the atomic interactions to mimic the elastic properties of an AFM cantilever. It gives new insight into the correlation between the experimentally monitored frequency shift and cantilever damping due to the interaction between tip atoms and scanned surface. Applying the model to ionic crystals with rock salt structure two damping mechanisms are investigated, which occur separately or simultaneously depending on the tip position. These mechanisms are adhesion hysteresis on the one hand and lateral excitations of the cantilever on the other. We find that the short range Lennard-Jones part of the atomic interaction alone is sufficient for changing the predominant mechanism. When the long range ionic interaction is switched off, the two damping mechanisms occur with a completely different pattern, which is explained by the energy landscape for the apex atom of the tip. In this case the adhesion hysteresis is always associated with a distinct lateral displacement of the tip. It is shown how this may lead to a systematic shift between the periodic patterns obtained from the frequency and from the damping signal, respectively.

  2. Use of various versions of Schwarz method for solving the problem of contact interaction of elastic bodies

    NASA Astrophysics Data System (ADS)

    Galanin, M. P.; Lukin, V. V.; Rodin, A. S.

    2018-04-01

    A definition of a sufficiently common problem of mechanical contact interaction in a system of elastic bodies is given. Various versions of realization of the Schwarz method for solving the contact problem numerically are described and the results of solution of a number of problems are presented. Special attention is paid to calculations where the grids in the bodies significantly differ in steps.

  3. Nanomechanics of Microtubules

    NASA Astrophysics Data System (ADS)

    Kis, A.; Kasas, S.; Babić, B.; Kulik, A. J.; Benoît, W.; Briggs, G. A.; Schönenberger, C.; Catsicas, S.; Forró, L.

    2002-11-01

    We have determined the mechanical anisotropy of a single microtubule by simultaneously measuring the Young's and the shear moduli in vitro. This was achieved by elastically deforming the microtubule deposited on a substrate tailored by electron-beam lithography with a tip of an atomic force microscope. The shear modulus is 2orders of magnitude lower than the Young's, giving rise to a length-dependent flexural rigidity of microtubules. The temperature dependence of the microtubule's bending stiffness in the (5-40) °C range shows a strong variation upon cooling coming from the increasing interaction between the protofilaments.

  4. Considerations on the use of elastic wheels to the urban transport vehicles

    NASA Astrophysics Data System (ADS)

    Sebesan, Ioan; Arsene, Sorin; Manea, Ion

    2018-03-01

    To minimize dynamic wheel-rail interaction efforts a condition is that the unassembled mass of the vehicle is as small as possible. The elastic wheel by its construction fulfills these conditions - she has interposed between the crown and the body of the wheel, the elastic rubber elements. In this way, it can be considered that the unsupported mass is represented only by the mass of the wheel crown. Additionally, this elasticity also has a reduction effect on rolling noise. This feature makes it suitable for use on urban transport vehicles.

  5. Normal modes of weak colloidal gels

    NASA Astrophysics Data System (ADS)

    Varga, Zsigmond; Swan, James W.

    2018-01-01

    The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer physics, our results indicate that long-ranged hydrodynamic interactions play a crucial role in determining the microscopic dynamics and macroscopic properties of weak colloidal gels.

  6. Fracture and damage localization in volcanic edifice rocks from El Hierro, Stromboli and Tenerife.

    PubMed

    Harnett, Claire E; Benson, Philip M; Rowley, Pete; Fazio, Marco

    2018-01-31

    We present elastic wave velocity and strength data from a suite of three volcanic rocks taken from the volcanic edifices of El Hierro and Tenerife (Canary Islands, Spain), and Stromboli (Aeolian Islands, Italy). These rocks span a range of porosity and are taken from volcanoes that suffer from edifice instability. We measure elastic wave velocities at known incident angles to the generated through-going fault as a function of imposed strain, and examine the effect of the damage zone on P-wave velocity. Such data are important as field measurements of elastic wave tomography are key tools for understanding volcanic regions, yet hidden fractures are likely to have a significant effect on elastic wave velocity. We then use elastic wave velocity evolution to calculate concomitant crack density evolution which ranges from 0 to 0.17: highest values were correlated to the damage zone in rocks with the highest initial porosity.

  7. Readily fiberizable glasses having a high modulus of elasticity

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1970-01-01

    New glass compositions yield composites having higher moduli of elasticity and specific moduli of elasticity than commercially available glasses. Over a reasonable temperature range the glasses have a viscosity of about 20,000 poises. They consist of silica, alumina, magnesia, and beryllia, plus at least one uncommon oxide.

  8. Elastic modulus of phases in Ti–Mo alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei-dong; Liu, Yong, E-mail: yonliu11@aliyun.com; Wu, Hong

    2015-08-15

    In this work, a series of binary Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were prepared using non-consumable arc melting. The microstructures were investigated by X-ray diffraction and transmission electron microscope, and the elastic modulus was evaluated by nanoindentation testing technique. The evolution of the volume fractions of ω phase was investigated using X-ray photoelectron spectroscopy. The results indicated that the phase constitution and elastic modulus of the Ti–Mo alloys are sensitive to the Mo content. Ti–3.2Mo and Ti–8Mo alloys containing only α and β phases, respectively, have a low elastic modulus. In contrast, Ti–4.5Mo,more » Ti–6Mo, Ti–7Mo alloys, with different contents of ω phase, have a high elastic modulus. A simple micromechanical model was used to calculate the elastic modulus of ω phase (E{sub ω}), which was determined to be 174.354 GPa. - Highlights: • Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were investigated. • XPS was used to investigate the volume fractions of ω phase. • The elastic modulus of Ti–Mo alloys is sensitive to the Mo content. • The elastic modulus of ω phase was determined to be 174.354 GPa.« less

  9. A density functional approach to ferrogels

    NASA Astrophysics Data System (ADS)

    Cremer, P.; Heinen, M.; Menzel, A. M.; Löwen, H.

    2017-07-01

    Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. As a consequence, their structural and rheological properties are governed by a competition between magnetic particle-particle interactions and mechanical matrix elasticity. Typically, the particles are permanently fixed within the matrix, which makes them distinguishable by their positions. Over time, particle neighbors do not change due to the fixation by the matrix. Here we present a classical density functional approach for such ferrogels. We map the elastic matrix-induced interactions between neighboring colloidal particles distinguishable by their positions onto effective pairwise interactions between indistinguishable particles similar to a ‘pairwise pseudopotential’. Using Monte-Carlo computer simulations, we demonstrate for one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use the pseudopotential as an input into classical density functional theory of inhomogeneous fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In addition, we propose the use of an ‘external pseudopotential’ when one switches from the viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded in an infinitely extended bulk matrix. Our mapping approach paves the way to describe various inhomogeneous situations of ferrogels using classical density functional concepts of inhomogeneous fluids.

  10. Dislocation model for aseismic fault slip in the transverse ranges of Southern California

    NASA Technical Reports Server (NTRS)

    Cheng, A.; Jackson, D. D.; Matsuura, M.

    1985-01-01

    Geodetic data at a plate boundary can reveal the pattern of subsurface displacements that accompany plate motion. These displacements are modelled as the sum of rigid block motion and the elastic effects of frictional interaction between blocks. The frictional interactions are represented by uniform dislocation on each of several rectangular fault patches. The block velocities and fault parameters are then estimated from geodetic data. Bayesian inversion procedure employs prior estimates based on geological and seismological data. The method is applied to the Transverse Ranges, using prior geological and seismological data and geodetic data from the USGS trilateration networks. Geodetic data imply a displacement rate of about 20 mm/yr across the San Andreas Fault, while the geologic estimates exceed 30 mm/yr. The prior model and the final estimates both imply about 10 mm/yr crustal shortening normal to the trend of the San Andreas Fault. Aseismic fault motion is a major contributor to plate motion. The geodetic data can help to identify faults that are suffering rapid stress accumulation; in the Transverse Ranges those faults are the San Andreas and the Santa Susana.

  11. Interaction potential for indium phosphide: a molecular dynamics and first-principles study of the elastic constants, generalized stacking fault and surface energies.

    PubMed

    Branicio, Paulo Sergio; Rino, José Pedro; Gan, Chee Kwan; Tsuzuki, Hélio

    2009-03-04

    Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge-charge, charge-dipole and dipole-dipole interactions as well as covalent bond bending and stretching. Predictions are made for the elastic constants as a function of density and temperature, the generalized stacking fault energy and the low-index surface energies.

  12. Linking scales in sea ice mechanics.

    PubMed

    Weiss, Jérôme; Dansereau, Véronique

    2017-02-13

    Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell-elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  13. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells.

    PubMed

    Chou, Szu-Yuan; Cheng, Chao-Min; LeDuc, Philip R

    2009-06-01

    At the interface between extracellular substrates and biological materials, substrate elasticity strongly influences cell morphology and function. The associated biological ramifications comprise a diversity of critical responses including apoptosis, differentiation, and motility, which can affect medical devices such as stents. The interactions of the extracellular environment with the substrate are also affected by local properties wherein cells sense and respond to different physical inputs. To investigate the effects of having localized elasticity control of substrate microenvironments on cell response, we have developed a method to control material interface interactions with cells by dictating local substrate elasticity. This system is created by generating a composite material system with alternating, linear regions of polymers that have distinct stiffness characteristics. This approach was used to examine cytoskeletal and morphological changes in NIH 3T3 fibroblasts with emphasis on both local and global properties, noting that cells sense and respond to distinct material elasticities. Isolated cells sense and respond to these local differences in substrate elasticity by extending processes along the interface. Also, cells grown on softer elastic regions at higher densities (in contact with each other) have a higher projected area than isolated cells. Furthermore, when using chemical agents such as cytochalasin-D to disrupt the actin cytoskeleton, there is a significant increase in projected area for cells cultured on softer elastic regions This method has the potential to promote understanding of biomaterial-affected responses in a diversity of areas including morphogenesis, mechanotransduction, stents, and stem cell differentiation.

  14. Small artery elasticity predicts future cardiovascular events in chinese patients with angiographic coronary artery disease.

    PubMed

    Wan, Zhaofei; Liu, Xiaojun; Wang, Xinhong; Liu, Fuqiang; Liu, Weimin; Wu, Yue; Pei, Leilei; Yuan, Zuyi

    2014-04-01

    Arterial elasticity has been shown to predict cardiovascular disease (CVD) in apparently healthy populations. The present study aimed to explore whether arterial elasticity could predict CVD events in Chinese patients with angiographic coronary artery disease (CAD). Arterial elasticity of 365 patients with angiographic CAD was measured. During follow-up (48 months; range 6-65), 140 CVD events occurred (including 34 deaths). Univariate Cox analysis demonstrated that both large arterial elasticity and small arterial elasticity were significant predictors of CVD events. Multivariate Cox analysis indicated that small arterial elasticity remained significant. Kaplan-Meier analysis showed that the probability of having a CVD event/CVD death increased with a decrease of small arterial elasticity (P < .001, respectively). Decreased small arterial elasticity independently predicts the risk of CVD events in Chinese patients with angiographic CAD.

  15. Assessment of cervical stiffness in axial rotation among chronic neck pain patients: A trial in the framework of a non-manipulative osteopathic management.

    PubMed

    Dugailly, P-M; Coucke, A; Salem, W; Feipel, V

    2018-03-01

    Cervical stiffness is a clinical feature commonly appraised during the functional examination of cervical spine. Measurements of cervical stiffness in axial rotation have not been reported for patients with neck pain. The purpose of this study was to investigate cervical spine stiffness in axial rotation among neck pain patients and asymptomatic subjects, and to analyze the impact of osteopathic management. Thirty-five individuals (17 patients) were enrolled. Measurements were carried out for left-right axial rotation using a torque meter device, prior and after intervention. Passive range of motion, stiffness, and elastic-and neutral zone magnitudes were analyzed. Pain intensity was also collected for patients. The intervention consisted in one single session of non-manipulative osteopathic treatment performed in both groups. A significant main effect of intervention was found for total range of motion and neutral zone. Also, treatment by group interaction was demonstrated for neutral-, elastic zone, stiffness in right axial rotation, and for total neutral zone. Significant changes were observed in the clinical group after intervention, indicating elastic zone decrease and neutral zone increase. In contrast, no significant alteration was detected for the control group. Stiffness characteristics of the cervical spine in axial rotation are prone to be altered in patients with neck pain, but seem to be relieved after a session of non-manipulative manual therapeutic techniques. Further investigations, including randomized clinical trials with various clinical populations and therapeutic modalities, are needed to confirm these preliminary findings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Compositional dependence of elastic moduli for transition-metal oxide spinels

    NASA Astrophysics Data System (ADS)

    Reichmann, H. J.; Jacobsen, S. D.; Boffa Ballaran, T.

    2012-12-01

    Spinel phases (AB2O4) are common non-silicate oxides in the Earth's crust and upper mantle. A characteristic of this mineral group is the ability to host a wide range of transition metals. Here we summarize the influence of transition metals (Fe, Zn, and Mn) on the pressure dependence of elastic moduli of related spinels (magnetite, gahnite, and franklinite) using GHz-ultrasonic interferometry. Measurements were carried out up to 10 GPa in diamond-anvil cells using hydrostatic pressure media. Transition metals with unfilled 3d orbitals strongly influence the elastic properties of spinels. Franklinite (Zn,Mn)Fe2O4 and magnetite Fe3O4 with transition metals on both A and B cation sites exhibit pressure-induced mode softening of C44, whereas C44 of gahnite(ZnAl2O4) and spinel (MgAl2O4) exhibit positive pressure derivatives of the shear moduli. Spinels with two transition elements tend to undergo phase changes at a lower pressure than those with none or only one transition metal. Along the Mn-Zn solid solution, the variation of moduli with composition is non-linear, and a mid-range franklinite composition studied here shows a minimum in C44 compared with either end-member: MnFe2O 4 or ZnFe2O4. In general, the linear variation of sound velocity with density (Birch's Law) is followed by spinels, however spinels containing only one or no transition metals follow a distinct slope from those containing transition metals on both A and B sites. The Cauchy relation, 0.5(C12 - C44) = P is fulfilled by spinels with only one or no transition metals, suggesting that that Coulomb interactions dominate. Spinels with two transition metals fail to meet the Cauchy relation, indicating strong directional dependence and covalent character of bonding. The bonding character of transition metals is crucial to understanding the elastic behavior of natural and synthetic spinel solid solutions containing transition metals.

  17. Asymptotic quantum elastic generalized Lorenz Mie theory

    NASA Astrophysics Data System (ADS)

    Gouesbet, G.

    2006-10-01

    The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane-wave illumination. In a recent paper, we established that, if we restrict ourselves to the study of cross-sections, both for elastic and inelastic scatterings, a macroscopic sphere in Lorenz-Mie theory is formally equivalent to a quantum-like radial potential. To generalize this result, a prerequisite is to possess an asymptotic quantum generalized Lorenz-Mie theory expressing cross-sections in the case of a quantum radial potential interacting with a sub-class of quantum arbitrary wave-packets. Such a theory, restricted however to elastic scattering, is presented in this paper.

  18. Study on the PTC/NTC effect of carbon black-filled polymer composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Hao; Chen, Xinfang; Luo, Yunxia

    1995-12-01

    In this work, the effect of processing condition and radiation-crosslinking on the electrical and dynamic behaviors of carbon black filled low density polyethylene (LDPE) composites were investigated. Compared with the solution counterpart, the mechanical composites have a strong PTC effect and a great dynamic elastic mold, which results from the strong interaction between carbon black and LDPE. The experiment result shows that the NTC effect is caused by the decrease of elastic mold of LDPE at high temperature, and it can be declined significantly by radiation-crosslinking. We conclude that the strong interaction between polymer and carbon black is essentially importantmore » for composites to have a great PTC intensity good electrical reproducibility and high dynamic elastic sold.« less

  19. Generation of wavy structure on lipid membrane by peripheral proteins: a linear elastic analysis.

    PubMed

    Mahata, Paritosh; Das, Sovan Lal

    2017-05-01

    We carry out a linear elastic analysis to study wavy structure generation on lipid membrane by peripheral membrane proteins. We model the lipid membrane as linearly elastic and anisotropic material. The hydrophobic insertion by proteins into the lipid membrane has been idealized as penetration of rigid rod-like inclusions into the membrane and the electrostatic interaction between protein and membrane has been modeled by a distributed surface traction acting on the membrane surface. With the proposed model we study curvature generation by several binding domains of peripheral membrane proteins containing BAR domains and amphipathic alpha-helices. It is observed that electrostatic interaction is essential for curvature generation by the BAR domains. © 2017 Federation of European Biochemical Societies.

  20. Elastic effects on vibration of bilayer graphene sheets incorporating integrated VdWs interactions

    NASA Astrophysics Data System (ADS)

    Kamali, Kamran; Nazemnezhad, Reza; Zare, Mojtaba

    2018-03-01

    The following study addresses the free vibration analysis of a bilayer graphene sheet (BLGS) embedded in an elastic medium in the presence of shear and tensile-compressive effects of van der Waals (vdWs) interactions. To ascertain the contribution of each force, the effects are considered separately and simultaneously. To model the geometry of the BLGS, the sandwich plate theory and the Hamilton’s principle are considered to derive the governing equations of motion. The Harmonic differential quadrature method is applied to solve the coupled equations and obtain the natural frequencies and related mode shapes. The results reveal that the contribution of tensile-compressive modulus of elastic medium is the most in changing the frequency of BLGSs.

  1. Multiscale Multiphysics and Multidomain Models I: Basic Theory

    PubMed Central

    Wei, Guo-Wei

    2013-01-01

    This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field. PMID:25382892

  2. Multiscale Multiphysics and Multidomain Models I: Basic Theory.

    PubMed

    Wei, Guo-Wei

    2013-12-01

    This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field.

  3. Elastic fibres are broadly distributed in tendon and highly localized around tenocytes

    PubMed Central

    Grant, Tyler M; Thompson, Mark S; Urban, Jill; Yu, Jing

    2013-01-01

    Elastic fibres have the unique ability to withstand large deformations and are found in numerous tissues, but their organization and structure have not been well defined in tendon. The objective of this study was to characterize the organization of elastic fibres in tendon to understand their function. Immunohistochemistry was used to visualize elastic fibres in bovine flexor tendon with fibrillin-1, fibrillin-2 and elastin antibodies. Elastic fibres were broadly distributed throughout tendon, and highly localized longitudinally around groups of cells and transversely between collagen fascicles. The close interaction of elastic fibres and cells suggests that elastic fibres are part of the pericellular matrix and therefore affect the mechanical environment of tenocytes. Fibres present between fascicles are likely part of the endotenon sheath, which enhances sliding between adjacent collagen bundles. These results demonstrate that elastic fibres are highly localized in tendon and may play an important role in cellular function and contribute to the tissue mechanics of the endotenon sheath. PMID:23587025

  4. Coupling fluid-structure interaction with phase-field fracture

    NASA Astrophysics Data System (ADS)

    Wick, Thomas

    2016-12-01

    In this work, a concept for coupling fluid-structure interaction with brittle fracture in elasticity is proposed. The fluid-structure interaction problem is modeled in terms of the arbitrary Lagrangian-Eulerian technique and couples the isothermal, incompressible Navier-Stokes equations with nonlinear elastodynamics using the Saint-Venant Kirchhoff solid model. The brittle fracture model is based on a phase-field approach for cracks in elasticity and pressurized elastic solids. In order to derive a common framework, the phase-field approach is re-formulated in Lagrangian coordinates to combine it with fluid-structure interaction. A crack irreversibility condition, that is mathematically characterized as an inequality constraint in time, is enforced with the help of an augmented Lagrangian iteration. The resulting problem is highly nonlinear and solved with a modified Newton method (e.g., error-oriented) that specifically allows for a temporary increase of the residuals. The proposed framework is substantiated with several numerical tests. In these examples, computational stability in space and time is shown for several goal functionals, which demonstrates reliability of numerical modeling and algorithmic techniques. But also current limitations such as the necessity of using solid damping are addressed.

  5. Neutrino Exclusive Charged Current Quasi-Elastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Walton, Tammy

    2012-03-01

    The MINERvA experiment will measure neutrino and antineutrino quasi-elastic scattering on helium, water, carbon, iron, and lead for neutrinos in the few GeV range. We will present an overview of MINERvA analysis plan for neutrino exclusive charged current quasi-elastic scattering on lead, iron, and carbon.

  6. Elastic and mechanical softening in boron-doped diamond

    PubMed Central

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.

    2017-01-01

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50–3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials. PMID:28233808

  7. Elastic and mechanical softening in boron-doped diamond

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.

    2017-02-01

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50-3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials.

  8. Elastic and viscoelastic effects in rubber/air acoustic band gap structures: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Merheb, B.; Deymier, P. A.; Jain, M.; Aloshyna-Lesuffleur, M.; Mohanty, S.; Berker, A.; Greger, R. W.

    2008-09-01

    The transmission of acoustic waves through centimeter-scale elastic and viscoelastic two-dimensional silicone rubber/air phononic crystal structures is investigated theoretically and experimentally. We introduce a finite difference time domain method for two-dimensional elastic and viscoelastic composite structures. Elastic fluid-solid phononic crystals composed of a two-dimensional array of cylindrical air inclusions in a solid rubber matrix, as well as an array of rubber cylinders in an air matrix, are shown to behave similarly to fluid-fluid composite structures. These systems exhibit very wide band gaps in their transmission spectra that extend to frequencies in the audible range of the spectrum. This effect is associated with the very low value of the transverse speed of sound in rubber compared to that of the longitudinal polarization. The difference in transmission between elastic and viscoelastic rubber/air crystals results from attenuation of transmission over a very wide frequency range, leaving only narrow passing bands at very low frequencies. These phononic crystals demonstrate the practical design of elastic or viscoelastic solid rubber/air acoustic band gap sound barriers with small dimensions.

  9. Speed of fast and slow rupture fronts along frictional interfaces

    NASA Astrophysics Data System (ADS)

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Thøgersen, Kjetil; Scheibert, Julien; Malthe-Sørenssen, Anders

    2015-07-01

    The transition from stick to slip at a dry frictional interface occurs through the breaking of microjunctions between the two contacting surfaces. Typically, interactions between junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasistatic fronts, via fronts much slower than elastic wave speeds, to fronts faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic two-dimensional spring-block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that material slip speed and rupture front speed are proportional across the full range of front speeds we observe. We revisit a mechanism for slow slip in the model and demonstrate that fast slip and fast fronts have a different, inertial origin. We highlight the long transients in front speed even along homogeneous interfaces, and we study how both the local shear to normal stress ratio and the local strength are involved in the selection of front type and front speed. Last, we introduce an experimentally accessible integrated measure of block slip history, the Gini coefficient, and demonstrate that in the model it is a good predictor of the history-dependent local static friction coefficient of the interface. These results will contribute both to building a physically based classification of the various types of fronts and to identifying the important mechanisms involved in the selection of their propagation speed.

  10. Bilinearization of the generalized coupled nonlinear Schrödinger equation with variable coefficients and gain and dark-bright pair soliton solutions.

    PubMed

    Chakraborty, Sushmita; Nandy, Sudipta; Barthakur, Abhijit

    2015-02-01

    We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The coupled NLSE is a model equation for optical soliton propagation and their interaction in a multimode fiber medium or in a fiber array. By using Hirota's bilinear method, we obtain the bright-bright, dark-bright combinations of a one-soliton solution (1SS) and two-soliton solutions (2SS) for an n-coupled NLSE with variable coefficients and gain. Crucial properties of two-soliton (dark-bright pair) interactions, such as elastic and inelastic interactions and the dynamics of soliton bound states, are studied using asymptotic analysis and graphical analysis. We show that a bright 2-soliton, in addition to elastic interactions, also exhibits multiple inelastic interactions. A dark 2-soliton, on the other hand, exhibits only elastic interactions. We also observe a breatherlike structure of a bright 2-soliton, a feature that become prominent with gain and disappears as the amplitude acquires a minimum value, and after that the solitons remain parallel. The dark 2-soliton, however, remains parallel irrespective of the gain. The results found by us might be useful for applications in soliton control, a fiber amplifier, all optical switching, and optical computing.

  11. Acoustic and elastic properties of Sn(2)P(2)S(6) crystals.

    PubMed

    Mys, O; Martynyuk-Lototska, I; Grabar, A; Vlokh, R

    2009-07-01

    We present the results concerned with acoustic and elastic properties of Sn(2)P(2)S(6) crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.

  12. Effect of hydrostatic pressure on physical properties of strontium based fluoroperovskites for novel applications

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2018-02-01

    Density functional theory (DFT) is employed to calculate the effect of pressure variation on electronic structure, elastic parameters, mechanical durability, and thermodynamic aspects of SrRbF3, in combination with Quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which cubic stability of SrRbF3 fluoroperovskite remains valid. Significant influence of compression on wide range of elastic parameters and related mechanical properties have been discussed, to utilize this material in low birefringence lens fabrication technology. Apart of linear dependence on elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. Moreover, successful prediction of important thermodynamic aspects such as volume expansion coefficient (α), Debye temperature (θ D), heat capacities (Cp and Cv) are also done within wide pressure and temperature ranges.

  13. Neutral-neutral and neutral-ion collision integrals for Y2O3-Ar plasma system

    NASA Astrophysics Data System (ADS)

    Dhamale, Gayatri D.; Nath, Swastik; Mathe, Vikas L.; Ghorui, Srikumar

    2017-06-01

    A detailed investigation on the neutral-neutral and neutral-ion collision integrals is reported for Y2O3-Ar plasma, an important system of functional material with unique properties having a wide range of processing applications. The calculated integrals are indispensible pre-requisite for the estimation of transport properties needed in CFD modelling of associated plasma processes. Polarizability plays an important role in determining the integral values. Ambiguity in selecting appropriate polarizability data available in the literature and calculating effective number of electrons in the ionized species contributing to the polarizability are addressed. The integrals are evaluated using Lennard-Jones like phenomenological potential up to (l,s) = (4,4). Used interaction potential is suitable for both neutral-neutral and neutral-ion interactions. For atom-parent ion interactions, contribution coming from the inelastic resonant charge transfer process has been accounted properly together with that coming from the elastic counterpart. A total of 14 interacting species and 60 different interactions are considered. Key contributing factors like basic electronic properties of the interacting species and associated polarizability values are accounted carefully. Adopted methodology is first benchmarked against data reported in the literature and then applied to the Y2O3-Ar plasma system for estimating the collision integrals. Results are presented in the temperature range of 100 K-100 000 K.

  14. Evaluation of Shielding Performance for Newly Developed Composite Materials

    NASA Astrophysics Data System (ADS)

    Evans, Beren Richard

    This work details an investigation into the contributing factors behind the success of newly developed composite neutron shield materials. Monte Carlo simulation methods were utilized to assess the neutron shielding capabilities and secondary radiation production characteristics of aluminum boron carbide, tungsten boron carbide, bismuth borosilicate glass, and Metathene within various neutron energy spectra. Shielding performance and secondary radiation data suggested that tungsten boron carbide was the most effective composite material. An analysis of the macroscopic cross-section contributions from constituent materials and interaction mechanisms was then performed in an attempt to determine the reasons for tungsten boron carbide's success over the other investigated materials. This analysis determined that there was a positive correlation between a non-elastic interaction contribution towards a material's total cross-section and shielding performance within the thermal and epi-thermal energy regimes. This finding was assumed to be a result of the boron-10 absorption reaction. The analysis also determined that within the faster energy regions, materials featuring higher non-elastic interaction contributions were comparable to those exhibiting primarily elastic scattering via low Z elements. This allowed for the conclusion that composite shield success within higher energy neutron spectra does not necessitate the use elastic scattering via low Z elements. These findings suggest that the inclusion of materials featuring high thermal absorption properties is more critical to composite neutron shield performance than the presence of constituent materials more inclined to maximize elastic scattering energy loss.

  15. Myxococcus xanthus Gliding Motors Are Elastically Coupled to the Substrate as Predicted by the Focal Adhesion Model of Gliding Motility

    PubMed Central

    Balagam, Rajesh; Litwin, Douglas B.; Czerwinski, Fabian; Sun, Mingzhai; Kaplan, Heidi B.; Shaevitz, Joshua W.; Igoshin, Oleg A.

    2014-01-01

    Myxococcus xanthus is a model organism for studying bacterial social behaviors due to its ability to form complex multi-cellular structures. Knowledge of M. xanthus surface gliding motility and the mechanisms that coordinated it are critically important to our understanding of collective cell behaviors. Although the mechanism of gliding motility is still under investigation, recent experiments suggest that there are two possible mechanisms underlying force production for cell motility: the focal adhesion mechanism and the helical rotor mechanism, which differ in the biophysics of the cell–substrate interactions. Whereas the focal adhesion model predicts an elastic coupling, the helical rotor model predicts a viscous coupling. Using a combination of computational modeling, imaging, and force microscopy, we find evidence for elastic coupling in support of the focal adhesion model. Using a biophysical model of the M. xanthus cell, we investigated how the mechanical interactions between cells are affected by interactions with the substrate. Comparison of modeling results with experimental data for cell-cell collision events pointed to a strong, elastic attachment between the cell and substrate. These results are robust to variations in the mechanical and geometrical parameters of the model. We then directly measured the motor-substrate coupling by monitoring the motion of optically trapped beads and find that motor velocity decreases exponentially with opposing load. At high loads, motor velocity approaches zero velocity asymptotically and motors remain bound to beads indicating a strong, elastic attachment. PMID:24810164

  16. Surface instability of an imperfectly bonded thin elastic film under surface van der Waals forces

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Jing, Rong

    2017-02-01

    This paper studies surface instability of a thin elastic film imperfectly bonded to a rigid substrate interacting with a rigid contactor through van der Waals forces under plane strain conditions. The film-substrate interface is modeled as a linear spring with vanishing thickness described in terms of the normal and tangential interface parameters. Depending on the ratio of the two imperfect interface parameters, the critical value of the Poisson's ratio for the occurrence of surface wrinkling in the absence of surface energy can be greater than, equal to, or smaller than 0.25, which is the critical Poisson's ratio for a perfect film-substrate interface. The critical surface energy for the inhibition of the surface wrinkling is also obtained. Finally, we propose a very simple and effective method to study the surface instability of a multilayered elastic film with imperfect interfaces interacting with a rigid contactor or with another multilayered elastic film (or a multilayered simply supported plate) with imperfect interfaces.

  17. Dislocation-mediated growth of bacterial cell walls

    PubMed Central

    Amir, Ariel; Nelson, David R.

    2012-01-01

    Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference [Garner EC, et al., (2011) Science 333:222–225], [Domínguez-Escobar J, et al. (2011) Science 333:225–228], [van Teeffelen S, et al. (2011) PNAS 108:15822–15827]. We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall. PMID:22660931

  18. Moiré-pattern interlayer potentials in van der Waals materials in the random-phase approximation

    NASA Astrophysics Data System (ADS)

    Leconte, Nicolas; Jung, Jeil; Lebègue, Sébastien; Gould, Tim

    2017-11-01

    Stacking-dependent interlayer interactions are important for understanding the structural and electronic properties in incommensurable two-dimensional material assemblies where long-range moiré patterns arise due to small lattice constant mismatch or twist angles. Here we study the stacking-dependent interlayer coupling energies between graphene (G) and hexagonal boron nitride (BN) homo- and heterostructures using high-level random-phase approximation (RPA) ab initio calculations. Our results show that although total binding energies within LDA and RPA differ substantially by a factor of 200%-400%, the energy differences as a function of stacking configuration yield nearly constant values with variations smaller than 20%, meaning that LDA estimates are quite reliable. We produce phenomenological fits to these energy differences, which allows us to calculate various properties of interest including interlayer spacing, sliding energetics, pressure gradients, and elastic coefficients to high accuracy. The importance of long-range interactions (captured by RPA but not LDA) on various properties is also discussed. Parametrizations for all fits are provided.

  19. Elasticity and critical bending moment of model colloidal aggregates.

    PubMed

    Pantina, John P; Furst, Eric M

    2005-04-08

    The bending mechanics of singly bonded colloidal aggregates are measured using laser tweezers. We find that the colloidal bonds are capable of supporting significant torques, providing a direct measurement of the tangential interactions between particles. A critical bending moment marks the limit of linear bending elasticity, past which small-scale rearrangements occur. These mechanical properties underlie the rheology and dynamics of colloidal gels formed by diffusion-limited cluster aggregation, and give critical insight into the contact interactions between Brownian particles.

  20. Temperature Dependences of Dielectric, Elastic and Piezoelectric Properties of KIO 3 Single Crystals Associated with the Successive Phase Transitions

    NASA Astrophysics Data System (ADS)

    Maeda, Masaki; Takagi, Masayoshi; Suzuki, Ikuo

    2000-01-01

    Pottasium iodate, KIO3, belongs to the perovskite structure and undergoes successive phase transitions at T1= 212°C, T2= 72.5°C, T3=-15°C, T4=-160°C and T5=-240°C, respectively. The temperature dependences of the dielectric, elastic and piezoelectic properties have been measured in the temperature range from -263°C to 330°C.The superionic conductivity was found in the temperature range above T2. Pronounced dielectric dispersions in the frequency range below 10 kHz were observed around -160°C and -240°C and the data were analyzed by fitting to the Davidson-Cole and Havriliak-Negami dispersion formulas, respectively. Both dielectric anomalies are ascribed to the orientaional glass-transitions. The piezoelectric and elastic properties have been investigsated by the resonance-antiresonance method. The piezoelectric and elastic anomalies were observed at T2 and T3.

  1. C-Phycocyanin Hydration Water Dynamics in the Presence of Trehalose: An Incoherent Elastic Neutron Scattering Study at Different Energy Resolutions

    PubMed Central

    Gabel, Frank; Bellissent-Funel, Marie-Claire

    2007-01-01

    We present a study of C-phycocyanin hydration water dynamics in the presence of trehalose by incoherent elastic neutron scattering. By combining data from two backscattering spectrometers with a 10-fold difference in energy resolution we extract a scattering law S(Q,ω) from the Q-dependence of the elastic intensities without sampling the quasielastic range. The hydration water is described by two dynamically different populations—one diffusing inside a sphere and the other diffusing quasifreely—with a population ratio that depends on temperature. The scattering law derived describes the experimental data from both instruments excellently over a large temperature range (235–320 K). The effective diffusion coefficient extracted is reduced by a factor of 10–15 with respect to bulk water at corresponding temperatures. Our approach demonstrates the benefits and the efficiency of using different energy resolutions in incoherent elastic neutron scattering over a large angular range for the study of biological macromolecules and hydration water. PMID:17350998

  2. Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan

    2007-01-01

    Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion

  3. The effects of pin elasticity, clearance, and friction on the stresses in a pin-loaded orthotropic plate

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Klang, E. C.; Cooper, D. E.

    1987-01-01

    The effects of pin elasticity, clearance, and friction on the stresses in a pin loaded orthotropic plate are studied. The effects are studied by posing the problem as a planar contact elasticity problem, the pin and the plate being two elastic bodies which interact through contact. Coulomb friction is assumed, the pin loads the plate in one of its principal material directions, and the plate is infinite in extent. A collocation scheme and interaction, in conjunction with a complex variable series solution, are used to obtain numerical results. The contact region between the plate and pin is unknown and must be solved for as part of the solution. The same is true of the region of friction induced no slip. Two pin stiffnesses, two clearance levels, two friction levels and two laminates, a (0/+ or - 45/90)s and a (02/+ or - 45)s, are studied. The effects of pin elasticity, clearance, and friction on the load capacity of the plate are assessed by comparing the load capacity of the plate with the capacity when the pin is rigid, perfectly fitting, and frictionless.

  4. Striated Acto-Myosin Fibers Can Reorganize and Register in Response to Elastic Interactions with the Matrix

    PubMed Central

    Friedrich, Benjamin M.; Buxboim, Amnon; Discher, Dennis E.; Safran, Samuel A.

    2011-01-01

    The remarkable striation of muscle has fascinated many for centuries. In developing muscle cells, as well as in many adherent, nonmuscle cell types, striated, stress fiberlike structures with sarcomere-periodicity tend to register: Based on several studies, neighboring, parallel fibers at the basal membrane of cultured cells establish registry of their respective periodic sarcomeric architecture, but, to our knowledge, the mechanism has not yet been identified. Here, we propose for cells plated on an elastic substrate or adhered to a neighboring cell, that acto-myosin contractility in striated fibers close to the basal membrane induces substrate strain that gives rise to an elastic interaction between neighboring striated fibers, which in turn favors interfiber registry. Our physical theory predicts a dependence of interfiber registry on externally controllable elastic properties of the substrate. In developing muscle cells, registry of striated fibers (premyofibrils and nascent myofibrils) has been suggested as one major pathway of myofibrillogenesis, where it precedes the fusion of neighboring fibers. This suggests a mechanical basis for the optimal myofibrillogenesis on muscle-mimetic elastic substrates that was recently observed by several groups in cultures of mouse-, human-, and chick-derived muscle cells. PMID:21641316

  5. Determination of Ice Crust Thickness from Flanking Cracks Along Ridges on Europa

    NASA Technical Reports Server (NTRS)

    Billings, S. E.; Kattenhorn, S. A.

    2002-01-01

    We use equations describing the deflection of an elastic plate below a line load to estimate ice crust thickness below ridges on Europa. Using a range of elastic parameters, ice thickness is calculated to fall in the range 0.2 2.6 km. Additional information is contained in the original extended abstract.

  6. Development of Standardized Material Testing Protocols for Prosthetic Liners

    PubMed Central

    Cagle, John C.; Reinhall, Per G.; Hafner, Brian J.; Sanders, Joan E.

    2017-01-01

    A set of protocols was created to characterize prosthetic liners across six clinically relevant material properties. Properties included compressive elasticity, shear elasticity, tensile elasticity, volumetric elasticity, coefficient of friction (CoF), and thermal conductivity. Eighteen prosthetic liners representing the diverse range of commercial products were evaluated to create test procedures that maximized repeatability, minimized error, and provided clinically meaningful results. Shear and tensile elasticity test designs were augmented with finite element analysis (FEA) to optimize specimen geometries. Results showed that because of the wide range of available liner products, the compressive elasticity and tensile elasticity tests required two test maxima; samples were tested until they met either a strain-based or a stress-based maximum, whichever was reached first. The shear and tensile elasticity tests required that no cyclic conditioning be conducted because of limited endurance of the mounting adhesive with some liner materials. The coefficient of friction test was based on dynamic coefficient of friction, as it proved to be a more reliable measurement than static coefficient of friction. The volumetric elasticity test required that air be released beneath samples in the test chamber before testing. The thermal conductivity test best reflected the clinical environment when thermal grease was omitted and when liner samples were placed under pressure consistent with load bearing conditions. The developed procedures provide a standardized approach for evaluating liner products in the prosthetics industry. Test results can be used to improve clinical selection of liners for individual patients and guide development of new liner products. PMID:28233885

  7. Non-ambiguous recovery of Biot poroelastic parameters of cellular panels using ultrasonicwaves

    NASA Astrophysics Data System (ADS)

    Ogam, Erick; Fellah, Z. E. A.; Sebaa, Naima; Groby, J.-P.

    2011-03-01

    The inverse problem of the recovery of the poroelastic parameters of open-cell soft plastic foam panels is solved by employing transmitted ultrasonic waves (USW) and the Biot-Johnson-Koplik-Champoux-Allard (BJKCA) model. It is shown by constructing the objective functional given by the total square of the difference between predictions from the BJKCA interaction model and experimental data obtained with transmitted USW that the inverse problem is ill-posed, since the functional exhibits several local minima and maxima. In order to solve this problem, which is beyond the capability of most off-the-shelf iterative nonlinear least squares optimization algorithms (such as the Levenberg Marquadt or Nelder-Mead simplex methods), simple strategies are developed. The recovered acoustic parameters are compared with those obtained using simpler interaction models and a method employing asymptotic phase velocity of the transmitted USW. The retrieved elastic moduli are validated by solving an inverse vibration spectroscopy problem with data obtained from beam-like specimens cut from the panels using an equivalent solid elastodynamic model as estimator. The phase velocities are reconstructed using computed, measured resonance frequencies and a time-frequency decomposition of transient waves induced in the beam specimen. These confirm that the elastic parameters recovered using vibration are valid over the frequency range ofstudy.

  8. Pneumatic Variable Series Elastic Actuator.

    PubMed

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-08-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  9. Viscoelastic fluid-structure interactions between a flexible cylinder and wormlike micelle solution

    NASA Astrophysics Data System (ADS)

    Dey, Anita A.; Modarres-Sadeghi, Yahya; Rothstein, Jonathan P.

    2018-06-01

    It is well known that when a flexible or flexibly mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices at high Reynolds numbers. Unlike Newtonian fluids, the flow of viscoelastic fluids can become unstable even at infinitesimal Reynolds numbers due to a purely elastic flow instability that can occur at large Weissenberg numbers. Recent work has shown that these elastic flow instabilities can drive the motion of flexible sheets. The fluctuating fluid forces exerted on the structure from the elastic flow instabilities can lead to a coupling between an oscillatory structural motion and the state of stress in the fluid flow. In this paper, we present the results of an investigation into the flow of a viscoelastic wormlike micelle solution past a flexible circular cylinder. The time variation of the flow field and the state of stress in the fluid are shown using a combination of particle image tracking and flow-induced birefringence images. The static and dynamic responses of the flexible cylinder are presented for a range of flow velocities. The nonlinear dynamics of the structural motion is studied to better understand an observed transition from a symmetric to an asymmetric structural deformation and oscillation behavior.

  10. Pneumatic Variable Series Elastic Actuator

    PubMed Central

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-01-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on–off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator. PMID:27354755

  11. Temporal Modulation of Stem Cell Activity Using Magnetoactive Hydrogels.

    PubMed

    Abdeen, Amr A; Lee, Junmin; Bharadwaj, N Ashwin; Ewoldt, Randy H; Kilian, Kristopher A

    2016-10-01

    Cell activity is coordinated by dynamic interactions with the extracellular matrix, often through stimuli-mediated spatiotemporal stiffening and softening. Dynamic changes in mechanics occur in vivo through enzymatic or chemical means, processes which are challenging to reconstruct in cell culture materials. Here a magnetoactive hydrogel material formed by embedding magnetic particles in a hydrogel matrix is presented whereby elasticity can be modulated reversibly by attenuation of a magnetic field. Orders of magnitude change in elasticity using low magnetic fields are shown and reversibility of stiffening with simple permanent magnets is demonstrated. The broad applicability of this technique is demonstrated with two therapeutically relevant bioactivities in mesenchymal stem cells: secretion of proangiogenic molecules, and dynamic control of osteogenesis. The ability to reversibly stiffen cell culture materials across the full spectrum of soft tissue mechanics, using simple materials and commercially available permanent magnets, makes this approach viable for a broad range of laboratory environments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Forces on intraocular lens haptics induced by capsular fibrosis. An experimental study.

    PubMed

    Guthoff, R; Abramo, F; Draeger, J; Chumbley, L C; Lang, G K; Neumann, W

    1990-01-01

    Electronic dynamometry measurements, performed upon intraocular lens (IOL) haptics of prototype one-piece three-loop silicone lenses, accurately defined the relationships between elastic force and haptic displacement. Lens implantations in the capsular bag of dogs (loop span equal to capsular bag diameter, loops underformed immediately after the operation) were evaluated macrophotographically 5-8 months postoperatively. The highly constant elastic property of silicon rubber permitted quantitative correlation of subsequent in vivo haptic displacement with the resultant force vectors responsible for tissue contraction. The lens optics were well centered in 17 (85%) and slightly offcenter in 3 (15%) of 20 implanted eyes. Of the 60 supporting loops, 28 could be visualized sufficiently well to permit reliable haptic measurement. Of these 28, 20 (71%) were clearly displaced, ranging from 0.45 mm away from to 1.4 mm towards the lens' optic center. These extremes represented resultant vector forces of 0.20 and 1.23 mN respectively. Quantitative vector analysis permits better understanding of IOL-capsular interactions.

  13. Analysis of operational limit of an aircraft: An aeroelastic approach

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Mehedi; Hassan, M. D. Mehedi; Sarrowar, S. M. Bayazid; Faisal, Kh. Md.; Ahmed, Sheikh Reaz, Dr.

    2017-06-01

    In classical theory of elasticity, external loading acting on the body is independent of deformation of the body. But, in aeroelasticity, aerodynamic forces depend on the attitude of the body relative to the flow. Aircraft's are subjected to a range of static loads resulting from equilibrium or steady flight maneuvers such as coordinated level turn, steady pitch and bank rate, steady and level flight. Interaction of these loads with elastic forces of aircraft structure creates some aeroelastic phenomena. In this paper, we have summarized recent developments in the area of aeroelasticity. A numerical approach has been applied for finding divergence speed, a static aeroelastic phenomena, of a typical aircraft. This paper also involves graphical representations of constraints on load factor and bank angle during different steady flight maneuvers taking flexibility into account and comparing it with the value without flexibility. Effect of wing skin thickness, spar web thickness and position of flexural axis of wing on this divergence speed as well as load factor and bank angle has also been observed using MATLAB.

  14. Confinement effects in premelting dynamics

    NASA Astrophysics Data System (ADS)

    Pramanik, Satyajit; Wettlaufer, John

    2017-11-01

    We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films studied in a wide variety of materials using a power law and we examine the consequent evolution of the elastic wall. We treat (i) a range of interactions that are known to underlie interfacial premelting and (ii) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at larger temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.

  15. Confinement effects in premelting dynamics

    NASA Astrophysics Data System (ADS)

    Pramanik, Satyajit; Wettlaufer, John S.

    2017-11-01

    We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films, studied in a wide variety of materials, using a power law and we examine the consequent evolution of the confining elastic wall. We treat (1) a range of interactions that are known to underlie interfacial premelting and (2) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at higher temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Formaggio, J. A.; Zeller, G. P.

    Since its original postulation by Wolfgang Pauli in 1930, the neutrino has played a prominent role in our understanding of nuclear and particle physics. In the intervening 80 years, scientists have detected and measured neutrinos from a variety of sources, both man-made and natural. Underlying all of these observations, and any inferences we may have made from them, is an understanding of how neutrinos interact with matter. Knowledge of neutrino interaction cross sections is an important and necessary ingredient in any neutrino measurement. With the advent of new precision experiments, the demands on our understanding of neutrino interactions is becomingmore » even greater. The purpose of this article is to survey our current knowledge of neutrino cross sections across all known energy scales: from the very lowest energies to the highest that we hope to observe. The article covers a wide range of neutrino interactions including coherent scattering, neutrino capture, inverse beta decay, low energy nuclear interactions, quasi-elastic scattering, resonant pion production, kaon production, deep inelastic scattering and ultra-high energy interactions. Strong emphasis is placed on experimental data whenever such measurements are available.« less

  17. Elastic properties of suspended black phosphorus nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jia-Ying; Li, Yang; Zhen, Liang

    2016-01-04

    The mechanical properties of black phosphorus (BP) nanosheets suspended over circular holes were measured by an atomic force microscope nanoindentation method. The continuum mechanic model was introduced to calculate the elastic modulus and pretension of BP nanosheets with thicknesses ranging from 14.3 to 34 nm. Elastic modulus of BP nanosheets declines with thickness, and the maximum value is 276 ± 32.4 GPa. Besides, the effective strain of BP ranges from 8 to 17% with a breaking strength of 25 GPa. Our results show that BP nanosheets serve as a promising candidate for flexible electronic applications.

  18. Peculiarities of evolutions of elastic-plastic shock compression waves in different materials

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Savinykh, A. S.; Garkushin, G. V.; Razorenov, S. V.; Ashitkov, S. I.; Zaretsky, E. B.

    2016-11-01

    In the paper, we discuss such unexpected features in the wave evolution in solids as strongly nonlinear uniaxial elastic compression in a picosecond time range, a departure from self-similar development of the wave process which is accompanied with apparent sub-sonic wave propagation, changes of shape of elastic precursor wave as a result of variations in the material structure and the temperature, unexpected peculiarities of reflection of elastic-plastic waves from free surface.

  19. Flagellar Kinematics and Swimming of Algal Cells in Viscoelastic Fluids

    PubMed Central

    Qin, B.; Gopinath, A.; Yang, J.; Gollub, J. P.; Arratia, P. E.

    2015-01-01

    The motility of microorganisms is influenced greatly by their hydrodynamic interactions with the fluidic environment they inhabit. We show by direct experimental observation of the bi-flagellated alga Chlamydomonas reinhardtii that fluid elasticity and viscosity strongly influence the beating pattern - the gait - and thereby control the propulsion speed. The beating frequency and the wave speed characterizing the cyclical bending are both enhanced by fluid elasticity. Despite these enhancements, the net swimming speed of the alga is hindered for fluids that are sufficiently elastic. The origin of this complex response lies in the interplay between the elasticity-induced changes in the spatial and temporal aspects of the flagellar cycle and the buildup and subsequent relaxation of elastic stresses during the power and recovery strokes. PMID:25778677

  20. Handling Qualities of Large Flexible Aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Poopaka, S.

    1980-01-01

    The effects on handling qualities of elastic modes interaction with the rigid body dynamics of a large flexible aircraft are studied by a mathematical computer simulation. An analytical method to predict the pilot ratings when there is a severe modes interactions is developed. This is done by extending the optimal control model of the human pilot response to include the mode decomposition mechanism into the model. The handling qualities are determined for a longitudinal tracking task using a large flexible aircraft with parametric variations in the undamped natural frequencies of the two lowest frequency, symmetric elastic modes made to induce varying amounts of mode interaction.

  1. Measurement of GEP/GMP to Q2 = 5.6 GEV2 via Recoil Polarization at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Gayou, Olivier

    2001-10-01

    The measurement of the elastic form factors is a key ingredient to any complete understanding of the internal structure of the nucleons, and ultimately of the strong force. Precise data are essential to impose stringent tests on any QCD-based theory. The electromagnetic interaction provides a unique tool to investigate these form factors. In elastic electron scattering off a proton, the electron interacts with the nucleon exchanging a virtual photon. The electron-photon interaction is fully understood from QED, hence making the hadron vertex the only unknown of the reaction...

  2. Determining the elastic properties of aptamer-ricin single molecule multiple pathways

    USDA-ARS?s Scientific Manuscript database

    Ricin and an anti-ricin aptamer showed three stable binding conformations with their special chemomechanical properties. The elastic properties of the ricin-aptamer single-molecule interactions were investigated by the dynamic force spectroscopy (DFS). The worm-like-chain model and Hook’s law were ...

  3. Elastic scattering and soft diffraction with ALFA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puzo, P.

    The ALFA detector in ATLAS aims at measuring the absolute luminosity and the total cross-section with 2-3% accuracy. Its uses elastically scattered protons whose impact position on a fiber detector, located 240 m away from the interaction point, allow a measurement of the scattering angle.

  4. Nucleon-nucleon elastic scattering analysis to 2.5 GeV

    NASA Astrophysics Data System (ADS)

    Arndt, Richard A.; Heon Oh, Chang; Strakovsky, Igor I.; Workman, Ron L.; Dohrmann, Frank

    1997-12-01

    A partial-wave analysis of NN elastic scattering data has been completed. This analysis covers an expanded energy range, from threshold to a laboratory kinetic energy of 2.5 GeV, in order to include recent elastic pp scattering data from the EDDA Collaboration. The results of both single-energy and energy-dependent analyses are described.

  5. Vibrational and elastic properties of silicate spinels A2SiO4 (A = Mg, Fe, Ni, and Co)

    NASA Astrophysics Data System (ADS)

    Kushwaha, A. K.; Ma, C.-G.; Brik, M. G.; Akbudak, S.

    2018-06-01

    A six-parameter bond-bending force constant model is used to calculate the zone-center (Γ = 0) Raman and infrared phonon mode frequencies, elastic constants and related properties, the Debye temperatures, and sound velocities along high-symmetry directions for A2SiO4 (A = Mg, Fe, Ni, and Co) spinels. The main outcomes of the calculations are that the interactions between Si and O atoms (first-neighbor interaction) are stronger than those between A and Oatoms (A = Mg, Fe, Ni, and Co) (second-neighbor interaction). The elastic constants C11, C12, and C44 decrease in the order Mg > Fe > Ni > Co. The calculated bulk modulus, Poisson's ratio, and anisotropy decrease in the sequence Fe2SiO4 → Ni2SiO4 → Co2SiO4 → Mg2SiO4. On comparison, we find overall good agreement with the available experimental and previously calculated data.

  6. Viscoelasticity promotes collective swimming of sperm

    NASA Astrophysics Data System (ADS)

    Tung, Chih-Kuan; Harvey, Benedict B.; Fiore, Alyssa G.; Ardon, Florencia; Suarez, Susan S.; Wu, Mingming

    From flocking birds to swarming insects, interactions of organisms large and small lead to the emergence of collective dynamics. Here, we report striking collective swimming of bovine sperm, with sperm orienting in the same direction within each cluster, enabled by the viscoelasticity of the fluid. A long-chain polyacrylamide solution was used as a model viscoelastic fluid such that its rheology can be fine-tuned to mimic that of bovine cervical mucus. In viscoelastic fluid, sperm formed dynamic clusters, and the cluster size increased with elasticity of the polyacrylamide solution. In contrast, sperm swam randomly and individually in Newtonian fluids of similar viscosity. Analysis of the fluid motion surrounding individual swimming sperm indicated that sperm-fluid interaction is facilitated by the elastic component of the fluid. We note that almost all biological fluids (e.g. mucus and blood) are viscoelastic in nature, this finding highlights the importance of fluid elasticity in biological function. We will discuss what the orientation fluctuation within a cluster reveals about the interaction strength. Supported by NIH Grant 1R01HD070038.

  7. Common misconceptions about the dynamical theory of crystal lattices: Cauchy relations, lattice potentials and infinite crystals

    NASA Astrophysics Data System (ADS)

    Elcoro, Luis; Etxebarria, Jesús

    2011-01-01

    The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used solid-state textbooks. Frequently, pair interaction is even considered to be the most general situation. In addition, it is shown that the demand of rotational invariance in an infinite crystal leads to inconsistencies in the symmetry of the elastic tensor. However, for finite crystals, no problems arise, and the Huang conditions are deduced using exclusively a microscopic approach for the elasticity theory, without making any reference to macroscopic parameters. This work may be useful in both undergraduate and graduate level courses to point out the crudeness of the pair-potential interaction and to explore the limits of the infinite-crystal approximation.

  8. Marangoni-induced symmetry-breaking pattern selection on viscous fluids

    NASA Astrophysics Data System (ADS)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2016-11-01

    Symmetry breaking transitions on curved surfaces are found in a wide range of dissipative systems, ranging from asymmetric cell divisions to structure formation in thin films. Inherent within the nonlinearities are the associated curvilinear geometry, the elastic stretching, bending and the various fluid dynamical processes. We present a generalised Swift-Hohenberg pattern selection theory on a thin, curved and viscous films in the presence of non-trivial Marangoni effect. Testing the theory with experiments on soap bubbles, we observe the film pattern selection to mimic that of the elastic wrinkling morphology on a curved elastic bilayer in regions of slow viscous flow. By examining the local state of damping of surface capillary waves we attempt to establish an equivalence between the Marangoni fluid dynamics and the nonlinear elastic shell theory above the critical wavenumber of the instabilities and propose a possible explanation for the perceived elastic-fluidic duality. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  9. Determination of mechanical properties of polymer film materials

    NASA Technical Reports Server (NTRS)

    Hughes, E. J.; Rutherford, J. L.

    1975-01-01

    Five polymeric film materials, Tedlar, Teflon, Kapton H, Kapton F, and a fiberglass reinforced polyimide, PG-402, in thickness ranging from 0.002 to 0.005 inch, were tested over a temperature range of -195 to 200 C in the "machine" and transverse direction to determine: elastic modulus, Poisson's ratio, three percent offset yield stress, fracture stress, and strain to fracture. The elastic modulus, yield stress and fracture stress decreased with increasing temperature for all the materials while the fracture strain increased. Teflon and Tedlar had the greatest temperature dependence and PG-402 the least. At 200 C the Poisson ratio values ranged from 0.39 to 0.5; they diminished as the temperature decreased covering a range of 0.26 to 0.42 at -195 C. Shortening the gauge length from eight inches to one inch increased the strain to fracture and lowered the elastic modulus values.

  10. Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network

    PubMed Central

    Hu, Meng; He, Julong; Zhao, Zhisheng; Strobel, Timothy A.; Hu, Wentao; Yu, Dongli; Sun, Hao; Liu, Lingyu; Li, Zihe; Ma, Mengdong; Kono, Yoshio; Shu, Jinfu; Mao, Ho-kwang; Fei, Yingwei; Shen, Guoyin; Wang, Yanbin; Juhl, Stephen J.; Huang, Jian Yu; Liu, Zhongyuan; Xu, Bo; Tian, Yongjun

    2017-01-01

    Carbon’s unique ability to have both sp2 and sp3 bonding states gives rise to a range of physical attributes, including excellent mechanical and electrical properties. We show that a series of lightweight, ultrastrong, hard, elastic, and conductive carbons are recovered after compressing sp2-hybridized glassy carbon at various temperatures. Compression induces the local buckling of graphene sheets through sp3 nodes to form interpenetrating graphene networks with long-range disorder and short-range order on the nanometer scale. The compressed glassy carbons have extraordinary specific compressive strengths—more than two times that of commonly used ceramics—and simultaneously exhibit robust elastic recovery in response to local deformations. This type of carbon is an optimal ultralight, ultrastrong material for a wide range of multifunctional applications, and the synthesis methodology demonstrates potential to access entirely new metastable materials with exceptional properties. PMID:28630918

  11. Practical solution of plastic deformation problems in elastic-plastic range

    NASA Technical Reports Server (NTRS)

    Mendelson, A; Manson, S

    1957-01-01

    A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.

  12. Configuration interaction of hydropathic waves enables ubiquitin functionality

    NASA Astrophysics Data System (ADS)

    Allan, Douglas C.; Phillips, J. C.

    2018-02-01

    Ubiquitin, discovered less than 50 years ago, tags thousands of diseased proteins for destruction. It is small (only 76 amino acids), and is found unchanged in mammals, birds, fish and even worms. Key features of its functionality are identified here using critical point thermodynamic scaling theory. These include Fano interference between first- and second-order elements of correlated long-range globular surface shape transitions. Comparison with its closest relative, 76 amino acid Nedd8, shows that the latter lacks these features. A cracked elastic network model is proposed for the common target shared by many diseased proteins.

  13. Development and evaluation of gas-pressurized elastic sleeves for extravehicular activity.

    PubMed

    Tanaka, Kunihiko; Tohnan, Momoka; Abe, Chikara; Iwata, Chihiro; Yamagata, Kenji; Tanaka, Masao; Tanaka, Nobuyuki; Morita, Hironobu

    2010-07-01

    In space, mobility of the current extravehicular activity space suit is limited due to the pressure differential between the inside and outside of the suit. We have previously demonstrated that an elastic glove increased mobility when compared with a non-elastic glove such as that found in the current suit. Extending this work, we hypothesized that an elastic sleeve would also have more mobility compared to a non-elastic sleeve, but a partially elastic sleeve, consisting of elastic joints sewn to non-elastic parts in low mobility areas, might generate similar mobility to a wholly elastic sleeve. The right arms of 10 volunteers were studied with wholly elastic, partially elastic, and non-elastic sleeves in a chamber pressure of -220 mmHg. Range of motion (ROM) of the wrist and electromyography (EMG) of the flexor carpi radialis muscle and the biceps brachii muscle during wrist and elbow flexion were measured. ROM of the wrist was similar among all the sleeves. However, EMG amplitudes during wrist flexion with both elastic sleeves were significantly smaller than that with the non-elastic sleeve. EMG amplitudes during 90 degrees of elbow flexion were also significantly smaller in both elastic sleeves. However, no significant difference in EMG amplitudes was observed between the two elastic sleeves (0.53 +/- 0.06, 0.56 +/- 0.07, 1.14 +/- 0.10 V for wholly elastic, partially elastic, and non-elastic sleeves, respectively). The mobility of elastic sleeves is better than that of a non-elastic sleeve. Elasticity over the joints is important; however the elasticity of the other parts does not appear to affect mobility.

  14. MR elastography of the breast:preliminary clinical results.

    PubMed

    Lorenzen, J; Sinkus, R; Lorenzen, M; Dargatz, M; Leussler, C; Röschmann, P; Adam, G

    2002-07-01

    Imaging of breast tumors and various breast tissues using magnetic resonance (MR) elastography (MRE) to explore the potential of elasticity as a new parameter for the diagnosis of breast lesions. Low-frequency mechanical waves are transmitted into breast tissue by means of an oscillator. The local characteristics of the mechanical wave are determined by the underlying elastic properties of the tissue. Theses waves can be displayed by means of a motion-sensitive spin-echo MR sequence within the phase of the MR image. Elasticity reconstruction is performed on the basis of 8 "snapshots" of each wave within the three spatial directions. We performed in-vivo measurements in 15 female patients with malignant tumors of the breast, 5 patients with benign breast tumors, and 15 healthy volunteers. Malignant invasive breast tumors documented the highest values of elasticity with a median of 15.9 kPa and a wide range of stiffnesses between 8 and 28 kPa. In contrast, benign breast lesions represented low values of elasticity, which were significantly different from malignant breast tumors (median elasticity: 7.0 kPa; p = 0.0012). This was comparable to the stiffest tissue areas in healthy volunteers (median elasticity 7.0 kPa), whereas breast parenchyma (median: 2.5 kPa) and fatty breast tissue (median: 1.7 kPa) showed the lowest values of elasticity. Two invasive ductal carcinomas had elasticity values of 8 kPa and two stiff parenchyma areas in healthy volunteers had elasticities of 13 and 15 kPa. These lesions could not be differentiated by their elasticity. We conclude that MRE is a promising new imaging modality with the capability to assess the viscoelastic properties of breast tumors and the surrounding tissues. However, from our preliminary results in a small number of patients it is obvious that there is an overlap in the elasticity ranges of soft malignant tumors and stiff benign lesions.

  15. Estimating Price Elasticity using Market-Level Appliance Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, K. Sydny

    This report provides and update to and expansion upon our 2008 LBNL report “An Analysis of the Price Elasticity of Demand for Appliances,” in which we estimated an average relative price elasticity of -0.34 for major household appliances (Dale and Fujita 2008). Consumer responsiveness to price change is a key component of energy efficiency policy analysis; these policies influence consumer purchases through price both explicitly and implicitly. However, few studies address appliance demand elasticity in the U.S. market and public data sources are generally insufficient for rigorous estimation. Therefore, analysts have relied on a small set of outdated papers focusedmore » on limited appliance types, assuming long-term elasticities estimated for other durables (e.g., vehicles) decades ago are applicable to current and future appliance purchasing behavior. We aim to partially rectify this problem in the context of appliance efficiency standards by revisiting our previous analysis, utilizing data released over the last ten years and identifying additional estimates of durable goods price elasticities in the literature. Reviewing the literature, we find the following ranges of market-level price elasticities: -0.14 to -0.42 for appliances; -0.30 to -1.28 for automobiles; -0.47 to -2.55 for other durable goods. Brand price elasticities are substantially higher for these product groups, with most estimates -2.0 or more elastic. Using market-level shipments, sales value, and efficiency level data for 1989-2009, we run various iterations of a log-log regression model, arriving at a recommended range of short run appliance price elasticity between -0.4 and -0.5, with a default value of -0.45.« less

  16. Propagating elastic vibrations dominate thermal conduction in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Moon, Jaeyun; Latour, Benoit; Minnich, Austin J.

    2018-01-01

    The thermal atomic vibrations of amorphous solids can be distinguished by whether they propagate as elastic waves or do not propagate due to lack of atomic periodicity. In a -Si, prior works concluded that nonpropagating waves are the dominant contributors to heat transport, with propagating waves being restricted to frequencies less than a few THz and scattered by anharmonicity. Here, we present a lattice and molecular dynamics analysis of vibrations in a -Si that supports a qualitatively different picture in which propagating elastic waves dominate the thermal conduction and are scattered by local fluctuations of elastic modulus rather than anharmonicity. We explicitly demonstrate the propagating nature of waves up to around 10 THz, and further show that pseudoperiodic structures with homogeneous elastic properties exhibit a marked temperature dependence characteristic of anharmonic interactions. Our work suggests that most heat is carried by propagating elastic waves in a -Si and demonstrates that manipulating local elastic modulus variations is a promising route to realize amorphous materials with extreme thermal properties.

  17. Strain effects and intermixing at the Si surface: Importance of long-range elastic corrections in first-principles calculations

    DOE PAGES

    Béland, Laurent Karim; Machado-Charry, Eduardo; Pochet, Pascal; ...

    2014-10-06

    Here we investigate Ge mixing at the Si(001) surface and characterize the 2 N Si(001) reconstruction by means of hybrid quantum and molecular mechanics calculations (QM/MM). Avoiding fake elastic dampening, this scheme allows to correctly take into account long range deformation induced by reconstructed and defective surfaces. We focus in particular on the dimer vacancy line (DVL) and its interaction with Ge adatoms. We first show that calculated formation energies for these defects are highly dependent on the choice of chemical potential and that the latter must be chosen carefully. Characterizing the effect of the DVL on the deformation field,more » we also find that the DVL favors Ge segregation in the fourth layer close to the DVL. Using the activation-relaxation technique (ART nouveau) and QM/MM, we show that a complex diffusion path permits the substitution of the Ge atom in the fourth layer, with barriers compatible with mixing observed at intermediate temperature. We also show that the use of QM/MM results in much more signi cant corrections at the saddle points (up to 0.5 eV) that at minima, demonstrating its importance for describing kinetics correctly.« less

  18. A Numerical Model of Viscoelastic Layer Entrainment by Airflow in Cough

    NASA Astrophysics Data System (ADS)

    Mitran, Sorin M.

    2008-07-01

    Coughing is an alternative mode of ensuring mucus clearance in the lung when normal cilia induced flow breaks down. A numerical model of this process is presented with the following aspects. (1) A portion of the airway comprising the first three bronchus generations is modeled as radially reinforced elastic tubes. Elasticity equations are solved to predict airway deformation under effect of airway pressure. (2) The compressible, turbulent flow induced by rapid lung contraction is modeled by direct numerical simulation for Reynolds numbers in the range 5,000-10,000 and by Large Eddy Simulation for Reynolds numbers in the range 5,000-40,000. (3) A two-layer model of the airway surface liquid (ASL) covering the airway epithelial layer is used. The periciliary liquid (PCL) in direct contact with the epithelial layer is considered to be a Newtonian fluid. Forces modeling cilia beating can act upon this layer. The mucus layer between the PCL and the interior airflow is modeled as an Oldroyd-B fluid. The overall computation is a fluid-structure interaction simulation that tracks changes in ASL thickness and airway diameters that result from impulsive airflow boundary conditions imposed at bronchi ends. In particular, the amount of mucus that is evacuated from the system is computed as a function of cough intensity and mucus rheological properties.

  19. Long-wave dynamics of an elastic sheet lubricated by a thin liquid film on a wetting substrate

    NASA Astrophysics Data System (ADS)

    Young, Y.-N.; Stone, H. A.

    2017-06-01

    The dynamics of an elastic sheet lubricated by a thin liquid film on a wetting solid substrate is examined using both numerical simulations of a long-wave lubrication equation and a quasistatic model. Interactions between the liquid and the wetting substrate are modeled by a disjoining pressure that gives rise to an ultrathin (precursor) film. For a fluid interface without elastic bending stiffness, a flat precursor film may be linearly unstable and evolve towards an equilibrium of a single "drop" connected to a flat ultrathin film. Similar behavior is found when the thin film is covered by an elastic sheet: The sheet deforms, rearranging the thin liquid film, and contributes regulating surface forces such as a bending resistance and/or a tensile force, which may arise from interactions between the sheet and liquid or inextensibility of the sheet. Glasner's quasistatic model [Phys. Fluids 15, 1837 (2003), 10.1063/1.1578076], developed for a liquid film, is adopted to investigate the combined effects of elastic and tensile forces in the sheet on the thin film dynamics. The equilibrium height of the drop is found to vary inversely with the bending rigidity. When the elastic sheet is inextensible (such as a lipid bilayer membrane), a compressive tensile force may occur and the equilibrium film height is dependent less on the bending rigidity and more on the excess area of the membrane. Analyses of the lubrication equation also show that the precursor film transitions monotonically to the core film for tension-dominated dynamics. In contrast, for elasticity-dominated dynamics, a spatial oscillation of film height in the contact line region is found. In addition, elasticity in the sheet causes a sliding motion of the thin film: the contact angle is rendered zero by elasticity, and the contact line moves at a finite speed.

  20. Elastic scattering spectroscopy of coagulated brain tissues

    NASA Astrophysics Data System (ADS)

    Ateş, Filiz; Tabakoğlu, Haşim Özgür; Bozkulak, Özgüncem; Canpolat, Murat; Gülsoy, Murat

    2006-02-01

    The goal of this study was to differentiate the parts of lamb brain according to elastic scattering spectroscopy and detect the optical alterations due to coagulation. Cells and tissues are not uniform and have complex structures and shapes. They can be referred to as scattering particles. The process of scattering depends on the light wavelength and on the scattering medium properties; especially on the size and the density of the medium. When elastic scattering spectroscopy (ESS) is employed, the morphological alterations of tissues can be detected using spectral measurements of the elastic scattered light over a wide range of wavelengths. In this study firstly, the slopes of ESS spectra were used to differentiate the parts of lamb brains (brainstem, cerebellum, gray matter, white matter) in vitro in the range of 450 - 750 nm. Secondly, tissues were coagulated at different temperatures (45, 60, and 80 °C) and ESS spectra were taken from native and coagulated tissues. It was observed that as the coagulation temperature increased, the slope of the elastic scattering spectra decreased. Thus, optical properties of tissues were changed with respect to the change in nuclear to cytoplasmic ratio due to the water loss. Results showed that the slopes of ESS spectra in the visible range revealed valuable information about the morphological changes caused by coagulation.

  1. An evaluation of flexible intramedullary nail fixation in femoral shaft fractures in paediatric age group.

    PubMed

    Kumar, Sanjay; Roy, Sandip Kumar; Jha, Amrish Kumar; Chatterjee, Debdutta; Banerjee, Debabrata; Garg, Anant Kumar

    2011-06-01

    Sixty-two femoral shaft fractures in 60 patients treated by elastic intramedullary nailing with mean age of the patients being 9.2 years (range 5 years to 12 years) and average follow-up of 15 months (range 7 months to 60 months) are evaluated. Twenty-eight fractures were fixed with titanium elastic nail while 34 fractures were fixed with Enders nail. There were 40 midshaft fractures, 18 proximal femoral and 4 were fractures of distal third. Fracture patterns were transverse in 35, short oblique in 14 cases and 13 were spiral fractures. Mean age of union in this series was 17 weeks (range 12 weeks to 28 weeks). Ten cases had complications, 5 had nail tip irritation, 3 varus or valgus malalignment and 2 had delayed union. In this series, we did not have any non-union, refracture, limb length discrepancy or any major infection. The result demonstrates 100% union rate irrespective of the age, weight and height of the patient. Regardless of the site of fracture and their pattern, it united every time with elastic nail fixation. We did not find and mismatch in the results of fractures stabilised with titanium elastic nail with that of elastic stainless steel nail.

  2. Elasticity of Calcium-Alkaline Amphiboles: Revised Properties for Crustal Seismic Models

    NASA Astrophysics Data System (ADS)

    Straughan, K. B.; Castle, N. R.; Brown, J.

    2009-12-01

    Amphiboles are dominant mineral constituents of both the oceanic and continental crust. Efforts to model crustal seismic structure and anisotropy have been limited by sparse and uncertain data for the elasticity of common rock-forming amphiboles. A single paper from 1961 reports properties of two “hornblendes” of unreported composition. We have undertaken a study of the calcium-alkaline amphiboles (minerals in this range include hornblende, tremolite, edenite, pargasite, tschermaktite and others) to explore elastic properties as a function of composition. Velocities as a function of propagation direction were measured using Impulsively Stimulated Light Scattering. All thirteen monoclinic elastic constants were determined for nine amphiboles spanning this common rock-forming compositional space. Amphiboles exhibit a wide range of elemental compositions and site occupancies. Measured trends of elastic constants with composition cannot be reduced to a single variable. Broad correlations are apparent in both (Mg+Fe) and Al concentrations. Among these samples, the isotropic average bulk modulus ranges from 85 to 98 GPa and the shear modulus ranges from 51 to 62. Poisson’s ratio varies from .23 to .27. The compressional velocity anisotropy (fast direction along the c axis and slow direction along the a-axis) varies with composition from 23% to 33%. Velocities along the c-axis are as fast as 9.0 km/s and along the a-axis are as slow as 5.8 km/s. These results exhibit far greater anisotropy and higher velocities than previously assumed based on the earlier data.

  3. A collagen and elastic network in the wing of the bat.

    PubMed

    Holbrook, K A; Odland, G F

    1978-05-01

    Bundles of collagen fibrils, elastic fibres and fibroblasts are organized into a network that lies in the plane of a large portion of the bat wing. By ultrastructural (TEM and SEM) and biochemical analyses it was found that individual bundles of the net are similar to elastic ligaments. Although elastic fibres predominate, they are integrated and aligned in parallel with small bundles of collagen. A reticulum of fibroblasts, joined by focal junctions, forms a cellular framework throughout each bundle. Because of the unique features of the fibre bundles of the bat's wing, in particular their accessibility, and the parallel alignment of the collagen fibrils and elastic fibres in each easily isolatable fibre bundle, they should prove a most valuable model for connective tissue studies, particularly for the study of collagen-elastin interactions.

  4. Modeling of Soft Poroelastic Tissue in Time-Harmonic MR Elastography

    PubMed Central

    Perriñez, Phillip R.; Kennedy, Francis E.; Van Houten, Elijah E. W.; Weaver, John B.; Paulsen, Keith D.

    2010-01-01

    Elastography is an emerging imaging technique that focuses on assessing the resistance to deformation of soft biological tissues in vivo. Magnetic resonance elastography (MRE) uses measured displacement fields resulting from low-amplitude, low-frequency (10 Hz–1 kHz) time-harmonic vibration to recover images of the elastic property distribution of tissues including breast, liver, muscle, prostate, and brain. While many soft tissues display complex time-dependent behavior not described by linear elasticity, the models most commonly employed in MRE parameter reconstructions are based on elastic assumptions. Further, elasticity models fail to include the interstitial fluid phase present in vivo. Alternative continuum models, such as consolidation theory, are able to represent tissue and other materials comprising two distinct phases, generally consisting of a porous elastic solid and penetrating fluid. MRE reconstructions of simulated elastic and poroelastic phantoms were performed to investigate the limitations of current-elasticity-based methods in producing accurate elastic parameter estimates in poroelastic media. The results indicate that linearly elastic reconstructions of fluid-saturated porous media at amplitudes and frequencies relevant to steady-state MRE can yield misleading effective property distributions resulting from the complex interaction between their solid and fluid phases. PMID:19272864

  5. Spermatozoa scattering by a microchannel feature: an elastohydrodynamic model

    PubMed Central

    Montenegro-Johnson, T. D.; Gadêlha, H.; Smith, D. J.

    2015-01-01

    Sperm traverse their microenvironment through viscous fluid by propagating flagellar waves; the waveform emerges as a consequence of elastic structure, internal active moments and low Reynolds number fluid dynamics. Engineered microchannels have recently been proposed as a method of sorting and manipulating motile cells; the interaction of cells with these artificial environments therefore warrants investigation. A numerical method is presented for large-amplitude elastohydrodynamic interaction of active swimmers with domain features. This method is employed to examine hydrodynamic scattering by a model microchannel backstep feature. Scattering is shown to depend on backstep height and the relative strength of viscous and elastic forces in the flagellum. In a ‘high viscosity’ parameter regime corresponding to human sperm in cervical mucus analogue, this hydrodynamic contribution to scattering is comparable in magnitude to recent data on contact effects, being of the order of 5°–10°. Scattering can be positive or negative depending on the relative strength of viscous and elastic effects, emphasizing the importance of viscosity on the interaction of sperm with their microenvironment. The modulation of scattering angle by viscosity is associated with variations in flagellar asymmetry induced by the elastohydrodynamic interaction with the boundary feature. PMID:26064617

  6. A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations

    NASA Astrophysics Data System (ADS)

    Messner, Mark C.; Rhee, Moono; Arsenlis, Athanasios; Barton, Nathan R.

    2017-06-01

    This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning—feature selection by regularized regression and cross-validation—to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.

  7. Covalent bond force profile and cleavage in a single polymer chain

    NASA Astrophysics Data System (ADS)

    Garnier, Lionel; Gauthier-Manuel, Bernard; van der Vegte, Eric W.; Snijders, Jaap; Hadziioannou, Georges

    2000-08-01

    We present here the measurement of the single-polymer entropic elasticity and the single covalent bond force profile, probed with two types of atomic force microscopes (AFM) on a synthetic polymer molecule: polymethacrylic acid in water. The conventional AFM allowed us to distinguish two types of interactions present in this system when doing force spectroscopic measurements: the first interaction is associated with adsorption sites of the polymer chains onto a bare gold surface, the second interaction is directly correlated to the rupture process of a single covalent bond. All these bridging interactions allowed us to stretch the single polymer chain and to determine the various factors playing a role in the elasticity of these molecules. To obtain a closer insight into the bond rupture process, we moved to a force sensor stable in position when measuring attractive forces. By optimizing the polymer length so as to fulfill the elastic stability conditions, we were able for the first time to map out the entire force profile associated with the cleavage of a single covalent bond. Experimental data coupled with molecular quantum mechanical calculations strongly suggest that the breaking bond is located at one end of the polymer chain.

  8. Measurement of the Muon Neutrino Double-Differential Charged Current Quasi-Elastic Like Cross Section on a Hydrocarbon Target at E v ~ 3.5 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurtado Anampa, Kenyi Paolo

    The MINERvA Experiment (Main Injector Experiment v ₋ A interaction) [1] is a highly segmented detector of neutrinos, able to record events with high precision (over than thirteen million event in a four year run), using the NuMI Beam (Neutrino Main Injector) at the Fermi National Accelerator Laboratory [2]. This thesis presents a measurement of the Charged Current Quasi-Elastic Like1 vμ interaction on polystyrene scintillator (CH) in the MINERvA experiment with neutrino energies between 1.5 and 10 GeV. We use data taken between2 March 2010 and April 2012. The interactions were selected by requiring a negative muon, a reconstructed andmore » identified proton, no michel electrons in the final state (in order to get rid of soft pions decaying) and a low calorimetric recoil energy away from the interaction vertex. The analysis is performed on 66,214 quasi-elastic like event candidates in the detectors tracker region with an estimated purity of 74%. The final measurement reported is a double differential cross sections in terms of the muon longitudinal and transversal momentum observables.« less

  9. Ge growth on vicinal si(001) surfaces: island's shape and pair interaction versus miscut angle.

    PubMed

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2011-10-01

    A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.

  10. Mechanical stiffening and thermal softening of rare earth chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shriya, S.; Varshney, Dinesh; Singh, Namita, E-mail: namita.singh.2050@gmail.com

    2014-04-24

    The pressure and temperature dependent elastic properties such as melting temperature nature in REX; (RE = La, Pr, Eu; X = O, S, Se, Te) chalcogenides is computed with emphasis on charge transfer interactions and covalent contribution in the effective interionic interaction potential. The pressure dependent elastic constants and melting temperature confirms that REX chalcogens lattice get stiffened as a consequence of bond compression and bond strengthening, however thermal softening arose due to bond expansion and bond weakening is evidenced from temperature dependence of melting temperature (T{sub M})

  11. Global Crustal Dynamics of Magnetars in Relation to Their Bright X-Ray Outbursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Christopher; Yang, Huan; Ortiz, Néstor

    2017-05-20

    This paper considers the yielding response of a neutron star crust to smooth, unbalanced Maxwell stresses imposed at the core–crust boundary, and the coupling of the dynamic crust to the external magnetic field. Stress buildup and yielding in a magnetar crust are global phenomena: an elastic distortion radiating from one plastically deforming zone is shown to dramatically increase the creep rate in distant zones. Runaway creep to dynamical rates is shown to be possible, being enhanced by in situ heating and suppressed by thermal conduction and shearing of an embedded magnetic field. A global and time-dependent model of elastic, plastic,more » magnetic, and thermal evolution is developed. Fault-like structures develop naturally, and a range of outburst timescales is observed. Transient events with time profiles similar to giant magnetar flares (millisecond rise, ∼0.1 s duration, and decaying power-law tails) result from runaway creep that starts in localized sub-kilometer-sized patches and spreads across the crust. A one-dimensional model of stress relaxation in the vertically stratified crust shows that a modest increase in applied stress allows embedded magnetic shear to escape the star over ∼3–10 ms, dissipating greater energy if the exterior field is already sheared. Several such zones coupled to each other naturally yield a burst of duration ∼0.1 s, as is observed over a wide range of burst energies. The collective interaction of many plastic zones forces an overstability of global elastic modes of the crust, consistent with quasi-periodic oscillation (QPO) activity extending over ∼100 s. Giant flares probably involve sudden meltdown in localized zones, with high-frequency (≫100 Hz) QPOs corresponding to standing Alfvén waves within these zones.« less

  12. Hearing Protection for High-Noise Environments. Part 1

    DTIC Science & Technology

    2007-05-31

    22 3.5.1 Properties of biological tissues ..... ............. 22 3.5.2 Elastic vs. acoustic modeling of tissues ............ 23...3.5.3 Range of applicability of acoustic modeling of tissues . 25 A Integral equations in acoustics 27 B Discretization of integral equations in...elasticity modeling We conclude the review of our Phase I results with a discussion on the range of applicability of acoustic modeling of biological

  13. Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1982-01-01

    Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.

  14. Magnetic and optical holonomic manipulation of colloids, structures and topological defects in liquid crystals for characterization of mesoscale self-assembly and dynamics

    NASA Astrophysics Data System (ADS)

    Varney, Michael C. M.

    Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena encountered in atomic crystals and glasses; topics of great interest for physicists exploring a broad range of scientific, industrial and biomedical fields. The ability to accurately control particles of mesoscale size in various liquid host media is usually accomplished through optical trapping methods, which suffer limitations intrinsic to trap laser intensity and force generation. Other limitations are due to colloid properties, such as optical absorptivity, and host properties, such as viscosity, opacity and structure. Therefore, alternative and/or novel methods of colloidal manipulation are of utmost importance in order to advance the state of the art in technical applications and fundamental science. In this thesis, I demonstrate a magnetic-optical holonomic control system to manipulate magnetic and optical colloids in liquid crystals and show that the elastic structure inherent to nematic and cholesteric liquid crystals may be used to assist in tweezing of particles in a manner impossible in other media. Furthermore, I demonstrate the utility of this manipulation in characterizing the structure and microrheology of liquid crystals, and elucidating the energetics and dynamics of colloids interacting with these structures. I also demonstrate the utility of liquid crystal systems as a table top model system to probe topological defects in a manner that may lead to insights into topologically related phenomena in other fields, such as early universe cosmology, sub-atomic and high energy systems, or Skrymionic structures. I explore the interaction of colloid surface anchoring with the structure inherent in cholesteric liquid crystals, and how this affects the periodic dynamics and localization metastability of spherical colloids undergoing a "falling" motion within the sample. These so called "metastable states" cause colloidal dynamics to deviate from Stokes-like behavior at very low Reynolds numbers and is understood by accounting for periodic landscapes of elastic interaction potential between the particle and cholesteric host medium due to surface anchoring. This work extends our understanding of how colloids interact with liquid crystals and topological defects, and introduces a powerful method of colloidal manipulation with many potential applications.

  15. An irregular lattice method for elastic wave propagation

    NASA Astrophysics Data System (ADS)

    O'Brien, Gareth S.; Bean, Christopher J.

    2011-12-01

    Lattice methods are a class of numerical scheme which represent a medium as a connection of interacting nodes or particles. In the case of modelling seismic wave propagation, the interaction term is determined from Hooke's Law including a bond-bending term. This approach has been shown to model isotropic seismic wave propagation in an elastic or viscoelastic medium by selecting the appropriate underlying lattice structure. To predetermine the material constants, this methodology has been restricted to regular grids, hexagonal or square in 2-D or cubic in 3-D. Here, we present a method for isotropic elastic wave propagation where we can remove this lattice restriction. The methodology is outlined and a relationship between the elastic material properties and an irregular lattice geometry are derived. The numerical method is compared with an analytical solution for wave propagation in an infinite homogeneous body along with comparing the method with a numerical solution for a layered elastic medium. The dispersion properties of this method are derived from a plane wave analysis showing the scheme is more dispersive than a regular lattice method. Therefore, the computational costs of using an irregular lattice are higher. However, by removing the regular lattice structure the anisotropic nature of fracture propagation in such methods can be removed.

  16. Mixed system of Eudragit s-100 with a designed amphipathic peptide: control of interfacial elasticity by solution composition.

    PubMed

    Dexter, Annette F; Malcolm, Andrew S; Zeng, Biyun; Kennedy, Debora; Middelberg, Anton P J

    2008-04-01

    We report an interfacially active system based on an informational peptide surfactant mixed with an oppositely charged polyelectrolyte. The 21-residue cationic peptide, AM1, has previously been shown to respond reversibly to pH and metal ions at fluid interfaces, forming elastic films that can be rapidly switched to collapse foams or emulsions on demand. Here we report the reversible association of AM1 with the methacrylate-based anionic polymer Eudragit S-100. The strength of the association, in bulk aqueous solution, is modulated by added metal ions and by ionic strength. Addition of zinc ions to the peptide-polymer system promotes complex formation and phase separation, while addition of a chelating agent reverses the association. The addition of salt weakens peptide-polymer interactions in the presence or absence of zinc. At the air-water interface, Eudragit S-100 forms an elastic mixed film with AM1 in the absence of metal, under conditions where the peptide alone does not show interfacial elasticity. When zinc is present, the elasticity of the mixed film is increased, but the rate of interfacial adsorption slows due to formation of peptide-polymer complexes in bulk solution. An understanding of these interactions can be used to identify favorable foam-forming conditions in the mixed system.

  17. Quench dynamics of one-dimensional interacting bosons in a disordered potential: elastic dephasing and critical speeding-up of thermalization.

    PubMed

    Tavora, Marco; Rosch, Achim; Mitra, Aditi

    2014-07-04

    The dynamics of interacting bosons in one dimension following the sudden switching on of a weak disordered potential is investigated. On time scales before quasiparticles scatter (prethermalized regime), the dephasing from random elastic forward scattering causes all correlations to decay exponentially fast, but the system remains far from thermal equilibrium. For longer times, the combined effect of disorder and interactions gives rise to inelastic scattering and to thermalization. A novel quantum kinetic equation accounting for both disorder and interactions is employed to study the dynamics. Thermalization turns out to be most effective close to the superfluid-Bose-glass critical point where nonlinearities become more and more important. The numerically obtained thermalization times are found to agree well with analytic estimates.

  18. Elastic and inelastic scattering of alpha particles from /sup 40,44/Ca over a broad range of energies and angles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delbar, T.; Gregoire, G.; Paic, G.

    1978-09-01

    Angular distributions for ..cap alpha.. particle elastic scattering by /sup 40,44/Ca and excitation of the 3.73 MeV 3/sup -/ collective state of /sup 40/Ca were measured for incident energies ranging from 40 to 62 MeV. An extensive optical model analysis of these elastic scattering cross sections and other available data, using squared Woods-Saxon form factors, results in potentials with fixed geometry for both real and imaginary parts and depths with smooth energy behavior over a broad incident energy range. These results are discussed in the frame of the semi-classical approximation developed by Brink and Takigawa. The sensitiveness of the calculatedmore » elastic scattering cross sections to the real part of the potentials as a function of the projectile-target distance has been investigated by means of a notch test. Distorted-wave Born-approximtion calculations for the excitation of the 3.73 MeV 3/sup -/ state of /sup 40/Ca are presented.« less

  19. A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions

    NASA Astrophysics Data System (ADS)

    Luscher, Darby J.; Bronkhorst, Curt A.; Alleman, Coleman N.; Addessio, Francis L.

    2013-09-01

    A physically consistent framework for combining pressure-volume-temperature equations of state with crystal plasticity models is developed for the application of modeling the response of single and polycrystals under shock conditions. The particular model is developed for copper, thus the approach focuses on crystals of cubic symmetry although many of the concepts in the approach are applicable to crystals of lower symmetry. We employ a multiplicative decomposition of the deformation gradient into isochoric elastic, thermoelastic dilation, and plastic parts leading to a definition of isochoric elastic Green-Lagrange strain. This finite deformation kinematic decomposition enables a decomposition of Helmholtz free-energy into terms reflecting dilatational thermoelasticity, strain energy due to long-range isochoric elastic deformation of the lattice and a term reflecting energy stored in short range elastic lattice deformation due to evolving defect structures. A model for the single crystal response of copper is implemented consistent with the framework into a three-dimensional Lagrangian finite element code. Simulations exhibit favorable agreement with single and bicrystal experimental data for shock pressures ranging from 3 to 110 GPa.

  20. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation

    Treesearch

    ShunLi Shang; Louis G. Hector Jr.; Paul Saxe; Zi-Kui Liu; Robert J. Moon; Pablo D. Zavattieri

    2014-01-01

    Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500...

  1. "It's Better Life Here than There": Elasticity and Ambivalence in Narratives of Personal Experience

    ERIC Educational Resources Information Center

    Warriner, Doris S.

    2013-01-01

    This article investigates when and how narratives of personal experience and displacement reference and characterize dimensions of time and space, with a focus on how temporal elasticity might serve as an interactional resource. Examining the dynamic, situated, and intertwined nature of such narratives, the analysis looks at how…

  2. Size effects under homogeneous deformation of single crystals: A discrete dislocation analysis

    NASA Astrophysics Data System (ADS)

    Guruprasad, P. J.; Benzerga, A. A.

    Mechanism-based discrete dislocation plasticity is used to investigate the effect of size on micron scale crystal plasticity under conditions of macroscopically homogeneous deformation. Long-range interactions among dislocations are naturally incorporated through elasticity. Constitutive rules are used which account for key short-range dislocation interactions. These include junction formation and dynamic source and obstacle creation. Two-dimensional calculations are carried out which can handle high dislocation densities and large strains up to 0.1. The focus is laid on the effect of dimensional constraints on plastic flow and hardening processes. Specimen dimensions ranging from hundreds of nanometers to tens of microns are considered. Our findings show a strong size-dependence of flow strength and work-hardening rate at the micron scale. Taylor-like hardening is shown to be insufficient as a rationale for the flow stress scaling with specimen dimensions. The predicted size effect is associated with the emergence, at sufficient resolution, of a signed dislocation density. Heuristic correlations between macroscopic flow stress and macroscopic measures of dislocation density are sought. Most accurate among those is a correlation based on two state variables: the total dislocation density and an effective, scale-dependent measure of signed density.

  3. Theory of elastic interaction between arbitrary colloidal particles in confined nematic liquid crystals.

    PubMed

    Tovkach, O M; Chernyshuk, S B; Lev, B I

    2012-12-01

    We develop the method proposed by Chernyshuk and Lev [Phys. Rev. E 81, 041701 (2010)] for theoretical investigation of elastic interactions between colloidal particles of arbitrary shape and chirality (polar as well as azimuthal anchoring) in the confined nematic liquid crystal (NLC). General expressions for six different types of multipole elastic interactions are obtained in the confined NLC: monopole-monopole (Coulomb type), monopole-dipole, monopole-quadrupole, dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions. The obtained formulas remain valid in the presence of the external electric or magnetic fields. The exact equations are found for all multipole coefficients for the weak anchoring case. For the strong anchoring coupling, the connection between the symmetry of the shape or director and multipole coefficients is obtained, which enables us to predict which multipole coefficients vanish and which remain nonzero. The particles with azimuthal helicoid anchoring are considered as an example. Dipole-dipole interactions between helicoid cylinders and cones are found in the confined NLC. In addition, the banana-shaped particles in homeotropic and planar nematic cells are considered. It is found that the dipole-dipole interaction between banana-shaped particles differs greatly from the dipole-dipole interaction between the axially symmetrical particles in the nematic cell. There is a crossover from attraction to repulsion between banana particles along some directions in nematic cells. It is shown that monopoles do not "feel" the type of nematic cell: monopole-monopole interaction turns out to be the same in homeotropic and planar nematic cells and converges to the Coulomb law as thickness increases, L→∞.

  4. CHNS: A case study of turbulence in elastic media

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Diamond, P. H.; Chacón, L.

    2018-05-01

    Recent progress in the study of Cahn-Hilliard Navier-Stokes (CHNS) turbulence is summarized. This is an example of elastic turbulence, which can occur in elastic (i.e., self-restoring) media. Such media exhibit memory due to freezing-in laws, as does MHD, which in turn constrains the dynamics. We report new results in the theory of CHNS turbulence in 2D, with special emphasis on the role of structure (i.e., "blob") formation and its interaction with the dual cascade. The evolution of a concentration gradient in response to a single eddy—analogous to flux expulsion in MHD—is analyzed. Lessons learned are discussed in the context of MHD and other elastic media.

  5. Interactions of chitin nanocrystals with β-lactoglobulin at the oil-water interface, studied by drop shape tensiometry.

    PubMed

    Gülseren, Ibrahim; Corredig, Milena

    2013-11-01

    Particle stabilized emulsions have been gaining increasing attention in the past few years, because of their unique interfacial properties. However, interactions between food grade particles and other surfactants at the interface still need to be understood. In this research, the interfacial properties of chitin nanocrystals (ChN) were studied in the presence of a surface active milk protein, β-lactoglobulin (β-lg), often used to stabilize oil-in-water emulsions. ChN were prepared by acid hydrolysis of chitin. At low pH (pH 3), ChN and β-lg do not interact, as demonstrated by light scattering measurements, and both components carry positive charge. The properties of the interface were tested using drop shape tensiometry. Addition of ChN or β-lg to the aqueous phase reduced the interfacial tension, and β-lg adsorption was characterized with an increase in the interfacial elasticity. When β-lg was added to a solution containing 0.1% ChN, the film elasticity increased first and then decreased with increasing β-lg concentration. The mixed film elasticity was the highest at a combination of 0.1% ChN+0.01% β-lg, when both molecules were simultaneously added to the aqueous phase. On the other hand, when β-lg was added after ChN, the protein did not affect the properties of the interface, indicating that the ChN (0.1%) equilibrated film was stable and that protein-protein interactions, normally resulting in an increase in the film elasticity, did not occur. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Modeling temperature effect on dynamic modulus of elasticity of red pine (Pinus resinosa) in frozen and non-frozen states

    Treesearch

    Shan Gao; Xiping Wang; Lihai Wang

    2015-01-01

    The response of dynamic and static modulus of elasticity (MOEdyn and MOEsta) of red pine small clear wood (25.4 × 25.4 × 407 mm3) within the temperature range -40 to 40°C has been investigated. The moisture content (MC) of the specimens ranged from 0 to 118%. The MOEdyn was...

  7. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    NASA Astrophysics Data System (ADS)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  8. Elastic-plastic finite-element analyses of thermally cycled double-edge wedge specimens

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hunt, L. E.

    1982-01-01

    Elastic-plastic stress-strain analyses were performed for double-edge wedge specimens subjected to thermal cycling in fluidized beds at 316 and 1088 C. Four cases involving different nickel-base alloys (IN 100, Mar M-200, NASA TAZ-8A, and Rene 80) were analyzed by using the MARC nonlinear, finite element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions obtained by using the NASTRAN and ISO3DQ computer programs. Equivalent total strain ranges at the critical locations calculated by elastic analyses agreed within 3 percent with those calculated from elastic-plastic analyses. The elastic analyses always resulted in compressive mean stresses at the critical locations. However, elastic-plastic analyses showed tensile mean stresses for two of the four alloys and an increase in the compressive mean stress for the highest plastic strain case.

  9. Instrumental background in balloon-borne gamma-ray spectrometers and techniques for its reduction

    NASA Technical Reports Server (NTRS)

    Gehrels, N.

    1985-01-01

    Instrumental background in balloon-borne gamma-ray spectrometers is presented. The calculations are based on newly available interaction cross sections and new analytic techniques, and are the most detailed and accurate published to date. Results compare well with measurements made in the 20 keV to 10 MeV energy range by the Goddard Low Energy Gamma-ray Spectrometer (LEGS). The principal components of the continuum background in spectrometers with GE detectors and thick active shields are: (1) elastic neutron scattering of atmospheric neutrons on the Ge nuclei; (2) aperture flux of atmospheric and cosmic gamma rays; (3) beta decays of unstable nuclides produced by nuclear interactions of atmospheric protons and neutrons with Ge nuclei; and (4) shield leakage of atmospheric gamma rays. The improved understanding of these components leads to several recommended techniques for reducing the background.

  10. Switching in Feedforward Control of Grip Force During Tool-Mediated Interaction With Elastic Force Fields

    PubMed Central

    White, Olivier; Karniel, Amir; Papaxanthis, Charalambos; Barbiero, Marie; Nisky, Ilana

    2018-01-01

    Switched systems are common in artificial control systems. Here, we suggest that the brain adopts a switched feedforward control of grip forces during manipulation of objects. We measured how participants modulated grip force when interacting with soft and rigid virtual objects when stiffness varied continuously between trials. We identified a sudden phase transition between two forms of feedforward control that differed in the timing of the synchronization between the anticipated load force and the applied grip force. The switch occurred several trials after a threshold stiffness level in the range 100–200 N/m. These results suggest that in the control of grip force, the brain acts as a switching control system. This opens new research questions as to the nature of the discrete state variables that drive the switching. PMID:29930504

  11. Hadron-Hadron Interactions from Nf=2 +1 +1 lattice QCD: Isospin-1 K K scattering length

    NASA Astrophysics Data System (ADS)

    Helmes, C.; Jost, C.; Knippschild, B.; Kostrzewa, B.; Liu, L.; Urbach, C.; Werner, M.; ETM Collaboration

    2017-08-01

    We present results for the interaction of two kaons at maximal isospin. The calculation is based on Nf=2 +1 +1 flavor gauge configurations generated by the European Twisted Mass Collaboration with pion masses ranging from about 230 MeV to 450 MeV at three values of the lattice spacing. The elastic scattering length a0I =1 is calculated at several values of the bare strange and light quark masses. We find MKa0=-0.385 (16 )stat(+0/-12)ms(+0/-5)ZP(4 )rf as the result of a combined extrapolation to the continuum and to the physical point, where the first error is statistical, and the three following are systematical. This translates to a0=-0.154 (6 )stat(-5+0)ms(-2+0)ZP(2 )rf fm .

  12. A study of elastic and plastic stress concentration factors due to notches and fillets in flat plates

    NASA Technical Reports Server (NTRS)

    Hardrath, Herbert F; Ohman, Lachlan

    1953-01-01

    Six large 24s-t3 aluminum-alloy-sheet specimens containing various notches or fillets were tested in tension to determine their stress concentration factors in both the elastic and plastic ranges. The elastic stress concentration factors were found to be slightly higher than those calculated by Neuber's method and those obtained photoelastically by Frocht. The results showed further that the stress concentration factor decreases as strains at the discontinuity enter the plastic range. A generalization of Stowell's relation for the plastic stress concentration factor at a circular hole in an infinite plate was applied to the specimen shapes tested and gave good agreement with test results.

  13. Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.

    PubMed

    Sterpin, E; Sorriaux, J; Vynckier, S

    2013-11-01

    Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4. PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer-Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for (1)H and ICRU 63 data for (12)C, (14)N, (16)O, (31)P, and (40)Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth-dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth-dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone. For simulations with EM collisions only, integral depth-dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth-dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth-dose distributions). The agreement is much better with FLUKA, with deviations within 3%/3 mm. When nuclear interactions were turned on, agreement (within 6% before the Bragg-peak) between PENH and Geant4 was consistent with uncertainties on nuclear models and cross sections, whatever the material simulated (water, muscle, or bone). A detailed and flexible description of nuclear reactions has been implemented in the PENH extension of PENELOPE to protons, which utilizes a mixed-simulation scheme for both elastic and inelastic EM collisions, analogous to the well-established algorithm for electrons/positrons. PENH is compatible with all current main programs that use PENELOPE as the MC engine. The nuclear model of PENH is realistic enough to give dose distributions in fair agreement with those computed by Geant4.

  14. Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterpin, E.; Sorriaux, J.; Vynckier, S.

    2013-11-15

    Purpose: Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4.Methods: PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer–Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for {sup 1}H and ICRUmore » 63 data for {sup 12}C, {sup 14}N, {sup 16}O, {sup 31}P, and {sup 40}Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth–dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth–dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone.Results: For simulations with EM collisions only, integral depth–dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth–dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth–dose distributions). The agreement is much better with FLUKA, with deviations within 3%/3 mm. When nuclear interactions were turned on, agreement (within 6% before the Bragg-peak) between PENH and Geant4 was consistent with uncertainties on nuclear models and cross sections, whatever the material simulated (water, muscle, or bone).Conclusions: A detailed and flexible description of nuclear reactions has been implemented in the PENH extension of PENELOPE to protons, which utilizes a mixed-simulation scheme for both elastic and inelastic EM collisions, analogous to the well-established algorithm for electrons/positrons. PENH is compatible with all current main programs that use PENELOPE as the MC engine. The nuclear model of PENH is realistic enough to give dose distributions in fair agreement with those computed by Geant4.« less

  15. Conformational elasticity can facilitate TALE-DNA recognition

    PubMed Central

    Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P.; Segal, David J.; Duan, Yong

    2015-01-01

    Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo- and bound- conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann/surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. PMID:24629191

  16. Conformational elasticity can facilitate TALE-DNA recognition.

    PubMed

    Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P; Segal, David J; Duan, Yong

    2014-01-01

    Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo and bound conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. © 2014 Elsevier Inc. All rights reserved.

  17. Repulsive nature of optical potentials for high-energy heavy-ion scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.

    2010-10-15

    The recent works by the present authors predicted that the real part of heavy-ion optical potentials changes its character from attraction to repulsion around the incident energy per nucleon E/A=200-300 MeV on the basis of the complex G-matrix interaction and the double-folding model (DFM) and revealed that the three-body force plays an important role there. In the present paper, we have precisely analyzed the energy dependence of the calculated DFM potentials and its relation to the elastic-scattering angular distributions in detail in the case of the {sup 12}C+{sup 12}C system in the energy range of E/A=100-400 MeV. The tensor forcemore » contributes substantially to the energy dependence of the real part of the DFM potentials and plays an important role to lower the attractive-to-repulsive transition energy. The nearside and farside (N/F) decompositions of the elastic-scattering amplitudes clarify the close relation between the attractive-to-repulsive transition of the potentials and the characteristic evolution of the calculated angular distributions with the increase of the incident energy. Based on the present analysis, we propose experimental measurements for the predicted strong diffraction phenomena of the elastic-scattering angular distribution caused by the N/F interference around the attractive-to-repulsive transition energy together with the reduced diffractions below and above the transition energy.« less

  18. Tunable modulation of refracted lamb wave front facilitated by adaptive elastic metasurfaces

    NASA Astrophysics Data System (ADS)

    Li, Shilong; Xu, Jiawen; Tang, J.

    2018-01-01

    This letter reports designs of adaptive metasurfaces capable of modulating incoming wave fronts of elastic waves through electromechanical-tuning of their cells. The proposed elastic metasurfaces are composed of arrayed piezoelectric units with individually connected negative capacitance elements that are online tunable. By adjusting the negative capacitances properly, accurately formed, discontinuous phase profiles along the elastic metasurfaces can be achieved. Subsequently, anomalous refraction with various angles can be realized on the transmitted lowest asymmetric mode Lamb wave. Moreover, designs to facilitate planar focal lenses and source illusion devices can also be accomplished. The proposed flexible and versatile strategy to manipulate elastic waves has potential applications ranging from structural fault detection to vibration/noise control.

  19. Ultrastructure of the bovine nuchal ligament.

    PubMed Central

    Morocutti, M; Raspanti, M; Ottani, V; Govoni, P; Ruggeri, A

    1991-01-01

    Nuchal ligament is composed almost exclusively of elastic fibres and collagen fibrils, interwoven very closely and lying parallel to the main ligament axis. Elastic fibres are very large, straight and roughly cylindrical; the collagenous matrix consists of septa of diminishing size forming a 3-dimensional matrix that envelops fibre bundles as well as individual elastic fibres. In all areas examined, collagen fibrils are of very uniform size and, on replicas, they reveal a spiral subfibrillar arrangement with an inclination angle of 17 degrees. Collagen fibrils appear to adhere to the elastic fibres very closely, conforming to their irregular shape. Sometimes they impinge directly upon the elastic fibres, while in other cases a space is visible between collagen fibrils and elastic fibres that contains a rich fabric of intermediate filaments. The collagen-elastin complex of the ligamentum nuchae may be considered a fibre-reinforced composite material comprising tough fibres immersed in an amorphous elastic matrix. Its mechanical behaviour is the result of the combined properties of its components and their interactions. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:1810923

  20. 3D elastic control for mobile devices.

    PubMed

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal

    2008-01-01

    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  1. Role of non-covalent interactions in the production of visco-elastic material from zein

    USDA-ARS?s Scientific Manuscript database

    Zein has been used in the production of a wide variety of materials during the last century. One of the more intriguing developments in zein utilization has been the discovery that zein can be made to form a visco-elastic dough for bread production. Although significant research has been conducted t...

  2. Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix

    NASA Astrophysics Data System (ADS)

    Nikitchenko, A. I.; Azovtsev, A. V.; Pertsev, N. A.

    2018-01-01

    Ferroelectric crystallites embedded into a dielectric matrix experience temperature-dependent elastic strains caused by differences in the thermal expansion of the crystallites and the matrix. Owing to the electrostriction, these lattice strains may affect polarization states of ferroelectric inclusions significantly, making them different from those of a stress-free bulk crystal. Here, using a nonlinear thermodynamic theory, we study the mechanical effect of elastic matrix on the phase states of embedded single-domain ferroelectric nanocrystals. Their equilibrium polarization states are determined by minimizing a special thermodynamic potential that describes the energetics of an ellipsoidal ferroelectric inclusion surrounded by a linear elastic medium. To demonstrate the stability ranges of such states for a given material combination, we construct a phase diagram, where the inclusion’s shape anisotropy and temperature are used as two parameters. The ‘shape-temperature’ phase diagrams are calculated numerically for PbTiO3 and BaTiO3 nanocrystals embedded into representative dielectric matrices generating tensile (silica glass) or compressive (potassium silicate glass) thermal stresses inside ferroelectric inclusions. The developed phase maps demonstrate that the joint effect of thermal stresses and matrix-induced elastic clamping of ferroelectric inclusions gives rise to several important features in the polarization behavior of PbTiO3 and BaTiO3 nanocrystals. In particular, the Curie temperature displays a nonmonotonic variation with the ellipsoid’s aspect ratio, being minimal for spherical inclusions. Furthermore, the diagrams show that the polarization orientation with respect to the ellipsoid’s symmetry axis is controlled by the shape anisotropy and the sign of thermal stresses. Under certain conditions, the mechanical inclusion-matrix interaction qualitatively alters the evolution of ferroelectric states on cooling, inducing a structural transition in PbTiO3 nanocrystals and suppressing in BaTiO3 inclusions some transformations occurring in their bulk counterpart. The constructed phase maps open the possibility to calculate dielectric properties of strained PbTiO3 and BaTiO3 nanocrystals and ferroelectric nanocomposites comprising such crystallites.

  3. The Value Range of Contact Stiffness Factor between Pile and Soil Based on Penalty Function

    NASA Astrophysics Data System (ADS)

    Chen, Sandy H. L.; Wu, Xinliu

    2018-03-01

    The value range of contact stiffness factor based on penalty function is studied when we use finite element software ANSYS to analyze contact problems, take single pile and soil of a certain project for example, the normal contact between pile and soil is analyzed with 2D simplified model in horizontal load. The study shows that when adopting linear elastic model to simulate soil, the maximum contact pressure and penetration approach steady value as the contact stiffness factor increases. The reasonable value range of contact stiffness factor reduces as the underlying element thickness decreases, but the rule reverses when refers to the soil stiffness. If choose DP model to simulate soil, the stiffness factor should be magnified 100 times compares to the elastic model regardless of the soil bears small force and still in elastic deformation stage or into the plastic deformation stage. When the soil bears big force and into plastic deformation stage, the value range of stiffness factor relates to the plastic strain range of the soil, and reduces as the horizontal load increases.

  4. Differential Regulation of Elastic Fiber Formation by Fibulin-4 and -5*

    PubMed Central

    Choudhury, Rawshan; McGovern, Amanda; Ridley, Caroline; Cain, Stuart A.; Baldwin, Andrew; Wang, Ming-Chuan; Guo, Chun; Mironov, Aleksandr; Drymoussi, Zoe; Trump, Dorothy; Shuttleworth, Adrian; Baldock, Clair; Kielty, Cay M.

    2009-01-01

    Fibulin-4 and -5 are extracellular glycoproteins with essential non-compensatory roles in elastic fiber assembly. We have determined how they interact with tropoelastin, lysyl oxidase, and fibrillin-1, thereby revealing how they differentially regulate assembly. Strong binding between fibulin-4 and lysyl oxidase enhanced the interaction of fibulin-4 with tropoelastin, forming ternary complexes that may direct elastin cross-linking. In contrast, fibulin-5 did not bind lysyl oxidase strongly but bound tropoelastin in terminal and central regions and could concurrently bind fibulin-4. Both fibulins differentially bound N-terminal fibrillin-1, which strongly inhibited their binding to lysyl oxidase and tropoelastin. Knockdown experiments revealed that fibulin-5 controlled elastin deposition on microfibrils, although fibulin-4 can also bind fibrillin-1. These experiments provide a molecular account of the distinct roles of fibulin-4 and -5 in elastic fiber assembly and how they act in concert to chaperone cross-linked elastin onto microfibrils. PMID:19570982

  5. The power transfer from the neuromuscular machinery to its load as a vegetative and somatic behaviour.

    PubMed

    Federici, A; Nocera, L

    1990-01-01

    Models have been proposed in literature describing the contraction of visceral and somatic muscles as an interaction between the time-varying elastances of them and the loads they are working against. The aim of this paper is: 1) to make clear similarities between the models of visceral and somatic muscular contraction; 2) to stress the concept that the power transfer from a time-varying elastance to its load is a behaviour, i.e. an interaction between the entire neuromuscular machinery and the surrounding environment; 3) to propose a theory describing the various physiological and pathological behaviours of both visceral and somatic muscles as different ways of coupling between the time-varying muscular elastances and their loads. In this theory it is assumed that the entire neuromuscular machinery acts as a whole to set the most appropriate power transfer to achieve behavioural goals.

  6. Effects of dynamic aeroelasticity on handling qualities and pilot rating

    NASA Technical Reports Server (NTRS)

    Swaim, R. L.; Yen, W.-Y.

    1978-01-01

    Pilot performance parameters, such as pilot ratings, tracking errors, and pilot comments, were recorded and analyzed for a longitudinal pitch tracking task on a large, flexible aircraft. The tracking task was programmed on a fixed-base simulator with a CRT attitude director display of pitch angle command, pitch angle, and pitch angle error. Parametric variations in the undamped natural frequencies of the two lowest frequency symmetric elastic modes were made to induce varying degrees of rigid body and elastic mode interaction. The results indicate that such mode interaction can drastically affect the handling qualities and pilot ratings of the task.

  7. Interaction between a crack and a soft inclusion

    NASA Technical Reports Server (NTRS)

    Xue-Hui, L.; Erdogan, F.

    1985-01-01

    With the application to weld defects in mind, the interaction problem between a planar-crack and a flat inclusion in an elastic solid is considered. The elastic inclusion is assumed to be sufficiently thin so that the thickness distribution of the stresses in the inclusion may be neglected. The problem is reduced to a system of four integral equations having Cauchy-type dominant kernels. The stress intensity factors are calculated and tabulated for various crack-inclusion geometries and the inclusion to matrix modulus ratios, and for general homogeneous loadiong conditions away from the crack-inclusion region.

  8. Numerical modelling of the reinforced concrete influence on a combined system of tunnel support

    NASA Astrophysics Data System (ADS)

    Grujić, Bojana; Jokanović, Igor; Grujić, Žarko; Zeljić, Dragana

    2017-12-01

    The paper presents the experimental, laboratory determined rheological-dynamic analysis of the properties of fiber reinforced concrete, which was then utilized to show nonlinear analysis of combined system of tunnel support structure. According to the performed experiments and calculations, different processes of destructive behavior of tunnel lining were simulated in combination with elastic and elastic-plastic behavior of materials taking into account the tunnel loading, the interaction between the fiber reinforced concrete and soil, as well as the interaction between the fiber reinforced concrete and the inner lining of the tunnel.

  9. On the brittle nature of rare earth pnictides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shriya, S.; Sapkale, R.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: sapkale.raju@rediffmail.com

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties in ReY; (Re = La, Sc, Pr; Y = N, P, As, Sb, Bi) pnictides have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from NaCl to CsCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, second order Cauchy discrepancy, anisotropy, hardness and brittle/ductile nature of rare earth pnictides are computed.

  10. Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.

    PubMed

    Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe

    2013-08-01

    We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.

  11. Active and hibernating turbulence in drag-reducing plane Couette flows

    NASA Astrophysics Data System (ADS)

    Pereira, Anselmo S.; Mompean, Gilmar; Thais, Laurent; Soares, Edson J.; Thompson, Roney L.

    2017-08-01

    In this paper we analyze the active and hibernating turbulence in drag-reducing plane Couette flows using direct numerical simulations of the viscoelastic finitely extensible nonlinear elastic model with the Peterlin approximation fluids. The polymer-turbulence interactions are studied from an energetic standpoint for a range of Weissenberg numbers (from 2 up to 30), fixing the Reynolds number based on the plate velocities at 4000, the viscosity ratio at 0.9, and the maximum polymer molecule extensibility at 100. The qualitative picture that emerges from this investigation is a cyclic mechanism of energy exchange between the polymers and turbulence that drives the flow through an oscillatory behavior.

  12. Transport of particles in liquid crystals.

    PubMed

    Lavrentovich, Oleg D

    2014-03-07

    Colloidal particles in a liquid crystal (LC) behave very differently from their counterparts in isotropic fluids. Elastic nature of the orientational order and surface anchoring of the director cause long-range anisotropic interactions and lead to the phenomenon of levitation. The LC environment enables new mechanisms of particle transport that are reviewed in this work. Among them the motion of particles caused by gradients of the director, and effects in the electric field: backflow powered by director reorientations, dielectrophoresis in LC with varying dielectric permittivity and LC-enabled nonlinear electrophoresis with velocity that depends on the square of the applied electric field and can be directed differently from the field direction.

  13. Updated RICE Bounds on Ultrahigh Energy Neutrino fluxes and interactions

    NASA Astrophysics Data System (ADS)

    Hussain, Shahid; McKay, Douglas

    2006-04-01

    We explore limits on low scale gravity models set by results from the Radio Ice Cherenkov Experiment's (RICE) ongoing search for cosmic ray neutrinos in the cosmogenic, or GZK, energy range. The bound on, MD, the fundamental scale of gravity, depends upon cosmogenic flux model, black hole formation and decay treatments, inclusion of graviton mediated elastic neutrino processes, and the number of large extra dimensions, d. We find bounds in the interval 0.9 TeV < MD < 10 TeV. Values d = 5, 6 and 7, for which laboratory and astrophysical bounds on LSG models are less restrictive, lead to essentially the same limits on MD.

  14. Does Hooke's law work in helical nanosprings?

    PubMed

    Ben, Sudong; Zhao, Junhua; Rabczuk, Timon

    2015-08-28

    Hooke's law is a principle of physics that states that the force needed to extend a spring by some distance is proportional to that distance. The law is always valid for an initial portion of the elastic range for nearly all helical macrosprings. Here we report the sharp nonlinear force-displacement relation of tightly wound helical carbon nanotubes at even small displacement via a molecular mechanics model. We demonstrate that the van der Waals (vdW) interaction between the intertube walls dominates the nonlinear relation based on our analytical expressions. This study provides physical insights into the origin of huge nonlinearity of the helical nanosprings.

  15. Conservation laws, bilinear forms and solitons for a fifth-order nonlinear Schrödinger equation for the attosecond pulses in an optical fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Jun; Tian, Bo, E-mail: tian_bupt@163.com; Zhen, Hui-Ling

    Under investigation in this paper is a fifth-order nonlinear Schrödinger equation, which describes the propagation of attosecond pulses in an optical fiber. Based on the Lax pair, infinitely-many conservation laws are derived. With the aid of auxiliary functions, bilinear forms, one-, two- and three-soliton solutions in analytic forms are generated via the Hirota method and symbolic computation. Soliton velocity varies linearly with the coefficients of the high-order terms. Head-on interaction between the bidirectional two solitons and overtaking interaction between the unidirectional two solitons as well as the bound state are depicted. For the interactions among the three solitons, two head-onmore » and one overtaking interactions, three overtaking interactions, an interaction between a bound state and a single soliton and the bound state are displayed. Graphical analysis shows that the interactions between the two solitons are elastic, and interactions among the three solitons are pairwise elastic. Stability analysis yields the modulation instability condition for the soliton solutions.« less

  16. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    DOE PAGES

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; ...

    2015-06-05

    The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less

  17. Rheological properties of ice cream mixes and frozen ice creams containing fat and fat replacers.

    PubMed

    Adapa, S; Dingeldein, H; Schmidt, K A; Herald, T J

    2000-10-01

    Ice cream mixes and frozen ice creams at milk fat levels of 12%, 8%, 6%, 6% plus a protein-based fat replacer, and 6% plus a carbohydrate-based fat replacer were evaluated for viscoelastic properties by dynamic testing with sinusoidal oscillatory tests at various frequencies. The storage modulus (G'), loss modulus (G"), and tan delta (G"/G') were calculated for all the treatments to determine changes in the viscous and elastic properties of the mixes and frozen ice creams due to fat content. In ice cream mixes, G' and G" exhibited a strong frequency dependence. The G" was higher than G' throughout the frequency range (1 to 8 Hz) examined, without any crossover, except for the 12% mix. Elastic properties of the ice cream mixes decreased as fat content decreased. Tan delta values indicated that fat replacers did not enhance the elastic properties of the ice cream mixes. In all frozen ice creams, G' and G" again showed a frequency dependence throughout the range tested (0.5 to 10 Hz). The amount of fat in ice creams and the degree of fat destabilization affected the elasticity in the frozen product. Even though the ice creams did not have significant elastic properties, when compared as a group the samples with higher fat content had higher elastic properties. The addition of protein-based and carbohydrate-based fat replacers did not enhance the elastic properties of the ice creams but did increase the viscous properties.

  18. Mean square hydrogen fluctuations in chitosan/lecithin nanoparticles from elastic neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Sonvico, Fabio; Teresa Di Bari, Maria; Bove, Livia; Deriu, Antonio; Cavatorta, Fabrizio; Albanese, Gianfranco

    2006-11-01

    Recently, we have started a systematic study of the structure and dynamics of nano- and microparticles of interest as highly biocompatible drug carriers. For these particles, that are composed of polymeric and lipid material, a detailed understanding of the particle-solvent interactions is of key importance in order to tailor their characteristics for delivering drugs with specific chemical properties. Here we report results of elastic neutron scattering (ENS) investigations on lecithin/chitosan nanoparticles. They were first prepared by autoassembling the two components in aqueous solution; the samples were then freeze-dried and re-hydrated in a D 2O atmosphere. The experiments were performed in the temperature range of 20-50 K using the backscattering spectrometer IN13 at ILL (Grenoble, France). The comparison of samples in the dry state with similar ones at an hydration level of about 0.3-0.4 (g D 2O/g hydrated sample), indicates that the presence of an outer chitosan ‘‘coating’’ reduces the mean square fluctuations of the hydrogens in the lipid component, leading thus to a stiffer nanoparticle structure.

  19. Evaluation and comparison of classical interatomic potentials through a user-friendly interactive web-interface

    NASA Astrophysics Data System (ADS)

    Choudhary, Kamal; Congo, Faical Yannick P.; Liang, Tao; Becker, Chandler; Hennig, Richard G.; Tavazza, Francesca

    2017-01-01

    Classical empirical potentials/force-fields (FF) provide atomistic insights into material phenomena through molecular dynamics and Monte Carlo simulations. Despite their wide applicability, a systematic evaluation of materials properties using such potentials and, especially, an easy-to-use user-interface for their comparison is still lacking. To address this deficiency, we computed energetics and elastic properties of variety of materials such as metals and ceramics using a wide range of empirical potentials and compared them to density functional theory (DFT) as well as to experimental data, where available. The database currently consists of 3248 entries including energetics and elastic property calculations, and it is still increasing. We also include computational tools for convex-hull plots for DFT and FF calculations. The data covers 1471 materials and 116 force-fields. In addition, both the complete database and the software coding used in the process have been released for public use online (presently at http://www.ctcms.nist.gov/˜knc6/periodic.html) in a user-friendly way designed to enable further material design and discovery.

  20. Evaluation and comparison of classical interatomic potentials through a user-friendly interactive web-interface

    PubMed Central

    Choudhary, Kamal; Congo, Faical Yannick P.; Liang, Tao; Becker, Chandler; Hennig, Richard G.; Tavazza, Francesca

    2017-01-01

    Classical empirical potentials/force-fields (FF) provide atomistic insights into material phenomena through molecular dynamics and Monte Carlo simulations. Despite their wide applicability, a systematic evaluation of materials properties using such potentials and, especially, an easy-to-use user-interface for their comparison is still lacking. To address this deficiency, we computed energetics and elastic properties of variety of materials such as metals and ceramics using a wide range of empirical potentials and compared them to density functional theory (DFT) as well as to experimental data, where available. The database currently consists of 3248 entries including energetics and elastic property calculations, and it is still increasing. We also include computational tools for convex-hull plots for DFT and FF calculations. The data covers 1471 materials and 116 force-fields. In addition, both the complete database and the software coding used in the process have been released for public use online (presently at http://www.ctcms.nist.gov/∼knc6/periodic.html) in a user-friendly way designed to enable further material design and discovery. PMID:28140407

  1. Leveraging Internal Viscous Flow to Extend the Capabilities of Beam-Shaped Soft Robotic Actuators.

    PubMed

    Matia, Yoav; Elimelech, Tsah; Gat, Amir D

    2017-06-01

    Elastic deformation of beam-shaped structures due to embedded fluidic networks (EFNs) is mainly studied in the context of soft actuators and soft robotic applications. Currently, the effects of viscosity are not examined in such configurations. In this work, we introduce an internal viscous flow and present the extended range of actuation modes enabled by viscosity. We analyze the interaction between elastic deflection of a slender beam and viscous flow in a long serpentine channel embedded within the beam. The embedded network is positioned asymmetrically with regard to the neutral plane and thus pressure within the channel creates a local moment deforming the beam. Under assumptions of creeping flow and small deflections, we obtain a fourth-order integro-differential equation governing the time-dependent deflection field. This relation enables the design of complex time-varying deformation patterns of beams with EFNs. Leveraging viscosity allows to extend the capabilities of beam-shaped actuators such as creation of inertia-like standing and moving wave solutions in configurations with negligible inertia and limiting deformation to a small section of the actuator. The results are illustrated experimentally.

  2. Explicit 2-D Hydrodynamic FEM Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL highmore » explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  3. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    NASA Astrophysics Data System (ADS)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.

    2014-08-01

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.

  4. The importance of being elastic: deflection of a badminton racket during a stroke.

    PubMed

    Kwan, Maxine; Rasmussen, John

    2010-03-01

    The deflection profiles of a badminton racket during strokes performed by elite and world-class badminton players were recorded by strain gauges and subsequently analysed to determine the role of shaft stiffness in racket performance. Deflection behaviour was consistent in all strokes across all players, suggesting a controlled use of racket elasticity. In addition, all impacts occurred within 100 ms of each other, a duration in which deflection velocity provides an increase in racket velocity, indicating that the players were able to use racket elasticity to their advantage. Since deflection behaviour is a product of the racket-player interaction, further work is required to determine the effects of different racket properties and player techniques on the elastic response of rackets during strokes.

  5. Head-on collision of the second mode internal solitary waves

    NASA Astrophysics Data System (ADS)

    Terletska, Kateryna; Maderich, Vladimir; Jung, Kyung Tae

    2017-04-01

    Second mode internal waves are widespread in offshore areas, and they frequently follow the first mode internal waves on the oceanic shelf. Large amplitude internal solitary waves (ISW) of second mode containing trapped cores associated with closed streamlines can also transport plankton and nutrients. An interaction of ISWs with trapped cores takes place in a specific manner. It motivated us to carry out a computational study of head-on collision of ISWs of second mode propagating in a laboratory-scale numerical tank using the nonhydrostatic 3D numerical model based on the Navier-Stokes equations for a continuously stratified fluid. Three main classes of ISW of second mode propagating in the pycnocline layer of thickness h between homogeneous deep layers can be identified: (i) the weakly nonlinear waves; (ii) the stable strongly nonlinear waves with trapped cores; and (iii) the shear unstable strongly nonlinear waves (Maderich et al., 2015). Four interaction regimes for symmetric collision were separated from simulation results using this classification: (A) an almost elastic interaction of the weakly nonlinear waves; (B) a non-elastic interaction of waves with trapped cores when ISW amplitudes were close to critical non-dimensional amplitude a/h; (C) an almost elastic interaction of stable strongly nonlinear waves with trapped cores; (D) non-elastic interaction of the unstable strongly nonlinear waves. The unexpected result of simulation was that relative loss of energy due to the collision was maximal for regime B. New regime appeared when ISW of different amplitudes belonged to class (ii) collide. In result of interaction the exchange of mass between ISW occurred: the trapped core of smaller wave was entrained by core of larger ISW without mixing forming a new ISW of larger amplitude whereas in smaller ISW core of smaller wave totally substituted by fluid from larger wave. Overall, the wave characteristics induced by head-on collision agree well with the results of several available laboratory experiments. References [1] V. Maderich, K. T. Jung, K. Terletska, I. Brovchenko, T. Talipova, "Incomplete similarity of internal solitary waves with trapped core," Fluid Dynamics Research 47, 035511 (2015).

  6. Mixed-metal effects on ultra-incompressible metal diborides: Density functional computations

    NASA Astrophysics Data System (ADS)

    Lin, Fei; Wu, Kechen; He, Jiangang; Sa, Rongjian; Li, Qiaohong; Wei, Yongqin

    2010-07-01

    Mixed-metal borides are promising superhard materials (Kaner et al. (2005) [1]). In this Letter, density functional computations have been applied to the structural, electronic and elastic properties of mixed-metal diborides Re 0.5Ir 0.5B 2, Re 0.5Tc 0.5B 2, Os 0.5W 0.5B 2 and Os 0.5Ru 0.5B 2. The elastic moduli decrease from pure metal diboride ReB 2 to Re 0.5Ir 0.5B 2 and on the contrary increase from OsB 2 to Os 0.5W 0.5B 2 because boron-metal interactions are contaminated by the occupied anti-bonding orbitals. Alloying ReB 2 (OsB 2) with Tc (Ru) decreases the elastic moduli owing to the relativistic effects. Mixed-metal effects on elastic deformations focus on bonding strengths, which effectively tune the elastic properties of metal diborides.

  7. Slip Morphology of Elastic Strips on Frictional Rigid Substrates.

    PubMed

    Sano, Tomohiko G; Yamaguchi, Tetsuo; Wada, Hirofumi

    2017-04-28

    The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which-when the bending elasticity dominates over the effect of gravity-are classified into three distinct types of states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain and the coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary conditions combined with the Coulomb-Amontons friction law and find excellent quantitative agreement with simulations and controlled physical experiments. We also discuss the effect of gravity in order to bridge the difference in the qualitative behaviors of stiff strips and flexible strings or ropes. Our study thus complements recent work on elastic rope coiling and takes a significant step towards establishing a unified understanding of how a thin elastic object interacts vertically with a solid surface.

  8. Elastic spheres can walk on water.

    PubMed

    Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T

    2016-02-04

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.

  9. Elastic spheres can walk on water

    PubMed Central

    Belden, Jesse; Hurd, Randy C.; Jandron, Michael A.; Bower, Allan F.; Truscott, Tadd T.

    2016-01-01

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys. PMID:26842860

  10. Fluid-structure interaction in Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Kempf, Martin Horst Willi

    1998-10-01

    The linear stability of a viscous fluid between two concentric, rotating cylinders is considered. The inner cylinder is a rigid boundary and the outer cylinder has an elastic layer exposed to the fluid. The subject is motivated by flow between two adjoining rollers in a printing press. The governing equations of the fluid layer are the incompressible Navier-Stokes equations, and the governing equations of the elastic layer are Navier's equations. A narrow gap, neutral stability, and axisymmetric disturbances are assumed. The solution involves a novel technique for treating two layer stability problems, where an exact solution in the elastic layer is used to isolate the problem in the fluid layer. The results show that the presence of the elastic layer has only a slight effect on the critical Taylor numbers for the elastic parameters of modern printing presses. However, there are parameter values where the critical Taylor number is dramatically different than the classical Taylor-Couette problem.

  11. On the relationships between hardness and the elastic and plastic properties of isotropic power-law hardening materials

    NASA Astrophysics Data System (ADS)

    Lan, Hongzhi; Venkatesh, T. A.

    2014-01-01

    A comprehensive understanding of the relationship between the hardness and the elastic and plastic properties for a wide range of materials is obtained by analysing the hardness characteristics (that are predicted by experimentally verified indentation analyses) of over 9000 distinct combinations of material properties that represent isotropic, homogeneous, power-law hardening metallic materials. Finite element analysis has been used to develop the indentation algorithms that provide the relationships between the elastic and plastic properties of the indented material and its indentation hardness. Based on computational analysis and virtual testing, the following observations are made. The hardness (H) of a material tends to increase with an increase in the elastic modulus (E), yield strength (σy) and the strain-hardening exponent (n). Several materials with different combinations of elastic and plastic properties can exhibit identical true hardness (for a particular indenter geometry/apex angle). In general, combinations of materials that exhibit relatively low elastic modulus and high yield strength or strain-hardening exponents and those that exhibit relatively high elastic modulus and low yield strength or strain-hardening exponents exhibit similar hardness properties. Depending on the strain-hardening characteristics of the indented material, (i.e. n = 0 or ?), the ratio H/σy ranges, respectively, from 2.2 to 2.6 or 2 to 20 (for indentations with a cone angle of 70.3°). The materials that have lower σy/E and higher n exhibit higher H/σy ratios. The commonly invoked relationship between hardness and the yield strength, i.e. H ≈ 3σy, is not generally valid or applicable for all power-law hardening materials. The indentation hardness of a power law hardening material can be taken as following the relationship H ≈ (2.1-2.8)σr where σr is the representative stress based on Tabor's representative strain for a wide range of materials.

  12. Absolute cross section measurements for the scattering of low- and intermediate-energy electrons from PF3. I. Elastic scattering

    NASA Astrophysics Data System (ADS)

    Hishiyama, N.; Hoshino, M.; Blanco, F.; García, G.; Tanaka, H.

    2017-12-01

    We report absolute elastic differential cross sections (DCSs) for electron collisions with phosphorus trifluoride, PF3, molecules (e- + PF3) in the impact energy range of 2.0-200 eV and over a scattering angle range of 10°-150°. Measured angular distributions of scattered electron intensities were normalized by reference to the elastic DCSs of He. Corresponding integral and momentum-transfer cross sections were derived by extrapolating the angular range from 0° to 180° with the help of a modified phase-shift analysis. In addition, due to the large dipole moment of the considered molecule, the dipole-Born correction for the forward scattering angles has also been applied. As a part of this study, independent atom model calculations in combination with screening corrected additivity rule were also performed for elastic and inelastic (electronic excitation plus ionization) scattering using a complex optical potential method. Rotational excitation cross sections have been estimated with a dipole-Born approximation procedure. Vibrational excitations are not considered in this calculation. Theoretical data, at the differential and integral levels, were found to reasonably agree with the present experimental results. Furthermore, we explore the systematics of the elastic DCSs for the four-atomic trifluoride molecules of XF3 (X = B, N, and P) and central P-atom in PF3, showing that, owing to the comparatively small effect of the F-atoms, the present angular distributions of elastic DCSs are essentially dominated by the characteristic of the central P-atom at lower impact energies. Finally, these quantitative results for e- - PF3 collisions were compiled together with the previous data available in the literature in order to obtain a cross section dataset for modeling purposes. To comprehensively describe such a considerable amount of data, we proceed by first discussing, in this paper, the vibrationally elastic scattering processes whereas vibrational and electronic excitation shall be the subject of our following paper devoted to inelastic collisions.

  13. Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2018-02-26

    A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less

  14. Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilka, J. A.; Park, J.; Ahn, Y.

    A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less

  15. Emergence of linear elasticity from the atomistic description of matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakir, Abdullah, E-mail: acakir@ntu.edu.sg; Pica Ciamarra, Massimo; Dipartimento di Scienze Fisiche, CNR–SPIN, Università di Napoli Federico II, I-80126 Napoli

    2016-08-07

    We investigate the emergence of the continuum elastic limit from the atomistic description of matter at zero temperature considering how locally defined elastic quantities depend on the coarse graining length scale. Results obtained numerically investigating different model systems are rationalized in a unifying picture according to which the continuum elastic limit emerges through a process determined by two system properties, the degree of disorder, and a length scale associated to the transverse low-frequency vibrational modes. The degree of disorder controls the emergence of long-range local shear stress and shear strain correlations, while the length scale influences the amplitude of themore » fluctuations of the local elastic constants close to the jamming transition.« less

  16. Measurement of elastic precursor decay in pre-heated aluminum films under ultra-fast laser generated shocks

    DOE PAGES

    Zuanetti, Bryan; McGrane, Shawn David; Bolme, Cynthia Anne; ...

    2018-05-18

    Here, this article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which wasmore » used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 10 9/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 10 3 to 10 9/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.« less

  17. Measurement of elastic precursor decay in pre-heated aluminum films under ultra-fast laser generated shocks

    NASA Astrophysics Data System (ADS)

    Zuanetti, Bryan; McGrane, Shawn D.; Bolme, Cynthia A.; Prakash, Vikas

    2018-05-01

    This article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which was used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 109/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 103 to 109/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.

  18. Measurement of elastic precursor decay in pre-heated aluminum films under ultra-fast laser generated shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuanetti, Bryan; McGrane, Shawn David; Bolme, Cynthia Anne

    Here, this article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which wasmore » used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 10 9/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 10 3 to 10 9/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.« less

  19. Anisotropy of the elastic properties of crystalline cellulose Iß from first principles density functional theory with Van der Waals interactions

    Treesearch

    Fernando L. Dri; Louis G. Jr. Hector; Robert J. Moon; Pablo D. Zavattieri

    2013-01-01

    In spite of the significant potential of cellulose nanocrystals as functional nanoparticles for numerous applications, a fundamental understanding of the mechanical properties of defect-free, crystalline cellulose is still lacking. In this paper, the elasticity matrix for cellulose Iß with hydrogen bonding network A was calculated using ab initio...

  20. Kinematics of the Elastic Scattering of $gamma$ in Hydrogen (Compton Effecte Between 300 and 1500 Mev; CINEMATICA DELLA DIFFUSIONE ELASTICA DI $gamma$ IN IDROGENO (EFFETTO COMPTON) TRA 300 E 1500 MEV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvadori, P.

    1962-10-31

    The proton (p ) and gamma energy and angular distributions from the elastic (Compton) interaction p + gamma -- p + gamma are calculated. The results are tabulated for 25-Mev gamma increments, from 300 to 1500 Mev. (T.F.H.)

  1. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.

    PubMed

    Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren

    2016-01-26

    Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments.

  2. Effects of non-structural components and soil-structure interaction on the seismic response of framed structures

    NASA Astrophysics Data System (ADS)

    Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Antonella; Carlo Ponzo, Felice

    2017-04-01

    In this paper, several nonlinear numerical models of reinforced concrete framed structures have been defined in order to evaluate the effects of non-structural elements and soil-structure interaction on the elastic dynamic behaviour of buildings. In the last few years, many and various studies have highlighted the significant effects derived from the interaction between structural and non-structural components on the main dynamic characteristics of a building. Usually, structural and non-structural elements act together, adding both masses and stiffness. The presence of infill panels is generally neglected in the design process of structural elements, although these elements can significantly increase the lateral stiffness of a structure leading to a modification in the dynamic properties. Particularly, at the Damage Limit State (where an elastic behaviour is expected), soil-structure interaction effects and non-structural elements may further affect the elastic natural period of buildings, changing the spectral accelerations compared with those provided by seismic codes in case of static analyses. In this work, a parametric study has been performed in order to evaluate the elastic fundamental period of vibration of buildings as a function of structural morphology (height, plan area, ratio between plan dimensions), infills presence and distribution and soil characteristics. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".

  3. Dynamics of elastic systems

    NASA Astrophysics Data System (ADS)

    Sankovich, Vladimir

    1998-12-01

    The goal of this paper is to build a consistent physical theory of the dynamics of the bat-ball interaction. This requires creating realistic models for both the softball bat and the softball. Some of the features of these models are known phenomenologically, from experiments conducted in our laboratory, others will be introduced and computed from first principles here for the first time. Both interacting objects are treated from the viewpoint of the theory of elasticity, and it is shown how a computer can be used to accurately calculate all the relevant characteristics of batball collisions. It is shown also how the major elastic parameters of the material constituting the interior of a softball can be determined using the existing experimental data. These parameters, such as the Young's modulus, the Poisson ratio and the damping coefficient are vital for the accurate description of the ball's dynamics. We are demonstrating how the existing theories of the elastic behavior of solid bars and hollow shells can be augmented to simplify the resulting equations and make the subsequent computer analysis feasible. The standard system of fourth-order PDE's is reduced to a system of the second order, because of the inclusion of the usually ignored effects of the shear forces in the bat.

  4. Elastic properties, reaction kinetics, and structural relaxation of an epoxy resin polymer during cure

    NASA Astrophysics Data System (ADS)

    Heili, Manon; Bielawski, Andrew; Kieffer, John

    The cure kinetics of a DGEBA/DETA epoxy is investigated using concurrent Raman and Brillouin light scattering. Raman scattering allows us to monitor the in-situ reaction and quantitatively assess the degree of cure. Brillouin scattering yields the elastic properties of the system, providing a measure of network connectivity. We show that the adiabatic modulus evolves non-uniquely as a function of cure degree, depending on the cure temperature and the molar ratio of the epoxy. Two mechanisms contribute to the increase in the elastic modulus of the material during curing. First, there is the formation of covalent bonds in the network during the curing process. Second, following bond formation, the epoxy undergoes structural relaxation toward an optimally packed network configuration, enhancing non-bonded interactions. We investigate to what extent the non-bonded interaction contribution to structural rigidity in cross-linked polymers is reversible, and to what extent it corresponds to the difference between adiabatic and isothermal moduli obtained from static tensile, i.e. the so-called relaxational modulus. To this end, we simultaneously measure the adiabatic and isothermal elastic moduli as a function of applied strain and deformation rate.

  5. Mott metal-insulator transition on compressible lattices.

    PubMed

    Zacharias, Mario; Bartosch, Lorenz; Garst, Markus

    2012-10-26

    The critical properties of the finite temperature Mott end point are drastically altered by a coupling to crystal elasticity, i.e., whenever it is amenable to pressure tuning. Similar as for critical piezoelectric ferroelectrics, the Ising criticality of the electronic system is preempted by an isostructural instability, and long-range shear forces suppress microscopic fluctuations. As a result, the end point is governed by Landau criticality. Its hallmark is, thus, a breakdown of Hooke's law of elasticity with a nonlinear strain-stress relation characterized by a mean-field exponent. Based on a quantitative estimate, we predict critical elasticity to dominate the temperature range ΔT*/T(c)≃8%, close to the Mott end point of κ-(BEDT-TTF)(2)X.

  6. Role of Confinement on Adsorption and Dynamics of Ethane and an Ethane–CO 2 Mixture in Mesoporous CPG Silica

    DOE PAGES

    Patankar, Sumant; Gautam, Siddharth; Rother, Gernot; ...

    2016-02-10

    It was found that ethane is confined to mineral and organic pores in certain shale formations. Effects of confinement on structural and dynamic properties of ethane in mesoporous controlled pore glass (CPG) were studied by gravimetric adsorption and quasi-elastic neutron scattering (QENS) measurements. The obtained isotherms and scattering data complement each other by quantifying the relative strength of the solid–fluid interactions and the transport properties of the fluid under confinement, respectively. We used a magnetic suspension balance to measure the adsorption isotherms at two temperatures and over a range of pressures corresponding to a bulk density range of 0.01–0.35 g/cmmore » 3. Key confinement effects were highlighted through differences between isotherms for the two pore sizes. A comparison was made with previously published isotherms for CO 2 on the same CPG materials. Behavior of ethane in the smaller pore size was probed further using quasi-elastic neutron scattering. By extracting the self-diffusivity and residence time, we were able to study the effect of pressure and transition from gaseous to supercritical densities on the dynamics of confined ethane. Moreover, a temperature variation QENS study was also completed with pure ethane and a CO 2–ethane mixture. Activation energies extracted from the Arrhenius plots show the effects of CO 2 addition on ethane mobility.« less

  7. Price Elasticity of Alcohol Demand in India.

    PubMed

    Kumar, Santosh

    2017-05-01

    Using a household survey conducted in 2014, this study estimates price elasticity of demand (PED) for beer, country liquor and spirits in India. Ordinary least-square models were used to estimate the responsiveness in alcohol demand due to price change. A large number of control variables were included to adjust for potential confounding in the model. Inter-district variation in alcohol consumption is adjusted for by including district fixed effects. Alcohol prices are negatively associated with demand for alcoholic beverages. The PED ranged from -0.14 for spirits to -0.46 for country liquor. Low level of education was positively associated with spirits consumption. The magnitude of elasticity varied by rural-urban, education and gender. Results indicate that a policy mix of price controls and awareness campaigns would be most effective in tackling the adverse effects of harmful drinking in India. The demand for beer, country liquor and spirits is negatively associated with its own price. The elasticity estimates ranged from -0.14 for spirits to -0.44 for country liquor. The elasticity estimates varied by rural-urban, gender and by education levels of the drinkers. © The Author 2017. Medical Council on Alcohol and Oxford University Press. All rights reserved

  8. Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Khayyer, Abbas; Gotoh, Hitoshi; Falahaty, Hosein; Shimizu, Yuma

    2018-02-01

    Simulation of incompressible fluid flow-elastic structure interactions is targeted by using fully-Lagrangian mesh-free computational methods. A projection-based fluid model (moving particle semi-implicit (MPS)) is coupled with either a Newtonian or a Hamiltonian Lagrangian structure model (MPS or HMPS) in a mathematically-physically consistent manner. The fluid model is founded on the solution of Navier-Stokes and continuity equations. The structure models are configured either in the framework of Newtonian mechanics on the basis of conservation of linear and angular momenta, or Hamiltonian mechanics on the basis of variational principle for incompressible elastodynamics. A set of enhanced schemes are incorporated for projection-based fluid model (Enhanced MPS), thus, the developed coupled solvers for fluid structure interaction (FSI) are referred to as Enhanced MPS-MPS and Enhanced MPS-HMPS. Besides, two smoothed particle hydrodynamics (SPH)-based FSI solvers, being developed by the authors, are considered and their potential applicability and comparable performance are briefly discussed in comparison with MPS-based FSI solvers. The SPH-based FSI solvers are established through coupling of projection-based incompressible SPH (ISPH) fluid model and SPH-based Newtonian/Hamiltonian structure models, leading to Enhanced ISPH-SPH and Enhanced ISPH-HSPH. A comparative study is carried out on the performances of the FSI solvers through a set of benchmark tests, including hydrostatic water column on an elastic plate, high speed impact of an elastic aluminum beam, hydroelastic slamming of a marine panel and dam break with elastic gate.

  9. Sex differences in the combined effect of chronic stress with impaired vascular endothelium functioning and the development of early atherosclerosis: The Cardiovascular Risk in Young Finns study

    PubMed Central

    2010-01-01

    Background The syndrome of vital exhaustion (VE), characterized by fatigue and irritability, may contribute to an increased risk of atherosclerosis. The aim of the study was to explore sex differences in the interactions of VE with endothelial dysfunction and VE with reduced carotid elasticity, the important contributors to the development of early atherosclerosis, on preclinical atherosclerosis. Methods The participants were 1002 women and 719 men aged 24-39 examined in the Cardiovascular Risk in Young Finns study. Vital exhaustion was measured using the Maastricht Questionnaire. Preclinical atherosclerosis was assessed by carotid intima-media thickness (IMT), endothelial function was measured by brachial flow-mediated dilatation (FMD), and arterial elasticity by carotid artery compliance (CAC) using ultrasound techniques. Results We found a significant CAC x VE interaction for IMT only for the men. Our results imply that high VE level significantly related to high IMT levels among the men with low CAC, but not among the women with low CAC or among the women or men with high CAC. No significant FMD x VE interactions for IMT for the women or men were found. Conclusions High VE may exert an effect on IMT for men with impaired arterial elasticity. The results suggest that high vitally exhausted men with reduced arterial elasticity are at increased risk of atherosclerosis in early life and imply men's decreased stress coping in relation to stressful psychological coronary risk factors. PMID:20624297

  10. The Effect of Annealing on the Elastic Modulus of Orthodontic Wires

    NASA Astrophysics Data System (ADS)

    Higginbottom, Kyle

    Introduction: Nickel Titanium orthodontic wires are currently used in orthodontic treatment due to their heat activated properties and their delivery of constant force. The objective of this study was to determine the effect of annealing on the elastic modulus of Nickel Titanium, Stainless Steel and Beta-titanium (TMA) wires. Different points along the wire were tested in order to determine how far from the annealed ends the elastic modulus of the wires was affected. Methods: Eighty (80) orthodontic wires consisting of 4 equal groups (SS/TMA/Classic NitinolRTM/Super Elastic NitinolRTM) were used as the specimens for this study. All wires were measured and marked at 5mm measurements, and cut into 33.00mm sections. The wires were heated with a butane torch until the first 13.00mm of the wires were red hot. Load deflection tests using an InstronRTM universal testing machine were run at 5mm distances from the end of the wire that had been annealed. The change in elastic modulus was then determined. Results: There was a significant difference (F = 533.001, p = 0.0005) in the change in elastic modulus for the four distances. There was also a significant difference (F = 57.571, p = 0.0005) in the change in elastic modulus for the four wire types. There was a significant interaction (F = 19.601, p = 0.005) between wire type and distance, however this interaction negated the differences between the wires. Conclusion: 1) There are significant differences in the changes in elastic modulus between the areas of the wires within the annealed section and those areas 5mm and 10mm away from the annealed section. The change in elastic modulus within the annealed section was significantly greater at 8 mm than it was at 13mm, and this was significantly greater than 18mm and 23mm (5mm and 10mm beyond the annealed section). However, there was no statistical difference in the change in elastic modulus between 5mm and 10mm away from the annealed section (18mm and 23mm respectively). 2) Regardless of the wire type, no clinically important effects were seen 5mm and 10mm beyond the annealed portion.

  11. Numerical simulation of the solitary wave interacting with an elastic structure using MPS-FEM coupled method

    NASA Astrophysics Data System (ADS)

    Rao, Chengping; Zhang, Youlin; Wan, Decheng

    2017-12-01

    Fluid-Structure Interaction (FSI) caused by fluid impacting onto a flexible structure commonly occurs in naval architecture and ocean engineering. Research on the problem of wave-structure interaction is important to ensure the safety of offshore structures. This paper presents the Moving Particle Semi-implicit and Finite Element Coupled Method (MPS-FEM) to simulate FSI problems. The Moving Particle Semi-implicit (MPS) method is used to calculate the fluid domain, while the Finite Element Method (FEM) is used to address the structure domain. The scheme for the coupling of MPS and FEM is introduced first. Then, numerical validation and convergent study are performed to verify the accuracy of the solver for solitary wave generation and FSI problems. The interaction between the solitary wave and an elastic structure is investigated by using the MPS-FEM coupled method.

  12. Soliton interactions, Bäcklund transformations, Lax pair for a variable-coefficient generalized dispersive water-wave system

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Zhen, Hui-Ling; Liu, De-Yin; Xie, Xi-Yang

    2018-04-01

    Under investigation in this paper is a variable-coefficient generalized dispersive water-wave system, which can simulate the propagation of the long weakly non-linear and weakly dispersive surface waves of variable depth in the shallow water. Under certain variable-coefficient constraints, by virtue of the Bell polynomials, Hirota method and symbolic computation, the bilinear forms, one- and two-soliton solutions are obtained. Bäcklund transformations and new Lax pair are also obtained. Our Lax pair is different from that previously reported. Based on the asymptotic and graphic analysis, with different forms of the variable coefficients, we find that there exist the elastic interactions for u, while either the elastic or inelastic interactions for v, with u and v as the horizontal velocity field and deviation height from the equilibrium position of the water, respectively. When the interactions are inelastic, we see the fission and fusion phenomena.

  13. Platinum-catalyzed hydrolysis etching of SiC in water: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Van Bui, Pho; Toh, Daisetsu; Isohashi, Ai; Matsuyama, Satoshi; Inagaki, Kouji; Sano, Yasuhisa; Yamauchi, Kazuto; Morikawa, Yoshitada

    2018-05-01

    A comprehensive study of the physicochemical interactions and the reaction mechanism of SiC etching with water by Pt catalysts can reveal key details about the surface treatment and catalytic phenomena at interfaces. Therefore, density functional theory simulations were performed to study the kinetics of Pt-assisted water dissociation and breaking of a Si–C bond compared to the HF-assisted mechanism. These calculations carefully considered the elastic and chemical interaction energies at the Pt–SiC interface, activation barriers of Si–C bond dissociation, and the catalytic role of Pt. It was found that the Pt-catalyzed etching of SiC in water is initiated via hydrolysis reactions that break the topmost Si–C bonds. The activation barrier strongly depends on the elastic and chemical interactions. However, chemical interactions are a dominant factor and mainly contribute to the lowering of the activation barrier, resulting in an increased rate of reaction.

  14. Lax pair, conservation laws and solitons for a (2 + 1)-dimensional fourth-order nonlinear Schrödinger equation governing an α-helical protein

    NASA Astrophysics Data System (ADS)

    Chai, Jun; Tian, Bo; Zhen, Hui-Ling; Sun, Wen-Rong

    2015-11-01

    Energy transfer through a (2+1)-dimensional α-helical protein can be described by a (2+1)-dimensional fourth-order nonlinear Schrödinger equation. For such an equation, a Lax pair and the infinitely-many conservation laws are derived. Using an auxiliary function and a bilinear formulation, we get the one-, two-, three- and N-soliton solutions via the Hirota method. The soliton velocity is linearly related to the lattice parameter γ, while the soliton' direction and amplitude do not depend on γ. Interactions between the two solitons are elastic, while those among the three solitons are pairwise elastic. Oblique, head-on and overtaking interactions between the two solitons are displayed. Oblique interaction among the three solitons and interactions among the two parallel solitons and a single one are presented as well.

  15. Testing device subjects elastic materials to biaxial deformations

    NASA Technical Reports Server (NTRS)

    Becker, G. W.

    1965-01-01

    Testing device stretches elastic materials biaxially over large deformation ranges and varies strain ratios in two perpendicular directions. The device is used in conjunction with a tensile testing machine, which holds the specimen and permits control over the direction and magnitude of the stresses applied.

  16. Capillary origami: spontaneous wrapping of a droplet with an elastic sheet.

    PubMed

    Py, Charlotte; Reverdy, Paul; Doppler, Lionel; Bico, José; Roman, Benoît; Baroud, Charles N

    2007-04-13

    The interaction between elasticity and capillarity is used to produce three-dimensional structures through the wrapping of a liquid droplet by a planar sheet. The final encapsulated 3D shape is controlled by tailoring the initial geometry of the flat membrane. Balancing interfacial energy with elastic bending energy provides a critical length scale below which encapsulation cannot occur, which is verified experimentally. This length is found to depend on the thickness as h3/2, a scaling favorable to miniaturization which suggests a new way of mass production of 3D micro- or nanoscale objects.

  17. The nonlocal elastomagnetoelectrostatics of disordered micropolar media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabychenkov, A. F.; Lisiovskii, F. V., E-mail: lisf@rambler.ru

    The interactions of electric, magnetic, and elastic subsystems in nonlinear disordered micropolar media that possess a bending–torsion tensor and an nonsymmetric strain tensor have been studied in the framework of phenomenological elastomagnetoelectrostatics. A system of nonlinear equations for determining the ground state of these media has been obtained by the variational method. It is shown that nonuniform external and internal rotations not only create elastic stresses, but also generate additional electric and magnetic fields, while nonuniform elastic stresses and external fields induce internal rotations. The nonlocal character of the micropolar media significantly influences elementary excitations and nonlinear dynamic processes.

  18. Adhesive interaction of elastically deformable spherical particles

    NASA Astrophysics Data System (ADS)

    D'yachenko, E. N.; Dueck, J. G.

    2012-01-01

    Two spherical particles that attract each other by van der Waals volume forces and can undergo deformation as a result of the attraction are considered. Small deformations of such particles can be described by the solution of the Hertz problem. The deformation of particles, in turn, alters the force of attraction between them. It has been established that the relationship between the adhesion and elasticity of the indicated particles is determined by the degree to which these particles deform and that the adhesion force acting between the particles depends on their elasticity, size, and the Hamaker constants.

  19. First results on the energy scan of the vector Ay and tensor Ayy and Axx analyzing powers in deuteron-proton elastic scattering at Nuclotron1

    NASA Astrophysics Data System (ADS)

    Ladygin, V. P.; Averyanov, A. V.; Chernykh, E. V.; Enache, D.; Gurchin, Yu V.; Isupov, A. Yu; Janek, M.; Karachuk, J.-T.; Khrenov, A. N.; Krivenkov, D. O.; Kurilkin, P. K.; Ladygina, N. B.; Livanov, A. N.; Piyadin, S. M.; Reznikov, S. G.; Skhomenko, Ya T.; Terekhin, A. A.; Tishevsky, A. V.; Uesaka, T.

    2017-12-01

    New results on the vector Ay and tensor Ayy and Axx analyzing powers in deuteron-proton elastic scattering obtained at Nuclotron in the energy range 400-1800 MeV are presented. These data have been obtained in 2016-2017 at DSS setup at internal target station using polarized deuteron beam from new source of polarized ions. The preliminary data on the deuteron analyzing powers in in the wide energy range demonstrate the sensitivity to the short-range spin structure of the nucleon-nucleon correlations.

  20. Income Elasticity Literature Review | Science Inventory | US ...

    EPA Pesticide Factsheets

    Following advice from the SAB Council, when estimating the economic value of reductions in air pollution-related mortality and morbidity risk, EPA accounts for the effect of personal income on the willingness to pay to reduce the risk of adverse health outcomes. These income growth adjustment factors are calculated using a combination of income elasticity estimates and income growth projections, both of which have remained essentially unchanged since 1999. These income elasticity estimates vary according to the severity of illness. EPA recently received advice from the SAB regarding the range of income elasticities to apply as well as the research standards to use when selecting income elasticity estimates. Following this advice, EPA consulted with a contractor to update its income elasticity and income growth projections, and generate new income growth adjustment factors. The SAB would evaluate the income elasticity estimates identified in the EPA-provided literature review, determining the extent to which these estimates are appropriate to use in human health benefits assessments.

  1. Switching gains and health plan price elasticities: 20 years of managed competition reforms in The Netherlands.

    PubMed

    Douven, Rudy; Katona, Katalin; T Schut, Frederik; Shestalova, Victoria

    2017-11-01

    In this paper we estimate health plan price elasticities and financial switching gains for consumers over a 20-year period in which managed competition was introduced in the Dutch health insurance market. The period is characterized by a major health insurance reform in 2006 to provide health insurers with more incentives and tools to compete, and to provide consumers with a more differentiated choice of products. Prior to the reform, in the period 1995-2005, we find a low number of switchers, between 2 and 4% a year, modest average total switching gains of 2 million euros per year and short-term health plan price elasticities ranging from -0.1 to -0.4. The major reform in 2006 resulted in an all-time high switching rate of 18%, total switching gains of 130 million euros, and a high short-term price elasticity of -5.7. During 2007-2015 switching rates returned to lower levels, between 4 and 8% per year, with total switching gains in the order of 40 million euros per year on average. Total switching gains could have been 10 times higher if all consumers had switched to one of the cheapest plans. We find short-term price elasticities ranging between -0.9 and -2.2. Our estimations suggest substantial consumer inertia throughout the entire period, as we find degrees of choice persistence ranging from about 0.8 to 0.9.

  2. Ab initio calculations for the elastic properties of magnesium under pressure

    NASA Astrophysics Data System (ADS)

    Sin'Ko, G. V.; Smirnov, N. A.

    2009-09-01

    Results of ab initio calculations of the elastic constants for the hcp, bcc, double hcp (dhcp), and fcc magnesium in a wide range of pressures are presented. The calculated elastic constants are compared with available experimental and theoretical data. We discuss the effect of the electron topological transition that occurs when the hcp structure is compressed on results of calculations and consider possibility of observing the hcp→dhcp transition on the magnesium Hugoniot.

  3. The role of elastic stored energy in controlling the long term rheological behaviour of the lithosphere

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, Klaus; Weinberg, Roberto F.; Rosenbaum, Gideon

    2012-04-01

    The traditional definition of lithospheric strength is derived from the differential stresses required to form brittle and ductile structures at a constant strain rate. This definition is based on dissipative brittle and ductile deformation and does not take into account the ability of the lithosphere to store elastic strain. Here we show the important role of elasticity in controlling the long-term behaviour of the lithosphere. This is particularly evident when describing deformation in a thermodynamic framework, which differentiates between stored (Helmholtz free energy) and dissipative (entropy) energy potentials. In our model calculations we stretch a continental lithosphere with a wide range of crustal thickness (30-60 km) and heat flow (50-80 mW/m2) at a constant velocity. We show that the Helmholtz free energy, which in our simple calculation describes the energy stored elastically, converges for all models within a 25% range, while the dissipated energy varies over an order of magnitude. This variation stems from complex patterns in the local strain distributions of the different models, which together operate to minimize the Helmholtz free energy. This energy minimization is a fundamental material behaviour of the lithosphere, which in our simple case is defined by its elastic properties. We conclude from this result that elasticity (more generally Helmholtz free energy) is an important regulator of the long-term geological strength of the lithosphere.

  4. Nonlocal elasticity tensors in dislocation and disclination cores

    DOE PAGES

    Taupin, V.; Gbemou, K.; Fressengeas, C.; ...

    2017-01-07

    We introduced nonlocal elastic constitutive laws for crystals containing defects such as dislocations and disclinations. Additionally, the pointwise elastic moduli tensors adequately reflect the elastic response of defect-free regions by relating stresses to strains and couple-stresses to curvatures, elastic cross-moduli tensors relating strains to couple-stresses and curvatures to stresses within convolution integrals are derived from a nonlocal analysis of strains and curvatures in the defects cores. Sufficient conditions are derived for positive-definiteness of the resulting free energy, and stability of elastic solutions is ensured. The elastic stress/couple stress fields associated with prescribed dislocation/disclination density distributions and solving the momentum andmore » moment of momentum balance equations in periodic media are determined by using a Fast Fourier Transform spectral method. Here, the convoluted cross-moduli bring the following results: (i) Nonlocal stresses and couple stresses oppose their local counterparts in the defects core regions, playing the role of restoring forces and possibly ensuring spatio-temporal stability of the simulated defects, (ii) The couple stress fields are strongly affected by nonlocality. Such effects favor the stability of the simulated grain boundaries and allow investigating their elastic interactions with extrinsic defects, (iii) Driving forces inducing grain growth or refinement derive from the self-stress and couple stress fields of grain boundaries in nanocrystalline configurations.« less

  5. Examining the short-run price elasticity of gasoline demand in the United States

    NASA Astrophysics Data System (ADS)

    Brannan, Michael James

    Estimating the consumer demand response to changes in the price of gasoline has important implications regarding fuel tax policies and environmental concerns. There are reasons to believe that the short-run price elasticity of gasoline demand fluctuates due to changing structural and behavioral factors. In this paper I estimate the short-run price elasticity of gasoline demand in two time periods, from 2001 to 2006 and from 2007 to 2010. This study utilizes data at both the national and state levels to produce estimates. The short-run price elasticities range from -0.034 to -0.047 during 2001 to 2006, compared to -0.058 to -0.077 in the 2007 to 2010 period. This paper also examines whether there are regional differences in the short-run price elasticity of gasoline demand in the United States. However, there appears to only be modest variation in price elasticity values across regions.

  6. Analysis of maxillary arch force/couple systems for a simulated high canine malocclusion: Part 2. Elastic ligation.

    PubMed

    Fok, Jonathan; Toogood, Roger W; Badawi, Hisham; Carey, Jason P; Major, Paul W

    2011-11-01

    To better understand the mechanics of bracket/archwire interaction through analysis of force and couple distribution along the maxillary arch using elastic ligation and to compare these results with passive ligation. An orthodontic simulator was used to study a high canine malocclusion. Force and couple distributions produced by elastic ligation and round wire were measured. Forces and couples were referenced to the center of resistance of each tooth. Tests were repeated for 12 bracket sets with 12 wires per set. Data were compared with those derived from similar tests for passive ligation. Propagation of the force/couple systems around the arch using elastic ligation was extensive. Elastic ligation produced significantly more resistance to sliding, contributing to higher forces and couples at the center of resistance than were observed for passive ligation. The results of this study suggest some potential mechanical advantages of passive over elastic ligation. In particular, limited propagation around the arch in passive ligation reduces the occurrence of unwanted force/couple systems compared with elastic ligation. These advantages may not transfer to a clinical setting because of the conditions of the tests; additional testing would be required to determine whether these advantages can be generalized.

  7. Interaction of the stream of the striking elements with barriers and cumulative ammunition

    NASA Astrophysics Data System (ADS)

    Radchenko, A. V.; Radchenko, P. A.; Batuev, S. P.

    2018-01-01

    This paper is aimed at working out the algorithm of multi-contact interaction of solid bodies; it studies the influence of the shape of projectile (damage agent) on its penetration capability. Steel projectiles of different shape have been considered as damage agents: sphere, regular tetrahedron, cube, cylinder and plate. The weight of projectiles has been kept the same. Antitank grenade has been used as a target. The study has been conducted by means of numerical simulation using finite element analysis. The simulation is three-dimensional. Behavior of materials has been described by elastic-plastic model taking into consideration the fracture and fragmentation of interacting bodies. The speed of interaction has been considered within the range of 800 to 2000 m/s. Research results demonstrated significant influence of the projectile shape on its penetration capability. Projectile in the shape of elongated cylinder has shown better penetration capability. Considering the weight of damage agents (except for sphere and plate) their maximum penetration capability has been reached at the speed of 1400 m/s. Increase of the speed of interaction has been followed by intensive fracture of damage agents and their penetration capability thus has worsened.

  8. Geometry and mechanics of two-dimensional defects in amorphous materials

    PubMed Central

    Moshe, Michael; Levin, Ido; Aharoni, Hillel; Kupferman, Raz; Sharon, Eran

    2015-01-01

    We study the geometry of defects in amorphous materials and their elastic interactions. Defects are defined and characterized by deviations of the material’s intrinsic metric from a Euclidian metric. This characterization makes possible the identification of localized defects in amorphous materials, the formulation of a corresponding elastic problem, and its solution in various cases of physical interest. We present a multipole expansion that covers a large family of localized 2D defects. The dipole term, which represents a dislocation, is studied analytically and experimentally. Quadrupoles and higher multipoles correspond to fundamental strain-carrying entities. The interactions between those entities, as well as their interaction with external stress fields, are fundamental to the inelastic behavior of solids. We develop analytical tools to study those interactions. The model, methods, and results presented in this work are all relevant to the study of systems that involve a distribution of localized sources of strain. Examples are plasticity in amorphous materials and mechanical interactions between cells on a flexible substrate. PMID:26261331

  9. Analysis of CRRES PHA Data for Low-Energy-Deposition Events

    NASA Technical Reports Server (NTRS)

    McNulty, P. J.; Hardage, Donna

    2004-01-01

    This effort analyzed the low-energy deposition Pulse Height Analyzer (PHA) data from the Combined Release and Radiation Effects Satellite (CRRES). The high-energy deposition data had been previously analyzed and shown to be in agreement with spallation reactions predicted by the Clemson University Proton Interactions in Devices (CUPID) simulation model and existing environmental and orbit positioning models (AP-8 with USAF B-L coordinates). The scope of this project was to develop and improve the CUPID model by increasing its range to lower incident particle energies, and to expand the modeling to include contributions from elastic interactions. Before making changes, it was necessary to identify experimental data suitable for benchmarking the codes; then, the models to the CRRES PHA data could be applied. It was also planned to test the model against available low-energy proton or neutron SEU data obtained with mono-energetic beams.

  10. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    PubMed Central

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  11. Effect of inertia on laminar swimming and flying of an assembly of rigid spheres in an incompressible viscous fluid.

    PubMed

    Felderhof, B U

    2015-01-01

    A mechanical model of swimming and flying in an incompressible viscous fluid in the absence of gravity is studied on the basis of assumed equations of motion. The system is modeled as an assembly of rigid spheres subject to elastic direct interactions and to periodic actuating forces which sum to zero. Hydrodynamic interactions are taken into account in the virtual mass matrix and in the friction matrix of the assembly. An equation of motion is derived for the velocity of the geometric center of the assembly. The mean power is calculated as the mean rate of dissipation. The full range of viscosity is covered, so that the theory can be applied to the flying of birds, as well as to the swimming of fish or bacteria. As an example a system of three equal spheres moving along a common axis is studied.

  12. Poroelastic mechanical effects of hemicelluloses on cellulosic hydrogels under compression.

    PubMed

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R; Gidley, Michael J

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials.

  13. Modeling of particle interactions in magnetorheological elastomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biller, A. M., E-mail: kam@icmm.ru; Stolbov, O. V., E-mail: oleg100@gmail.com; Raikher, Yu. L., E-mail: raikher@icmm.ru

    2014-09-21

    The interaction between two particles made of an isotropic linearly polarizable magnetic material and embedded in an elastomer matrix is studied. In this case, when an external field is imposed, the magnetic attraction of the particles, contrary to point dipoles, is almost wraparound. The exact solution of the magnetic problem in the linear polarization case, although existing, is not practical; to circumvent its use, an interpolation formula is proposed. One more interpolation expression is developed for the resistance of the elastic matrix to the field-induced particle displacements. Minimization of the total energy of the pair reveals its configurational bistability inmore » a certain field range. One of the possible equilibrium states corresponds to the particles dwelling at a distance, the other—to their collapse in a tight dimer. This mesoscopic bistability causes magnetomechanical hysteresis which has important implications for the macroscopic behavior of magnetorheological elastomers.« less

  14. Effect of inertia on laminar swimming and flying of an assembly of rigid spheres in an incompressible viscous fluid

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    2015-11-01

    A mechanical model of swimming and flying in an incompressible viscous fluid in the absence of gravity is studied on the basis of assumed equations of motion. The system is modeled as an assembly of rigid spheres subject to elastic direct interactions and to periodic actuating forces which sum to zero. Hydrodynamic interactions are taken into account in the virtual mass matrix and in the friction matrix of the assembly. An equation of motion is derived for the velocity of the geometric center of the assembly. The mean power is calculated as the mean rate of dissipation. The full range of viscosity is covered, so that the theory can be applied to the flying of birds, as well as to the swimming of fish or bacteria. As an example a system of three equal spheres moving along a common axis is studied.

  15. Elastic and Inelastic Scattering of 27.6 Mev Deuterons in Ni. Report No. 55; DISPERSION ELASTICA E INELASTICA DE DEUTERONES DE 27,6 Mev POR Ni. INFORME NO. 55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, S.; Rosenblatt, J.

    1961-01-01

    Elastic and inelastic differential cross sections in Ni(d,d)Ni with 27.6 Mev deuterons were measured with the aid of scintillation technique. Charged particle spectra from the reaction were observed at laboratory angles of 15 up to 150 degrees, showing the presence of Q-positive stripping protons and elastic and inelastic deuteron groups. Due to isotopic mixture in natural Ni and the rather high level density above 2 Mev of excitation in most of those isotopes, only inelastic deuteron groups going to the first excited states in Ni/sup 58/ and Ni/ sup 60/ could be identified. Elastic angular distribution exhibits similarities to thatmore » obtained by Yntema at 21.6 Mev, showing the typical diffraction patterns. At backward angles, a slight growing in the crosssection was observed which was not observed at 21.6 Mev. By regarding the elastic scattering like a classical light diffraction by a black disk, an interaction radius of 6.8 plus or minus 0.8 f was derived. Inelastic angular distributions were fitted by semiclassical Butler et al. theory and Huby-Newns theory. Due to above-mentioned limitations level mixtures could not be avoided; however, a group of deuterons going to Ni/ sup 58/ 1.45 Mev, probably mixed with Ni/sup 60/ 1.33 Mev, could be identified as proceeding via direct interaction with l = 2 and interaction radius 6.7 f and 6.9 f, respectively. Another inelastic group identified as Ni/sup 58/ 2.46 Mev mixed with Ni/sup 60/ 2.50 Mev is well fitted by l = 2 plus l = 4 and interaction radius 8.9 f and 8.7 f respectively, showing direct interaction behavor. Contributions to the above processes from compound nucleus formation are small as can be seen from absolute cross sections above 50 degrees. Total cross section for the formation of compound nucleus is about 860 mbarn. According to selection rules for deuteron scattering, 2/sup +/ is assigned to levels 1.45 Mev and 2.46 Mev in Ni/sup 58/; however this assignment is not definitive due to background from levels in Ni/sup 58/ and Ni/sup 60/ present at those excitation energies. (auth)« less

  16. Myelin basic protein reduces molecular motions in DMPA, an elastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Natali, F.; Gliozzi, A.; Rolandi, R.; Cavatorta, P.; Deriu, A.; Fasano, A.; Riccio, P.

    2001-07-01

    We have studied the effect of physiological amounts of myelin basic protein (MBP) on pure dimyristoyl L- α-phosphatidic acid (DMPA) vesicles using the elastic neutron scattering technique. Elastic scans have been performed in a wide temperature range (20-300 K). In the lower temperature region the behaviour of the integrated elastic intensity was the typical one of harmonic systems. The analysis of the Q and T dependence performed in terms of an asymmetric double well potential clearly showed that the effect of the protein consisted in a significant reduction of the conformational mobility of the DMPA bilayers and in the stabilisation of the membrane.

  17. Controls on the physical properties of gas-hydrate-bearing sediments because of the interaction between gas hydrate and porous media

    USGS Publications Warehouse

    Lee, Myung W.; Collett, Timothy S.

    2005-01-01

    Physical properties of gas-hydrate-bearing sediments depend on the pore-scale interaction between gas hydrate and porous media as well as the amount of gas hydrate present. Well log measurements such as proton nuclear magnetic resonance (NMR) relaxation and electromagnetic propagation tool (EPT) techniques depend primarily on the bulk volume of gas hydrate in the pore space irrespective of the pore-scale interaction. However, elastic velocities or permeability depend on how gas hydrate is distributed in the pore space as well as the amount of gas hydrate. Gas-hydrate saturations estimated from NMR and EPT measurements are free of adjustable parameters; thus, the estimations are unbiased estimates of gas hydrate if the measurement is accurate. However, the amount of gas hydrate estimated from elastic velocities or electrical resistivities depends on many adjustable parameters and models related to the interaction of gas hydrate and porous media, so these estimates are model dependent and biased. NMR, EPT, elastic-wave velocity, electrical resistivity, and permeability measurements acquired in the Mallik 5L-38 well in the Mackenzie Delta, Canada, show that all of the well log evaluation techniques considered provide comparable gas-hydrate saturations in clean (low shale content) sandstone intervals with high gas-hydrate saturations. However, in shaly intervals, estimates from log measurement depending on the pore-scale interaction between gas hydrate and host sediments are higher than those estimates from measurements depending on the bulk volume of gas hydrate.

  18. Adjustment Costs, Firm Responses, and Micro vs. Macro Labor Supply Elasticities: Evidence from Danish Tax Records*

    PubMed Central

    Chetty, Raj; Friedman, John N.; Olsen, Tore; Pistaferri, Luigi

    2011-01-01

    We show that the effects of taxes on labor supply are shaped by interactions between adjustment costs for workers and hours constraints set by firms. We develop a model in which firms post job offers characterized by an hours requirement and workers pay search costs to find jobs. We present evidence supporting three predictions of this model by analyzing bunching at kinks using Danish tax records. First, larger kinks generate larger taxable income elasticities. Second, kinks that apply to a larger group of workers generate larger elasticities. Third, the distribution of job offers is tailored to match workers' aggregate tax preferences in equilibrium. Our results suggest that macro elasticities may be substantially larger than the estimates obtained using standard microeconometric methods. PMID:21836746

  19. Modulating DNA configuration by interfacial traction: an elastic rod model to characterize DNA folding and unfolding.

    PubMed

    Huang, Zaixing

    2011-01-01

    As a continuum model of DNA, a thin elastic rod subjected to interfacial interactions is used to investigate the equilibrium configuration of DNA in intracellular solution. The interfacial traction between the rod and the solution environment is derived in detail. Kirchhoff's theory of elastic rods is used to analyze the equilibrium configuration of a DNA segment under the action of the interfacial traction. The influences of the interfacial energy factor and bending stiffness on the toroidal spool formation of the DNA segment are discussed. The results show that the equilibrium configuration of DNA is mainly determined by competition between the interfacial energy and elastic strain energy of the DNA itself, and the interfacial traction is one of the forces that drives DNA folding and unfolding.

  20. Meta-Analysis of the Oil Price Elasticity of the GDP for Policy Analysis: Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leiby, Paul Newsome; Bowman, David Charles; Oladosu, Gbadebo A.

    Given the important role of oil in economic activities, policy makers are interested in estimates of the potential damage to the economy from oil price shocks, particularly during periods of rapid and large increases that accompany severe shocks. Such estimates are needed to quantify the economic costs of oil price shocks, and to evaluate the potential benefits of alternative policy responses. Although research on the economic impacts of oil price shocks is extensive and has generally found that large increases in oil prices exert negative economic impacts, the range of estimates, summarized by the oil price elasticity of the GDPmore » or other aggregate measure of economic activity, is very wide. There are also conditions under which the relationship between the oil price and the economy could be positive. The range of estimates of the oil price elasticity of the GDP for the United States is typified by averages from the studies of Hamilton (2005, 2012) and Kilian and Vigfusson (2014), in which the implied elasticities were -0.014 to - 0.069 and +0.004 to -0.052, respectively. We employ a meta-regression approach to systematically summarize available estimates of the oil price elasticity of the GDP for oil importing economies, and examine the role of key factors. The resulting regression model was used to estimate the oil price elasticity of the GDP for the United States. Based on this we estimate the mean elasticity for the United States at -0.0238, with a 68% confidence interval of -0.0075 to -0.0402, four quarters after a shock.« less

  1. Wave Propagation Problems in Certain Elastic Anisotropic Half Spaces.

    DTIC Science & Technology

    1980-12-01

    874-882. 33. Paul , S.L., and Robinson, A.R., "Interaction of Plane Elastic Waves with a Cylindrical Cavity," Technical Documentary Report Mo. RTD...Professor Paul M. Naghdi University of California Department of Mechanical Engineering Berkeley, California 94720 Professor A. J. Durelli Oakland...Burt Paul University of Pennsylvania Towne School of Civil and Mechanical Engineering Philadelphia, Pennsylvania 19104 Professor H. W. Liu Syracuse

  2. Rectangular Shell Plating Under Uniformly Distributed Hydrostatic Pressure

    NASA Technical Reports Server (NTRS)

    Neubert, M; Sommer, A

    1940-01-01

    A check of the calculation methods used by Foppl and Henky for investigating the reliability of shell plating under hydrostatic pressure has proved that the formulas yield practical results within the elastic range of the material. Foppl's approximate calculation leaves one on the safe side. It further was found on the basis of the marked ductility of the shell plating under tensile stress that the strength is from 50 to 100 percent higher in the elastic range than expected by either method.

  3. Effect of repulsive and attractive three-body forces on nucleus-nucleus elastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.

    2009-10-15

    The effect of the three-body force (TBF) is studied in nucleus-nucleus elastic scattering on the basis of Brueckner theory for nucleon-nucleon (NN) effective interaction (complex G matrix) in the nuclear matter. A new G matrix called CEG07 proposed recently by the present authors includes the TBF effect and reproduces a realistic saturation curve in the nuclear matter, and it is shown to well reproduce proton-nucleus elastic scattering. The microscopic optical potential for the nucleus-nucleus system is obtained by folding the G matrix with nucleon density distributions in colliding nuclei. We first analyze in detail the {sup 16}O+{sup 16}O elastic scatteringmore » at E/A=70 MeV. The observed cross sections are nicely reproduced up to the most backward scattering angles only when the TBF effect is included. The use of the frozen-density approximation (FDA) is essentially important to properly estimate the effect of the TBF in nucleus-nucleus scattering. Other prescriptions for defining the local density have also been tested, but only the FDA prescription gives a proper description of the experimental cross sections as well as the effect of the TBF. The effects of the three-body attraction and the {omega}-rearrangement term are also analyzed. The CEG07 interaction is compared with CDM3Y6, which is a reliable and successful effective density-dependent NN interaction used in the double-folding model. The CEG07 G matrix is also tested in the elastic scattering of {sup 16}O by the {sup 12}C, {sup 28}Si, and {sup 40}Ca targets at E/A=93.9 MeV, and in the elastic scattering of {sup 12}C by the {sup 12}C target at E/A=135 MeV with great success. The decisive effect of the TBF is clearly seen also in those systems. Finally, we have tested CEG07a, CEG07b, and CEG07c for the {sup 16}O+{sup 16}O system at various energies.« less

  4. Micromechanics-based magneto-elastic constitutive modeling of particulate composites

    NASA Astrophysics Data System (ADS)

    Yin, Huiming

    Modified Green's functions are derived for three situations: a magnetic field caused by a local magnetization, a displacement field caused by a local body force and a displacement field caused by a local prescribed eigenstrain. Based on these functions, an explicit solution is derived for two magnetic particles embedded in the infinite medium under external magnetic and mechanical loading. A general solution for numerable magnetic particles embedded in an infinite domain is then provided in integral form. Two-phase composites containing spherical magnetic particles of the same size are considered for three kinds of microstructures. With chain-structured composites, particle interactions in the same chain are considered and a transversely isotropic effective elasticity is obtained. For periodic composites, an eight-particle interaction model is developed and provides a cubic symmetric effective elasticity. In the random composite, pair-wise particle interactions are integrated from all possible positions and an isotropic effective property is reached. This method is further extended to functionally graded composites. Magneto-mechanical behavior is studied for the chain-structured composite and the random composite. Effective magnetic permeability, effective magnetostriction and field-dependent effective elasticity are investigated. It is seen that the chain-structured composite is more sensitive to the magnetic field than the random composite; a composite consisting of only 5% of chain-structured particles can provide a larger magnetostriction and a larger change of effective elasticity than an equivalent composite consisting of 30% of random dispersed particles. Moreover, the effective shear modulus of the chain-structured composite rapidly increases with the magnetic field, while that for the random composite decreases. An effective hyperelastic constitutive model is further developed for a magnetostrictive particle-filled elastomer, which is sampled by using a network of body-centered cubic lattices of particles connected by macromolecular chains. The proposed hyperelastic model is able to characterize overall nonlinear elastic stress-stretch relations of the composites under general three-dimensional loading. It is seen that the effective strain energy density is proportional to the length of stretched chains in unit volume and volume fraction of particles.

  5. Elasticity of crystalline molecular explosives

    DOE PAGES

    Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; ...

    2015-04-14

    Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, andmore » an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.« less

  6. Elastic properties of uniaxial-fiber reinforced composites - General features

    NASA Astrophysics Data System (ADS)

    Datta, Subhendu; Ledbetter, Hassel; Lei, Ming

    The salient features of the elastic properties of uniaxial-fiber-reinforced composites are examined by considering the complete set of elastic constants of composites comprising isotropic uniaxial fibers in an isotropic matrix. Such materials exhibit transverse-isotropic symmetry and five independent elastic constants in Voigt notation: C(11), C(33), C(44), C(66), and C(13). These C(ij) constants are calculated over the entire fiber-volume-fraction range 0.0-1.0, using a scattered-plane-wave ensemple-average model. Some practical elastic constants such as the principal Young moduli and the principal Poisson ratios are considered, and the behavior of these constants is discussed. Also presented are the results for the four principal sound velocities used to study uniaxial-fiber-reinforced composites: v(11), v(33), v(12), and v(13).

  7. Structural relaxation driven increase in elastic modulus for a bulk metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Harpreet Singh; Aditya, Ayyagari V.; Mukherjee, Sundeep, E-mail: sundeep.mukherjee@unt.edu

    2015-01-07

    The change in elastic modulus as a function of temperature was investigated for a zirconium-based bulk metallic glass. High temperature nano-indentation was done over a wide temperature range from room temperature to the glass-transition. At higher temperature, there was a transition from inhomogeneous to homogeneous deformation, with a decrease in serrated flow and an increase in creep displacement. Hardness was found to decrease, whereas elastic modulus was found to increase with temperature. The increase in elastic modulus for metallic glass at higher temperature was explained by diffusive rearrangement of atoms resulting in free volume annihilation. This is in contrast tomore » elastic modulus increase with temperature for silicate glasses due to compaction of its open three dimensional coordinated structure without any atomic diffusion.« less

  8. Creeping gaseous flows through elastic tube and annulus micro-configurations

    NASA Astrophysics Data System (ADS)

    Elbaz, Shai; Jacob, Hila; Gat, Amir

    2016-11-01

    Gaseous flows in elastic micro-configurations is relevant to biological systems (e.g. alveolar ducts in the lungs) as well as to applications such as gas actuated soft micro-robots. We here examine the effect of low-Mach-number compressibility on creeping gaseous axial flows through linearly elastic tube and annulus micro-configurations. For steady flows, the leading-order effects of elasticity on the pressure distribution and mass-flux are obtained. For transient flow in a tube with small deformations, elastic effects are shown to be negligible in leading order due to compressibility. We then examine transient flows in annular configurations where the deformation is significant compared with the gap between the inner and outer cylinders defining the annulus. Both compressibility and elasticity are obtained as dominant terms interacting with viscosity. For a sudden flux impulse, the governing non-linear leading order diffusion equation is initially approximated by a porous-medium-equation of order 2.5 for the pressure square. However, as the fluid expand and the pressure decreases, the governing equation degenerates to a porous-medium-equation of order 2 for the pressure.

  9. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    PubMed

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  10. Problems in hard and soft matter: From brain folds and Levy localization to active elasticity

    NASA Astrophysics Data System (ADS)

    Mayett, David

    This thesis presents a study of condensed matter systems at different length scales. The first part presents a study of elastic instabilities in biological systems ranging from the cerebral cortex in the brain to the lining of the intestines. Such instabilities lead to a zoo of morphologies ranging from primary folds to villi and crypts to secondary folds and are brought about by growth, mechanical stresses, or a combination of the two. We propose a novel model for the description of primary folds in the cerebral cortex. Motivated by the spatial structure of the cortex, we model its elasticity as a smectic liquid crystal. With this novel description we show that vertical pulling forces via axonal tension from the brain underlying white matter can lead to buckling, which initiates the primary folds. Moreover, we are able to obtain a reasonable estimate of the critical wavelength and strain for buckling. We also model the formation of secondary folds in the cortex to obtain a more comprehensive theory. We continue this study of elastic instabilities due to growth by studying a more general system comprised of two coupled elastic membranes, one of which undergoes growth and one that does not. We employ an active formulation of growth and compare it to the one due to Rodriguez (Rodriguez). We show that different morphologies corresponding to different systems, such as the cerebral cortex and the lining of the intestines, can be obtained from our model by choosing different active stress functional forms to begin to classify the zoo of morphologies observed in seemingly different biological systems. In the second part of this thesis, to work towards a more microscopic view of biological tissues such as the brain tissue, which is composed of neurons, glial cells, and progenitor cells, we model an experiment (Theveneau) studying the dynamic interaction between neural crest cells and placodal cells in which the placodal cells run away from the neural crest cells following contact between the two. Our modeling contributes towards generalizing the rules governing the interplay between different cell types, particularly during collective cell migration. In the final part of this thesis, we move to an even smaller length scale. Our main motivations come from a series of experiments on the localization of light and the application of tight-binding models to the electronic transport properties of DNA sequences. To this end, we study the statistical properties of the conductance distribution and Lyapunov exponents in the Anderson tight-binding model with Levy-type disorder.

  11. Pressure-volume relationships and elastance in the knee joint of the dog.

    PubMed

    Nade, S; Newbold, P J

    1984-12-01

    This study has investigated changes in intra-articular hydrostatic pressure in the knee joints of normal dogs in response to continuous and stepwise infusions of fluids. The relationship between pressure and volume in the joint was examined over the pressure range of -8 to +50 mmHg, and also at much higher pressures often associated with joint disease or injury. The effects of joint angle and dog weight on the pressure-volume relationship and on elastance of the dogs' knees were also examined. With liquid paraffin B.P. the pressure was found to increase more with each unit volume infused at subatmospheric pressures than at pressures around atmospheric, and increased more again at higher pressures. The pressure-volume curve with saline infusions was affected by egress of fluid from the joint at supra-atmospheric pressure. Above +5 mmHg the rise in pressure per unit volume infused was less than that for paraffin at the same volume. Elastance and compliance of the normal joint capsule were calculated from the pressure-volume data. Elastance was high at subatmospheric pressures, decreased rapidly as atmospheric pressure was approached and rose as a linear function of pressure above 12 mmHg. The biphasic shape of the elastance-pressure curve is discussed, and explanations for the shape are suggested. After intra-articular pressure in the knee was raised by infusion of paraffin oil the joint was moved through the range of positions from 125 deg extension to 50 deg flexion. Intra-articular pressure did not change across the range 125-110 deg. However, increasing the angle of flexion from 110 to 50 deg resulted in a rise in pressure which became steeper for each volume increment. Increasing intra-articular fluid volume caused a decrease in the total range of movement of the joint. The pressure-volume curves measured at extended angles of 110, 125 and 140 deg, where the starting pressures were subatmospheric, were the same. At flexed joint positions of 80 and 50 deg, where the starting pressures were supra-atmospheric, the pressure-volume curves became steeper with greater flexion. Elastance of the joint tissues increased with flexion. The elastance at each joint angle depended also on the volume or pressure. Significant differences were found to exist between pressure-volume curves for three groups of animals of different weight.(ABSTRACT TRUNCATED AT 400 WORDS)

  12. Highly Strong and Elastic Graphene Fibres Prepared from Universal Graphene Oxide Precursors

    PubMed Central

    Huang, Guoji; Hou, Chengyi; Shao, Yuanlong; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang; Zhu, Meifang

    2014-01-01

    Graphene fibres are continuously prepared from universal graphene oxide precursors by a novel hydrogel-assisted spinning method. With assistance of a rolling process, meters of ribbon-like GFs, or GRs with improved conductivity, tensile strength, and a long-range ordered compact layer structure are successfully obtained. Furthermore, we refined our spinning process to obtained elastic GRs with a mixing microstructure and exceptional elasticity, which may provide a platform for electronic skins and wearable electronics, sensors, and energy devices. PMID:24576869

  13. Materials constitutive models for nonlinear analysis of thermally cycled structures

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hunt, L. E.

    1982-01-01

    Effects of inelastic materials models on computed stress-strain solutions for thermally loaded structures were studied by performing nonlinear (elastoplastic creep) and elastic structural analyses on a prismatic, double edge wedge specimen of IN 100 alloy that was subjected to thermal cycling in fluidized beds. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic kinematic, and combined plus transient creep) were exercised for the problem by using the MARC nonlinear, finite element computer program. Maximum total strain ranges computed from the elastic and nonlinear analyses agreed within 5 percent. Mean cyclic stresses, inelastic strain ranges, and inelastic work were significantly affected by the choice of inelastic constitutive model. The computing time per cycle for the nonlinear analyses was more than five times that required for the elastic analysis.

  14. A study of self-propelled elastic cylindrical micro-swimmers using modeling and computation

    NASA Astrophysics Data System (ADS)

    Shi, Lingling; Čanić, Sunčica; Quaini, Annalisa; Pan, Tsorng-Whay

    2016-06-01

    We study propulsion of micro-swimmers in 3D creeping flow. The swimmers are assumed to be made of elastic cylindrical hollow tubes. The swimming is generated by the contractions of the tube's elastic membrane walls producing a traveling wave in the form of a ;step-function; traversing the swimmer from right to left, propelling the swimmer from left to right. The problem is motivated by medical applications such as drug delivery. The influence of several non-dimensional design parameters on the velocity of the swimmer is investigated, including the swimmer aspect ratio, and the amplitude of the traveling wave relative to the swimmer radius. An immersed boundary method based on a finite element method approach is successfully combined with an elastic spring network model to simulate the two-way fluid-structure interaction coupling between the elastic cylindrical tube and the flow of a 3D viscous, incompressible fluid. To gain a deeper insight into the influence of various parameters on the swimmer speed, a reduced 1D fluid-structure interaction model was derived and validated. It was found that fast swimmers are those with large tube aspect ratios, and with the amplitude of the traveling wave which is roughly 50% of the reference swimmer radius. It was shown that the speed of our ;optimal swimmer; is around 1.5 swimmer lengths per second, which is at the top of the class of all currently manufactured micro-swimmers swimming in low Reynolds number flows (Re =10-6), reported in [11].

  15. Southern pine veneer laminates at various moduli of elasticity

    Treesearch

    George E. Woodson

    1972-01-01

    Modulus of rigidity (GLT) of veneer laminates was shown to be unrelated to dynamic modulus of elasticity (Ed) of single veneers and also, within the range of samples tested, unrelated to specific gravity. Values determined by flexure test (GLR) were consistent with those from standard plate shear...

  16. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    NASA Astrophysics Data System (ADS)

    Yadawa, P. K.

    2012-12-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  17. Elastic Multi-scale Mechanisms: Computation and Biological Evolution.

    PubMed

    Diaz Ochoa, Juan G

    2018-01-01

    Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.

  18. Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol

    NASA Astrophysics Data System (ADS)

    Pust, Ladislav; Pesek, Ludek

    This paper employs a new analytical approach to model the influence of aerodynamic excitation on the dynamics of a bladed cascade at the flutter state. The flutter is an aero-elastic phenomenon that is linked to the interaction of the flow and the traveling deformation wave in the cascade when only the damping of the cascade changes. As a case study the dynamic properties of the five-blade-bunch excited by the running harmonic external forces and aerodynamic self-excited forces are investigated. This blade-bunch is linked in the shroud by means of the viscous-elastic damping elements. The external running excitation depends on the ratio of stator and rotor blade numbers and corresponds to the real type of excitation in the steam turbine. The aerodynamic self-excited forces are modeled by two types of Van der Pol nonlinear models. The influence of the interaction of both types of self-excitation with the external running excitation is investigated on the response curves.

  19. The use of the energy flow change theorem in solving the problem of perfectly elastic collision of three mass points

    NASA Astrophysics Data System (ADS)

    Kolyari I., G.

    2018-05-01

    The proposed theoretical model allows for the perfectly elastic collision of three bodies (three mass points) to calculate: 1) the definite value of the three bodies' projected velocities after the collision with a straight line, along which the bodies moved before the collision; 2) the definite value of the scattering bodies' velocities on the plane and the definite value of the angles between the bodies' momenta (or velocities), which the bodies obtain after the collision when moving on the plane. The proposed calculation model of the velocities of the three collided bodies is consistent with the dynamic model of the same bodies' interaction during the collision, taking into account that the energy flow is conserved for the entire system before and after the collision. It is shown that under the perfectly elastic interaction during the collision of three bodies the energy flow is conserved in addition to the momentum and energy conservation.

  20. Blended Polyurethane and Tropoelastin as a Novel Class of Biologically Interactive Elastomer

    PubMed Central

    Wise, Steven G.; Liu, Hongjuan; Yeo, Giselle C.; Michael, Praveesuda L.; Chan, Alex H.P.; Ngo, Alan K.Y.; Bilek, Marcela M.M.; Bao, Shisan

    2016-01-01

    Polyurethanes are versatile elastomers but suffer from biological limitations such as poor control over cell attachment and the associated disadvantages of increased fibrosis. We address this problem by presenting a novel strategy that retains elasticity while modulating biological performance. We describe a new biomaterial that comprises a blend of synthetic and natural elastomers: the biostable polyurethane Elast-Eon and the recombinant human tropoelastin protein. We demonstrate that the hybrid constructs yield a class of coblended elastomers with unique physical properties. Hybrid constructs displayed higher elasticity and linear stress–strain responses over more than threefold strain. The hybrid materials showed increased overall porosity and swelling in comparison to polyurethane alone, facilitating enhanced cellular interactions. In vitro, human dermal fibroblasts showed enhanced proliferation, while in vivo, following subcutaneous implantation in mice, hybrid scaffolds displayed a reduced fibrotic response and tunable degradation rate. To our knowledge, this is the first example of a blend of synthetic and natural elastomers and is a promising approach for generating tailored bioactive scaffolds for tissue repair. PMID:26857114

  1. Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks

    PubMed Central

    Mangussi, Franco

    2016-01-01

    In oscillating mechanical systems, nonlinearity is responsible for the departure from proportionality between the forces that sustain their motion and the resulting vibration amplitude. Such effect may have both beneficial and harmful effects in a broad class of technological applications, ranging from microelectromechanical devices to edifice structures. The dependence of the oscillation frequency on the amplitude, in particular, jeopardizes the use of nonlinear oscillators in the design of time-keeping electronic components. Nonlinearity, however, can itself counteract this adverse response by triggering a resonant interaction between different oscillation modes, which transfers the excess of energy in the main oscillation to higher harmonics, and thus stabilizes its frequency. In this paper, we examine a model for internal resonance in a vibrating elastic beam clamped at its two ends. In this case, nonlinearity occurs in the form of a restoring force proportional to the cube of the oscillation amplitude, which induces resonance between modes whose frequencies are in a ratio close to 1:3. The model is based on a representation of the resonant modes as two Duffing oscillators, coupled through cubic interactions. Our focus is put on illustrating the diversity of behavior that internal resonance brings about in the dynamical response of the system, depending on the detailed form of the coupling forces. The mathematical treatment of the model is developed at several approximation levels. A qualitative comparison of our results with previous experiments and numerical calculations on elastic beams is outlined. PMID:27648829

  2. Characterization of cytogels using acousto-microscopy-based oscillating rod rheometry

    NASA Astrophysics Data System (ADS)

    Bereiter-Hahn, Juergen; Wagner, Oliver

    2001-07-01

    The physical properties of cytoplasm are primarily determined by the state of cytoskeletal element, i.e. their polymerisation, crosslinking and supramolecular interactions with other molecules. These interactions are involved in signal transduction processes as well as in morphogenesis. Scanning acoustic microscopy proved to be a powerful tool to determine the mechanical properties of living cells. The interpretation of the sound propagation parameters, however, has to be based on investigation of in vitro models. Therefore polymerisation of actin and tubulin have been followed using a novel oscillating rod rheometer which allows for synchronous determination of sound velocity, sound attenuation and viscosity. Sound velocity measures the elastic propterties of cytogels, attenuation the supramolecular associations. All these parameters are evaluated with minimal strain, in the range of 1- 100 nm actin with glycolytic enzymes not only modulated polymerisation in a specific, and substrate dependent manner, but also the stiffness of the fibrils was altered, e.g. by hexokinase in the presence of high ATP, this enzyme exhibited actin severing properties and reduced stiffness. Differences in polymerisation kinetics were observed comparing pyrene-labeled actin fluorimetry and oscillating rod viscosimetry. This comparison led to the detection of pseudocrystalline structures produced by g-actin and aldolase (in the absence of fructose-bisphophate, the substrate of aldolase). Elastic stiffness of actin filaments can be modulated by ATP/ADP and by actin binding proteins (e.g. the glycolytic enzyme hexokinase) as well. The in vitro observations support the interpretation of SAM data calculated for living cells.

  3. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grange, Joseph M.

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current andmore » future neutrino experiments.« less

  4. Roughness of stylolites: implications of 3D high resolution topography measurements.

    PubMed

    Schmittbuhl, J; Renard, F; Gratier, J P; Toussaint, R

    2004-12-03

    Stylolites are natural pressure-dissolution surfaces in sedimentary rocks. We present 3D high resolution measurements at laboratory scales of their complex roughness. The topography is shown to be described by a self-affine scaling invariance. At large scales, the Hurst exponent is zeta(1) approximately 0.5 and very different from that at small scales where zeta(2) approximately 1.2. A crossover length scale at around L(c)=1 mm is well characterized. Measurements are consistent with a Langevin equation that describes the growth of a stylolitic interface as a competition between stabilizing long range elastic interactions at large scales or local surface tension effects at small scales and a destabilizing quenched material disorder.

  5. Study of elastic and inelastic cross sections by positron impact on inert gases

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2018-04-01

    In this article, a modified computational method recently introduced is used for the calculation of total, positronium (Ps) formation and ionization cross sections including direct and total ionization cross sections for positron scattering from noble gases. The incident positron is assumed to have energies over a wide range from 5 eV to 5 keV. The positron-atom interaction potential is developed under an optical potential framework and the computations of cross sections for each process are performed by introducing appropriate absorption thresholds. The calculated results obtained by employing this modified approach are found to be in reasonably good agreement with most of the existing data.

  6. Elastic dipoles of point defects from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Varvenne, Céline; Clouet, Emmanuel

    2017-12-01

    The interaction of point defects with an external stress field or with other structural defects is usually well described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with continuum models. This can be done either by a fitting of the point-defect displacement field, by a summation of the Kanzaki forces, or by a linking equation to the residual stress. We perform here a detailed comparison of these different available methods to extract elastic dipoles, and show that they all lead to the same values when the supercell of the atomistic simulations is large enough and when the anharmonic region around the point defect is correctly handled. But, for small simulation cells compatible with ab initio calculations, only the definition through the residual stress appears tractable. The approach is illustrated by considering various point defects (vacancy, self-interstitial, and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio calculations.

  7. Simulating wave-turbulence on thin elastic plates with arbitrary boundary conditions

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Mahadevan, L.

    2016-11-01

    The statistical characteristics of interacting waves are described by the theory of wave turbulence, with the study of deep water gravity wave turbulence serving as a paradigmatic physical example. Here we consider the elastic analog of this problem in the context of flexural waves arising from vibrations of a thin elastic plate. Such flexural waves generate the unique sounds of so-called thunder machines used in orchestras - thin metal plates that make a thunder-like sound when forcefully shaken. Wave turbulence in elastic plates is typically investigated numerically using spectral simulations with periodic boundary conditions, which are not very realistic. We will present the results of numerical simulations of the dynamics of thin elastic plates in physical space, with arbitrary shapes, boundary conditions, anisotropy and inhomogeneity, and show first results on wave turbulence beyond the conventionally studied rectangular plates. Finally, motivated by a possible method to measure ice-sheet thicknesses in the open ocean, we will further discuss the behavior of a vibrating plate when floating on an inviscid fluid.

  8. Fracton-Elasticity Duality

    NASA Astrophysics Data System (ADS)

    Pretko, Michael; Radzihovsky, Leo

    2018-05-01

    Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.

  9. Elastic moduli of the distorted Kagome-lattice ferromagnet Nd3Ru4Al12

    NASA Astrophysics Data System (ADS)

    Suzuki, Takashi; Mizuno, Takuyou; Takezawa, Kohki; Kamikawa, Shuhei; Andreev, Alexander V.; Gorbunov, Denis I.; Henriques, Margarida S.; Ishii, Isao

    2018-05-01

    The distorted kagome-lattice compound Nd3Ru4Al12 has the hexagonal structure. This compound is reported as a ferromagnet in which spins are aligned along the c-axis with the Curie temperature TC = 39 K . The nature of localized f-electrons is expected in Nd3Ru4Al12, and magnetic anisotropy can be attributed to a crystal electric field (CEF) effect. We performed ultrasonic measurements on a Nd3Ru4Al12 single-crystalline sample in order to investigate the phase transition at TC and the CEF effect. All longitudinal and transverse elastic moduli increase monotonically with decreasing temperature, and no clear elastic softening due to a quadrupole interaction is detected under the hexagonal CEF. This result is in contrast to an isomorphic compound Dy3Ru4Al12 with a remarkable elastic softening of the transverse modulus C44. At the ferromagnetic phase transition, the moduli show obvious elastic anomalies, suggesting characteristic couplings between a strain and a magnetic order parameter.

  10. JLab Measurements of the He 3 Form Factors at Large Momentum Transfers

    DOE PAGES

    Camsonne, A.; Katramatou, A. T.; Olson, M.; ...

    2017-10-19

    The charge and magnetic form factors, F C and F M, respectively, of 3He are extracted in the kinematic range 25 fm –2 ≤ Q 2 ≤ 61 fm –2 from elastic electron scattering by detecting 3He recoil nuclei and scattered electrons in coincidence with the two High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements find evidence for the existence of a second diffraction minimum for the magnetic form factor at Q 2 = 49.3 fm –2 and for the charge form factor at Q 2 = 62.0 fm –2. Both minima are predicted tomore » exist in the Q 2 range accessible by this Jefferson Lab experiment. Here, the data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem.« less

  11. JLab Measurements of the He 3 Form Factors at Large Momentum Transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camsonne, A.; Katramatou, A. T.; Olson, M.

    The charge and magnetic form factors, F C and F M, respectively, of 3He are extracted in the kinematic range 25 fm –2 ≤ Q 2 ≤ 61 fm –2 from elastic electron scattering by detecting 3He recoil nuclei and scattered electrons in coincidence with the two High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements find evidence for the existence of a second diffraction minimum for the magnetic form factor at Q 2 = 49.3 fm –2 and for the charge form factor at Q 2 = 62.0 fm –2. Both minima are predicted tomore » exist in the Q 2 range accessible by this Jefferson Lab experiment. Here, the data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem.« less

  12. Laser Assisted Free-Free Transition in Electron - Atom Collision

    NASA Technical Reports Server (NTRS)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  13. Long-range effect of a Zeeman field on the electric current through the helical metal-superconductor interface in an Andreev interferometer

    NASA Astrophysics Data System (ADS)

    Mal'shukov, A. G.

    2018-02-01

    It is shown that the spin-orbit and Zeeman interactions result in phase shifts of Andreev-reflected holes propagating at the surface of a topological insulator, or in Rashba spin-orbit-coupled two-dimensional normal metals, which are in contact with an s -wave superconductor. Due to interference of holes reflected through different paths of the Andreev interferometer the electric current through external contacts varies depending on the strength and direction of the Zeeman field. It also depends on mutual orientations of Zeeman fields in different shoulders of the interferometer. Such a nonlocal effect is a result of the long-range coherency caused by the superconducting proximity effect. This current has been calculated within the semiclassical theory for Green's functions in the diffusive regime, by assuming a strong disorder due to elastic scattering of electrons.

  14. Bubble nucleation and migration in a lead-iron hydr(oxide) core-shell nanoparticle

    DOE PAGES

    Niu, Kaiyang; Frolov, Timofey; Xin, Huolin L.; ...

    2015-10-05

    Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O 2 gas and H 2O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb–FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometricmore » phase analysis of the shell lattice shows an inhomogeneous stain field at the bubbles. In conclusion, our modeling suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration.« less

  15. Commensurability and stability in nonperiodic systems

    PubMed Central

    Fasano, Y.; De Seta, M.; Menghini, M.; Pastoriza, H.; de la Cruz, F.

    2005-01-01

    We have investigated the response of 3D Bi2Sr2CaCu2O8 vortex structures to a weak perturbation induced by 2D Fe pinning structures acting on one extremity of vortex lines. The pinning patterns were nano-engineered at the sample surface by means of either a Bitter decoration of the vortex lattice or electron-beam lithography. The commensurability conditions between 2D rigid pinning potentials and 3D elastic structures with short-range positional and long-range orientational correlation have been experimentally determined. When the 2D potential is a replica of the nonperiodic vortex structure an amplification of its interaction with the vortex structure takes place. This effect is detected only for the first matching field, becoming negligible for other matching fields. On the other hand, a periodic 2D perturbation is shown to transform the nonperiodic Bragg glass-like structure into an Abrikosov crystal with an effective Debye–Waller factor. PMID:16576763

  16. Bubble nucleation and migration in a lead–iron hydr(oxide) core–shell nanoparticle

    PubMed Central

    Niu, Kaiyang; Frolov, Timofey; Xin, Huolin L.; Wang, Junling; Asta, Mark; Zheng, Haimei

    2015-01-01

    Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O2 gas and H2O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb–FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometric phase analysis of the shell lattice shows an inhomogeneous stain field at the bubbles. Our modeling suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration. PMID:26438864

  17. Elliptic flow from Coulomb interaction and low density elastic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Yuliang; Li, Qingfeng; Wang, Fuqiang

    2018-04-01

    In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow anisotropies have been observed. For the large opacity (ρ σ L ˜103 ) of the latter hydrodynamics is a natural consequence, but for the small opacity (ρ σ L ˜1 ) of the former the hydrodynamic description is questionable. To shed light onto the situation, we simulate the expansion of a low density argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the anisotropy depends on the initial spatial eccentricity and the density of the system. The results may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its role in the study of quantum chromodynamics.

  18. Relationship between tendon stiffness and failure: a metaanalysis

    PubMed Central

    LaCroix, Andrew S.; Duenwald-Kuehl, Sarah E.; Lakes, Roderic S.

    2013-01-01

    Tendon is a highly specialized, hierarchical tissue designed to transfer forces from muscle to bone; complex viscoelastic and anisotropic behaviors have been extensively characterized for specific subsets of tendons. Reported mechanical data consistently show a pseudoelastic, stress-vs.-strain behavior with a linear slope after an initial toe region. Many studies report a linear, elastic modulus, or Young's modulus (hereafter called elastic modulus) and ultimate stress for their tendon specimens. Individually, these studies are unable to provide a broader, interstudy understanding of tendon mechanical behavior. Herein we present a metaanalysis of pooled mechanical data from a representative sample of tendons from different species. These data include healthy tendons and those altered by injury and healing, genetic modification, allograft preparation, mechanical environment, and age. Fifty studies were selected and analyzed. Despite a wide range of mechanical properties between and within species, elastic modulus and ultimate stress are highly correlated (R2 = 0.785), suggesting that tendon failure is highly strain-dependent. Furthermore, this relationship was observed to be predictable over controlled ranges of elastic moduli, as would be typical of any individual species. With the knowledge gained through this metaanalysis, noninvasive tools could measure elastic modulus in vivo and reasonably predict ultimate stress (or structural compromise) for diseased or injured tendon. PMID:23599401

  19. Effect of Liquid Viscosity on Dispersion of Quasi-Lamb Waves in an Elastic-Layer-Viscous-Liquid-Layer System

    NASA Astrophysics Data System (ADS)

    Guz, A. N.; Bagno, A. M.

    2017-07-01

    The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the Navier -Stokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.

  20. Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-04-01

    The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.

  1. Self-interaction corrected LDA + U investigations of BiFeO3 properties: plane-wave pseudopotential method

    NASA Astrophysics Data System (ADS)

    Yaakob, M. K.; Taib, M. F. M.; Lu, L.; Hassan, O. H.; Yahya, M. Z. A.

    2015-11-01

    The structural, electronic, elastic, and optical properties of BiFeO3 were investigated using the first-principles calculation based on the local density approximation plus U (LDA + U) method in the frame of plane-wave pseudopotential density functional theory. The application of self-interaction corrected LDA + U method improved the accuracy of the calculated properties. Results of structural, electronic, elastic, and optical properties of BiFeO3, calculated using the LDA + U method were in good agreement with other calculation and experimental data; the optimized choice of on-site Coulomb repulsion U was 3 eV for the treatment of strong electronic localized Fe 3d electrons. Based on the calculated band structure and density of states, the on-site Coulomb repulsion U had a significant effect on the hybridized O 2p and Fe 3d states at the valence and the conduction band. Moreover, the elastic stiffness tensor, the longitudinal and shear wave velocities, bulk modulus, Poisson’s ratio, and the Debye temperature were calculated for U = 0, 3, and 6 eV. The elastic stiffness tensor, bulk modulus, sound velocities, and Debye temperature of BiFeO3 consistently decreased with the increase of the U value.

  2. Anharmonic Normal Mode Analysis of Elastic Network Model Improves the Modeling of Atomic Fluctuations in Protein Crystal Structures

    PubMed Central

    Zheng, Wenjun

    2010-01-01

    Abstract Protein conformational dynamics, despite its significant anharmonicity, has been widely explored by normal mode analysis (NMA) based on atomic or coarse-grained potential functions. To account for the anharmonic aspects of protein dynamics, this study proposes, and has performed, an anharmonic NMA (ANMA) based on the Cα-only elastic network models, which assume elastic interactions between pairs of residues whose Cα atoms or heavy atoms are within a cutoff distance. The key step of ANMA is to sample an anharmonic potential function along the directions of eigenvectors of the lowest normal modes to determine the mean-squared fluctuations along these directions. ANMA was evaluated based on the modeling of anisotropic displacement parameters (ADPs) from a list of 83 high-resolution protein crystal structures. Significant improvement was found in the modeling of ADPs by ANMA compared with standard NMA. Further improvement in the modeling of ADPs is attained if the interactions between a protein and its crystalline environment are taken into account. In addition, this study has determined the optimal cutoff distances for ADP modeling based on elastic network models, and these agree well with the peaks of the statistical distributions of distances between Cα atoms or heavy atoms derived from a large set of protein crystal structures. PMID:20550915

  3. On the exploitation of seismic resonances for cavity detection

    NASA Astrophysics Data System (ADS)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2017-04-01

    We study the interaction of a seismic wave-field with a spherical acoustic gas- or fluid-filled cavity. The intention of this study is to clarify whether seismic resonances can be expected, a characteristic feature, which may help detecting cavities in the subsurface. This is important for many applications, as in particular the detection of underground nuclear explosions which are to be prohibited by the Comprehensive-Test-Ban-Treaty (CTBT). On-Site Inspections (OSI) should assure possible violation of the CTBT to be convicted after detection of a suspicious event from a nuclear explosion by the international monitoring system (IMS). One primary structural target for the field team during an OSI is the detection of cavities created by underground nuclear explosions. The application of seismic resonances of the cavity for its detection has been proposed in the CTBT by mentioning "resonance seismometry" as possible technique during OSIs. In order to calculate the full seismic wave-field from an incident plane wave that interacts with the cavity, we considered an analytic formulation of the problem. The wave-field interaction consists of elastic scattering and the wave-field interaction between the acoustic and elastic media. Acoustic resonant modes, caused by internal reflections in the acoustic cavity, show up as spectral peaks in the frequency domain. The resonant peaks are in close correlation to the eigenfrequencies of the undamped system described by the particular acoustic medium bounded in a sphere with stiff walls. The filling of the cavity could thus be determined by the observation of spectral peaks from acoustic resonances. By energy transmission from the internal oscillations back into the elastic domain and intrisic attenuation, the oscillations experience damping, resulting in a frequency shift and a limitation of the resonance amplitudes. In case of a gas-filled cavity the impedance contrast is high resulting in very narrow, high-amplitude resonances. In synthetic seismograms calculated in the surrounding elastic domain, the acoustic resonances of gas-filled cavities show up as persisting oscillations. However, due to the weak acoustic-elastic coupling in this case the amplitudes of the oscillations are very low. Due to a lower impedance contrast, a fluid-filled cavity has a stronger acoustic-elastic coupling, which results in wide spectral peaks of lower amplitudes. In the synthetic seismograms derived in the surrounding medium of fluid-filled cavities, acoustic resonances show up as strong but fast decaying reverberations. Based on the analytical modeling methods for exploitation of these resonance features are developed and discussed.

  4. First-principles study of elastic and thermodynamic properties of orthorhombic OsB4 under high pressure

    NASA Astrophysics Data System (ADS)

    Yan, Hai-Yan; Zhang, Mei-Guang; Huang, Duo-Hui; Wei, Qun

    2013-04-01

    The first-principles study on the elastic properties, elastic anisotropy and thermodynamic properties of the orthorhombic OsB4 is reported using density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation. The calculated equilibrium parameters are in good agreement with the available theoretical data. A complete elastic tensor and crystal anisotropies of the ultra-incompressible OsB4 are determined in the pressure range of 0-50 GPa. By the elastic stability criteria, it is predicted that the orthorhombic OsB4 is stable below 50 GPa. By using the quasi-harmonic Debye model, the heat capacity, the coefficient of thermal expansion, and the Grüneisen parameter of OsB4 are also successfully obtained in the present work.

  5. Statistical properties of a folded elastic rod

    NASA Astrophysics Data System (ADS)

    Bayart, Elsa; Deboeuf, Stéphanie; Boué, Laurent; Corson, Francis; Boudaoud, Arezki; Adda-Bedia, Mokhtar

    2010-03-01

    A large variety of elastic structures naturally seem to be confined into environments too small to accommodate them; the geometry of folded structures span a wide range of length-scales. The elastic properties of these confined systems are further constrained by self-avoidance as well as by the dimensionality of both structures and container. To mimic crumpled paper, we devised an experimental setup to study the packing of a dimensional elastic object in 2D geometries: an elastic rod is folded at the center of a circular Hele-Shaw cell by a centripetal force. The initial configuration of the rod and the acceleration of the rotating disk allow to span different final folded configurations while the final rotation speed controls the packing intensity. Using image analysis we measure geometrical and mechanical properties of the folded configurations, focusing on length, curvature and energy distributions.

  6. Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation

    NASA Technical Reports Server (NTRS)

    Collinsworth, Amy M.; Zhang, Sarah; Kraus, William E.; Truskey, George A.

    2002-01-01

    The effect of differentiation on the transverse mechanical properties of mammalian myocytes was determined by using atomic force microscopy. The apparent elastic modulus increased from 11.5 +/- 1.3 kPa for undifferentiated myoblasts to 45.3 +/- 4.0 kPa after 8 days of differentiation (P < 0.05). The relative contribution of viscosity, as determined from the normalized hysteresis area, ranged from 0.13 +/- 0.02 to 0.21 +/- 0.03 and did not change throughout differentiation. Myosin expression correlated with the apparent elastic modulus, but neither myosin nor beta-tubulin were associated with hysteresis. Microtubules did not affect mechanical properties because treatment with colchicine did not alter the apparent elastic modulus or hysteresis. Treatment with cytochalasin D or 2,3-butanedione 2-monoxime led to a significant reduction in the apparent elastic modulus but no change in hysteresis. In summary, skeletal muscle cells exhibited viscoelastic behavior that changed during differentiation, yielding an increase in the transverse elastic modulus. Major contributors to changes in the transverse elastic modulus during differentiation were actin and myosin.

  7. Ξ-P Scattering and STOPPED-Ξ-12C Reaction

    NASA Astrophysics Data System (ADS)

    Ahn, J. K.; Aoki, S.; Chung, K. S.; Chung, M. S.; En'yo, H.; Fukuda, T.; Funahashi, H.; Goto, Y.; Higashi, A.; Ieiri, M.; Iijima, T.; Iinuma, M.; Imai, K.; Itow, Y.; Lee, J. M.; Makino, S.; Masaike, A.; Matsuda, Y.; Matsuyama, Y.; Mihara, S.; Nagoshi, C.; Nomura, I.; Park, I. S.; Saito, N.; Sekimoto, M.; Shin, Y. M.; Sim, K. S.; Susukita, R.; Takashima, R.; Takeutchi, F.; Tlustý, P.; Weibe, S.; Yokkaichi, S.; Yoshida, K.; Yoshida, M.; Yoshida, T.; Yamashita, S.

    2000-09-01

    We report upper limits on the cross sections for the Ξ-p elastic and conversion processes based on the observation of one Ξ-p elastic scattering events with an invisible Λ decay. The cross section for the Ξ-p elastic scattering is, for simplicity, assumming an isotropic angular distribution, found to be 40 mb at 90% confidence level, whereas that for the Ξ-p → ΛΛ reaction is 11 mb at 90% confidence level. While the results on the elastic cross section give no stringent constraint on theoretical estimates, the upper limit on the conversion process suggests that the estimate of the RGM-F model prediction could be ruled out. We also report some preliminary results on the obervation of the stopped-Ξ- hyperon-nucleus interaction with respect to hypernuclear production and existence of doubly-strange H-dibaryon.

  8. Actin-mediated bacterial propulsion: comet profile, velocity pulsations.

    PubMed

    Benza, V G

    2008-05-23

    The propulsion of bacteria under the action of an actin gel network is examined in terms of gel concentration dynamics. The model includes the elasticity of the network, the gel-bacterium interaction, the bulk and interface polymerization. A formula for the cruise velocity is obtained where the contributions to bacterial motility arising from elasticity and polymerization are made explicit. Higher velocities correspond to lower concentration peaks and longer tails, in agreement with experimental results. The condition for the onset of motion is explicitly given. The behavior of the system is explored by varying the growth rates and the gel elasticity. At steady state two regimes are found, respectively, of constant and pulsating velocity; in the latter case, the velocity undergoes sudden accelerations and subsequent recoveries. The transition to the pulsating regime is obtained by increasing the elastic response of the gel.

  9. Contact stresses in pin-loaded orthotropic plates

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Klang, E. C.

    1984-01-01

    The effects of pin elasticity, friction, and clearance on the stresses near the hole in a pin-loaded orthotropic plate are described. The problem is modeled as a contact elasticity problem using complex variable theory, the pin and the plate being two elastic bodies interacting through contact. This modeling is in contrast to previous works which assumed that the pin is rigid or that it exerts a known cosinusoidal radial traction on the hole boundary. Neither of these approaches explicitly involves a pin. A collocation procedure and iteration were used to obtain numerical results for a variety of plate and pin elastic properties and various levels of friction and clearance. Collocation was used to enforce the boundary and iteration was used to find the contact and no-slip regions on the boundary. Details of the numerical scheme are discussed.

  10. Elastic gauge fields and Hall viscosity of Dirac magnons

    NASA Astrophysics Data System (ADS)

    Ferreiros, Yago; Vozmediano, María A. H.

    2018-02-01

    We analyze the coupling of elastic lattice deformations to the magnon degrees of freedom of magnon Dirac materials. For a honeycomb ferromagnet we find that, as happens in the case of graphene, elastic gauge fields appear coupled to the magnon pseudospinors. For deformations that induce constant pseudomagnetic fields, the spectrum around the Dirac nodes splits into pseudo-Landau levels. We show that when a Dzyaloshinskii-Moriya interaction is considered, a topological gap opens in the system and a Chern-Simons effective action for the elastic degrees of freedom is generated. Such a term encodes a phonon Hall viscosity response, entirely generated by quantum fluctuations of magnons living in the vicinity of the Dirac points. The magnon Hall viscosity vanishes at zero temperature, and grows as temperature is raised and the states around the Dirac points are increasingly populated.

  11. Mathematical modeling of aeroelastic systems

    NASA Astrophysics Data System (ADS)

    Velmisov, Petr A.; Ankilov, Andrey V.; Semenova, Elizaveta P.

    2017-12-01

    In the paper, the stability of elastic elements of a class of designs that are in interaction with a gas or liquid flow is investigated. The definition of the stability of an elastic body corresponds to the concept of stability of dynamical systems by Lyapunov. As examples the mathematical models of flowing channels (models of vibration devices) at a subsonic flow and the mathematical models of protective surface at a supersonic flow are considered. Models are described by the related systems of the partial differential equations. An analytic investigation of stability is carried out on the basis of the construction of Lyapunov-type functionals, a numerical investigation is carried out on the basis of the Galerkin method. The various models of the gas-liquid environment (compressed, incompressible) and the various models of a deformable body (elastic linear and elastic nonlinear) are considered.

  12. Exploring Resilience of Canadian Rivers to Climate Change

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Paltsev, A.; Accatino, F.; Aldred, D. A.; Guo, J.; Lehner, B.; Ouellet Dallaire, C. O.

    2015-12-01

    Climate change is leading to a hydrological intensification (i.e., wet areas and periods are becoming wetter; dry areas and periods are becoming drier). Impacts of climate change across Canada will vary, and Canadians would benefit from insights as to where these impacts will occur and what these impacts will be in order to be in a position to effectively respond to these changes. Resilience is a term that is often used - and occasionally misused. We make the distinction between engineering resilience and ecological resilience. Engineering resilience assumes that a system may exist in only one stable equilibrium state, and measures the system's resistance to change. In contrast, ecological resilience assumes that a system may exist in multiple equilibrium states and measures the magnitude of change a system can absorb before shifting from one equilibrium state to another. We adopt the concept of engineering resilience and explore the ability of riverscapes (rivers and their watersheds) to maintain or quickly return to an equilibrium state in response to changing climatic conditions. We use the Budyko curve to examine interactions of climate and water yield in riverscapes across Canada. The Budyko curve describes the relationship between a riverscape's potential evapotranspiration (PET) and its actual evapotranspiration (AET) both normalized by precipitation (P) - i.e., the curve describes AET/P as a function of PET/P. We define elasticity is a measure of a system's ability to maintain this relationship consistent with the Budyko curve as climate changes (ratio of range of PET/P to range of AET/P between different climate periods). We classify each riverscape as resilient (elasticity > 1) or non-resilient (elasticity ≤ 1) in response to climate change - exploring both past and future climate change scenarios. This Budyko approach enables us to characterize the resilience of riverscapes, predict their vulnerability to climate change, and propose management measures that will enable societies to adapt to climate change.

  13. Elastic wave induced by friction as a signature of human skin ageing and gender effect.

    PubMed

    Djaghloul, M; Morizot, F; Zahouani, H

    2016-08-01

    In this work, we propose an innovative approach based on a rotary tribometer coupled with laser velocimetry for measuring the elastic wave propagation on the skin. The method is based on a dynamic contact with the control of the normal force (Fn ), the contact length and speed. During the test a quantification of the friction force is produced. The elastic wave generated by friction is measured at the surface of the skin 35 mm from the source of friction exciter. In order to quantify the spectral range and the energy property of the wave generated, we have used laser velocimetry whose spot laser diameter is 120 μm, which samples the elastic wave propagation at a frequency which may reach 100 kHz. In this configuration, the speaker is the friction exciter and the listener the laser velocimetry. In order to perform non-invasive friction tests, the normal stress has been set to 0.3 N and the rotary velocity to 3 revolutions per second, which involves a sliding velocity of 63 mm/s. This newly developed innovative tribometer has been used for the analysis of the elastic wave propagation induced by friction on human skin during chronological ageing and gender effect. Measurements in vivo have been made on 60 healthy men and women volunteers, aged from 25 to 70. The results concerning the energy of the elastic wave signature induced by friction show a clear difference between the younger and older groups in the range of a low band of frequencies (0-200 Hz). The gender effect was marked by a 20% decrease in the energy of elastic wave propagation in the female group. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Short-run and long-run elasticities of electricity demand in the public sector: A case study of the United States Navy bases

    NASA Astrophysics Data System (ADS)

    Choi, Jino

    Numerous studies have examined the elasticities of electricity demand---residential as well as commercial and industrial---in the private sector. However, no one appears to have examined the behavior of the public sector demand. This study aims to fill that gap and to provide insights into the electricity demand in the public sector, using the U.S. Navy bases as a case study. This study examines electricity demand data of 38 Navy activities within the United States for a 16-year time period from 1985 through 2000. The Navy maintains a highly diverse shore infrastructure to conduct its mission and to support the fleet. The types of shore facilities include shipyards, air stations, aviation depots, hospital, and many others. These Navy activities are analogous to commercial or industrial organizations in the private sector. In this study, I used a number of analytical approaches to estimate short-run and long-run elasticities of electricity demand. Estimation using pooled data was rejected because it failed the test for homogeneity. Estimation using the time series data of each Navy activity had several wrong signs for coefficients. The Stein-rule estimator did not differ significantly from the separate cross-section estimates because of the strong rejection of the homogeneity assumption. The iterative Bayesian shrinkage estimator provided the most reasonable results. The empirical findings from this study are as follows. First, the Navy's electricity demand is price elastic. Second, the price elasticities appear to be lower than those of the private sector. The short-run price elasticities for the Navy activities ranged from -0.083 to -0.157. The long-run price elasticities ranged from -0.151 to -0.769.

  15. First-principles investigations on structural, elastic and mechanical properties of BNxAs1‑x ternary alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Junqin; Ma, Huihui; Zhao, Bin; Wei, Qun; Yang, Yintang

    2018-05-01

    A systematic investigation of the structural optimization, elastic and mechanical properties of the BNxAs1‑x ternary alloys are reported in the present work using the density-functional theory with the generalized gradient approximation (GGA) of the exchange-correlation functional. Some of the constants which are used to analyze the properties including elastic constants and modulus, and some parameters describing the elastic anisotropy and Debye temperature are also calculated. Our calculations were performed to evaluate the equilibrium lattice constant and band structure compared with the available theoretical works. On the one hand, our results might be expected to provide a theoretical basis for future study of BNxAs1‑x alloys towards elastic or mechanical properties. On the other hand, we draw a conclusion that BNxAs1‑x alloys show direct bandgap when x equals 0.25, 0.5 or 0.75. We obtained the elastic modulus, Poisson’s ratio and universal anisotropic index which are used to demonstrate the elastic anisotropy of these alloys which is proved according to our calculations. Also, we calculated the Debye temperature to illustrate covalent interactions and obtained the lower limit of the thermal conductivity for further research.

  16. Compressible Fluids Interacting with a Linear-Elastic Shell

    NASA Astrophysics Data System (ADS)

    Breit, Dominic; Schwarzacher, Sebastian

    2018-05-01

    We study the Navier-Stokes equations governing the motion of an isentropic compressible fluid in three dimensions interacting with a flexible shell of Koiter type. The latter one constitutes a moving part of the boundary of the physical domain. Its deformation is modeled by a linearized version of Koiter's elastic energy. We show the existence of weak solutions to the corresponding system of PDEs provided the adiabatic exponent satisfies {γ > 12/7} ({γ >1 } in two dimensions). The solution exists until the moving boundary approaches a self-intersection. This provides a compressible counterpart of the results in Lengeler and Růžičkaka (Arch Ration Mech Anal 211(1):205-255, 2014) on incompressible Navier-Stokes equations.

  17. Mechanics of collective unfolding

    NASA Astrophysics Data System (ADS)

    Caruel, M.; Allain, J.-M.; Truskinovsky, L.

    2015-03-01

    Mechanically induced unfolding of passive crosslinkers is a fundamental biological phenomenon encountered across the scales from individual macro-molecules to cytoskeletal actin networks. In this paper we study a conceptual model of athermal load-induced unfolding and use a minimalistic setting allowing one to emphasize the role of long-range interactions while maintaining full analytical transparency. Our model can be viewed as a description of a parallel bundle of N bistable units confined between two shared rigid backbones that are loaded through a series spring. We show that the ground states in this model correspond to synchronized, single phase configurations where all individual units are either folded or unfolded. We then study the fine structure of the wiggly energy landscape along the reaction coordinate linking the two coherent states and describing the optimal mechanism of cooperative unfolding. Quite remarkably, our study shows the fundamental difference in the size and the structure of the folding-unfolding energy barriers in the hard (fixed displacements) and soft (fixed forces) loading devices which persists in the continuum limit. We argue that both, the synchronization and the non-equivalence of the mechanical responses in hard and soft devices, have their origin in the dominance of long-range interactions. We then apply our minimal model to skeletal muscles where the power-stroke in acto-myosin crossbridges can be interpreted as passive folding. A quantitative analysis of the muscle model shows that the relative rigidity of myosin backbone provides the long-range interaction mechanism allowing the system to effectively synchronize the power-stroke in individual crossbridges even in the presence of thermal fluctuations. In view of the prototypical nature of the proposed model, our general conclusions pertain to a variety of other biological systems where elastic interactions are mediated by effective backbones.

  18. Comparison of screw fixation with elastic fixation methods in the treatment of syndesmosis injuries in ankle fractures.

    PubMed

    Seyhan, Mustafa; Donmez, Ferdi; Mahirogullari, Mahir; Cakmak, Selami; Mutlu, Serhat; Guler, Olcay

    2015-07-01

    17 patients with ankle syndesmosic injury were treated with a 4.5mm single cortical screw fixation (passage of screw 4 cortices) and 15 patients were treated with single-level elastic fixation material. All patients were evaluated according to the AOFAS ankle and posterior foot scale at the third, sixth and twelfth months after the fixation. The ankle range of movement was recorded together with the healthy side. The Student's t test was used for statistical comparisons. No statistical significant difference was observed between the AOFAS scores (p>0.05). The range of dorsiflexion and plantar flexion motion of the elastic fixation group at the 6th and 12th months were significantly better compared to the screw fixation group (p<0.01). Elastic fixation is as functional as screw fixation in the treatment of ankle syndesmosis injuries. The unnecessary need of a second surgical intervention for removal of the fixation material is another advantageous aspect of this method of fixation. Copyright © 2015. Published by Elsevier Ltd.

  19. Measurement of high temperature elastic moduli of an 18Cr-9Ni-2.95 Cu-0.58 Nb-0.1C (Wt %) austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Tripathy, Haraprasanna; Hajra, Raj Narayan; Sudha, C.; Raju, S.; Saibaba, Saroja

    2018-04-01

    The Young's modulus (E) and Shear modulus (G) of an indigenously developed 18Cr-9Ni-0.1C-2.95 Cu-0.58Nb (wt %) austenitic stainless steel has been evaluated in the temperature range 298 K to 1273 K (25 °C to 1000 °C), using Impulse excitation technique (IET). The Bulk modulus (K) and the poison's ratio have been estimated from the measured values of E and G. It is observed that the elastic constants (E, G and K) are found to decrease in a nonlinear fashion with increase in temperature. The Cu precipitation is found to influence the elastic moduli of the steel in the cooling cycle. The observed elastic moduli are fitted to 3rd order polynomial equations in order to describe the temperature dependence of E, G, K moduli in the temperature range 298-1273 K (25 °C to 1000 °C). The room temperature values of E,G and K moduli is found to be 207, 82 and 145 GPa respectively for the present steel.

  20. Pressure effect on the structural, phonon, elastic and thermodynamic properties of L12 phase RH3TA: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Wang, Leini; Jian, Zhang; Ning, Wei

    2018-06-01

    The phonon, elastic and thermodynamic properties of L12 phase Rh3Ta have been investigated by the density functional theory (DFT) approach combined with the quasi-harmonic approximation model. The results of the phonon band structure show that L12 phase Rh3Ta possesses dynamical stability in the pressure range from 0-80 GPa due to the absence of imaginary frequencies. The pressure dependences with the elastic constants Cij, shear modulus G, bulk modulus B, Young’s modulus Y, Poisson’s ratio and B/G ratio have been analyzed. The results of the elastic properties studies show that L12 phase Rh3Ta compound is mechanically stable and possesses a higher hardness, improved ductility and plasticity under higher pressures. The pressure and temperature relationship of the thermodynamic properties, such as the Debye temperature ΘD, heat capacity Cp, thermal expansion coefficient α and the Grüneisen parameter γ are predicted by the quasi-harmonic Debye model in a wide pressure (0-80 GPa) and temperature (0-750 K) ranges.

  1. On the diffusion and self-trapping of surface dimers

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    The theory of elastic interactions between surface atoms which are caused by substrate strains is applied to the interaction of dimers on the (211) surface of tungsten. From the comparison of theoretical and experimental interactions which were derived from the diffusion behaviour of dimers, conclusions are drawn on the nature of the adatom-substrate bond.

  2. On the diffusion and self-trapping of surface dimers

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    1982-03-01

    The theory of elastic interactions between surface atoms which are caused by substrate strains is applied to the interaction of dimers on the (211) surface of tungsten. From the comparison of theoretical and experimental interactions which were derived from the diffusion behaviour of dimers, conclusions are drawn on the nature of the adatom-substrate bond.

  3. Elasticity of human embryonic stem cells as determined by atomic force microscopy.

    PubMed

    Kiss, Robert; Bock, Henry; Pells, Steve; Canetta, Elisabetta; Adya, Ashok K; Moore, Andrew J; De Sousa, Paul; Willoughby, Nicholas A

    2011-10-01

    The expansive growth and differentiation potential of human embryonic stem cells (hESCs) make them a promising source of cells for regenerative medicine. However, this promise is off set by the propensity for spontaneous or uncontrolled differentiation to result in heterogeneous cell populations. Cell elasticity has recently been shown to characterize particular cell phenotypes, with undifferentiated and differentiated cells sometimes showing significant differences in their elasticities. In this study, we determined the Young's modulus of hESCs by atomic force microscopy using a pyramidal tip. Using this method we are able to take point measurements of elasticity at multiple locations on a single cell, allowing local variations due to cell structure to be identified. We found considerable differences in the elasticity of the analyzed hESCs, reflected by a broad range of Young's modulus (0.05-10 kPa). This surprisingly high variation suggests that elasticity could serve as the basis of a simple and efficient large scale purification/separation technique to discriminate subpopulations of hESCs.

  4. Release characteristics of reattached barnacles to non-toxic silicone coatings.

    PubMed

    Kim, Jongsoo; Nyren-Erickson, Erin; Stafslien, Shane; Daniels, Justin; Bahr, James; Chisholm, Bret J

    2008-01-01

    Release mechanisms of barnacles (Amphibalanus amphitrite or Balanus amphitrite) reattached to platinum-cured silicone coatings were studied as a function of coating thickness (210-770 microm), elastic modulus (0.08-1.3 MPa), and shear rate (2-22 microm s(-1)). It was found that the shear stress of the reattached, live barnacles necessary to remove from the silicone coatings was controlled by the combined term (E/t)(0.5) of the elastic modulus (E) and thickness (t). As the ratio of the elastic modulus to coating thickness decreased, the barnacles were more readily removed from the silicone coatings, showing a similar release behavior to pseudobarnacles (epoxy glue). The barnacle mean shear stress ranged from 0.017 to 0.055 MPa whereas the pseudobarnacle mean shear stress ranged from 0.022 to 0.095 MPa.

  5. Elastic and plastic buckling of simply supported solid-core sandwich plates in compression

    NASA Technical Reports Server (NTRS)

    Seide, Paul; Stowell, Elbridge Z

    1950-01-01

    A solution is presented for the problem of the compressive buckling of simply supported, flat, rectangular, solid-core sandwich plates stressed either in the elastic range or in the plastic range. Charts for the analysis of long sandwich plates are presented for plates having face materials of 24s-t3 aluminum alloy, 76s-t6 alclad aluminum alloy, and stainless steel. A comparison of computed and experimental buckling stresses of square solid-core sandwich plates indicates fair agreement between theory and experiment.

  6. Surface acoustic admittance of highly porous open-cell, elastic foams

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1983-01-01

    This work presents a comprehensive study of the surface acoustic admittance properties of graded sizes of open-cell foams that are highly porous and elastic. The intrinsic admittance as well as properties of samples of finite depth were predicted and then measured for sound at normal incidence over a frequency range extending from about 35-3500 Hz. The agreement between theory and experiment for a range of mean pore size and volume porosity is excellent. The implications of fibrous structure on the admittance of open-cell foams is quite evident from the results.

  7. Impact-induced solidlike behavior and elasticity in concentrated colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Chu, Baojin; Salem, David R.

    2017-10-01

    Modified drop weight impact tests were performed on Si O2 -ethylene glycol concentrated suspensions. Counterintuitive impact-induced solidlike behavior and elasticity, causing significant deceleration and rebound of the impactor, were observed. We provide evidence that the observed large deceleration force on the impactor mainly originates from the hydrodynamic force, and that the elasticity arises from the short-range repulsive force of a solvation layer on the particle surface. This study presents key experimental results to help understand the mechanisms underlying various stress-induced solidification phenomena.

  8. A new barometer from stress fields around inclusions

    NASA Astrophysics Data System (ADS)

    Avadanii, Diana; Hansen, Lars; Wallis, David; Waters, David

    2017-04-01

    A key step in understanding geological and geodynamic processes is modelling the pressure-temperature paths of metamorphic rocks. Traditional thermobarometry relies on mineral assemblage equilibria and thermodynamic modelling to infer the pressures and temperatures of chemical equilibration. This approach requires the presence of specific mineral assemblages and compositions, which narrows its applicability. In this study we aim to develop a geobarometer based on mechanical interactions between inclusions and their host grains. Exhumation of minerals with inclusions causes heterogeneous residual stress fields due to the different, and often anisotropic, elastic properties of the inclusion and host. Recent studies measure residual mean stresses within inclusions using Raman spectroscopy and use those stresses as a barometer. In contrast, we map each component of the stress tensor around inclusions using high angular-resolution electron backscatter diffraction (HR-EBSD). This technique provides both higher spatial resolution and increased sensitivity to elastic strains relative to Raman spectroscopy. We focus on quartz inclusions in garnet, a common feature in metamorphic rocks. This assemblage also provides an opportunity to test our results with compositional thermobarometry. We analyse samples metamorphosed at pressures ranging from ˜ 300 MPa to ˜ 1600 MPa, as recorded by independent geobarometers. HR-EBSD reveals symmetric and lobate signals around inclusions, with elastic strains and residual stresses of the order 10-3 and ±102 -103 MPa, respectively. We solve Eshelby's problem for the 'inhomogeneous inclusion' case to simulate the elastic strain/stress field around an anisotropic ellipsoidal inclusion surrounded by an isotropic, homogeneous, infinite matrix. This model calculates the stress disturbances caused by differential expansion of an inclusion and host subjected to decompression. We additionally account for differential expansion related to cooling by imposing an eigenstrain in the inclusion, according to the thermal expansivity of quartz. Thermal contraction in the host garnet is accounted for by modifying the macroscopic pressure. The simulations reproduce the general pattern of the elastic fields that we observe from HR-EBSD and account for different geometries of the inclusion. The simulations provide the basis for quantitatively relating the stress fields measured by HR-EBSD to the entrapment pressures of inclusions.

  9. Modelling Earthquakes Using a Poro-Elastic Two-Phase Flow Formulation

    NASA Astrophysics Data System (ADS)

    Petrini, C.; Gerya, T.; van Dinther, Y.; Connolly, J. A.; Madonna, C.

    2017-12-01

    Seismicity along subduction zones ranges from large devastating megathrust earthquakes to aseismic slow slip events. These different slip phenomena are widely believed to be influenced by fluids and interactions of fluids with the host rock. To understand the slip or strain mode along the megathrust interface, it is thus crucial to understand the role of fluids. Considering the spatiotemporal limitations of observations, a promising approach is to develop a numerical model that couples the deformation of both fluids and solids in a single framework. The objective of this study is the development of such a seismo-hydro-mechanical approach and the subsequent identification of parameters that control the mode of slip. We present a newly developed finite difference visco-elasto-plastic numerical code with marker-in-cell technique, which fully couples inertial mechanical deformation and fluid flow. It allows for the accurate treatment of localised brittle/plastic deformation through global iterations. To accurately simulate both long- and short-term deformation an adaptive time step is introduced. This makes it possible to resolve seismic event with time steps on the order of milliseconds. We use this new tool to investigate how the presence of fluids in the pore space of an visco-elasto-brittle/plastic (de)compacting rock matrix affects elastic stress accumulation and release along a fluid-bearing subduction interface. The model is able to simulate spontaneous quasi-periodic seismic events, nucleating near the brittle-ductile transition zone, along self-consistently forming highly localized ruptures, which accommodate shear displacement between two plates. The generated elastic rebound events show slip velocities on the order of m/s. The governing gradual strength decrease along the propagating fracture is related to a drop in total pressure due to shear localization in combination with an increase in fluid pressure due to elastic compaction of the pore space in a rock with low permeability (6e-19 m2). Reduction of the differential pressure decreases brittle/plastic strength of fluid-bearing rocks along the rupture, thus providing a dynamic feedback mechanism for the accumulated elastic stress release at the subduction interface.

  10. Design and development of nanocomposite scaffolds for auricular reconstruction.

    PubMed

    Nayyer, Leila; Birchall, Martin; Seifalian, Alexander M; Jell, Gavin

    2014-01-01

    Auricular reconstruction using sculpted autologous costal cartilage is effective, but complex and time consuming and may incur donor site sequelae and morbidity. Conventional synthetic alternatives are associated with infection and extrusion in up to about 15% of cases. We present a novel POSS-PCU nanocomposite auricular scaffold, which aims to reduce extrusion rates by mimicking the elastic modulus of human ears and by encouraging desirable cellular interactions. The fabrication, physicochemical properties (including nanoscale topography) and cellular interactions of these scaffolds were compared to Medpor®, the current synthetic standard. Our scaffold had a more similar elastic modulus (5.73 ± 0.17MPa) to ear cartilage (5.02 ± 0.17MPa) compared with Medpor®, which was much stiffer (140.9 ± 0.04MPa). POSS-PCU supported fibroblast ingrowth and proliferation; significantly higher collagen production was also produced by cells on the POSS-PCU than those on Medpor®. This porous POSS-PCU nanocomposite scaffold is therefore a promising alternative biomaterial for auricular surgical reconstruction. In this paper, a novel POSS-PCU nanocomposite auricular scaffold is described to reduce extrusion rates by having a much closer elastic modulus of human ears than the currently available synthetic standard. Enabling desirable cellular interactions may lead to the successful clinical application of these novel scaffolds. © 2013.

  11. Towards the modeling of nanoindentation of virus shells: Do substrate adhesion and geometry matter?

    NASA Astrophysics Data System (ADS)

    Bousquet, Arthur; Dragnea, Bogdan; Tayachi, Manel; Temam, Roger

    2016-12-01

    Soft nanoparticles adsorbing at surfaces undergo deformation and buildup of elastic strain as a consequence of interfacial adhesion of similar magnitude with constitutive interactions. An example is the adsorption of virus particles at surfaces, a phenomenon of central importance for experiments in virus nanoindentation and for understanding of virus entry. The influence of adhesion forces and substrate corrugation on the mechanical response to indentation has not been studied. This is somewhat surprising considering that many single-stranded RNA icosahedral viruses are organized by soft intermolecular interactions while relatively strong adhesion forces are required for virus immobilization for nanoindentation. This article presents numerical simulations via finite elements discretization investigating the deformation of a thick shell in the context of slow evolution linear elasticity and in presence of adhesion interactions with the substrate. We study the influence of the adhesion forces in the deformation of the virus model under axial compression on a flat substrate by comparing the force-displacement curves for a shell having elastic constants relevant to virus capsids with and without adhesion forces derived from the Lennard-Jones potential. Finally, we study the influence of the geometry of the substrate in two-dimensions by comparing deformation of the virus model adsorbed at the cusp between two cylinders with that on a flat surface.

  12. Dynamics of two disks settling in a two-dimensional narrow channel: From periodic motion to vertical chain in Oldroyd-B fluid

    NASA Astrophysics Data System (ADS)

    Pan, Tsorng-Whay; Glowinski, Roland

    2016-11-01

    In this talk we present a numerical study of the dynamics of two disks settling in a narrow vertical channel filled with an Oldroyd-B fluid. Two kinds of particle dynamics are obtained: (i) periodic interaction between two disks and (ii) the formation of the chain of two disks. For the periodic interaction of two disks, two different motions are obtained: (a) two disks stay far apart and interact is periodically, which is similar to one of the motions of two disks settling in a narrow channel filled with a Newtonian fluid discussed by Aidun & Ding and (b) two disks draft, kiss and break away periodically and the chain is not formed due to not strong enough elastic force. For the formation of two disk chain occurred at higher values of the elasticity number, it is either a tilted chain or a vertical chain. The tilted chain can be obtained for either that the elasticity number is less than the critical value for having the vertical chain or that the Mach number is greater than the critical value for a long body to fall broadside-on, which is consistent with the results for the elliptic particles settling in Oldroyd-B fluids. NSF.

  13. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    PubMed

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  14. Elastic Coupling of Nascent apCAM Adhesions to Flowing Actin Networks

    PubMed Central

    Mejean, Cecile O.; Schaefer, Andrew W.; Buck, Kenneth B.; Kress, Holger; Shundrovsky, Alla; Merrill, Jason W.; Dufresne, Eric R.; Forscher, Paul

    2013-01-01

    Adhesions are multi-molecular complexes that transmit forces generated by a cell’s acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions’ mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement. PMID:24039928

  15. Effective equations governing an active poroelastic medium

    PubMed Central

    2017-01-01

    In this work, we consider the spatial homogenization of a coupled transport and fluid–structure interaction model, to the end of deriving a system of effective equations describing the flow, elastic deformation and transport in an active poroelastic medium. The ‘active’ nature of the material results from a morphoelastic response to a chemical stimulant, in which the growth time scale is strongly separated from other elastic time scales. The resulting effective model is broadly relevant to the study of biological tissue growth, geophysical flows (e.g. swelling in coals and clays) and a wide range of industrial applications (e.g. absorbant hygiene products). The key contribution of this work is the derivation of a system of homogenized partial differential equations describing macroscale growth, coupled to transport of solute, that explicitly incorporates details of the structure and dynamics of the microscopic system, and, moreover, admits finite growth and deformation at the pore scale. The resulting macroscale model comprises a Biot-type system, augmented with additional terms pertaining to growth, coupled to an advection–reaction–diffusion equation. The resultant system of effective equations is then compared with other recent models under a selection of appropriate simplifying asymptotic limits. PMID:28293138

  16. Ultrasonic Investigations on Polonides of Ba, Ca, and Pb

    NASA Astrophysics Data System (ADS)

    Singh, Devraj; Bhalla, Vyoma; Bala, Jyoti; Wadhwa, Shikha

    2017-10-01

    The temperature-dependent mechanical and ultrasonic properties of barium, calcium, and lead polonides (BaPo, CaPo, and PbPo) were investigated in the temperature range 100-300 K. The second- and third-order elastic constants (SOECs and TOECs) were computed using Coulomb and Born-Mayer potential and these in turn have been used to estimate other secondary elastic properties such as strength, anisotropy, microhardness, etc. The theoretical approach followed the prediction that BaPo, CaPo, and PbPo are brittle in nature. PbPo is found to be the hardest amongst the chosen compounds. Further the SOECs and TOECs are applied to determine ultrasonic velocities, Debye temperature, and acoustic coupling constants along <100>, <110>, and <111> orientations at room temperature. Additionally thermal conductivity has been computed using Morelli and Slack's approach along different crystallographic directions at room temperature. Finally ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms has been computed for BaPo, CaPo, and PbPo. The behaviour of these compounds is similar to that of semi-metals with thermal relaxation time of the order 10-11 s. The present computation study is reasonably in agreement with the available theoretical data for the similar type of materials.

  17. (Finite) statistical size effects on compressive strength.

    PubMed

    Weiss, Jérôme; Girard, Lucas; Gimbert, Florent; Amitrano, David; Vandembroucq, Damien

    2014-04-29

    The larger structures are, the lower their mechanical strength. Already discussed by Leonardo da Vinci and Edmé Mariotte several centuries ago, size effects on strength remain of crucial importance in modern engineering for the elaboration of safety regulations in structural design or the extrapolation of laboratory results to geophysical field scales. Under tensile loading, statistical size effects are traditionally modeled with a weakest-link approach. One of its prominent results is a prediction of vanishing strength at large scales that can be quantified in the framework of extreme value statistics. Despite a frequent use outside its range of validity, this approach remains the dominant tool in the field of statistical size effects. Here we focus on compressive failure, which concerns a wide range of geophysical and geotechnical situations. We show on historical and recent experimental data that weakest-link predictions are not obeyed. In particular, the mechanical strength saturates at a nonzero value toward large scales. Accounting explicitly for the elastic interactions between defects during the damage process, we build a formal analogy of compressive failure with the depinning transition of an elastic manifold. This critical transition interpretation naturally entails finite-size scaling laws for the mean strength and its associated variability. Theoretical predictions are in remarkable agreement with measurements reported for various materials such as rocks, ice, coal, or concrete. This formalism, which can also be extended to the flowing instability of granular media under multiaxial compression, has important practical consequences for future design rules.

  18. A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure.

    PubMed

    Muhlestein, Michael B; Haberman, Michael R

    2016-08-01

    An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.

  19. A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure

    PubMed Central

    Haberman, Michael R.

    2016-01-01

    An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed. PMID:27616932

  20. A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure

    NASA Astrophysics Data System (ADS)

    Muhlestein, Michael B.; Haberman, Michael R.

    2016-08-01

    An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.

  1. Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)

    NASA Astrophysics Data System (ADS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    2002-12-01

    Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.

  2. Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.; Motil, Susan M. (Technical Monitor)

    2002-01-01

    Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.

  3. Membrane-mediated interaction between retroviral capsids

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2012-02-01

    A retrovirus is an RNA virus that is replicated through a unique strategy of reverse transcription. Unlike regular enveloped viruses which are assembled inside the host cells, the assembly of retroviral capsids happens right on the cell membrane. During the assembly process, the partially formed capsids deform the membrane, giving rise to an elastic energy. When two such partial capsids approach each other, this elastic energy changes. Or in other words, the two partial capsids interact with each other via the membrane. This membrane mediated interaction between partial capsids plays an important role in the kinetics of the assembly process. In this work, this membrane mediated interaction is calculated both analytically and numerically. It is worth noting that the diferential equation determining the membrane shape in general nonlinear and cannot be solved analytically,except in the linear region of small deformations. And it is exactly the nonlinear regime that is important for the assembly kinetics of retroviruses as it provides a large energy barrier. The theory developed here is applicable to more generic cases of membrane mediated interactions between two membrane-embedded proteins.

  4. Effect of spin-orbit and on-site Coulomb interactions on the electronic structure and lattice dynamics of uranium monocarbide

    NASA Astrophysics Data System (ADS)

    Wdowik, U. D.; Piekarz, P.; Legut, D.; Jagło, G.

    2016-08-01

    Uranium monocarbide, a potential fuel material for the generation IV reactors, is investigated within density functional theory. Its electronic, magnetic, elastic, and phonon properties are analyzed and discussed in terms of spin-orbit interaction and localized versus itinerant behavior of the 5 f electrons. The localization of the 5 f states is tuned by varying the local Coulomb repulsion interaction parameter. We demonstrate that the theoretical electronic structure, elastic constants, phonon dispersions, and their densities of states can reproduce accurately the results of x-ray photoemission and bremsstrahlung isochromat measurements as well as inelastic neutron scattering experiments only when the 5 f states experience the spin-orbit interaction and simultaneously remain partially localized. The partial localization of the 5 f electrons could be represented by a moderate value of the on-site Coulomb interaction parameter of about 2 eV. The results of the present studies indicate that both strong electron correlations and spin-orbit effects are crucial for realistic theoretical description of the ground-state properties of uranium carbide.

  5. Rheology of attractive emulsions

    NASA Astrophysics Data System (ADS)

    Datta, Sujit S.; Gerrard, Dustin D.; Rhodes, Travers S.; Mason, Thomas G.; Weitz, David A.

    2011-10-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φRCP, can form soft gel-like elastic solids. However, above φRCP, attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φRCP, also undergo droplet configurational rearrangements.

  6. Interaction Among Inhomogeneities and Inclusions.

    DTIC Science & Technology

    1985-01-22

    Some Recent Advances, ed. by X. Markenscoff, ASME, AMD, 63 (1984) 59-68. N. Kinoshita and T. Mura, " Eigenstrain Problems in a Finite Rody", SIAM J...terms of the free expansion strain ( eigenstrain ), the elastic moduli of the rock and the solidified demolition agent, and the fracture stress of rock...found an unexpected result for a sliding inclusion. It is found that when an ellipsoidal inclusion undergoes a uniform shear eigenstrain (non- elastic

  7. Stress Wave Interactions with Tunnels Buried in Well-Characterized Jointed Media.

    DTIC Science & Technology

    1980-06-01

    27 14 Particle Velocity and Principal Stress Fields at 62 jisec for the Elastic- Plastic Media Model (Case 1, 0.8 kbar...is used; the basic formulation is similar to the HEMP code (Ref. 3) . Tn numerical solutions and material properties are luscriben in Section 3. 3...media is 16A rock simulant. The elastic- plastic properties are modeled with the following parameters: Bulk Modulus K = .131 Mbar Shear Modulus G

  8. Rheology of attractive emulsions.

    PubMed

    Datta, Sujit S; Gerrard, Dustin D; Rhodes, Travers S; Mason, Thomas G; Weitz, David A

    2011-10-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φ(RCP), can form soft gel-like elastic solids. However, above φ(RCP), attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φ(RCP), also undergo droplet configurational rearrangements.

  9. An Open-Source Toolbox for Surrogate Modeling of Joint Contact Mechanics

    PubMed Central

    Eskinazi, Ilan

    2016-01-01

    Goal Incorporation of elastic joint contact models into simulations of human movement could facilitate studying the interactions between muscles, ligaments, and bones. Unfortunately, elastic joint contact models are often too expensive computationally to be used within iterative simulation frameworks. This limitation can be overcome by using fast and accurate surrogate contact models that fit or interpolate input-output data sampled from existing elastic contact models. However, construction of surrogate contact models remains an arduous task. The aim of this paper is to introduce an open-source program called Surrogate Contact Modeling Toolbox (SCMT) that facilitates surrogate contact model creation, evaluation, and use. Methods SCMT interacts with the third party software FEBio to perform elastic contact analyses of finite element models and uses Matlab to train neural networks that fit the input-output contact data. SCMT features sample point generation for multiple domains, automated sampling, sample point filtering, and surrogate model training and testing. Results An overview of the software is presented along with two example applications. The first example demonstrates creation of surrogate contact models of artificial tibiofemoral and patellofemoral joints and evaluates their computational speed and accuracy, while the second demonstrates the use of surrogate contact models in a forward dynamic simulation of an open-chain leg extension-flexion motion. Conclusion SCMT facilitates the creation of computationally fast and accurate surrogate contact models. Additionally, it serves as a bridge between FEBio and OpenSim musculoskeletal modeling software. Significance Researchers may now create and deploy surrogate models of elastic joint contact with minimal effort. PMID:26186761

  10. Elastic Valve Using Induced-Charge Electro-Osmosis

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2015-06-01

    Biomimic devices using induced-charge electro-osmosis (ICEO) is interesting since they have the possibility to realize high-performance functions with simple structures and with low-energy consumption. Thus, inspired by a cilium, we propose a two-dimensional artificial elastic valve using hydrodynamic force due to ICEO with a thin elastic beam in a microfluidic channel and numerically examine the valving performance. By an implicit strongly coupled simulation technique between a fluid and an elastic structure based on the boundary-element method, along with the thin-double-layer approximation, we realize stable calculations and find that the elastic valve using ICEO functions effectively at high frequency with low applied voltages in a realistic pressure flow. Further, we also examine passive motion of the valve; i.e., it stops a reverse flow effectively and releases a forward flow in the channel. We believe that our device can be used in a wide range of microfluidic applications, such as mixers, pumps, etc.

  11. Thermophoretically induced large-scale deformations around microscopic heat centers

    NASA Astrophysics Data System (ADS)

    Puljiz, Mate; Orlishausen, Michael; Köhler, Werner; Menzel, Andreas M.

    2016-05-01

    Selectively heating a microscopic colloidal particle embedded in a soft elastic matrix is a situation of high practical relevance. For instance, during hyperthermic cancer treatment, cell tissue surrounding heated magnetic colloidal particles is destroyed. Experiments on soft elastic polymeric matrices suggest a very long-ranged, non-decaying radial component of the thermophoretically induced displacement fields around the microscopic heat centers. We theoretically confirm this conjecture using a macroscopic hydrodynamic two-fluid description. Both thermophoretic and elastic effects are included in this theory. Indeed, we find that the elasticity of the environment can cause the experimentally observed large-scale radial displacements in the embedding matrix. Additional experiments confirm the central role of elasticity. Finally, a linearly decaying radial component of the displacement field in the experiments is attributed to the finite size of the experimental sample. Similar results are obtained from our theoretical analysis under modified boundary conditions.

  12. Price elasticity of expenditure across health care services.

    PubMed

    Duarte, Fabian

    2012-12-01

    Policymakers in countries around the world are faced with rising health care costs and are debating ways to reform health care to reduce expenditures. Estimates of price elasticity of expenditure are a key component for predicting expenditures under alternative policies. Using unique individual-level data compiled from administrative records from the Chilean private health insurance market, I estimate the price elasticity of expenditures across a variety of health care services. I find elasticities that range between zero for the most acute service (appendectomy) and -2.08 for the most elective (psychologist visit). Moreover, the results show that at least one third of the elasticity is explained by the number of visits; the rest is explained by the intensity of each visit. Finally, I find that high-income individuals are five times more price sensitive than low-income individuals and that older individuals are less price-sensitive than young individuals. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Fatigue damage mechanisms in boron-aluminium composite laminates

    NASA Technical Reports Server (NTRS)

    Dvorak, G. J.; Johnson, W. S.

    1980-01-01

    The relationship between fatigue and shakedown in metal matrix composites is investigated theoretically and experimentally for unidirectional and laminated 6061 Al-B materials. It is shown that no fatigue damage takes place if the applied stress range is such that the material remains elastic, or shakes down, i.e., resumes elastic cyclic straining after a small number of plastic strain cycles. Fatigue damage occurs only in specimens subjected to stress ranges which cause sustained cyclic plastic straining in the aluminum matrix. If the applied stress range is smaller than that required for fatigue failure, after about 10 to the 6th cycles a saturation damage state is reached which remains essentially unchanged with increasing number of cycles.

  14. Modeling the elastic energy of alloys: Potential pitfalls of continuum treatments.

    PubMed

    Baskaran, Arvind; Ratsch, Christian; Smereka, Peter

    2015-12-01

    Some issues that arise when modeling elastic energy for binary alloys are discussed within the context of a Keating model and density-functional calculations. The Keating model is a simplified atomistic formulation based on modeling elastic interactions of a binary alloy with harmonic springs whose equilibrium length is species dependent. It is demonstrated that the continuum limit for the strain field are the usual equations of linear elasticity for alloys and that they correctly capture the coarse-grained behavior of the displacement field. In addition, it is established that Euler-Lagrange equation of the continuum limit of the elastic energy will yield the same strain field equation. This is the same energy functional that is often used to model elastic effects in binary alloys. However, a direct calculation of the elastic energy atomistic model reveals that the continuum expression for the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take atomistic scale compositional nonuniformity into account. Importantly, this result also shows that finely mixed alloys tend to have more elastic energy than segregated systems, which is the exact opposite of predictions made by some continuum theories. It is also shown that for strained thin films the traditionally used effective misfit for alloys systematically underestimate the strain energy. In some models, this drawback is handled by including an elastic contribution to the enthalpy of mixing, which is characterized in terms of the continuum concentration. The direct calculation of the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that elastic contribution to the enthalpy of mixing is nonisotropic and scale dependent. It is also shown that such effects are present in density-functional theory calculations for the Si-Ge system. This work demonstrates that it is critical to include the microscopic arrangements in any elastic model to achieve even qualitatively correct behavior.

  15. Electron Scattering Measurements applied to Neutrino Interactions on Nuclei

    NASA Astrophysics Data System (ADS)

    Christy, M. Eric

    2013-04-01

    The extraction of neutrino mass differences and flavor mixing parameters from oscillation experiments requires models of neutrino-nucleus scattering as input. With the reduction of other systematics, the uncertainties stemming from such models are expected to be one of the larger contributions to the systematic uncertainties for next generation oscillation experiments. The neutrino energy range sensitive to oscillations in long baseline experiments is typically the few GeV range, where the interactions with the nucleus and the subsequent production and propagation of hadrons within the nucleus is in the regime studied by nuclear physics experiments at facilities such as Jefferson Lab. While processes such as resonance production have been well studied in electron scattering, there is currently precious little corresponding data from neutrino scattering. Results from electron scattering experiments, therefore, have an important role to play in both building and constraining models for neutrino scattering. On the other hand, the study of nucleon structure via weak probes is very complementary to the program at Jefferson Lab utilizing electromagnetic probes. Neutrino scattering experiments such at MINERvA are expected to provide new experimental information on axial elastic and resonance transition form factors and on medium modifications via the axial coupling. This talk will focus on the application of electron scattering measurements to neutrino interactions on nuclei, but will also touch on where neutrino scattering measurements can add to our understanding of the nucleus.

  16. Integrated analysis of energy transfers in elastic-wave turbulence.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  17. Dynamics and elastic interactions of the discrete multi-dark soliton solutions for the Kaup-Newell lattice equation

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Wen, Xiao-Yong

    2018-03-01

    Under consideration in this paper is the Kaup-Newell (KN) lattice equation which is an integrable discretization of the KN equation. Infinitely, many conservation laws and discrete N-fold Darboux transformation (DT) for this system are constructed and established based on its Lax representation. Via the resulting N-fold DT, the discrete multi-dark soliton solutions in terms of determinants are derived from non-vanishing background. Propagation and elastic interaction structures of such solitons are shown graphically. Overtaking interaction phenomena between/among the two, three and four solitons are discussed. Numerical simulations are used to explore their dynamical behaviors of such multi-dark solitons. Numerical results show that their evolutions are stable against a small noise. Results in this paper might be helpful for understanding the propagation of nonlinear Alfvén waves in plasmas.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, G.P.

    The interactions of a CH = CH target with a 29-Mev He/sup 3/ particles beam were analyzed. The results for elastic and inelastic processes C/sup 12/(He/ sup 3/, He/sup 3/)C/sup 12/ C/sup 12/(He/sup 3/ He/sup 3/)C/sup -12/ C/sup 12/(He/ sup 3/, alpha )C/sup 11/, C/sup 12/(He/sup 3/, d)N/sup 13/, and H/sup 1/(He/sup 3/, He/sup 3/)H/sup 1/ are presented. For the interaction radius, a value of 5.35 plus or minus 0.24 fermis was obtained by the black disk formula. The observed angular distributions were compared, when possible, with the predictions of Blair and A.B.M. direct interaction theories. The angular distributions formore » the elastic scattering of He/sup 3/ by H/sup 1/ was checked with theoretical predictions based on the resonating group theory. (auth)« less

  19. The multiple V-shaped double peeling of elastic thin films from elastic soft substrates

    NASA Astrophysics Data System (ADS)

    Menga, N.; Afferrante, L.; Pugno, N. M.; Carbone, G.

    2018-04-01

    In this paper, a periodic configuration of V-shaped double peeling process is investigated. Specifically, an elastic thin film is detached from a soft elastic material by applying multiple concentrated loads periodically distributed with spatial periodicity λ. The original Kendall's idea is extended to take into account the change in elastic energy occurring in the substrate when the detachment fronts propagate. The symmetric configuration typical of a V-peeling process causes the energy release rate to be sensitive to variations of the elastic energy stored in the soft substrate. This results in an enhancement of the adhesion strength because part of the external work required to trigger the peeling mechanism is converted in substrate elastic energy. A key role is played by both spatial periodicity λ and elasticity ratio E/Eh, between tape and substrate elastic moduli, in determining the conditions of stable adhesion. Indeed, the presence of multiple peeling fronts determines a modification of the mechanism of interaction, because deformations close to each peeling front are also affected by the stresses related to the other fronts. Results show that the energy release rate depends on the detached length of the tape so that conditions can be established which lead to an increase of the supported load compared to the classical peeling on rigid substrates. Finally, we also find that for any given value of the load per unit length, an optimum value of the wavelength λ exists that maximizes the tolerance of the system, before unstable propagation of the peeling front can occur.

  20. Gradient effects in a new class of electro-elastic bodies

    NASA Astrophysics Data System (ADS)

    Arvanitakis, Antonios

    2018-06-01

    Continuum theories for electro-elastic solids suggest the development of electric field or polarization-based models. Advanced versions of these models are the so-called gradient models, i.e., polarization gradient and electric field gradient models, which prove to be more than capable of explaining the behavior of a continuum in a wider range of length scales. In this work, implicit constitutive relations for electro-elastic bodies are considered with the introduction of polarization and electric field gradient effects. In this sense, the new class of electro-elastic bodies extends even further to account for nonlocality in constitutive equations, besides strain-limiting behavior and polarization saturation for large values of stresses and electric field, respectively. Nonlocality in constitutive equations is essential in modeling various phenomena.

Top