Vortex variable range hopping in a conventional superconducting film
NASA Astrophysics Data System (ADS)
Percher, Ilana M.; Volotsenko, Irina; Frydman, Aviad; Shklovskii, Boris I.; Goldman, Allen M.
2017-12-01
The behavior of a disordered amorphous thin film of superconducting indium oxide has been studied as a function of temperature and magnetic field applied perpendicular to its plane. A superconductor-insulator transition has been observed, though the isotherms do not cross at a single point. The curves of resistance versus temperature on the putative superconducting side of this transition, where the resistance decreases with decreasing temperature, obey two-dimensional Mott variable-range hopping of vortices over wide ranges of temperature and resistance. To estimate the parameters of hopping, the film is modeled as a granular system and the hopping of vortices is treated in a manner analogous to hopping of charges. The reason the long-range interaction between vortices over the range of magnetic fields investigated does not lead to a stronger variation of resistance with temperature than that of two-dimensional Mott variable-range hopping remains unresolved.
Dias, W S; Bertrand, D; Lyra, M L
2017-06-01
Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d>4.
NASA Astrophysics Data System (ADS)
Dias, W. S.; Bertrand, D.; Lyra, M. L.
2017-06-01
Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d >4 .
Dielectric Measurements on Sol-Gel Derived Titania Films
NASA Astrophysics Data System (ADS)
Capan, Rifat; Ray, Asim K.
2017-11-01
Alternating current (AC) impedance measurements were performed on 37 nm thick nanostructured sol-gel derived anatase titania films on ultrasonically cleaned (100) p-silicon substrates at temperatures T ranging from 100 K to 300 K over a frequency range between 20 Hz and 1 MHz. The frequency-dependent behavior of the AC conductivity σ ac( f, T) obeys the universal power law, and the values of the effective hopping barrier and hopping distance were found to be 0.79 eV and 6.7 × 10-11 m from an analysis due to the correlated barrier-hopping model. The dielectric relaxation was identified as a thermally activated non-Debye process involving an activation energy of 41.5 meV.
Search behavior of arboreal insectivorous migrants at gulf coast stopover sites in spring
Chen, Chao-Chieh; Barrow, W.C.; Ouchley, K.; Hamilton, R.B.
2011-01-01
Search behavior of arboreal insectivorous migrants was studied at three stopover sites along the northern coast of the Gulf of Mexico during spring migrations, 1993–1995. We examined if search behavior was affected by phylogeny, or by environmental factors. A sequence of search movements (hop, flutter, or flight) in a foraging bout was recorded for each migrant encountered. Search rate, frequency, and distance of movements were calculated for each species. Search rate was positively correlated with proportion of hop, but negatively correlated to flight distance. Hop distance was positively correlated to tarsus length, as was flight distance to wing length for the 31 species of migrants. Cluster analysis indicated closely related species generally have similar foraging modes, which range from “sit-and-wait” of flycatchers to “widely foraging” of warblers. Migrants tended to use more hops in dense vegetation, but more flights in areas with sparse vegetation. Migrants also used more flights when foraging in mixed-species flocks and during periods of high migrant density. Logistic models indicated warblers were more influenced by environmental factors than vireos, possibly because warblers are near-perch searchers and more affected by these factors.
Study of conduction behavior in Pr0.67Sr0.03Ag0.30MnO3
NASA Astrophysics Data System (ADS)
Bhat, Masroor Ahmad; Modi, Anchit; Pandey, Devendra K.; Gaur, N. K.
2018-05-01
In this paper, we report the conduction mechanism in Pr0.67Sr0.03Ag0.30MnO3 system synthesized via conventional solid state reaction route. The structural information was carried by X - Ray diffraction using Rietveld refinement which confirms the secondary phase of the sample. The SEM image shows the formation of double phase composite because of limited reaction of silver with parent compound. The resistivity behavior indicates the semiconducting behavior. The electronic nature can be estimated by means of variable range hopping (VRH) and small polaron hopping (SPH) model showing that the enhancement of double exchange interaction suppress the band gap and boost the carrier delocalization of charge carriers.
Variable range hopping in ZnO films
NASA Astrophysics Data System (ADS)
Ali, Nasir; Ghosh, Subhasis
2018-04-01
We report the variable range hopping in ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. It has been found that Mott variable range hopping dominant over Efros variable range hopping in all ZnO films. It also has been found that hopping distance and energy increases with increasing oxygen partial pressure.
The Effect of Rap/Hip-Hop Music on Young Adult Smoking: An Experimental Study.
Harakeh, Zeena; Bogt, Tom F M Ter
2018-02-16
Music may influence young people's behavior through its lyrics. Substance use references occur more frequently in rap/hip-hop than in other music genres. The aim was to examine whether the exposure to rap/hip-hop lyrics referring to substance use affected cigarette smoking. An experiment with a 3-group between subject design was conducted among 74 daily-smoking young adults ranging in age from 17 to 25 years old. Three conditions were tested in a mobile lab (camper vehicle) from May to December 2011, i.e., regular chart pop music (N = 28), rap/hip-hop with non-frequent references to substance use (N = 24), and rap/hip-hop with frequent references to substance use (N = 22). One-way ANOVA showed that participants listening to substance use infused rap/hip-hop songs felt significantly less pleasant, liked the songs less, and comprehended the songs less compared to participants listening to pop songs. Poisson loglinear analyses revealed that compared to the pop music condition, none of the two rap/hip-hop music conditions had a significant effect on acute smoking. Thus, contrary to expectations, the two different rap/hip-hop conditions did not have a significantly different effect on acute smoking. Listening to rap/hip-hop, even rap hip/hop with frequent referrals to substance use (primarily alcohol and drug use, and general smoking referrals), does not seem to encourage cigarette smoking among Dutch daily-smoking young adults, at least short term.
Cotunneling and polaronic effect in granular systems
NASA Astrophysics Data System (ADS)
Ioselevich, A. S.; Sivak, V. V.
2017-06-01
We theoretically study the conductivity in arrays of metallic grains due to the variable-range multiple cotunneling of electrons with short-range (screened) Coulomb interaction. The system is supposed to be coupled to random stray charges in the dielectric matrix that are only loosely bounded to their spatial positions by elastic forces. The flexibility of the stray charges gives rise to a polaronic effect, which leads to the onset of Arrhenius-type conductivity behavior at low temperatures, replacing conventional Mott variable-range hopping. The effective activation energy logarithmically depends on temperature due to fluctuations of the polaron barrier heights. We present the unified theory that covers both weak and strong polaron effect regimes of hopping in granular metals and describes the crossover from elastic to inelastic cotunneling.
Crossover from Polaronic to Magnetically Phase-Separated Behavior in La1-xSrxCoO3
NASA Astrophysics Data System (ADS)
Phelan, D.; El Khatib, S.; Wang, S.; Barker, J.; Zhao, J.; Zheng, H.; Mitchell, J. F.; Leighton, C.
2013-03-01
Dilute hole-doping in La1-xSrxCoO3 leads to the formation of ``spin-state polarons'' where a non-zero spin-state is stabilized on the nearest Co3+ ions surrounding a hole. Here, we discuss the development of electronic/magnetic properties of this system from non-magnetic x=0, through the regime of spin-state polarons, and into the region where longer-range spin correlations and phase separation develop. We present magnetometry, transport, heat capacity, and small-angle neutron scattering (SANS) on single crystals. Magnetometry indicates a crossover with x from Langevin-like behavior (polaronic) to a state with a freezing temperature and finite coercivity. Fascinating correlations with this behavior are seen in transport measurements, the evolution from polaronic to clustered states being accompanied by a crossover from Mott variable range hopping to intercluster hopping. SANS data shows Lorentzian scattering from short-range ferromagnetic clusters first emerging around x = 0.03 with correlation lengths of order two unit cells. We argue that this system provides a unique opportunity to understand in detail the crossover from polaronic to truly phase-separated states.
Variable range hopping electric and thermoelectric transport in anisotropic black phosphorus
Liu, Huili; Sung Choe, Hwan; Chen, Yabin; ...
2017-09-05
Black phosphorus (BP) is a layered semiconductor with a high mobility of up to ~1000 cm 2 V -1 s -1 and a narrow bandgap of ~0.3 eV, and shows potential applications in thermoelectrics. In stark contrast to most other layered materials, electrical and thermoelectric properties in the basal plane of BP are highly anisotropic. In order to elucidate the mechanism for such anisotropy, we fabricated BP nanoribbons (~100 nm thick) along the armchair and zigzag directions, and measured the transport properties. It is found that both the electrical conductivity and Seebeck co efficient increase with temperature, a behavior contradictorymore » to that of traditional semiconductors. The three-dimensional variable range hopping model is adopted to analyze this abnormal temperature dependency of electrical conductivity and Seebeck coefficient. Furthermore, the hopping transport of the BP nanoribbons, attributed to high density of trap states in the samples, provides a fundamental understanding of the anisotropic BP for potential thermoelectric applications.« less
Variable range hopping electric and thermoelectric transport in anisotropic black phosphorus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Huili; Sung Choe, Hwan; Chen, Yabin
Black phosphorus (BP) is a layered semiconductor with a high mobility of up to ~1000 cm 2 V -1 s -1 and a narrow bandgap of ~0.3 eV, and shows potential applications in thermoelectrics. In stark contrast to most other layered materials, electrical and thermoelectric properties in the basal plane of BP are highly anisotropic. In order to elucidate the mechanism for such anisotropy, we fabricated BP nanoribbons (~100 nm thick) along the armchair and zigzag directions, and measured the transport properties. It is found that both the electrical conductivity and Seebeck co efficient increase with temperature, a behavior contradictorymore » to that of traditional semiconductors. The three-dimensional variable range hopping model is adopted to analyze this abnormal temperature dependency of electrical conductivity and Seebeck coefficient. Furthermore, the hopping transport of the BP nanoribbons, attributed to high density of trap states in the samples, provides a fundamental understanding of the anisotropic BP for potential thermoelectric applications.« less
Frequency effects on charge ordering in Y0.5Ca0.5MnO3 by impedance spectroscopy
NASA Astrophysics Data System (ADS)
Sarwar, Tuba; Qamar, Afzaal; Nadeem, Muhammad
2015-02-01
In this work, structural and electrical properties of Y0.5Ca0.5MnO3 are investigated by employing X-ray diffraction and impedance spectroscopy, respectively. Applied ac electric field showed the charge ordering transition temperature around 265 K and below this temperature the heteromorphic behavior of the sample is discussed in the proximity of TCO. With frequency effects the volume of robust charge orbital ordering (COO) domains diminishes due to different competing phases along with Jahn Teller distortions. Comprehensive melting and collapse of charge orbital ordering occurs below TN(125 K), where a colossal drop in the value of impedance is observed. The change in profile of modulus plane plots determines the spreading of relaxation time of intermingled phases. Hopping mechanism is elaborated in terms of strong electron phonon coupling. Variable range hopping model and Arrhenius model are used to discuss the short and long range hopping between Mn3+ and Mn4+ channels assessing the activation energy Ea.
A Review of Hip Hop-Based Interventions for Health Literacy, Health Behaviors, and Mental Health.
Robinson, Cendrine; Seaman, Elizabeth L; Montgomery, LaTrice; Winfrey, Adia
2018-06-01
African-American children and adolescents experience an undue burden of disease for many health outcomes compared to their White peers. More research needs to be completed for this priority population to improve their health outcomes and ameliorate health disparities. Integrating hip hop music or hip hop dance into interventions may help engage African-American youth in health interventions and improve their health outcomes. We conducted a review of the literature to characterize hip hop interventions and determine their potential to improve health. We searched Web of Science, Scopus, PsycINFO, and EMBASE to identify studies that assessed hip hop interventions. To be included, studies had to (1) be focused on a psychosocial or physical health intervention that included hip hop and (2) present quantitative data assessing intervention outcomes. Twenty-three articles were identified as meeting all inclusion criteria and were coded by two reviewers. Articles were assessed with regards to sample characteristics, study design, analysis, intervention components, and results. Hip hop interventions have been developed to improve health literacy, health behavior, and mental health. The interventions were primarily targeted to African-American and Latino children and adolescents. Many of the health literacy and mental health studies used non-experimental study designs. Among the 12 (of 14) health behavior studies that used experimental designs, the association between hip hop interventions and positive health outcomes was inconsistent. The number of experimental hip hop intervention studies is limited. Future research is required to determine if hip hop interventions can promote health.
Hop limited epidemic-like information spreading in mobile social networks with selfish nodes
NASA Astrophysics Data System (ADS)
Wu, Yahui; Deng, Su; Huang, Hongbin
2013-07-01
Similar to epidemics, information can be transmitted directly among users in mobile social networks. Different from epidemics, we can control the spreading process by adjusting the corresponding parameters (e.g., hop count) directly. This paper proposes a theoretical model to evaluate the performance of an epidemic-like spreading algorithm, in which the maximal hop count of the information is limited. In addition, our model can be used to evaluate the impact of users’ selfish behavior. Simulations show the accuracy of our theoretical model. Numerical results show that the information hop count can have an important impact. In addition, the impact of selfish behavior is related to the information hop count.
Hopper on wheels: evolving the hopping robot concept
NASA Technical Reports Server (NTRS)
Schell, S.; Tretten, A.; Burdick, J.; Fuller, S. B.; Fiorini, P.
2001-01-01
This paper describes the evolution of our concept of hopping robot for planetary exploration, that combines coarse long range mobility achieved by hopping, with short range wheeled mobility for precision target acquisition.
NASA Astrophysics Data System (ADS)
Benlakehal, D.; Belfedal, A.; Bouizem, Y.; Sib, J. D.; Chahed, L.; Zellama, K.
2016-12-01
The dependence on the temperature range, T, of the electronic transport mechanism in intrinsic and doped hydrogenated nanocrystalline silicon films, deposited by radiofrequency-magnetron sputtering at low substrate temperature, has been studied. Electrical conductivity measurements σ(T) have been conducted on these films, as a function of temperature, in the 93-450 K range. The analysis of these results clearly shows a thermally activated conduction process in the 273-450 K range which allows us to estimate the associated activation energy as well as the preexponential conductivity factor. While, in the lower temperature range (T < 273 K), a non-ohmic behavior is observed for the conductivity changes. The conductivity σ(T) presents a linear dependence on (T-1/4) , and a hopping mechanism is suggested to explain these results. By using the Percolation theory, further information can be gained about the density of states near the Fermi level as well as the range and the hopping energy.
Electron transport in the two-dimensional channel material - zinc oxide nanoflake
NASA Astrophysics Data System (ADS)
Lai, Jian-Jhong; Jian, Dunliang; Lin, Yen-Fu; Ku, Ming-Ming; Jian, Wen-Bin
2018-03-01
ZnO nanoflakes of 3-5 μm in lateral size and 15-20 nm in thickness are synthesized. The nanoflakes are used to make back-gated transistor devices. Electron transport in the ZnO nanoflake channel between source and drain electrodes are investigated. In the beginning, we argue and determine that electrons are in a two-dimensional system. We then apply Mott's two-dimensional variable range hopping model to analyze temperature and electric field dependences of resistivity. The disorder parameter, localization length, hopping distance, and hopping energy of the electron system in ZnO nanoflakes are obtained and, additionally, their temperature behaviors and dependences on room-temperature resistivity are presented. On the other hand, the basic transfer characteristics of the channel material are carried out, as well, and the carrier concentration, the mobility, and the Fermi wavelength of two-dimensional ZnO nanoflakes are estimated.
Electrical transport via variable range hopping in an individual multi-wall carbon nanotube
NASA Astrophysics Data System (ADS)
Husain Khan, Zishan; Husain, M.; Perng, T. P.; Salah, Numan; Habib, Sami
2008-11-01
E-beam lithography is used to make four leads on an individual multi-wall carbon nanotube for carrying out electrical transport measurements. Temperature dependence of conductance of an individual multi-wall carbon nanotube (MWNT) is studied over a temperature range of (297 4.8 K). The results indicate that the conduction is governed by variable range hopping (VRH) for the entire temperature range (297 4.8 K). This VRH mechanism changes from three dimensions (3D) to two dimensions (2D) as we go down to 70 K. Three-dimensional variable range hopping (3D VRH) is responsible for conduction in the temperature range (297 70 K), which changes to two-dimensional VRH for much lower temperatures (70 4.8 K). For 3D VRH, various Mott parameters such as density of states, hopping distance and hopping energy have been calculated. The 2D VRH mechanism has been applied for the temperature range (70 4.8 K) and, with the help of this model, the parameters such as localization length and hopping distance are calculated. All these parameters give interesting information about this complex structure, which may be useful for many applications.
Electrical modulus and dielectric behavior of Cr3+ substituted Mg-Zn nanoferrites
NASA Astrophysics Data System (ADS)
Mansour, S. F.; Abdo, M. A.
2017-04-01
The dielectric parameters and ac electrical conductivity of Mg0.8Zn0.2CrxFe2-xO4; (0≤x≤0.025) nanoferrites synthesized citrate-nitrate auto-combustion method were studied using the complex impedance technique in the frequency and temperature ranges 4 Hz-5 MHz and 303-873 K respectively. Hopping of charge carriers plus interfacial polarization could interpret the behaviors of dielectric constant (ε‧), dielectric loss tangent (tanδ) and ac electrical conductivity (σac) with frequency, temperatures and composition. The up-normal behavior observed in tanδ trend with temperatures confirms the presence of relaxation loss (dipoles losses). Correlated barrier hopping (CBH) of electron is the conduction mechanism of the investigated nanoferrites. Cole-Cole plots at different temperatures emphasize the main role of grain and grain boundaries in the properties of the investigated nanoferrites. Cr3+ substitution can control the dielectric parameters and ac electrical conductivity of Mg-Zn nanoferrites making it candidates for versatile applications.
Logerstedt, David; Grindem, Hege; Lynch, Andrew; Eitzen, Ingrid; Engebretsen, Lars; Risberg, May Arna; Axe, Michael J.; Snyder-Mackler, Lynn
2012-01-01
Background Single-legged hop tests are commonly used functional performance measures that can capture limb asymmetries in patients after anterior cruciate ligament (ACL) reconstruction. Hop tests hold potential as predictive factors of self-reported knee function in individuals after ACL reconstruction. Hypothesis Single-legged hop tests conducted preoperatively would not and 6 months after ACL reconstruction would predict self-reported knee function (International Knee Documentation Committee [IKDC] 2000) 1 year after ACL reconstruction. Study Design Cohort study (prognosis); Level of evidence, 2. Methods One hundred twenty patients who were treated with ACL reconstruction performed 4 single-legged hop tests preoperatively and 6 months after ACL reconstruction. Self-reported knee function within normal ranges was defined as IKDC 2000 scores greater than or equal to the age- and sex-specific normative 15th percentile score 1 year after surgery. Logistic regression analyses were performed to identify predictors of self-reported knee function within normal ranges. The area under the curve (AUC) from receiver operating characteristic curves was used as a measure of discriminative accuracy. Results Eighty-five patients completed single-legged hop tests 6 months after surgery and the 1-year follow-up with 68 patients classified as having self-reported knee function within normal ranges 1 year after reconstruction. The crossover hop and 6-m timed hop limb symmetry index (LSI) 6 months after ACL reconstruction were the strongest individual predictors of self-reported knee function (odds ratio, 1.09 and 1.10) and the only 2 tests in which the confidence intervals of the discriminatory accuracy (AUC) were above 0.5 (AUC = 0.68). Patients with knee function below normal ranges were over 5 times more likely of having a 6-m timed hop LSI lower than the 88% cutoff than those with knee function within normal ranges. Patients with knee function within normal ranges were 4 times more likely to have a crossover hop LSI greater than the 95% cutoff than those with knee function below normal ranges. No preoperative single-legged hop test predicted self-reported knee function within normal ranges 1 year after ACL reconstruction (all P > .353). Conclusion Single-legged hop tests conducted 6 months after ACL reconstruction can predict the likelihood of successful and unsuccessful outcome 1 year after ACL reconstruction. Patients demonstrating less than the 88% cutoff score on the 6-m timed hop test at 6 months may benefit from targeted training to improve limb symmetry in an attempt to normalize function. Patients with minimal side-to-side differences on the crossover hop test at 6 months possibly will have good knee function at 1 year if they continue with their current training regimen. Preoperative single-legged hop tests are not able to predict postoperative outcomes. PMID:22926749
Colossal dielectric behavior of semiconducting Sr2TiMnO6 ceramics
NASA Astrophysics Data System (ADS)
Meher, K. R. S. Preethi; Varma, K. B. R.
2009-02-01
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as ˜105 in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
Dynamics of interacting Dicke model in a coupled-cavity array
NASA Astrophysics Data System (ADS)
Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro
2014-09-01
We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.
Characteristics of dielectric properties and conduction mechanism of TlInS2:Cu single crystals
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.; El-Zaidia, E. F. M.
2013-12-01
Single crystals of TlInS2:Cu were grown by the modified Bridgman method. The dielectric behavior of TlInS2:Cu was investigated using the impedance spectroscopy technique. The real (ε1), imaginary (ε2) parts of complex dielectric permittivity and ac conductivity were measured in the frequency range (42-2×105) Hz with a variation of temperature in the range from 291 K to 483 K. The impedance data were presented in Nyquist diagrams for different temperatures. The frequency dependence of σtot (ω) follows the Jonscher's universal dynamic law with the relation σtot (ω)=σdc+Aωs, (where s is the frequency exponent). The mechanism of the ac charge transport across the layers of TlInS2:Cu single crystals was referred to the hopping over localized states near the Fermi level. The examined system exhibits temperature dependence of σac (ω), which showed a linear increase with the increase in temperature at different frequencies. Some parameters were calculated as: the density of localized states near the Fermi level, NF, the average time of charge carrier hopping between localized states, τ, and the average hopping distance, R.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu
2015-11-15
The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study.more » We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.« less
Polaronic conductivity and scaling behavior of lithium iron phosphate glass
NASA Astrophysics Data System (ADS)
Banday, Azeem; Murugavel, Sevi
2018-05-01
Charge transport properties of the Lithium Iron Phosphate (LFP) glass has been investigated in a wide frequency and temperature range by means of broadband dielectric spectroscopy. The conductivity spectra has been studied on the basis of Jonscher power law for characterizing the hopping dynamics of charge carriers. The ac conductivity and scaling behavior of the LFP glass has been studied in the temperature range from 333K to 573K and frequency range from 100 mHz to 1 MHz. The conductivity isotherms of LFP glass do not superimpose upon each other by using Summerfield scaling. The structural peculiarities in the material could result in different conduction pathways giving rise to the deviation from Summerfield scaling.
NASA Astrophysics Data System (ADS)
Liao, Zhikun; Lu, Dawei; Hu, Jiemin; Zhang, Jun
2018-04-01
For the random hopping frequency signal, the modulated frequencies are randomly distributed over given bandwidth. The randomness of modulated frequency not only improves the electronic counter countermeasure capability for radar systems, but also determines its performance of range compression. In this paper, the range ambiguity function of RHF signal is firstly derived. Then, a design method of frequency hopping pattern based on stationary phase principle to improve the peak to side-lobe ratio is proposed. Finally, the simulated experiments show a good effectiveness of the presented design method.
NASA Astrophysics Data System (ADS)
Yuan, Ye; Wang, Mao; Xu, Chi; Hübner, René; Böttger, Roman; Jakiela, Rafal; Helm, Manfred; Sawicki, Maciej; Zhou, Shengqiang
2018-03-01
In the present work, low compensated insulating (Ga,Mn)As with 0.7% Mn is obtained by ion implantation combined with pulsed laser melting. The sample shows variable-range hopping transport behavior with a Coulomb gap in the vicinity of the Fermi energy, and the activation energy is reduced by an external magnetic field. A blocking super-paramagnetism is observed rather than ferromagnetism. Below the blocking temperature, the sample exhibits a colossal negative magnetoresistance. Our studies confirm that the disorder-induced electronic phase separation occurs in (Ga,Mn)As samples with a Mn concentration in the insulator-metal transition regime, and it can account for the observed superparamagnetism and the colossal magnetoresistance.
ERIC Educational Resources Information Center
Selfhout, Maarten H. W.; Delsing, Marc J. M. H.; ter Bogt, Tom F. M.; Meeus, Wim H. J.
2008-01-01
This study examines (a) the stability of Dutch adolescents' preferences for heavy metal and hip-hop youth culture styles, (b) longitudinal associations between their preferences and externalizing problem behavior, and (c) the moderating role of gender in these associations. Questionnaire data were gathered from 931 adolescents between the ages of…
NASA Astrophysics Data System (ADS)
Ivo, Penn
2004-04-01
Bluetooth is the new emerging technology for wireless communication. It can be used to connect almost any device to another device. The traditional example is to link a Personal Digital Assistant (PDA) or a laptop to a mobile phone. That way you can easily take remote connections with your PDA or laptop without getting your mobile phone from your pocket or messing around with cables. A Class 3 Bluetooth device has range of 0,1 - 10 meters. The architecture of Bluetooth is formed by the radio, the base frequency part and the Link Manager. Bluetooth uses the radio range of 2.45 GHz. The theoretical maximum bandwidth is 1 Mb/s, which is slowed down a bit by Forward Error Correction (FEC). Bluetooth specification designates the frequency hopping to be implemented with Gaussian Frequency Shift Keying (GFSK). The base frequency part of the Bluetooth architecture uses a combination of circuit and packet switching technologies. Bluetooth can support either one asynchronous data channel and up to three simultaneous synchronous speech channels, or one channel that transfers asynchronous data and synchronous speech simultaneously. The Link Manager is an essential part of the Bluetooth architecture. It uses Link Manager Protocol (LMP) to configure, authenticate and handle the connections between Bluetooth devices. Several Bluetooth devices can form an ad hoc network. In these piconets, one of the Bluetooth devices will act as a master and the others are slaves. The master sets the frequency-hopping behavior of the piconet. It is also possible to connect up to 10 piconets to each other to form so-called scatternets. Bluetooth has been designed to operate in noisy radio frequency environments, and uses a fast acknowledgement and frequency-hopping scheme to make the link robust, communication-wise. Bluetooth radio modules avoid interference from other signals by hopping to a new frequency after transmitting or receiving a packet. Compared with other systems operating in the same frequency band, the Bluetooth radio typically hops faster and uses shorter packets. This is because short packages and fast hopping limit the impact of microwave ovens and other sources of disturbances. Use of Forward Error Correction (FEC) limits the impact of random noise on long-distance links. Bluetooth transmissions are secure in a business and home environment. Bluetooth has built in sufficient encryption and authentication and is thus very secure in any environment. In addition to this, a frequency-hopping scheme with 1600 hops/sec. is employed. This is far quicker than any other competing system. This, together with an automatic output power adaption to reduce the range exactly to requirement, makes the system extremely difficult to eavesdrop. Information Integrity in Bluetooth has these components: Random Number Generation, Encryption, Encryption Key Management and Authentication.
A Hybrid DV-Hop Algorithm Using RSSI for Localization in Large-Scale Wireless Sensor Networks.
Cheikhrouhou, Omar; M Bhatti, Ghulam; Alroobaea, Roobaea
2018-05-08
With the increasing realization of the Internet-of-Things (IoT) and rapid proliferation of wireless sensor networks (WSN), estimating the location of wireless sensor nodes is emerging as an important issue. Traditional ranging based localization algorithms use triangulation for estimating the physical location of only those wireless nodes that are within one-hop distance from the anchor nodes. Multi-hop localization algorithms, on the other hand, aim at localizing the wireless nodes that can physically be residing at multiple hops away from anchor nodes. These latter algorithms have attracted a growing interest from research community due to the smaller number of required anchor nodes. One such algorithm, known as DV-Hop (Distance Vector Hop), has gained popularity due to its simplicity and lower cost. However, DV-Hop suffers from reduced accuracy due to the fact that it exploits only the network topology (i.e., number of hops to anchors) rather than the distances between pairs of nodes. In this paper, we propose an enhanced DV-Hop localization algorithm that also uses the RSSI values associated with links between one-hop neighbors. Moreover, we exploit already localized nodes by promoting them to become additional anchor nodes. Our simulations have shown that the proposed algorithm significantly outperforms the original DV-Hop localization algorithm and two of its recently published variants, namely RSSI Auxiliary Ranging and the Selective 3-Anchor DV-hop algorithm. More precisely, in some scenarios, the proposed algorithm improves the localization accuracy by almost 95%, 90% and 70% as compared to the basic DV-Hop, Selective 3-Anchor, and RSSI DV-Hop algorithms, respectively.
First report of hop stunt viroid from sweet cherry with dapple apple fruit symptoms in China
USDA-ARS?s Scientific Manuscript database
Hop stunt viroid (HSVd), the type member of the genus Hostuviroid, family Pospiviroidae, was first described from hops with stunt disease in Japan. HSVd has a wide host range that includes hop, cucumber, citrus, grapevine, plum, pear, peach, apricot and almond and is the causal agent of serious dis...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallego-Marcos, Fernando; Sánchez, Rafael; Platero, Gloria
We analyze long-range transport through an ac driven triple quantum dot with a single electron. Resonant transitions between separated and detuned dots are mediated by the exchange of n photons with the time-dependent field. An effective model is proposed in terms of second order (cotunneling) processes which dominate the long-range transport between the edge quantum dots. The ac field renormalizes the inter dot hopping, modifying the level hybridization. It results in a non-trivial behavior of the current with the frequency and amplitude of the external ac field.
Hip-Hop to Prevent Substance Use and HIV among African-American Youth: A Preliminary Investigation
ERIC Educational Resources Information Center
Turner-Musa, Jocelyn O.; Rhodes, Warren A.; Harper, P. Thandi Hicks; Quinton, Sylvia L.
2008-01-01
Substance use and HIV risk behaviors are increasing among African-American youth. Interventions that incorporate youth values and beliefs are needed to reduce this trajectory. Hip-hop plays an important role in the lives of many African-American youth and provides a context within which to prevent risky behaviors. The current study examines the…
ERIC Educational Resources Information Center
Rowland, Ronald K.
2011-01-01
Research historically has demonstrated that a generational disconnect between the popular cultures from which students and teachers define normative behavior can impact classroom management and student learning. The purpose of this study was to examine attitudes, beliefs and perceptions of high school faculty toward the hip-hop culture and its…
Range and energetics of charge hopping in organic semiconductors
NASA Astrophysics Data System (ADS)
Abdalla, Hassan; Zuo, Guangzheng; Kemerink, Martijn
2017-12-01
The recent upswing in attention for the thermoelectric properties of organic semiconductors (OSCs) adds urgency to the need for a quantitative description of the range and energetics of hopping transport in organic semiconductors under relevant circumstances, i.e., around room temperature (RT). In particular, the degree to which hops beyond the nearest neighbor must be accounted for at RT is still largely unknown. Here, measurements of charge and energy transport in doped OSCs are combined with analytical modeling to reach the univocal conclusion that variable-range hopping is the proper description in a large class of disordered OSC at RT. To obtain quantitative agreement with experiment, one needs to account for the modification of the density of states by ionized dopants. These Coulomb interactions give rise to a deep tail of trap states that is independent of the material's initial energetic disorder. Insertion of this effect into a classical Mott-type variable-range hopping model allows one to give a quantitative description of temperature-dependent conductivity and thermopower measurements on a wide range of disordered OSCs. In particular, the model explains the commonly observed quasiuniversal power-law relation between the Seebeck coefficient and the conductivity.
Mechanics of inter-modal tunneling in nonlinear waveguides
NASA Astrophysics Data System (ADS)
Jiao, Weijian; Gonella, Stefano
2018-02-01
In this article, we investigate the mechanics of nonlinearly induced inter-modal energy tunneling between flexurally-dominated and axially-dominated modes in phononic waveguides. Special attention is devoted to elucidating the role played by the coupling between axial and flexural degrees of freedom in the determination of the available mode hopping conditions and the associated mechanisms of deformation. Waveguides offer an ideal test bed to investigate the mechanics of nonlinear energy tunneling, due to the fact that they naturally feature, even at low frequencies, families of modes (flexural and axial) that are intrinsically characterized by extreme complementarity. Moreover, thanks to their geometric simplicity, their behavior can be explained by resorting to intuitive structural mechanics models that effectively capture the dichotomy and interplay between flexural and axial mechanisms. After having delineated the fundamental mechanics of flexural-to-axial hopping using the benchmark example of a homogeneous structure, we adapt the analysis to the case of periodic waveguides, in which the complex dispersive behavior due to periodicity results in additional richness of mode hopping mechanisms. We finally extend the analysis to periodic waveguides with internal resonators, in which the availability of locally-resonant bandgaps implies the possibility to activate the resonators even at relatively low frequencies, thus increasing the degree of modal complementarity that is available in the acoustic range. In this context, inter-modal tunneling provides an unprecedented mechanism to transfer conspicuous packets of energy to the resonating microstructure.
Dynamically Stable Legged Locomotion.
1983-01-27
sweeps the leg during stance, and the third places the foot during flight and controls body attitude during stance. Each of the three methods elucidates...secondary strategy has been to examine systems with springy legs, so that the role of resonant oscillatory leg behavior might be better understood. ’ The ...body attitude : I lopping _leit: ’ The control system rcgulate:; hopping height by manlil)Lulating hopping energy. The leg is springy, so hopping is a
Sensitive photo-thermal response of graphene oxide for mid-infrared detection
NASA Astrophysics Data System (ADS)
Bae, Jung Jun; Yoon, Jung Hyun; Jeong, Sooyeon; Moon, Byoung Hee; Han, Joong Tark; Jeong, Hee Jin; Lee, Geon-Woong; Hwang, Ha Ryong; Lee, Young Hee; Jeong, Seung Yol; Lim, Seong Chu
2015-09-01
This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability.This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04039f
Fischer, Gary J [Albuquerque, NM
2010-08-17
The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.
Collective motion in animal groups
NASA Astrophysics Data System (ADS)
Couzin, Iain
2004-03-01
In recent years there has been a growing interest in the relationship between individual behavior and population-level properties in animal groups. One of the fundamental problems is related to spatial scale; how do interactions over a local range result in population properties at larger, averaged, scales, and how can we integrate the properties of aggregates over these scales? Many group-living animals exhibit complex, and coordinated, spatio-temporal patterns which despite their ubiquity and ecological importance are very poorly understood. This is largely due to the difficulties associated with quantifying the motion of, and interactions among, many animals simultaneously. It is on how these behaviors scale to collective behaviors that I will focus here. Using a combined empirical approach (using novel computer vision techniques) and individual-based computer models, I investigate pattern formation in both invertebrate and vertebrate systems, including - Collective memory and self-organized group structure in vertebrate groups (Couzin, I.D., Krause, J., James, R., Ruxton, G.D. & Franks, N.R. (2002) Journal of Theoretical Biology 218, 1-11. (2) Couzin, I.D. & Krause, J. (2003) Advances in the Study of Behavior 32, 1-75. (3) Hoare, D.J., Couzin, I.D. Godin, J.-G. & Krause, J. (2003) Animal Behaviour, in press.) - Self-organized lane formation and optimized traffic flow in army ants (Couzin, I.D. & Franks, N.R. (2003) Proceedings of the Royal Society of London, Series B 270, 139-146) - Leadership and information transfer in flocks, schools and swarms. - Why do hoppers hop? Hopping and the generation of long-range order in some of the largest animal groups in nature, locust hopper bands.
Hierarchical Hopping through Localized States in a Random Potential
NASA Astrophysics Data System (ADS)
Rajan, Harihar; Srivastava, Vipin
2003-03-01
Generalisation of Mott's idea on (low - temperature, large-time), Variable-range-hopping is considered to include hopping at some what higher temperature(that do not kill localization). These transitions complement the variable- range-hopping in that they do not conserve energy and occur at relatively lower time scales. The hopper picks the next state in a hierarchical fashion in accordance with certain conditions. The results are found to tie up nicely with an interesting property pertaining to the energy dependence of localized states. Acknowlwdgements: One of us(VS) would like to thank Association of Commonwealth Universities and Leverhulme Trust for financial help and to Sir Sam Edwards for hospitality at Cavendish Laboratory,Cambridge CB3 0HE.
Hip-hop to prevent substance use and HIV among African-American youth: a preliminary investigation.
Turner-Musa, Jocelyn O; Rhodes, Warren A; Harper, P Thandi Hicks; Quinton, Sylvia L
2008-01-01
Substance use and HIV risk behaviors are increasing among African-American youth. Interventions that incorporate youth values and beliefs are needed to reduce this trajectory. Hip-hop plays an important role in the lives of many African-American youth and provides a context within which to prevent risky behaviors. The current study examines the efficacy of a hip-hop based substance use and HIV preventive intervention that targets African-American middle-school youth. The sample consists of 68 middle-school students who completed baseline and 6-month follow-up assessments. Findings suggest that students in the intervention group were significantly more likely to have higher knowledge of perception of drug risk and more knowledge about HIV/AIDS compared to students in the comparison group at the 6-month post-intervention assessment. Discussion is centered on implications of hip-hop as a viable approach for preventing substance use and HIV within a high-risk group.
Thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics in different oxygen-reduction conditions
NASA Astrophysics Data System (ADS)
Li, Yi; Liu, Jian; Wang, Chun-Lei; Su, Wen-Bin; Zhu, Yuan-Hu; Li, Ji-Chao; Mei, Liang-Mo
2015-04-01
The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high-temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be ˜0.19 at 1073 K in the heaviest oxygen reduced sample. Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 51202132 and 51002087).
AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.
2012-06-01
AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.
Wren, Tishya A L; Mueske, Nicole M; Brophy, Christopher H; Pace, J Lee; Katzel, Mia J; Edison, Bianca R; VandenBerg, Curtis D; Zaslow, Tracy L
2018-03-30
Study Design Retrospective cohort. Background Return to sport (RTS) protocols after anterior cruciate ligament reconstruction (ACLR) often include assessment of hop distance symmetry. However, it is unclear if movement deficits are present regardless of hop symmetry. Objectives To assess biomechanics and symmetry of adolescent athletes following ACLR during a single leg hop for distance. Methods Forty-six patients with ACLR (5-12 months post-surgery; 27 female; age 15.6, SD 1.7 years) were classified as asymmetric (operative limb hop distance <90% of non-operative limb; n=17) or symmetric (n=29). Lower extremity biomechanics were compared among operative and contralateral limbs and 24 symmetric controls (12 female; age 14.7, SD 1.5 years) using ANOVA. Results Compared to controls, asymmetric patients hopped a shorter distance on their operative limb (P<0.001), while symmetric patients hopped an intermediate distance on both sides (P≥0.12). During landing, operative limbs, regardless of hop distance, exhibited lower knee flexion moments compared to controls and the contralateral side (P≤0.04) with lower knee energy absorption than the contralateral side (P≤0.006). During take-off, both symmetric and asymmetric patients had less hip extension and smaller ankle range of motion on the operative side compared with controls (P≤0.05). Asymmetric patients also had lower hip range of motion on the operative, compared with the contralateral, side (P=0.001). Conclusion Both symmetric and asymmetric patients offloaded the operative knee; symmetric patients achieved symmetry in part by hopping a shorter distance on the contralateral side. Therefore, hop distance symmetry may not be an adequate test of single limb function and RTS readiness. Level of Evidence 2b. J Orthop Sports Phys Ther, Epub 30 Mar 2018. doi:10.2519/jospt.2018.7817.
Efros-Shklovskii variable range hopping and nonlinear transport in 1 T /1 T'-MoS2
NASA Astrophysics Data System (ADS)
Papadopoulos, N.; Steele, G. A.; van der Zant, H. S. J.
2017-12-01
We have studied temperature- and electric-field-dependent carrier transport in single flakes of MoS2 treated with n -butyllithium. The temperature dependence of the four-terminal resistance follows the Efros-Shklovskii variable range hopping conduction mechanism. From measurements in the Ohmic and non-Ohmic regime, we estimate the localization length and the average hopping length of the carriers, as well as the effective dielectric constant. Furthermore, a comparison between two- and four-probe measurements yields a contact resistance that increases significantly with decreasing temperature.
Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Martinez, Michael A.; Kuehl, Michael A.; Feddema, John T.
2001-01-01
The present invention provides a hopping robot that includes a misfire tolerant linear actuator suitable for long trips, low energy steering and control, reliable low energy righting, miniature low energy fuel control. The present invention provides a robot with hopping mobility, capable of traversing obstacles significant in size relative to the robot and capable of operation on unpredictable terrain over long range. The present invention further provides a hopping robot with misfire-tolerant combustion actuation, and with combustion actuation suitable for use in oxygen-poor environments.
Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke
2016-09-01
[Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results.
Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke
2016-01-01
[Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results. PMID:27799670
Duality in Power-Law Localization in Disordered One-Dimensional Systems
NASA Astrophysics Data System (ADS)
Deng, X.; Kravtsov, V. E.; Shlyapnikov, G. V.; Santos, L.
2018-03-01
The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, 1 /ra . For randomly spaced particles, these models present an effective peculiar disorder that leads to surprising localization properties. We show that in one-dimensional systems almost all eigenstates (except for a few states close to the ground state) are power-law localized for any value of a >0 . Moreover, we show that our model is an example of a new universality class of models with power-law hopping, characterized by a duality between systems with long-range hops (a <1 ) and short-range hops (a >1 ), in which the wave function amplitude falls off algebraically with the same power γ from the localization center.
The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer.
Oladokun, Olayide; Tarrega, Amparo; James, Sue; Smart, Katherine; Hort, Joanne; Cook, David
2016-08-15
Thirty-four commercial lager beers were analysed for their hop bitter acid, phenolic acid and polyphenol contents. Based on analytical data, it was evident that the beers had been produced using a range of different raw materials and hopping practices. Principal Components Analysis was used to select a sub-set of 10 beers that contained diverse concentrations of the analysed bitter compounds. These beers were appraised sensorially to determine the impacts of varying hop acid and polyphenolic profiles on perceived bitterness character. Beers high in polyphenol and hop acid contents were perceived as having 'harsh' and 'progressive' bitterness, whilst beers that had evidently been conventionally hopped were 'sharp' and 'instant' in their bitterness. Beers containing light-stable hop products (tetrahydro-iso-α-acids) were perceived as 'diminishing', 'rounded' and 'acidic' in bitterness. The hopping strategy adopted by brewers impacts on the nature, temporal profile and intensity of bitterness perception in beer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamics and diffusion mechanism of low-density liquid silicon
Shen, B.; Wang, Z. Y.; Dong, F.; ...
2015-11-05
A first-order phase transition from a high-density liquid to a low-density liquid has been proposed to explain the various thermodynamic anomies of water. It also has been proposed that such liquid–liquid phase transition would exist in supercooled silicon. Computer simulation studies show that, across the transition, the diffusivity drops roughly 2 orders of magnitude, and the structures exhibit considerable tetrahedral ordering. The resulting phase is a highly viscous, low-density liquid silicon. Investigations on the atomic diffusion of such a novel form of liquid silicon are of high interest. Here we report such diffusion results from molecular dynamics simulations using themore » classical Stillinger–Weber (SW) potential of silicon. We show that the atomic diffusion of the low-density liquid is highly correlated with local tetrahedral geometries. We also show that atoms diffuse through hopping processes within short ranges, which gradually accumulate to an overall random motion for long ranges as in normal liquids. There is a close relationship between dynamical heterogeneity and hopping process. We point out that the above diffusion mechanism is closely related to the strong directional bonding nature of the distorted tetrahedral network. Here, our work offers new insights into the complex behavior of the highly viscous low density liquid silicon, suggesting similar diffusion behaviors in other tetrahedral coordinated liquids that exhibit liquid–liquid phase transition such as carbon and germanium.« less
Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids.
Gilmore, Rachel H; Lee, Elizabeth M Y; Weidman, Mark C; Willard, Adam P; Tisdale, William A
2017-02-08
Energetic disorder in quantum dot solids adversely impacts charge carrier transport in quantum dot solar cells and electronic devices. Here, we use ultrafast transient absorption spectroscopy to show that homogeneously broadened PbS quantum dot arrays (σ hom 2 :σ inh 2 > 19:1, σ inh /k B T < 0.4) can be realized if quantum dot batches are sufficiently monodisperse (δ ≲ 3.3%). The homogeneous line width is found to be an inverse function of quantum dot size, monotonically increasing from ∼25 meV for the largest quantum dots (5.8 nm diameter/0.92 eV energy) to ∼55 meV for the smallest (4.1 nm/1.3 eV energy). Furthermore, we show that intrinsic charge carrier hopping rates are faster for smaller quantum dots. This finding is the opposite of the mobility trend commonly observed in device measurements but is consistent with theoretical predictions. Fitting our data to a kinetic Monte Carlo model, we extract charge carrier hopping times ranging from 80 ps for the smallest quantum dots to over 1 ns for the largest, with the same ethanethiol ligand treatment. Additionally, we make the surprising observation that, in slightly polydisperse (δ ≲ 4%) quantum dot solids, structural disorder has a greater impact than energetic disorder in inhibiting charge carrier transport. These findings emphasize how small improvements in batch size dispersity can have a dramatic impact on intrinsic charge carrier hopping behavior and will stimulate further improvements in quantum dot device performance.
Purely hopping conduction in c-axis oriented LiNbO3 thin films
NASA Astrophysics Data System (ADS)
Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay
2009-05-01
Dielectric constant and ac conductivity of highly c-axis oriented LiNbO3 thin film grown by pulsed laser deposition were studied in a metal-insulator-metal configuration over a wide temperature (200 to 450 K) and frequency (100 Hz to 1 MHz) range. The preferred oriented Al (1%) doped ZnO film with electrical conductivity 1.1×103 Ω-1 cm-1 was deposited for dual purpose: (1) to serve as nucleating center for LiNbO3 crystallites along preferred c-axis growth direction, and (2) to act as a suitable bottom electrode for electrical studies. The room temperature dc conductivity (σdc) of LiNbO3 film was about 5.34×10-10 Ω-1 cm-1 with activation energy ˜0.3 eV, indicating extrinsic conduction. The ac conductivity σac was found to be much higher in comparison to σdc in the low temperature region (<300 K) and exhibits a power law behavior due to the hopping of charge carriers. In higher temperature region (>300 K), σac shows a weak frequency dependence, whereas dielectric constant exhibits a strong frequency dispersion. The dielectric dispersion data has been discussed in the light of theoretical models based on Debye type mixed conduction and purely hopping conduction. The dominant conduction in c-axis oriented LiNbO3 thin film is attributed to the purely hopping where both σdc and σac arise due to same mechanism.
1THz synchronous tuning of two optical synthesizers
NASA Astrophysics Data System (ADS)
Neuhaus, Rudolf; Rohde, Felix; Benkler, Erik; Puppe, Thomas; Raab, Christoph; Unterreitmayer, Reinhard; Zach, Armin; Telle, Harald R.; Stuhler, Jürgen
2016-04-01
Single-frequency optical synthesizers (SFOS) provide an optical field with arbitrarily adjustable frequency and phase which is phase-coherently linked to a reference signal. Ideally, they combine the spectral resolution of narrow linewidth frequency stabilized lasers with the broad spectral coverage of frequency combs in a tunable fashion. In state-of-the-art SFOSs tuning across comb lines requires comb line order switching,1, 2 which imposes technical overhead with problems like forbidden frequency gaps or strong phase glitches. Conventional tunable lasers often tune over only tens of GHz before mode-hops occur. Here, we present a novel type of SFOSs, which relies on a serrodyne technique with conditional flyback,3 shifting the carrier frequency of the employed frequency comb without an intrusion into the comb generator. It utilizes a new continuously tunable diode laser that tunes mode-hop-free across the full gain spectrum of the integrated laser diode. We investigate the tuning behavior of two identical SFOSs that share a common reference, by comparing the phases of their output signals. Previously, we achieved phase-stable and cycle-slip free frequency tuning over 28.1 GHz with a maximum zero-to-peak phase deviation of 62 mrad4 when sharing a common comb generator. With the new continuously tunable lasers, the SFOSs tune synchronously across nearly 17800 comb lines (1 THz). The tuning range in this approach can be extended to the full bandwidth of the frequency comb and the 110 nm mode-hop-free tuning range of the diode laser.
The Dynamical Classification of Centaurs which Evolve into Comets
NASA Astrophysics Data System (ADS)
Wood, Jeremy R.; Horner, Jonathan; Hinse, Tobias; Marsden, Stephen; Swinburne University of Technology
2016-10-01
Centaurs are small Solar system bodies with semi-major axes between Jupiter and Neptune and perihelia beyond Jupiter. Centaurs can be further subclassified into two dynamical categories - random walk and resonance hopping. Random walk Centaurs have mean square semi-major axes (< a2 >) which vary in time according to a generalized diffusion equation where < a2 > ~t2H. H is the Hurst exponent with 0 < H < 1, and t is time. The behavior of < a2 > for resonance hopping Centaurs is not well described by generalized diffusion.The aim of this study is to determine which dynamical type of Centaur is most likely to evolve into each class of comet. 31,722 fictional massless test particles were integrated for 3 Myr in the 6-body problem (Sun, Jovian planets, test particle). Initially each test particle was a member of one of four groups. The semi-major axes of all test particles in a group were clustered within 0.27 au from a first order, interior Mean Motion resonance of Neptune. The resonances were centered at 18.94 au, 22.95 au, 24.82 au and 28.37 au.If the perihelion of a test particle reached < 4 au then the test particle was considered to be a comet and classified as either a random walk or resonance hopping Centaur. The results showed that over 4,000 test particles evolved into comets within 3 Myr. 59% of these test particles were random walk and 41% were resonance hopping. The behavior of the semi-major axis in time was usually well described by generalized diffusion for random walk Centaurs (ravg = 0.98) and poorly described for resonance hopping Centaurs (ravg = 0.52). The average Hurst exponent was 0.48 for random walk Centaurs and 0.20 for resonance hopping Centaurs. Random walk Centaurs were more likely to evolve into short period comets while resonance hopping Centaurs were more likely to evolve into long period comets. For each initial cluster, resonance hopping Centaurs took longer to evolve into comets than random walk Centaurs. Overall the population of random walk Centaurs averaged 143 kyr to evolve into comets, and the population of resonance hopping Centaurs averaged 164 kyr.
Quantum Spin Dynamics with Pairwise-Tunable, Long-Range Interactions
2016-08-05
rection of the arrows. Dashed (dotted) lines mark the NNN hopping terms (coefficients ±t2). NNNN long -range hopping along curved lines are included to...Quantum spin dynamics with pairwise-tunable, long -range interactions C.-L. Hunga,b,1,2, Alejandro González-Tudelac,1,2, J. Ignacio Ciracc, and H. J...atoms) that interact by way of a variety of processes, such as atomic collisions. Such pro- cesses typically lead to short -range, nearest-neighbor
Electrical conduction mechanism and dielectric characterization of MnTPPCl thin films
NASA Astrophysics Data System (ADS)
Meikhail, M. S.; Oraby, A. H.; El-Nahass, M. M.; Zeyada, H. M.; Al-Muntaser, A. A.
2018-06-01
The AC conductivity and dielectric properties of MnTPPCl sandwich structure as Au/MnTPPCl/Au were studied. The conductivity of the MnTPPCl thin films have been interpreted by the correlated barrier hopping (CBH) model. The dominant conduction process have found to be the single polaron hopping conduction. The values of the hopping distance, Rω, barrier height, W, and the localized-state density, N, are estimated at different frequencies. The behavior of dielectric constant and dielectric loss was discussed as a function of temperature and frequency. The dielectric constant was described in terms of polarization mechanism in materials. The spectral behavior of dielectric loss is interpreted on the basis of the Giuntini et al. model [1]. The value of WM is obtained as 0.32 eV. A non-Debye relaxation phenomenon was observed from the dielectric relaxation mechanism.
NASA Astrophysics Data System (ADS)
Sambale, S.; Williams, G. V. M.; Stephen, J.; Chong, S. V.
2014-12-01
Electronic transport and magnetic measurements have been made on FeSr2Y1.3Ce0.7Cu2O10-x. We observe a spin-glass at ˜23 K and a magnetoresistance that reaches -22% at 8 T. The magnetoresistance is due to variable range hopping quantum interference where at low temperatures each hop is over a large number of scatterers. This magnetoresistance is negative at and above 5 K and can be described by the Nguen, Spivak, and Shklovskii (NSS) model. However, there is an increasingly positive contribution to the magnetoresistance for temperatures below 5 K that may be due to scattering from localized free spins during each hop that is not accounted for in the NSS model.
Unusual Thermoelectric Behavior Indicating a Hopping to Bandlike Transport Transition in Pentacene
NASA Astrophysics Data System (ADS)
Germs, W. Chr.; Guo, K.; Janssen, R. A. J.; Kemerink, M.
2012-07-01
An unusual increase in the Seebeck coefficient with increasing charge carrier density is observed in pentacene thin film transistors. This behavior is interpreted as being due to a transition from hopping transport in static localized states to bandlike transport, occurring at temperatures below ˜250K. Such a transition can be expected for organic materials in which both static energetic disorder and dynamic positional disorder are important. While clearly visible in the temperature and density dependent Seebeck coefficient, the transition hardly shows up in the charge carrier mobility.
Transport and magnetic properties of disordered Li xV yO 2 ( x=0.8 and y=0.8)
NASA Astrophysics Data System (ADS)
Du, Fei; Li, Ang; Liu, Daliang; Zhan, Shiying; Hu, Fang; Wang, Chunzhong; Chen, Yan; Feng, Shouhua; Chen, Gang
2009-07-01
The magnetic and electron transport properties of rhombohedral Li xV yO 2 ( x=0.8 and y=0.8) are studied. The dc susceptibility of Li xV yO 2 can be well fitted to the modified Curie-Weiss law, which verified the paramagnetic ground state. The magnetic hysteresis and ac susceptibility also confirm this paramagnetism. The Li xV yO 2 exhibits semiconducting behavior, which is explained by thermal activated process at high temperature and variable-range hopping mechanism at low temperature. Anderson localization plays an important role in both the electron transport behavior and the magnetic behavior due to the site disorder between the Li + ion and V 4+ ion.
Results of Computing Amplitude and Phase of the VLF Wave Using Wave Hop Theory
NASA Astrophysics Data System (ADS)
Pal, Sujay; Basak, Tamal; Chakrabarti, Sandip K.
2011-07-01
We present the basics of the wave hop theory to compute the amplitude and phase of the VLF signals. We use the Indian Navy VTX transmitter at 18.2 kHz as an example of the source and compute the VLF propagation characteristics for several propagation paths using the wave-hop theory. We find the signal amplitudes as a function of distance from the transmitter using wave hop theory in different bearing angles and compare with the same obtained from the Long Wave Propagation Capability (LWPC) code which uses the mode theory. We repeat a similar exercise for the diurnal and seasonal behavior. We note that the signal variation by wave hop theory gives more detailed information in the day time. We further present the spatial variation of the signal amplitude over whole of India at a given time including the effect of sunrise and sunset terminator and also compare the same with that from the mode theory. We point out that the terminator effect is clearly understood in wave hop results than that from the mode theory.
NASA Astrophysics Data System (ADS)
Denis-le Coarer, Florian; Quirce, Ana; Valle, Angel; Pesquera, Luis; Rodríguez, Miguel A.; Panajotov, Krassimir; Sciamanna, Marc
2018-03-01
We present experimental and theoretical results of noise-induced attractor hopping between dynamical states found in a single transverse mode vertical-cavity surface-emitting laser (VCSEL) subject to parallel optical injection. These transitions involve dynamical states with different polarizations of the light emitted by the VCSEL. We report an experimental map identifying, in the injected power-frequency detuning plane, regions where attractor hopping between two, or even three, different states occur. The transition between these behaviors is characterized by using residence time distributions. We find multistability regions that are characterized by heavy-tailed residence time distributions. These distributions are characterized by a -1.83 ±0.17 power law. Between these regions we find coherence enhancement of noise-induced attractor hopping in which transitions between states occur regularly. Simulation results show that frequency detuning variations and spontaneous emission noise play a role in causing switching between attractors. We also find attractor hopping between chaotic states with different polarization properties. In this case, simulation results show that spontaneous emission noise inherent to the VCSEL is enough to induce this hopping.
Why do mammals hop? Understanding the ecology, biomechanics and evolution of bipedal hopping.
McGowan, Craig P; Collins, Clint E
2018-06-15
Bipedal hopping is a specialized mode of locomotion that has arisen independently in at least five groups of mammals. We review the evolutionary origins of these groups, examine three of the most prominent hypotheses for why bipedal hopping may have arisen, and discuss how this unique mode of locomotion influences the behavior and ecology of modern species. While all bipedal hoppers share generally similar body plans, differences in underlying musculoskeletal anatomy influence what performance benefits each group may derive from this mode of locomotion. Based on a review of the literature, we conclude that the most likely reason that bipedal hopping evolved is associated with predator avoidance by relatively small species in forested environments. Yet, the morphological specializations associated with this mode of locomotion have facilitated the secondary acquisition of performance characteristics that enable these species to be highly successful in ecologically demanding environments such as deserts. We refute many long-held misunderstandings about the origins of bipedal hopping and identify potential areas of research that would advance the understanding of this mode of locomotion. © 2018. Published by The Company of Biologists Ltd.
Three-Dimensional Tracking of Interfacial Hopping Diffusion
NASA Astrophysics Data System (ADS)
Wang, Dapeng; Wu, Haichao; Schwartz, Daniel K.
2017-12-01
Theoretical predictions have suggested that molecular motion at interfaces—which influences processes including heterogeneous catalysis, (bio)chemical sensing, lubrication and adhesion, and nanomaterial self-assembly—may be dominated by hypothetical "hops" through the adjacent liquid phase, where a diffusing molecule readsorbs after a given hop according to a probabilistic "sticking coefficient." Here, we use three-dimensional (3D) single-molecule tracking to explicitly visualize this process for human serum albumin at solid-liquid interfaces that exert varying electrostatic interactions on the biomacromolecule. Following desorption from the interface, a molecule experiences multiple unproductive surface encounters before readsorption. An average of approximately seven surface collisions is required for the repulsive surfaces, decreasing to approximately two and a half for surfaces that are more attractive. The hops themselves are also influenced by long-range interactions, with increased electrostatic repulsion causing hops of longer duration and distance. These findings explicitly demonstrate that interfacial diffusion is dominated by biased 3D Brownian motion involving bulk-surface coupling and that it can be controlled by influencing short- and long-range adsorbate-surface interactions.
Combustion powered linear actuator
Fischer, Gary J.
2007-09-04
The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.
"Drunk in Love": The Portrayal of Risk Behavior in Music Lyrics.
Holody, Kyle J; Anderson, Christina; Craig, Clay; Flynn, Mark
2016-10-01
The current study investigated the prevalence of multiple risk behaviors in popular music lyrics as well as the contexts within which they occur. We conducted a content analysis of the top 20 Billboard songs from 2009 to 2013 in the genres of rap, country, adult contemporary, rock, R&B/hip-hop, and pop, coding for the presence of alcohol, marijuana, nonmarijuana drugs, and sex as well as the contexts intoxication, binging/addiction, partying/socializing, disregard for consequences, and emotional states. The contexts relationship status and degradation were also coded for when sex was present. Of the 600 songs, 212 mentioned sexual behaviors, which were most frequent in rap and R&B/hip-hop. Alcohol was the next most frequent risk behavior, again with greatest mention in rap and R&B/hip-hop. Alcohol, marijuana, and nonmarijuana drugs were most often associated with positive emotions, and sex was most often described within the context of casual relationships. Alcohol and sex were associated with disregard for consequences most often in 2011, when the "you only live once" motto was most popular. These findings are concerning because exposure to popular music is associated with increased risk behaviors for adolescents and young adults, who are the greatest consumers of music.
Role of carrier density and disorder on anisotropic charge transport in polypyrrole
NASA Astrophysics Data System (ADS)
Varade, Vaibhav; Anjaneyulu, P.; Suchand Sangeeth, C. S.; Ramesh, K. P.; Menon, Reghu
2013-01-01
Polypyrrole (PPy) has been synthesized electrochemically on platinum substrate by varying synthesis temperature and dopant concentration. The charge transport in PPy has been investigated as a function of temperature for both in-plane and out-of-plane geometry in a wide temperature range of 5 K-300 K. The charge transport showed strong anisotropy and various mechanisms were used to explain the transport. The conductivity ratio, σr = σ(300 K)/σ(5 K) is calculated for each sample to quantify the relative disorder. At all the temperatures, the conductivity values for in-plane transport are found to be more for PPy synthesized at lower temperature, while the behavior is found to be different for out-of-plane transport. The carrier density is found to play a crucial role in case of in-plane transport. An effort has been made to correlate charge transport to morphology by analyzing temperature and frequency dependence of conductivity. Charge transport in lateral direction is found to be dominated by hopping whereas tunneling mechanisms are dominated in vertical direction. Parameters such as density of states at the Fermi level [N(EF)], average hopping distance (R), and average hopping energy (W) have been estimated for each samples in both geometry.
Variable-Range Hopping through Marginally Localized Phonons
NASA Astrophysics Data System (ADS)
Banerjee, Sumilan; Altman, Ehud
2016-03-01
We investigate the effect of coupling Anderson localized particles in one dimension to a system of marginally localized phonons having a symmetry protected delocalized mode at zero frequency. This situation is naturally realized for electrons coupled to phonons in a disordered nanowire as well as for ultracold fermions coupled to phonons of a superfluid in a one-dimensional disordered trap. To determine if the coupled system can be many-body localized we analyze the phonon-mediated hopping transport for both the weak and strong coupling regimes. We show that the usual variable-range hopping mechanism involving a low-order phonon process is ineffective at low temperature due to discreteness of the bath at the required energy. Instead, the system thermalizes through a many-body process involving exchange of a diverging number n ∝-log T of phonons in the low temperature limit. This effect leads to a highly singular prefactor to Mott's well-known formula and strongly suppresses the variable range hopping rate. Finally, we comment on possible implications of this physics in higher dimensional electron-phonon coupled systems.
Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah
2014-01-01
Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084
Magneto Transport of CVD Carbon in Artificial Opals
NASA Astrophysics Data System (ADS)
Wang, Lei; Yin, Ming; Arammash, Fauzi; Datta, Timir
2014-03-01
Magneto-transport of carbon inverse opal structures were investigated in the 2.5 to 300 K temperatures and magnetic fields in the 0-10T regime. Qualitatively, our observations lie between those reported by previous researchers. Over this temperature range, transport (in zero magnetic field) is non-metallic; the resistance decreased with rising temperature however the temperature dependent behavior is not activated, as observed with variable range hopping. In three-dimensions, such behavior can also be the result of weak localization and electron-electron interactions; in particular the change in conductivity is a polynomial in fractional powers of absolute temperature. At sub-helium temperature regimes the relative magneto resistance is measured to be ~ 0.1 percent per Tesla. Results of data analysis for several different scenarios will be reported. DOD award #60177-RT-H from the ARO.
Dispersive Sachdev-Ye-Kitaev model: Band structure and quantum chaos
NASA Astrophysics Data System (ADS)
Zhang, Pengfei
2017-11-01
The Sachdev-Ye-Kitaev (SYK) model is a concrete model for a non-Fermi liquid with maximally chaotic behavior in (0 +1 ) dimensions. In order to gain some insights into real materials in higher dimensions where fermions could hop between different sites, here we consider coupling a SYK lattice by constant hopping. We call this the dispersive SYK model. Focusing on (1 +1 ) -dimensional homogeneous hopping, by either tuning the temperature or the relative strength of the random interaction (hopping) and constant hopping, we find a crossover between a dispersive metal to an incoherent metal, where the dynamic exponent z changes from 1 to ∞ . We study the crossover by calculating the spectral function, charge density correlator, and the Lyapunov exponent. We further find the Lyapunov exponent becomes larger when the chemical potential is tuned to approach a van Hove singularity because of the large density of states near the Fermi surface. The effect of the topological nontrivial bands is also discussed.
Hazelwood, Lucie A.; Walsh, Michael C.; Pronk, Jack T.; Daran, Jean-Marc
2010-01-01
The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop α-acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso-α-acids have hitherto been restricted to lactic acid bacteria. The present study investigated molecular mechanisms of hop iso-α-acid resistance in the model eukaryote Saccharomyces cerevisiae. Growth inhibition occurred at concentrations of hop iso-α-acids that were an order of magnitude higher than those found with hop-tolerant prokaryotes. Chemostat-based transcriptome analysis and phenotype screening of the S. cerevisiae haploid gene deletion collection were used as complementary methods to screen for genes involved in hop iso-α-acid detoxification and tolerance. This screening and further analysis of deletion mutants confirmed that yeast tolerance to hop iso-α-acids involves three major processes, active proton pumping into the vacuole by the vacuolar-type ATPase to enable vacuolar sequestration of iso-α-acids and alteration of cell wall structure and, to a lesser extent, active export of iso-α-acids across the plasma membrane. Furthermore, iso-α-acids were shown to affect cellular metal homeostasis by acting as strong zinc and iron chelators. PMID:19915041
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassmi, M.; LMOP, El Manar University, Tunis 2092; Pointet, J.
2016-06-28
Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO{sub 2} rutile films which are deposited on RuO{sub 2} by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz–100 kHz range, for ac electric fields up to 1 MV{sub rms}/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreasesmore » the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MV{sub rms}/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves the high-field dielectric behavior.« less
NASA Astrophysics Data System (ADS)
Oumezzine, Marwène; Peña, Octavio; Kallel, Sami; Kallel, Nabil; Guizouarn, Thierry; Gouttefangeas, Francis; Oumezzine, Mohamed
2014-03-01
The effects of non-magnetic Ti4+ substitution on the structural, electrical and magnetic properties of La0.67Ba0.33Mn1- x Ti x O3 (0≤ x≤0.1) are investigated and compared to those existing in La0.67Ba0.33Mn1- x Cr x O3 (magnetic Cr3+). The structural refinement by the Rietveld method revealed that Ti-doped samples crystallize in the cubic lattice with space group , while samples with Cr crystallize in the hexagonal setting of the rhombohedral space group for identical contents of dopant. The most relevant structural features are an increase of the lattice parameters, of the cell volume and of the inter-ionic distances with increasing Ti doping level. Both series of samples show a decrease of the paramagnetic-ferromagnetic transition temperature when the amount of chromium or titanium increases. Transport measurements show that when increasing the metal doping, the resistivity increases whereas the metallic behavior of the parent compound La0.67Ba0.33MnO3 is destroyed. For a substitution higher than 5 at.% of Ti and 10 at.% of Cr, the samples exhibit a semiconducting behavior in the whole range of temperature, for which the electronic transport can be explained by variable range hopping and/or small polaron hopping models.
Langberg, Joshua M; Dvorsky, Melissa R; Molitor, Stephen J; Bourchtein, Elizaveta; Eddy, Laura D; Smith, Zoe R; Oddo, Lauren E; Eadeh, Hana-May
2018-01-01
To evaluate the effectiveness of 2 brief school-based interventions targeting the homework problems of adolescents with attention-deficit/hyperactivity disorder (ADHD)-the Homework, Organization, and Planning Skills (HOPS) intervention and the Completing Homework by Improving Efficiency and Focus (CHIEF) intervention, as implemented by school mental health providers during the school day. A secondary goal was to use moderator analyses to identify student characteristics that may differentially predict intervention response. Two-hundred and eighty middle school students with ADHD were randomized to the HOPS or CHIEF interventions or to waitlist, and parent and teacher ratings were collected pre, post, and at a 6-month follow-up. Both interventions were implemented with fidelity by school mental health providers. Participants were pulled from elective periods and sessions averaged less than 20 min. Participants in HOPS and CHIEF demonstrated significantly greater improvements in comparison with waitlist on parent ratings of homework problems and organizational skills and effect sizes were large. HOPS participants also demonstrated moderate effect size improvements on materials management and organized action behaviors according to teachers. HOPS participants made significantly greater improvements in parent- and teacher-rated use of organized actions in comparison with CHIEF, but not on measures of homework problems. Moderation analyses revealed that participants with more severe psychopathology and behavioral dysregulation did significantly better with the HOPS intervention as compared to the CHIEF intervention. Brief school-based interventions implemented by school providers can be effective. This type of service delivery model may facilitate overcoming the oft cited research-to-practice gap. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
ac conductivity in Gd doped Pb(Zr0.53Ti0.47)O3 ceramics
NASA Astrophysics Data System (ADS)
Portelles, J.; Almodovar, N. S.; Fuentes, J.; Raymond, O.; Heiras, J.; Siqueiros, J. M.
2008-10-01
This study is focused in the conduction processes taking place in 0.6 wt % Gd doped lead zirconate titanate samples PbZr0.53Ti0.47O3:Gd (PZT53/47:Gd) in the vicinity of the morphotropic phase boundary. Doped samples show very large dielectric permittivity with respect to that of undoped ones near the transition temperature. The frequency dependent ac conductivity of PZT53/47:Gd ceramics was studied in the 30-450 °C temperature range. X-ray diffraction analyses indicate the incorporation of Gd atoms to the structure. The changes in the dielectric properties as functions of temperature of the doped samples are taken as additional evidence of the incorporation of Gd into the crystal structure. Gd acts as donor center promoting extrinsic n-type conduction. The ac conductivity behavior obeys Jonscher universal relation in the 100 Hz-1 MHz frequency range for temperatures between 30 and 300 °C. The measured conductivity values for Gd doped PZT53/47 are higher than those of pure PZT53/47. According to the correlated barrier hopping model, the preponderant conduction mechanism in the frequency-temperature response was recognized as small polarons hopping mechanism.
NASA Astrophysics Data System (ADS)
Dutta, Rituraj; Kumar, A.
2017-10-01
Dielectric relaxation dynamics and AC conductivity scaling of a metal-organic framework (MOF-5) based poly (vinylidene fluoride-co-hexafluoropropylene) (PVdf-HFP) incorporated with 1-Butyl-3-methylimidazolium hexafluorophosphate have been studied over a frequency range of 40 Hz-5 MHz and in the temperature range of 300 K-380 K. High values of dielectric permittivity (~{{\\varepsilon }\\prime} ) having strong dispersion are obtained at low frequency because of interfacial polarization. The real part of the dielectric modulus spectra (M‧) shows no prominent peak, whereas the imaginary part (M″) shows certain peaks, with a reduction in relaxation time (τ) that can be attributed to a non-Debye relaxation mechanism. The spectra also depict both concentration- and temperature-independent scaling behavior. The power law dependent variation of AC conductivity follows the jump relaxation model and reveals activated ion hopping over diffusion barriers. The value of the frequency exponent is observed to decrease with increasing concentration of ionic liquid, indicating the forward hopping of ions in the relaxation process. The AC conductivity scaling curves at different temperatures also depict the temperature-independent relaxation dynamics.
NASA Astrophysics Data System (ADS)
Burin, Alexander L.
2015-09-01
Many-body localization in an XY model with a long-range interaction is investigated. We show that in the regime of a high strength of disordering compared to the interaction an off-resonant flip-flop spin-spin interaction (hopping) generates the effective Ising interactions of spins in the third order of perturbation theory in a hopping. The combination of hopping and induced Ising interactions for the power-law distance dependent hopping V (R ) ∝R-α always leads to the localization breakdown in a thermodynamic limit of an infinite system at α <3 d /2 where d is a system dimension. The delocalization takes place due to the induced Ising interactions U (R ) ∝R-2 α of "extended" resonant pairs. This prediction is consistent with the numerical finite size scaling in one-dimensional systems. Many-body localization in an XY model is more stable with respect to the long-range interaction compared to a many-body problem with similar Ising and Heisenberg interactions requiring α ≥2 d which makes the practical implementations of this model more attractive for quantum information applications. The full summary of dimension constraints and localization threshold size dependencies for many-body localization in the case of combined Ising and hopping interactions is obtained using this and previous work and it is the subject for the future experimental verification using cold atomic systems.
NASA Astrophysics Data System (ADS)
Yoshioka, Hironori; Hirata, Kazuto
2018-04-01
The characteristics of SiC MOSFETs (drain current vs. gate voltage) were measured at 0.14-350 K and analyzed considering variable-range hopping conduction through interface states. The total interface state density was determined to be 5.4×1012 cm-2 from the additional shift in the threshold gate voltage with a temperature change. The wave-function size of interface states was determined from the temperature dependence of the measured hopping current and was comparable to the theoretical value. The channel mobility was approximately 100 cm2V-1s-1 and was almost independent of temperature.
Studying the hopping parameters of half-Heusler NaAuS using maximally localized Wannier function
NASA Astrophysics Data System (ADS)
Sihi, Antik; Lal, Sohan; Pandey, Sudhir K.
2018-04-01
Here, the electronic behavior of half-Heusler NaAuS is studied using PBEsol exchange correlation functional by plotting the band structure curve. These bands are reproduced using maximally localized Wannier function using WANNIER90. Tight-binding bands are nicely matched with density functional theory bands. By fitting the tight-binding model, hopping parameter for NaAuS is obtained by including Na 2s, 2p, Au 6s, 5p, 5d and S 3s, 3p orbitals within the energy interval of -5 to 16 eV around the Fermi level. In present study, hopping integrals for NaAuS are computed for the first primitive unit cell atoms as well as the first nearest neighbor primitive unit cell. The most dominating hopping integrals are found for Na (3s) - S (3s), Na (2px) - S (2px), Au (6s) - S (3px), Au (6s) - S (3py) and Au (6s) - S (3pz) orbitals. The hopping integrals for the first nearest neighbor primitive unit cell are also discussed in this manuscript. In future, these hopping integrals are very important to find the topological invariant for NaAuS compound.
Crystal growth and magneto-transport behavior of PdS1-δ
NASA Astrophysics Data System (ADS)
Cao, Lin; Lv, Yang-Yang; Chen, Si-Si; Li, Xiao; Zhou, Jian; Yao, Shu-Hua; Chen, Y. B.; Lu, Minghui; Chen, Yan-Feng
2018-04-01
PdS is theoretically proposed to novel topological material with eight-band fermions. Here, PdS1-δ crystals were successfully grown from KI as solvent by modified flux method. The single crystalline quality and compositional homogeneity of grown PdS1-δ are characterized by X-ray diffraction and energy dispersion spectroscopy. Temperature dependent electrical transport property of PdS1-δ demonstrates a semiconductor-like behavior. Analysis of temperature-dependent resistance indicates that there is variable-range-hopping behavior at low temperature. The clear negative MR of PdS1-δ single crystals is measured at the low temperature (<30 K), which may be ascribed to the interaction between conducting carriers and localized moments. however, the magneto-transport results have not shown the clues of topological feature of PdS.
Magnetic manipulation of topological states in p-wave superconductors
NASA Astrophysics Data System (ADS)
Mercaldo, Maria Teresa; Cuoco, Mario; Kotetes, Panagiotis
2018-05-01
Substantial experimental investigation has provided evidence for spin-triplet pairing in diverse classes of materials and in a variety of artificial heterostructures. One of the fundamental challenges in this framework is how to manipulate the topological behavior of p-wave superconductors (PSC). In this work we investigate the magnetic field response of one-dimensional (1d) PSCs and we focus on the relation between the structure of the Cooper pair spin-configuration and the occurrence of topological phases with an enhanced number N of Majorana fermions per edge. The topological phase diagram, consisting of phases harboring Majorana modes, becomes significantly modified when one tunes the strength of the applied field, the direction of the d-vector and allows for long range hopping amplitudes in the 1d PSC. We find transitions between phases with different number N of Majorana fermions per edge and we show how they can be both induced by a variation of the hopping strength and a spin rotation of d.
Study of percolation behavior depending on molecular structure design
NASA Astrophysics Data System (ADS)
Yu, Ji Woong; Lee, Won Bo
Each differently designed anisotropic nano-crystals(ANCs) are studied using Langevin dynamic simulation and their percolation behaviors are presented. Popular molecular dynamics software LAMMPS was used to design the system and perform the simulation. We calculated the minimum number density at which percolation occurs(i.e. percolation threshold), radial distribution function, and the average number of ANCs for a cluster. Electrical conductivity is improved when the number of transfers of electrons between ANCs, so called ''inter-hopping process'', which has the considerable contribution to resistance decreases and the number of inter-hopping process is directly related with the concentration of ANCs. Therefore, with the investigation of relationship between molecular architecture and percolation behavior, optimal design of ANC can be achieved.
NASA Astrophysics Data System (ADS)
Amrin, Sayed; Deshpande, V. D.
2017-03-01
We study the dielectric relaxation and ac conductivity behavior of MWCNT-COOH/Polyvinyl alcohol nanocomposite films in the temperature (T) range 303-423 K and in the frequency (f) range 0.1 Hz-1 MHz. The dielectric constant increases with an increase in temperature and also with an increase in MWCNT-COOH loading into the polymer matrix, as a result of interfacial polarization. The permittivity data were found to fit well with the modified Cole-Cole equation. Temperature dependent values of the relaxation times, free charge carrier conductivity and space charge carrier conductivity were extracted from the equation. An observed increment in the ac conductivity for the nanocomposites was analysed by a Jonscher power law which suggests that the correlated barrier hopping is the dominant charge transport mechanism for the nanocomposite films. The electric modulus study revealed deviations from ideal Debye-type behavior which are explained by considering a generalized susceptibility function. XRD and DSC results show an increase in the degree of crystallinity.
Čeh, Barbara; Kač, Milica; Košir, Iztok J.; Abram, Veronika
2007-01-01
The effect of water supply – especially of drought stress – on the content of some secondary metabolites in hops (Humulus lupulus L.) was studied. The experiment took place in 2006. Some relevant data from 2005 were included for comparison. Leaves and cones of nine hop cultivars grown under field conditions as well as in a pot experiment under three water regimes were analyzed. The cultivars ranged from those most grown in Slovenia to promising crossbreed being tested. Leaves were sampled from July 18, 2006 to August 18, 2006, while cones were picked in the time of technological maturity. Standard analytical methods were applied to determine the contents of xanthohumol, polyphenols and α-acids in hop leaves and hop cones. The contents of the secondary metabolites in question depended more on the cultivar under investigation than on the water supply, at least as far the growing conditions for a relatively normal development of the plant were met.
Odor-Active Compounds in the Special Flavor Hops Huell Melon and Polaris.
Neiens, Silva D; Steinhaus, Martin
2018-02-14
The volatiles isolated from samples of the special flavor hop varieties, Huell Melon and Polaris, and from the aroma hop variety, Hallertau Tradition, by solvent extraction and solvent-assisted flavor evaporation (SAFE) were subjected to a comparative aroma extract dilution analysis (cAEDA), which resulted in 46 odor-active compounds in the flavor dilution (FD) factor range of 16 to 2048. On the basis of high FD factors, myrcene, (3R)-linalool, and 2- and 3-methylbutanoic acid were confirmed as important variety-independent hop odorants. (1R,4S)-Calamenene was identified for the first time as an odor-active compound in hops. Clear differences in the FD factors and their subsequent objectification by stable isotope dilution quantitation suggested that high concentrations of the esters ethyl 2-methylbutanoate, ethyl 2-methylpropanoate, and propyl 2-methylbutanoate cause the characteristic fruity, cantaloupe-like odor note in Huell Melon hops, whereas the fruity and minty odor notes in Polaris are associated with high amounts of 3-methylbutyl acetate and 1,8-cineole.
Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs
Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor
2017-01-01
Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network. PMID:28763014
Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs.
Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor
2017-08-01
Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network.
Magnetoresistance in two-dimensional array of Ge/Si quantum dots
NASA Astrophysics Data System (ADS)
Stepina, N. P.; Koptev, E. S.; Pogosov, A. G.; Dvurechenskii, A. V.; Nikiforov, A. I.; Zhdanov, E. Yu
2012-07-01
Magnetoresistance in two-dimensional array of Ge/Si was studied for a wide range of the conductance, where the transport regime changes from hopping to diffusive one. The behavior of magnetoresistance is similar for all samples; it is negative in weak fields and becomes positive with increasing of magnetic field. Negative magnetoresistance can be described in the frame of weak localization approach with suggestion that quantum interference contribution to the conductance is restricted not only by the phase breaking length but also by the localization length.
Kivlan, Benjamin R; Carcia, Christopher R; Christoforetti, John J; Martin, RobRoy L
2016-08-01
Dancers commonly experience anterior hip pain caused by femoroacetabular impingement (FAI) that interrupts training and performance in dance. A paucity of literature exists to guide appropriate evaluation and management of FAI among dancers. The purpose of this study was to determine if dancers with clinical signs of FAI have differences in hip range of motion, strength, and hop test performance compared to healthy dancers. Quasi-experimental, cohort comparison. Fifteen dancers aged between 18- 21 years with clinical signs of FAI that included anterior hip pain and provocative impingement tests were compared to 13 age-matched dancers for passive hip joint range of motion, isometric hip strength, and performance of the medial triple hop, lateral triple hop, and cross-over hop tests. No statistically significant differences in range of motion were noted for flexion (Healthy = 145° + 7°; FAI = 147° + 10°; p=0.59), internal rotation (Healthy = 63° + 7°; FAI = 61° + 11°; p=0.50), and external rotation (Healthy = 37° + 9°; FAI = 34° + 12°; p=0.68) between the two groups. Hip extension strength was significantly less in the dancers with FAI (224 + 55 Newtons) compared to the healthy group (293 ± 58 Newtons; F(1,26) = 10.2; p=0.004). No statistically significant differences were noted for flexion, internal rotation, external rotation, abduction, or adduction isometric strength. The medial triple hop test was significantly less in the FAI group (354 ± 43 cm) compared to the healthy group (410 ± 50 cm; F(1,26) = 10.3; p = 0.004). Similar results were observed for the lateral hop test, as the FAI group (294 ± 38 cm) performed worse than the healthy controls (344 ± 54cm; F(1,26) = 7.8; p = 0.01). There was no statistically significant difference between the FAI group (2.7 ± 0.92 seconds) and the healthy group (2.5 ± 0.75 seconds) on the crossover hop test. Dancers with FAI have less strength of the hip extensors and perform worse during medial and lateral hop triple tests compared to healthy dancers. Clinicians may use this information to assist in screening of dancers with complaints of hip pain and to measure their progress for return to dance. 3B, non-consectutive cohort study.
Carcia, Christopher R.; Christoforetti, John J.; Martin, RobRoy L.
2016-01-01
ABSTRACT Background Dancers commonly experience anterior hip pain caused by femoroacetabular impingement (FAI) that interrupts training and performance in dance. A paucity of literature exists to guide appropriate evaluation and management of FAI among dancers. Purpose The purpose of this study was to determine if dancers with clinical signs of FAI have differences in hip range of motion, strength, and hop test performance compared to healthy dancers. Study Design Quasi-experimental, cohort comparison. Methods Fifteen dancers aged between 18- 21 years with clinical signs of FAI that included anterior hip pain and provocative impingement tests were compared to 13 age-matched dancers for passive hip joint range of motion, isometric hip strength, and performance of the medial triple hop, lateral triple hop, and cross-over hop tests. Results No statistically significant differences in range of motion were noted for flexion (Healthy = 145° + 7°; FAI = 147° + 10°; p=0.59), internal rotation (Healthy = 63° + 7°; FAI = 61° + 11°; p=0.50), and external rotation (Healthy = 37° + 9°; FAI = 34° + 12°; p=0.68) between the two groups. Hip extension strength was significantly less in the dancers with FAI (224 + 55 Newtons) compared to the healthy group (293 ± 58 Newtons; F(1,26) = 10.2; p=0.004). No statistically significant differences were noted for flexion, internal rotation, external rotation, abduction, or adduction isometric strength. The medial triple hop test was significantly less in the FAI group (354 ± 43 cm) compared to the healthy group (410 ± 50 cm; F(1,26) = 10.3; p = 0.004). Similar results were observed for the lateral hop test, as the FAI group (294 ± 38 cm) performed worse than the healthy controls (344 ± 54cm; F(1,26) = 7.8; p = 0.01). There was no statistically significant difference between the FAI group (2.7 ± 0.92 seconds) and the healthy group (2.5 ± 0.75 seconds) on the crossover hop test. Conclusion Dancers with FAI have less strength of the hip extensors and perform worse during medial and lateral hop triple tests compared to healthy dancers. Clinicians may use this information to assist in screening of dancers with complaints of hip pain and to measure their progress for return to dance. Level of Evidence 3B, non-consectutive cohort study PMID:27525177
Matrix-valued Boltzmann equation for the nonintegrable Hubbard chain.
Fürst, Martin L R; Mendl, Christian B; Spohn, Herbert
2013-07-01
The standard Fermi-Hubbard chain becomes nonintegrable by adding to the nearest neighbor hopping additional longer range hopping amplitudes. We assume that the quartic interaction is weak and investigate numerically the dynamics of the chain on the level of the Boltzmann type kinetic equation. Only the spatially homogeneous case is considered. We observe that the huge degeneracy of stationary states in the case of nearest neighbor hopping is lost and the convergence to the thermal Fermi-Dirac distribution is restored. The convergence to equilibrium is exponentially fast. However for small next-nearest neighbor hopping amplitudes one has a rapid relaxation towards the manifold of quasistationary states and slow relaxation to the final equilibrium state.
NASA Astrophysics Data System (ADS)
Batkova, Marianna; Batko, Ivan; Gabáni, Slavomír; Gažo, Emil; Konovalova, Elena; Filippov, Vladimir
2018-05-01
We studied electrical resistance of a single-crystalline SmB6 sample with a focus on the region of the "low-temperature resistivity plateau". Our observations did not show any true saturation of the electrical resistance at temperatures below 3 K down to 70 mK. According to our findings, temperature dependence of the electrical conduction in a certain temperature interval above 70 mK can be decomposed into a temperature-independent term and a temperature-activated term that can be described by variable-range hopping formula for two-dimensional systems, exp [ -(T0 / T) 1 / 3 ]. Thus, our results indicate importance of hopping type of electrical transport in the near-surface region of SmB6.
Kishimoto, Toru; Wanikawa, Akira; Kagami, Noboru; Kawatsura, Katsuyuki
2005-06-15
Hop aroma components, which mainly comprise terpenoids, contribute to the character of beers. However, pretreatments are necessary before analyzing these components because of their trace levels and complicated matrixes. Here, the stir bar-sorptive extraction (SBSE) method was used to detect and quantify many terpenoids simultaneously from small samples. This simple technique showed low coefficients of variation, high accuracy, and low detection limits. An investigation of the behavior of terpenoids identified two distinct patterns of decreasing concentration during wort boiling. The first, which was seen in myrcene and linalool, involved a rapid decrease that was best fitted by a quadratic curve. The second, which was observed in beta-eudesmol, humulene, humulene epoxide I, beta-farnesene, caryophyllene, and geraniol, involved a gentle linear decrease. Conversely, the concentration of beta-damascenone increased after boiling. As the aroma composition depended on the hop variety, we also examined the relationship between terpenoid content and sensory analysis in beer.
Electronic correlation effects and the Coulomb gap at finite temperature.
Sandow, B; Gloos, K; Rentzsch, R; Ionov, A N; Schirmacher, W
2001-02-26
We have investigated the effect of the long-range Coulomb interaction on the one-particle excitation spectrum of n-type germanium, using tunneling spectroscopy on mechanically controllable break junctions. At low temperatures, the tunnel conductance shows a minimum at zero bias voltage due to the Coulomb gap. Above 1 K, the gap is filled by thermal excitations. This behavior is reflected in the variable-range hopping resistivity measured on the same samples: up to a few degrees Kelvin the Efros-Shklovskii lnR infinity T(-1/2) law is obeyed, whereas at higher temperatures deviations from this law occur. The type of crossover differs from that considered previously in the literature.
Ortiz, Alexis; Olson, Sharon; Trudelle-Jackson, Elaine; Rosario, Martin; Venegas, Heidi L.
2011-01-01
Objective To compare, landing mechanics and electromyographic activity of the lower extremities during side hopping and crossover hopping maneuvers, in noninjured women and women with anterior cruciate ligament (ACL) reconstruction. Design A case-control study. Setting A 3-dimensional motion analysis laboratory. Participants Twenty-eight young women (range, 21–35 years) (15 control subjects and 13 subjects with ACL reconstruction). Patients and Methods All participants performed a side-to-side hopping task that consisted of hopping single-legged 10 times consecutively from side to side across 2 lines marked 30 cm apart on 2 individual force plates. The task was designated as a side hopping when the hop was to the opposite side of the stance leg and as crossover hopping when the hop was toward the side of the stance leg. Main Outcome Measurements Peak hip-/knee-joint angles; peak knee extension/abduction joint moments; electromyographic studies of the gluteus maximus, gluteus medius, rectus femoris, and hamstring muscles; and quadriceps/hamstring co-contraction ratio were compared between the groups by means of 2 × 2 multivariate analysis of variance tests (group × maneuver). Results Noninjured women and women with ACL reconstruction exhibited similar hip-and knee-joint angles during both types of hopping. Hip-joint angles were greater during the crossover hopping in both groups, and knee-joint angles did not differ between the groups or hops. Knee-joint moments demonstrated a significant group × maneuver interaction. Greater knee extension and valgus moments were noted in the control group during crossover hopping, and greater knee abduction moments were noted in the ACL group during side hopping. Electromyographic data revealed no statistically significantly differences between the groups. Conclusions Women with ACL reconstruction exhibited the restoration of functional biomechanical movements such as hip-/knee-joint angles and lower extremity neuromuscular activation during side-to-side athletic tasks. However, not all biomechanical strategies are restored years after surgery, and women who have undergone a procedure such as ACL reconstruction may continue to exhibit knee-joint abduction moments that increase the risk of additional knee injury. PMID:21257128
Langberg, Joshua M; Epstein, Jeffery N; Becker, Stephen P; Girio-Herrera, Erin; Vaughn, Aaron J
2012-09-01
The purpose of the study was to evaluate the Homework, Organization, and Planning Skills (HOPS) intervention for middle school students with Attention-Deficit/Hyperactivity Disorder (ADHD) as implemented by school mental health (SMH) providers using a randomized trial design. Seventeen SMH providers from five school districts implemented the HOPS intervention. Forty-seven middle school students with ADHD (grades 6-8) were randomly assigned to receive the HOPS intervention or to a waitlist comparison group. Parent and teacher ratings of organizational skills and homework problems were collected pre- and post-intervention and at a 3-monoth follow-up, and school grades were also collected. Intervention participants demonstrated significant improvements relative to the waitlist comparison across parent-rated organized action ( d = .88), materials management ( d = .63), planning ( d = 1.05), and homework completion behaviors ( d = .85). Intervention participants did not make significant improvements relative to the comparison group according to teacher ratings. SMH providers were able to implement the HOPS intervention with fidelity despite the fact that no formal ongoing consultation was provided.
Langberg, Joshua M.; Epstein, Jeffery N.; Becker, Stephen P.; Girio-Herrera, Erin; Vaughn, Aaron J.
2013-01-01
The purpose of the study was to evaluate the Homework, Organization, and Planning Skills (HOPS) intervention for middle school students with Attention-Deficit/Hyperactivity Disorder (ADHD) as implemented by school mental health (SMH) providers using a randomized trial design. Seventeen SMH providers from five school districts implemented the HOPS intervention. Forty-seven middle school students with ADHD (grades 6–8) were randomly assigned to receive the HOPS intervention or to a waitlist comparison group. Parent and teacher ratings of organizational skills and homework problems were collected pre- and post-intervention and at a 3-monoth follow-up, and school grades were also collected. Intervention participants demonstrated significant improvements relative to the waitlist comparison across parent-rated organized action (d = .88), materials management (d = .63), planning (d = 1.05), and homework completion behaviors (d = .85). Intervention participants did not make significant improvements relative to the comparison group according to teacher ratings. SMH providers were able to implement the HOPS intervention with fidelity despite the fact that no formal ongoing consultation was provided. PMID:25355991
Topological Anderson insulator induced by inter-cell hopping disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Shu-Hui; College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018; Song, Juntao, E-mail: jtsong@mail.hebtu.edu.cn
We have studied in detail the influence of same-orbit and different-orbit hopping disorders in HgTe/CdTe quantum wells. Intriguingly, similar to the behavior of the on-site Anderson disorder, a phase transition from a topologically trivial phase to a topological phase is induced at a proper strength of the same-orbit hopping disorder. For different-orbit hopping disorder, however, the phase transition does not occur. The results have been analytically verified by using effective medium theory. A consistent conclusion can be obtained by comparing phase diagrams, conductance, and conductance fluctuations. In addition, the influence of Rashba spin-orbit interaction (RSOI) on the system has beenmore » studied for different types of disorder, and the RSOI shows different influence on topological phase at different disorders. The topological phase induced by same-orbit hopping disorder is more robust against the RSOI than that induced by on-site Anderson disorder. For different-orbit hopping disorder, no matter whether the RSOI is included or not, the phase transition does not occur. The results indicate, whether or not the topological Anderson insulator can be observed depends on a competition between the different types of the disorder as well as the strength of the RSOI in a system.« less
NASA Astrophysics Data System (ADS)
Li, Zhaoguo; Peng, Liping; Zhang, Jicheng; Li, Jia; Zeng, Yong; Zhan, Zhiqiang; Wu, Weidong
2018-06-01
Direct evidence of quantum interference magnetotransport in polycrystalline germanium films in the variable-range hopping (VRH) regime is reported. The temperature dependence of the conductivity of germanium films fulfilled the Mott VRH mechanism with the form of ? in the low-temperature regime (?). For the magnetotransport behaviour of our germanium films in the VRH regime, a crossover, from negative magnetoconductance at the low-field to positive magnetoconductance at the high-field, is observed while the zero-field conductivity is higher than the critical value (?). In the regime of ?, the magnetoconductance is positive and quadratic in the field for some germanium films. These features are in agreement with the VRH magnetotransport theory based on the quantum interference effect among random paths in the hopping process.
Effect of pH on the electrical properties and conducting mechanism of SnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Periathai, R. Sudha; Abarna, S.; Hirankumar, G.; Jeyakumaran, N.; Prithivikumaran, N.
2017-03-01
Semiconductor nanoparticles have attracted more interests because of their size-dependent optical and electrical properties.SnO2 is an oxygen-deficient n-type semiconductor with a wide band gap of 3.6 eV (300 K). It has many remarkable applications as sensors, catalysts, transparent conducting electrodes, anode material for rechargeable Li- ion batteries and optoelectronic devices. In the present work, the role of pH in determining the electrical and dielectric properties of SnO2 nanoparticles has been studied as a function of temperature ranging from Room temperature (RT) to 114 °C in the frequency range of 7 MHz to 50 mHz using impedance spectroscopic technique. The non linear behavior observed in the thermal dependence of the conductance of SnO2 nanoparticles is explained by means of the surface property of SnO2 nanoparticles where proton hopping mechanism is dealt with. Jonscher's power law has been fitted for the conductance spectra and the frequency exponent ("s" value) gives an insight about the ac conducting mechanism. The temperature dependence of electrical relaxation phenomenon in the material has been observed. The complex electric modulus analysis indicates the possibility of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation.
-Sb Glasses at Low Temperatures
NASA Astrophysics Data System (ADS)
Souri, Dariush; Azizpour, Parvin; Zaliani, Hamideh
2014-09-01
Semiconducting glasses of the type 40TeO2-(60 - x) V2O5- xSb were prepared by rapid melt quenching and their dc electrical conductivity was measured in the temperature range 180-296 K. For these glassy samples, the dc electrical conductivity ranged from 2.26 × 10-7 S cm-1 to 1.11 × 10-5 S cm-1 at 296 K, indicating the conductivity is enhanced by increasing the V2O5 content. These experimental results could be explained on the basis of different mechanisms (based on polaron-hopping theory) in the different temperature regions. At temperatures above Θ D/2 (where Θ D is the Debye temperature), the non-adiabatic small polaron hopping (NASPH) model is consistent with the data, whereas at temperatures below Θ D/2, a T -1/4 dependence of the conductivity indicative of the variable range hopping (VRH) mechanism is dominant. For all these glasses crossover from SPH to VRH conduction was observed at a characteristic temperature T R ≤ Θ D/2. In this study, the hopping carrier density and carrier mobility were determined at different temperatures. N ( E F), the density of states at (or near) the Fermi level, was also determined from the Mott variables; the results were dependent on V2O5 content.
Chicano Hip-Hop as Interethnic Contact Zone
ERIC Educational Resources Information Center
McFarland, Pancho
2008-01-01
Hip-hop is an interethnic contact zone that allows for the creation of new expressive cultures and new identities for young people. Its openness derives in part from the wide range of expression and interpretation allowed in 182 "McFarland" African musics. Moving beyond the often stifling options offered by an earlier generation that focused on…
Frame error rate for single-hop and dual-hop transmissions in 802.15.4 LoWPANs
NASA Astrophysics Data System (ADS)
Biswas, Sankalita; Ghosh, Biswajit; Chandra, Aniruddha; Dhar Roy, Sanjay
2017-08-01
IEEE 802.15.4 is a popular standard for personal area networks used in different low-rate short-range applications. This paper examines the error rate performance of 802.15.4 in fading wireless channel. An analytical model is formulated for evaluating frame error rate (FER); first, for direct single-hop transmission between two sensor nodes, and second, for dual-hop (DH) transmission using an in-between relay node. During modeling the transceiver design parameters are chosen according to the specifications set for both the 2.45 GHz and 868/915 MHz bands. We have also developed a simulation test bed for evaluating FER. Some results showed expected trends, such as FER is higher for larger payloads. Other observations are not that intuitive. It is interesting to note that the error rates are significantly higher for the DH case and demands a signal-to-noise ratio (SNR) penalty of about 7 dB. Also, the FER shoots from zero to one within a very small range of SNR.
Suzuki, Takahiro; Fujibayashi, Misato; Hataya, Tatsuji; Taneda, Akito; He, Ying-Hong; Tsushima, Taro; Duraisamy, Ganesh Selvaraj; Siglová, Kristyna; Matoušek, Jaroslav; Sano, Teruo
2017-03-01
Apple fruit crinkle viroid (AFCVd) is a tentative member of the genus Apscaviroid, family Pospiviroidae. AFCVd has a narrow host range and is known to infect apple, hop and persimmon as natural hosts. In this study, tomato, cucumber and wild hop have been identified as new experimental herbaceous hosts. Foliar symptoms were very mild or virtually undetectable, but fruits of infected tomato were small, cracked and distorted. These symptoms resemble those observed on some AFCVd-sensitive apple cultivars. After transfer to tomato, cucumber and wild hop, sequence changes were detected in a natural AFCVd isolate from hop, and major variants in tomato, cucumber and wild hop differed in 10, 8 or 2 nucleotides, respectively, from the predominant one in the inoculum. The major variants in tomato and cucumber were almost identical, and the one in wild hop was very similar to the one in cultivated hop. Detailed analyses of the host-dependent sequence changes that appear in a naturally occurring AFCVd isolate from hop after transfer to tomato using small RNA deep sequence data and infectivity studies with dimeric RNA transcripts followed by progeny analysis indicate that the major AFCVd variant in tomato emerged by selection of a minor variant present in the inoculum (i.e. hop) followed by one to two host-dependent de novo mutations. Comparison of the secondary structures of major variants in hop, tomato and persimmon after transfer to tomato suggested that maintenance of stem-loop structures in the left-hand half of the molecule is critical for infection.
Extreme Kinematics in Selected Hip Hop Dance Sequences.
Bronner, Shaw; Ojofeitimi, Sheyi; Woo, Helen
2015-09-01
Hip hop dance has many styles including breakdance (breaking), house, popping and locking, funk, streetdance, krumping, Memphis jookin', and voguing. These movements combine the complexity of dance choreography with the challenges of gymnastics and acrobatic movements. Despite high injury rates in hip hop dance, particularly in breakdance, to date there are no published biomechanical studies in this population. The purpose of this study was to compare representative hip hop steps found in breakdance (toprock and breaking) and house and provide descriptive statistics of the angular displacements that occurred in these sequences. Six expert female hip hop dancers performed three choreographed dance sequences, top rock, breaking, and house, to standardized music-based tempos. Hip, knee, and ankle kinematics were collected during sequences that were 18 to 30 sec long. Hip, knee, and ankle three-dimensional peak joint angles were compared in repeated measures ANOVAs with post hoc tests where appropriate (p<0.01). Peak angles of the breaking sequence, which included floorwork, exceeded the other two sequences in the majority of planes and joints. Hip hop maximal joint angles exceeded reported activities of daily living and high injury sports such as gymnastics. Hip hop dancers work at weight-bearing joint end ranges where muscles are at a functional disadvantage. These results may explain why lower extremity injury rates are high in this population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Xiaomeng; Guo, Yongquan
2016-01-15
The structures and optical and electric properties of europium doped CuIn{sub 1−x}Eu{sub x}Te{sub 2} have been studied systematically using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectrum (EDS), ultraviolet and visible spectrophotometer (UV–vis), and standard four-probe method. The studies reveal that the minor europium doping into CuIn{sub 1−x}Eu{sub x}Te{sub 2} could still stabilize the chalcopyrite structure in a solid solution of x=0.1. The lattice parameters are going up with increasing the content of europium in CuIn{sub 1−x}Eu{sub x}Te{sub 2} due to the size effect at In site. The structural refinement confirms that Eu partly substitutes formore » In and occupies the 4b crystal position. SEM morphologies show that the europium doping into CuIn{sub 1−x}Eu{sub x}Te{sub 2} can fine the grains from the largely agglomerated state to the uniformly separated state. The electrical resistivities of single phase CuIn{sub 1−x}Eu{sub x}Te{sub 2} follow a mixture model of hopping conductivity and variable range hopping conductivity. The absorption band-gaps of CuIn{sub 1−x}Eu{sub x}Te{sub 2} at room temperature tend to increase with increasing Eu content. CuIn{sub 1−x}Eu{sub x}Te{sub 2} might be a good candidate for photovoltaic cell. - Graphical abstract: CuIn{sub 0.9}Eu{sub 0.1}Te{sub 2} follows a mixture of hopping conductivity and variable range hopping conductivity mechanism. - Highlights: • Novel europium doped CuIn{sub 1−x}Eu{sub x}Te{sub 2}. • Potential application for devices and solar cells. • A mixture of hopping and variable range hopping conductivity mechanism.« less
Study of electrical and magnetic properties of RE doped layered cobaltite thin films
NASA Astrophysics Data System (ADS)
Bapna, K.; Choudhary, R. J.; Phase, D. M.; Rawat, R.; Ahuja, B. L.
2018-05-01
Thin films of layered perovskites Sr1.5RE0.5CoO4 (RE = La, Gd) were grown on MgO (0 0 1) substrate using pulsed laser ablation method. Structural, electrical and magnetic properties of single phase oriented films were studied. Films reveal semiconducting behavior in the entire measured temperature range. The films show thermally activated behavior at high temperature regime, with a higher value of activation energy for SGCO than that for SLCO. The low temperature behavior is well fitted with 3D-variable range hopping mechanism. Both films showed negative magneto-resistance measured in temperature range of 10-200 K. The value of MR is large for SGCO film as compared to its bulk counterpart as well as SLCO film, suggesting its high potential in the spintronics applications. A pinch-shaped M-H behaviour as observed in both the films, suggests the presence of two-magnetic phases. Occurrence of pinch-shape behaviour is although in line with that of SLCO bulk counterpart, interestingly, it was absent in SGCO polycrystalline powder. It suggests major role of film growth kinetics in modifying the magnetic properties in cobaltites.
Positive magnetoresistance in Fe3Se4 nanowires
NASA Astrophysics Data System (ADS)
Li, D.; Jiang, J. J.; Liu, W.; Zhang, Z. D.
2011-04-01
We report the magnetotransport properties of Fe3Se4 nanowire arrays in anodic aluminum oxide (AAO) porous membrane. The temperature dependence of resistance of Fe3Se4 nanowires at a zero field shows thermal activated behavior below 295 K. The exponential relationship in resistance is consistent with the model of strong localization with variable-range hopping (VRH) for a finite one-dimensional wire. Resistance versus magnetic field curves below 100 K show small positive magnetoresistance (MR). The field dependencies of log[R(H)/R(0)] explain the positive MR as the effect of magnetic field on the VRH conduction.
Okada, Jun; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi
2016-04-01
Carrier transport in solution-processed organic thin-film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8-BTBT) has been investigated in a wide temperature range from 296 to 10 K. The field-effect mobility shows thermally activated behavior whose activation energy becomes smaller with decreasing temperature. The temperature dependence of field-effect mobility found in C8-BTBT is similar to that of others materials: organic semiconducting polymers, amorphous oxide semiconductors and hydrogenated amorphous silicon. These results indicate that hopping transport between isoenergetic localized states becomes dominated in a low temperature regime in these materials.
Magnetoreresistance of carbon nanotube-polypyrrole composite yarns
NASA Astrophysics Data System (ADS)
Ghanbari, R.; Ghorbani, S. R.; Arabi, H.; Foroughi, J.
2018-05-01
Three types of samples, carbon nanotube yarn and carbon nanotube-polypyrrole composite yarns had been investigated by measurement of the electrical conductivity as a function of temperature and magnetic field. The conductivity was well explained by 3D Mott variable range hopping (VRH) law at T < 100 K. Both positive and negative magnetoresistance (MR) were observed by increasing magnetic field. The MR data were analyzed based a theoretical model. A quadratic positive and negative MR was observed for three samples. It was found that the localization length decreases with applied magnetic field while the density of states increases. The increasing of the density of states induces increasing the number of available energy states for hopping. Thus the electron hopping probability increases in between sites with the shorter distance that results to small the average hopping length.
Surface hopping simulation of vibrational predissociation of methanol dimer
NASA Astrophysics Data System (ADS)
Jiang, Ruomu; Sibert, Edwin L.
2012-06-01
The mixed quantum-classical surface hopping method is applied to the vibrational predissociation of methanol dimer, and the results are compared to more exact quantum calculations. Utilizing the vibrational SCF basis, the predissociation problem is cast into a curve crossing problem between dissociative and quasibound surfaces with different vibrational character. The varied features of the dissociative surfaces, arising from the large amplitude OH torsion, generate rich predissociation dynamics. The fewest switches surface hopping algorithm of Tully [J. Chem. Phys. 93, 1061 (1990), 10.1063/1.459170] is applied to both diabatic and adiabatic representations. The comparison affords new insight into the criterion for selecting the suitable representation. The adiabatic method's difficulty with low energy trajectories is highlighted. In the normal crossing case, the diabatic calculations yield good results, albeit showing its limitation in situations where tunneling is important. The quadratic scaling of the rates on coupling strength is confirmed. An interesting resonance behavior is identified and is dealt with using a simple decoherence scheme. For low lying dissociative surfaces that do not cross the quasibound surface, the diabatic method tends to overestimate the predissociation rate whereas the adiabatic method is qualitatively correct. Analysis reveals the major culprits involve Rabi-like oscillation, treatment of classically forbidden hops, and overcoherence. Improvements of the surface hopping results are achieved by adopting a few changes to the original surface hopping algorithms.
Hidden magnetism in periodically modulated one dimensional dipolar fermions
NASA Astrophysics Data System (ADS)
Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.
2017-12-01
The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.
DC electrical conductivity of Ag2O-TeO2-V2O5 glassy systems
NASA Astrophysics Data System (ADS)
Souri, D.; Tahan, Z. Esmaeili; Salehizadeh, S. A.
2016-04-01
In the present article, samples of xAg2O-40TeO2-(60 - x)V2O5 ternary tellurite glasses with 0 ≤ x ≤ 50 (in mol%) have been prepared using the melt-quenching technique. XRD analysis, density measurement by Archimedes' law, determination of reduced vanadium ions by titration method, and electrical conductivity measurement by using four-probe methods have been done for these glasses. The mixed electronic-ionic conduction of these glasses has been investigated over a wide temperature range of 150-380 K. The experimental results have been analyzed with different theoretical models of hopping conduction. The analysis shows that at high temperatures the conductivity data are consistent with Mott's model of phonon-assisted polaronic hopping, while Mott's variable-range hopping model and Greaves' hopping model are valid at low temperatures. The temperature dependence of the conductivity has been also interpreted in the framework of the percolation model proposed by Triberis and Friedman. The analysis of the conductivity data also indicates that the hopping in these tellurite glasses occurs in the non-adiabatic regime. In each sample, based upon the justified transport mechanism, carrier density and mobility have been determined at different temperatures. The values of oxygen molar volume indicate the effect of Ag2O concentration on the thermal stability or fragility of understudied samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.
The frequency noise spectrum of a magnetic tunnel junction (MTJ) based spin torque oscillator (STO) is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. Here, we find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layermore » is aligned away from the anti-parallel orientation w.r.t the reference layer. Lastly, these results indicate that the origin of 1/f frequency noise is related to mode-hopping which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.
The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned awaymore » from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less
Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.; ...
2014-09-29
The frequency noise spectrum of a magnetic tunnel junction (MTJ) based spin torque oscillator (STO) is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. Here, we find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layermore » is aligned away from the anti-parallel orientation w.r.t the reference layer. Lastly, these results indicate that the origin of 1/f frequency noise is related to mode-hopping which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less
Advanced teleprocessing systems
NASA Astrophysics Data System (ADS)
Kleinrock, L.; Gerla, M.
1983-03-01
This Semi-Annual Technical Report covers research covering the period from October 1, 1982 to March 31, 1983. This contract has three primary designated research areas: packet radio systems, resource sharing and allocation, and distributed processing and control. This report contains abstracts of publications which summarize research results in these areas followed by the main body of the report which is devoted to a treatment of single- and multi-hop packet radio systems. In particular, the main body consists of a Ph.D. dissertation, Analysis of Throughput and Delay for Single- and Multi-Hop Packet Radio Networks. The work presents a new approach to evaluating the performance of multi-hop packet radio networks, namely, a study of the times between successful transmissions. Also studied is the behavior of packets in a multi-hop system when a fixed transmission radius is specified and this radius is then optimized for throughput. A Markov chain model is also introduced and solved numerically to evaluate transmission and flow control strategies in these systems.
High-Speed Hopping: Time-Resolved Tomographic PIV Measurements of Water Flea Swimming
NASA Astrophysics Data System (ADS)
Murphy, D. W.; Webster, D. R.; Yen, J.
2012-11-01
Daphniids, also known as water fleas, are small, freshwater crustaceans that live in a low-to-intermediate Reynolds number regime. These plankters are equipped with a pair of branched, setae-bearing antennae that they beat to impulsively propel themselves, or ``hop,'' through the water. A typical hop carries the daphniid one body length forward and is followed by a period of sinking. We present time-resolved tomographic PIV measurements of swimming by Daphnia magna. The body kinematics and flow physics of the daphniid hop are quantified. It is shown that the flow generated by each stroking antenna resembles an asymmetric viscous vortex ring. It is proposed that the flow produced by the daphniid hop can be modeled as a double Stokeslet consisting of two impulsively applied point forces separated by the animal width. The flow physics are discussed in the context of other species operating in the same Reynolds number range of 10 to 100: sea butterfly swimming and flight by the smallest flying insects.
Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen
2015-07-01
Scaffold hopping and activity cliff formation define opposite ends of the activity landscape feature spectrum. To rationalize these events at the level of scaffolds, active compounds involved in scaffold hopping were required to contain topologically distinct scaffolds but have only limited differences in potency, whereas compounds involved in activity cliffs were required to share the same scaffold but have large differences in potency. A systematic search was carried out for compounds involved in scaffold hopping and/or activity cliff formation. Results obtained for compound data sets covering more than 300 human targets revealed clear trends. If scaffolds represented multiple but fewer than 10 active compounds, nearly 90% of all scaffolds were exclusively involved in hopping events. With increasing compound coverage, the fraction of scaffolds involved in both scaffold hopping and activity cliff formation significantly increased to more than 50%. However, ∼40% of the scaffolds representing large numbers of active compounds continued to be exclusively involved in scaffold hopping. More than 200 scaffolds with broad target coverage were identified that consistently represented potent compounds and yielded an abundance of scaffold hops in the low-nanomolar range. These and other subsets of scaffolds we characterized are of prime interest for structure-activity relationship (SAR) exploration and compound design. Therefore, the complete scaffold classification generated in the course of our analysis is made freely available. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Hip Hop peer crowd: An opportunity for intervention to reduce tobacco use among at-risk youth.
Walker, Matthew W; Navarro, Mario A; Hoffman, Leah; Wagner, Dana E; Stalgaitis, Carolyn A; Jordan, Jeffrey W
2018-07-01
Peer crowds, peer groups with macro-level connections and shared norms that transcend geography and race/ethnicity, have been linked to risky health behaviors. Research has demonstrated that Hip Hop peer crowd identification, which is common among multicultural youth, is associated with increased risk of tobacco use. To address this, the FDA Center for Tobacco Products created Fresh Empire, the first national tobacco education campaign tailored for Hip Hop youth aged 12-17 who are multicultural (Hispanic, African American, Asian-Pacific Islander, or Multiracial). As part of campaign development, peer crowd (Hip Hop, Mainstream, Popular, Alternative, Country) and cigarette smoking status were examined for the first time with a nationally recruited sample. Youth were recruited via targeted social media advertisements. Participants aged 13-17 (n = 5153) self-reported peer crowd identification via the I-Base Survey™ and cigarette smoking status. Differences in smoking status by peer crowd were examined using chi-square and followed up with z-tests to identify specific differences. Alternative youth were most at risk of cigarette smoking, followed by Hip Hop. Specifically, Hip Hop youth were significantly less likely to be Non-susceptible Non-triers than Popular, Mainstream, and Country youth, and more likely to be Experimenters than Popular and Mainstream youth. Representative studies show that Alternative is relatively small compared to other high-risk crowds, such as the Hip Hop peer crowd. The current research underscores the potential utility of interventions tailored to larger at-risk crowds for campaigns like Fresh Empire. Published by Elsevier Ltd.
Relaxation processes and conduction mechanism in bismuth ferrite lead titanate composites
NASA Astrophysics Data System (ADS)
Sahu, Truptimayee; Behera, Banarji
2018-02-01
In this study, samarium (Sm)-doped multiferroic composites of 0.8BiSmxFe1-xO3-0.2PbTiO3 where x = 0.05, 0.10, 0.15, and 0.20 were prepared via the conventional solid state reaction route. The electrical properties of these composites were analyzed using an impedance analyzer over a wide range of temperatures and frequencies (102-106 Hz). The impedance and modulus analyses confirmed the presence of both bulk and grain boundary effects in the materials. The temperature dependence of impedance and modulus spectrum indicated the negative temperature coefficient of resistance behavior. The dielectric relaxation exhibited non-Debye type behavior and it was temperature dependent. The relaxation time (τ) and DC conductivity followed an Arrhenius type behavior. The frequency-dependent AC conductivity obeyed Jonscher's power law. The correlated barrier hopping model was appropriate to understand the conduction mechanism in the composites considered.
Design, testing, and performance of a hybrid micro vehicle---The Hopping Rotochute
NASA Astrophysics Data System (ADS)
Beyer, Eric W.
The Hopping Rotochute is a new hybrid micro vehicle that has been developed to robustly explore environments with rough terrain while minimizing energy consumption over long periods of time. The device consists of a small coaxial rotor system housed inside a lightweight cage. The vehicle traverses an area by intermittently powering a small electric motor which drives the rotor system, allowing the vehicle to hop over obstacles of various shapes and sizes. A movable internal mass controls the direction of travel while the egg-like exterior shape and low mass center allows the vehicle to passively reorient itself to an upright attitude when in contact with the ground. This dissertation presents the design, fabrication, and testing of a radio-controlled Hopping Rotochute prototype as well as an analytical study of the flight performance of the device. The conceptual design iterations are first outlined which were driven by the mission and system requirements assigned to the vehicle. The aerodynamic, mechanical, and electrical design of a prototype is then described, based on the final conceptual design, with particular emphasis on the fundamental trades that must be negotiated for this type of hopping vehicle. The fabrication and testing of this prototype is detailed as well as experimental results obtained from a motion capture system. Basic flight performance of the prototype are reported which demonstrates that the Hopping Rotochute satisfies all appointed system requirements. A dynamic model of the Hopping Rotochute is also developed in this thesis and employed to predict the flight performance of the vehicle. The dynamic model includes aerodynamic loads from the body and rotor system as well as a soft contact model to estimate the forces and moments during ground contact. The experimental methods used to estimate the dynamic model parameters are described while comparisons between measured and simulated motion are presented. Good correlation between these motions is shown to validate the dynamic model. Using the validated dynamic model, simulations were performed to better understand the dynamics of the device. In addition, key parameters such as system weight, rotor speed, internal mass weight and location, as well as battery capacity are varied to explore and optimize flight performance characteristics such as single hop height and range, number of hops, and total achievable range. The sensitivity of the Hopping Rotochute to atmospheric winds is also investigated as is the ability of the device to perform trajectory shaping.
NASA Astrophysics Data System (ADS)
Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Dhaoui, Wadia; Belhadj Mohamed, Abdellatif
2007-08-01
We report the results of studies on two series of polyaniline (PANI), doped with dichloroacetic (DCA) and trichloroacetic (TCA) acids, respectively, at various doping rates and obtained by the in situ polymerization method. Samples were characterized by x-ray diffraction, scanning electron microscopy and conductivity measurements. The direct current (dc) and alternating current (ac) electrical conductivities of PANI salts have been investigated in the temperature range 100-310 K and frequency range 7-106 Hz. The results of this study indicate better chain ordering and higher conductivity for PANI doped with TCA. The dc conductivity of all samples is suitably fitted to Mott's three-dimensional variable-range hopping (VRH) model. Different Mott parameters such as characteristic temperature T0, density of states at the Fermi level (N(EF)), average hopping energy (W) and the average hopping distance (R) have been evaluated. The dependence of such values on the dopant acid used is discussed. At high frequencies, the ac conductivity follows the power law σac(ω,T) = A(T)ωs(T,ω), which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed increase in the frequency exponent s with temperature suggests that the small-polaron tunnelling model best describes the dominant ac conduction mechanism. A direct correlation between conductivity, structure and morphology was obtained in our systems.
Global Ill-Literacies: Hip Hop Cultures, Youth Identities, and the Politics of Literacy
ERIC Educational Resources Information Center
Alim, H. Samy
2011-01-01
This article focuses on the emergence of what the author refers to as "global ill-literacies," that is, the hybrid, transcultural linguistic and literacy practices of Hip Hop youth in local and global contexts, as well as the pedagogical possibilities that scholars open up as they engage these forms. By reviewing a broad but focused range of…
ERIC Educational Resources Information Center
Love, Bettina L.
2015-01-01
Hip-Hop-Based Education (HHBE) has resulted in many positive educational outcomes, ranging from teaching academic skills to teaching critical reflection at secondary levels. Given what HHBE initiatives have accomplished, it is troubling that there is an absence of attention to these methods in education programs for elementary and early childhood…
Steerable Hopping Six-Legged Robot
NASA Technical Reports Server (NTRS)
Younse, Paulo; Aghazarian, Hrand
2010-01-01
The figure depicts selected aspects of a six-legged robot that moves by hopping and that can be steered in the sense that it can be launched into a hop in a controllable direction. This is a prototype of hopping robots being developed for use in scientific exploration of rough terrain on remote planets that have surface gravitation less than that of Earth. Hopping robots could also be used on Earth, albeit at diminished hopping distances associated with the greater Earth gravitation. The upper end of each leg is connected through two universal joints to an upper and a lower hexagonal frame, such that the tilt of the leg depends on the relative position of the two frames. Two non-back-driveable worm-gear motor drives are used to control the relative position of the two frames along two axes 120 apart, thereby controlling the common tilt of all six legs and thereby, further, controlling the direction of hopping. Each leg includes an upper and a lower aluminum frame segment with a joint between them. A fiberglass spring, connected via hinges to both segments, is used to store hopping energy prior to launch into a hop and to cushion the landing at the end of the hop. A cable for loading the spring is run into each leg through the center of the universal joints and then down along the center lines of the segments to the lower end of the leg. A central spool actuated by a motor with a harmonic drive and an electromagnetic clutch winds in all six cables to compress all six springs (thereby also flexing all six legs) simultaneously. To ensure that all the legs push off and land in the same direction, timing- belt pulley drives are attached to the leg segments, restricting the flexing and extension of all six legs to a common linear motion. In preparation for a hop, the spool can be driven to load the spring legs by an amount corresponding to a desired hop distance within range. The amount of compression can be computed from the reading of a shaft-angle encoder that indicates the amount by which the spool has been turned. When the robot is ready to hop, the electromagnetic clutch disengages the motor from the spool, thus releasing the cable restraints on the springs and allowing the springs to extend all six legs simultaneously.
Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.
Augustsson, J; Thomeé, R; Lindén, C; Folkesson, M; Tranberg, R; Karlsson, J
2006-04-01
A fatiguing exercise protocol was combined with single-leg hop testing to improve the possibilities of evaluating the effects of training or rehabilitation interventions. In the first test-retest experiment, 11 healthy male subjects performed two trials of single-leg hops under three different test conditions: non-fatigued and following fatiguing exercise, which consisted of unilateral weight machine knee extensions at 80% and 50%, respectively, of 1 repetition maximum (1 RM) strength. Intraclass correlation coefficients ranged from 0.75 to 0.98 for different hop test conditions, indicating that all tests were reliable. For the second experiment, eight healthy male subjects performed the fatiguing exercise protocol to investigate how fatigue influences lower-extremity joint kinematics and kinetics during single-leg hops. Hip, knee and ankle joint angles, moments and powers, as well as ground-reaction forces were recorded with a six-camera, motion-capture system and a force platform. Recovery of hop performance following the fatiguing exercise was also measured. During the take-off for the single-leg hops, hip and knee flexion angles, generated powers for the knee and ankle joints, and ground-reaction forces decreased for the fatigued hop conditions compared with the non-fatigued condition (P<0.05). Compared with landing during the non-fatigued condition, hip moments and ground-reaction forces were lower for the fatigued hop conditions (P<0.05). The negative joint power was two to three times greater for the knee than for the hip and five to 10 times greater for the knee than for the ankle during landing for all test conditions (P<0.05). Most measured variables had recovered three minutes post-exercise. It is concluded that the fatiguing exercise protocol combined with single-leg hop testing was a reliable method for investigating functional performance under fatigued test conditions. Further, subjects utilized an adapted hop strategy, which employed less hip and knee flexion and generated powers for the knee and ankle joints during take-off, and less hip joint moments during landing under fatigued conditions. The large negative power values observed at the knee joint during the landing phase of the single-leg hop, during which the quadriceps muscle activates eccentrically, indicate that not only hop distance but also the ability to perform successful landings should be investigated when assessing dynamic knee function.
Detrending with Empirical Mode Decomposition (DEMD): Theory, Evaluation, and Application
NASA Astrophysics Data System (ADS)
Bolch, Michael Adam
Land-surface heterogeneity (LSH) at different scales has significant influence on atmospheric boundary layer (ABL) buoyant and shear turbulence generation and transfers of water, carbon and heat. The extent of proliferation of this influence into larger-scale circulations and atmospheric structures is a topic continually investigated in experimental and numerical studies, in many cases with the hopes of improving land-atmosphere parameterizations for modeling purposes. The blending height is a potential metric for the vertical propagation of LSH effects into the ABL, and has been the subject of study for several decades. Proper assessment of the efficacy of blending height theory invites the combination of observations throughout ABLs above different LSH scales with model simulations of the observed ABL and LSH conditions. The central goal of this project is to develop an apt and thoroughly scrutinized method for procuring ABL observations that are accurately detrended and justifiably relevant for such a study, referred to here as Detrending with Empirical Mode Decomposition (DEMD). The Duke University helicopter observation platform (HOP) provides ABL data [wind (u, v, and w), temperature ( T), moisture (q), and carbon dioxide (CO 2)] at a wide range of altitudes, especially in the lower ABL, where LSH effects are most prominent, and where other aircraft-based platforms cannot fly. Also, lower airspeeds translate to higher resolution of the scalars and fluxes needed to evaluate blending height theory. To confirm noninterference of the main rotor downwash with the HOP sensors, and also to identify optimal airspeeds, analytical, numerical, and observational studies are presented. Analytical analysis clears the main rotor downwash from the HOP nose at airspeeds above 10 m s-1. Numerical models find an acceptable range from 20-40 m s-1, due to a growing compressed air preceding the HOP nose. The first observational study finds no impact of different HOP airspeeds on measurements from ˜18 m s -1 to ˜55 m s-1 over a stable marine boundary layer (MBL). Another set of observations studies HOP and tower data, using the Duke University Mobile Micrometeorological Station (MMS) over an MBL, and concludes that HOP sensible heat (SH), latent heat (LE), and carbon dioxide (F CO2) fluxes align well with MMS findings. The HOP sensors provide ABL data at 40 Hz, as well as a real-time display of theta for in-flight ABL height estimation. Sensor calibration and alignment procedures indicate usable ABL measurements. HOP data are especially susceptible to the spurious influence of platform motion on ABL data, largely due to the low-altitude and low-airspeed capabilities of the HOP. For example, HOP altitude motion in the presence of a lapse rate can cause spurious T fluctuations. Empirical mode decomposition (EMD) can separate HOP data into a set of adaptive and unique intrinsic mode functions (IMFs), often with physical meaning. DEMD aims to correct for spurious contributions to HOP data, while merging EMD with a correlation analysis to adjust data without eliminating relevant ABL dynamics. To evaluate DEMD efficacy, two-dimensional synthetic T fields with simulated turbulence over a prescribed lapse rate are sampled with altitude fluctuations similar to HOP flights, and with a wide range of T perturbation and sampling path parameter variations. DEMD recovers the prescribed lapse rate within 1% on average for the 552 test cases passing the filtering criteria. The method is further evaluated via application to vertical cross sections taken from the Ocean-Land-Atmosphere Model (OLAM) large-eddy simulation (LES) results, where DEMD shows improved accuracy of SH recovery. DEMD is applied to three low-altitude HOP flight legs flown on 19 June 2007 during the Cloud and Land Surface Interaction Campaign (CLASIC), both as an example of practical application and to compare DEMD to the initially proposed method (Holder et al. 2011, hereafter H11). H11 dictates the elimination of correlated IMFs, along with other subtle differences from DEMD, which also eliminates any ABL motions embedded in those IMFs. As suspected, the H11 method produces marked reductions of variances and turbulence kinetic energy (TKE) and substantial deviations in SH, LE, and FCO2 compared to DEMD. DEMD detrends without unnecessary elimination. DEMD is vital for ensuring accurate scalars and fluxes from HOP data, and a strategy for future research is presented that integrates properly detrended observations from the CLASIC HOP dataset with OLAM simulations to explore LSH effects on ABL processes and evaluate blending height theory.
Ma, Wenbo; Dong, Frederick F. T; Stavrinides, John; Guttman, David S
2006-01-01
The concept of the coevolutionary arms race holds a central position in our understanding of pathogen–host interactions. Here we identify the molecular mechanisms and follow the stepwise progression of an arms race in a natural system. We show how the evolution and function of the HopZ family of type III secreted effector proteins carried by the plant pathogen Pseudomonas syringae are influenced by a coevolutionary arms race between pathogen and host. We surveyed 96 isolates of P. syringae and identified three homologs (HopZ1, HopZ2, and HopZ3) distributed among ∼45% of the strains. All alleles were sequenced and their expression was confirmed. Evolutionary analyses determined that the diverse HopZ1 homologs are ancestral to P. syringae, and have diverged via pathoadaptive mutational changes into three functional and two degenerate forms, while HopZ2 and HopZ3 have been brought into P. syringae via horizontal transfer from other ecologically similar bacteria. A PAML selection analysis revealed that the C terminus of HopZ1 is under strong positive selection. Despite the extensive genetic variation observed in this family, all three homologs have cysteine–protease activity, although their substrate specificity may vary. The introduction of the ancestral hopZ1 allele into strains harboring alternate alleles results in a resistance protein-mediated defense response in their respective hosts, which is not observed with the endogenous allele. These data indicate that the P. syringae HopZ family has undergone allelic diversification via both pathoadaptive mutational changes and horizontal transfer in response to selection imposed by the host defense system. This genetic diversity permits the pathogen to avoid host defenses while still maintaining a virulence-associated protease, thereby allowing it to thrive on its current host, while simultaneously impacting its host range. PMID:17194219
The crossover between tunnel and hopping conductivity in granulated films of noble metals
NASA Astrophysics Data System (ADS)
Kavokin, Alexey; Kutrovskaya, Stella; Kucherik, Alexey; Osipov, Anton; Vartanyan, Tigran; Arakelyan, Sergey
2017-11-01
The conductivity of thin films composed by clusters of gold and silver nanoparticles has been studies in a wide range of temperatures. The switch from a temperature independence to an exponential thermal dependence of the conductivity manifests the crossover between the tunnel and thermally activated hopping regimes of the electronic transport at the temperature of 60 °C. The characteristic thermal activation energy that governs hopping of electrons between nanoparticles is estimated as 1.3 eV. We have achieved a good control of the composition and thicknesses of nano-cluster films by use of the laser ablation method in colloidal solutions.
NASA Astrophysics Data System (ADS)
H, M. Zeyada; F, M. El-Taweel; M, M. El-Nahass; M, M. El-Shabaan
2016-07-01
The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile (Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile (Ch-HPQ) thin films were determined in the frequency range of 0.5 kHz-5 MHz and the temperature range of 290-443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping (CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.
Flythe, Michael D.; Kagan, Isabelle A.; Wang, Yuxi; Narvaez, Nelmy
2017-01-01
Antibiotics can improve ruminant growth and efficiency by altering rumen fermentation via selective inhibition of microorganisms. However, antibiotic use is increasingly restricted due to concerns about the spread of antibiotic-resistance. Plant-based antimicrobials are alternatives to antibiotics in animal production. The hops plant (Humulus lupulus L.) produces a range of bioactive secondary metabolites, including antimicrobial prenylated phloroglucinols, which are commonly called alpha- and beta-acids. These latter compounds can be considered phyto-ionophores, phytochemicals with a similar antimicrobial mechanism of action to ionophore antibiotics (e.g., monensin, lasalocid). Like ionophores, the hop beta-acids inhibit rumen bacteria possessing a classical Gram-positive cell envelope. This selective inhibition causes several effects on rumen fermentation that are beneficial to finishing cattle, such as decreased proteolysis, ammonia production, acetate: propionate ratio, and methane production. This article reviews the effects of hops and hop secondary metabolites on rumen fermentation, including the physiological mechanisms on specific rumen microorganisms, and consequences for the ruminant host and ruminant production. Further, we propose that hop beta-acids are useful model natural products for ruminants because of (1) the ionophore-like mechanism of action and spectrum of activity and (2) the literature available on the plant due to its use in brewing. PMID:28871284
Ahmadi, Sheida; Bowles, Richard K
2017-04-21
Particles confined to a single file, in a narrow quasi-one-dimensional channel, exhibit a dynamic crossover from single file diffusion to Fickian diffusion as the channel radius increases and the particles begin to pass each other. The long time diffusion coefficient for a system in the crossover regime can be described in terms of a hopping time, which measures the time it takes for a particle to escape the cage formed by its neighbours. In this paper, we develop a transition state theory approach to the calculation of the hopping time, using the small system isobaric-isothermal ensemble to rigorously account for the volume fluctuations associated with the size of the cage. We also describe a Monte Carlo simulation scheme that can be used to calculate the free energy barrier for particle hopping. The theory and simulation method correctly predict the hopping times for a two-dimensional confined ideal gas system and a system of confined hard discs over a range of channel radii, but the method breaks down for wide channels in the hard discs' case, underestimating the height of the hopping barrier due to the neglect of interactions between the small system and its surroundings.
A Study on Coexistence Capability Evaluations of the Enhanced Channel Hopping Mechanism in WBANs
Wei, Zhongcheng; Sun, Yongmei; Ji, Yuefeng
2017-01-01
As an important coexistence technology, channel hopping can reduce the interference among Wireless Body Area Networks (WBANs). However, it simultaneously brings some issues, such as energy waste, long latency and communication interruptions, etc. In this paper, we propose an enhanced channel hopping mechanism that allows multiple WBANs coexisted in the same channel. In order to evaluate the coexistence performance, some critical metrics are designed to reflect the possibility of channel conflict. Furthermore, by taking the queuing and non-queuing behaviors into consideration, we present a set of analysis approaches to evaluate the coexistence capability. On the one hand, we present both service-dependent and service-independent analysis models to estimate the number of coexisting WBANs. On the other hand, based on the uniform distribution assumption and the additive property of Possion-stream, we put forward two approximate methods to compute the number of occupied channels. Extensive simulation results demonstrate that our estimation approaches can provide an effective solution for coexistence capability estimation. Moreover, the enhanced channel hopping mechanism can significantly improve the coexistence capability and support a larger arrival rate of WBANs. PMID:28098818
NASA Astrophysics Data System (ADS)
Odeyemi, Kehinde O.; Owolawi, Pius A.; Srivastava, Viranjay M.
2017-11-01
Dual-hops transmission is a growing interest technique that can be used to mitigate against atmospheric turbulence along the Free Space Optical (FSO) communication links. This paper analyzes the performance of Decode-and-Forward (DF) dual-hops FSO systems in-conjunction with spatial modulation and diversity combiners over a Gamma-Gamma atmospheric turbulence channel using heterodyne detection. Maximum Ratio Combiner (MRC), Equal Gain Combiner (EGC) and Selection Combiner (SC) are considered at the relay and destination as mitigation tools to improve the system error performance. Power series expansion of modified Bessel function is used to derive the closed form expression for the end-to-end Average Pairwise Error Probability (APEP) expressions for each of the combiners under study and a tight upper bound on the Average Bit Error Rate (ABER) per hop is given. Thus, the overall end-to-end ABER for the dual-hops FSO system is then evaluated. The numerical results depicted that dual-hops transmission systems outperformed the direct link systems. Moreover, the impact of having the same and different combiners at the relay and destination are also presented. The results also confirm that the combination of dual hops transmission with spatial modulation and diversity combiner significantly improves the systems error rate with the MRC combiner offering an optimal performance with respect to variation in atmospheric turbulence, change in links average received SNR and link range of the system.
NASA Astrophysics Data System (ADS)
Otsuka, Hiromi
1998-06-01
We investigate two kinds of quantum phase transitions observed in the one-dimensional half-filled Peierls-Hubbard model with the next-nearest-neighbor hopping integral in the strong-coupling region U>>t, t' [t (t'), nearest- (next-nearest-) neighbor hopping; U, on-site Coulomb repulsion]. In the uniform case, with the help of the conformal field theory prediction, we numerically determine a phase boundary t'c(U/t) between the spin-fluid and the dimer states, where a bare coupling of the marginal operator vanishes and the low-energy and long-distance behaviors of the spin part are described by a free-boson model. To exhibit the conformal invariance of the systems on the phase boundary, a multiplet structure of the excitation spectrum of finite-size systems and a value of the central charge are also examined. The critical phenomenological aspect of the spin-Peierls transitions accompanied by the lattice dimerization is then argued for the systems on the phase boundary; the existence of logarithmic corrections to the power-law behaviors of the energy gain and the spin gap (i.e., the Cross-Fisher scaling law) are discussed.
Inhibitors of calling behavior of Plodia interpunctella.
Hirashima, Akinori; Shigeta, Yoko; Eiraku, Tomohiko; Kuwano, Eiichi
2003-01-01
Some octopamine agonists were found to suppress the calling behavior of the stored product Indian meal moth, Plodia interpunctella. Compounds were screened using a calling behavior bioassay using female P. interpunctella. Four active derivatives, with inhibitory activity at the nanomolar range, were identified in order of decreasing activity: 2-(1-phenylethylamino)-2-oxazoline > 2-(2-ethyl,6-methylanilino)oxazolidine > 2-(2-methyl benzylamino)-2-thiazoline > 2-(2,6-diethylanilino)thiazolidine. Three-dimensional pharmacophore hypotheses were built from a set of 15 compounds. Among the ten common-featured models generated by the program Catalyst/HipHop, a hypothesis including a hydrogen-bond acceptor lipid, a hydrophobic aromatic and two hydrophobic aliphatic features was considered to be essential for inhibitory activity in the calling behavior. Active compounds mapped well onto all the hydrogen-bond acceptor lipid, hydrophobic aromatic and hydrophobic aliphatic features of the hypothesis. On the other hand, less active compounds were shown not to achieve the energetically favorable conformation that is found in the active molecules in order to fit the 3D common-feature pharmacophore models. The present studies demonstrate that inhibition of calling behavior is via an octopamine receptor.
Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions
NASA Astrophysics Data System (ADS)
Zhang, Rui; Schweizer, Kenneth S.
2015-10-01
We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.
Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rui; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu
2015-10-14
We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratiomore » for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.« less
Gore, Shane J; Marshall, Brendan M; Franklyn-Miller, Andrew D; Falvey, Eanna C; Moran, Kieran A
2016-06-01
When reporting a subject's mean movement pattern, it is important to ensure that reported values are representative of the subject's typical movement. While previous studies have used the mean of 3 trials, scientific justification of this number is lacking. One approach is to determine statistically how many trials are required to achieve a representative mean. This study compared 4 methods of calculating the number of trials required in a hopping movement to achieve a representative mean. Fifteen males completed 15 trials of a lateral hurdle hop. Range of motion at the trunk, pelvis, hip, knee, and ankle, in addition to peak moments for the latter 3 joints were examined. The number of trials required was computed using a peak intraclass correlation coefficient method, sequential analysis with a bandwidth of acceptable variance in the mean, and a novel method based on the standard error of measurement (SEMind). The number of trials required across all variables ranged from 2 to 12 depending on method, joint, and anatomical plane. The authors advocate the SEMind method as it demonstrated fewer limitations than the other methods. Using the SEMind, the required number of trials for a representative mean during the lateral hurdle hop is 6.
NASA Astrophysics Data System (ADS)
Shi, Guang; Wang, Wen; Zhang, Fumin
2018-03-01
The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.
Kea, J; Kramer, J; Forwell, L; Birmingham, T
2001-08-01
Single group, test-retest. To determine: (1) hip abduction and adduction torques during concentric and eccentric muscle actions, (2) medial and lateral one-leg hop distances, (3) the test-retest reliability of these measurements, and (4) the relationship between isokinetic measures of hip muscle strength and hop distances in elite ice hockey players. The skating motion used in ice hockey requires strong contractions of the hip and knee musculature. However, baseline scores for hip strength and hop distances, their test-retest reliability, and measures of the extent to which these tests are related for this population are not available. The dominant leg of 27 men (mean age 20 +/- 3 yrs) was tested on 2 occasions. Hip abduction and adduction movements were completed at 60 degrees.s(-1) angular velocity, with the subject lying on the non-test side and the test leg moving vertically in the subject's coronal plane. One-leg hops requiring jumping from and landing on the same leg without losing balance were completed in the medial and lateral directions. Hip adduction torques were significantly greater than abduction torques during both concentric and eccentric muscle actions, while no significant difference was observed between medial and lateral hop distances. Although hop test scores produced excellent ICCs (> 0.75) when determined using scores on 1 occasion, torques needed to be averaged over 2 test occasions to reach this level. Correlations between the strength and hop tests ranged from slight to low (r = -0.26 to 0.27) and were characterized by wide 95% confidence intervals (-0.54 to 0.61). Isokinetic tests of hip abduction and adduction did not provide a strong indication of performance during sideways hop tests. Although isokinetic tests can provide a measure of muscular strength under specific test conditions, they should not be relied upon as a primary indicator of functional abilities or readiness to return to activity.
Basin Hopping Graph: a computational framework to characterize RNA folding landscapes
Kucharík, Marcel; Hofacker, Ivo L.; Stadler, Peter F.; Qin, Jing
2014-01-01
Motivation: RNA folding is a complicated kinetic process. The minimum free energy structure provides only a static view of the most stable conformational state of the system. It is insufficient to give detailed insights into the dynamic behavior of RNAs. A sufficiently sophisticated analysis of the folding free energy landscape, however, can provide the relevant information. Results: We introduce the Basin Hopping Graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect basins when the direct transitions between them are ‘energetically favorable’. Edge weights endcode the corresponding saddle heights and thus measure the difficulties of these favorable transitions. BHGs can be approximated accurately and efficiently for RNA molecules well beyond the length range accessible to enumerative algorithms. Availability and implementation: The algorithms described here are implemented in C++ as standalone programs. Its source code and supplemental material can be freely downloaded from http://www.tbi.univie.ac.at/bhg.html. Contact: qin@bioinf.uni-leipzig.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24648041
Jamming and condensation in one-dimensional driven flow
NASA Astrophysics Data System (ADS)
Soh, Hyungjoon; Ha, Meesoon; Jeong, Hawoong
2018-03-01
We revisit the slow-bond (SB) problem of the one-dimensional (1D) totally asymmetric simple exclusion process (TASEP) with modified hopping rates. In the original SB problem, it turns out that a local defect is always relevant to the system as jamming, so that phase separation occurs in the 1D TASEP. However, crossover scaling behaviors are also observed as finite-size effects. In order to check if the SB can be irrelevant to the system with particle interaction, we employ the condensation concept in the zero-range process. The hopping rate in the modified TASEP depends on the interaction parameter and the distance up to the nearest particle in the moving direction, besides the SB factor. In particular, we focus on the interplay of jamming and condensation in the current-density relation of 1D driven flow. Based on mean-field calculations, we present the fundamental diagram and the phase diagram of the modified SB problem, which are numerically checked. Finally, we discuss how the condensation of holes suppresses the jamming of particles and vice versa, where the partially condensed phase is the most interesting, compared to that in the original SB problem.
Jamming and condensation in one-dimensional driven flow.
Soh, Hyungjoon; Ha, Meesoon; Jeong, Hawoong
2018-03-01
We revisit the slow-bond (SB) problem of the one-dimensional (1D) totally asymmetric simple exclusion process (TASEP) with modified hopping rates. In the original SB problem, it turns out that a local defect is always relevant to the system as jamming, so that phase separation occurs in the 1D TASEP. However, crossover scaling behaviors are also observed as finite-size effects. In order to check if the SB can be irrelevant to the system with particle interaction, we employ the condensation concept in the zero-range process. The hopping rate in the modified TASEP depends on the interaction parameter and the distance up to the nearest particle in the moving direction, besides the SB factor. In particular, we focus on the interplay of jamming and condensation in the current-density relation of 1D driven flow. Based on mean-field calculations, we present the fundamental diagram and the phase diagram of the modified SB problem, which are numerically checked. Finally, we discuss how the condensation of holes suppresses the jamming of particles and vice versa, where the partially condensed phase is the most interesting, compared to that in the original SB problem.
Millimeter Wave Alternate Route Study.
1981-04-01
processing gains are based upon the assumption that the jammer equally distributes his available power over all the hopping frequencies. If this is true...Examples Assumptions 0 25 GHz hopping range (e.g., 20 GHz to 45 GHz) 0 10 ms settling time * 0.1 second dwell time - implies 11% increase in channel data...of the architectures presented previously. The assumption that each link has equal probability p of being disrupted (i.e., successfully jammed) seems
Analysis of Electrical Transport and Noise Mechanisms in Amorphous Silicon
2015-11-23
and Skhlovskii [9] considered the long range Coulomb interaction and found that it reduces the DOS to zero at the Fermi level, thereby creating a so...called “ Coulomb gap (CG)” at low enough temperatures. This form of hopping conductivity results when an electron migrates from one site to another...site leaving a positively charged vacancy. For hopping to occur, the electron must have sufficient energy to overcome this Coulomb interaction
Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2.
Dong, Wen; Hu, Wanbiao; Berlie, Adam; Lau, Kenny; Chen, Hua; Withers, Ray L; Liu, Yun
2015-11-18
Stimulated by the excellent colossal permittivity (CP) behavior achieved in In+Nb co-doped rutile TiO2, in this work we investigate the CP behavior of Ga and Nb co-doped rutile TiO2, i.e., (Ga(0.5)Nb(0.5))(x)Ti(1-x)O2, where Ga(3+) is from the same group as In(3+) but with a much smaller ionic radius. Colossal permittivity of up to 10(4)-10(5) with an acceptably low dielectric loss (tan δ = 0.05-0.1) over broad frequency/temperature ranges is obtained at x = 0.5% after systematic synthesis optimizations. Systematic structural, defect, and dielectric characterizations suggest that multiple polarization mechanisms exist in this system: defect dipoles at low temperature (∼10-40 K), polaronlike electron hopping/transport at higher temperatures, and a surface barrier layer capacitor effect. Together these mechanisms contribute to the overall dielectric properties, especially apparent observed CP. We believe that this work provides comprehensive guidance for the design of new CP materials.
Single mode wavelength control of modulated AlGaAs lasers with external and internal etalon feedback
NASA Technical Reports Server (NTRS)
Maynard, William L.
1989-01-01
Single mode lasing without mode hops has been obtained for VSIS and CSP laser diodes with an external etalon attached to the laser's front facet for up to an 8 C range CW and a 4 C range pulsed, with .07 nm/C tuning. Tests of thin tapered-thickness (TTT) laser diodes show CW and pulsed single mode lasing over 10 C and 2 C ranges, respectively, with .08 nm/C tuning. An analysis of the TTT structure reveals the equivalent of an internal etalon. The time-resolved pulsed behavior for both types of lasers show single mode lasing within the proper temperature ranges with minor modes present only early in the optical pulse, if at all. The external etalon produces noticeable interference fringes in the farfield pattern, while those of the TTT lasers are smooth. Ongoing CW lifetest results indicate stability to within one longitudinal mode after a few hundred hours of operation, along with at least several thousand hours lifetime.
El-Ghamaz, N A; Diab, M A; El-Sonbati, A Z; Salem, O L
2011-12-01
Supramolecular coordination of dioxouranium(VI) heterochelates 5-sulphono-7-(4'-X phenylazo)-8-hydroxyquinoline HL(n) (n=1, X=CH(3); n=2, X=H; n=3, X=Cl; n=4, X=NO(2)) have been prepared and characterized with various physico-chemical techniques. The infrared spectral studies showed a monobasic bidentate behavior with the oxygen and azonitrogen donor system. The temperature dependence of the D.C. electrical conductivity of HL(n) ligands and their uranyl complexes has been studied in the temperature range 305-415 K. The thermal activation energies E(a) for HL(n) compounds were found to be in the range 0.44-0.9 eV depending on the nature of the substituent X. The complexation process decreased E(a) values to the range 0.043-045 eV. The electrical conduction mechanism has been investigated for all samples under investigation. It was found to obey the variable range hopping mechanism (VRH). Copyright © 2011 Elsevier B.V. All rights reserved.
Study of hopping type conduction from AC conductivity in multiferroic composite
NASA Astrophysics Data System (ADS)
Pandey, Rabichandra; Guha, Shampa; Pradhan, Lagen Kumar; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan
2018-05-01
0.5BiFe0.80Ti0.20O3-0.5Co0.5Ni0.5Fe2O4(BFTO-CNFO) multiferroic composite was prepared by planetary ball mill method. X-ray diffraction analysis confirms the formation of the compound with the simultaneous presence of spinel Co0.5Ni0.5Fe2O4 (CNFO) and perovskite BiFe0.80Ti0.20O3 (BFTO) phase. Temperature dependent dielectric permittivity and loss tangent were studied with a frequency range of 100Hz to 1MHz. AC conductivity study was performed to analyze the electrical conduction behaviour in the composite. Johnscher's power law was employed to the AC conductivity data to understand the hopping of localized charge carrier in the compound. The binding energy, minimum hopping distance and density of states of the charge carriers in the composite were evaluated from the AC conductivity data. Minimum hopping distance is found to be in order of Angstrom (Å).
Mobile bound states of Rydberg excitations in a lattice
NASA Astrophysics Data System (ADS)
Letscher, Fabian; Petrosyan, David
2018-04-01
Spin-lattice models play a central role in the studies of quantum magnetism and nonequilibrium dynamics of spin excitations—-magnons. We show that a spin lattice with strong nearest-neighbor interactions and tunable long-range hopping of excitations can be realized by a regular array of laser-driven atoms, with an excited Rydberg state representing the spin-up state and a Rydberg-dressed ground state corresponding to the spin-down state. We find exotic interaction-bound states of magnons that propagate in the lattice via the combination of resonant two-site hopping and nonresonant second-order hopping processes. Arrays of trapped Rydberg-dressed atoms can thus serve as a flexible platform to simulate and study fundamental few-body dynamics in spin lattices.
Origin of strong dispersion in Hubbard insulators
Wang, Y.; Wohlfeld, K.; Moritz, B.; ...
2015-08-10
Using cluster perturbation theory, we explain the origin of the strongly dispersive feature found at high binding energy in the spectral function of the Hubbard model. By comparing the Hubbard and $t₋J₋3s$ model spectra, we show that this dispersion does not originate from either coupling to spin fluctuations ($∝ J$ ) or the free hopping ($∝ t$ ). Instead, it should be attributed to a long-range, correlated hopping $∝ t²/U$ which allows an effectively free motion of the hole within the same antiferromagnetic sublattice. This origin explains both the formation of the high-energy anomaly in the single-particle spectrum and themore » sensitivity of the high-binding-energy dispersion to the next-nearest-neighbor hopping $t'$ .« less
NASA Astrophysics Data System (ADS)
Kim, Jong Beom; Lee, Dong Ryeol
2018-04-01
We studied the effect of the addition of free hole- and electron-rich organic molecules to organic semiconductors (OSCs) in organic field effect transistors (OFETs) on the gate voltage-dependent mobility. The drain current versus gate voltage characteristics were quantitatively analyzed using an OFET mobility model of power law behavior based on hopping transport in an OSC. This analysis distinguished the threshold voltage shifts, depending on the materials and structures of the OFET device, and properly estimated the hopping transport of the charge carriers induced by the gate bias within the OSC from the power law exponent parameter. The addition of pentacene or C60 molecules to a one-monolayer pentacene-based OFET shifted the threshold voltages negatively or positively, respectively, due to the structural changes that occurred in the OFET device. On the other hand, the power law parameters revealed that the addition of charge carriers of the same or opposite polarity enhanced or hindered hopping transport, respectively. This study revealed the need for a quantitative analysis of the gate voltage-dependent mobility while distinguishing this effect from the threshold voltage effect in order to understand OSC hopping transport in OFETs.
Coulomb gap: how a metal film becomes an insulator
Butko; DiTusa; Adams
2000-02-14
Electron tunneling measurements of the density of states (DOS) in ultrathin Be films reveal that a correlation gap mediates their insulating behavior. In films with sheet resistance R<5000 Omega the correlation singularity appears as the usual perturbative ln(V) zero bias anomaly (ZBA) in the DOS. As R is increased further, however, the ZBA grows and begins to dominate the DOS spectrum. This evolution continues until a nonperturbative |V| Efros-Shklovskii Coulomb gap spectrum finally emerges in the highest R films. Transport measurements of films which display this gap are well described by a universal variable range hopping law R(T) = (h/2e(2))exp(T0/T)(1/2).
Magnetic hard gap due to bound magnetic polarons in the localized regime.
Rimal, Gaurab; Tang, Jinke
2017-02-08
We investigate the low temperature electron transport properties of manganese doped lead sulfide films. The system shows variable range hopping at low temperatures that crosses over into an activation regime at even lower temperatures. This crossover is destroyed by an applied magnetic field which suggests a magnetic origin of the hard gap, associated with bound magnetic polarons. Even though the gap forms around the superconducting transition temperature of lead, we do not find evidence of this being due to insulator-superconductor transition. Comparison with undoped PbS films, which do not show the activated transport behavior, suggests that bound magnetic polarons create the hard gap in the system that can be closed by magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qinyi; Guest, Jeffrey R.; Thimsen, Elijah
2017-07-12
The transport of electrons through assemblies of nanocrystals is important to performance in optoelectronic applications for these materials. Previous work has primarily focused on single nanocrystals or transitions between pairs of nanocrystals. There is a gap in knowledge of how large numbers of nanocrystals in an assembly behave collectively, and how this collective behavior manifests at the mesoscale. In this work, the variable range hopping (VRH) transport of electrons in disordered assemblies of touching, heavily doped ZnO nanocrystals was visualized at the mesoscale as a function of temperature both theoretically, using the model of Skinner, Chen and Shklovskii (SCS), andmore » experimentally, with conductive atomic force microscopy on ultrathin films only a few particle layers thick. Agreement was obtained between the model and experiments, with a few notable exceptions. The SCS model predicts that a single network within the nanocrystal assembly, comprised of sites connected by small resistances, dominates conduction - namely the optimum band from variable range hopping theory. However, our experiments revealed that in addition to the optimum band, there are subnetworks that appear as additional peaks in the resistance histogram of conductive atomic force microscopy (CAFM) maps. Furthermore, the connections of these subnetworks to the optimum band change in time, such that some subnetworks become connected to the optimum band while others become disconnected and isolated from the optimum band; this observation appears to be an experimental manifestation of the ‘blinking’ phenomenon in our images of mesoscale transport.« less
Rap Music Genres and Deviant Behaviors in French-Canadian Adolescents
ERIC Educational Resources Information Center
Miranda, Dave; Claes, Michel
2004-01-01
This study investigated the links between the preference for 4 rap music genres (American rap, French rap, hip hop/soul, and gangsta/hardcore rap) and 5 types of deviant behaviors in adolescence (violence, theft, street gangs, mild drug use, and hard drug use). The effects of peers' deviancy, violent media, and importance given to lyrics were…
Charge carrier transport mechanisms in perovskite CdTiO{sub 3} fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imran, Z.; Rafiq, M. A., E-mail: aftab@cantab.net; Hasan, M. M.
Electrical transport properties of electrospun cadmium titanate (CdTiO{sub 3}) fibers have been investigated using ac and dc measurements. Air annealing of as spun fibers at 1000 °C yielded the single phase perovskite fibers having diameter ∼600 nm - 800 nm. Both the ac and dc electrical measurements were carried out at temperatures from 200 K – 420 K. The complex impedance plane plots revealed a single semicircular arc which indicates the interfacial effect due to grain boundaries of fibers. The dielectric properties obey the Maxwell-Wagner theory of interfacial polarization. In dc transport study at low voltages, data show Ohmic like behaviormore » followed by space charge limited current (SCLC) with traps at higher voltages at all temperatures (200 K – 420 K). Trap density in our fibers system is N{sub t} = 6.27 × 10{sup 17} /cm{sup 3}. Conduction mechanism in the sample is governed by 3-D variable range hopping (VRH) from 200 K – 300 K. The localized density of states were found to be N(E{sub F}) = 5.51 × 10{sup 21} eV{sup −1} cm{sup −3} at 2 V. Other VRH parameters such as hopping distance (R{sub hop}) and hopping energy (W{sub hop}) were also calculated. In the high temperature range of 320 K – 420 K, conductivity follows the Arrhenius law. The activation energy found at 2 V is 0.10 eV. Temperature dependent and higher values of dielectric constant make the perovskite CdTiO{sub 3} fibers efficient material for capacitive energy storage devices.« less
Electron and thermal transport via variable range hopping in MoSe2 single crystals
NASA Astrophysics Data System (ADS)
Suri, Dhavala; Patel, R. S.
2017-06-01
Bulk single crystal molybdenum diselenide has been studied for its electronic and thermal transport properties. We perform resistivity measurements with current in-plane (CIP) and current perpendicular to plane (CPP) as a function of temperature. The CIP measurements exhibit metal to semiconductor transition at ≃31 K. In the semiconducting phase (T > 31 K), the transport is best explained by the variable range hopping (VRH) model. Large magnitude of resistivity in the CPP mode indicates strong structural anisotropy. The Seebeck coefficient as a function of temperature measured in the range of 90-300 K also agrees well with the VRH model. The room temperature Seebeck coefficient is found to be 139 μV/K. VRH fittings of the resistivity and the Seebeck coefficient data indicate high degree of localization.
Hurd, Wendy J.; Axe, Michael J.; Snyder-Mackler, Lynn
2010-01-01
Objectives To clarify the determinants of dynamic knee stability early after anterior cruciate ligament (ACL) injury. Materials and Methods 345 consecutive patients who were regular participants in IKDC level I/II sports before injury and had an acute isolated ACL injury from the practice of a single orthopaedic surgeon underwent a screening examination including clinical measures, knee laxity, quadriceps strength, hop testing, and patient self-reported knee function an average of 6 weeks after injury when impairments were resolved. Independent t-tests were performed to evaluate differences in quadriceps strength and anterior knee laxity between potential copers and noncopers. Hierarchical regression was performed to determine the influence of quadriceps strength, pre-injury activity level, and anterior knee laxity on hop test performance, as well as the influence of timed hop, cross-over hop, quadriceps strength, pre-injury activity level, and anterior knee laxity on self-assessed global function. Results Neither anterior knee laxity nor quadriceps strength differed between potential copers and non-copers. Quadriceps strength influenced hop test performance more significantly than pre-injury activity level or anterior knee laxity, but the variance accounted for by quadriceps strength was low (Range: 4-8%). Timed hop performance was the only variable that impacted self-assessed global function. Conclusions Traditional surgical decision making based on passive anterior knee laxity and pre-injury activity level is not supported by the results, as neither are good predictors of dynamic knee stability. Clinical tests that capture neuromuscular adaptations, including the timed hop test, may be useful in predicting function and guiding individualized patient management after ACL injury. PMID:17932399
Stannard, Hayley J; Tulk, Melissa L; Bortolazzo, Melissa J; Old, Julie M
2018-06-01
Spinifex hopping-mice (Notomys alexis) and plains mice (Pseudomys australis) are able to successfully occupy arid zones of Australia. We studied the digestive parameters and energy assimilation of captive spinifex hopping-mice and plains mice. The experiment consisted of six diets fed to the animals for periods of 12days per food type. On a dry matter basis, the plains mice consumed between 2.5 and 7.2% and the hopping-mice between 5.8 and 9.3% of their body mass in food per day. The body mass of the spinifex hopping-mice increased significantly on the sunflower seed diet, while body mass did not change significantly for the plains mice on any diet. Apparent digestibility of macronutrients was similar in the hopping-mice and plains mice when maintained on the same diet, however digestibility of total micronutrients differed. Maintenance energy requirements for the plains mice were 529kJkg -0.75 d -1 and spinifex hopping-mice 550kJkg -0.75 d -1 . Spinifex hopping-mice and plains mice are able to exploit a range of food items and efficiently digest macronutrients, to ensure they meet their nutritional needs, an ability they require in the variable arid environment. The information gained in this study increases the paucity of information on Australian native murids, specifically their digestive function and energy requirements, and will aid captive murid management. The study will allow future expansion into field studies, to aid the conservation of wild rodent diets and nutrition of arid zone murids. Copyright © 2018 Elsevier GmbH. All rights reserved.
The energy landscape of glassy dynamics on the amorphous hafnium diboride surface
NASA Astrophysics Data System (ADS)
Nguyen, Duc; Mallek, Justin; Cloud, Andrew N.; Abelson, John R.; Girolami, Gregory S.; Lyding, Joseph; Gruebele, Martin
2014-11-01
Direct visualization of the dynamics of structural glasses and amorphous solids on the sub-nanometer scale provides rich information unavailable from bulk or conventional single molecule techniques. We study the surface of hafnium diboride, a conductive ultrahigh temperature ceramic material that can be grown in amorphous films. Our scanning tunneling movies have a second-to-hour dynamic range and single-point current measurements extend that to the millisecond-to-minute time scale. On the a-HfB2 glass surface, two-state hopping of 1-2 nm diameter cooperatively rearranging regions or "clusters" occurs from sub-milliseconds to hours. We characterize individual clusters in detail through high-resolution (<0.5 nm) imaging, scanning tunneling spectroscopy and voltage modulation, ruling out individual atoms, diffusing adsorbates, or pinned charges as the origin of the observed two-state hopping. Smaller clusters are more likely to hop, larger ones are more likely to be immobile. HfB2 has a very high bulk glass transition temperature Tg, and we observe no three-state hopping or sequential two-state hopping previously seen on lower Tg glass surfaces. The electronic density of states of clusters does not change when they hop up or down, allowing us to calibrate an accurate relative z-axis scale. By directly measuring and histogramming single cluster vertical displacements, we can reconstruct the local free energy landscape of individual clusters, complete with activation barrier height, a reaction coordinate in nanometers, and the shape of the free energy landscape basins between which hopping occurs. The experimental images are consistent with the compact shape of α-relaxors predicted by random first order transition theory, whereas the rapid hopping rate, even taking less confined motion at the surface into account, is consistent with β-relaxations. We make a proposal of how "mixed" features can show up in surface dynamics of glasses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Duc; Girolami, Gregory S.; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Direct visualization of the dynamics of structural glasses and amorphous solids on the sub-nanometer scale provides rich information unavailable from bulk or conventional single molecule techniques. We study the surface of hafnium diboride, a conductive ultrahigh temperature ceramic material that can be grown in amorphous films. Our scanning tunneling movies have a second-to-hour dynamic range and single-point current measurements extend that to the millisecond-to-minute time scale. On the a-HfB{sub 2} glass surface, two-state hopping of 1–2 nm diameter cooperatively rearranging regions or “clusters” occurs from sub-milliseconds to hours. We characterize individual clusters in detail through high-resolution (<0.5 nm) imaging, scanning tunnelingmore » spectroscopy and voltage modulation, ruling out individual atoms, diffusing adsorbates, or pinned charges as the origin of the observed two-state hopping. Smaller clusters are more likely to hop, larger ones are more likely to be immobile. HfB{sub 2} has a very high bulk glass transition temperature T{sub g}, and we observe no three-state hopping or sequential two-state hopping previously seen on lower T{sub g} glass surfaces. The electronic density of states of clusters does not change when they hop up or down, allowing us to calibrate an accurate relative z-axis scale. By directly measuring and histogramming single cluster vertical displacements, we can reconstruct the local free energy landscape of individual clusters, complete with activation barrier height, a reaction coordinate in nanometers, and the shape of the free energy landscape basins between which hopping occurs. The experimental images are consistent with the compact shape of α-relaxors predicted by random first order transition theory, whereas the rapid hopping rate, even taking less confined motion at the surface into account, is consistent with β-relaxations. We make a proposal of how “mixed” features can show up in surface dynamics of glasses.« less
Allen, Benjamin L; Fawcett, Alana; Anker, Alison; Engeman, Richard M; Lisle, Allan; Leung, Luke K-P
2018-01-01
Climate (drought, rainfall), geology (habitat availability), land use change (provision of artificial waterpoints, introduction of livestock), invasive species (competition, predation), and direct human intervention (lethal control of top-predators) have each been identified as processes driving the sustainability of threatened fauna populations. We used a systematic combination of empirical observational studies and experimental manipulations to comprehensively evaluate the effects of these process on a model endangered rodent, dusky hopping-mice (Notomys fuscus). We established a large manipulative experiment in arid Australia, and collected information from relative abundance indices, camera traps, GPS-collared dingoes (Canis familiaris) and dingo scats, along with a range of related environmental data (e.g. rainfall, habitat type, distance to artificial water etc.). We show that hopping-mice populations were most strongly influenced by geological and climatic effects of resource availability and rainfall, and not land use, invasive species, or human effects of livestock grazing, waterpoint provision, or the lethal control of dingoes. Hopping-mice distribution declined along a geological gradient of more to less available hopping-mice habitat (sand dunes), and their abundance was driven by rainfall. Hopping-mice populations fluctuated independent of livestock presence, artificial waterpoint availability or repeated lethal dingo control. Hopping-mice populations appear to be limited first by habitat availability, then by food availability, then by predation. Contemporary top-predator control practices (for protection of livestock) have little influence on hopping-mice behaviour or population dynamics. Given our inability to constrain the effects of predation across broad scales, management actions focusing on increasing available food and habitat (e.g. alteration of fire and herbivory) may have a greater chance of improving the conservation status of hopping-mice and other small mammals in arid areas. Our study also reaffirms the importance of using systematic and experimental approaches to detect true drivers of population distribution and dynamics where multiple potential drivers operate simultaneously. Copyright © 2017 Elsevier B.V. All rights reserved.
Maietti, Annalisa; Brighenti, Virginia; Bonetti, Gianpiero; Tedeschi, Paola; Prencipe, Francesco Pio; Benvenuti, Stefania; Brandolini, Vincenzo; Pellati, Federica
2017-08-05
Humulus lupulus L., commonly named hop, is well-known for its sedative and estrogenic activity. While hop cones are widely characterized, only few works have been carried out on the young shoots of this plant. In the light of this, the aim of this study was to identify for the first time the flavonoids present in young hop shoots and to compare the composition of samples harvested from different locations in Northern Italy with their antioxidant activity. The samples were extracted by means of dynamic maceration with methanol. The HPLC-UV/DAD, HPLC-ESI-MS and MS 2 analysis were carried out by using an Ascentis C 18 column (250×4.6mm I.D., 5μm), with a mobile phase composed of 0.1M formic acid in both water and acetonitrile, under gradient elution. Quercetin and kaempferol glycosides were the main compounds identified and quantified in hop shoot extracts. Total flavonols ranged from 2698±185 to 517±48μg/g (fresh weight). The antioxidant activity was determined by means of the radical scavenging activity assay against diphenylpicrylhydrazyl (DPPH) and by using a photochemiluscence assay with a Photochem ® apparatus. The results showed that hop shoots represent a new source of flavonols; therefore, they can be useful for a possible incorporation in the diet as a functional food or applied in the nutraceutical ambit. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Jia; Zhao, Chao; Liu, Na; Zhang, Huanxi; Liu, Jingjing; Fu, Yong Qing; Guo, Bin; Wang, Zhenlong; Lei, Shengbin; Hu, PingAn
2016-06-21
Single-layer and mono-component doped graphene is a crucial platform for a better understanding of the relationship between its intrinsic electronic properties and atomic bonding configurations. Large-scale doped graphene films dominated with graphitic nitrogen (GG) or pyrrolic nitrogen (PG) were synthesized on Cu foils via a free radical reaction at growth temperatures of 230-300 °C and 400-600 °C, respectively. The bonding configurations of N atoms in the graphene lattices were controlled through reaction temperature, and characterized using Raman spectroscopy, X-ray photoelectron spectroscopy and scanning tunneling microscope. The GG exhibited a strong n-type doping behavior, whereas the PG showed a weak n-type doping behavior. Electron mobilities of the GG and PG were in the range of 80.1-340 cm(2) V(-1)·s(-1) and 59.3-160.6 cm(2) V(-1)·s(-1), respectively. The enhanced doping effect caused by graphitic nitrogen in the GG produced an asymmetry electron-hole transport characteristic, indicating that the long-range scattering (ionized impurities) plays an important role in determining the carrier transport behavior. Analysis of temperature dependent conductance showed that the carrier transport mechanism in the GG was thermal excitation, whereas that in the PG, was a combination of thermal excitation and variable range hopping.
Zhang, Jia; Zhao, Chao; Liu, Na; Zhang, Huanxi; Liu, Jingjing; Fu, Yong Qing; Guo, Bin; Wang, Zhenlong; Lei, Shengbin; Hu, PingAn
2016-01-01
Single–layer and mono–component doped graphene is a crucial platform for a better understanding of the relationship between its intrinsic electronic properties and atomic bonding configurations. Large–scale doped graphene films dominated with graphitic nitrogen (GG) or pyrrolic nitrogen (PG) were synthesized on Cu foils via a free radical reaction at growth temperatures of 230–300 °C and 400–600 °C, respectively. The bonding configurations of N atoms in the graphene lattices were controlled through reaction temperature, and characterized using Raman spectroscopy, X–ray photoelectron spectroscopy and scanning tunneling microscope. The GG exhibited a strong n–type doping behavior, whereas the PG showed a weak n–type doping behavior. Electron mobilities of the GG and PG were in the range of 80.1–340 cm2 V−1·s−1 and 59.3–160.6 cm2 V−1·s−1, respectively. The enhanced doping effect caused by graphitic nitrogen in the GG produced an asymmetry electron–hole transport characteristic, indicating that the long–range scattering (ionized impurities) plays an important role in determining the carrier transport behavior. Analysis of temperature dependent conductance showed that the carrier transport mechanism in the GG was thermal excitation, whereas that in the PG, was a combination of thermal excitation and variable range hopping. PMID:27325386
Adsorption and dynamics of Si atoms at the monolayer Pb/Si(111) surface
NASA Astrophysics Data System (ADS)
Kumar, Rakesh; Fang, Chuang-Kai; Lee, Chih-Hao; Hwang, Ing-Shouh
2017-06-01
In this work, we studied the adsorption behavior of deposited Si atoms along with their diffusion and other dynamic processes on a Pb monolayer-covered Si(111) surface from 125 to 230 K using a variable-temperature scanning tunneling microscope. The Pb-covered Si(111) surface forms a low-symmetry rowlike (√{7 }×√{3 } ) structure in this temperature range and the Si atoms bind favorably to two specific on-top sites (T1 A and T1 B) on the trimer row after deposition at the sample temperature of ˜125 K . The Si atoms were immobile at low temperatures and started to switch between the two neighboring T1 A and T1 B sites within the same trimer when the temperature was raised to ˜150 K . When the temperature was raised above ˜160 K , the adsorbed Si atoms could hop to other trimers along the same trimer row. Below ˜170 K , short hops to adjacent trimers dominated, but long hops dominated at temperatures above ˜170 K . The activation energy and prefactor for the Si atoms diffusion were derived through analysis of continuous-time imaging at temperatures from 160 to 174 K. In addition, irreversible aggregation of single Si atoms into Si clusters started to occur at the phase boundaries or defective sites at temperatures above ˜170 K . At temperature above ˜180 K , nearly all Si atoms aggregated into clusters, which may have important implications for the atomic mechanism of epitaxial growth of Si on the Pb-covered Si(111) surface. In addition, our study provides strong evidence for breaking in the mirror symmetry in the (√{7 }×√{3 } )-Pb structure, which has implications for the atomic model of this controversial structure.
Malmir, Kazem; Olyaei, Gholam Reza; Talebian, Saeed; Jamshidi, Ali Ashraf
2015-08-01
Cyclic movements and muscle fatigue may result in musculoskeletal injuries by inducing changes in neuromuscular control. Ankle frontal-plane neuromuscular control has rarely been studied in spite of its importance. To compare the effects of peroneal muscle fatigue and a cyclic passive-inversion (CPI) protocol on ankle neuromuscular control during a lateral hop. Quasi-experimental, repeated measures. University laboratory. 22 recreationally active, healthy men with no history of ankle sprain or giving way. Participants performed a lateral hop before and after 2 interventions on a Biodex dynamometer. They were randomly assigned to intervention order and interventions were 1 wk apart. A passive intervention included 40 CPIs at 5°/s through 80% of maximum range of motion, and a fatigue intervention involved an isometric eversion at 40% of the maximal voluntary isometric contraction until the torque decreased to 50% of its initial value. Median frequency of the peroneus longus during the fatigue protocol, energy absorption by the viscoelastic tissues during the CPI protocol, and feedforward onset and reaction time of the peroneus longus during landing. A significant fall in median frequency (P < .05) and a significant decrease in energy absorption (P < .05) confirmed fatigue and a change in viscoelastic behavior, respectively. There was a significant main effect of condition on feedforward onset and reaction time (P < .05). No significant main effect of intervention or intervention × condition interaction was noted (P > .05). There was a significant difference between pre- and postintervention measures (P < .0125), but no significant difference was found between postintervention measures (P > .0125). Both fatigue and the CPI may similarly impair ankle neuromuscular control. Thus, in prolonged sports competitions and exercises, the ankle may be injured due to either fatigue or changes in the biomechanical properties of the viscoelastic tissues.
Hopping locomotion at different gravity: metabolism and mechanics in humans.
Pavei, Gaspare; Minetti, Alberto E
2016-05-15
Previous literature on the effects of low gravity on the mechanics and energetics of human locomotion already dealt with walking, running, and skipping. The aim of the present study is to obtain a comprehensive view on that subject by including measurements of human hopping in simulated low gravity, a gait often adopted in many Apollo Missions and documented in NASA footage. Six subjects hopped at different speeds at terrestrial, Martian, and Lunar gravity on a treadmill while oxygen consumption and 3D body kinematic were sampled. Results clearly indicate that hopping is too metabolically expensive to be a sustainable locomotion on Earth but, similarly to skipping (and running), its economy greatly (more than ×10) increases at lower gravity. On the Moon, the metabolic cost of hopping becomes even lower than that of walking, skipping, and running, but the general finding is that gaits with very different economy on Earth share almost the same economy on the Moon. The mechanical reasons for such a decrease in cost are discussed in the paper. The present data, together with previous findings, will allow also to predict the aerobic traverse range/duration of astronauts when getting far from their base station on low gravity planets. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Essaleh, L.; Amhil, S.; Wasim, S. M.; Marín, G.; Choukri, E.; Hajji, L.
2018-05-01
In the present work, an attempt has been made to study theoretically and experimentally the AC electrical conduction mechanism in disordered semiconducting materials. The key parameter considered in this analysis is the frequency exponent s(ω , T) =( ∂ln(σAC(ω , T))/∂ ln(ω)T , where σAC is the AC electrical conductivity that depends on angular frequency ω and temperature T. In the theoretical part of this work, the effect of the barrier hopping energy, the polaron radius and the characteristic relaxation time is considered. The theoretical models of Quantum Mechanical Tunneling (QMT), Non overlapping Small Polaron Tunneling (NSPT), Overlapping Large Polaron Tunneling (OLPT) and Correlated Barrier Hopping (CBH) are considered to fit experimental data of σAC in p-CuIn3Se5 (p-CIS135) in the low temperature range up to 96 K. Some important parameters, as the polaron radius, the localization length and the barrier hopping energies, are estimated and their temperature and frequency dependence discussed.
Analysis of muscle activity and ankle joint movement during the side-hop test.
Yoshida, Masahiro; Taniguchi, Keigo; Katayose, Masaki
2011-08-01
Functional performance tests (FPTs) that consist of movements, such as hopping, landing, and cutting, provide useful measurements. Although some tests have been established for kinematic studies of the knee joint, very few tests have been established for the ankle joint. To use the FPT as a test battery for patients with an ankle sprain, it is necessary to document typical patterns of muscle activation and range of motion (ROM) of the ankle joint during FPTs. Therefore, the purpose of this study was to investigate the pattern of the ROM of the ankle inversion/eversion and the muscle activity of the peroneus longus muscle (PL) and the tibial anterior muscle (TA) in normal subjects during the side-hop test. To emphasize the characteristics of ROM and electromyography (EMG) at each phase, the side-hop tests were divided into 4 phases: lateral-hop contact phase (LC), lateral-hop flight phase (LF), medial hop contact phase (MC), and medial hop flight phase (MF), and the ROM of ankle inversion/eversion, a peak angle of ankle inversion, and Integral EMG (IEMG) of PL and TA compared among 4 phases. Fifteen male subjects with no symptoms of ankle joint problems participated in this research. The ROM of ankle inversion/eversion during the side-hop test was 27 ± 3.8° (mean ± SD), and there was a significant difference in the ROM of ankle inversion/eversion among 4 phases (p < 0.05). The phase in which the widest ROM was presented was the MF. A peak angle of the ankle inversion at MC was significantly greater than at LC and MF (p <0.05). A peak angle of the ankle inversion at LF was significantly greater than at LC and MF. The PL remained contracting with 50-160% of maximal voluntary contraction (MVC). The IEMGs of PL in both the contact phases were significantly greater than in both the flight phases (p < 0.05). In addition, the PL activity at LC was significantly greater than at MC. The TA remained contracting at 50-80% of MVC through the side-hop test. The IEMG of TA at both the contact phases was significantly greater than at 2 flight phases. However, there was no significant difference between LC and MF. Results of this study could be useful as basic data when evaluating the validity of the side-hop test for patients with ankle sprain.
Reliability and validity of functional performance tests in dancers with hip dysfunction.
Kivlan, Benjamin R; Carcia, Christopher R; Clemente, F Richard; Phelps, Amy L; Martin, Robroy L
2013-08-01
Quasi-experimental, repeated measures. Functional performance tests that identify hip joint impairments and assess the effect of intervention have not been adequately described for dancers. The purpose of this study was to examine the reliability and validity of hop and balance tests among a group of dancers with musculoskeletal pain in the hip region. NINETEEN FEMALE DANCERS (AGE: 18.90±1.11 years; height: 164.85±6.95 cm; weight: 60.37±8.29 kg) with unilateral hip pain were assessed utilizing the cross-over reach, medial triple hop, lateral triple hop, and cross-over hop tests on two occasions, 2 days apart. Test-retest reliability and comparisons between the involved and uninvolved side for each respective test were determined. Intra-class correlation coefficients for the functional performance tests ranged from 0.89-0.96. The cross-over reach test had a SEM of 2.79 cm and a MDC of 7.73 cm. The medial and lateral triple hop tests had SEM values of 7.51 cm and 8.17 cm, and MDC values of 20.81 cm and 22.62 cm, respectively. The SEM was 0.15 seconds and the MDC was 0.42 seconds for the cross-over hop test. Performance on the medial triple hop test was significantly less on the involved side (370.21±38.26 cm) compared to the uninvolved side (388.05±41.49 cm); t(18) = -4.33, p<0.01. The side-to-side comparisons of the cross-over reach test (involved mean=61.68±10.9 cm; uninvolved mean=61.69±8.63 cm); t(18) = -0.004, p=0.99, lateral triple hop test (involved mean=306.92±35.79 cm; uninvolved mean=310.68±24.49 cm); t(18) = -0.55, p=0.59, and cross-over hop test (involved mean=2.49±0.34 seconds; uninvolved mean= 2.61±0.42 seconds; t(18) = -1.84, p=0.08) were not statistically different between sides. The functional performance tests used in this study can be reliably performed on dancers with unilateral hip pain. The medial triple hop test was the only functional performance test with evidence of validity in side-to-side comparisons. These results suggest that the medial triple hop test may be a reliable and valid functional performance test to assess impairments related to hip pain among dancers. 3b. Non-consecutive cohort study.
RELIABILITY AND VALIDITY OF FUNCTIONAL PERFORMANCE TESTS IN DANCERS WITH HIP DYSFUNCTION
Carcia, Christopher R.; Clemente, F. Richard; Phelps, Amy L.; Martin, RobRoy L.
2013-01-01
Study Design: Quasi-experimental, repeated measures. Purpose/Background: Functional performance tests that identify hip joint impairments and assess the effect of intervention have not been adequately described for dancers. The purpose of this study was to examine the reliability and validity of hop and balance tests among a group of dancers with musculoskeletal pain in the hip region. Methods: Nineteen female dancers (age: 18.90±1.11 years; height: 164.85±6.95 cm; weight: 60.37±8.29 kg) with unilateral hip pain were assessed utilizing the cross-over reach, medial triple hop, lateral triple hop, and cross-over hop tests on two occasions, 2 days apart. Test-retest reliability and comparisons between the involved and uninvolved side for each respective test were determined. Results: Intra-class correlation coefficients for the functional performance tests ranged from 0.89-0.96. The cross-over reach test had a SEM of 2.79 cm and a MDC of 7.73 cm. The medial and lateral triple hop tests had SEM values of 7.51 cm and 8.17 cm, and MDC values of 20.81 cm and 22.62 cm, respectively. The SEM was 0.15 seconds and the MDC was 0.42 seconds for the cross-over hop test. Performance on the medial triple hop test was significantly less on the involved side (370.21±38.26 cm) compared to the uninvolved side (388.05±41.49 cm); t(18) = −4.33, p<0.01. The side-to-side comparisons of the cross-over reach test (involved mean=61.68±10.9 cm; uninvolved mean=61.69±8.63 cm); t(18) = −0.004, p=0.99, lateral triple hop test (involved mean=306.92±35.79 cm; uninvolved mean=310.68±24.49 cm); t(18) = −0.55, p=0.59, and cross-over hop test (involved mean=2.49±0.34 seconds; uninvolved mean= 2.61±0.42 seconds; t(18) = −1.84, p=0.08) were not statistically different between sides. Conclusion: The functional performance tests used in this study can be reliably performed on dancers with unilateral hip pain. The medial triple hop test was the only functional performance test with evidence of validity in side-to-side comparisons. These results suggest that the medial triple hop test may be a reliable and valid functional performance test to assess impairments related to hip pain among dancers. Level of Evidence: 3b. Non-consecutive cohort study PMID:24175123
Conduction mechanism in bismuth silicate glasses containing titanium
NASA Astrophysics Data System (ADS)
Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.
2014-11-01
Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.
Electron transport in reduced graphene oxides in high electric field
NASA Astrophysics Data System (ADS)
Jian, Wen-Bin; Lai, Jian-Jhong; Wang, Sheng-Tsung; Tsao, Rui-Wen; Su, Min-Chia; Tsai, Wei-Yu; Rosenstein, Baruch; Zhou, Xufeng; Liu, Zhaoping
Due to a honeycomb structure, charge carriers in graphene exhibit quasiparticles of linear energy-momentum dispersion and phenomena of Schwinger pair creation may be explored. Because graphene is easily broken in high electric fields, single-layer reduced graphene oxides (rGO) are used instead. The rGO shows a small band gap while it reveals a graphene like behavior in high electric fields. Electron transport in rGO exhibits two-dimensional Mott's variable range hopping. The temperature behavior of resistance in low electric fields and the electric field behavior of resistance at low temperatures are all well explained by the Mott model. At temperatures higher than 200 K, the electric field behavior does not agree with the model while it shows a power law behavior with an exponent of 3/2, being in agreement with the Schwinger model. Comparing with graphene, the rGO is more sustainable to high electric field thus presenting a complete high-electric field behavior. When the rGO is gated away from the charge neutral point, the turn-on electric field of Schwinger phenomena is increased. A summary figure is given to present electric field behaviors and power law variations of resistances of single-layer rGO, graphene, and MoS2.
Outage analysis of relay-assisted underwater wireless optical communication systems
NASA Astrophysics Data System (ADS)
Tabeshnezhad, Azadeh; Pourmina, Mohammad Ali
2017-12-01
In this paper, we theoretically evaluate the outage probabilities of underwater wireless optical communication (UWOC) systems. Our derivations are general as the channel model under consideration takes into account all of the channel degrading effects, namely absorption, scattering, and turbulence-induced fading. We numerically show that the UWOC systems, due to the severe channel impairments, cannot typically support longer link ranges than 100 m. Therefore, in this paper, in order to increase the transmission reliability and hence extend the viable communication range of UWOC systems, we apply decode-and-forward (DF) relay-assisted communications either in the form of multi-hop transmission, where multiple intermediate relays are serially employed between the source and destination, or parallel relaying in which multiple DF relays are distributed among the source-to-destination path to cooperate in the end-to-end transmission. Our numerical results reveal that multi-hop transmission, owing to the distance-dependency of all of the channel degrading effects, can tremendously improve the end-to-end outage probability and increase the accessible link ranges to hundreds of meter. For example, a dual-hop transmission in a 45 m coastal water link can provide up to 41 dB performance improvement at the outage probability of 10-9.
Dielectric and impedance spectral characteristics of bulk ZnIn2Se4
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.
2014-02-01
The frequency and temperature dependence of ac conductivity, dielectric constant and dielectric loss of ZnIn2Se4 in a pellet form were investigated in the frequency range of 102-106 Hz and temperature range of 293-356 K. The behavior of ac conductivity was interpreted by the correlated barrier hopping (CBH) model. Temperature dependence of ac conductivity indicates that ac conduction is a thermally activated process. The density of localized states N(EF) and ac activation energy were estimated for various frequencies. Dielectric constant and dielectric loss showed a decrease with increasing frequency and an increase with increasing in temperature. The frequency dependence of real and imaginary parts of the complex impedance was investigated. The relaxation time decreases with the increase in temperature. The impedance spectrum exhibits the appearance of the single semicircular arc. The radius of semicircular arcs decreases with increasing temperature which suggests a mechanism of temperature-dependent on relaxation.
The influence of oxidation time on the properties of oxidized zinc films
NASA Astrophysics Data System (ADS)
Rambu, A. P.
2012-09-01
The effect of oxidation time on the structural characteristics and electronic transport mechanism of zinc oxide thin films prepared by thermal oxidation, have been investigated. Zinc metallic films were deposited by thermal evaporation under vacuum, the subsequent oxidation of Zn films being carried out in open atmosphere. XRD and AFM analysis indicate that obtained films posses a polycrystalline structure, the crystallites having a preferential orientation. Structural analysis reveals that microstructure of the films (crystallite size, surface roughness, internal stress) is depending on the oxidation time of metallic films. The electrical behavior of ZnO films was investigated, during a heat treatment (two heating/cooling cycles). It was observed that after the first heating, the temperature dependences of electrical conductivity become reversible. Mott variable range hopping model was proposed to analyze the temperature dependence of the electrical conductivity, in low temperature ranges. Values of some characteristic parameters were calculated.
Superconducting and magnetic properties of Bi 2Sr 2Ca 1- xY xCu 2O y (0≦ x≦1)
NASA Astrophysics Data System (ADS)
Yoshizaki, R.; Saito, Y.; Abe, Y.; Ikeda, H.
1988-07-01
The effect of substitution of Y atoms for Ca atoms has been studied in the Bi 2Sr 2Ca 1- xY xCu 2O y compound system. For x<0.5, superconductivity is observed and its fractional volume is reduced with increasing x, though the transition temperature of about 85 K is maintained. For x≧0.5 samples, the electrical resistivity behavior can be well described by the three-dimensional variable range hopping conduction, indicating that the system is essentially insulating. In this range of x, magnetic susceptibility shows spin-glass-type cusp at 13 K in the heating process after zero-field cooling and an enhanced cusp at 11 K in the field-cooling process. In the temperature range above about 150 K the Curie-Weiss dependence holds well with a positive paramagnetic Curie temperature, which increases to 40 K with increasing x in the insulating region.
NASA Astrophysics Data System (ADS)
Foufoula-Georgiou, E.; Ganti, V. K.; Dietrich, W. E.
2009-12-01
Sediment transport on hillslopes can be thought of as a hopping process, where the sediment moves in a series of jumps. A wide range of processes shape the hillslopes which can move sediment to a large distance in the downslope direction, thus, resulting in a broad-tail in the probability density function (PDF) of hopping lengths. Here, we argue that such a broad-tailed distribution calls for a non-local computation of sediment flux, where the sediment flux is not only a function of local topographic quantities but is an integral flux which takes into account the upslope topographic “memory” of the point of interest. We encapsulate this non-local behavior into a simple fractional diffusive model that involves fractional (non-integer) derivatives. We present theoretical predictions from this nonlocal model and demonstrate a nonlinear dependence of sediment flux on local gradient, consistent with observations. Further, we demonstrate that the non-local model naturally eliminates the scale-dependence exhibited by any local (linear or nonlinear) sediment transport model. An extension to a 2-D framework, where the fractional derivative can be cast into a mixture of directional derivatives, is discussed together with the implications of introducing non-locality into existing landscape evolution models.
Xu, Yang; Luo, Xiong; Wang, Weiping; Zhao, Wenbing
2017-01-01
Integrating wireless sensor network (WSN) into the emerging computing paradigm, e.g., cyber-physical social sensing (CPSS), has witnessed a growing interest, and WSN can serve as a social network while receiving more attention from the social computing research field. Then, the localization of sensor nodes has become an essential requirement for many applications over WSN. Meanwhile, the localization information of unknown nodes has strongly affected the performance of WSN. The received signal strength indication (RSSI) as a typical range-based algorithm for positioning sensor nodes in WSN could achieve accurate location with hardware saving, but is sensitive to environmental noises. Moreover, the original distance vector hop (DV-HOP) as an important range-free localization algorithm is simple, inexpensive and not related to the environment factors, but performs poorly when lacking anchor nodes. Motivated by these, various improved DV-HOP schemes with RSSI have been introduced, and we present a new neural network (NN)-based node localization scheme, named RHOP-ELM-RCC, through the use of DV-HOP, RSSI and a regularized correntropy criterion (RCC)-based extreme learning machine (ELM) algorithm (ELM-RCC). Firstly, the proposed scheme employs both RSSI and DV-HOP to evaluate the distances between nodes to enhance the accuracy of distance estimation at a reasonable cost. Then, with the help of ELM featured with a fast learning speed with a good generalization performance and minimal human intervention, a single hidden layer feedforward network (SLFN) on the basis of ELM-RCC is used to implement the optimization task for obtaining the location of unknown nodes. Since the RSSI may be influenced by the environmental noises and may bring estimation error, the RCC instead of the mean square error (MSE) estimation, which is sensitive to noises, is exploited in ELM. Hence, it may make the estimation more robust against outliers. Additionally, the least square estimation (LSE) in ELM is replaced by the half-quadratic optimization technique. Simulation results show that our proposed scheme outperforms other traditional localization schemes. PMID:28085084
Thermopower of molecular junctions: Tunneling to hopping crossover in DNA
NASA Astrophysics Data System (ADS)
Korol, Roman; Kilgour, Michael; Segal, Dvira
2016-12-01
We study the electrical conductance G and the thermopower S of single-molecule junctions and reveal signatures of different transport mechanisms: off-resonant tunneling, on-resonant coherent (ballistic) motion, and multi-step hopping. These mechanisms are identified by studying the behavior of G and S while varying molecular length and temperature. Based on a simple one-dimensional model for molecular junctions, we derive approximate expressions for the thermopower in these different regimes. Analytical results are compared to numerical simulations, performed using a variant of Büttiker's probe technique, the so-called voltage-temperature probe, which allows us to phenomenologically introduce environmentally induced elastic and inelastic electron scattering effects, while applying both voltage and temperature biases across the junction. We further simulate the thermopower of GC-rich DNA sequences with mediating A:T blocks and manifest the tunneling-to-hopping crossover in both the electrical conductance and the thermopower, in accord with measurements by Li et al. [Nat. Commun. 7, 11294 (2016)].
Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.
Udalov, O G; Beloborodov, I S
2017-05-04
We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.
Gonzalez-Vazquez, J P; Anta, Juan A; Bisquert, Juan
2009-11-28
The random walk numerical simulation (RWNS) method is used to compute diffusion coefficients for hopping transport in a fully disordered medium at finite carrier concentrations. We use Miller-Abrahams jumping rates and an exponential distribution of energies to compute the hopping times in the random walk simulation. The computed diffusion coefficient shows an exponential dependence with respect to Fermi-level and Arrhenius behavior with respect to temperature. This result indicates that there is a well-defined transport level implicit to the system dynamics. To establish the origin of this transport level we construct histograms to monitor the energies of the most visited sites. In addition, we construct "corrected" histograms where backward moves are removed. Since these moves do not contribute to transport, these histograms provide a better estimation of the effective transport level energy. The analysis of this concept in connection with the Fermi-level dependence of the diffusion coefficient and the regime of interest for the functioning of dye-sensitised solar cells is thoroughly discussed.
Charge transport in molecular junctions: From tunneling to hopping with the probe technique
NASA Astrophysics Data System (ADS)
Kilgour, Michael; Segal, Dvira
2015-07-01
We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This "Landauer-Büttiker's probe technique" can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, kBT/ɛB > 1/25, with ɛB as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker's probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.
Thermoelectric Properties of Selenospinel Cu6Fe4Sn12Se32
NASA Astrophysics Data System (ADS)
Suekuni, Koichiro; Kunii, Masaru; Nishiate, Hirotaka; Ohta, Michihiro; Yamamoto, Atsushi; Koyano, Mikio
2012-06-01
This report describes thermoelectric properties up to 500 K for polycrystalline selenospinel Cu6Fe4Sn12Se32 samples. Thermal conductivity shows a low value of 1 W/Km because of their structural complexity such as Fe/Sn site disorder. Electrical resistivity ρ varies as exp( T 0/ T 1/4) and thermopower S varies as T 1/2 at low temperatures, which indicates that Mott variable-range hopping is the dominant conduction mechanism. However, at high temperatures (above 350 K), ρ and S decrease simultaneously. The temperature dependences are attributed to the thermal excitation of electrons. The possible band structure for Cu6Fe4Sn12Se32 is examined to clarify the behavior of ρ and S.
NASA Astrophysics Data System (ADS)
Cao, Jingchen; Peng, Songang; Liu, Wei; Wu, Quantan; Li, Ling; Geng, Di; Yang, Guanhua; Ji, Zhouyu; Lu, Nianduan; Liu, Ming
2018-02-01
We present a continuous surface-potential-based compact model for molybdenum disulfide (MoS2) field effect transistors based on the multiple trapping release theory and the variable-range hopping theory. We also built contact resistance and velocity saturation models based on the analytical surface potential. This model is verified with experimental data and is able to accurately predict the temperature dependent behavior of the MoS2 field effect transistor. Our compact model is coded in Verilog-A, which can be implemented in a computer-aided design environment. Finally, we carried out an active matrix display simulation, which suggested that the proposed model can be successfully applied to circuit design.
Slow Relaxation in Anderson Critical Systems
NASA Astrophysics Data System (ADS)
Choi, Soonwon; Yao, Norman; Choi, Joonhee; Kucsko, Georg; Lukin, Mikhail
2016-05-01
We study the single particle dynamics in disordered systems with long range hopping, focusing on the critical cases, i.e., the hopping amplitude decays as 1 /rd in d-dimension. We show that with strong on-site potential disorder, the return probability of the particle decays as power-law in time. As on-site potential disorder decreases, the temporal profile smoothly changes from a simple power-law to the sum of multiple power-laws with exponents ranged from 0 to νmax. We analytically compute the decay exponents using a simple resonance counting argument, which quantitatively agrees with exact numerical results. Our result implies that the dynamics in Anderson Critical systems are dominated by resonances. Harvard-MIT CUA, Kwanjeong Educational Fellowship, AFOSR MURI, Samsung Scholarship.
Wietstock, Philip C; Glattfelder, Richard; Garbe, Leif-Alexander; Methner, Frank-Jürgen
2016-04-06
Absorption of hop volatiles by crown cork liner polymers and can coatings was investigated in beer during storage. All hop volatiles measured were prone to migrate into the closures, and the absorption kinetics was demonstrated to fit Fick's second law of diffusion well for a plane sheet. The extent and rate of diffusion were significantly dissimilar and were greatly dependent upon the nature of the volatile. Diffusion coefficients ranged from 1.32 × 10(-5) cm(2)/day (limonene) to 0.26 × 10(-5) cm(2)/day (α-humulene). The maximum amounts absorbed into the material at equilibrium were in the following order: limonene > α-humulene > trans-caryophyllene > myrcene ≫ linalool > α-terpineol > geraniol. With the application of low-density polyethylene (LDPE) liners with oxygen-scavenging functionality, oxygen-barrier liners made up from high-density polyethylene (HDPE) or liner polymers from a different manufacturer had no significant effect on the composition of hop volatiles in beers after prolonged storage of 55 days; however, significantly higher amounts of myrcene and limonene were found in the oxygen-barrier-type crown cork, while all other closures behaved similarly. Can coatings were demonstrated to absorb hop volatiles in a similar pattern as crown corks but to a lesser extent. Consequently, significantly higher percentages of myrcene were found in the beers.
Dichotomy between the band and hopping transport in organic crystals: insights from experiments.
Yavuz, I
2017-10-04
The molecular understanding of charge-transport in organic crystals has often been tangled with identifying the true dynamical origin. While in two distinct cases where complete delocalization and localization of charge-carriers are associated with band-like and hopping-like transports, respectively, their possible coalescence poses some mystery. Moreover, the existing models are still controversial at ambient temperatures. Here, we review the issues in charge-transport theories of organic materials and then provide an overview of prominent transport models. We explored ∼60 organic crystals, the single-crystal hole/electron mobilities of which have been predicted by band-like and hopping-like transport models, separately. Our comparative results show that at room-temperature neither of the models are exclusively capable of accurately predicting mobilities in a very broad range. Hopping-like models well-predict experimental mobilities around μ ∼ 1 cm 2 V -1 s -1 but systematically diverge at high mobilities. Similarly, band-like models are good at μ > ∼50 cm 2 V -1 s -1 but systematically diverge at lower mobilities. These results suggest the development of a unique and robust room-temperature transport model incorporating a mixture of these two extreme cases, whose relative importance is associated with their predominant regions. We deduce that while band models are beneficial for rationally designing high mobility organic-semiconductors, hopping models are good to elucidate the charge-transport of most organic-semiconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelaiz-Barranco, A., E-mail: pelaiz@fisica.uh.cu; Guerra, J.D.S.
2010-09-15
The dielectric relaxation phenomenon has been studied in lanthanum modified lead zirconate titanate ceramics in the high temperature paraelectric phase. The high temperature dielectric response revealed an anomalous behavior, which is characterized by an increase of the real component of the dielectric permittivity with the increase of the temperature. At the same time, a similar behavior, with very high values, has been observed in the imaginary component of the dielectric permittivity, which can be associated with conduction effects related to the conductivity losses. The frequency and temperature behavior of the complex dielectric permittivity has been analyzed considering the semi-empirical complexmore » Cole-Cole equation. The activation energy value, obtained from the Arrhenius' dependence for the relaxation time, was found to decreases with the increase of the lanthanum concentration and has been associated with single-ionized oxygen vacancies. The short-range hopping of oxygen vacancies is discussed as the main cause of the dielectric relaxation.« less
Hopping transport through an array of Luttinger liquid stubs
NASA Astrophysics Data System (ADS)
Chudnovskiy, A. L.
2004-01-01
We consider a thermally activated transport across and array of parallel one-dimensional quantum wires of finite length (quantum stubs). The disorder enters as a random tunneling between the nearest-neighbor stubs as well as a random shift of the bottom of the energy band in each stub. Whereas one-particle wave functions are localized across the array, the plasmons are delocalized, which affects the variable-range hopping. A perturbative analytical expression for the low-temperature resistance across the array is obtained for a particular choice of plasmon dispersion.
NASA Astrophysics Data System (ADS)
Valkov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.
2017-05-01
The spin-fermion model, which is an effective low-energy realization of the three-band Emery model after passing to the Wannier representation for the px and py orbitals of the subsystem of oxygen ions, reduces to the generalized Kondo lattice model. A specific feature of this model is the existence of spin-correlated hoppings of the current carriers between distant cells. Numerical calculations of the spectrum of spin-electron excitations highlight the important role of the long-range spin-correlated hoppings.
NASA Astrophysics Data System (ADS)
Yamada, Hiroki; Fukui, Takahiro
2004-02-01
We study Anderson localization of non-interacting random hopping fermions on bipartite lattices in two dimensions, focusing our attention to strong disorder features of the model. We concentrate ourselves on specific models with a linear dispersion in the vicinity of the band center, which can be described by a Dirac fermion in the continuum limit. Based on the recent renormalization group method developed by Carpentier and Le Doussal for the XY gauge glass model, we calculate the density of states, inverse participation ratios, and their spatial correlations. It turns out that their behavior is quite different from those expected within naive weak disorder approaches.
Dead mouse hopping: Tyzzer's disease in spinifex hopping-mice (Notomys alexis).
Stannard, Hayley J; Tulk, Melissa L; Old, Julie M
2017-03-01
Tyzzer's disease is caused by Clostridium piliformes and affects a wide range of domestic and wildlife species. Non-descript signs, if any, and a short incubation period make Tyzzer's disease difficult to diagnose and treat before death occurs. Here we describe an unexpected outbreak of Tyzzer's disease in a colony of native Australian spinifex hopping-mice (Notomys alexis). In this study captive hopping-mice were used in a nutrition trial (n=11), and others were housed in close proximity (n=4). During the nutrition trial, two hopping-mice exhibited signs of lethargy and diarrhoea, and were removed from the trial but died soon after. Other hopping-mice exhibited limited clinical signs of ill-health, prior to their death. In total four animals were found dead, and another seven were euthanised, to prevent a potential disease outbreak. Tyzzer's disease was confirmed post-mortem using histopathology silver stain to detect the bacilli-shaped bacteria (C. piliformes) in liver tissue of two hopping-mice. After Tyzzer's disease was confirmed enhanced infection control measures were implemented. Enhanced control measures included the use of metal containers for food and water, sick animals were fed and cleaned last, 5% sodium hypochlorite was used as the cleaning agent, stricter hand washing protocols and a change of gloves between feeding animals, and strict limits on persons entering the facility. Control measures for this disease should include euthanasia of any animals suspected to be infected, complete disinfection of all enclosures and associated equipment using sodium hypochlorite. Molecular methods could be employed to ensure complete removal of bacterial spores prior to new animals being moved into enclosures where affected animals were housed. Tyzzer's disease is a fast spreading disease which can cause detrimental effects to captive colonies and their environment. Captive colonies subjected to stress are at risk of Tyzzer's disease. Appropriate quarantine procedures, close montoring and quick action in response to signs of illness will ensure Tyzzer's disease outbreaks do not occur. Copyright © 2017 Elsevier B.V. All rights reserved.
Theoretical study on the charge transport in single crystals of TCNQ, F2-TCNQ and F4-TCNQ.
Ji, Li-Fei; Fan, Jian-Xun; Zhang, Shou-Feng; Ren, Ai-Min
2018-01-31
2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane (F 2 -TCNQ) was recently reported to display excellent electron transport properties in single crystal field-effect transistors (FETs). Its carrier mobility can reach 25 cm 2 V -1 s -1 in devices. However, its counterparts TCNQ and F 4 -TCNQ (tetrafluoro-7,7,8,8-tetracyanoquinodimethane) do not exhibit the same highly efficient behavior. To better understand this significant difference in charge carrier mobility, a multiscale approach combining semiclassical Marcus hopping theory, a quantum nuclear enabled hopping model and molecular dynamics simulations was performed to assess the electron mobilities of the F n -TCNQ (n = 0, 2, 4) systems in this work. The results indicated that the outstanding electron transport behavior of F 2 -TCNQ arises from its effective 3D charge carrier percolation network due to its special packing motif and the nuclear tunneling effect. Moreover, the poor transport properties of TCNQ and F 4 -TCNQ stem from their invalid packing and strong thermal disorder. It was found that Marcus theory underestimated the mobilities for all the systems, while the quantum model with the nuclear tunneling effect provided reasonable results compared to experiments. Moreover, the band-like transport behavior of F 2 -TCNQ was well described by the quantum nuclear enabled hopping model. In addition, quantum theory of atoms in molecules (QTAIM) analysis and symmetry-adapted perturbation theory (SAPT) were used to characterize the intermolecular interactions in TCNQ, F 2 -TCNQ and F 4 -TCNQ crystals. A primary understanding of various noncovalent interaction responses for crystal formation is crucial to understand the structure-property relationships in organic molecular materials.
Colossal permittivity and the polarization mechanism of (Mg, Mn) co-doped LaGaO3 ceramics
NASA Astrophysics Data System (ADS)
Luo, Tingting; Liu, Zhifu; Zhang, Faqiang; Li, Yongxiang
2018-03-01
Mg and Mn co-doped LaGa0.7-xMgxMn0.3O3 (x = 0, 0.05, 0.10, 0.15) ceramics were prepared by a solid-state reaction method. The electrical properties of the LaGa0.7-xMgxMn0.3O3 ceramics were studied in detail by dielectric spectra, impedance spectra, and I-V characteristic analysis. Colossal permittivity up to 104 could be obtained across the frequency range up to 104 Hz. The impedance analysis of the co-doped LaGaO3 ceramics indicated that the Mott's variable range hopping (VRH) polarization should be the main origin of colossal permittivity. Mg and Mn co-doping suppressed the formation of Mn3+ and enhanced the VRH polarization, resulting in increased permittivity. Partial localization of electrons by Mg reduced the long-range electron hopping and led to the decrease in dielectric loss.
HOP family plays a major role in long-term acquired thermotolerance in Arabidopsis.
Fernández-Bautista, Nuria; Fernández-Calvino, Lourdes; Muñoz, Alfonso; Toribio, René; Mock, Hans P; Castellano, M Mar
2018-05-08
HSP70-HSP90 organizing protein (HOP) is a family of cytosolic cochaperones whose molecular role in thermotolerance is quite unknown in eukaryotes and unexplored in plants. In this article, we describe that the three members of the AtHOP family display a different induction pattern under heat, being HOP3 highly regulated during the challenge and the attenuation period. Despite HOP3 is the most heat-regulated member, the analysis of the hop1 hop2 hop3 triple mutant demonstrates that the three HOP proteins act redundantly to promote long-term acquired thermotolerance in Arabidopsis. HOPs interact strongly with HSP90 and part of the bulk of HOPs shuttles from the cytoplasm to the nuclei and to cytoplasmic foci during the challenge. RNAseq analyses demonstrate that, although the expression of the Hsf targets is not generally affected, the transcriptional response to heat is drastically altered during the acclimation period in the hop1 hop2 hop3 triple mutant. This mutant also displays an unusual high accumulation of insoluble and ubiquitinated proteins under heat, which highlights the additional role of HOP in protein quality control. These data reveal that HOP family is involved in different aspects of the response to heat, affecting the plant capacity to acclimate to high temperatures for long periods. © 2018 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Wenjie; Subotnik, Joseph E.; Nitzan, Abraham
We investigate a simple surface hopping (SH) approach for modeling a single impurity level coupled to a single phonon and an electronic (metal) bath (i.e., the Anderson-Holstein model). The phonon degree of freedom is treated classically with motion along–and hops between–diabatic potential energy surfaces. The hopping rate is determined by the dynamics of the electronic bath (which are treated implicitly). For the case of one electronic bath, in the limit of small coupling to the bath, SH recovers phonon relaxation to thermal equilibrium and yields the correct impurity electron population (as compared with numerical renormalization group). For the case ofmore » out of equilibrium dynamics, SH current-voltage (I-V) curve is compared with the quantum master equation (QME) over a range of parameters, spanning the quantum region to the classical region. In the limit of large temperature, SH and QME agree. Furthermore, we can show that, in the limit of low temperature, the QME agrees with real-time path integral calculations. As such, the simple procedure described here should be useful in many other contexts.« less
Human hopping on damped surfaces: strategies for adjusting leg mechanics.
Moritz, Chet T; Farley, Claire T
2003-08-22
Fast-moving legged animals bounce along the ground with spring-like legs and agilely traverse variable terrain. Previous research has shown that hopping and running humans maintain the same bouncing movement of the body's centre of mass on a range of elastic surfaces by adjusting their spring-like legs to exactly offset changes in surface stiffness. This study investigated human hopping on damped surfaces that dissipated up to 72% of the hopper's mechanical energy. On these surfaces, the legs did not act like pure springs. Leg muscles performed up to 24-fold more net work to replace the energy lost by the damped surface. However, considering the leg and surface together, the combination appeared to behave like a constant stiffness spring on all damped surfaces. By conserving the mechanics of the leg-surface combination regardless of surface damping, hoppers also conserved centre-of-mass motions. Thus, the normal bouncing movements of the centre of mass in hopping are not always a direct result of spring-like leg behaviour. Conserving the trajectory of the centre of mass by maintaining spring-like mechanics of the leg-surface combination may be an important control strategy for fast-legged locomotion on variable terrain.
Human hopping on damped surfaces: strategies for adjusting leg mechanics.
Moritz, Chet T; Farley, Claire T
2003-01-01
Fast-moving legged animals bounce along the ground with spring-like legs and agilely traverse variable terrain. Previous research has shown that hopping and running humans maintain the same bouncing movement of the body's centre of mass on a range of elastic surfaces by adjusting their spring-like legs to exactly offset changes in surface stiffness. This study investigated human hopping on damped surfaces that dissipated up to 72% of the hopper's mechanical energy. On these surfaces, the legs did not act like pure springs. Leg muscles performed up to 24-fold more net work to replace the energy lost by the damped surface. However, considering the leg and surface together, the combination appeared to behave like a constant stiffness spring on all damped surfaces. By conserving the mechanics of the leg-surface combination regardless of surface damping, hoppers also conserved centre-of-mass motions. Thus, the normal bouncing movements of the centre of mass in hopping are not always a direct result of spring-like leg behaviour. Conserving the trajectory of the centre of mass by maintaining spring-like mechanics of the leg-surface combination may be an important control strategy for fast-legged locomotion on variable terrain. PMID:12965003
Transient Resistive Switching Devices Made from Egg Albumen Dielectrics and Dissolvable Electrodes.
He, Xingli; Zhang, Jian; Wang, Wenbo; Xuan, Weipeng; Wang, Xiaozhi; Zhang, Qilong; Smith, Charles G; Luo, Jikui
2016-05-04
Egg albumen as the dielectric, and dissolvable Mg and W as the top and bottom electrodes are used to fabricate water-soluble memristors. 4 × 4 cross-bar configuration memristor devices show a bipolar resistive switching behavior with a high to low resistance ratio in the range of 1 × 10(2) to 1 × 10(4), higher than most other biomaterial-based memristors, and a retention time over 10(4) s without any sign of deterioration, demonstrating its high stability and reliability. Metal filaments accompanied by hopping conduction are believed to be responsible for the switching behavior of the memory devices. The Mg and W electrodes, and albumen film all can be dissolved in water within 72 h, showing their transient characteristics. This work demonstrates a new way to fabricate biocompatible and dissolvable electronic devices by using cheap, abundant, and 100% natural materials for the forthcoming bioelectronics era as well as for environmental sensors when the Internet of things takes off.
Anomalous diffusion for bed load transport with a physically-based model
NASA Astrophysics Data System (ADS)
Fan, N.; Singh, A.; Foufoula-Georgiou, E.; Wu, B.
2013-12-01
Diffusion of bed load particles shows both normal and anomalous behavior for different spatial-temporal scales. Understanding and quantifying these different types of diffusion is important not only for the development of theoretical models of particle transport but also for practical purposes, e.g., river management. Here we extend a recently proposed physically-based model of particle transport by Fan et al. [2013] to further develop an Episodic Langevin equation (ELE) for individual particle motion which reproduces the episodic movement (start and stop) of sediment particles. Using the proposed ELE we simulate particle movements for a large number of uniform size particles, incorporating different probability distribution functions (PDFs) of particle waiting time. For exponential PDFs of waiting times, particles reveal ballistic motion in short time scales and turn to normal diffusion at long time scales. The PDF of simulated particle travel distances also shows a change in its shape from exponential to Gamma to Gaussian with a change in timescale implying different diffusion scaling regimes. For power-law PDF (with power - μ) of waiting times, the asymptotic behavior of particles at long time scales reveals both super-diffusion and sub-diffusion, however, only very heavy tailed waiting times (i.e. 1.0 < μ < 1.5) could result in sub-diffusion. We suggest that the contrast between our results and previous studies (for e.g., studies based on fractional advection-diffusion models of thin/heavy tailed particle hops and waiting times) results could be due the assumption in those studies that the hops are achieved instantaneously, but in reality, particles achieve their hops within finite times (as we simulate here) instead of instantaneously, even if the hop times are much shorter than waiting times. In summary, this study stresses on the need to rethink the alternative models to the previous models, such as, fractional advection-diffusion equations, for studying the anomalous diffusion of bed load particles. The implications of these results for modeling sediment transport are discussed.
Multi-Hop Teleportation of an Unknown Qubit State Based on W States
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-04-01
Quantum teleportation is important in quantum communication networks. Considering that quantum state information is also transmitted between two distant nodes, intermediated nodes are employed and two multi-hop teleportation protocols based on W state are proposed. One is hop-by-hop teleportation protocol and the other is the improved multi-hop teleportation protocol with centralized unitary transformation. In hop-by-hop protocol, the transmitted quantum state needs to be recovered at every node on the route. In improved multi-hop teleportation protocol with centralized unitary transformation, intermediate nodes need not to recover the transmitted quantum state. Compared to the hop-by-hop protocol, the improved protocol can reduce the transmission delay and improve the transmission efficiency.
Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma.
Oladokun, Olayide; James, Sue; Cowley, Trevor; Dehrmann, Frieda; Smart, Katherine; Hort, Joanne; Cook, David
2017-09-01
The impact of hop variety and hop aroma on perceived beer bitterness intensity and character was investigated using analytical and sensory methods. Beers made from malt extract were hopped with 3 distinctive hop varieties (Hersbrucker, East Kent Goldings, Zeus) to achieve equi-bitter levels. A trained sensory panel determined the bitterness character profile of each singly-hopped beer using a novel lexicon. Results showed different bitterness character profiles for each beer, with hop aroma also found to change the hop variety-derived bitterness character profiles of the beer. Rank-rating evaluations further showed the significant effect of hop aroma on selected key bitterness character attributes, by increasing perceived harsh and lingering bitterness, astringency, and bitterness intensity via cross-modal flavour interactions. This study advances understanding of the complexity of beer bitterness perception by demonstrating that hop variety selection and hop aroma both impact significantly on the perceived intensity and character of this key sensory attribute. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molenda-Figueira, Heather A.; Williams, Casey A.; Griffin, Andreana L.; Rutledge, Eric M.; Blaustein, Jeffrey D.; Tetel, Marc J.
2008-01-01
The ovarian hormones, estradiol (E) and progesterone (P) facilitate the expression of sexual behavior in female rats. E and P mediate many of these behavioral effects by binding to their respective intracellular receptors in specific brain regions. Nuclear receptor coactivators, including Steroid Receptor Coactivator-1 (SRC-1) and CREB Binding Protein (CBP), dramatically enhance ligand-dependent steroid receptor transcriptional activity in vitro. Previously, our lab has shown that SRC-1 and CBP modulate estrogen receptor (ER)-mediated induction of progestin receptor (PR) gene expression in the ventromedial nucleus of the hypothalamus (VMN) and hormone-dependent sexual receptivity in female rats. Female sexual behaviors can be activated by high doses of E alone in ovariectomized rats, and thus are believed to be ER-dependent. However, the full repertoire of female sexual behavior, in particular, proceptive behaviors such as hopping, darting and ear wiggling, are considered to be PR-dependent. In the present experiments, the function of SRC-1 and CBP in distinct ER- (Exp. 1) and PR- (Exp. 2) dependent aspects of female sexual behavior was investigated. In Exp. 1, infusion of antisense oligodeoxynucleotides to SRC-1 and CBP mRNA into the VMN decreased lordosis intensity in rats treated with E alone, suggesting that these coactivators modulate ER-mediated female sexual behavior. In Exp. 2, antisense to SRC-1 and CBP mRNA around the time of P administration reduced PR-dependent ear wiggling and hopping and darting. Taken together, these data suggest that SRC-1 and CBP modulate ER and PR action in brain and influence distinct aspects of hormone-dependent sexual behaviors. These findings support our previous studies and provide further evidence that SRC-1 and CBP function together to regulate ovarian hormone action in behaviorally-relevant brain regions. PMID:16769066
Correlation between structural and transport properties of electron beam irradiated PrMnO3 compounds
NASA Astrophysics Data System (ADS)
Christopher, Benedict; Rao, Ashok; Nagaraja, B. S.; Shyam Prasad, K.; Okram, G. S.; Sanjeev, Ganesh; Petwal, Vikash Chandra; Verma, Vijay Pal; Dwivedi, Jishnu; Poornesh, P.
2018-02-01
The structural, electrical, magnetic, and thermal properties of electron beam (EB) irradiated PrMnO3 manganites were investigated in the present communication. X-ray diffraction data reveals that all samples are single phased with orthorhombic distorted structure (Pbnm). Furthermore, the diffracted data are analyzed in detail using Rietveld refinement technique. It is observed that the EB dosage feebly disturbs the MnO6 octahedra. The electrical resistivity of all the samples exhibits semiconducting behavior. Small polaron hopping model is conveniently employed to investigate the semiconducting nature of the pristine as well as EB irradiated samples. The Seebeck coefficient (S) of the pristine as well as the irradiated samples exhibit large positive values at lower temperatures, signifying holes as the dominant charge carriers. The analysis of Seebeck coefficient data confirms that the small polaron hopping mechanism assists the thermoelectric transport property in the high temperature region. The magnetic measurements confirm the existence of paramagnetic (PM) to ferromagnetic (FM) behavior for the pristine and irradiated samples. In the lower temperature regime, coexistence of FM clusters and AFM matrix is dominating. Thus, the complex magnetic behavior of the compound has been explained in terms of rearrangement of antiferromagnetically coupled ionic moments.
NASA Astrophysics Data System (ADS)
Di Liberto, M.; Malpetti, D.; Japaridze, G. I.; Morais Smith, C.
2014-08-01
We theoretically investigate the behavior of a system of fermionic atoms loaded in a bipartite one-dimensional optical lattice that is under the action of an external time-periodic driving force. By using Floquet theory, an effective model is derived. The bare hopping coefficients are renormalized by zeroth-order Bessel functions of the first kind with different arguments for the nearest-neighbor and next-nearest-neighbor hopping. The insulating behavior characterizing the system at half filling in the absence of driving is dynamically suppressed, and for particular values of the driving parameter the system becomes either a standard metal or an unconventional metal with four Fermi points. The existence of the four-Fermi-point metal relies on the fact that, as a consequence of the shaking procedure, the next-nearest-neighbor hopping coefficients become significant compared to the nearest-neighbor ones. We use the bosonization technique to investigate the effect of on-site Hubbard interactions on the four-Fermi-point metal-insulator phase transition. Attractive interactions are expected to enlarge the regime of parameters where the unconventional metallic phase arises, whereas repulsive interactions reduce it. This metallic phase is known to be a Luther-Emery liquid (spin-gapped metal) for both repulsive and attractive interactions, contrary to the usual Hubbard model, which exhibits a Mott-insulator phase for repulsive interactions. Ultracold fermions in driven one-dimensional bipartite optical lattices provide an interesting platform for the realization of this long-studied four-Fermi-point unconventional metal.
From "They" Science to "Our" Science: Hip Hop Epistemology in STEAM Education
NASA Astrophysics Data System (ADS)
Dolberry, Maurice E.
Hip hop has moved from being considered a type of music into being understood as a culture in which a prominent type of music originates. Hip hop culture has a philosophy and epistemological constructs as well. This study analyzed those constructs to determine how conceptions of science factor in hip hop worldviews. Pedagogical models in culturally responsive teaching and Science, Technology, Engineering, Arts, and Mathematics (STEAM) education were also examined to discern their philosophical connections with hip hop culture. These connections were used to create two theoretical models. The first one, Hip Hop Science, described how scientific thought functions in hip hop culture. The second model, Hip Hop STEAM Pedagogy, proposes how hip hop culture can inform STEAM teaching practices. The study began by using Critical Race Theory to create a theoretical framework proposing how the two theoretical models could be derived from the philosophical and pedagogical concepts. Content analysis and narrative inquiry were used to analyze data collected from scholarly texts, hip hop songs, and interviews with hip hop-responsive educators. The data from these sources were used initially to assess the adequacy of the proposed theoretical framework, and subsequently to improve its viability. Four overlapping themes emerged from the data analyses, including hip hop-resistance to formal education; how hip hop culture informs pedagogical practice in hip hop-responsive classrooms; conceptions of knowledge and reality that shape how hip hoppers conduct scientific inquiry; and hip hop-based philosophies of effective teaching for hip hoppers as a marginalized cultural group. The findings indicate that there are unique connections between hip hop epistemology, sciencemindedness, and pedagogical practices in STEAM education. The revised theoretical framework clarified the nature of these connections, and supported claims from prior research that hip hop culture provides viable sites of engagement for STEAM educators. It concluded with suggestions for future research that further explicates hip hop epistemology and Hip Hop STEAM Pedagogy.
Dresel, Michael; Dunkel, Andreas; Hofmann, Thomas
2015-04-08
Recent brewing trials indicated the occurrence of valuable bitter compounds in the hard resin fraction of hop. Aiming at the discovery of these compounds, hop's ε-resin was separated by means of a sensory guided fractionation approach and the key taste molecules were identified by means of UV/vis, LC-TOF-MS, and 1D/2D-NMR studies as well as synthetic experiments. Besides a series of literature known xanthohumol derivatives, multifidol glucosides, flavon-3-on glycosides, and p-coumaric acid esters, a total of 11 bitter tastants are reported for the first time, namely, 1",2"-dihydroxanthohumol F, 4'-hydroxytunicatachalcone, isoxantholupon, 1-methoxy-4-prenylphloroglucinol, dihydrocyclohumulohydrochinone, xanthohumols M, N, and P, and isoxanthohumols M, N, and P, respectively. Human sensory analysis revealed low bitter recognition threshold concentrations ranging from 5 (co-multifidol glucopyranoside) to 198 μmol/L (trans-p-coumaric acid ethyl ester) depending on their chemical structure. For the first time, LC-MS/MS quantitation of these taste compounds in Pilsner-type beer, followed by taste re-engineering experiments, revealed the additive contribution of iso-α-acids and the identified hard resin components to be truly necessary and sufficient for constructing the authentic bitter percept of beer. Finally, brewing trails using the ε-resin as the only hop source impressively demonstrated the possibility to produce beverages strongly enriched with prenylated hop flavonoids.
Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction.
Orishimo, Karl F; Kremenic, Ian J; Mullaney, Michael J; McHugh, Malachy P; Nicholas, Stephen J
2010-11-01
When a patient performs a clinically normal hop test based on distance, it cannot be assumed that the biomechanics are similar between limbs. The objective was to compare takeoff and landing biomechanics between legs in patients who have undergone anterior cruciate ligament reconstruction. Kinematics and ground reaction forces were recorded as 13 patients performed the single-leg hop on each leg. Distance hopped, joint range of motion, peak joint kinetics and the peak total extensor moment were compared between legs during both takeoff and landing. Average hop distance ratio (involved/noninvolved) was 93 ± 4%. Compared to the noninvolved side, knee motion during takeoff on the involved side was significantly reduced (P = 0.008). Peak moments and powers on the involved side were lower at the knee and higher at the ankle and hip compared with the noninvolved side (Side by Joint P = 0.011; P = 0.003, respectively). The peak total extensor moment was not different between legs (P = 0.305) despite a decrease in knee moment and increases in ankle and hip moments (Side by Joint P = 0.015). During landing, knee motion was reduced (P = 0.043), and peak power absorbed was decreased at the knee and hip and increased at the ankle on the involved side compared to the noninvolved side (P = 0.003). The compensations by other joints may indicate protective adaptations to avoid overloading the reconstructed knee.
Mortality in American Hip-Hop and Rap Recording Artists, 1987-2014.
Lawson, Carl J
2015-12-01
The deaths of American hip-hop and rap recording artists often receive considerable media attention. However, these artists' deaths have not been examined as a distinct group like the deaths of rock, classical, jazz, and pop music artists. This is a seminal epidemiological analysis on the deaths of an understudied group, American hip-hop and rap music recording artists. Media reports were analyzed of the deaths of American hip-hop and rap music recording artists that occurred from January 1, 1987 to December 31, 2014. The decedents' age, sex, race, cause of death, stage names, and city and state of death were recorded for analysis. The most commonly reported cause of death was homicide. The 280 deaths were categorized as homicide (55%), unintentional injury (13%), cardiovascular (7%), undetermined/undisclosed (7%), cancer (6%), other (5%), suicide (4%), and infectious disease (3%). The mean reported age at death was 30 yrs (range 15-75) and the median was 29 yrs; 97% were male and 92% were black. All but one of the homicides were committed with firearms. Homicide was the most commonly reported cause of death. Public health focus and guidance for hip-hop and rap recording artists should mirror that for African-American men and adolescent males ages 15-54 yrs, for whom the leading causes of death are homicide, unintentional injury, and heart disease. Given the preponderance of homicide deaths in this analysis, premature mortality reduction efforts should focus on violence prevention and conflict mitigation.
Study of electrical conductivity and memory switching in the zinc-vanadium-phosphate glasses
NASA Astrophysics Data System (ADS)
Mirzayi, M.; Hekmatshoar, M. H.
2013-07-01
Vanadium zinc phosphate glasses were prepared by the conventional melt quenching technique and effect of V2O5 concentration on d.c. conductivity of prepared samples were investigated. X-ray diffraction patterns confirmed the glassy character of the samples. The d.c. conductivity increased with increase in V2O5 content. Results showed that activation energy has a single value in the investigated range of temperature, which can be explained in accordance with Mott small pollaron hopping model. I-V characteristics at high electric field showed that switching in these glasses was memory type. The threshold field of switching was found to decrease with increase in V2O5 content. Non-linear behavior and switching phenomenon was explained by Pool-Frenkel effect and thermal model.
Anisotropic magnetism and spin-dependent transport in Co nanoparticle embedded ZnO thin films
NASA Astrophysics Data System (ADS)
Li, D. Y.; Zeng, Y. J.; Pereira, L. M. C.; Batuk, D.; Hadermann, J.; Zhang, Y. Z.; Ye, Z. Z.; Temst, K.; Vantomme, A.; Van Bael, M. J.; Van Haesendonck, C.
2013-07-01
Oriented Co nanoparticles were obtained by Co ion implantation in crystalline ZnO thin films grown by pulsed laser deposition. Transmission electron microscopy revealed the presence of elliptically shaped Co precipitates with nanometer size, which are embedded in the ZnO thin films, resulting in anisotropic magnetic behavior. The low-temperature resistance of the Co-implanted ZnO thin films follows the Efros-Shklovskii type variable-range-hopping. Large negative magnetoresistance (MR) exceeding 10% is observed in a magnetic field of 1 T at 2.5 K and the negative MR survives up to 250 K (0.3%). The negative MR reveals hysteresis as well as anisotropy that correlate well with the magnetic properties, clearly demonstrating the presence of spin-dependent transport.
Origin of the Strain Sensitivity for an Organic Heptazole Thin-Film and Its Strain Gauge Application
NASA Astrophysics Data System (ADS)
Bae, Heesun; Jeon, Pyo Jin; Park, Ji Hoon; Lee, Kimoon
2018-04-01
The authors report on the origin of the strain sensitivity for an organic C26H16N2 (heptazole) thinfilm and its application for the detection of tensile strain. From the electrical characterization on the thin-film transistor adopting a heptazole channel, heptazole film exhibits p-channel conduction with a relatively low value of field-effect mobility (0.05 cm2/Vs), suggesting a hopping conduction behavior via hole carriers. By analyzing the strain and temperature dependences of the electrical conductivity, we reveal that the electrical conduction for a heptazole thin-film is dominated by the variable range hopping process with quite a large energy separation (224.9 meV) between the localized states under a relatively long attenuation length (10.46 Å). This indicates that a change in the inter-grain spacing that is much larger than the attenuation length is responsible for the reversible modification of electrical conductivity depending on strain for the heptazole film. By utilizing our heptazole thin-film both as a strain sensitive passive resistor and an active semiconducting channel layer, we can achieve a strain gauge device exhibiting reversible endurance for tensile strains up to 2.12%. Consequently, this study advances the understanding of the fundamental strain sensing mechanism in a heptazole thin-film toward finding a promise material with a strain gauge for applications as potential flexible devices and/or wearable electronics.
The MEE Report: Reaching the Hip-Hop Generation.
ERIC Educational Resources Information Center
MEE Productions Inc., Philadelphia, PA. Research Div.
Effective communications strategies for delivering substance abuse and other prosocial behavior messages to African American inner city teenagers were studied. After pilot studies, the final sample consisted of middle school and high school students from the urban centers of New York City; Washington, D.C.; Camden (New Jersey); Philadelphia…
Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport.
Behr, Jürgen; Gänzle, Michael G; Vogel, Rudi F
2006-10-01
Resistance to hops is a prerequisite for lactic acid bacteria to spoil beer. In this study we analyzed mechanisms of hop resistance of Lactobacillus brevis at the metabolism, membrane physiology, and cell wall composition levels. The beer-spoiling organism L. brevis TMW 1.465 was adapted to high concentrations of hop compounds and compared to a nonadapted strain. Upon adaptation to hops the metabolism changed to minimize ethanol stress. Fructose was used predominantly as a carbon source by the nonadapted strain but served as an electron acceptor upon adaptation to hops, with concomitant formation of acetate instead of ethanol. Furthermore, hop adaptation resulted in higher levels of lipoteichoic acids (LTA) incorporated into the cell wall and altered composition and fluidity of the cytoplasmic membrane. The putative transport protein HitA and enzymes of the arginine deiminase pathway were overexpressed upon hop adaptation. HorA was not expressed, and the transport of hop compounds from the membrane to the extracellular space did not account for increased resistance to hops upon adaptation. Accordingly, hop resistance is a multifactorial dynamic property, which can develop during adaptation. During hop adaptation, arginine catabolism contributes to energy and generation of the proton motive force until a small fraction of the population has established structural improvements. This acquired hop resistance is energy independent and involves an altered cell wall composition. LTA shields the organism from accompanying stresses and provides a reservoir of divalent cations, which are otherwise scarce as a result of their complexation by hop acids. Some of the mechanisms involved in hop resistance overlap with mechanisms of pH resistance and ethanol tolerance and as a result enable beer spoilage by L. brevis.
Helicobacter pylori HopE and HopV porins present scarce expression among clinical isolates
Lienlaf, Maritza; Morales, Juan Pablo; Díaz, María Inés; Díaz, Rodrigo; Bruce, Elsa; Siegel, Freddy; León, Gloria; Harris, Paul R; Venegas, Alejandro
2010-01-01
AIM: To evaluate how widely Helicobacter pylori (H. pylori) HopE and HopV porins are expressed among Chilean isolates and how seroprevalent they are among infected patients in Chile. METHODS: H. pylori hopE and hopV genes derived from strain CHCTX-1 were cloned by polymerase chain reaction (PCR), sequenced and expressed in Escherichia coli AD494 (DE3). Gel-purified porins were used to prepare polyclonal antibodies. The presence of both genes was tested by PCR in a collection of H. pylori clinical isolates and their expression was detected in lysates by immunoblotting. Immune responses against HopE, HopV and other H. pylori antigens in sera from infected and non-infected patients were tested by Western blotting using these sera as first antibody on recombinant H. pylori antigens. RESULTS: PCR and Western blotting assays revealed that 60 and 82 out of 130 Chilean isolates carried hopE and hopV genes, respectively, but only 16 and 9, respectively, expressed these porins. IgG serum immunoreactivity evaluation of 69 H. pylori-infected patients revealed that HopE and HopV were infrequently recognized (8.7% and 10.1% respectively) compared to H. pylori VacA (68.1%) and CagA (59.5%) antigens. Similar values were detected for IgA serum immunoreactivity against HopE (11.6%) and HopV (10.5%) although lower values for VacA (42%) and CagA (17.4%) were obtained when compared to the IgG response. CONCLUSION: A scarce expression of HopE and HopV among Chilean isolates was found, in agreement with the infrequent seroconversion against these antigens when tested in infected Chilean patients. PMID:20082477
Kalveram, Karl Theodor; Haeufle, Daniel F B; Seyfarth, André; Grimmer, Sten
2012-01-01
While hopping, 12 subjects experienced a sudden step down of 5 or 10 cm. Results revealed that the hopping style was "terrain following". It means that the subjects pursued to keep the distance between maximum hopping height (apex) and ground profile constant. The spring-loaded inverse pendulum (SLIP) model, however, which is currently considered as template for stable legged locomotion would predict apex-preserving hopping, by which the absolute maximal hopping height is kept constant regardless of changes of the ground level. To get more insight into the physics of hopping, we outlined two concepts of energy management: "constant energy supply", by which in each bounce--regardless of perturbations--the same amount of mechanical energy is injected, and "lost energy supply", by which the mechanical energy that is going to be dissipated in the current cycle is assessed and replenished. When tested by simulations and on a robot testbed capable of hopping, constant energy supply generated stable and robust terrain following hopping, whereas lost energy supply led to something like apex-preserving hopping, which, however, lacks stability as well as robustness. Comparing simulated and machine hopping with human hopping suggests that constant energy supply has a good chance to be used by humans to generate hopping.
Multi-hop teleportation based on W state and EPR pairs
NASA Astrophysics Data System (ADS)
Hai-Tao, Zhan; Xu-Tao, Yu; Pei-Ying, Xiong; Zai-Chen, Zhang
2016-05-01
Multi-hop teleportation has significant value due to long-distance delivery of quantum information. Many studies about multi-hop teleportation are based on Bell pairs, partially entangled pairs or W state. The possibility of multi-hop teleportation constituted by partially entangled pairs relates to the number of nodes. The possibility of multi-hop teleportation constituted by double W states is after n-hop teleportation. In this paper, a multi-hop teleportation scheme based on W state and EPR pairs is presented and proved. The successful possibility of quantum information transmitted hop by hop through intermediate nodes is deduced. The possibility of successful transmission is after n-hop teleportation. Project supported by the National Natural Science Foundation of China (Grant No. 61571105), the Prospective Future Network Project of Jiangsu Province, China (Grant No. BY2013095-1-18), and the Independent Project of State Key Laboratory of Millimeter Waves, China (Grant No. Z201504).
Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric
2016-01-01
Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.
Rethinking Pedagogy in Urban Spaces: Implementing Hip-Hop Pedagogy in the Urban Science Classroom
ERIC Educational Resources Information Center
Adjapong, Edmund S.; Emdin, Christopher
2015-01-01
A significant amount of research regarding Hip-Hop Based Education (HHBE) fails to provide insight on how to incorporate elements of Hip-Hop into daily teaching practices; rather Hip-Hop based educators focus mainly on incorporating Hip-Hop culture into curricula. This study explores the benefits of using two specific Hip-Hop pedagogical practices…
Alternating current transport and dielectric relaxation of nanocrystalline graphene oxide
NASA Astrophysics Data System (ADS)
Zedan, I. T.; El-Menyawy, E. M.
2018-07-01
Graphene oxide (GO) has been synthesized from natural graphite using modified Hummer's method and is subjected to sonication for 1 h. X-ray diffraction (XRD) showed that the prepared GO has nanocrystalline structure with particle size of about 5 nm and high-resolution transmission electron microscope showed that it had a layered structure. The nanocrystalline GO powder was pressed as a disk and the alternating current (AC) electrical conductivity, σAC, and dielectric properties have been investigated in the frequency range 50Hz-5 MHz and temperature range 298-523K using parallel plate spectroscopic technique. Analysis of σ AC as a function of frequency shows that the relation follows Jonscher's universal law with frequency exponent decreases with increasing temperature in which the correlated barrier hopping model is applicable to describe the behavior. The dielectric constant and dielectric loss are studied as functions of frequency and temperature. The dielectric modulus formalism is used for describing the relaxation process in which the relaxation time and its activation energy were evaluated.
Dielectric and modulus analysis of the photoabsorber Cu2SnS3
NASA Astrophysics Data System (ADS)
Lahlali, S.; Essaleh, L.; Belaqziz, M.; Chehouani, H.; Alimoussa, A.; Djessas, K.; Viallet, B.; Gauffier, J. L.; Cayez, S.
2017-12-01
Dielectric properties of the ternary semiconductor compound Cu2SnS3 is studied for the first time in the high temperature range from 300 °C to 440 °C with the frequency range 1 kHz to 1 MHz. The dielectric constant ε ‧ and dielectric loss tan (δ) were observed to increase with temperature and decrease rapidly with frequency to remains constant at high frequencies. The variation of the dielectric loss Ln (ε ") with L n (ω) was found to follow the empirical law, ε " = B ω m (T). The dielectric data were analyzed using complex electrical modulus M* at various temperatures. The activation energy responsible for the relaxation is estimated from the analysis of the modulus spectra. The value of the hopping barrier potential is estimated from the dielectric loss and compared with the value previously obtained from ac-conductivity. These results are critical for understanding the behavior of based polycrystalline family of Cu2SnS3 for absorber materials in solar-cells.
NASA Astrophysics Data System (ADS)
El-Menyawy, E. M.; Zedan, I. T.; Nawar, H. H.
2014-03-01
The electrical and dielectric properties of the synthesized 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile (AHNA) have been studied. The direct and alternating current (DC and AC) conductivities and complex dielectric constant were investigated in temperature range 303-403 K. The AC conductivity and dielectric properties of AHNA were investigated over frequency range 100 Hz-5 MHz. From DC and AC measurements, electrical conduction is found to be a thermally activated process. The frequency-dependent AC conductivity obeys Jonscher's universal power law in which the frequency exponent decreases with increasing temperature. The correlated barrier hopping (CBH) is the predominant model for describing the charge carrier transport in which the electrical parameters are evaluated. The activation energy is found to decrease with increasing frequency. The behaviors of dielectric and dielectric loss are discussed in terms of a polarization mechanism. The dielectric loss shows frequency power law from which the maximum barrier height is determined as 0.19 eV in terms of the Guintini model.
NASA Astrophysics Data System (ADS)
Sundar Manoharan, S.; Sahu, R. K.; Rao, M. L.; Elefant, D.; Schneider, C. M.
2002-08-01
The La0.7Pb0.3Mn 1 - x Ru x O3 (0.0 <= x <= 0.4) system shows an innate relationship between Mn and Ru ions by a unique double-exchange mediated transport behavior. This is exonerated by the coexistence of Tp and Tc (range 330 K 245 K for 0.0 <= x <= 0.4). For Ru > 30%, the hole carrier mass influences the transport property. X-ray absorption spectra suggest that the Tc-Tp match is due to the transport mediated by the Mn3+/Mn4+ leftrightarrow Ru4+/Ru5+ redox pair and also due to the broad low-spin Ru:4d conduction band. For x > 0.2, T < 0.5Tc obeys a modified variable-range hopping model, where kT0 propto (M/Ms)2, suggesting a random magnetic potential which localizes the charge carriers.
NASA Astrophysics Data System (ADS)
Popov, Guerman; Greenblatt, Martha; Croft, Mark
2003-01-01
Ba2-xSrxMnReO6 (x=0, 0.5, 1, 2) phases with a double-perovskite structure were prepared by solid-state techniques in evacuated sealed silica tubes. Mn2+ and Re6+ are virtually completely ordered on the B sites. The compounds are ferrimagnetic below 120 K. The maximum saturation moment was obtained for a compound with x=0.5 whose tolerance factor is closest to 1. The whole series of compounds, 0.0⩽x⩽2.0, exhibits semiconducting behavior with variable-range hopping type of conduction. Sr2MnReO6 has an unusually high coercive field (2.6 T at 5 K) and two transitions in the M-H loop. Ba2MnReO6 shows large positive magnetoresistance (14% at 80 K, 5 T) below 140 K, while the other compositions studied exhibit negative magnetoresistance in the temperature range measured.
Effect of Impedance Relaxation in Conductance Mechanisms in TiO2/ITO/ZnO:Al/p-Si Heterostructure
NASA Astrophysics Data System (ADS)
Nouiri, M.; El Mir, L.
2018-03-01
The electrical conduction of a TiO2/ITO/ZnO:Al/p-Si structure under alternating-current excitation was investigated in the temperature range of 80 K to 300 K. The frequency dependence of the capacitance and conductance revealed the response of a thermally activated trap characterized by activation energy of about 140 meV. The frequency dependence of the conductance obeyed the universal dynamic response according to the common relation G = Aωs . The temperature dependence of the frequency exponent s illustrates that, in the low frequency range, conduction is governed by the correlated barrier hopping (CBH) mechanism involving two distinct energy levels for all investigated temperatures. For the high frequency region, conduction takes place according to the overlapping large-polaron tunneling mechanism at low temperatures but the CBH mechanism becomes dominant in the high temperature region. This difference in electrical behavior between low and high temperatures can be attributed to the dominance of dielectric relaxation at low compared with high temperatures.
Electron localization mechanism in the normal state of high- T c superconductors
NASA Astrophysics Data System (ADS)
Yamani, Z.; Akhavan, M.
The ceramic compounds Gd 1- xPr xCu 3O 7- y (GdPr-123) with 0.0 ≤ x≤1.0, were synthesized by standard solid state reaction technique. XRD analysis shows a predominantly single phase perovskite structure with the orthorhombic Pmmm symmetry. The samples have been examined for superconductivity by measuring electrical resistivity within the temperature range 10-300 K. These measurements show a suppression of superconductivity with increasing x. It is observed that the critical Pr concentration ( x cr) required to suppress superconductivity is about 0.45, the samples with x < 0.45 become superconducting and are metallic in their normal state, the samples with x ≥ 0.45 do not become superconducting and show a semiconducting behavior above 10 K. To interpret the normal state properties of the samples, the quantum percolation theory based on localized states is applied. A cross-over between variable-range hopping (VRH) and Coulomb gap (CG) mechanisms is observed as a result of decreasing the Pr content.
Study of temperature dependent electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses
NASA Astrophysics Data System (ADS)
Deepika, Singh, Hukum
2018-05-01
This paper reports the variation in electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses studied at different temperatures. The amorphous samples were prepared using the melt quenching method and the electrical measurements were performed on Keithley Electrometer in the temperature ranging from 298-373 K. The I-V characteristics were noted at different temperatures and the data obtained was analysed to get dc electrical conductivity and activation energy of electrical conduction. Further, Mott's 3D VRH model has been applied to obtain density of states, hopping range and hopping energy at different temperatures. The obtained results show that dc electrical conductivity increases with increase in Bi composition in Se-Te system. These compositions also show close agreement to Mott's VRH model.
Redirected charge transport arising from diazonium grafting of carbon coated LiFePO4.
Madec, L; Seid, K A; Badot, J-C; Humbert, B; Moreau, P; Dubrunfaut, O; Lestriez, B; Guyomard, D; Gaubicher, J
2014-11-07
The morphological and the electrical properties of carbon coated LiFePO4 (LFPC) active material functionalized by 4-ethynylbenzene tetrafluoroboratediazonium salt were investigated. For this purpose, FTIR, Raman, XPS, High Resolution Transmission Electron Microscopy (HRTEM) and Broadband Dielectric Spectroscopy (BDS) were considered. Electronic conductivities of LFPC samples at room temperature were found to decrease in a large frequency range upon simple immersion in polar solvents and to decrease further upon functionalization. Due to their high dipole moment, strongly physisorbed molecules detected by XPS likely add barriers to electron hopping. Significant alteration of the carbon coating conductivity was only observed, however, upon functionalization. This effect is most presumably associated with an increase in the sp(3) content determined by Raman spectroscopy, which is a strong indication of the formation of a covalent bond between the organic layer and the carbon coating. In this case, the electron flux appears to be redirected and relayed by short-range (intra chain) and long-range (inter chain) electron transport through molecular oligomers anchored at the LFPC surface. The latter are controlled by tunnelling and slightly activated hopping, which enable higher conductivity at low temperature (T < 250 K). Alteration of the electron transport within the carbon coating also allows detection of a relaxation phenomenon that corresponds to small polaron hopping in bulk LiFePO4. XPS and HRTEM images allow a clear correlation of these findings with the island type oligomeric structure of grafted molecules.
READ, PAUL; OLIVER, JON L.; DE STE CROIX, MARK B.A.; MYER, GREGORY D.; LLOYD, RHODRI S.
2016-01-01
Deficits in neuromuscular control during movement patterns such as landing are suggested pathomechanics that underlie sport-related injury. A common mode of assessment is measurement of landing forces during jumping tasks; however, these measures have been used less frequently in male youth soccer players and reliability data is sparse. The aim of this study was to examine the reliability of a field-based neuromuscular control screening battery using force plate diagnostics in this cohort. Twenty six pre-peak height velocity (PHV) and twenty five post-PHV elite male youth soccer players completed a drop vertical jump (DVJ), single leg 75% horizontal hop and stick (75%HOP) and single leg countermovement jump (SLCMJ). Measures of peak landing vertical ground reaction force (pVGRF), time to stabilisation (TTS), time to pVGRF, and pVGRF asymmetry were recorded. A test, re-test design was used and reliability statistics included: change in mean, intraclass correlation coefficient (ICC) and coefficient of variation (CV). No significant differences in mean score were reported for any of the assessed variables between test sessions. In both groups, pVGRF and asymmetry during the 75%HOP and SLCMJ demonstrated largely acceptable reliability (CV ≤ 10%). Greater variability was evident in DVJ pVGRF and all other assessed variables, across the three protocols (CV range = 13.8 – 49.7%). ICC values ranged from small to large and were generally higher in the post-PHV players. The results of this study suggest that pVGRF and asymmetry can be reliably assessed using a 75%HOP and SLCMJ in this cohort. These measures could be utilized to support a screening battery for elite male youth soccer players and for test re-test comparison. PMID:27075641
NASA Astrophysics Data System (ADS)
Utama, M. Iqbal Bakti; Lu, Xin; Zhan, Da; Ha, Son Tung; Yuan, Yanwen; Shen, Zexiang; Xiong, Qihua
2014-10-01
Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures.Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures. Electronic supplementary information (ESI) available: Further experiments on patterning and additional electrical characterizations data. See DOI: 10.1039/c4nr03817g
Crowding and hopping in a protein’s diffusive transport on DNA
NASA Astrophysics Data System (ADS)
Koslover, Elena F.; Díaz de la Rosa, Mario; Spakowitz, Andrew J.
2017-02-01
Diffusion is a ubiquitous phenomenon that impacts virtually all processes that involve random fluctuations, and as such, the foundational work of Smoluchowski has proven to be instrumental in addressing innumerable problems. Here, we focus on a critical biological problem that relies on diffusive transport and is analyzed using a probabilistic treatment originally developed by Smoluchowski. The search of a DNA binding protein for its specific target site is believed to rely on non-specific binding to DNA with transient hops along the chain. In this work, we address the impact of protein crowding along the DNA on the transport of a DNA-binding protein. The crowders dramatically alter the dynamics of the protein while bound to the DNA, resulting in single-file transport that is subdiffusive in nature. However, transient unbinding and hopping results in a long-time behavior (shown to be superdiffusive) that is qualitatively unaffected by the crowding on the DNA. Thus, hopping along the chain mitigates the role that protein crowding has in restricting the translocation dynamics along the chain. The superdiffusion coefficient is influenced by the quantitative values of the effective binding rate, which is influenced by protein crowding. We show that vacancy fraction and superdiffusion coefficient exhibits a non-monotonic relationship under many circumstances. We leverage analytical theory and dynamic Monte Carlo simulations to address this problem. With several additional contributions, the core of our modeling work adopts a reaction-diffusion framework that is based on Smoluchowski’s original work.
Fortes, Ana M; Santos, Filipa; Pais, Maria S
2010-01-01
The usage of Humulus lupulus for brewing increased the demand for high-quality plant material. Simultaneously, hop has been used in traditional medicine and recently recognized with anticancer and anti-infective properties. Tissue culture techniques have been reported for a wide range of species, and open the prospect for propagation of disease-free, genetically uniform and massive amounts of plants in vitro. Moreover, the development of large-scale culture methods using bioreactors enables the industrial production of secondary metabolites. Reliable and efficient tissue culture protocol for shoot regeneration through organogenic nodule formation was established for hop. The present review describes the histological, and biochemical changes occurring during this morphogenic process, together with an analysis of transcriptional and metabolic profiles. We also discuss the existence of common molecular factors among three different morphogenic processes: organogenic nodules and somatic embryogenesis, which strictly speaking depend exclusively on intrinsic developmental reprogramming, and legume nitrogen-fixing root nodules, which arises in response to symbiosis. The review of the key factors that participate in hop nodule organogenesis and the comparison with other morphogenic processes may have merit as a study presenting recent advances in complex molecular networks occurring during morphogenesis and together, these provide a rich framework for biotechnology applications.
AC conduction of Ba1-xCaxTiO3 and BZT-BCTx
NASA Astrophysics Data System (ADS)
Khien, Nguyen Van; Huy, Than Trong; Hong, Le Van
2018-03-01
Ba1-xCaxTiO3 (BCTx), (x =0.0-0.3) and Ba0.8Zr0.2TiO3-Ba1-xCaxTiO3 (BZT-BCTx), (x=0.15-0.35) were fabricated by the solid state reaction method. Phase structure of the material samples was identified by X-ray diffraction. The impedance versus frequency in a range of 100 Hz to 2.5 MHz was measured for all the samples at room temperature. AC conductivity versus frequency of the BCTx and BZT-BCTx was evaluated and fitted by using the extended Universal Dielectric Response (UDR) equations. The fitting results were discussed in detail and shown that the localized reorientation polarization-based mechanism is most contributed in BCTx matrial samples. Basically both two the hopping polaron and polarization mechanisms play roles in BZT-BCTx material samples. In contrary the short-range polaron hopping is dominated in ac conductivity of BZT-BCTx material samples in low frequency range.
Castañeda-Ojeda, María Pilar; Moreno-Pérez, Alba; Ramos, Cayo; López-Solanilla, Emilia
2017-01-01
The effector repertoire of the olive pathogen P. savastanoi pv. savastanoi NCPPB 3335 includes two members of the HopAO effector family, one of the most diverse T3E families of the P. syringae complex. The study described here explores the phylogeny of these dissimilar members, HopAO1 and HopAO2, among the complex and reveals their activities as immune defense suppressors. Although HopAO1 is predominantly encoded by phylogroup 3 strains isolated from woody organs of woody hosts, both HopAO1 and HopAO2 are phylogenetically clustered according to the woody/herbaceous nature of their host of isolation, suggesting host specialization of the HopAO family across the P. syringae complex. HopAO1 and HopAO2 translocate into plant cells and show hrpL-dependent expression, which allows their classification as actively deployed type III effectors. Our data also show that HopAO1 and HopAO2 possess phosphatase activity, a hallmark of the members of this family. Both of them exert an inhibitory effect on early plant defense responses, such as ROS production and callose deposition, and are able to suppress ETI responses induced by the effectorless polymutant of P. syringae pv. tomato DC3000 (DC3000D28E) in Nicotiana. Moreover, we demonstrate that a ΔhopAO1 mutant of P. savastanoi NCPBB 3335 exhibits a reduced fitness and virulence in olive plants, which supports the relevance of this effector during the interaction of this strain with its host plants. This work contributes to the field with the first report regarding functional analysis of HopAO homologs encoded by P. syringae or P. savastanoi strains isolated from woody hosts. PMID:28529516
Reeb-Whitaker, Carolyn K; Bonauto, David K
2014-11-01
There is little published evidence for occupational respiratory disease caused by hop dust inhalation. In the United States, hops are commercially produced in the Pacific Northwest region. To describe occupational respiratory disease in hop workers. Washington State workers' compensation claims filed by hop workers for respiratory disease were systematically identified and reviewed. Incidence rates of respiratory disease in hop workers were compared with rates in field vegetable crop farm workers. Fifty-seven cases of respiratory disease associated with hop dust inhalation were reported from 1995 to 2011. Most cases (61%) were diagnosed by the attending health care practitioner as having work-related asthma. Seven percent of cases were diagnosed as chronic obstructive pulmonary disease, and the remaining cases were diagnosed as allergic respiratory disorders (eg, allergic rhinitis) or asthma-associated symptoms (eg, dyspnea). Cases were associated with hop harvesting, secondary hop processing, and indirect exposure. The incidence rate of respiratory disease in hop workers was 15 cases per 10,000 full-time workers, which was 30 times greater than the incidence rate for field vegetable crop workers. A strong temporal association between hop dust exposure and respiratory symptoms and a clear association between an increase in hop dust concentrations and the clinical onset of symptoms were apparent in 3 cases. Occupational exposure to hop dust is associated with respiratory disease. Respiratory disease rates were higher in hop workers than in a comparison group of agricultural workers. Additional research is needed before hop dust can be confirmed as a causative agent for occupational asthma. Copyright © 2014 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Geist, Kathleen; Bradley, Claire; Hofman, Alan; Koester, Rob; Roche, Fenella; Shields, Annalise; Frierson, Elizabeth; Rossi, Ainsley; Johanson, Marie
2017-11-01
Randomized controlled trial. The aim of this study was to determine the effects of dry needling on hamstring extensibility and functional performance tests among asymptomatic individuals with hamstring muscle tightness. Dry needling has been shown to increase range of motion in the upper quarter and may have similar effects in the lower quarter. 27 subjects with hamstring extensibility deficits were randomly assigned to side of treatment (dominant or nondominant) and group (blunt needling or dry needling). The first session included measurement of hamstring extensibility and performance on 4 unilateral hop tests, instruction in home hamstring stretching exercises and needling distal to the ischial tuberosity and midbellies of the medial and lateral hamstrings. A second session, 3-5 days following the first session, included outcome measures and a second needling intervention, and a third session, 4-6 weeks following the first session, included outcome measures only. A 2 × 3 × 2 ANOVA was used to statistically analyze the data. Hamstring extensibility showed a significant side × time interaction (P < .05). The single hop for distance, timed 6-meter hop, and the crossover hop test had a significant main effect of time (P < .05). The triple hop for distance showed a significant side × time × group interaction (P < .05). It does not appear dry needling results in increased extensibility beyond that of stretching alone in asymptomatic individuals. Our study findings suggest that dry needling may improve certain dimensions of functional performance, although no clear conclusion can be made. Intervention, level 2b.
Spin-orbit interaction and negative magnetoresistance for localized electrons in InSb quantum wells
NASA Astrophysics Data System (ADS)
Ishida, S.; Manago, T.; Nishizako, N.; Geka, H.; Shibasaki, I.
2010-02-01
Weak-field magnetoresistance (MR) in the variable-range hopping (VRH) in the presence of spin-orbit interaction (SOI) for 2DEGs at the hetero-interface of InSb quantum wells was examined in view of the quantum interference (QI) effect. Samples with the sheet resistance, ρ> ρc= h/ e2, exhibit VRH, while those with ρ< ρc exhibit weak localiz ation (WL) at low temperatures, where h/ e2 is the quantum resistance. In the WL regime, a positive magnetoresistance (MR) peak due to the weak anti-localization (WAL) with SOI is clearly observed in low magnetic field. In contrast, the low-field hopping MR remains entirely negative surviving the SOI, indicating that the hopping MR due to the QI is completely negative regardless of the SOI. This result supports the predictions based on the directed-path approach for forward-scattering paths ignoring the back-scattering return loops for the QI in the VRH.
NASA Technical Reports Server (NTRS)
Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor); Wysocki, Gerard (Inventor)
2010-01-01
A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.
NASA Astrophysics Data System (ADS)
Brito, Pedro; Terrinha, Pedro; Magalhães, Vitor; Santos, Joana; Duarte, Débora; Campos, Rui
2017-04-01
The BLUECOM + project (Connecting Humans and Systems at Remote Ocean Areas using Cost-effective Broadband Communications) aims at developing an innovative communications solution that will enable broadband, cost-effective Internet access in remote ocean areas (ideally beyond 100 km from shore), using standard wireless access technologies - e.g., Wi-Fi and LTE. BLUECOM+ is an EEA Grants PT02 project developed by INESC TEC (Institute for Systems and Computer Engineering, Technology and Science), IPMA (Portuguese Institute for the Sea and the Atmosphere), and MARLO (Transport and Logistics Consultants). The BLUECOM+ key idea and innovation lies on deploying a long-term communications infrastructure, which will extend broadband communications from shore to remote ocean areas by leveraging (1) Helikites - a combination of a helium balloon and kite - that can be tethered to existing or new land and ocean platforms, (2) long range line of sight wireless communications using TV white spaces, and (3) multi-hop relaying techniques to further increase range. At this stage the communications protocols were defined and tested in lab conditions and two sea trials for demonstration of the system were carried out in July/2016 and September/2016 using research vessels. Results of the cruises: 1st cruise corresponded to the first sea-trials of the project. Single-hop communications were established between a land base station deployed at Cabo Espichel lighthouse and the Sea Station deployed in a Helikite launched from the vessel and flying at an altitude of 120m. Successful communications between the two stations were established at a maximum distance of 40km with a data rate in excess of 1Mbit/s. 2nd cruise corresponded to the second sea-trials. During this trial single-hop and two-hop land-sea communications were tested. For two-hop communications tests two Helikites were launched at 120m from two vessels. The first was launched from a vessel closer to shore; the other was launched from the second vessel and connected to the first to have Internet access. The tests were performed at increasing distances up to a maximum distance of 45km from the land station and the first hop, and up to 10km between the two Helikites. The main results achieved were: • Single-hop data rates in excess of 1Mbit/s up to 45km; • Two-hop data rates in excess of 500kbit/s up to 55km; • Video conference with land at 42km offshore without a glitch; • Real-time upload of data collected by an autonomous vehicle offshore to the cloud. A 3rd cruise will be done this year to test video streaming to shore of sea bottom images acquired from the ship with a drop down video system. This will include the integration of the BLUECOM+ network with the drop down video system, in order to demonstrate real-time underwater video transmission offshore. Acknowledgements: This work was developed as part of the BLUECOM+ project (PT02_Aviso4_0005) funded by the EEA Grants and Norway Grants.
Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators
Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle
2017-07-27
Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less
Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle
Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less
Williams, Olajide; DeSorbo, Alexandra; Sawyer, Vanessa; Apakama, Donald; Shaffer, Michele; Gerin, William; Noble, James
2016-02-01
We explored the effect of a culturally targeted calorie label intervention on food purchasing behavior of elementary school students. We used a quasi-experimental design with two intervention schools and one control school to assess food purchases of third through fifth graders at standardized school food sales before and after the intervention (immediate and delayed) in schools. The intervention comprised three 1-hour assembly-style hip-hop-themed multimedia classes. A mean total of 225 children participated in two baseline preintervention sales with and without calorie labels; 149 children participated in immediate postintervention food sales, while 133 children participated in the delayed sales. No significant change in purchased calories was observed in response to labels alone before the intervention. However, a mean decline in purchased calories of 20% (p < .01) and unhealthy foods (p < .01) was seen in immediately following the intervention compared to baseline purchases, and this persisted without significant decay after 7 days and 12 days. A 3-hour culturally targeted calorie label intervention may improve food-purchasing behavior of children. © 2015 Society for Public Health Education.
NASA Astrophysics Data System (ADS)
Lunkenheimer, P.; Mayr, F.; Loidl, A.
2006-07-01
We report the frequency-dependent conductivity of the manganite system La1-xSrxMnO3 (x0.2) when approaching the metal-insulator transition from the insulating side. Results from low-frequency dielectric measurements are combined with spectra in the infrared region. For low doping levels the behavior is dominated by hopping transport of localized charge carriers at low frequencies and by phononic and electronic excitations in the infrared region. For the higher Sr contents the approach of the metallic state is accompanied by the successive suppression of the hopping contribution at low frequencies and by the development of polaronic excitations in the infrared region, which finally become superimposed by a strong Drude contribution in the fully metallic state.
Propulsion of the Water Flea, Daphnia magna: Experiments, Scaling, and Modelling
NASA Astrophysics Data System (ADS)
Skipper, A. N.; Murphy, D.; Webster, D. R.; Yen, J.
2016-02-01
The freshwater crustacean Daphnia magna is a widely studied zooplankton in relation to food webs, predator-prey interactions, and other biological/ecological considerations; however, their locomotion is poorly quantified and understood. These water fleas utilize a hop-and-sink mechanism that consists of making quick, impulsive jumps by beating their antennae to propel themselves forward ( 1 body length). The animals then sink for a period, during which they stretch out their antennae to increase drag and thereby reduce their sinking velocity. Time-resolved three-dimensional flow fields surrounding the animals were quantified with a unique infrared tomographic particle image velocity (tomo-PIV) system. Three-dimensional kinematics data were also extracted from the image sequences. In the current work, we compared body kinematics and flow disturbance among organisms of size in the range of 1.3 to 2.8 mm. The stroke cycle averaged 150 ms in duration, ranging from 100 to 180 ms; this period is generally evenly split between the power and recovery strokes. The range of peak hop velocity was 27.2 to 32.5 mm/s, and peak acceleration was in the range of 0.68 to 1.8 m/s2. The results showed a distinct relationship between peak hop speed (Vmax 14 BL/s) and body size; these data collapsed onto a single time-record curve during the power stroke when properly non-dimensionalized. The fluid flow induced by each antennae consisted of a viscous vortex ring that demonstrated a slow decay in the wake. The strength, size, and decay of the induced viscous vortex rings were compared as a function of organism size. Finally, the viscous vortex rings were analyzed in the context of a double Stokeslet model that consisted of two impulsively applied point forces separated by the animal width.
Structural, transport and thermoelectric properties of Nb-doped CaLaMnO perovskite
NASA Astrophysics Data System (ADS)
Villa, J. I.; Rodríguez, J. E.
2014-12-01
Poly-crystalline perovskite-type (CaLaMnO) Ca0.95La0.05Mn1-xNbxO3 (0.0 ≤ x ≤ 0.10) was synthesized using the conventional solid-state reaction method. Structural and morphological properties were studied by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM), respectively. Their transport and thermoelectric properties were studied from electrical resistivity ρ(T) and Seebeck coefficient S(T) measurements as a function of temperature and niobium content. The Rietveld analysis revealed a compound with orthorhombic structure, where their lattice parameters increase with the niobium content which is given by a distortion in octahedra MnO6. Electrical resistivity exhibits a semiconducting-like behavior, for low niobium contents (Nb ≤ 0.03) the magnitude of the electrical resistivity decreases, reaching minimum values close to 0.1 Ω - cm. Seebeck coefficient is negative in all studied temperature range. The temperature behavior of S(T) is interpreted in terms of variable range hopping (VRH) and Heikes model. From ρ(T) and S(T) measurements it was possible to calculate the thermoelectric power factor (PF), which reaches maximum values around 0.4 μW /K2 -cm. These values make these ceramics promising electronic thermoelectric materials.
NASA Astrophysics Data System (ADS)
Zuo, X. Z.; Yang, J.; Yuan, B.; Song, D. P.; Tang, X. W.; Zhang, K. J.; Zhu, X. B.; Song, W. H.; Dai, J. M.; Sun, Y. P.
2015-03-01
We investigate the structural, magnetic, dielectric properties, and scaling behaviors of Aurivillius compounds Bi6-x/3Fe2Ti3-2x(WCo)xO18 (0 ≤ x ≤ 0.15). The room-temperature weak ferromagnetism is observed for the W/Co co-doped samples. The results of the dielectric constant ɛr, complex impedance Z ″ , the dc conductivity σdc, and hopping frequency fH manifest that the dielectric relaxation of the x = 0 sample and the doped samples in the dielectric anomaly region (450-750 K) can be ascribed to the trap-controlled ac conduction around the doubly ionized oxygen vacancies and the localized hopping process of oxygen vacancies, respectively. The scaling behaviors reveal that the dynamic process of both electrons in the x = 0 sample and oxygen vacancies in the doped samples is temperature independent. The ferroelectric Curie-temperature Tc decreases slightly from 973 K to 947 K with increasing the doping level of W/Co. In addition, the dielectric loss exhibits a dielectric relaxation above 800 K with the rather large activation energies (1.95 eV ≤ Ea ≤ 2.72 eV).
Quantitative Improvements in Hop Test Scores After a 6-Week Neuromuscular Training Program.
Meierbachtol, Adam; Rohman, Eric; Paur, Eric; Bottoms, John; Tompkins, Marc
2016-09-12
In patients who have undergone anterior cruciate ligament reconstruction (ACLR), the effect of neuromuscular re-education (NMR) programs on standard hop tests outcomes, including limb symmetry indices (LSIs), is unknown. Both legs will show improvement in hop test-measured units after neuromuscular training, but the involved leg will show relatively greater improvement leading to improved limb symmetry. Patients younger than 18 years will show more improvement than patients who are older. Retrospective cohort study. Level 3. Patients self-selected their participation in this NMR program, which was completed after traditional outpatient physical therapy. Pre- and post-hop test scores were recorded as the primary outcome measure. Seventy-one patients met the inclusion criteria and completed hop testing. Overall, the involved leg showed significant improvements (pretest/posttest) for single-leg hop (138.30 cm/156.89 cm), triple crossover hop (370.05 cm/423.11 cm), and timed hop (2.21 s/1.99 s). Similarly, on the uninvolved leg, improvements were seen for the single-leg hop (159.30 cm/171.87 cm) and triple crossover hop (427.50 cm/471.27 cm). Overall mean limb symmetry improved across all 4 hop tests, but there was significant improvement only on the single-leg hop (87% pretest to 92% posttest). Patients younger than 18 years showed mean significant LSI improvement on the triple crossover hop. Utilizing an intensive 6-week NMR program after ACLR prior to return to sport can improve quantitative hop test measurements. Patients younger than 18 years had greater improvement than those 18 years and older. Advanced NMR programs can be successfully utilized in the postoperative ACLR setting to improve quantitative limb symmetry. © 2016 The Author(s).
Quantitative Improvements in Hop Test Scores After a 6-Week Neuromuscular Training Program
Meierbachtol, Adam; Rohman, Eric; Paur, Eric; Bottoms, John; Tompkins, Marc
2016-01-01
Background: In patients who have undergone anterior cruciate ligament reconstruction (ACLR), the effect of neuromuscular re-education (NMR) programs on standard hop tests outcomes, including limb symmetry indices (LSIs), is unknown. Hypothesis: Both legs will show improvement in hop test–measured units after neuromuscular training, but the involved leg will show relatively greater improvement leading to improved limb symmetry. Patients younger than 18 years will show more improvement than patients who are older. Study Design: Retrospective cohort study. Level of Evidence: Level 3. Methods: Patients self-selected their participation in this NMR program, which was completed after traditional outpatient physical therapy. Pre– and post–hop test scores were recorded as the primary outcome measure. Results: Seventy-one patients met the inclusion criteria and completed hop testing. Overall, the involved leg showed significant improvements (pretest/posttest) for single-leg hop (138.30 cm/156.89 cm), triple crossover hop (370.05 cm/423.11 cm), and timed hop (2.21 s/1.99 s). Similarly, on the uninvolved leg, improvements were seen for the single-leg hop (159.30 cm/171.87 cm) and triple crossover hop (427.50 cm/471.27 cm). Overall mean limb symmetry improved across all 4 hop tests, but there was significant improvement only on the single-leg hop (87% pretest to 92% posttest). Patients younger than 18 years showed mean significant LSI improvement on the triple crossover hop. Conclusion: Utilizing an intensive 6-week NMR program after ACLR prior to return to sport can improve quantitative hop test measurements. Patients younger than 18 years had greater improvement than those 18 years and older. Clinical Relevance: Advanced NMR programs can be successfully utilized in the postoperative ACLR setting to improve quantitative limb symmetry. PMID:27620968
Generalization of fewest-switches surface hopping for coherences
NASA Astrophysics Data System (ADS)
Tempelaar, Roel; Reichman, David R.
2018-03-01
Fewest-switches surface hopping (FSSH) is perhaps the most widely used mixed quantum-classical approach for the modeling of non-adiabatic processes, but its original formulation is restricted to (adiabatic) population terms of the quantum density matrix, leaving its implementations with an inconsistency in the treatment of populations and coherences. In this article, we propose a generalization of FSSH that treats both coherence and population terms on equal footing and which formally reduces to the conventional FSSH algorithm for the case of populations. This approach, coherent fewest-switches surface hopping (C-FSSH), employs a decoupling of population relaxation and pure dephasing and involves two replicas of the classical trajectories interacting with two active surfaces. Through extensive benchmark calculations of a spin-boson model involving a Debye spectral density, we demonstrate the potential of C-FSSH to deliver highly accurate results for a large region of parameter space. Its uniform description of populations and coherences is found to resolve incorrect behavior observed for conventional FSSH in various cases, in particular at low temperature, while the parameter space regions where it breaks down are shown to be quite limited. Its computational expenses are virtually identical to conventional FSSH.
Experimental and theoretical studies of novel hydrogen diffuson in fullerite C_60
NASA Astrophysics Data System (ADS)
Fitzgerald, Stephen; Hannachi, Rym; Sholl, David; Sieber, Kurt; Gerogiorgis, Dimitrios
2004-03-01
Given the present interest in hydrogen storage within novel forms of carbon we have investigated the behavior of molecular H2 within solid fullerite C_60. Although C_60 will never be a practical storage medium, it does offer an ideal system to study the interaction of hydrogen within a well-characterized curved graphitic matrix. Our results based on infrared spectroscopy and loading isotherms indicate that isolated interstitial H2 bind preferentially in the lattice octahedral sites and diffuse by hopping between octahedral and tetrahedral sites^1. Parallel replica dynamics and minimum energy path calculations reveal an unexpected diffusion mechanism involving H2 molecules hopping into an already occupied octahedral site^2. This creates a short-lived H2 dimer, with a lower activation barrier for hopping that greatly enhances the diffusion rates. These calculations have been confirmed by experimental isotherm measurements and simulations using a rigorously derived lattice model that show a greatly reduced outgassing life-time with increasing H2 concentrations. ^1 S. A. FitzGerald, S. Forth and M. Rinkoski, Phys. Rev. B, 65, 140302 (2002). ^2 B. P. Uberuaga, A. F. Voter, K. K. Sieber, and D. S. Sholl, Phys. Rev. Lett., 91, 105901 (2003).
Electronic and optical properties of La-doped S r3I r2O7 epitaxial thin films
NASA Astrophysics Data System (ADS)
Souri, M.; Terzic, J.; Johnson, J. M.; Connell, J. G.; Gruenewald, J. H.; Thompson, J.; Brill, J. W.; Hwang, J.; Cao, G.; Seo, A.
2018-02-01
We have investigated structural, transport, and optical properties of tensile strained (Sr1-xL ax ) 3I r2O7 (x =0 , 0.025, 0.05) epitaxial thin films. While high-Tc superconductivity is predicted theoretically in the system, we have observed that all of the samples remain insulating with finite optical gap energies and Mott variable-range hopping characteristics in transport. Cross-sectional scanning transmission electron microscopy indicates that structural defects such as stacking faults appear in this system. The insulating behavior of the La-doped S r3I r2O7 thin films is presumably due to disorder-induced localization and ineffective electron doping of La, which brings to light the intriguing difference between epitaxial thin films and bulk single crystals of the iridates.
HopBase: a unified resource for Humulus genomics
Hill, Steven T.; Sudarsanam, Ramcharan
2017-01-01
Abstract Hop (Humulus lupulus L. var lupulus) is a dioecious plant of worldwide significance, used primarily for bittering and flavoring in brewing beer. Studies on the medicinal properties of several unique compounds produced by hop have led to additional interest from pharmacy and healthcare industries as well as livestock production as a natural antibiotic. Genomic research in hop has resulted a published draft genome and transcriptome assemblies. As research into the genomics of hop has gained interest, there is a critical need for centralized online genomic resources. To support the growing research community, we report the development of an online resource "HopBase.org." In addition to providing a gene annotation to the existing Shinsuwase draft genome, HopBase makes available genome assemblies and annotations for both the cultivar “Teamaker” and male hop accession number USDA 21422M. These genome assemblies, gene annotations, along with other common data, coupled with a genome browser and BLAST database enable the hop community to enter the genomic age. The HopBase genomic resource is accessible at http://hopbase.org and http://hopbase.cgrb.oregonstate.edu. PMID:28415075
Origin of colossal permittivity in BaTiO3 via broadband dielectric spectroscopy
NASA Astrophysics Data System (ADS)
Han, Hyuksu; Voisin, Christophe; Guillemet-Fritsch, Sophie; Dufour, Pascal; Tenailleau, Christophe; Turner, Christopher; Nino, Juan C.
2013-01-01
Barium titanate (BT) ceramics with Ba/Ti ratios of 0.95 and 1.00 were synthesized using spark plasma sintering (SPS) technique. Dielectric spectroscopy (frequency range from 40 Hz to 1 MHz and temperature range from 300 K to 30 K) was performed on those ceramics (SPS BT). SPS BT showed extremely high permittivity up to ˜105, which can be referred to as colossal permittivity, with relatively low dielectric loss of ˜0.05. Data analyses following Debye relaxation and universal dielectric response models indicate that the origin of colossal permittivity in BT ceramics is the result of a hopping polaron within semiconducting grains in combination with interfacial polarization at the insulating grain boundary. Furthermore, the contributions of each polarization mechanism to the colossal permittivity in SPS BT, such as a hopping polarization, internal barrier layer capacitance effect, and electrode effect, were estimated.
Let Me Blow Your Mind: Hip Hop Feminist Futures in Theory and Praxis
ERIC Educational Resources Information Center
Lindsey, Treva B.
2015-01-01
This essay brings together key theoretical interventions in hip-hop feminism to explore the continued, but undervalued, significance of hip-hop feminism in urban education. More specifically, the essay challenges narrow conceptualizations of the "hip hop subject" as Black and male by using hip-hop feminist theory to incorporate the lived…
Locomotion in Extinct Giant Kangaroos: Were Sthenurines Hop-Less Monsters?
Janis, Christine M.; Buttrill, Karalyn; Figueirido, Borja
2014-01-01
Sthenurine kangaroos (Marsupialia, Diprotodontia, Macropodoidea) were an extinct subfamily within the family Macropodidae (kangaroos and rat-kangaroos). These “short-faced browsers” first appeared in the middle Miocene, and radiated in the Plio-Pleistocene into a diversity of mostly large-bodied forms, more robust than extant forms in their build. The largest (Procoptodon goliah) had an estimated body mass of 240 kg, almost three times the size of the largest living kangaroos, and there is speculation whether a kangaroo of this size would be biomechanically capable of hopping locomotion. Previously described aspects of sthenurine anatomy (specialized forelimbs, rigid lumbar spine) would limit their ability to perform the characteristic kangaroo pentapedal walking (using the tail as a fifth limb), an essential gait at slower speeds as slow hopping is energetically unfeasible. Analysis of limb bone measurements of sthenurines in comparison with extant macropodoids shows a number of anatomical differences, especially in the large species. The scaling of long bone robusticity indicates that sthenurines are following the “normal” allometric trend for macropodoids, while the large extant kangaroos are relatively gracile. Other morphological differences are indicative of adaptations for a novel type of locomotor behavior in sthenurines: they lacked many specialized features for rapid hopping, and they also had anatomy indicative of supporting their body with an upright trunk (e.g., dorsally tipped ischiae), and of supporting their weight on one leg at a time (e.g., larger hips and knees, stabilized ankle joint). We propose that sthenurines adopted a bipedal striding gait (a gait occasionally observed in extant tree-kangaroos): in the smaller and earlier forms, this gait may have been employed as an alternative to pentapedal locomotion at slower speeds, while in the larger Pleistocene forms this gait may have enabled them to evolve to body sizes where hopping was no longer a feasible form of more rapid locomotion. PMID:25333823
NASA Astrophysics Data System (ADS)
Kharkwal, K. C.; Pramanik, A. K.
2017-12-01
The 3d-5d based double perovskites are of current interest as they provide model systems to study the interplay between electronic correlation (U) and spin-orbit coupling (SOC). Here, we report detailed structural, magnetic and transport properties of doped double perovskite material (Sr1-x Y x )2FeIrO6 with x ≤slant 0.2 . With substitution of Y, the system retains its original crystal structure but structural parameters change with x in nonmonotonic fashion. The magnetization data for Sr2FeIrO6 show antiferromagnetic type magnetic transition around 45 K however, a close inspection of the data indicates a weak magnetic phase transition around 120 K. No change of structural symmetry has been observed down to low temperature, although the lattice parameters show sudden changes around the magnetic transitions. Sr2FeIrO6 shows an insulating behavior over the whole temperature range, which nevertheless does not change with Y substitution. The nature of charge conduction is found to follow thermally activated Mott’s variable range hopping and power law behavior for parent and doped samples, respectively. Interestingly, evolution of structural, magnetic and transport behavior in (Sr1-x Y x )2FeIrO6 is observed to reverse with x > 0.1 , which is believed to arise due to a change in the transition metal ionic state.
Kharkwal, K C; Pramanik, A K
2017-11-13
The 3d-5d based double perovskites are of current interest as they provide model systems to study the interplay between electronic correlation (U) and spin-orbit coupling (SOC). Here, we report detailed structural, magnetic and transport properties of doped double perovskite material ([Formula: see text]Y x ) 2 FeIrO 6 with [Formula: see text]. With substitution of Y, the system retains its original crystal structure but structural parameters change with x in nonmonotonic fashion. The magnetization data for Sr 2 FeIrO 6 show antiferromagnetic type magnetic transition around 45 K; however, a close inspection of the data indicates a weak magnetic phase transition around 120 K. No change of structural symmetry has been observed down to low temperature, although the lattice parameters show sudden changes around the magnetic transitions. Sr 2 FeIrO 6 shows an insulating behavior over the whole temperature range, which nevertheless does not change with Y substitution. The nature of charge conduction is found to follow thermally activated Mott's variable range hopping and power law behavior for parent and doped samples, respectively. Interestingly, evolution of structural, magnetic and transport behavior in ([Formula: see text]Y x ) 2 FeIrO 6 is observed to reverse with [Formula: see text], which is believed to arise due to a change in the transition metal ionic state.
Wireless Sensor Networks for Environmental Monitoring
NASA Astrophysics Data System (ADS)
Liang, X.; Liang, Y.; Navarro, M.; Zhong, X.; Villalba, G.; Li, Y.; Davis, T.; Erratt, N.
2015-12-01
Wireless sensor networks (WSNs) have gained an increasing interest in a broad range of new scientific research and applications. WSN technologies can provide high resolution for spatial and temporal data which has not been possible before, opening up new opportunities. On the other hand, WSNs, particularly outdoor WSNs in harsh environments, present great challenges for scientists and engineers in terms of the network design, deployment, operation, management, and maintenance. Since 2010, we have been working on the deployment of an outdoor multi-hop WSN testbed for hydrological/environmental monitoring in a forested hill-sloped region at the Audubon Society of Western Pennsylvania (ASWP), Pennsylvania, USA. The ASWP WSN testbed has continuously evolved and had more than 80 nodes by now. To our knowledge, the ASWP WSN testbed represents one of the first known long-term multi-hop WSN deployments in an outdoor environment. As simulation and laboratory methods are unable to capture the complexity of outdoor environments (e.g., forests, oceans, mountains, or glaciers), which significantly affect WSN operations and maintenance, experimental deployments are essential to investigate and understand WSN behaviors and performances as well as its maintenance characteristics under these harsh conditions. In this talk, based on our empirical studies with the ASWP WSN testbed, we will present our discoveries and investigations on several important aspects including WSN energy profile, node reprogramming, network management system, and testbed maintenance. We will then provide our insight into these critical aspects of outdoor WSN deployments and operations.
ERIC Educational Resources Information Center
Kruse, Adam J.
2016-01-01
This article offers considerations for music teachers interested in including hip-hop music in their classrooms but who might feel concerned with or overwhelmed by issues of appropriateness. Two concerns related to hip-hop music are examined: language and negative social themes. Commercial interests in hip-hop music have created a simulacrum (or…
The Formation of "Hip-Hop Academicus"--How American Scholars Talk about the Academisation of Hip-Hop
ERIC Educational Resources Information Center
Soderman, Johan
2013-01-01
Social activism and education have been associated with hip-hop since it emerged in New York City 38 years ago. Therefore, it might not be surprising that universities have become interested in hip-hop. This article aims to highlight this "hip-hop academisation" and analyse the discursive mechanisms that manifest in these academisation…
Hip-hop as a resource for understanding the urban context
NASA Astrophysics Data System (ADS)
Brown, Bryan
2010-06-01
This review explores Edmin's "Science education for the hip-hop generation" by documenting how he frames hip-hop as a means to access urban student culture. He argues that hip-hop is more than a mere music genre, but rather a culture that provides young people with ways of connecting to the world. Two primary ideas emerged as central to his work. First, he contends that students develop communal relationships and collective identities based on the common experiences expressed in hip-hop. Second, he identifies how the conscious recognition of institutional oppression serves a central feature in urban schools. Emdin's rich, and personal call for a greater understanding of hip-hop culture provides the text with an unmatched strength. He skillfully uses personal narratives from his own experience as well as quotes and references from hip-hop songs to make the nuances of hip hop transparent to science educators. Conversely, the limitation of this text is found in its unfulfilled promise to provide pragmatic examples of how to engage in a hip-hop based science education. Emdin's work is ultimately valuable as it extends our current knowledge about urban students and hip-hop in meaningful ways.
Where Is My Stuff? Conceptualizing Hip Hop as "Play"
ERIC Educational Resources Information Center
Broughton, Anthony
2017-01-01
Cultural continuity between home and school has been emphasized in a range of research concerning diversity and multicultural education [Colombo, M. (2005). "Reflections from teachers of culturally diverse children." "Young Children, Beyond the Journal," 60(6). Retrieved from…
Buonuomo, Paola S; Macchiaiolo, Marina; Leone, Giovanna; Valente, Paola; Mastrogiorgio, Gerarda; Gnazzo, Maria; Rana, Ippolita; Gonfiantini, Michaela V; Gagliardi, Maria G; Romano, Francesca; Bartuli, Andrea
2018-01-01
Background Homozygous familial hypercholesterolaemia is a rare life-threatening disease characterized by markedly elevated low-density lipoprotein cholesterol (LDL-C) concentrations and accelerated atherosclerosis. The presence of double gene defects in the LDL-Receptor, either the same defect (homozygous) or two different LDL-raising mutations (compound heterozygotes) or other variants, identify the homozygous phenotype (HopFH). Apheresis is a procedure in which plasma is separated from red blood cells before the physical removal of LDL-C or the LDL-C is directly removed from whole blood. It is currently the treatment of choice for patients with HopFH whose LDL-C levels are not able to be reduced to target levels with conventional lipid-lowering drug therapy. Design The aim of this study is to report a cohort of six paediatric patients and to evaluate the long term efficacy of combined medical therapy and LDL-apheresis on LDL-C reduction. Methods We collected data from six children with confirmed diagnosis of HopFH (two females and four males; age range at diagnosis 3-8 years, mean 6 ± 1 years) from a single clinical hospital in Italy from 2007 to 2017. Results Clinical manifestations and outcomes may greatly vary in children with HopFH. Medical therapy and LDL-apheresis for the severe form should be started promptly in order to prevent cardiovascular disease. Conclusions Lipoprotein apheresis is a very important tool in managing patients with HopFH at high risk of cardiovascular disease. Based on our experience and the literature data, the method is feasible in very young children, efficient regarding biological results and cardiac events, and safe with minor side-effects and technical problems. We advise treating homozygous and compound heterozygous children as soon as possible.
Drug Product Life-Cycle Management as Anticompetitive Behavior: The Case of Memantine.
Capati, Vincent C; Kesselheim, Aaron S
2016-04-01
A "product hop" involves the substitution of a new formulation of a prescription drug by a pharmaceutical manufacturer for an old version to forestall generic competition. In 2015, for example, Forest Laboratories, the brand-name drug manufacturer of memantine, an Alzheimer's disease treatment, introduced an extended-release version and tried to restrict patient access to the previous version. Product hops can lead to useful incremental innovation but can also have major public health implications by disrupting patients on stable treatment regimens and increasing costs for patients and payers. This commentary reviews alleged anticompetitive product hopping in the case of memantine, which involved proposed conduct that would have left Alzheimer's disease patients with no effective choice but to transition to memantine XR. Policy solutions that can limit anticompetitive product hops include raising the bar for obtaining patents on new drug product formulations and changing automatic generic substitution laws. No outside funding supported this research. To support his work at PORTAL in the summer of 2015, Capati was the recipient of the University of New Hampshire School of Law Rudman Center Public Service Fellowship. Kesselheim's research was supported by Greenwall Faculty Scholars program, the Laura and John Arnold Foundation, and the Harvard Program in Therapeutic Science. In 2013, Kesselheim served as an expert on behalf of a class of individual plaintiffs against Warner Chilcott regarding potential antitrust violations Kesselheim was responsible for concept and design of this commentary. Capati took the lead in data collection and analysis, along with Kesselheim. Capati wrote the manuscript, which was revised by primarily by Kesselheim, along with Capati.
Mechanisms of Hop Inhibition Include the Transmembrane Redox Reaction▿
Behr, Jürgen; Vogel, Rudi F.
2010-01-01
In this work, a novel mechanistic model of hop inhibition beyond the proton ionophore action toward (beer spoiling) bacteria was developed. Investigations were performed with model systems using cyclic voltammetry for the determination of redox processes/conditions in connection with growth challenges with hop-sensitive and -resistant Lactobacillus brevis strains in the presence of oxidants. Cyclic voltammetry identified a transmembrane redox reaction of hop compounds at low pH (common in beer) and in the presence of manganese (present in millimolar levels in lactic acid bacteria). The antibacterial action of hop compounds could be extended from the described proton ionophore activity, lowering the intracellular pH, to pronounced redox reactivity, causing cellular oxidative damage. Accordingly, a correlation between the resistance of L. brevis strains to a sole oxidant to their resistance to hop could not be expected and was not detected. However, in connection with our recent study concerning hop ionophore properties and the resistance of hop-sensitive and -tolerant L. brevis strains toward proton ionophores (J. Behr and R. F. Vogel, J. Agric. Food Chem. 57:6074-6081, 2009), we suggest that both ionophore and oxidant resistance are required for survival under hop stress conditions and confirmed this correlation according to the novel mechanistic model. In consequence, the expression of several published hop resistance mechanisms involved in manganese binding/transport and intracellular redox balance, as well as that of proteins involved in oxidative stress under “highly reducing” conditions (cf. anaerobic cultivation and “antioxidative” hop compounds in the growth medium), is now comprehensible. Accordingly, hop resistance as a multifactorial dynamic property at least implies distinct resistance levels against two different mechanisms of hop inhibition, namely, proton ionophore-induced and oxidative stress-induced mechanisms. Beyond this specific model of hop inhibition, these investigations provide general insight on the role of electrophysiology and ion homeostasis in bacterial stress responses to membrane-active drugs. PMID:19880646
Kassegne, Sam; Wibowo, Denni; Chi, James; Ramesh, Varsha; Narenji, Alaleh; Khosla, Ajit; Mokili, John
2015-06-01
In this study, AC characterisation of DNA molecular wires, effects of frequency, temperature and UV irradiation on their conductivity is presented. λ-DNA molecular wires suspended between high aspect-ratio electrodes exhibit highly frequency-dependent conductivity that approaches metal-like behaviour at high frequencies (∼MHz). Detailed temperature dependence experiments were performed that traced the impedance response of λ-DNA until its denaturation. UV irradiation experiments where conductivity was lost at higher and longer UV exposures helped to establish that it is indeed λ-DNA molecular wires that generate conductivity. The subsequent renaturation of λ-DNA resulted in the recovery of current conduction, providing yet another proof of the conducting DNA molecular wire bridge. The temperature results also revealed hysteretic and bi-modal impedance responses that could make DNA a candidate for nanoelectronics components like thermal transistors and switches. Further, these experiments shed light on the charge transfer mechanism in DNA. At higher temperatures, the expected increase in thermal-induced charge hopping may account for the decrease in impedance supporting the 'charge hopping mechanism' theory. UV light, on the other hand, causes damage to GC base-pairs and phosphate groups reducing the path available both for hopping and short-range tunneling mechanisms, and hence increasing impedance--this again supporting both the 'charge hopping' and 'tunneling' mechanism theories.
Starting with Style: Toward a Second Wave of Hip-Hop Education Research and Practice
ERIC Educational Resources Information Center
Petchauer, Emery
2015-01-01
One fundamental breakthrough in the field of hip-hop education in recent years is the shift from understanding hip-hop solely as content to understanding hip-hop also as aesthetic form. In this article, I chart the roots of this shift across disciplines and focus on what it might mean for the future of hip-hop education, pedagogy, and research in…
High-Speed On-Board Data Processing for Science Instruments: HOPS
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey
2015-01-01
The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 â€" April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.
Uanschou, Clemens; Ronceret, Arnaud; Von Harder, Mona; De Muyt, Arnaud; Vezon, Daniel; Pereira, Lucie; Chelysheva, Liudmila; Kobayashi, Wataru; Kurumizaka, Hitoshi; Schlögelhofer, Peter; Grelon, Mathilde
2013-01-01
During meiosis, homologous recombination (HR) is essential to repair programmed DNA double-strand breaks (DSBs), and a dedicated protein machinery ensures that the homologous chromosome is favored over the nearby sister chromatid as a repair template. The HOMOLOGOUS-PAIRING PROTEIN2/MEIOTIC NUCLEAR DIVISION PROTEIN1 (HOP2/MND1) protein complex has been identified as a crucial factor of meiotic HR in Arabidopsis thaliana, since loss of either MND1 or HOP2 results in failure of DNA repair. We isolated two mutant alleles of HOP2 (hop2-2 and hop2-3) that retained the capacity to repair meiotic DSBs via the sister chromatid but failed to use the homologous chromosome. We show that in these alleles, the recombinases RADIATION SENSITIVE51 (RAD51) and DISRUPTED MEIOTIC cDNA1 (DMC1) are loaded, but only the intersister DNA repair pathway is activated. The hop2-2 phenotype is correlated with a decrease in HOP2/MND1 complex abundance. In hop2-3, a truncated HOP2 protein is produced that retains its ability to bind to DMC1 and DNA but forms less stable complexes with MND1 and fails to efficiently stimulate DMC1-driven D-loop formation. Genetic analyses demonstrated that in the absence of DMC1, HOP2/MND1 is dispensable for RAD51-mediated intersister DNA repair, while in the presence of DMC1, a minimal amount of functional HOP2/MND1 is essential to drive intersister DNA repair. PMID:24363313
Entanglement and fluctuations in the XXZ model with power-law interactions
NASA Astrophysics Data System (ADS)
Frérot, Irénée; Naldesi, Piero; Roscilde, Tommaso
2017-06-01
We investigate the ground-state properties of the spin-1 /2 XXZ model with power-law-decaying (1 /rα ) interactions, which describe spins interacting with long-range transverse (XX) ferromagnetic interactions and longitudinal (Z) antiferromagnetic interactions, or hard-core bosons with long-range repulsion and hopping. The long-range nature of the couplings allows us to quantitatively study the spectral, correlation, and entanglement properties of the system by making use of linear spin-wave theory, supplemented with density-matrix renormalization group in one-dimensional systems. Our most important prediction is the existence of three distinct coupling regimes, depending on the decay exponent α and number of dimensions d : (1) a short-range regime for α >d +σc (where σc=1 in the gapped Néel antiferromagnetic phase exhibited by the XXZ model, and σc=2 in the gapless XY ferromagnetic phase), sharing the same properties as those of finite-range interactions (α =∞ ); (2) a long-range regime α
Frequency hopping due to acousto-electric interaction in ZnO based surface acoustic wave oscillator
NASA Astrophysics Data System (ADS)
Dasgupta, Daipayan; Sreenivas, K.
2011-08-01
A 36 MHz surface acoustic wave delay line based oscillator has been used to study the effect of acousto-electric interaction due to photo generated charge carriers in rf sputtered ZnO film under UV illumination (λ = 365 nm, 20-100 μW/cm2). Design aspects for developing a delay line based SAW oscillator are specified. The observed linear downshift in frequency (2.2 to 19.0 kHz) with varying UV intensity (20-100 μW/cm2) is related to the fractional velocity change due to acousto-electric interaction. UV illumination level of 100 μW/cm2 leads to a characteristic frequency hopping behavior arising due to a change in the oscillation criteria, and is attributed to the complex interplay between the increased attenuation and velocity shift.
NASA Technical Reports Server (NTRS)
Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve
2003-01-01
A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.
Lopes, M H; Santos, T G; Rodrigues, B R; Queiroz-Hazarbassanov, N; Cunha, I W; Wasilewska-Sampaio, A P; Costa-Silva, B; Marchi, F A; Bleggi-Torres, L F; Sanematsu, P I; Suzuki, S H; Oba-Shinjo, S M; Marie, S K N; Toulmin, E; Hill, A F; Martins, V R
2015-06-01
Glioblastomas (GBMs) are resistant to current therapy protocols and identification of molecules that target these tumors is crucial. Interaction of secreted heat-shock protein 70 (Hsp70)-Hsp90-organizing protein (HOP) with cellular prion protein (PrP(C)) triggers a large number of trophic effects in the nervous system. We found that both PrP(C) and HOP are highly expressed in human GBM samples relative to non-tumoral tissue or astrocytoma grades I-III. High levels of PrP(C) and HOP were associated with greater GBM proliferation and lower patient survival. HOP-PrP(C) binding increased GBM proliferation in vitro via phosphatidylinositide 3-kinase and extracellular-signal-regulated kinase pathways, and a HOP peptide mimicking the PrP(C) binding site (HOP230-245) abrogates this effect. PrP(C) knockdown impaired tumor growth and increased survival of mice with tumors. In mice, intratumor delivery of HOP230-245 peptide impaired proliferation and promoted apoptosis of GBM cells. In addition, treatment with HOP230-245 peptide inhibited tumor growth, maintained cognitive performance and improved survival. Thus, together, the present results indicate that interfering with PrP(C)-HOP engagement is a promising approach for GBM therapy.
Long-term learning of stroke knowledge among children in a high-risk community.
Williams, Olajide; DeSorbo, Alexandra; Noble, James; Shaffer, Michele; Gerin, William
2012-08-21
To evaluate the effect of Hip Hop Stroke, a school-based multimedia musical stroke literacy intervention that targets children aged 8-12 in high-risk minority communities, on the long-term learning of stroke knowledge. We enrolled a cohort of 104 fifth and sixth grade children from 2 schools in Central Harlem into a single course of Hip Hop Stroke (3 1-hour classroom sessions, delivered over 3 consecutive days). Tests evaluating knowledge of stroke symptoms and behavioral intent to call 911 using hypothetical stroke scenarios were conducted at baseline, immediately after the intervention, and 15 months after the initial and only intervention. A composite score was created from 5 traditional stroke symptoms plus a distracter (chest pain). Data were analyzed using SAS version 9.2. A total of 104 students completed both pretests (PTs) and immediate posttests (IPs), and 85 students completed all 3 tests, including a 15-month delayed posttest (DP) (81.7% retention rate). At pretest, 55.8% correctly identified calling 911. The baseline composite score was 3.24 (SD 1.45). At IP, stroke knowledge increased significantly across all items: calling 911 (85.6%, p < 0.001) and composite score (5.30, p < 0.0001). At 15 months, stroke knowledge increased significantly from PT for all measures except sudden headache with a composite score of 4.73 (p < 0.0001, PT vs DP). Three hours of Hip Hop Stroke significantly improved knowledge of stroke symptoms and behavioral intent to call 911 of fifth and sixth grade children living in a high stroke risk neighborhood. This learning persisted for up to 15 months postintervention.
NASA Astrophysics Data System (ADS)
Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.
2018-01-01
Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.
Mode Tracker for Mode-Hop-Free Operation of a Laser
NASA Technical Reports Server (NTRS)
Wysocki, Gerard; Tittel, Frank K.; Curl, Robert F.
2010-01-01
A mode-tracking system that includes a mode-controlling subsystem has been incorporated into an external-cavity (EC) quantum cascade laser that operates in a mid-infrared wavelength range. The mode-tracking system makes it possible to perform mode-hop-free wavelength scans, as needed for high-resolution spectroscopy and detection of trace gases. The laser includes a gain chip, a beam-collimating lens, and a diffraction grating. The grating is mounted on a platform, the position of which can be varied to effect independent control of the EC length and the grating angle. The position actuators include a piezoelectric stage for translation control and a motorized stage for coarse rotation control equipped with a piezoelectric actuator for fine rotation control. Together, these actuators enable control of the EC length over a range of about 90 m with a resolution of 0.9 nm, and control of the grating angle over a coarse-tuning range of +/-6.3deg and a fine-tuning range of +/-520 microrad with a resolution of 10 nrad. A mirror mounted on the platform with the grating assures always the same direction of the output laser beam.
Hsu, Chao-Jung; George, Steven Z; Chmielewski, Terese L
2016-12-01
Clinicians use the single-leg hop test to assess readiness for return to sports after knee injury. Few studies have reported the results of single-leg hop testing after meniscectomy. Additionally, the contributions of impairments in quadriceps strength and psychosocial factors to single-leg hop performance are unknown. To compare single-leg hop performance (distance and landing mechanics) between limbs and to examine the association of single-leg hop performance with quadriceps strength and psychosocial factors in patients with meniscectomy. Descriptive laboratory study. A total of 22 subjects who underwent meniscectomy for traumatic meniscal tears received either standard rehabilitation alone or with additional quadriceps strengthening. Testing was conducted immediately postrehabilitation and at 1 year postsurgery. A single-leg hop test was performed bilaterally, and hop distance was used to create a hop symmetry index. Landing mechanics (peak knee flexion angle, knee extension moment, and peak vertical ground-reaction force) were analyzed with a motion-capture system and a force plate. An isokinetic dynamometer (60 deg/s) assessed knee extensor peak torque and rate of torque development (RTD 0-200ms and RTD 0-peak torque ). Questionnaires assessed fear of reinjury (Tampa Scale for Kinesiophobia [TSK-11]) and self-efficacy (Knee Activity Self-Efficacy [KASE]). Rehabilitation groups did not significantly differ in single-leg hop performance; therefore, groups were combined for further analyses. The mean hop symmetry index was 88.6% and 98.9% at postrehabilitation and 1 year postsurgery, respectively. Compared with the nonsurgical limb, the surgical limb showed decreased peak knee flexion angle at postrehabilitation and decreased knee extension moment at 1 year postsurgery. The hop symmetry index was positively associated with peak torque, RTD 0-200ms , and the KASE score at postrehabilitation. Moreover, at postrehabilitation, the peak knee flexion angle was positively associated with peak torque and RTD 0-200ms , and the knee extension moment was positively associated with RTD 0-200ms . At 1 year postsurgery, peak knee flexion angle and knee extension moment were both positively associated with peak torque, RTD 0-200ms , and RTD 0-peak torque . Although the hop symmetry index could be considered satisfactory for returning to sports, asymmetries in landing mechanics still exist in the first year postmeniscectomy. Greater quadriceps strength was associated with greater single-leg hop distance and better landing mechanics at both postrehabilitation and 1 year postsurgery. Knee activity self-efficacy was the only psychosocial factor associated with single-leg hop performance and isolated to a positive association with single-leg hop distance at postrehabilitation. Rate of development is not typically measured in the clinic but can be an additional quadriceps measure to monitor for single-leg hop performance. Quadriceps strength and psychosocial factors appear to have separate influence on single-leg hop performance after meniscectomy, which has implications for developing appropriate interventions for optimal single-leg hop performance.
Hsu, Chao-Jung; George, Steven Z.; Chmielewski, Terese L.
2016-01-01
Background: Clinicians use the single-leg hop test to assess readiness for return to sports after knee injury. Few studies have reported the results of single-leg hop testing after meniscectomy. Additionally, the contributions of impairments in quadriceps strength and psychosocial factors to single-leg hop performance are unknown. Purpose: To compare single-leg hop performance (distance and landing mechanics) between limbs and to examine the association of single-leg hop performance with quadriceps strength and psychosocial factors in patients with meniscectomy. Study Design: Descriptive laboratory study. Methods: A total of 22 subjects who underwent meniscectomy for traumatic meniscal tears received either standard rehabilitation alone or with additional quadriceps strengthening. Testing was conducted immediately postrehabilitation and at 1 year postsurgery. A single-leg hop test was performed bilaterally, and hop distance was used to create a hop symmetry index. Landing mechanics (peak knee flexion angle, knee extension moment, and peak vertical ground-reaction force) were analyzed with a motion-capture system and a force plate. An isokinetic dynamometer (60 deg/s) assessed knee extensor peak torque and rate of torque development (RTD0-200ms and RTD0–peak torque). Questionnaires assessed fear of reinjury (Tampa Scale for Kinesiophobia [TSK-11]) and self-efficacy (Knee Activity Self-Efficacy [KASE]). Results: Rehabilitation groups did not significantly differ in single-leg hop performance; therefore, groups were combined for further analyses. The mean hop symmetry index was 88.6% and 98.9% at postrehabilitation and 1 year postsurgery, respectively. Compared with the nonsurgical limb, the surgical limb showed decreased peak knee flexion angle at postrehabilitation and decreased knee extension moment at 1 year postsurgery. The hop symmetry index was positively associated with peak torque, RTD0-200ms, and the KASE score at postrehabilitation. Moreover, at postrehabilitation, the peak knee flexion angle was positively associated with peak torque and RTD0-200ms, and the knee extension moment was positively associated with RTD0-200ms. At 1 year postsurgery, peak knee flexion angle and knee extension moment were both positively associated with peak torque, RTD0-200ms, and RTD0–peak torque. Conclusion: Although the hop symmetry index could be considered satisfactory for returning to sports, asymmetries in landing mechanics still exist in the first year postmeniscectomy. Greater quadriceps strength was associated with greater single-leg hop distance and better landing mechanics at both postrehabilitation and 1 year postsurgery. Knee activity self-efficacy was the only psychosocial factor associated with single-leg hop performance and isolated to a positive association with single-leg hop distance at postrehabilitation. Clinical Relevance: Rate of development is not typically measured in the clinic but can be an additional quadriceps measure to monitor for single-leg hop performance. Quadriceps strength and psychosocial factors appear to have separate influence on single-leg hop performance after meniscectomy, which has implications for developing appropriate interventions for optimal single-leg hop performance. PMID:28210647
NASA Astrophysics Data System (ADS)
Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu
2017-08-01
Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.
Scheduling with hop-by-hop priority increasing in meshed optical burst-switched network
NASA Astrophysics Data System (ADS)
Chang, Hao; Luo, Jiangtao; Zhang, Zhizhong; Xia, Da; Gong, Jue
2006-09-01
In OBS, JET (Just-Enough-Time) is the classical wavelength reservation scheme. But there is a phenomenon that the burst priority decreasing hop-by-hop in multi-hop networks that will waste the bandwidth that was used in the upstream. Based on the HPI (Hop-by-hop Priority Increasing) proposed in the former research, this paper will do an unprecedented simulation in 4×4 meshed topology, which is closer to the real network environment with the help of a NS2-based OBSN simulation platform constructed by ourselves. By contrasting, the drop probability and throughput on one of the longest end-to-end path lengths in the whole networks, it shows that the HPI scheme can improve the utilance of bandwidth better.
NASA Astrophysics Data System (ADS)
Dimova, Dilyana; Bajorath, Jürgen
2017-07-01
Computational scaffold hopping aims to identify core structure replacements in active compounds. To evaluate scaffold hopping potential from a principal point of view, regardless of the computational methods that are applied, a global analysis of conventional scaffolds in analog series from compound activity classes was carried out. The majority of analog series was found to contain multiple scaffolds, thus enabling the detection of intra-series scaffold hops among closely related compounds. More than 1000 activity classes were found to contain increasing proportions of multi-scaffold analog series. Thus, using such activity classes for scaffold hopping analysis is likely to overestimate the scaffold hopping (core structure replacement) potential of computational methods, due to an abundance of artificial scaffold hops that are possible within analog series.
NASA Astrophysics Data System (ADS)
Sinha, Subhojyoti; Kumar Chatterjee, Sanat; Ghosh, Jiten; Kumar Meikap, Ajit
2013-03-01
We have used Rietveld refinement technique to extract the microstructural parameters of thioglycolic acid capped CdSe quantum dots. The quantum dot formation and its efficient capping are further confirmed by HR-TEM, UV-visible and FT-IR spectroscopy. Comparative study of the variation of dc conductivity with temperature (298 K ≤ T ≤ 460 K) is given considering Arrhenius formalism, small polaron hopping and Schnakenberg model. We observe that only Schnakenberg model provides good fit to the non-linear region of the variation of dc conductivity with temperature. Experimental variation of ac conductivity and dielectric parameters with temperature (298 K ≤ T ≤ 460 K) and frequency (80 Hz ≤ f ≤ 2 MHz) are discussed in the light of hopping theory and quantum confinement effect. We have elucidated the observed non-linearity in the I-V curves (measured within ±50 V), at dark and at ambient light, in view of tunneling mechanism. Tunnel exponents and non-linearity weight factors have also been evaluated in this regard.
USDA-ARS?s Scientific Manuscript database
The versatile hop plant, Humulus L., is a climbing, vine with a perennial root. The genus includes three species, H. japonicus, H. lupulus, and H. yunnanensis. The European hops (H. lupulus) is the species of primary economic importance from which most hop cultivars have been selected. This species ...
NASA Astrophysics Data System (ADS)
Miyazaki, Jun
2013-10-01
We present an analytical method for quantifying exciton hopping in an energetically disordered system with quenching sites. The method is subsequently used to provide a quantitative understanding of exciton hopping in a quantum dot (QD) array. Several statistical quantities that characterize the dynamics (survival probability, average number of distinct sites visited, average hopping distance, and average hopping rate in the initial stage) are obtained experimentally by measuring time-resolved fluorescence intensities at various temperatures. The time evolution of these quantities suggests in a quantitative way that at low temperature an exciton tends to be trapped at a local low-energy site, while at room temperature, exciton hopping occurs repeatedly, leading to a large hopping distance. This method will serve to facilitate highly efficient optoelectronic devices using QDs such as photovoltaic cells and light-emitting diodes, since exciton hopping is considered to strongly influence their operational parameters. The presence of a dark QD (quenching site) that exhibits fast decay is also quantified.
Refractory materials for high-temperature thermoelectric energy conversion
NASA Technical Reports Server (NTRS)
Wood, C.; Emin, D.
1983-01-01
Theoretical work of two decades ago adequately explained the transport behavior and effectively guided the development of thermoelectric materials of high conversion efficiencies of conventional semiconductors (e.g., SiGe alloys). The more significant contributions involved the estimation of optimum doping concentrations, the reduction of thermal conductivity by solid solution doping and the development of a variety of materials with ZT approx. 1 in the temperature range 300 K to 1200 K. ZT approx. 1 is not a theoretical limitation although, experimentally, values in excess of one were not achieved. Work has continued with emphasis on higher temperature energy conversion. A number of promising materials have been discovered in which it appears that ZT 1 is realizable. These materials are divided into two classes: (1) the rare-earth chalcogenides which behave as itinerant highly-degenerate n-type semiconductors at room-temperature, and (2) the boron-rich borides, which exhibit p-type small-polaronic hopping conductivity.
Structure, Raman, dielectric behavior and electrical conduction mechanism of strontium titanate
NASA Astrophysics Data System (ADS)
Trabelsi, H.; Bejar, M.; Dhahri, E.; Graça, M. P. F.; Valente, M. A.; Khirouni, K.
2018-05-01
Strontium titanate was prepared by solid-state reaction method. According to the XRD, it was single phase and has a cubic perovskite structure. The Raman spectroscopic investigation was carried out at room-temperature, and the second-order Raman modes were observed. By employing impedance spectroscopy, the dielectric relaxation and electrical properties were investigated over the temperature range of 500-700 K at various frequencies. The activation energies evaluated from dielectric and modulus studies are in good agreement and these values are attributed to the bulk relaxation. The impedance data were well fitted to an (R1//C1)-(R2//CPE1) equivalent electrical circuit. It could be concluded that the grain boundaries are more resistive and capacitive than the grains. The ac conductivity was found to follow the Jonscher's universal dynamic law ωS and the correlated barrier hopping model (CBH) has been proposed to describe the conduction mechanism.
NASA Astrophysics Data System (ADS)
Li, Shiqi; Sarachik, Myriam
We compare the resistivity of the dilute, strongly-interacting 2D electron system in the insulating phase of a silicon MOSFET for unpolarized electrons in the absence of magnetic field and in the presence of an in-plane magnetic field sufficient to fully polarize the electrons. In both cases the resistivity obeys Efros-Shklovskii variable range hopping ρ (T) =ρ0exp [(TES / T) 1 / 2 ] , with TES and 1 /ρ0 mapping onto each other provided one applies a shift reported earlier of the critical density nc with magnetic field: the transport properties of the insulator are the same for unpolarized and fully polarized electron spins. Interestingly, the parameters TES and 1 /ρ0 =σ0 are consistent with critical behavior approaching a metal-insulator transition. This work was supported by the National Science Foundation Grant DMR-1309008 and the Binational Science Foundation Grant 2012210.
Time synchronization of a frequency-hopped MFSK communication system
NASA Technical Reports Server (NTRS)
Simon, M. K.; Polydoros, A.; Huth, G. K.
1981-01-01
In a frequency-hopped (FH) multiple-frequency-shift-keyed (MFSK) communication system, frequency hopping causes the necessary frequency transitions for time synchronization estimation rather than the data sequence as in the conventional (nonfrequency-hopped) system. Making use of this observation, this paper presents a fine synchronization (i.e., time errors of less than a hop duration) technique for estimation of FH timing. The performance degradation due to imperfect FH time synchronization is found in terms of the effect on bit error probability as a function of full-band or partial-band noise jamming levels and of the number of hops used in the FH timing estimate.
Hop/STI1 modulates retinal proliferation and cell death independent of PrP{sup C}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arruda-Carvalho, Maithe; Njaine, Brian; Silveira, Mariana S.
Hop/STI1 is a co-chaperone adaptor protein for Hsp70/Hsp90 complexes. Hop/STI1 is found extracellularly and modulates cell death and differentiation through interaction with the prion protein (PrP{sup C}). Here, we investigated the expression of hop/STI1 and its role upon cell proliferation and cell death in the developing retina. Hop/STI1 is more expressed in developing rat retina than in the mature tissue. Hop/STI1 blocks retinal cell death in the neuroblastic layer (NBL) in a PrP{sup C} dependent manner, but failed to protect ganglion cells against axotomy-induced cell death. An antibody raised against hop/STI1 ({alpha}-STI1) blocked both ganglion cell and NBL cell deathmore » independent of PrP{sup C}. cAMP/PKA, ERK, PI3K and PKC signaling pathways were not involved in these effects. Hop/STI1 treatment reduced proliferation, while {alpha}-STI1 increased proliferation in the developing retina, both independent of PrP{sup C}. We conclude that hop/STI1 can modulate both proliferation and cell death in the developing retina independent of PrP{sup C}.« less
Varietal discrimination of hop pellets by near and mid infrared spectroscopy.
Machado, Julio C; Faria, Miguel A; Ferreira, Isabel M P L V O; Páscoa, Ricardo N M J; Lopes, João A
2018-04-01
Hop is one of the most important ingredients of beer production and several varieties are commercialized. Therefore, it is important to find an eco-real-time-friendly-low-cost technique to distinguish and discriminate hop varieties. This paper describes the development of a method based on vibrational spectroscopy techniques, namely near- and mid-infrared spectroscopy, for the discrimination of 33 commercial hop varieties. A total of 165 samples (five for each hop variety) were analysed by both techniques. Principal component analysis, hierarchical cluster analysis and partial least squares discrimination analysis were the chemometric tools used to discriminate positively the hop varieties. After optimizing the spectral regions and pre-processing methods a total of 94.2% and 96.6% correct hop varieties discrimination were obtained for near- and mid-infrared spectroscopy, respectively. The results obtained demonstrate the suitability of these vibrational spectroscopy techniques to discriminate different hop varieties and consequently their potential to be used as an authenticity tool. Compared with the reference procedures normally used for hops variety discrimination these techniques are quicker, cost-effective, non-destructive and eco-friendly. Copyright © 2017 Elsevier B.V. All rights reserved.
Devarajan, Naresh; Laffite, Amandine; Ngelikoto, Patience; Elongo, Vicky; Prabakar, Kandasamy; Mubedi, Josué I; Piana, Pius T M; Wildi, Walter; Poté, John
2015-09-01
Hospital and urban effluents contain a variety of toxic and/or persistent substances in a wide range of concentrations, and most of these compounds belong to the group of emerging contaminants. The release of these substances into the aquatic ecosystem can lead to the pollution of water resources and may place aquatic organisms and human health at risk. Sediments receiving untreated and urban effluent waters from the city of Tiruchirappalli in the state of Tamil Nadu, India, are analyzed for potential environmental and human health risks. The sediment samples were collected from five hospital outlet pipes (HOP) and from the Cauvery River Basin (CRB) both of which receive untreated municipal effluent waters (Tiruchirappalli, Tamil Nadu, India). The samples were characterized for grain size, organic matter, toxic metals, and ecotoxicity. The results highlight the high concentration of toxic metals in HOP, reaching values (mg kg(-1)) of 1851 (Cr), 210 (Cu), 986 (Zn), 82 (Pb), and 17 (Hg). In contrast, the metal concentrations in sediments from CRB were lower than the values found in the HOP (except for Cu, Pb), with maximum values (mg kg(-1)) of 75 (Cr), 906 (Cu), 649 (Zn), 111 (Pb), and 0.99 (Hg). The metal concentrations in all sampling sites largely exceed the Sediment Quality Guidelines (SQGs) and the Probable Effect Concentration (PEC) for the Protection of Aquatic Life recommendation. The ecotoxicity test with ostracods exposed to the sediment samples presents a mortality rate ranging from 22 to 100 % (in sediments from HOP) and 18-87 % (in sediments from CRB). The results of this study show the variation of toxic metal levels as well as toxicity in sediment composition related to both the type of hospital and the sampling period. The method of elimination of hospital and urban effluents leads to the pollution of water resources and may place aquatic organisms and human health at risk.
Trulsson, Anna; Roos, Ewa M; Ageberg, Eva; Garwicz, Martin
2010-07-01
Injury to the anterior cruciate ligament (ACL) is associated not only with knee instability and impaired neuromuscular control, but also with altered postural orientation manifested as observable "substitution patterns". However, tests currently used to evaluate knee function in subjects with ACL injury are not designed to assess postural orientation. Therefore, we are in the process of developing an observational test set that measures postural orientation in terms of the ability to stabilize body segments in relation to each other and to the environment. The aim of the present study was to characterise correlations between this novel test set, called the Test for Substitution Patterns (TSP) and commonly used tests of knee function. In a blinded set-up, 53 subjects (mean age 30 years, range 20-39, with 2-5 years since ACL injury) were assessed using the TSP, the Knee Injury and Osteoarthritis Outcome Score subscale sport/recreation (KOOS sport/rec), 3 hop tests and 3 muscle power tests. Correlations between the scores of the TSP and the other tests were determined. Moderate correlations were found between TSP scores and KOOS sport/rec (rs = -0.43; p = 0.001) and between TSP scores and hop test results (rs = -0.40 to -0.46; p < or = 0.003), indicating that altered postural orientation was associated with worse self-reported KOOS sport/rec function and worse hop performance. No significant correlations were found between TSP scores and muscle power results. Subjects had higher TSP scores on their injured side than on their uninjured side (median 4 and 1 points; interquartile range 2-6 and 0-1.5, respectively; p < 0.0001). We conclude that the Test for Substitution Patterns is of relevance to the patient and measures a specific aspect of neuromuscular control not quantified by the other tests investigated. We suggest that the TSP may be a valuable complement in the assessment of neuromuscular control in the rehabilitation of subjects with ACL injury.
Read, Paul J; Oliver, Jon L; Croix, Mark Ba De Ste; Myer, Gregory D; Lloyd, Rhodri S
2016-12-01
Read, P, Oliver, JL, Croix, MD, Myer, GD, and Lloyd, RS. Consistency of field-based measures of neuromuscular control using force-plate diagnostics in elite male youth soccer players. J Strength Cond Res 30(12): 3304-3311, 2016-Deficits in neuromuscular control during movement patterns such as landing are suggested pathomechanics that underlie sport-related injury. A common mode of assessment is measurement of landing forces during jumping tasks; however, these measures have been used less frequently in male youth soccer players, and reliability data are sparse. The aim of this study was to examine the reliability of a field-based neuromuscular control screening battery using force-plate diagnostics in this cohort. Twenty-six pre-peak height velocity (PHV) and 25 post-PHV elite male youth soccer players completed a drop vertical jump (DVJ), single-leg 75% horizontal hop and stick (75%HOP), and single-leg countermovement jump (SLCMJ). Measures of peak landing vertical ground reaction force (pVGRF), time to stabilization, time to pVGRF, and pVGRF asymmetry were recorded. A test-retest design was used, and reliability statistics included change in mean, intraclass correlation coefficient, and coefficient of variation (CV). No significant differences in mean score were reported for any of the assessed variables between test sessions. In both groups, pVGRF and asymmetry during the 75%HOP and SLCMJ demonstrated largely acceptable reliability (CV ≤ 10%). Greater variability was evident in DVJ pVGRF and all other assessed variables, across the 3 protocols (CV range = 13.8-49.7%). Intraclass correlation coefficient values ranged from small to large and were generally higher in the post-PHV players. The results of this study suggest that pVGRF and asymmetry can be reliably assessed using a 75%HOP and SLCMJ in this cohort. These measures could be used to support a screening battery for elite male youth soccer players and for test-retest comparison.
The 1963 Hip-Hop Machine: Hip-Hop Pedagogy as Composition.
ERIC Educational Resources Information Center
Rice, Jeff
2003-01-01
Proposes an alternative invention strategy for research-based argumentative writing. Investigates the coincidental usage of the term "whatever" in hip-hop, theory, and composition studies. Presents a "whatever-pedagogy" identified as "hip-hop pedagogy," a writing practice that models itself after digital sampling's…
ERIC Educational Resources Information Center
Williams, Olajide; DeSorbo, Alexandra; Sawyer, Vanessa; Apakama, Donald; Shaffer, Michele; Gerin, William; Noble, James
2016-01-01
Objectives: We explored the effect of a culturally targeted calorie label intervention on food purchasing behavior of elementary school students. Method: We used a quasi-experimental design with two intervention schools and one control school to assess food purchases of third through fifth graders at standardized school food sales before and after…
Dynamics of colloidal particles in electrohydrodynamic convection of nematic liquid crystal.
Takahashi, Kentaro; Kimura, Yasuyuki
2014-07-01
We have studied the dynamics of micrometer-sized colloidal particles in electrohydrodynamic convection of nematic liquid crystal. Above the onset voltage of electroconvection, the parallel array of convection rolls appears to be perpendicular to the nematic field at first. The particles are forced to rotate by convection flow and are trapped within a single roll in this voltage regime. A slow glide motion along the roll axis is also observed. The frequency of rotational motion and the glide velocity increase with the applied voltage. Under a much larger voltage where the roll axis temporally fluctuates, the particles occasionally hop to the neighbor rolls. In this voltage regime, the motion of the particles becomes two-dimensional. The motion perpendicular to the roll axis exhibits diffusion behavior at a long time period. The effective diffusion constant is 10(3)-10(4) times larger than the molecular one. The observed behavior is compared with the result obtained by a simple stochastic model for the transport of the particles in convection. The enhancement of diffusion can be quantitatively described well by the rotation frequency in a roll, the width of the roll, and the hopping probability to the neighbor rolls.
Research on synchronization technology of frequency hopping communication system
NASA Astrophysics Data System (ADS)
Zhao, Xiangwu; Quan, Houde; Cui, Peizhang
2018-05-01
Frequency Hopping (FH) communication is a technology of spread spectrum communication. It has strong anti-interference, anti-interception and security capabilities, and has been widely applied in the field of communications. Synchronization technology is one of the most crucial technologies in frequency hopping communication. The speed of synchronization establishment and the reliability of synchronous system directly affect the performance of frequency hopping communication system. Therefore, the research of synchronization technology in frequency hopping communication has important value.
ERIC Educational Resources Information Center
Brown, Bryan
2010-01-01
This review explores Edmin's "Science education for the hip-hop generation" by documenting how he frames hip-hop as a means to access urban student culture. He argues that hip-hop is more than a mere music genre, but rather a culture that provides young people with ways of connecting to the world. Two primary ideas emerged as central to…
A new method of hybrid frequency hopping signals selection and blind parameter estimation
NASA Astrophysics Data System (ADS)
Zeng, Xiaoyu; Jiao, Wencheng; Sun, Huixian
2018-04-01
Frequency hopping communication is widely used in military communications at home and abroad. In the case of single-channel reception, it is scarce to process multiple frequency hopping signals both effectively and simultaneously. A method of hybrid FH signals selection and blind parameter estimation is proposed. The method makes use of spectral transformation, spectral entropy calculation and PRI transformation basic theory to realize the sorting and parameter estimation of the components in the hybrid frequency hopping signal. The simulation results show that this method can correctly classify the frequency hopping component signal, and the estimated error of the frequency hopping period is about 5% and the estimated error of the frequency hopping frequency is less than 1% when the SNR is 10dB. However, the performance of this method deteriorates seriously at low SNR.
Steenackers, Bart; De Cooman, Luc; De Vos, Dirk
2015-04-01
The annual production of hops (Humulus lupulus L.) exceeds 100,000 mt and is almost exclusively consumed by the brewing industry. The value of hops is attributed to their characteristic secondary metabolites; these metabolites are precursors which are transformed during the brewing process into important bittering, aromatising and preservative components with rather low efficiency. By selectively transforming these components off-line, both their utilisation efficiency and functionality can be significantly improved. Therefore, the chemical transformations of these secondary metabolites will be considered with special attention to recent advances in the field. The considered components are the hop alpha-acids, hop beta-acids and xanthohumol, which are components unique to hops, and alpha-humulene and beta-caryophyllene, sesquiterpenes which are highly characteristic of hops. Copyright © 2014 Elsevier Ltd. All rights reserved.
Polaron hopping in olivine phosphates studied by nuclear resonant scattering
NASA Astrophysics Data System (ADS)
Tracy, Sally June
Valence fluctuations of Fe2+ and Fe3+ were studied in a solid solution of LixFePO4 by nuclear resonant forward scattering of synchrotron x rays while the sample was heated in a diamond-anvil pressure cell. The spectra acquired at different temperatures and pressures were analyzed for the frequencies of valence changes using the Blume-Tjon model of a system with a fluctuating Hamiltonian. These frequencies were analyzed to obtain activation energies and an activation volume for polaron hopping. There was a large suppression of hopping frequency with pressure, giving an anomalously large activation volume. This large, positive value is typical of ion diffusion, which indicates correlated motions of polarons, and Li+ ions that alter the dynamics of both. In a parallel study of NaxFePO4, the interplay between sodium ordering and electron mobility was investigated using a combination of synchrotron x-ray diffraction and nuclear resonant scattering. Conventional Mossbauer spectra were collected while the sample was heated in a resistive furnace. An analysis of the temperature evolution of the spectral shapes was used to identify the onset of fast electron hopping and determine the polaron hopping rate. Synchrotron x-ray diffraction measurements were carried out in the same temperature range. Reitveld analysis of the diffraction patterns was used to determine the temperature of sodium redistribution on the lattice. The diffraction analysis also provides new information about the phase stability of the system. The temperature evolution of the iron site occupancies from the Mossbauer measurements, combined with the synchrotron diffraction results give strong evidence for a relationship between the onset of fast electron dynamics and the redistribution of sodium in the lattice. Measurements of activation barriers for polaron hopping gave fundamental insights about the correlation between electronic carriers and mobile ions. This work established that polaron-ion interactions can alter the local dynamics of electron and ion transport. These types of coupled processes may be common in many materials used for battery electrodes, and new details concerning the influence of polaron-ion interactions on the charge dynamics are relevant to optimizing their electrochemical performance.
Harvesting electricity from human hair.
Tulachan, Brindan; Singh, Sushil K; Philip, Deepu; Das, Mainak
2016-01-01
Electrical conductivity of human hair is a debatable issue among hair experts and scientists. There are unsubstantiated claims that hair conducts electricity. However, hair experts provided ample evidence that hair is an insulator. Although wet hair exhibited drastic reduction in resistivity; scientists regarded hair as a proton semiconductor at the best. Here, we demonstrate that hair filaments generate electricity on absorbing water vapor between 50 degrees and 80 degrees C. This electricity can operate low power electronic systems. Essentially, we are exposing the hydrated hair polymer to a high temperature (50 degrees-80 degrees C). It has long been speculated that when certain biopolymers are simultaneously hydrated and exposed to high temperature, they exhibit significant proton hopping at a specific temperature regime. This happens due to rapid movement of water molecules on the polymer surface. This lead us to speculate that the observed flow of current is partly ionic and partly due to "proton hopping" in the hydrated nano spaces of hair filament. Such proton hopping is exceptionally high when the hydrated hair polymer is exposed to a temperature between 50 degrees and 80 degrees C. Differential scanning calorimetry data further corroborated the results and indicated that indeed at this temperature range, there is an enormous movement of water molecules on the hair polymer surface. This enormously rapid movement of water molecules lead to the "making and breaking" of innumerable hydrogen bonds and thus resulting in hopping of the protons. What is challenging is "how to tap these hopping protons to obtain useful electricity?" We achieved this by placing a bundle of hair between two different electrodes having different electro negativities, and exposing it to water vapor (water + heat). The two different electrodes offered directionality to the hopping protons and the existing ions and thus resulting in the generation of useful current. Further, by continuously hydrating the polymer with water vapor, we prolonged the process. If this interesting aspect of polymer is exploited further and fine tuned, then it will open new avenues for development of sophisticated polymer-based systems, which could be used to harvest electricity from waste heat.
High temperature dielectric studies of indium-substituted NiCuZn nanoferrites
NASA Astrophysics Data System (ADS)
Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.
2018-01-01
In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.
Negative to positive crossover of the magnetoresistance in layered WS{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yangwei; Ning, Honglie; Li, Yanan
2016-04-11
The discovery of graphene ignited intensive investigation of two-dimensional materials. A typical two-dimensional material, transition metal dichalcogenide (TMDC), attracts much attention because of its excellent performance in field effect transistor measurements and applications. Particularly, when TMDC reaches the dimension of a few layers, a wide range of electronic and optical properties can be detected that are in striking contrast to bulk samples. In this letter, we synthesized WS{sub 2} single-crystal nanoflakes using physical vapor deposition and carried out a series of measurements of the contact resistance and magnetoresistance. Focused ion beam (FIB) technology was applied to deposit Pt electrodes onmore » the WS{sub 2} flakes, and the FIB-deposited contacts exhibited linear electrical characteristics. Resistance versus temperature measurements showed similar Mott variable range hopping behavior in different magnetic fields. Additionally, a temperature-modulated negative-to-positive magnetoresistance transition was observed. Our work reveals the magnetotransport characteristics of WS{sub 2} flakes, which may stimulate further studies of the properties of TMDC and its corresponding electronic and optoelectronic applications.« less
High-Speed On-Board Data Processing Platform for LIDAR Projects at NASA Langley Research Center
NASA Astrophysics Data System (ADS)
Beyon, J.; Ng, T. K.; Davis, M. J.; Adams, J. K.; Lin, B.
2015-12-01
The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 - April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.
Crystal growth and magnetic anisotropy in the spin-chain ruthenate Na2RuO4
NASA Astrophysics Data System (ADS)
Balodhi, Ashiwini; Singh, Yogesh
2018-02-01
We report single-crystal growth, electrical resistivity ρ , anisotropic magnetic susceptibility χ , and heat capacity Cp measurements on the one-dimensional spin-chain ruthenate Na2RuO4 . We observe variable range hopping (VRH) behavior in ρ (T ) . The magnetic susceptibility with magnetic field perpendicular (χ⊥) and parallel (χ∥) to the spin chains is reported. The magnetic properties are anisotropic with χ⊥>χ∥ in the temperature range of measurements T ≈2 -305 K with χ⊥/χ∥≈1.4 at 305 K. From an analysis of the χ (T ) data we attempt to estimate the anisotropy in the g factor and Van Vleck paramagnetic contribution. An anomaly in χ (T ) and a corresponding step-like anomaly in Cp at TN=37 K confirms long-range antiferromagnetic ordering. This temperature is an order of magnitude smaller than the Weiss temperature θ ≈-250 K and points to suppression of long-range magnetic order due to low dimensionality. A fit of the experimental χ (T ) by a one-dimensional spin-chain model gave an estimate of the intrachain exchange interaction 2 J ≈-85 K and the magnitude of the interchain coupling |2 J⊥|≈3 K.
Hip-Hopping across China: Intercultural Formulations of Local Identities
ERIC Educational Resources Information Center
Barrett, Catrice
2012-01-01
The linguistic dimensions of globalized hip-hop cannot be understood simply as a byproduct of English as an American export. As hip-hop mobilizes, it is common (and arguably necessary) for global hip-hop communities to struggle through purposeful, semiotically rooted dialectics over what constitutes "authentic" and respectable forms of…
Revolutionizing Environmental Education through Indigenous Hip Hop Culture
ERIC Educational Resources Information Center
Gorlewski, Julie; Porfilio, Brad J.
2012-01-01
Based upon the life histories of six Indigenous hip hop artists of the Beat Nation artist collective, this essay captures how Indigenous hip hop has the potential to revolutionize environmental education. Hip hop provides Indigenous youth an emancipatory space to raise their opposition to neocolonial controls of Indigenous territories that…
Infinite-range Heisenberg model and high-temperature superconductivity
NASA Astrophysics Data System (ADS)
Tahir-Kheli, Jamil; Goddard, William A., III
1993-11-01
A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.
Biphasic Allometry of Cardiac Growth in the Developing Kangaroo Macropus fuliginosus.
Snelling, Edward P; Taggart, David A; Maloney, Shane K; Farrell, Anthony P; Seymour, Roger S
2015-01-01
Interspecific studies of adult mammals show that heart mass (M(h), g) increases in direct proportion to body mass (M(b), kg), such that M(h) ∝ M(b)(1.00). However, intraspecific studies on heart mass in mammals at different stages of development reveal considerable variation between species, M(h) ∝ M(b)(0.70-1.00). Part of this variation may arise as a result of the narrow body size range of growing placental mammals, from birth to adulthood. Marsupial mammals are born relatively small and offer an opportunity to examine the ontogeny of heart mass over a much broader body size range. Data from 29 western grey kangaroos Macropus fuliginosus spanning 800-fold in body mass (0.084-67.5 kg) reveal the exponent for heart mass decreases significantly when the joey leaves the pouch (ca. 5-6 kg body mass). In the pouch, the heart mass of joeys scales with hyperallometry, M(h(in-pouch)) = 6.39 M(b)(1.10 ± 0.05), whereas in free-roaming juveniles and adults, heart mass scales with hypoallometry, M(h(postpouch)) = 14.2 Mb(0.77 ± 0.08). Measurements of heart height, width, and depth support this finding. The relatively steep heart growth allometry during in-pouch development is consistent with the increase in relative cardiac demands as joeys develop endothermy and the capacity for hopping locomotion. Once out of the pouch, the exponent decreases sharply, possibly because the energy required for hopping is independent of speed, and the efficiency of energy storage during hopping increases as the kangaroo grows. The right:left ventricular mass ratios (0.30-0.35) do not change over the body mass range and are similar to those of other mammals, reflecting the principle of Laplace for the heart.
Classification of Scaffold Hopping Approaches
Sun, Hongmao; Tawa, Gregory; Wallqvist, Anders
2012-01-01
The general goal of drug discovery is to identify novel compounds that are active against a preselected biological target with acceptable pharmacological properties defined by marketed drugs. Scaffold hopping has been widely applied by medicinal chemists to discover equipotent compounds with novel backbones that have improved properties. In this review, scaffold hopping is classified into four major categories, namely heterocycle replacements, ring opening or closure, peptidomimetics, and topology-based hopping. The structural diversity of original and final scaffolds with respect to each category will be reviewed. The advantages and limitations of small, medium, and large-step scaffold hopping will also be discussed. Software that is frequently used to facilitate different kinds of scaffold hopping methods will be summarized. PMID:22056715
NASA Astrophysics Data System (ADS)
Niu, Yuekun; Sun, Jian; Ni, Yu; Song, Yun
2018-06-01
The dynamical mean-field theory is employed to study the orbital-selective Mott transition (OSMT) of the two-orbital Hubbard model with nearest neighbor hopping and next-nearest neighbor (NNN) hopping. The NNN hopping breaks the particle-hole symmetry at half filling and gives rise to an asymmetric density of states (DOS). Our calculations show that the broken symmetry of DOS benefits the OSMT, where the region of the orbital-selective Mott phase significantly extends with the increasing NNN hopping integral. We also find that Hund's rule coupling promotes OSMT by blocking the orbital fluctuations, but the influence of NNN hopping is more remarkable.
Deterministic Multi-hop Controlled Teleportation of Arbitrary Single-Qubit State
NASA Astrophysics Data System (ADS)
Peng, Jia-yin; Bai, Ming-qiang; Mo, Zhi-wen
2017-10-01
Multi-hop teleportation is of great significance due to long-distance delivery of quantum information and wireless quantum communication networks. In existing protocols of multi-hop teleportation, the more nodes, the smaller the success probability. In this paper, fusing the ideas of multi-hop teleportation and controlled teleportation, we put forward a scheme for implementing multi-hop controlled teleportation of single-qubit state. A set of ingenious three-qubit non-maximally entangled states are constructed to serve as the quantum channels. The information is perfectly transmitted hop by hop through teleportation under the control of the supervisors. Unit success probability can be achieved independent of channel's entanglement degree and the number of intermediate nodes. Only Pauli operations, single-qubit rotation, Hadamard gate, controlled-NOT gate, Bell-state measurement and single-qubit measurement are used in our scheme, so this scheme is easily realized in physical experiment.
NASA Astrophysics Data System (ADS)
Graves, Catherine E.; Dávila, Noraica; Merced-Grafals, Emmanuelle J.; Lam, Si-Ty; Strachan, John Paul; Williams, R. Stanley
2017-03-01
Applications of memristor devices are quickly moving beyond computer memory to areas of analog and neuromorphic computation. These applications require the design of devices with different characteristics from binary memory, such as a large tunable range of conductance. A complete understanding of the conduction mechanisms and their corresponding state variable(s) is crucial for optimizing performance and designs in these applications. Here we present measurements of low bias I-V characteristics of 6 states in a Ta/ tantalum-oxide (TaOx)/Pt memristor spanning over 2 orders of magnitude in conductance and temperatures from 100 K to 500 K. Our measurements show that the 300 K device conduction is dominated by a temperature-insensitive current that varies with non-volatile memristor state, with an additional leakage contribution from a thermally-activated current channel that is nearly independent of the memristor state. We interpret these results with a parallel conduction model of Mott hopping and Schottky emission channels, fitting the voltage and temperature dependent experimental data for all memristor states with only two free parameters. The memristor conductance is linearly correlated with N, the density of electrons near EF participating in the Mott hopping conduction, revealing N to be the dominant state variable for low bias conduction in this system. Finally, we show that the Mott hopping sites can be ascribed to oxygen vacancies, where the local oxygen vacancy density responsible for critical hopping pathways controls the memristor conductance.
NASA Astrophysics Data System (ADS)
Zhu, Guo-Zhu; Huang, Dao-Ling; Wang, Lai-Sheng
2017-07-01
We report a photoelectron imaging and photodetachment study of cryogenically cooled 3-hydroxyphenoxide (3HOP) anions, m-HO(C6H4)O-. In a previous preliminary study, two conformations of the cold 3HOP anions with different dipole bound states were observed [D. L. Huang et al., J. Phys. Chem. Lett. 6, 2153 (2015)]. Five near-threshold vibrational resonances were revealed in the photodetachment spectrum from the dipole-bound excited states of the two conformations. Here, we report a more extensive investigation of the two conformers with observation of thirty above-threshold vibrational resonances in a wide spectral range between 18 850 and 19 920 cm-1 (˜1000 cm-1 above the detachment thresholds). By tuning the detachment laser to the vibrational resonances in the photodetachment spectrum, high-resolution conformation-selective resonant photoelectron images are obtained. Using information of the autodetachment channels and theoretical vibrational frequencies, we are able to assign the resonant peaks in the photodetachment spectrum: seventeen are assigned to vibrational levels of anti-3HOP, eight to syn-3HOP, and five to overlapping vibrational levels of both conformers. From the photodetachment spectrum and the conformation-selective resonant photoelectron spectra, we have obtained fourteen fundamental vibrational frequencies for the neutral syn- and anti-m-HO(C6H4)Oṡ radicals. The possibility to produce conformation-selected neutral beams using resonant photodetachment via dipole-bound excited states of anions is discussed.
An implementation of a data-transmission pipelining algorithm on Imote2 platforms
NASA Astrophysics Data System (ADS)
Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim
2011-04-01
Over the past several years, wireless network systems and sensing technologies have been developed significantly. This has resulted in the broad application of wireless sensor networks (WSNs) in many engineering fields and in particular structural health monitoring (SHM). The movement of traditional SHM toward the new generation of SHM, which utilizes WSNs, relies on the advantages of this new approach such as relatively low costs, ease of implementation and the capability of onboard data processing and management. In the particular case of long span bridge monitoring, a WSN should be capable of transmitting commands and measurement data over long network geometry in a reliable manner. While using single-hop data transmission in such geometry requires a long radio range and consequently a high level of power supply, multi-hop communication may offer an effective and reliable way for data transmissions across the network. Using a multi-hop communication protocol, the network relays data from a remote node to the base station via intermediary nodes. We have proposed a data-transmission pipelining algorithm to enable an effective use of the available bandwidth and minimize the energy consumption and the delay performance by the multi-hop communication protocol. This paper focuses on the implementation aspect of the pipelining algorithm on Imote2 platforms for SHM applications, describes its interaction with underlying routing protocols, and presents the solutions to various implementation issues of the proposed pipelining algorithm. Finally, the performance of the algorithm is evaluated based on the results of an experimental implementation.
NASA Astrophysics Data System (ADS)
Christopher, Benedict; Rao, Ashok; Deka, Utpal; Prasad K, Shyam; Okram, G. S.; Sanjeev, Ganesh; Chandra Petwal, Vikash; Verma, Vijay Pal; Dwivedi, Jishnu
2018-07-01
The study of electronic and magnetic properties of electron beam (EB) irradiated PrCoO3 manganites is presented in this communication. The diffraction data confirms that pristine as well as electron beam irradiated samples are single phased and they crystalize at orthorhombic distorted structure with Pbnm space group. The electrical resistivity of all the samples reveals semiconducting behavior. Small polaron hopping model is appropriately employed to investigate the semiconducting nature of the pristine and EB irradiated samples. The Seebeck coefficient (S) data of the pristine sample exhibits colossally high positive value (about 300 mV/K) and substantial decrease in S value is noticed in the irradiated samples. The high temperature analysis of thermopower data validates the small polaron hopping model. The magnetic measurements display possible existence of super-paramagnetic characteristics in the samples.
NASA Astrophysics Data System (ADS)
Mohapatra, Shubhajyoti; Bhandari, Churna; Satpathy, Sashi; Singh, Avinash
2018-04-01
Effects of the structural distortion associated with the OsO6 octahedral rotation and tilting on the electronic band structure and magnetic anisotropy energy for the 5 d3 compound NaOsO3 are investigated using the density functional theory (DFT) and within a three-orbital model. Comparison of the essential features of the DFT band structures with the three-orbital model for both the undistorted and distorted structures provides insight into the orbital and directional asymmetry in the electron hopping terms resulting from the structural distortion. The orbital mixing terms obtained in the transformed hopping Hamiltonian resulting from the octahedral rotations are shown to account for the fine features in the DFT band structure. Staggered magnetization and the magnetic character of states near the Fermi energy indicate weak coupling behavior.
Charge carrier coherence and Hall effect in organic semiconductors.
Yi, H T; Gartstein, Y N; Podzorov, V
2016-03-30
Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.
Joe, Yong S; Lee, Sun H; Hedin, Eric R; Kim, Young D
2013-06-01
We utilize a two-dimensional four-channel DNA model, with a tight-binding (TB) Hamiltonian, and investigate the temperature and the magnetic field dependence of the transport behavior of a short DNA molecule. Random variation of the hopping integrals due to the thermal structural disorder, which partially destroy phase coherence of electrons and reduce quantum interference, leads to a reduction of the localization length and causes suppressed overall transmission. We also incorporate a variation of magnetic field flux density into the hopping integrals as a phase factor and observe Aharonov-Bohm (AB) oscillations in the transmission. It is shown that for non-zero magnetic flux, the transmission zero leaves the real-energy axis and moves up into the complex-energy plane. We also point out that the hydrogen bonds between the base pair with flux variations play a role to determine the periodicity of AB oscillations in the transmission.
Phase diagram and re-entrant fermionic entanglement in a hybrid Ising-Hubbard ladder
NASA Astrophysics Data System (ADS)
Sousa, H. S.; Pereira, M. S. S.; de Oliveira, I. N.; Strečka, J.; Lyra, M. L.
2018-05-01
The degree of fermionic entanglement is examined in an exactly solvable Ising-Hubbard ladder, which involves interacting electrons on the ladder's rungs described by Hubbard dimers at half-filling on each rung, accounting for intrarung hopping and Coulomb terms. The coupling between neighboring Hubbard dimers is assumed to have an Ising-like nature. The ground-state phase diagram consists of four distinct regions corresponding to the saturated paramagnetic, the classical antiferromagnetic, the quantum antiferromagnetic, and the mixed classical-quantum phase. We have exactly computed the fermionic concurrence, which measures the degree of quantum entanglement between the pair of electrons on the ladder rungs. The effects of the hopping amplitude, the Coulomb term, temperature, and magnetic fields on the fermionic entanglement are explored in detail. It is shown that the fermionic concurrence displays a re-entrant behavior when quantum entanglement is being generated at moderate temperatures above the classical saturated paramagnetic ground state.
Mode coupling in spin torque oscillators
Zhang, Steven S. -L.; Zhou, Yan; Li, Dong; ...
2016-09-15
A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Here, our resultsmore » show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. In conclusion, the acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Steven S. -L.; Zhou, Yan; Li, Dong
A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Here, our resultsmore » show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. In conclusion, the acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature.« less
Ahmadi Daryakenari, Ahmad; Hosseini, Davood; Ho, Ya-Lun; Saito, Takumi; Apostoluk, Aleksandra; Müller, Christoph R; Delaunay, Jean-Jacques
2016-06-29
A single-step electrophoretic deposition (EPD) process is used to fabricate catalyst layers which consist of nickel oxide nanoparticles attached on the surface of nanographitic flakes. Magnesium ions present in the colloid charge positively the flake's surface as they attach on it and are also used to bind nanographitic flakes together. The fabricated catalyst layers showed a very low onset voltage (-0.2 V vs Ag/AgCl) in the electro-oxidation of ethanol. To clarify the occurring catalytic mechanism, we performed annealing treatment to produce samples having a different electrochemical behavior with a large onset voltage. Temperature dependence measurements of the layer conductivity pointed toward a charge transport mechanism based on hopping for the nonannealed layers, while the drift transport is observed in the annealed layers. The hopping charge transport is responsible for the appearance of the low onset voltage in ethanol electro-oxidation.
Hole pairing and ground state properties of high-Tc superconductivity within the t-t'-J-V model
NASA Astrophysics Data System (ADS)
Roy, Krishanu; Pal, Papiya; Nath, Subhadip; Ghosh, Nanda Kumar
2018-04-01
The t-t'-J-V model, one of the realistic models for studying high-Tc cuprates, has been investigated to explore the hole pairing and other ground state properties using exact diagonalization (ED) technique with 2 holes in a small 8-site cluster. The role of next-nearest-neighbor (NNN) hopping and nearest-neighbor (NN) Coulomb repulsion has been considered. It appears that qualitative behavior of the ground state energies of an 8-site and 16- or 18-site cluster is similar. Results show that a small short-ranged antiferromagnetic (AF) correlation exists in the 2 hole case which is favored by large V/t. A superconducting phase emerges at 0 ≤ V/t ≤ 4J. Hole-hole correlation calculation also suggests that the two holes of the pair are either at |i - j| = 1 or √2. Negative t'/t suppresses the possibility of pairing of holes. Though s-wave pairing susceptibility is dominant, pairing correlation length calculation indicates that the long range pairing, which is suitable for superconductivity, is in the d-wave channel. Both s- and d-wave pairing susceptibility gets suppressed by V/t while d-(s-) wave susceptibility gets favored (suppressed) by t'/t. The charge gap shows a gapped behavior while a spin-gapless region exists at small V/t for finite t'/t.
NASA Astrophysics Data System (ADS)
Val'kov, V. V.; Mitskan, V. A.; Dzebisashvili, D. M.; Barabanov, A. F.
2018-02-01
It is shown that for the three-band Emery p-d-model that reflects the real structure of the CuO2-plane of high-temperature superconductors in the regime of strong electron correlations, it is possible to carry out a sequence of reductions to the effective models reproducing low-energy features of elementary excitation spectrum and revealing the spin-polaron nature of the Fermi quasiparticles. The first reduction leads to the spin-fermion model in which the subsystem of spin moments, coupled by the exchange interaction and localized on copper ions, strongly interacts with oxygen holes. The second reduction deals with the transformation from the spin-fermion model to the φ-d-exchange model. An important feature of this transformation is the large energy of the φ-d-exchange coupling, which leads to the formation of spin polarons. The use of this fact allows us to carry out the third reduction, resulting in the t ˜-J˜ *-I -model. Its distinctive feature is the importance of spin-correlated hops as compared to the role of such processes in the commonly used t-J*-model derived from the Hubbard model. Based on the comparative analysis of the spectrum of Fermi excitations calculated for the obtained effective models of the CuO2-plane of high-temperature superconductors, the important role of the usually ignored long-range spin-correlated hops is determined.
Integrals of motion for one-dimensional Anderson localized systems
Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; ...
2016-03-02
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. Weanswer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precisemore » sense, motivate our construction.Wenote that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order.Weshow that despite the infinite range hopping, all states but one are localized.Wealso study the conservation laws for the disorder free Aubry–Andre model, where the states are either localized or extended, depending on the strength of a coupling constant.Weformulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry–Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Lastly, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.« less
Integrals of motion for one-dimensional Anderson localized systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. Weanswer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precisemore » sense, motivate our construction.Wenote that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order.Weshow that despite the infinite range hopping, all states but one are localized.Wealso study the conservation laws for the disorder free Aubry–Andre model, where the states are either localized or extended, depending on the strength of a coupling constant.Weformulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry–Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Lastly, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.« less
Integrals of motion for one-dimensional Anderson localized systems
NASA Astrophysics Data System (ADS)
Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; Shastry, B. Sriram
2016-03-01
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.
Conduction mechanism and dielectric relaxation in high dielectric KxTiyNi1-x-yO
NASA Astrophysics Data System (ADS)
Jana, Pradip Kumar; Sarkar, Sudipta; Karmakar, Shilpi; Chaudhuri, B. K.
2007-10-01
Complex impedance spectroscopic study has been made to elucidate the conductivity mechanism and dielectric relaxations in a low loss giant dielectric (ɛ'˜104) KxTiyNi1-x-yO (KTNO) system with x =0.05-0.30 and y =0.02 over a wide temperature range (200-400K). Below ambient temperature (300K), dc conductivity follows variable range hopping mechanism. The estimated activation energy for dielectric relaxation is found to be higher than the corresponding polaron hopping energy, which is attributed to the combined effect of K-doped grains and highly disordered grain boundary (GB) contributions in KTNO. Observed sharp fall of ɛ' below ˜270K is ascribed to the freezing of charge carriers. Comparatively lower value of relaxation time distribution parameter β of KTNO than that of the CaCu3Ti4O12 (CCTO) system reveals more disorder in KTNO. It is also found that KTNO is structurally more stable compared to the CCTO system, both having giant ɛ' value.
Origin of colossal permittivity in (In1/2Nb1/2)TiO2via broadband dielectric spectroscopy.
Zhao, Xiao-gang; Liu, Peng; Song, Yue-Chan; Zhang, An-ping; Chen, Xiao-ming; Zhou, Jian-ping
2015-09-21
(In1/2Nb1/2)TiO2 (IN-T) ceramics were prepared via a solid-state reaction route. X-ray diffraction (XRD) and Raman spectroscopy were used for the structural and compositional characterization of the synthesized compounds. The results indicated that the sintered ceramics have a single phase of rutile TiO2. Dielectric spectroscopy (frequency range from 20 Hz to 1 MHz and temperature range from 10 K to 270 K) was performed on these ceramics. The IN-T ceramics showed extremely high permittivities of up to ∼10(3), which can be referred to as colossal permittivity, with relatively low dielectric losses of ∼0.05. Most importantly, detailed impedance data analyses of IN-T demonstrated that electron-pinned defect-dipoles, interfacial polarization and polaron hopping polarization contribute to the colossal permittivity at high temperatures (270 K); however, only the complexes (pinned electron) and polaron hopping polarization are active at low temperatures (below 180 K), which is consistent with UDR analysis.
AC and DC conductivity study on Ca substituted bismuth ferrite
NASA Astrophysics Data System (ADS)
Pandey, Rabichandra; Pradhan, Lagen Kumar; Kumar, Sunil; Kar, Manoranjan
2018-05-01
Bi0.95Ca0.05FeO3 multiferroic compound was synthesized by the citric acid modified sol-gel method. Crystal structure of Bi0.95Ca0.05FeO3 is studied by the X-ray diffraction (XRD) technique. The ac impedance analysis of the compound has been carried out in a wide range of frequency (100 Hz - 1MHz) as well as temperature (40-2500C). Frequency variation of dielectric constant at different temperatures can be understood by the modified Debye formula. The activation energy was found to be 0.48eV, which was obtained by employing Arrhenius equation. The AC conductivity of the sample follows the Johnscher's power law which indicates the presence of hopping type conduction in localized charged states. To understand the conduction mechanism with localized charge states, the DC resistivity data were analyzed by Mott's variable range hopping (VRH) model. The activation energy calculated from Debye relaxation time, AC conductivity and DC resistivity are comparable to each other.
NASA Astrophysics Data System (ADS)
Roy, Nilanjan; Sharma, Auditya
2018-03-01
We numerically investigate the link between the delocalization-localization transition and entanglement in a disordered long-range hopping model of spinless fermions by studying various static and dynamical quantities. This includes the inverse participation ratio, level statistics, entanglement entropy, and number fluctuations in the subsystem along with quench and wave-packet dynamics. Finite systems show delocalized, quasilocalized, and localized phases. The delocalized phase shows strong area-law violation, whereas the (quasi)localized phase adheres to (for large subsystems) the strict area law. The idea of "entanglement contour" nicely explains the violation of area law and its relationship with "fluctuation contour" reveals a signature at the transition point. The relationship between entanglement entropy and number fluctuations in the subsystem also carries signatures for the transition in the model. Results from the Aubry-Andre-Harper model are compared in this context. The propagation of charge and entanglement are contrasted by studying quench and wave-packet dynamics at the single-particle and many-particle levels.
Wish to Live: The Hip-Hop Feminism Pedagogy Reader. Educational Psychology. Volume 3
ERIC Educational Resources Information Center
Brown, Ruth Nicole, Ed.; Kwakye, Chamara Jewel, Ed.
2012-01-01
"Wish To Live: The Hip-hop Feminism Pedagogy Reader" moves beyond the traditional understanding of the four elements of hip-hop culture--rapping, breakdancing, graffiti art, and deejaying--to articulate how hip-hop feminist scholarship can inform educational practices and spark, transform, encourage, and sustain local and global youth…
Precision QTL mapping of downy mildew resistance in Hop (Humulus lupulus L.)
USDA-ARS?s Scientific Manuscript database
Hop Downy mildew (DM) is an obligate parasite causing severe losses in hop if not controlled. Resistance to this pathogen is a primary goal for hop breeding programs. The objective of this study was to identify QTLs linked to DM resistance. Next-generation-sequencing was performed on a mapping po...
Genomics of the hop psuedo-autosomal regions
USDA-ARS?s Scientific Manuscript database
Hop is one of the few crop species with female and male plants with sex being determined by either XX or XY chromosomes. Hop cones are only produced in female hops with or without fertilization. This has lead to most genomic research being directed toward female plants. Very little work has been don...
Behind Beats and Rhymes: Working Class from a Hampton Roads Hip Hop Homeplace
ERIC Educational Resources Information Center
Durham, Aisha S.
2009-01-01
The film documentary titled "Hip Hop: beyond beats and rhymes" captures ongoing conversations among scholars, cultural critics, and hip hop insiders about the state of African Americans by interrogating distinct expressive forms associated with hip hop culture. Durham draws from two scenes to describe her memories as the researched…
Flipping the Misogynist Script: Gender, Agency, Hip Hop and Music Education
ERIC Educational Resources Information Center
Tobias, Evan S.
2014-01-01
Excluding Hip Hop culture and rap music from music education misses opportunities for addressing key aspects of popular culture, society, and students' lives. This article addresses intersections of Hip Hop, gender, and music education to forward potential Hip Hop praxis. After tracing related scholarship, I discuss and problematize…
Solvent Dependence of Lateral Charge Transfer in a Porphyrin Monolayer
Brennan, Bradley J.; Regan, Kevin P.; Durrell, Alec C.; ...
2016-12-19
Lateral charge transport in a redox)active monolayer can be utilized for solar energy harvesting. We chose the porphyrin system to study the influence of the solvent on lateral hole hopping, which plays a crucial role in the charge)transfer kinetics. We also examined the influence of water, acetonitrile, and propylene carbonate as solvents. Hole)hopping lifetimes varied by nearly three orders of magnitude among solvents, ranging from 3 ns in water to 2800 ns in propylene carbonate, and increased nonlinearly as a function of added acetonitrile in aqueous solvent mixtures. Our results elucidate the important roles of solvation, molecular packing dynamics, andmore » lateral charge)transfer mechanisms that have implications for all dye)sensitized photoelectrochemical device designs.« less
Kankolongo Cibaka, Marie-Lucie; Decourrière, Laura; Lorenzo-Alonso, Celso-José; Bodart, Etienne; Robiette, Raphaël; Collin, Sonia
2016-11-16
Monovarietal dry-hopped beers were produced with the dual-purpose hop cultivars Amarillo, Hallertau Blanc, and Mosaic. The grapefruit-like 3-sulfanyl-4-methylpentan-1-ol was found in all three beers at concentrations much higher than expected on the basis of the free thiol content in hop. Even cysteinylated precursors proved unable to explain our results. As observed in wine, the occurrence of S-glutathione precursors was therefore suspected in hop. The analytical standards of S-3-(4-methyl-1-hydroxypentyl)glutathione, never described before, and of S-3-(1-hydroxyhexyl)glutathione, previously evidenced in grapes, were chemically synthesized. An optimized extraction of glutathionylated precursors was then applied to Amarillo, Hallertau Blanc, and Mosaic hop samples. HPLC-ESI(+)MS/MS revealed, for the first time, the occurrence of S-3-(1-hydroxyhexyl)glutathione and S-3-(4-methyl-1-hydroxypentyl)glutathione in hop, at levels well above those reported for their cysteinylated counterparts. S-3-(1-Hydroxyhexyl)glutathione emerged in all cases as the major adduct in hop. Yet, although 3-sulfanylhexan-1-ol seems relatively ubiquitous in free, cysteinylated, and glutathionylated forms, the glutathione adduct of 3-sulfanyl-4-methylpentan-1-ol, never evidenced in other plants up to now, was found only in the Hallertau Blanc variety.
Hernández, Lizaida; Barreto Estrada, Jennifer L; Ortiz, José G; Carlos Jorge, Juan
2010-01-01
Aim The purpose of this study was to provide a quantitative assessment of female rat sexual behaviors after acute exposure to the A-ring reduced testosterone metabolite, androstanediol (3α-Diol), through the nucleus accumbens (NA) shell. Main outcome measures Quantitative analyses of female rat sexual behaviors and assessment of protein levels for the enzyme glutamic acid decarboxylase isoform 67 (GAD67) and gephyrin, a protein that participates in the clustering of GABA-A receptors in postsynaptic cells, were accomplished. Methods Female rats were ovariectomized and primed with estrogen and progesterone to induce sexual behaviors. Females received a 3α-Diol infusion via guided cannula that aimed to the NA shell five minutes prior to a sexual encounter with a stud male. The following parameters were videotaped and measured in a frame by frame analysis: lordosis quotient (LQ), Lordosis rating (LR), frequency and duration of proceptive behaviors (hopping/darting and ear wiggling). Levels of GAD67 and gephyrin were obtained by Western blot analysis two or twenty-four hours after the sexual encounter. Results Acute exposure to 3α-Diol in the NA shell enhanced LR, ear wiggling, and hopping/darting but not LQ. Some of these behavioral effects were counteracted by co-infusion of 3α-Diol plus the GABAA-receptor antagonist GABAzine. A transient reduction of GAD67 levels in the NA shell was detected. Conclusions The testosterone metabolite 3α-Diol enhances sexual proceptivity, but not receptivity, when infused into the NA shell directly. The GABAergic system may participate in the androgen-mediated enhancement of female rat sexual motivation. PMID:20646182
Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.
2009-01-01
Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557
Dietz, Birgit M.; Hagos, Ghenet K.; Eskra, Jillian N.; Wijewickrama, Gihani T.; Anderson, Jeffrey R.; Nikolic, Dejan; Guo, Jian; Wright, Brian; Chen, Shao-Nong; Pauli, Guido F.; van Breemen, Richard B.; Bolton, Judy L.
2013-01-01
Scope Hops contain the phytoestrogen, 8-prenylnaringenin, and the cytoprotective compound, xanthohumol (XH). XH induces the detoxification enzyme, NAD(P)H-quinone oxidoreductase (NQO1) in vitro; however, the tissue distribution of XH and 8-prenylnaringenin and their tissue specific activity have not been analyzed. Methods and results A standardized hop extract (p.o.) and XH (s.c.) were administered to Sprague-Dawley rats over four days. LC-MS-MS analysis of plasma, liver and mammary gland revealed that XH accumulated in liver and mammary glands. Compared with the low level in the original extract, 8-prenylnaringenin was enriched in the tissues. Hops and XH induced NQO1 in the liver, while only hops reduced NQO1 activity in the mammary gland. Mechanistic studies revealed that hops modulated NQO1 through three mechanisms. In liver cells, 1) XH modified Keap1 leading to Nrf2 translocation and antioxidant response element (ARE) activation; 2) hop-mediated ARE induction was partially mediated through phosphorylation of Nrf2 by PKC; 3) in breast cells, 8-prenylnaringenin reduced NQO1 likely through binding to ERα, recruiting Nrf2, and downregulating ARE-regulated genes. Conclusions XH and 8-prenylnaringenin in dietary hops are bioavailable to the target tissues. While hops and XH might be cytoprotective in the liver, 8-prenylnaringenin seems responsible for hop-mediated NQO1 reduction in the mammary gland. PMID:23512484
Kline, Paul W; Burnham, Jeremy; Yonz, Michael; Johnson, Darren; Ireland, Mary Lloyd; Noehren, Brian
2018-04-01
Quadriceps strength and single-leg hop performance are commonly evaluated prior to return to sport after anterior cruciate ligament reconstruction (ACLR). However, few studies have documented potential hip strength deficits after ACLR, or ascertained the relative contribution of quadriceps and hip strength to hop performance. Patients cleared for return to sports drills after ACLR were compared to a control group. Participants' peak isometric knee extension, hip abduction, hip extension, and hip external rotation (HER) strength were measured. Participants also performed single-leg hops, timed hops, triple hops, and crossover hops. Between-limb comparisons for the ACLR to control limb and the non-operative limb were made using independent two-sample and paired sample t tests. Pearson's correlations and stepwise multiple linear regression were used to determine the relationships and predictive ability of limb strength, graft type, sex, and limb dominance to hop performance. Sixty-five subjects, 20 ACLR [11F, age 22.8 (15-45) years, 8.3 ± 2 months post-op, mass 70.47 ± 12.95 kg, height 1.71 ± 0.08 m, Tegner 5.5 (3-9)] and 45 controls [22F, age 25.8 (15-45) years, mass 74.0 ± 15.2 kg, height 1.74 ± 0.1 m, Tegner 6 (3-7)], were tested. Knee extension (4.4 ± 1.5 vs 5.4 ± 1.8 N/kg, p = 0.02), HER (1.4 ± 0.4 vs 1.7 ± 0.5 N/kg, p = 0.04), single-leg hop (146 ± 37 vs 182 ± 38% limb length, p < 0.01), triple hop (417 ± 106 vs 519 ± 102% limb length, p < 0.01), timed hop (3.3 ± 2.0 vs 2.3 ± 0.6 s, p < 0.01), and crossover hop (364 ± 107 vs 446 ± 123% limb length, p = 0.01) were significantly impaired in the operative versus control subject limbs. Similar deficits existed between the operative and non-operative limbs. Knee extension and HER strength were significantly correlated with each of the hop tests, but only HER significantly predicted hop performance. After ACLR, patients have persistent HER strength, knee extension strength, and hop test deficits in the operative limb compared to the control and non-operative limbs, even after starting sport-specific drills. Importantly, HER strength independently predicted hop performance. Based on these findings, to resolve between-limb deficits in strength and hop performance clinicians should include HER strengthening exercises in post-operative rehabilitation. Prognostic Study, Level II.
NASA Astrophysics Data System (ADS)
Gong, Jianliang; Zhang, Aijuan; Bai, Hua; Zhang, Qingkun; Du, Can; Li, Lei; Hong, Yanzhen; Li, Jun
2013-01-01
Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows ``thermodynamically restricted'' character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia.Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows ``thermodynamically restricted'' character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33188h
Electrical Transport Signature of the Magnetic Fluctuation-Structure Relation in α-RuCl3 Nanoflakes.
Mashhadi, Soudabeh; Weber, Daniel; Schoop, Leslie M; Schulz, Armin; Lotsch, Bettina V; Burghard, Marko; Kern, Klaus
2018-05-09
The small gap semiconductor α-RuCl 3 has emerged as a promising candidate for quantum spin liquid materials. Thus far, Raman spectroscopy, neutron scattering, and magnetization measurements have provided valuable hints for collective spin behavior in α-RuCl 3 bulk crystals. However, the goal of implementing α-RuCl 3 into spintronic devices would strongly benefit from the possibility of electrically probing these phenomena. To address this, we first investigated nanoflakes of α-RuCl 3 by Raman spectroscopy and observed similar behavior as in the case of the bulk material, including the signatures of possible fractionalized excitations. In complementary experiments, we investigated the electrical charge transport properties of individual α-RuCl 3 nanoflakes in the temperature range between 120 and 290 K. The observed temperature-dependent electrical resistivity is consistent with variable range hopping behavior and exhibits a transition at about 180 K, close to the onset temperature observed in our Raman measurements. In conjunction with the established relation between structure and magnetism in the bulk, we interpret this transition to coincide with the emergence of fractionalized excitations due to the Kitaev interactions in the nanoflakes. Compared to the bulk samples, the transition temperature of the underlying structural change is larger in the nanoflakes. This difference is tentatively attributed to the dimensionality of the nanoflakes as well as the formation of stacking faults during mechanical exfoliation. The demonstrated devices open up novel perspectives toward manipulating the Kitaev-phase in α-RuCl 3 via electrical means.
USDA-ARS?s Scientific Manuscript database
Increasing labor costs and reduced labor pools for hop production have resulted in the necessity to develop strategies to improve efficiency and automate hop production and harvest. One solution for reducing labor inputs is the use and production of “low-trellis” hop varieties optimized for mechani...
ERIC Educational Resources Information Center
Porfilio, Brad J., Ed.; Viola, Michael J., Ed.
2012-01-01
Illuminating hip-hop as an important cultural practice and a global social movement, this collaborative project highlights the emancipatory messages and cultural work generated by the organic intellectuals of global hip-hop. Contributors describe the social realities--globalization, migration, poverty, criminalization, and racism--youth are…
Hip-Hop and the Academic Canon
ERIC Educational Resources Information Center
Abe, Daudi
2009-01-01
Over the last 30 years, the hip-hop movement has risen from the margins to become the preeminent force in US popular culture. In more recent times academics have begun to harness the power of hip-hop culture and use it as a means of infusing transformative knowledge into the mainstream academic discourse. On many college campuses, hip-hop's…
Code of Federal Regulations, 2010 CFR
2010-04-01
..., at a level not to exceed 25 parts per million. (b) In hops extract as a residue from the extraction of hops, at a level not to exceed 2.2 percent by weight; Provided, That: (1) The hops extract is added to the wort before or during cooking in the manufacture of beer. (2) The label of the hops extract...
Code of Federal Regulations, 2011 CFR
2011-04-01
..., at a level not to exceed 25 parts per million. (b) In hops extract as a residue from the extraction of hops, at a level not to exceed 2.2 percent by weight; Provided, That: (1) The hops extract is added to the wort before or during cooking in the manufacture of beer. (2) The label of the hops extract...
Influence of Zn doping on structural, optical and dielectric properties of LaFeO3
NASA Astrophysics Data System (ADS)
Manzoor, Samiya; Husain, Shahid
2018-05-01
The effect of Zn doping on structural, optical and dielectric properties of nano-crystalline LaFe1‑xZnxO3 (0.0 ≤ x ≤ 0.3) samples have been investigated. These samples are synthesized using conventional solid state reaction route. X-ray diffraction patterns with Rietveld analysis confirm the single phase nature of samples. Further, the sample formation has been confirmed by FTIR spectroscopy. All the samples are formed in orthorhombic crystal symmetry with Pbnm space group. The average crystallite sizes, calculated from the Scherer’s formula, lie in the range below 50 nm. Rietveld refinement technique is used to determine lattice parameters, bond lengths and unit cell volume. Williamson-Hall analysis has been performed to calculate the crystallite size and lattice strain. Crystallite sizes are found to be of nanometer range while the strain is of the order of 10‑3. Zn doping leads to the expansion of volume due to the tensile strain. Optical bandgap has been determined from Kubelka-Munk function using Tauc’s relation. Zinc doping in LaFeO3 leads to decrease in optical bandgap. Dielectric constant as a function of frequency is measured in the frequency range of 75 kHz–5 MHz. The dielectric behavior has been investigated by analyzing ‘universal dielectric response’ (UDR) model. The dielectric constant (ε‧) shows colossal value with Zn doping in the whole frequency range. However, the imaginary part (ε″) shows relaxational behavior which may be attributed to the strong correlation that exists between conduction mechanism and dielectric behavior in ferrites. Cole-Cole analysis has been done that confirms the dielectric material does not follow the ideal Debye theory but shows distribution of relaxation times. The a.c conductivity increases with frequency and with Zn doping due to the increased polaron hopping.
NASA Astrophysics Data System (ADS)
Pattipaka, Srinivas; James, A. R.; Dobbidi, Pamu
2018-04-01
We report a detailed study on the structural, microstructural, piezoelectric, dielectric and AC conductivity of Bi0.5(Na1-x K x )0.5TiO3 (BNKT; x = 0, 0.1, 0.2 and 0.3) ceramics fabricated by a conventional solid-state reaction method. XRD and Raman analysis revealed that Bi0.5(Na0.8K0.2)0.5TiO3 and Bi0.5(Na0.7K0.3)0.5TiO3 ceramics exhibit a mixture of rhombohedral and tetragonal structures. The segregation of K at the grain boundary was confirmed by transmission electron microscopy and is related to typical microstructural local compositional mapping analysis. Two transitions, at ˜ 330°C and 150°C, observed from the ɛ' versus T curve in pure BNT are associated with the ferroelectric tetragonal to paraelectric cubic phase (T C) and ferroelectric rhombohedral to ferroelectric tetragonal phase (T d), respectively. Further, the T C and T d shifted towards the lower temperature with a rise in K concentration. Frequency dispersion of T d and T C suggest that BNKT ceramics exhibit a weak relaxor behavior with diffuse phase transition, which is confirmed by Uchino-Nomura criteria and the Vogel-Fulcher law. The AC resistivity ρ ac(T) follows the Mott variable range hopping conduction mechanism. A significant enhancement of dielectric and piezoelectric properties were observed for x = 0.2 system: dielectric constant (ɛ' = 1273), dielectric loss (tanδ = 0.047) at 1 kHz, electromechanical coupling coefficients (k ij : k 33, k t ˜ 60%, k 31 ˜ 62% and k p ˜ 46%), elastic coupling coefficients ( S_{33}D = 6.40 × 10-13 m2/N and S_{33}E = 10.06 × 10-13 m2/N) and piezoelectric constants (d 33 = 64.23 pC/N and g 33 = 5.69 × 10-3 Vm/N).
NASA Astrophysics Data System (ADS)
Pattipaka, Srinivas; James, A. R.; Dobbidi, Pamu
2018-07-01
We report a detailed study on the structural, microstructural, piezoelectric, dielectric and AC conductivity of Bi0.5(Na1- x K x )0.5TiO3 (BNKT; x = 0, 0.1, 0.2 and 0.3) ceramics fabricated by a conventional solid-state reaction method. XRD and Raman analysis revealed that Bi0.5(Na0.8K0.2)0.5TiO3 and Bi0.5(Na0.7K0.3)0.5TiO3 ceramics exhibit a mixture of rhombohedral and tetragonal structures. The segregation of K at the grain boundary was confirmed by transmission electron microscopy and is related to typical microstructural local compositional mapping analysis. Two transitions, at ˜ 330°C and 150°C, observed from the ɛ' versus T curve in pure BNT are associated with the ferroelectric tetragonal to paraelectric cubic phase ( T C) and ferroelectric rhombohedral to ferroelectric tetragonal phase ( T d), respectively. Further, the T C and T d shifted towards the lower temperature with a rise in K concentration. Frequency dispersion of T d and T C suggest that BNKT ceramics exhibit a weak relaxor behavior with diffuse phase transition, which is confirmed by Uchino-Nomura criteria and the Vogel-Fulcher law. The AC resistivity ρ ac( T) follows the Mott variable range hopping conduction mechanism. A significant enhancement of dielectric and piezoelectric properties were observed for x = 0.2 system: dielectric constant ( ɛ' = 1273), dielectric loss (tan δ = 0.047) at 1 kHz, electromechanical coupling coefficients ( k ij : k 33, k t ˜ 60%, k 31 ˜ 62% and k p ˜ 46%), elastic coupling coefficients ( S_{33}D = 6.40 × 10-13 m2/N and S_{33}E = 10.06 × 10-13 m2/N) and piezoelectric constants ( d 33 = 64.23 pC/N and g 33 = 5.69 × 10-3 Vm/N).
Mn Impurity in Bulk GaAs Crystals
NASA Astrophysics Data System (ADS)
Pawłowski, M.; Piersa, M.; Wołoś, A.; Palczewska, M.; Strzelecka, G.; Hruban, A.; Gosk, J.; Kamińska, M.; Twardowski, A.
2006-11-01
Magnetic and electron transport properties of GaAs:Mn crystals grown by Czochralski method were studied. Electron spin resonance showed the presence of Mn acceptor A in two charge states: singly ionized A- in the form of Mn2+(d5), and neutral A0 in the form of Mn2+(d5) plus a bound hole (h). It was possible to determine the relative concentration of both types of centers from intensity of the corresponding electron spin resonance lines. Magnetization measured as a function of magnetic field (up to 6 T) in the temperature range of 2-300 K revealed overall paramagnetic behavior of the samples. Effective spin was found to be about 1.5 value, which was consistent with the presence of two types of Mn configurations. In most of the studied samples the dominance of Mn2+(d5)+h configuration was established and it increased after annealing of native donors. The total value of Mn content was obtained from fitting of magnetization curves with the use of parameters obtained from electron spin resonance. In electron transport, two mechanisms of conductivity were observed: valence band transport dominated above 70 K, and hopping conductivity within Mn impurity band at lower temperatures. From the analysis of the hopping conductivity and using the obtained values of the total Mn content, the effective radius of Mn acceptor in GaAs was estimated as a = 11 ± 3 Å.
Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3−δ} (Me = Fe, Mn)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niwa, Eiki, E-mail: e-niwa@phys.chs.nihon-u.ac.jp; Department of Integrated Sciences in Physics and Biology, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550; Maeda, Hiroki
Graphical abstract: Compositional dependence of (a) electrical conductivity and (b) E{sub a} for hopping conduction of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn). - Highlights: • Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn) was investigated. • Hopping conduction model could be applied for conductivity of both specimens. • The difference of E{sub a} due to that of energy level of Fe and Mn was observed. • Hole concentration estimated by iodimetry increases with increasing Ni content. - Abstract: Electrical conduction mechanism of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} expected as Sr-freemore » new cathode material for solid oxide fuel cells was analyzed. Electrical conduction behaviors of both specimens could be well fitted by small polaron hopping conduction model. The electrical conductivity of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} increased with increasing Ni content, showing agreement with decrease of activation energy for hopping conduction. The decrease of electrical conductivity and increase of activation energy of LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} were observed with increasing Ni content for 0.0 ≤ x ≤ 0.4. Further Ni substitution increased electrical conductivity and decreased activation energy for 0.4 ≤ x ≤ 0.6. It was revealed using iodometry that the difference of hole carrier density between LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} was small. It was suspected that the origin of the difference of electrical conduction behavior of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1-x}O{sub 3+δ} was difference of energy level of e{sub g} band composed of Fe 3d or Mn 3d orbitals and their overlapping quantity with O 2p and Ni 3d band.« less
Scaffold hopping in drug discovery using inductive logic programming.
Tsunoyama, Kazuhisa; Amini, Ata; Sternberg, Michael J E; Muggleton, Stephen H
2008-05-01
In chemoinformatics, searching for compounds which are structurally diverse and share a biological activity is called scaffold hopping. Scaffold hopping is important since it can be used to obtain alternative structures when the compound under development has unexpected side-effects. Pharmaceutical companies use scaffold hopping when they wish to circumvent prior patents for targets of interest. We propose a new method for scaffold hopping using inductive logic programming (ILP). ILP uses the observed spatial relationships between pharmacophore types in pretested active and inactive compounds and learns human-readable rules describing the diverse structures of active compounds. The ILP-based scaffold hopping method is compared to two previous algorithms (chemically advanced template search, CATS, and CATS3D) on 10 data sets with diverse scaffolds. The comparison shows that the ILP-based method is significantly better than random selection while the other two algorithms are not. In addition, the ILP-based method retrieves new active scaffolds which were not found by CATS and CATS3D. The results show that the ILP-based method is at least as good as the other methods in this study. ILP produces human-readable rules, which makes it possible to identify the three-dimensional features that lead to scaffold hopping. A minor variant of a rule learnt by ILP for scaffold hopping was subsequently found to cover an inhibitor identified by an independent study. This provides a successful result in a blind trial of the effectiveness of ILP to generate rules for scaffold hopping. We conclude that ILP provides a valuable new approach for scaffold hopping.
Zhang, Xiao-Ping; Wang, Wei-Hong; Tian, Yu; Gao, Wen; Li, Jiang
2009-02-28
To investigate the mechanisms of aspirin increasing the susceptibility of Helicobacter pylori (H pylori) to metronidazole. H pylori reference strain 26695 and two metronidazole-resistant isolates of H pylori were included in this study. Strains were incubated in Brucella broth with or without aspirin (1 mmol/L). The rdxA gene of H pylori was amplified by PCR and sequenced. The permeability of H pylori to antimicrobials was determined by analyzing the endocellular radioactivity of the cells after incubated with [7-(3)H]-tetracycline. The outer membrane proteins (OMPs) of H pylori 26695 were depurated and analyzed by SDS-PAGE. The expression of 5 porins (hopA, hopB, hopC, hopD and hopE) and the putative RND efflux system (hefABC) of H pylori were analyzed using real-time quantitative PCR. The mutations in rdxA gene did not change in metronidazole resistant isolates treated with aspirin. The radioactivity of H pylori increased when treated with aspirin, indicating that aspirin improved the permeability of the outer membrane of H pylori. However, the expression of two OMP bands between 55 kDa and 72 kDa altered in the presence of aspirin. The expression of the mRNA of hopA, hopB, hopC, hopD, hopE and hefA, hefB, hefC of H pylori did not change when treated with aspirin. Although aspirin increases the susceptibility of H pylori to metronidazole, it has no effect on the mutations of rdxA gene of H pylori. Aspirin increases endocellular concentrations of antimicrobials probably by altering the OMP expression.
Standardization of Weed Pollen Extracts, Japanese Hop and Mugwort, in Korea
Jeong, Kyoung Yong; Son, Mina; Choi, Soo-Young; Park, Kyung Hee; Park, Hye Jung; Hong, Chein-Soo; Lee, Jae-Hyun
2016-01-01
Purpose Japanese hop (Humulus spp.) and mugwort (Artemisia spp.) are notable causes of autumn pollinosis in East Asia. However, Japanese hop and mugwort pollen extracts, which are widely used for the diagnosis, have not been standardized. This study was performed to standardize Japanese hop and mugwort pollen extracts. Materials and Methods Allergen extracts were prepared in a standardized way using locally collected Humulus japonicus and purchased Artemisia vulgaris pollens. The immunoglobulin E (IgE) reactivities of prepared extracts were compared with commercial extracts via IgE immunoblotting and inhibition analyses. Intradermal skin tests were performed to determine the bioequivalent allergy unit (BAU). Results The IgE reactive components of the extracts via IgE immunoblotting were similar to those of commercial extracts. A 11-kDa allergen showed the strongest IgE reactivity in Japanese hop, as did a 28-kDa allergen in mugwort pollen extracts. Allergenic potencies of the investigatory Japanese hop and mugwort extracts were essentially indistinguishable from the commercial ones. Sums of erythema of 50 mm by the intradermal skin test (ΣED50) were calculated to be 14.4th and 13.6th three-fold dilutions for Japanese hop and mugwort extracts, respectively. Therefore, the allergenic activity of the prepared extracts was 90827.4 BAU/mg for Japanese hop and 34412 BAU/mg for mugwort. Conclusion We produced Japanese hop and mugwort pollen extracts using a standardized method. Standardized Japanese hop and mugwort pollen extracts will facilitate the production of improved diagnostic and immunotherapeutic reagents. PMID:26847293
Schroeder, Krista; Jia, Haomiao; Wang, Y Claire; Smaldone, Arlene
The Healthy Options and Physical Activity Program (HOP) is a school nurse-led intervention for children with severe obesity. HOP was developed by experts at the New York City Department of Health and Mental Hygiene and implemented in New York City schools beginning in 2012. The purpose of this study was to evaluate HOP implementation with the goal of informing HOP refinement and potential future HOP dissemination. This study entailed a retrospective analysis of secondary data. Analytic methods included descriptive statistics, Wilcoxon rank sum and Chi square tests, and multivariate logistic regression. During the 2012-2013 school year, 20,518 children were eligible for HOP. Of these, 1054 (5.1%) were enrolled in the program. On average, enrolled children attended one HOP session during the school year. Parent participation was low (3.2% of HOP sessions). Low nurse workload, low school poverty, higher grade level, higher BMI percentile, and chronic illness diagnosis were associated with student enrollment in HOP. As currently delivered, HOP is not likely to be efficacious. Lessons learned from this evaluation are applicable to future nurse-led obesity interventions. Prior to implementing a school nurse-led obesity intervention, nursing workload and available support must be carefully considered. Interventions should be designed to facilitate (and possibly require) parent involvement. Nurses who deliver obesity interventions may require additional training in obesity treatment. With attention to these lessons learned, evidence-based school nurse-led obesity interventions can be developed. Copyright © 2017 Elsevier Inc. All rights reserved.
Brown, Simon David; Jarosinska, Olga Dorota; Lorenz, Alexander
2018-03-17
Hop1 is a component of the meiosis-specific chromosome axis and belongs to the evolutionarily conserved family of HORMA domain proteins. Hop1 and its orthologs in higher eukaryotes are a major factor in promoting double-strand DNA break formation and inter-homolog recombination. In budding yeast and mammals, they are also involved in a meiotic checkpoint kinase cascade monitoring the completion of double-strand DNA break repair. We used the fission yeast, Schizosaccharomyces pombe, which lacks a canonical synaptonemal complex to test whether Hop1 has a role beyond supporting the generation of double-strand DNA breaks and facilitating inter-homolog recombination events. We determined how mutants of homologous recombination factors genetically interact with hop1, studied the role(s) of the HORMA domain of Hop1, and characterized a bio-informatically predicted interactor of Hop1, Aho1 (SPAC688.03c). Our observations indicate that in fission yeast, Hop1 does require its HORMA domain to support wild-type levels of meiotic recombination and localization to meiotic chromatin. Furthermore, we show that hop1∆ only weakly interacts genetically with mutants of homologous recombination factors, and in fission yeast likely has no major role beyond break formation and promoting inter-homolog events. We speculate that after the evolutionary loss of the synaptonemal complex, Hop1 likely has become less important for modulating recombination outcome during meiosis in fission yeast, and that this led to a concurrent rewiring of genetic pathways controlling meiotic recombination.
Lürick, Anna; Kuhlee, Anne; Bröcker, Cornelia; Kümmel, Daniel; Raunser, Stefan; Ungermann, Christian
2015-01-01
Membrane fusion at vacuoles requires a consecutive action of the HOPS tethering complex, which is recruited by the Rab GTPase Ypt7, and vacuolar SNAREs to drive membrane fusion. It is assumed that the Sec1/Munc18-like Vps33 within the HOPS complex is largely responsible for SNARE chaperoning. Here, we present direct evidence for HOPS binding to SNAREs and the Habc domain of the Vam3 SNARE protein, which may explain its function during fusion. We show that HOPS interacts strongly with the Vam3 Habc domain, assembled Q-SNAREs, and the R-SNARE Ykt6, but not the Q-SNARE Vti1 or the Vam3 SNARE domain. Electron microscopy combined with Nanogold labeling reveals that the binding sites for vacuolar SNAREs and the Habc domain are located in the large head of the HOPS complex, where Vps16 and Vps33 have been identified before. Competition experiments suggest that HOPS bound to the Habc domain can still interact with assembled Q-SNAREs, whereas Q-SNARE binding prevents recognition of the Habc domain. In agreement, membranes carrying Vam3ΔHabc fuse poorly unless an excess of HOPS is provided. These data suggest that the Habc domain of Vam3 facilitates the assembly of the HOPS/SNARE machinery at fusion sites and thus supports efficient membrane fusion. PMID:25564619
ERIC Educational Resources Information Center
Horton, Akesha Monique
2013-01-01
Hip-hop has exploded around the world among youth. It is not simply an American source of entertainment; it is a global cultural movement that provides a voice for youth worldwide who have not been able to express their "cultural world" through mainstream media. The emerging field of critical hip-hop pedagogy has produced little…
"Deeper than Rap": Gifted Males and Their Relationship with Hip Hop Culture
ERIC Educational Resources Information Center
Callahan, J. Sean; Grantham, Tarek C.
2012-01-01
One would be hard-pressed to deny the impact that hip hop is having on gifted students. More specifically, because hip hop is a creative and exciting male-dominated culture, gifted males gravitate to hip hop culture. From the perspective of two Black men from two different generations, this article was inspired by discussions about the role of hip…
HPLC Analysis of [Alpha]- and [Beta]-Acids in Hops
ERIC Educational Resources Information Center
Danenhower, Travis M.; Force, Leyna J.; Petersen, Kenneth J.; Betts, Thomas A.; Baker, Gary A.
2008-01-01
Hops have been used for centuries to impart aroma and bitterness to beer. The cones of the female hop plant contain both essential oils, which include many of the fragrant components of hops, and a collection of compounds known as [alpha]- and [beta]-acids that are the precursors to bittering agents. In order for brewers to predict the ultimate…
ERIC Educational Resources Information Center
Love, Bettina L.
2016-01-01
Hip hop music and culture have a complex identity in that hip hop is based in self-determination, resistance, and the long enduring fight for Black freedom, but was also created alongside the seductiveness of the material and psychological conditions of capitalism, sexism, and patriarchy. Hip hop pedagogy (HHP) as a pedagogical framework is…
HIP HOP for HIV Awareness: Using Hip Hop Culture to Promote Community-Level HIV Prevention
ERIC Educational Resources Information Center
Hill, Mandy J.; Hallmark, Camden J.; McNeese, Marlene; Blue, Nike; Ross, Michael W.
2014-01-01
The goal of this paper was to determine the effectiveness of the HIP HOP for HIV Awareness intervention, an innovative model utilising an exchange of an HIV test for a hip hop concert ticket, in a metropolitan city among African American youth and young adults. A subset of intervention participants participated in standardised testing, sex…
Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors.
Pedesseau, Laurent; Sapori, Daniel; Traore, Boubacar; Robles, Roberto; Fang, Hong-Hua; Loi, Maria Antonietta; Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda; Tretiak, Sergei; Mohite, Aditya D; Katan, Claudine; Even, Jacky; Kepenekian, Mikaël
2016-11-22
Layered halide hybrid organic-inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells and revisited for light-emitting devices. In this review, we combine classical solid-state physics concepts with simulation tools based on density functional theory to overview the main features of the optoelectronic properties of layered HOP. A detailed comparison between layered and 3D HOP is performed to highlight differences and similarities. In the same way as the cubic phase was established for 3D HOP, here we introduce the tetragonal phase with D 4h symmetry as the reference phase for 2D monolayered HOP. It allows for detailed analysis of the spin-orbit coupling effects and structural transitions with corresponding electronic band folding. We further investigate the effects of octahedral tilting on the band gap, loss of inversion symmetry and possible Rashba effect, quantum confinement, and dielectric confinement related to the organic barrier, up to excitonic properties. Altogether, this paper aims to provide an interpretive and predictive framework for 3D and 2D layered HOP optoelectronic properties.
An Energy Efficient Power Control Protocol for Ad Hoc Networks Using Directional Antennas
NASA Astrophysics Data System (ADS)
Quiroz-Perez, Carlos; Gulliver, T. Aaron
A wireless ad hoc network is a collection of mobile nodes that can communicate with each other. Typically, nodes employ omnidirectional antennas. The use of directional antennas can increase spatial reuse, reduce the number of hops to a destination, reduce interference, and increase the transmission range in a specific direction. This is because omnidirectional antennas radiate equally in all directions, limiting the transmission range.
Kappagantu, Madhu; Villamor, Dan Edward V; Bullock, Jeff M; Eastwell, Kenneth C
2017-07-01
Hop stunt disease caused by Hop stunt viroid (HSVd) is a growing threat to hop cultivation globally. HSVd spreads mainly by use of contaminated planting material and by mechanical means. Thorough testing of hop yards and removal of infected bines are critical components of efforts to control the spread of the disease. Reverse transcription-polymerase chain reaction (RT-PCR) has become the primary technique used for HSVd detection; however, sample handling and analysis are technically challenging. In this study, a robust reverse transcription-recombinase polymerase amplification (RT-RPA) assay was developed to facilitate analysis of multiple samples. The assay was optimized with all major variants of HSVd from other host species in addition to hop variants. Used in conjunction with sample collection cards, RT-RPA accommodates large sample numbers. Greenhouse and farm samples tested with RT-RPA were also tested with RT-PCR and a 100% correlation between the two techniques was found. Copyright © 2017. Published by Elsevier B.V.
Urban Lit and Sexual Risk Behavior: A Survey of African-American Adolescent Girls.
Harris, Allyssa L
2015-07-01
Adolescents spend an inordinate amount of time engaged with media, which is highly sexualized. Sexualized material can be found in music, on television and the Internet, as well as in magazines and books. Adolescents engaged with media are often influenced by this sexualized content, leading them to engage in risky sexual behavior. Urban literature (urban lit) is extremely popular among African-American female adolescents due to its portrayal of urban life and hip-hop culture. The purpose of this survey was to ascertain the extent to which African-American adolescent females are reading urban literature and to document whether this genre of literature had an effect on their sexual risk behaviors.
Thermally Stimulated Currents in Nanocrystalline Titania
Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Cavallaro, Alessandro; Scaringella, Monica
2018-01-01
A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO2. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5–630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 1014–1018 cm−3, associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies. PMID:29303976
Transport and charging mechanisms in Ta2O5 thin films for capacitive RF MEMS switches application
NASA Astrophysics Data System (ADS)
Persano, A.; Quaranta, F.; Martucci, M. C.; Cretı, P.; Siciliano, P.; Cola, A.
2010-06-01
The potential of sputtered Ta2O5 thin films to be used as dielectric layers in capacitive radio frequency microelectromechanical system switches is evaluated by investigating two factors of crucial importance for the performance of these devices which are the transport mechanisms and the charging effects in the dielectric layer. We find that Ta2O5 films show good electrical and dielectrical properties for the considered application in terms of a low leakage current density of 4 nA/cm2 for E =1 MV/cm, a high breakdown field of 4 MV/cm and a high dielectric constant of 32. For electric fields lower than 1 MV/cm the conduction mechanism is found to be variable-range hopping in the temperature range 300-400 K, while nearest-neighbor hopping is observed at higher temperatures. For fields in the range 1-4 MV/cm Poole-Frenkel becomes the dominant conduction mechanism. Current and capacitance transients used to investigate the charging effects show a decay which is well described by the stretched-exponential law, thus providing further insights on capture and emission processes.
Thermally Stimulated Currents in Nanocrystalline Titania.
Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Carnevale, Ennio Antonio; Cavallaro, Alessandro; Scaringella, Monica
2018-01-05
A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO₂. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5-630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 10 14 -10 18 cm -3 , associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies.
Jackowski, J; Hurej, M; Rój, E; Popłoński, J; Kośny, L; Huszcza, E
2015-08-01
Xanthohumol, a prenylated flavonoid from hops, and a supercritical carbon dioxide extract of spent hops were studied for their antifeedant activity against stored product insect pests: Sitophilus granarius L., Tribolium confusum Duv. and Trogoderma granarium Everts. Xanthohumol exhibited medium deterrent activity against the adults of S. granarius L. and larvae of T. confusum Duv. The spent hops extract was more active than xanthohumol towards the adults of T. confusum Duv. The potential application of the crude spent hops extract as a feeding deterrent against the stored product pests is proposed.
Sueyoshi, Ted; Nakahata, Akihiro; Emoto, Gen; Yuasa, Tomoki
2017-01-01
Background: Isokinetic strength and hop tests are commonly used to assess athletes’ readiness to return to sport after knee surgery. Purpose/Hypothesis: The purpose of this study was to investigate the results of single-leg hop and isokinetic knee strength testing in athletes who underwent anterior cruciate ligament reconstruction (ACLR) upon returning to sport participation as well as to study the correlation between these 2 test batteries. The secondary purpose was to compare the test results by graft type (patellar tendon or hamstring). It was hypothesized that there would be no statistically significant limb difference in either isokinetic knee strength or single-leg hop tests, that there would be a moderate to strong correlation between the 2 test batteries, and that there would be no significant difference between graft types. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Twenty-nine high school and collegiate athletes who underwent ACLR participated in this study. At the time of return to full sport participation, a series of hop tests and knee extension/flexion isokinetic strength measurements were conducted. The results were analyzed using analysis of variance and Pearson correlation (r). Results: The timed 6-m hop test was the only hop test that showed a significant difference between the involved and uninvolved limbs (2.3 and 2.2 seconds, respectively; P = .02). A significant difference between limbs in knee strength was found for flexion peak torque/body weight at 180 deg/s (P = .03), flexion total work/body weight at 180 deg/s (P = .04), and flexion peak torque/body weight at 300 deg/s (P = .03). The strongest correlation between the hop tests and knee strength was found between the total distance of the hop tests and flexion total work/body weight at 300 deg/s (r = 0.69) and between the timed 6-m hop test and flexion peak torque/body weight at 300 deg/s (r = –0.54). There was no statistically significant difference in hop test performance or isokinetic knee strength between graft types. Conclusion: The single-leg hop tests and isokinetic strength measurements were both useful for a bilateral comparison of knee functional performance and strength. Knee flexion strength deficits and flexion-to-extension ratios seemed to be correlated with single-leg hop test performance. There was no difference in postoperative hop test performance or knee strength according to graft type. PMID:29164167
Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels
NASA Astrophysics Data System (ADS)
Wang, Jiuling; Yang, Yiwei; Yu, Miaorong; Hu, Guoqing; Gan, Yong; Gao, Huajian; Shi, Xinghua
2018-03-01
It is known that rod-like nanoparticles (NPs) can achieve higher diffusivity than their spherical counterparts in biological porous media such as mucus and tumor interstitial matrix, but the underlying mechanisms still remain elusive. Here, we present a joint experimental and theoretical study to show that the aspect ratio (AR) of NPs and their adhesive interactions with the host medium play key roles in such anomalous diffusion behaviors of nanorods. In an adhesive polymer solution/gel (e.g., mucus), hopping diffusion enables nanorods to achieve higher diffusivity than spherical NPs with diameters equal to the minor axis of the rods, and there exists an optimal AR that leads to maximum diffusivity. In contrast, the diffusivity of nanorods decreases monotonically with increasing AR in a non-adhesive polymer solution/gel (e.g., hydroxyethyl cellulose, HEC). Our theoretical model, which captures all the experimental observations, generalizes the so-called obstruction-scaling model by incorporating the effects of the NPs/matrix interaction via the mean first passage time (MFPT) theory. This work reveals the physical origin of the anomalous diffusion behaviors of rod-like NPs in biological gels and may provide guidelines for a range of applications that involve NPs diffusion in complex porous media.
NASA Astrophysics Data System (ADS)
Wang, Xiao Lin; Liu, Zhen; Wen, Chao; Liu, Yang; Wang, Hong Zhe; Chen, T. P.; Zhang, Hai Yan
2018-06-01
With self-prepared nickel acetate based solution, NiO thin films with different thicknesses have been fabricated by spin coating followed by thermal annealing. By forming a two-terminal Ag/NiO/ITO structure on glass, write-once-read-many-times (WORM) memory devices are realized. The WORM memory behavior is based on a permanent switching from an initial high-resistance state (HRS) to an irreversible low-resistance state (LRS) under the application of a writing voltage, due to the formation of a solid bridge across Ag and ITO electrodes by conductive filaments (CFs). The memory performance is investigated as a function of the NiO film thickness, which is determined by the number of spin-coated NiO layers. For devices with 4 and 6 NiO layers, data retention up to 104 s and endurance of 103 reading operations in the measurement range have been obtained with memory window maintained above four orders for both HRS and LRS. Before and after writing, the devices show the hopping and ohmic conduction behaviors, respectively, confirming that the CF formation could be the mechanism responsible for writing in the WORM memory devices.
Tourette Syndrome in the Classroom
ERIC Educational Resources Information Center
Coffman, Amanda
2012-01-01
Tourette syndrome is a neurodevelopmental disorder believed to be genetic. The most visible symptom is the presence of tics. These involuntary movements or sounds can range from simple (sniffing, throat clearing, blinking) to complex (words or phrases, hopping, body contortions). They may be frequent for a few weeks, then fade away almost…
ERIC Educational Resources Information Center
Buchanan, Ian P.
2013-01-01
Using a critical race lens, this narrative study employs a focus group design to explore the intersections between black males, hip hop culture and schooling experiences. To provide a sociocultural grounding, this study first reviews the research literature around hip hop culture.s sociocultural development and its impact as a culture force that…
Beats, Rhymes, and Classroom Life: Hip-Hop Pedagogy and the Politics of Identity
ERIC Educational Resources Information Center
Hill, Marc Lamont
2009-01-01
For over a decade, educators have looked to capitalize on the appeal of hip-hop culture, sampling its language, techniques, and styles as a way of reaching out to students. But beyond a fashionable hipness, what does hip-hop have to offer our schools? In this revelatory new book, Marc Lamont Hill shows how a serious engagement with hip-hop culture…
Engaging Black Males on Their Own Terms: What Schools Can Learn from Black Males Who Produce Hip-Hop
ERIC Educational Resources Information Center
Irby, Decoteau J.; Petchauer, Emery; Kirkland, David
2013-01-01
Education scholars and practitioners have much to learn about engagement and motivation of Black males by directing their inquiries to more organic sites of hip-hop cultural production outside of schools. One such site is the hip-hop's informal labor economy where Black males engage in earning money through hip-hop cultural production. Labor…
ERIC Educational Resources Information Center
Hill, Marc Lamont
2009-01-01
This article examines the salience of collective "memory" and "remembering" among a group of students in Hip-Hop Lit, a hip-hop centered English literature course that I co-taught at "Howard High School," an urban high school in the Northeastern United States. Specifically, this article examines the memory work that occurred within Hip-Hop Lit in…
Butun, Ismail; Ra, In-Ho; Sankar, Ravi
2015-01-01
In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) “downward-IDS (D-IDS)” to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) “upward-IDS (U-IDS)” to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented. PMID:26593915
Bistable resistive memory behavior in gelatin-CdTe quantum dot composite film
NASA Astrophysics Data System (ADS)
Vallabhapurapu, Sreedevi; Rohom, Ashwini; Chaure, N. B.; Du, Shengzhi; Srinivasan, Ananthakrishnan
2018-05-01
Bistable memory behavior has been observed for the first time in gelatin type A thin film dispersed with functionalized CdTe quantum dots. The two terminal device with the polymer nanocomposite layer sandwiched between an indium tin oxide coated glass plate and an aluminium top electrode performs as a bistable resistive random access memory module. Butterfly shaped (O-shaped with a hysteresis in forward and reverse sweeps) current-voltage response is observed in this device. The conduction mechanism leading to the bistable electrical switching has been deduced to be a combination of ohmic and electron hopping.
Lamm, Christian E.; Kraner, Max. E.; Hofmann, Jörg; Börnke, Frederik; Mock, Hans-Peter; Sonnewald, Uwe
2017-01-01
Perception of pathogens by host pattern recognition receptors (PRRs) or R proteins is a prerequisite to promote successful immune responses. The Hsp70/Hsp90 organizing protein Hop/Sti1, a multifunctional cochaperone, has been implicated in the maturation of a receptor-like kinase (RLK) necessary for chitin sensing. However, it remains unknown whether Hop/Sti1 is generally participating in PRR genesis. Using RNA-interference (RNAi), we silenced Hop/Sti1 expression in Nicotiana tabacum to gain further insight into the role of the cochaperone in plant defense responses. As expected, transgenic plants do not respond to chitin treatment anymore. In contrast to this, trafficking and functionality of the flagellin PRR FLS2 were unaltered, suggesting a selective involvement of Hop/Sti1 during PRR maturation. Furthermore, Hop/Sti1 was identified as a cellular determinant of Potato virus Y (PVY) symptom development in tobacco, since PVY was able to accumulate to near wild-type level without provoking the usual veinal necrosis phenotype. In addition, typical antiviral host defense responses were suppressed in the transgenic plants. These data suggest that perception of PVY is dependent on Hop/Sti1-mediated receptor maturation, while viral symptoms represent a failing attempt to restrict PVY spread. In addition, Hop/Sti1 colocalized with virus-induced membrane aggregates in wild-type plants. The retention of Hop/Sti1 in potential viral replication complexes suggests a role during viral translation/replication, explaining why RNAi-lines do not exhibit increased susceptibility to PVY. This study provides evidence for a dual role of Hop/Sti1 in PRR maturation and pathogen perception as well as in promoting viral proliferation. PMID:29075278
Zhang, Xiao-Ping; Wang, Wei-Hong; Tian, Yu; Gao, Wen; Li, Jiang
2009-01-01
AIM: To investigate the mechanisms of aspirin increasing the susceptibility of Helicobacter pylori (H pylori) to metronidazole. METHODS: H pylori reference strain 26 695 and two metronidazole-resistant isolates of H pylori were included in this study. Strains were incubated in Brucella broth with or without aspirin (1 mmol/L). The rdxA gene of H pylori was amplified by PCR and sequenced. The permeability of H pylori to antimicrobials was determined by analyzing the endocellular radioactivity of the cells after incubated with [7-3H]-tetracycline. The outer membrane proteins (OMPs) of H pylori 26 695 were depurated and analyzed by SDS-PAGE. The expression of 5 porins (hopA, hopB, hopC, hopD and hopE) and the putative RND efflux system (hefABC) of H pylori were analyzed using real-time quantitative PCR. RESULTS: The mutations in rdxA gene did not change in metronidazole resistant isolates treated with aspirin. The radioactivity of H pylori increased when treated with aspirin, indicating that aspirin improved the permeability of the outer membrane of H pylori. However, the expression of two OMP bands between 55 kDa and 72 kDa altered in the presence of aspirin. The expression of the mRNA of hopA, hopB, hopC, hopD, hopE and hefA, hefB, hefC of H pylori did not change when treated with aspirin. CONCLUSION: Although aspirin increases the susceptibility of H pylori to metronidazole, it has no effect on the mutations of rdxA gene of H pylori. Aspirin increases endocellular concentrations of antimicrobials probably by altering the OMP expression. PMID:19248190
Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip
Nelson, Gregory M.; Huffman, Holly; Smith, David F.
2003-01-01
Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function. PMID:14627198
Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip.
Nelson, Gregory M; Huffman, Holly; Smith, David F
2003-01-01
Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function.
Vehicle Density Based Forwarding Protocol for Safety Message Broadcast in VANET
Huang, Jiawei; Wang, Jianxin
2014-01-01
In vehicular ad hoc networks (VANETs), the medium access control (MAC) protocol is of great importance to provide time-critical safety applications. Contemporary multihop broadcast protocols in VANETs usually choose the farthest node in broadcast range as the forwarder to reduce the number of forwarding hops. However, in this paper, we demonstrate that the farthest forwarder may experience large contention delay in case of high vehicle density. We propose an IEEE 802.11-based multihop broadcast protocol VDF to address the issue of emergency message dissemination. To achieve the tradeoff between contention delay and forwarding hops, VDF adaptably chooses the forwarder according to the vehicle density. Simulation results show that, due to its ability to decrease the transmission collisions, the proposed protocol can provide significantly lower broadcast delay. PMID:25121125
Microhard MHX2420 Orbital Performance Evaluation Using RT Logic T400CS
NASA Technical Reports Server (NTRS)
TintoreGazulla, Oriol; Lombardi, Mark
2012-01-01
RT Logic allows simulation of Ground Station - satellite communications: Static tests have been successful. Dynamic tests have been performed for simple passes. Future dynamic tests are needed to simulate real orbit communications. Satellite attitude changes antenna gain. Atmospheric and rain losses need to be added. STK Plug-in will be the next step to improve the dynamic tests. There is a possibility of running longer simulations. Simulation of different losses available in the STK Plug-in. Microhard optimization: Effect of Microhard settings on the data throughput have been understood. Optimized settings improve data throughput for LEO communications. Longer hop intervals make transfer of larger packets more efficient (more time between hops in frequency). Use of FEC (Reed-Solomon) reduces the number of retransmissions for long-range or noisy communications.
NASA Astrophysics Data System (ADS)
Zou, Zhen-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-04-01
At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.
Xu, Pengbai; Dong, Yongkang; Zhou, Dengwang; Fu, Cheng; Zhang, Juwang; Zhang, Hongying; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi
2016-07-20
In this paper, up to 1100°C and 1200°C high-temperature distributed Brillouin sensing based on a GeO2-doped single-mode fiber (SMF) and a pure silica photonic crystal fiber (PCF) are demonstrated, respectively. The Brillouin frequency shift's (BFS) dependence on temperatures of the SMF and PCF agrees with a nonlinear function instead of a linear function, which is mainly due to the change of the acoustic velocity in a silica fiber. BFS hopping is observed in both kinds of fibers between 800°C-900°C in the first annealing process, and after that, the BFS exhibits stability and repeatability with a measurement accuracy as high as ±2.4°C for the SMF and ±3.6°C for the PCF. The BFS hopping is a highly temperature-dependent behavior, which means that a high temperature (>800°C) would accelerate this process to reach a stable state. After BFS hopping, both the SMF and PCF show good repeatability for temperatures higher than 1000°C without annealing. The process of coating burning of a silica fiber not only introduces a loss induced by micro-bending, but also imposes a compressive stress on the bare fiber, which contributes to an additional BFS variation at the temperature period of the coating burning (∼300°C-500°C).
Effects of compositional defects on small polaron hopping in micas.
Rosso, Kevin M; Ilton, Eugene S
2005-06-22
Hartree-Fock calculations and electron transfer (ET) theory were used to model the effects of compositional defects on ET in the brucite-like octahedral sheet of mica. ET was modeled as an Fe(IIIII) valence interchange reaction across shared octahedral edges of the M2-M2 iron sublattice. The model entails the hopping of localized electrons and small polaron behavior. Hartree-Fock calculations indicate that substitution of F for structural OH bridges increases the reorganization energy lambda, decreases the electronic coupling matrix element V(AB), and thereby substantially decreases the hopping rate. The lambda increase arises from modification of the metal-ligand bond force constants, and the V(AB) decrease arises from reduction of superexchange interaction through anion bridges. Deprotonation of an OH bridge, consistent with a possible mechanism of maintaining charge neutrality during net oxidation, yields a net increase in the ET rate. Although substitution of Al or Mg for Fe in M1 sites distorts the structure of adjacent Fe-occupied M2 sites, the distortion has little net impact on ET rates through these M2 sites. Hence the main effect of Al or Mg substitution for Fe, should it occur in the M2 sublattice, is to block ET pathways. Collectively, these findings pave the way for larger-scale oxidation/reduction models to be constructed for realistic, compositionally diverse micas.
2018-01-01
As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation. PMID:29329248
van der Kant, Rik; Jonker, Caspar T. H.; Wijdeven, Ruud H.; Bakker, Jeroen; Janssen, Lennert; Klumperman, Judith; Neefjes, Jacques
2015-01-01
Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway. PMID:26463206
Jung, Haejoon; Lee, In-Ho
2018-01-12
As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.
Interaction of alcoholic extracts of hops with cocaine and paracetamol in mice.
Horvat, Olga; Raskovic, Aleksandar; Jakovljevic, Vida; Sabo, Jan; Berenji, Janos
2007-01-01
This work describes a study of the interaction in the mouse model of alcoholic extracts of hops of Magnum, Aroma and wild genotypes with drugs that have excitatory effect on the cerebral cortex (cocaine) and analgesic action (paracetamol). Hop drying and preparation of the extracts were carried out according to standard pharmacological procedures for preparing total alcoholic extracts of dry herbs, consisting of one part of dry drug and two parts of 70% alcohol. The mice received four doses i.p. of 0.5% aqueous solutions of the above-mentioned extracts (10 ml/kg) 24, 16, 4 and 0.5 h prior to receiving cocaine (25 mg/kg) or paracetamol (80 mg/kg). The parameter investigated was the change in spontaneous motility of mice after combined treatment with the extracts and cocaine/paracetamol compared to control animals that received the same dose of the drug after treatment with physiological solution. Only the ethanolic extract of Magnum hops increased the spontaneous motility of mice, while none of the extracts showed analgesic action as measured by the hot-plate method. In the interaction with cocaine, the extract of Magnum hops suppressed almost completely the action of cocaine compared to controls. Extracts of the other hops also decreased the cocaine-induced locomotor activity of mice, but to a lesser extent. Hop extracts exhibited a significant pharmacological interaction with paracetamol, with the most pronounced increase in analgesic action being found for the ethanolic extract of Aroma hops and the tert-butanolic extract of wild hops.
ERIC Educational Resources Information Center
Söderman, Johan; Sernhede, Ove
2016-01-01
Since hip-hop first appeared in New York over 35 years ago, it has been associated with social activism and education. Accordingly, it is not surprising that academic institutions in universities and K-12 schools are interested in hip-hop. In this article, we will highlight the "hip-hop academisation" and map out a new direction in a…
Liu, Zechang; Wang, Liping; Liu, Yumei
2018-01-18
Hops impart flavor to beer, with the volatile components characterizing the various hop varieties and qualities. Fingerprinting, especially flavor fingerprinting, is often used to identify 'flavor products' because inconsistencies in the description of flavor may lead to an incorrect definition of beer quality. Compared to flavor fingerprinting, volatile fingerprinting is simpler and easier. We performed volatile fingerprinting using head space-solid phase micro-extraction gas chromatography-mass spectrometry combined with similarity analysis and principal component analysis (PCA) for evaluating and distinguishing between three major Chinese hops. Eighty-four volatiles were identified, which were classified into seven categories. Volatile fingerprinting based on similarity analysis did not yield any obvious result. By contrast, hop varieties and qualities were identified using volatile fingerprinting based on PCA. The potential variables explained the variance in the three hop varieties. In addition, the dendrogram and principal component score plot described the differences and classifications of hops. Volatile fingerprinting plus multivariate statistical analysis can rapidly differentiate between the different varieties and qualities of the three major Chinese hops. Furthermore, this method can be used as a reference in other fields. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.
2015-01-01
The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.
Karam, Joseph A; Parikh, Rasesh Y; Nayak, Dhananjaya; Rosenkranz, David; Gangaraju, Vamsi K
2017-04-14
Piwi-interacting RNAs (piRNAs) are 26-30-nucleotide germ line-specific small non-coding RNAs that have evolutionarily conserved function in mobile genetic element (transposons) silencing and maintenance of genome integrity. Drosophila Hsp70/90-organizing protein homolog (Hop), a co-chaperone, interacts with piRNA-binding protein Piwi and mediates silencing of phenotypic variations. However, it is not known whether Hop has a direct role in piRNA biogenesis and transposon silencing. Here, we show that knockdown of Hop in the germ line nurse cells (GLKD) of Drosophila ovaries leads to activation of transposons. Hop GLKD females can lay eggs at the same rate as wild-type counterparts, but the eggs do not hatch into larvae. Hop GLKD leads to the accumulation of γ-H2Av foci in the germ line, indicating increased DNA damage in the ovary. We also show that Hop GLKD-induced transposon up-regulation is due to inefficient piRNA biogenesis. Based on these results, we conclude that Hop is a critical component of the piRNA pathway and that it maintains genome integrity by silencing transposons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Tripathi, Pankaj; Anuradha, S; Ghosal, Gargi; Muniyappa, K
2006-12-08
Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex (SC), plays an important role in both gene conversion and crossing over between homologs, as well as enforces meiotic recombination checkpoint control over the progression of recombination intermediates. In hop1Delta mutants, meiosis-specific double-strand breaks (DSBs) are reduced to 10% of the wild-type level, and at aberrantly late times, these DSBs are processed into inter-sister recombination intermediates. However, the underlying mechanism by which Hop1 protein regulates these nuclear events remains obscure. Here we show that Hop1 protein interacts selectively with the Holliday junction, changes its global conformation and blocks the dissolution of the junction by a RecQ helicase. The Holliday junction-Hop1 protein complexes are significantly more stable at higher ionic strengths and molar excess of unlabeled competitor DNA than complexes containing other recombination intermediates. Structural analysis of the Holliday junction using 2-aminopurine fluorescence emission, DNase I footprinting and KMnO4 probing provide compelling evidence that Hop1 protein binding induces significant distortion at the center of the Holliday junction. We propose that Hop1 protein might coordinate the physical monitoring of meiotic recombination intermediates with the process of branch migration of Holliday junction.
He, Guo-qing; Xiong, Hao-ping; Chen, Qi-he; Ruan, Hui; Wang, Zhao-yue; Traoré, Lonseny
2005-01-01
Waste hops are good sources of flavonoids. Extraction of flavonoids from waste hops (SC-CO2 extracted hops) using supercritical fluids technology was investigated. Various temperatures, pressures and concentrations of ethanol (modifier) and the ratio (w/w) of solvent to material were tested in this study. The results of single factor and orthogonal experiments showed that at 50 °C, 25 MPa, the ratio of solvent to material (50%), ethanol concentration (80%) resulted in maximum extraction yield flavonoids (7.8 mg/g). HPLC-MS analysis of the extracts indicated that flavonoids obtained were xanthohumol, the principal prenylflavonoid in hops. PMID:16187413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, Patrick Gordon; Feddema, John Todd; Little, Charles Quentin
2010-03-01
Hopping robots provide the possibility of breaking the link between the size of a ground vehicle and the largest obstacle that it can overcome. For more than a decade, DARPA and Sandia National Laboratories have been developing small-scale hopping robot technology, first as part of purely hopping platforms and, more recently, as part of platforms that are capable of both wheeled and hopping locomotion. In this paper we introduce the Urban Hopper robot and summarize its capabilities. The advantages of hopping for overcoming certain obstacles are discussed. Several configurations of the Urban Hopper are described, as are intelligent capabilities ofmore » the system. Key challenges are discussed.« less
Dynamical recovery of SU(2) symmetry in the mass-quenched Hubbard model
NASA Astrophysics Data System (ADS)
Du, Liang; Fiete, Gregory A.
2018-02-01
We use nonequilibrium dynamical mean-field theory with iterative perturbation theory as an impurity solver to study the recovery of SU(2) symmetry in real time following a hopping integral parameter quench from a mass-imbalanced to a mass-balanced single-band Hubbard model at half filling. A dynamical order parameter γ (t ) is defined to characterize the evolution of the system towards SU(2) symmetry. By comparing the momentum-dependent occupation from an equilibrium calculation [with the SU(2) symmetric Hamiltonian after the quench at an effective temperature] with the data from our nonequilibrium calculation, we conclude that the SU(2) symmetry recovered state is a thermalized state. Further evidence from the evolution of the density of states supports this conclusion. We find the order parameter in the weak Coulomb interaction regime undergoes an approximate exponential decay. We numerically investigate the interplay of the relevant parameters (initial temperature, Coulomb interaction strength, initial mass-imbalance ratio) and their combined effect on the thermalization behavior. Finally, we study evolution of the order parameter as the hopping parameter is changed with either a linear ramp or a pulse. Our results can be useful in strategies to engineer the relaxation behavior of interacting quantum many-particle systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, X. Z.; Yang, J., E-mail: jyang@issp.ac.cn; Yuan, B.
We investigate the structural, magnetic, dielectric properties, and scaling behaviors of Aurivillius compounds Bi{sub 6−x∕3}Fe{sub 2}Ti{sub 3−2x}(WCo){sub x}O{sub 18} (0 ≤ x ≤ 0.15). The room-temperature weak ferromagnetism is observed for the W/Co co-doped samples. The results of the dielectric constant ε{sub r}, complex impedance Z″, the dc conductivity σ{sub dc}, and hopping frequency f{sub H} manifest that the dielectric relaxation of the x = 0 sample and the doped samples in the dielectric anomaly region (450–750 K) can be ascribed to the trap-controlled ac conduction around the doubly ionized oxygen vacancies and the localized hopping process of oxygen vacancies, respectively.more » The scaling behaviors reveal that the dynamic process of both electrons in the x = 0 sample and oxygen vacancies in the doped samples is temperature independent. The ferroelectric Curie-temperature T{sub c} decreases slightly from 973 K to 947 K with increasing the doping level of W/Co. In addition, the dielectric loss exhibits a dielectric relaxation above 800 K with the rather large activation energies (1.95 eV ≤ E{sub a} ≤ 2.72 eV)« less
The impact of nanocontact on nanowire based nanoelectronics.
Lin, Yen-Fu; Jian, Wen-Bin
2008-10-01
Nanowire-based nanoelectronic devices will be innovative electronic building blocks from bottom up. The reduced nanocontact area of nanowire devices magnifies the contribution of contact electrical properties. Although a lot of two-contact-based ZnO nanoelectronics have been demonstrated, the electrical properties bringing either from the nanocontacts or from the nanowires have not been considered yet. High quality ZnO nanowires with a small deviation and an average diameter of 38 nm were synthesized to fabricate more than thirty nanowire devices. According to temperature behaviors of current-voltage curves and resistances, the devices could be grouped into three types. Type I devices expose thermally activated transport in ZnO nanowires and they could be considered as two Ohmic nanocontacts of the Ti electrode contacting directly on the nanowire. For those nanowire devices having a high resistance at room temperatures, they can be fitted accurately with the thermionic-emission theory and classified into type II and III devices according to their rectifying and symmetrical current-voltage behaviors. The type II device has only one deteriorated nanocontact and the other one Ohmic contact on single ZnO nanowire. An insulating oxide layer with thickness less than 20 nm should be introduced to describe electron hopping in the nanocontacts, so as to signalize one- and high-dimensional hopping conduction in type II and III devices.
An Efficient Next Hop Selection Algorithm for Multi-Hop Body Area Networks
Ayatollahitafti, Vahid; Ngadi, Md Asri; Mohamad Sharif, Johan bin; Abdullahi, Mohammed
2016-01-01
Body Area Networks (BANs) consist of various sensors which gather patient’s vital signs and deliver them to doctors. One of the most significant challenges faced, is the design of an energy-efficient next hop selection algorithm to satisfy Quality of Service (QoS) requirements for different healthcare applications. In this paper, a novel efficient next hop selection algorithm is proposed in multi-hop BANs. This algorithm uses the minimum hop count and a link cost function jointly in each node to choose the best next hop node. The link cost function includes the residual energy, free buffer size, and the link reliability of the neighboring nodes, which is used to balance the energy consumption and to satisfy QoS requirements in terms of end to end delay and reliability. Extensive simulation experiments were performed to evaluate the efficiency of the proposed algorithm using the NS-2 simulator. Simulation results show that our proposed algorithm provides significant improvement in terms of energy consumption, number of packets forwarded, end to end delay and packet delivery ratio compared to the existing routing protocol. PMID:26771586
Signaling induced by hop/STI-1 depends on endocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Americo, Tatiana A.; Chiarini, Luciana B.; Linden, Rafael
The co-chaperone hop/STI-1 is a ligand of the cell surface prion protein (PrP{sup C}), and their interaction leads to signaling and biological effects. Among these, hop/STI-1 induces proliferation of A172 glioblastoma cells, dependent on both PrP{sup C} and activation of the Erk pathway. We tested whether clathrin-mediated endocytosis affects signaling induced by hop/STI-1. Both hyperosmolarity induced by sucrose and monodansyl-cadaverine blocked Erk activity induced by hop/STI-1, without affecting the high basal Akt activity typical of A172. The endocytosis inhibitors also affected the sub-cellular distribution of phosphorylated Erk, consistent with blockade of the latter's activity. The data indicate that signaling inducedmore » by hop/STI-1 depends on endocytosis. These findings are consistent with a role of sub-cellular trafficking in signal transduction following engagement by PrP{sup C} by ligands such as hop/STI-1, and may help help unravel both the functions of the prion protein, as well as possible loss-of-function components of prion diseases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohr, Javier H.; Saleta, Martín E.; Sánchez, Rodolfo D., E-mail: rodo@cab.cnea.gov.ar
Nanopowder of ferromagnetic La{sub 0.5}Sr{sub 0.5}CoO{sub 3} (LSCO) and multiferroic BiFeO{sub 3} (BFO) were synthesized by spray pyrolysis method. Different compositions of multiferroic xLSCO-(1−x)BFO composites were synthesized at 800 °C for 2 h. Scanning electron microscopy and energy dispersive spectroscopy elemental mapping were performed to study the morphology of composites. Ferri/ferromagnetic responses above T{sub C} (LSCO) are observed, which are associated with the interfaces LSCO/BFO. This interface presents a different behavior compared to the original perovskites, and the magnitude of the magnetization depends on x. Electrical DC conductivity as a function of temperature for LSCO nanopowder (x = 1) presents a different behaviormore » than that reported in bulk material. For x = 1 and 0.9, the model by Glazman and Matveev [Zh. Eksp. Teor. Fiz. 94, 332 (1988)] is proposed to describe the electrical conductivity. On the other hand, x = 0, 0.1, and 0.5 present a variable range hopping behavior. Complex impedance spectroscopy as a function of frequency indicates a pure resistive behavior for x ≥ 0.5 compositions, while a complex resistive-capacitive behavior is observed for low x values (0, 0.1). In these samples, low values of magnetoelectric coupling were measured with an AC lock-in technique.« less
Homothallism in Pseudoperonospora humuli
USDA-ARS?s Scientific Manuscript database
The hop downy mildew pathogen, Pseudoperonospora humuli, forms oospores abundantly in diseased hop tissue. Diverse monosporangial isolates of P. humuli collected from Japan, Germany, and five states in the USA readily formed oospores within hop leaves when inoculated singly, suggesting homothallism....
ERIC Educational Resources Information Center
Craig, Todd
2015-01-01
Prompted by a moment in the classroom in which the DJ becomes integral for the writing instructor, this article looks at how the hip-hop DJ and hip-hop DJ/Producer become the intrinsic examples for first-year college writing students to think about how they conduct revision in their writing. After a review of two seminal hip-hop books and other…
ERIC Educational Resources Information Center
Gangloff-Bailey, Felicia
2017-01-01
The influence of hip hop culture and music on African-American youth is profound and can be used as a tool to shape positive outcomes in education. Hip hop has been used effectively in the classroom to engage students and enhance their critical thinking (Gangloff-Bailey & Freeman, 2014). In addition, hip hop has been described as a socializer…
NASA Astrophysics Data System (ADS)
Calderon, Francisco M.
1993-03-01
One hundred twenty-two workers (sixteen from a coke production plant and 106 from a graphite electrode manufacturing plant) agreed to participate in this study evaluating the relationship between exposure to polycyclic aromatic hydrocarbons (PAHs) and urinary excretion of 1-hydroxypyrene (1-HOP), the main metabolite of pyrene. The results show that the concentration of pyrene in air is highly correlated with total PAHs (r equals 0.83, P < 0.0001). The correlation coefficient between pyrene in air and 1-HOP is (r equals 0.69, P < 0.0001) and between 1-HOP and total PAHs is (r equals 0.77, P < 0.0001). The biological half life of the 1-HOP was determined (18 hrs) and the noninterference of smoking habits in relation to 1-HOP urinary excretion was established, concluding that 1-HOP is a suitable bioindicator of the occupational exposure to PAHs.
Structural studies on the co-chaperone Hop and its complexes with Hsp90.
Onuoha, S C; Coulstock, E T; Grossmann, J G; Jackson, S E
2008-06-13
The tetratricopeptide repeat domain (TPR)-containing co-chaperone Hsp-organising protein (Hop) plays a critical role in mediating interactions between Heat Shock Protein (Hsp)70 and Hsp90 as part of the cellular assembly machine. It also modulates the ATPase activity of both Hsp70 and Hsp90, thus facilitating client protein transfer between the two. Despite structural work on the individual domains of Hop, no structure for the full-length protein exists, nor is it clear exactly how Hop interacts with Hsp90, although it is known that its primary binding site is the C-terminal MEEVD motif. Here, we have undertaken a biophysical analysis of the structure and binding of Hop to Hsp90 using a variety of truncation mutants of both Hop and Hsp90, in addition to mutants of Hsp90 that are thought to modulate the conformation, in particular the N-terminal dimerisation of the chaperone. The results establish that whilst the primary binding site of Hop is the C-terminal MEEVD peptide of Hsp90, binding also occurs at additional sites in the C-terminal and middle domain. In contrast, we show that another TPR-containing co-chaperone, CyP40, binds solely to the C-terminus of Hsp90. Truncation mutants of Hop were generated and used to investigate the dimerisation interface of the protein. In good agreement with recently published data, we find that the TPR2a domain that contains the Hsp90-binding site is also the primary site for dimerisation. However, our results suggest that residues within the TPR2b may play a role. Together, these data along with shape reconstruction analysis from small-angle X-ray scattering measurements are used to generate a solution structure for full-length Hop, which we show has an overall butterfly-like quaternary structure. Studies on the nucleotide dependence of Hop binding to Hsp90 establish that Hop binds to the nucleotide-free, 'open' state of Hsp90. However, the Hsp90-Hop complex is weakened by the conformational changes that occur in Hsp90 upon ATP binding. Together, the data are used to propose a detailed model of how Hop may help present the client protein to Hsp90 by aligning the bound client on Hsp70 with the middle domain of Hsp90. It is likely that Hop binds to both monomers of Hsp90 in the form of a clamp, interacting with residues in the middle domain of Hsp90, thus preventing ATP hydrolysis, possibly by the prevention of association of N-terminal and middle domains in individual Hsp90 monomers.
NASA Astrophysics Data System (ADS)
Jiang, Cheng-Wei; Ni, I.-Chih; Tzeng, Shien-Der; Wu, Cen-Shawn; Kuo, Watson
2014-05-01
How the interparticle tunnelling affects the charge conduction of self-assembled gold nanoparticles is studied by three means: tuning the tunnel barrier width by different molecule modification and by substrate bending, and tuning the barrier height by high-dose electron beam exposure. All approaches indicate that the metal-Mott insulator transition is governed predominantly by the interparticle coupling strength, which can be quantified by the room temperature sheet resistance. The Hubbard gap, following the prediction of quantum fluctuation theory, reduces to zero rapidly as the sheet resistance decreases to the quantum resistance. At very low temperature, the fate of devices near the Mott transition depends on the strength of disorder. The charge conduction is from nearest-neighbour hopping to co-tunnelling between nanoparticles in Mott insulators whereas it is from variable-range hopping through charge puddles in Anderson insulators. When the two-dimensional nanoparticle network is under a unidirectional strain, the interparticle coupling becomes anisotropic so the average sheet resistance is required to describe the charge conduction.How the interparticle tunnelling affects the charge conduction of self-assembled gold nanoparticles is studied by three means: tuning the tunnel barrier width by different molecule modification and by substrate bending, and tuning the barrier height by high-dose electron beam exposure. All approaches indicate that the metal-Mott insulator transition is governed predominantly by the interparticle coupling strength, which can be quantified by the room temperature sheet resistance. The Hubbard gap, following the prediction of quantum fluctuation theory, reduces to zero rapidly as the sheet resistance decreases to the quantum resistance. At very low temperature, the fate of devices near the Mott transition depends on the strength of disorder. The charge conduction is from nearest-neighbour hopping to co-tunnelling between nanoparticles in Mott insulators whereas it is from variable-range hopping through charge puddles in Anderson insulators. When the two-dimensional nanoparticle network is under a unidirectional strain, the interparticle coupling becomes anisotropic so the average sheet resistance is required to describe the charge conduction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06627d
Ho, Ruoya; Stroupe, Christopher
2016-10-01
Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter-membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low-curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p-bearing low-curvature liposomes even when the high-curvature liposomes are protein-free. Phosphorylation of the curvature-sensing amphipathic lipid-packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high-curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high-curvature liposomes and Ypt7p-bearing low-curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein-membrane interaction. Such high-curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole-vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high-curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Leg exoskeleton reduces the metabolic cost of human hopping.
Grabowski, Alena M; Herr, Hugh M
2009-09-01
During bouncing gaits such as hopping and running, leg muscles generate force to enable elastic energy storage and return primarily from tendons and, thus, demand metabolic energy. In an effort to reduce metabolic demand, we designed two elastic leg exoskeletons that act in parallel with the wearer's legs; one exoskeleton consisted of a multiple leaf (MLE) and the other of a single leaf (SLE) set of fiberglass springs. We hypothesized that hoppers, hopping on both legs, would adjust their leg stiffness while wearing an exoskeleton so that the combination of the hopper and exoskeleton would behave as a linear spring-mass system with the same total stiffness as during normal hopping. We also hypothesized that decreased leg force generation while wearing an exoskeleton would reduce the metabolic power required for hopping. Nine subjects hopped in place at 2.0, 2.2, 2.4, and 2.6 Hz with and without an exoskeleton while we measured ground reaction forces, exoskeletal compression, and metabolic rates. While wearing an exoskeleton, hoppers adjusted their leg stiffness to maintain linear spring-mass mechanics and a total stiffness similar to normal hopping. Without accounting for the added weight of each exoskeleton, wearing the MLE reduced net metabolic power by an average of 6% and wearing the SLE reduced net metabolic power by an average of 24% compared with hopping normally at frequencies between 2.0 and 2.6 Hz. Thus, when hoppers used external parallel springs, they likely decreased the mechanical work performed by the legs and substantially reduced metabolic demand compared with hopping without wearing an exoskeleton.
Knee Joint Loading during Single-Leg Forward Hopping.
Krupenevich, Rebecca L; Pruziner, Alison L; Miller, Ross H
2017-02-01
Increased or abnormal loading on the intact limb is thought to contribute to the relatively high risk of knee osteoarthritis in this limb for individuals with unilateral lower limb loss. This theory has been assessed previously by studying walking, but knee joint loading during walking is often similar between individuals with and without limb loss, prompting assessment of other movements that may place unusual loads on the knee. One such movement, hopping, is a form of locomotion that individuals with unilateral lower limb loss may situationally use instead of walking, but the mechanical effects of hopping on the intact limb are unknown. Compare knee joint kinetics of healthy adults during single-leg forward hopping compared to walking, a more traditional form of locomotion. Twenty-four healthy adults walked and hopped at self-selected speeds of 1.5 and 2.3 m·s, respectively. Joint moments were calculated using inverse dynamics. A paired Student's t-test was utilized to compare peak, impulse, and loading rate (LR) of knee adduction moment (KAM), and peak knee flexion moment (KFM) between walking and hopping. Peak KFM and KAM LR were greater during hopping compared to walking (peak KFM: 20.73% vs 5.51% body weight (BW) × height (Ht), P < 0.001; KAM LR: 0.47 vs. 0.33 BW·Ht·s, P = 0.01). Kinetic measures affecting knee joint loading are greater in hopping compared to walking. It may be advisable to limit single-leg forward hopping in the limb loss population until it is known if these loads increase knee osteoarthritis risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biddle, J.; Priour, D. J. Jr.; Wang, B.
We study the quantum localization phenomena of noninteracting particles in one-dimensional lattices based on tight-binding models with various forms of hopping terms beyond the nearest neighbor, which are generalizations of the famous Aubry-Andre and noninteracting Anderson models. For the case with deterministic disordered potential induced by a secondary incommensurate lattice (i.e., the Aubry-Andre model), we identify a class of self-dual models, for which the boundary between localized and extended eigenstates are determined analytically by employing a generalized Aubry-Andre transformation. We also numerically investigate the localization properties of nondual models with next-nearest-neighbor hopping, Gaussian, and power-law decay hopping terms. We findmore » that even for these nondual models, the numerically obtained mobility edges can be well approximated by the analytically obtained condition for localization transition in the self-dual models, as long as the decay of the hopping rate with respect to distance is sufficiently fast. For the disordered potential with genuinely random character, we examine scenarios with next-nearest-neighbor hopping, exponential, Gaussian, and power-law decay hopping terms numerically. We find that the higher-order hopping terms can remove the symmetry in the localization length about the energy band center compared to the Anderson model. Furthermore, our results demonstrate that for the power-law decay case, there exists a critical exponent below which mobility edges can be found. Our theoretical results could, in principle, be directly tested in shallow atomic optical lattice systems enabling non-nearest-neighbor hopping.« less
NASA Astrophysics Data System (ADS)
Zhao, Bo
This study aims at understanding the fundamental mechanisms of conduction in several metal oxide semiconductors, namely alpha-Fe2O 3 and beta-Ga2O3, and how it could be tuned to desired values/states to enable a wide range of application. In the first effort, by adding Ti dopant, we successfully turned Fe2O3 from insulating to conductive by fabricated compositionally and structurally well-defined epitaxial alpha-(TixFe1-x)2 O3(0001) films for x ≤ 0.09. All films were grown by oxygen plasma assisted molecular beam epitaxy on Al2O3(0001) sapphire substrate with a buffer layer of Cr2O3 to relax the strain from lattice mismatch. Van der Pauw resistivity and Hall effect measurements reveal carrier concentrations between 1019 and 1020 cm-3 at room temperature and mobilities in the range of 0.1 to 0.6 cm2/V˙s. Such low mobility, unlike conventional band-conduction semiconductor, was attributed to hopping mechanism due to strong electron-phonon interaction in the lattice. More interestingly, conduction mechanism transitions from small-polaron hopping at higher temperatures to variable range hopping at lower temperatures with a transition temperature between 180 to 140 K. Consequently, by adding Ti dopant, conductive Fe 2O3 hematite thin films were achieved with a well-understood conducting mechanism that could guide further device application such as spin transistor and water splitting. In the case of Ga2O3, while having a band gap as high as 5 eV, they are usually conductive for commercially available samples due to unintentional Si doping. However, we discovered the conductance could be repeatedly switched between high resistance state and low resistance state when made into metal/Ga2O3 /metal heterostructure. However, to obtain well controlled switching process with consistent switching voltages and resistances, understanding switching mechanism is the key. In this study, we fabricated resistive switching devices utilizing a Ni/Ga2O3/Ir heterostructure. Bipolar switching, non-volatility, and repeatable switching are tested for the devices fabricated. Following previous discoveries on Ni/Ga2O3 single crystal which shows interface barrier type change (Schottky ↔ Ohmic) upon annealing accompanied by defects migration, characterization of the interface behavior on resistive switching cell Ni/Ga2O 3(thin film)/Ir under two different resistive states was performed using X-ray photoemission spectroscopy (XPS). Most interestingly, feathers in XPS spectrum of Ga allow for a unique nondestructive approach to investigate interface by XPS through electron transparent top contact. Theoretical modeling shows that Ga migrate towards the interface upon switching to low resistive state, indicating a possible mechanism that involves interfacial switch through barrier height modifying. Such device holds potential to become the next generation of non-volatile memory device, resistive RAM.
Beer spoilage bacteria and hop resistance.
Sakamoto, Kanta; Konings, Wil N
2003-12-31
For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However, some potential hop-resistant strains cannot grow in beer unless they have first been exposed to subinhibitory concentration of hop compounds. The beer spoilage ability of Pectinatus spp. and M. cerevisiae has been poorly studied. Since all the strains have been reported to be capable of beer spoiling, species identification is sufficient for the breweries. However, with the current trend of beer flavor (lower alcohol and bitterness), there is the potential risk that not yet reported bacteria will contribute to beer spoilage. Investigation of the beer spoilage ability of especially Gram-negative bacteria may be useful to reduce this risk.
Intervention for Young Children Displaying Coordination Disorders
ERIC Educational Resources Information Center
Chambers, Mary E.; Sugden, David A.
2016-01-01
The years from 3 to 6 are a time when children develop fundamental movement skills that are the building blocks for the functional movements they use throughout their lives. By 6 years of age, a typically developing child will have in place a full range of movement skills, including, running, jumping, hopping, skipping, climbing, throwing,…
Remixing Old and New Literacies = Motivated Students
ERIC Educational Resources Information Center
Gainer, Jesse S.; Lapp, Diane
2010-01-01
Although not a new concept, remix has recently gained popularity in mainstream sources ranging from video games to newspaper columns and television commercials for airline tickets, fried chicken, and soft drinks. All these examples draw on a concept that originates from hip-hop culture and refers to the creative blending of materials from…
Limits to the Extraction of Information from Multi-Hop Skywave Radar Signals
2005-04-14
equations to compute the eikonal rays gh a model ionosphere, plotting the resulting tories in the range-height plane. oes received via these multi...kilometres. This extensive database is ideally suited to the sta- tistical analysis of the directional, diurnal, seasonal 0 0 500 1000 1500 2000 2500
Collective effects on activated segmental relaxation in supercooled polymer melts
NASA Astrophysics Data System (ADS)
Mirigian, Stephen; Schweizer, Kenneth
2013-03-01
We extend the polymer nonlinear Langevin equation (NLE) theory of activated segmental dynamics in supercooled polymer melts in two new directions. First, a well-defined mapping from real monomers to a freely-jointed chain is formulated that retains information about chain stiffness, monomer volume, and the amplitude of thermal density fluctuations. Second, collective effects beyond the local cage scale are included based on an elastic solid-state perspective in the ``shoving model'' spirit which accounts for longer range contributions to the activation barrier. In contrast to previous phenomenological treatments of this model, we formulate an explicit microscopic picture of the hopping event, and derive, not assume, that the collective barrier is directly related to the elastic shear modulus. Local hopping is thus renormalized by collective motions of the surroundings that are required to physically accommodate it. Using the PRISM theory of structure, and known compressibility and chain statistics information, quantitative applications of the new theory to predict the temperature and chain length dependence of the alpha time, shear modulus, and fragility are carried out for a range of real polymer liquids and compared to experiment.
Thermally activated charge transport in microbial protein nanowires
Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma
2016-01-01
The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596
Thermally activated charge transport in microbial protein nanowires
NASA Astrophysics Data System (ADS)
Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma
2016-03-01
The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.
Thermally activated charge transport in microbial protein nanowires.
Lampa-Pastirk, Sanela; Veazey, Joshua P; Walsh, Kathleen A; Feliciano, Gustavo T; Steidl, Rebecca J; Tessmer, Stuart H; Reguera, Gemma
2016-03-24
The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.
ERIC Educational Resources Information Center
Roach, Ronald
2004-01-01
As a cultural movement, hip-hop manages to get billed as both a positive and negative influence on young people, especially on Black and Latino youth. On one hand, there are African American activists, artists and entrepreneurs, such as Russell Simmons, who seek to build a progressive political movement among young hip-hop fans and who have had…
Nerve Conduction Through Dendrites via Proton Hopping.
Kier, Lemont B
2017-01-01
In our previous studies of nerve conduction conducted by proton hopping, we have considered the axon, soma, synapse and the nodes of Ranvier. The role of proton hopping described the passage of information through each of these units of a typical nerve system. The synapse projects information from the axon to the dendrite and their associated spines. We have invoked the passage of protons via a hopping mechanism to illustrate the continuum of the impulse through the system, via the soma following the dendrites. This is proposed to be a continuum invoked by the proton hopping method. With the proposal of the activity through the dendrites, via proton hopping, a complete model of the nerve function is invoked. At each step to the way, a water pathway is present and is invoked in the proposed model as the carrier of the message via proton hopping. The importance of the dendrites is evident by the presence of a vast number of spines, each possessing the possibility to carry unique messages through the nervous system. With this model of the role of dendrites, functioning with the presence of proton hopping, a complete model of the nerve system is presented. The validity of this model will be available for further studies and models to assess it's validity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Antimicrobial activity of hop extracts against foodborne pathogens for meat applications.
Kramer, B; Thielmann, J; Hickisch, A; Muranyi, P; Wunderlich, J; Hauser, C
2015-03-01
The objective of this study was the fundamental investigation of the antimicrobial efficiency of various hop extracts against selected foodborne pathogens in vitro, as well as their activity against Listeria monocytogenes in a model meat marinade and on marinated pork tenderloins. In a first step, the minimum inhibitory concentrations (MIC) of three hop extracts containing either α- or β-acids or xanthohumol were determined against test bacteria including L. monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli by a colorimetric method based on the measurement of bacterial metabolic activity. Moreover, the influence of either lactic or citric acid on the antimicrobial activity of the hop extracts was evaluated. The efficiency of hop extracts as a natural food preservative was then tested in a model meat marinade at 2 and 8°C, respectively, and finally on marinated pork. The experiments showed that Gram-positive bacteria were strongly inhibited by hop extracts containing β-acids and xanthohumol (MIC values of 6.3 and 12.5 ppm, respectively), whereas the antimicrobial activity of the investigated α-acid extract was significantly lower (MIC values of 200 ppm). Gram-negative bacteria were highly resistant against all tested hop extracts. Acidification of the test media led to a decrease of the MIC values. The inhibitory activity of the hop extracts against L. monocytogenes was strongly reduced in a fat-containing model meat marinade, but the efficiency of β-acids in this matrix could be increased by lowering pH and storage temperatures. By applying 0.5 % β-acids at pH = 5 in a model marinade, the total aerobic count of pork tenderloins was reduced up to 0.9 log10 compared with marinated pork without hop extract after 2 weeks of storage at 5°C. β-acid containing hop extracts have proven to possess a high antimicrobial activity against Gram-positive bacteria in vitro and in a practice-related application for food preservation. Antimicrobial hop extracts could be used as natural preservatives in food applications to extend the shelf life and to increase the safety of fresh products. © 2014 The Society for Applied Microbiology.
Cyclic electrical conductivity in BaTiO3-PbTiO3-V2O5 glass-ceramic nanocomposite
NASA Astrophysics Data System (ADS)
Bahgat, A. A.; Heikal, Sh.; Mahdy, Iman A.; Abd-Rabo, A. S.; Abdel Ghany, A.
2014-08-01
In this present work a glass of the composition 22.5 BaTiO3+7.5 PbTiO3+70 V2O5 was prepared by applying the conventional melt quashing technique. Isothermal annealing of the glass was applied at 732 K following differential scanning calorimetric analysis. The annealing was performed during different time intervals in the range of 0.25-24.0 h. X-ray diffraction and transmission electron microscopy were used to identify different phases as well as particle size precipitated during the annealing process. Nanocomposite glass-ceramic precipitation was recognized with nonperiodic cyclic particle sizes as a function of the annealing period. DC electrical conductivity, on the other hand, was conducted in the temperature range from 300 to 625 K. Electrical conductivity enhancement of the order 3×103 times after 2.5 h of annealing was observed. Nonperiodic cyclic DC electrical conductivity behavior was also observed and which was encountered in a reverse manner with particle size development. Furthermore, the analysis of the electrical conduction mechanism predicts that both adiabatic and nonadiabatic small polaron hopping trend may describe the experimental data depending on the particle size.
NASA Astrophysics Data System (ADS)
Agrawal, Naveen; Sarkar, Mitesh; Chawda, Mukesh; Ganesan, V.; Bodas, Dhananjay
2015-02-01
The magnetism was observed in very dilute Fe doped alloy thin film Fe0.008Sb1-xSex, for x = 0.01 to 0.10. These thin films were grown on silicon substrate using thermal evaporation technique. Structural, electrical, optical, charge carrier concentration measurement, surface morphology and magnetic properties were observed using glancing incidence x-ray diffraction (GIXRD), four probe resistivity, photoluminescence, Hall measurement, atomic force microscopy (AFM) and magnetic force microscopy (MFM) techniques, respectively. No peaks of iron were seen in GIXRD. The resistivity results show that activation energy increases with increase in selenium (Se) concentration. The Arrhenius plot reveals metallic behavior below room temperature. The low temperature conduction is explained by variable range-hopping mechanism, which fits very well in the temperature range 150-300 K. The decrease in density of states has been observed with increasing selenium concentration (x = 0.01 to 0.10). There is a metal-to-semiconductor phase transition observed above room temperature. This transition temperature is Se concentration dependent. The particle size distribution ˜47-61 nm is evaluated using AFM images. These thin films exhibit ferromagnetic interactions at room temperature.
Magnetic, Electrical and Dielectric Properties of LaMnO3+η Perovskite Manganite.
NASA Astrophysics Data System (ADS)
v, Punith Kumar; Dayal, Vijaylakshmi
The high pure polycrystalline LaMnO3+η perovskite manganite has been synthesized using conventional solid state reaction method. The studied sample crystallizes into orthorhombic O', phase indexed with Pbnm space group. The magnetization measurement exhibits that the studied sample shows paramagnetic (PM) to ferromagnetic (FM) phase transition at TC = 191.6K followed with a frustration due to antiferromagnetic (AFM) kind of spin ordering at low temperature, Tf = 85.8K. The electrical resistivity measurements carried out at 0 tesla and 8 tesla magnetic field exhibits insulating kind of behavior throughout the measured temperature range. The resistivity at 0 tesla exhibits low temperature FM insulator to high temperature PM insulator type phase transition at TC = 191.6K similarly as observed from magnetization measurement. The application of the magnetic field (8 tesla) shifts TC to higher temperature side and the charge transport follows Shklovskii Efros variable range hopping (SE VRH) mechanism. The temperature and frequency dependent dielectric permittivity studied for the sample exhibits relaxation process explained based on Debye +Maxwell-Wagner relaxation mechanism. Department of Atomic Energy-Board of Research in Nuclear Sciences, Government of INDIA.
Thermoelectric properties of p-type sb-doped Cu2SnSe3 near room and mid temperature applications
NASA Astrophysics Data System (ADS)
Prasad, K. Shyam; Rao, Ashok; Chauhan, Nagendra S.; Bhardwaj, Ruchi; Vishwakarma, Avinash; Tyagi, Kriti
2018-02-01
In this study, we report low and mid temperature range thermoelectric properties of Sb-substituted Cu2SnSe3 compounds. The Cu2Sn1- x Sb x Se3 (0 ≤ x ≤ 0.04) alloys were prepared using conventional solid-state reaction followed by spark plasma sintering. The crystal structure was characterized using XRD and it reveals that all the samples exhibit cubic structure with space group -4/3m. The electrical transport characteristics indicate degenerate semiconducting behavior. Electrical resistivity was found to follow small polaron hopping (SPH) model in the entire temperature range of investigation. The Seebeck coefficient data reveals that the majority of charge carriers are holes and the analysis of Seebeck coefficient data gives negative values of Fermi energy indicating that the Fermi energy is below the edge of valence band. The electronic contribution ( κ e) for total thermal conductivity is found to be less than 1%. The maximum ZT value of 0.64 is observed for the sample with x = 0.03 (at 700 K) which is approximately 2.3 times that of the pristine sample.
NASA Astrophysics Data System (ADS)
Anjali; Patial, Balbir Singh; Bhardwaj, Suresh; Awasthi, A. M.; Thakur, Nagesh
2017-10-01
In-depth analysis of complex AC-conductivity for nano-crystalline Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10 at wt%) alloys is made in the temperature range 308-423 K and over the frequency range 10-1-107 Hz, to understand the conduction mechanism. The investigated nano-crystalline alloys were prepared by melt-quench technique. Sharp structural peaks in X-ray diffraction pattern indicate the nano-crystalline nature, which is also confirmed by FESEM. The AC conductivity shows universal characteristics and at higher frequency a transition from dc to dispersive behavior occurs. Moreover, it is confirmed that ac conductivity (σac) obeys the Jonscher power law as ωs (s< 1). The obtained results are analyzed in the light of various theoretical models. The correlated barrier hopping (CBH) model associated with non-intimate valence alternation pairs (NVAP's) is found most appropriate to describe the conduction mechanisms in these alloys. In addition, the CBH model description reveals that the bipolaron (single polaron) transport dominates at lower (higher) temperature. The density of localized states has also been deduced.
Transport and magnetic properties of Fe doped CaMnO3
NASA Astrophysics Data System (ADS)
Neetika; Das, A.; Dhiman, I.; Nigam, A. K.; Yadav, A. K.; Bhattacharyya, D.; Meena, S. S.
2012-12-01
The structural, transport, and magnetic properties of CaMn1-xFexO3-δ (0.0 ≤ x ≤ 0.3) have been studied by using resistivity, magnetization, and neutron powder diffraction techniques. The compounds are found to be isostructural and crystallize in GdFeO3-type orthorhombic structure (space group Pnma). With Fe doping, no structural change is observed. Mössbauer and paramagnetic susceptibility measurements show that Fe substitutes in 4+ valence state, and XANES measurements indicate the presence of mixed valence state of Mn. The compounds exhibit insulating behavior in the studied temperature range. The temperature dependence of resistivity is found to be described by small polaron model for x = 0 and variable range hopping model for x = 0.1. For higher x values, it follows a parallel combination resistance model. A small reduction in TN from 120 K to 100 K with increase in x is found. The magnetic structure changes from Gz-type collinear antiferromagnetic (AFM) structure for x = 0.0 to canted AFM structure GZFY-type for Fe doped compounds. The AFM component of the moment progressively decreases with x while FM component exhibits a maximum at x = 0.2.
Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus).
Kram, R; Dawson, T J
1998-05-01
As red kangaroos hop faster over level ground, their rate of oxygen consumption (indicating metabolic energy consumption) remains nearly the same. This phenomenon has been attributed to exceptional elastic energy storage and recovery via long compliant tendons in the legs. Alternatively, red kangaroos may have exceptionally efficient muscles. To estimate efficiency, we measured the metabolic cost of uphill hopping, where muscle fibers must perform mechanical work against gravity. We found that uphill hopping was much more expensive than level hopping. The maximal rate of oxygen consumption measured (3 ml O2 kg-1 s-1) exceeds all but a few vertebrate species. However, efficiency values were normal, approximately 30%. At faster level hopping speeds the effective mechanical advantage of the extensor muscles of the ankle joint remained the same. Thus, kangaroos generate the same muscular force at all speeds but do so more rapidly at faster hopping speeds. This contradicts a recent hypothesis for what sets the cost of locomotion. The cost of transport (J kg-1 m-1) decreases at faster hopping speeds, yet red kangaroos prefer to use relatively slow speeds that avoid high levels of tendon stress.
Low Power Multi-Hop Networking Analysis in Intelligent Environments.
Etxaniz, Josu; Aranguren, Gerardo
2017-05-19
Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide.
Low Power Multi-Hop Networking Analysis in Intelligent Environments
Etxaniz, Josu; Aranguren, Gerardo
2017-01-01
Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide. PMID:28534847
Gold Binding by Native and Chemically Modified Hops Biomasses
López, M. Laura; Peralta-Videa, J. R.; de la Rosa, G.; Armendáriz, V.; Herrera, I.; Troiani, H.; Henning, J.
2005-01-01
Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass (Humulus lupulus) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding at pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively. PMID:18365087
O'Connor, Annalouise; Konda, Veera; Reed, Ralph L; Christensen, J Mark; Stevens, Jan F; Contractor, Nikhat
2018-03-01
Xanthohumol (XN), a prenylated flavonoid found in hops, exhibits anti-inflammatory and antioxidant properties. However, poor bioavailability may limit therapeutic applications. As food components are known to modulate polyphenol absorption, the objective is to determine whether a protein matrix could enhance the bioavailability of XN post oral consumption in humans. This is a randomized, double-blind, crossover study in healthy participants (n = 6) evaluating XN and its major metabolites (isoxanthohumol [IX], 6- and 8-prenylnaringenin [6-PN, 8-PN]) for 6 h following consumption of 12.4 mg of XN delivered via a spent hops-rice protein matrix preparation or a control spent hops preparation. Plasma XN and metabolites are measured by LC-MS/MS. C max , T max , and area-under-the-curve (AUC) values were determined. Circulating XN and metabolite response to each treatment was not bioequivalent. Plasma concentrations of XN and XN + metabolites (AUC) are greater with consumption of the spent hops-rice protein matrix preparation. Compared to a standard spent hops powder, a protein-rich spent hops matrix demonstrates enhanced plasma levels of XN and metabolites following acute oral intake. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hernández Torres, Jorge; Papandreou, Nikolaos; Chomilier, Jacques
2009-05-01
The co-chaperone Hop [heat shock protein (HSP) organising protein] is known to bind both Hsp70 and Hsp90. Hop comprises three repeats of a tetratricopeptide repeat (TPR) domain, each consisting of three TPR motifs. The first and last TPR domains are followed by a domain containing several dipeptide (DP) repeats called the DP domain. These analyses suggest that the hop genes result from successive recombination events of an ancestral TPR-DP module. From a hydrophobic cluster analysis of homologous Hop protein sequences derived from gene families, we can postulate that shifts in the open reading frames are at the origin of the present sequences. Moreover, these shifts can be related to the presence or absence of biological function. We propose to extend the family of Hop co-chaperons into the kingdom of bacteria, as several structurally related genes have been identified by hydrophobic cluster analysis. We also provide evidence of common structural characteristics between hop and hip genes, suggesting a shared precursor of ancestral TPR-DP domains.
Condom use and hip hop culture: the case of urban young men in New York City.
Muñoz-Laboy, Miguel A; Castellanos, Daniel H; Haliburton, Chanel S; del Aguila, Ernesto Vasquez; Weinstein, Hannah J; Parker, Richard G
2008-06-01
We explored how young men's perceptions of and participation in hip hop culture--urban social and artistic expressions, such as clothing style, breakdancing, graffiti, and rap music--and how contextual factors of the hip hop scene may be associated with their condom use, condom-use self-efficacy, and sense of community. We conducted a cross-sectional survey of 95 African American and Latino men aged 15 to 25 years as part of a 4-year ethnographic study in New York City. Differences in young men's perceptions of and levels of affiliation with hip hop culture were not statistically associated with differences in their sense of community or condom-use self-efficacy. Frequency of participation in the hip hop nightclub scene was the strongest factor negatively associated with condom use. Popular discourses on young men's health risks often blame youths' cultures such as the hip hop culture for increased risk practices but do not critically examine how risk emerges in urban young men's lives and what aspects of youths' culture can be protective. Further research needs to focus on contextual factors of risk such as the role of hip hop nightlife on increased HIV risk.
Charge carrier coherence and Hall effect in organic semiconductors
Yi, H. T.; Gartstein, Y. N.; Podzorov, V.
2016-03-30
Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less
Atomistic models of vacancy-mediated diffusion in silicon
NASA Astrophysics Data System (ADS)
Dunham, Scott T.; Wu, Can Dong
1995-08-01
Vacancy-mediated diffusion of dopants in silicon is investigated using Monte Carlo simulations of hopping diffusion, as well as analytic approximations based on atomistic considerations. Dopant/vacancy interaction potentials are assumed to extend out to third-nearest neighbor distances, as required for pair diffusion theories. Analysis focusing on the third-nearest neighbor sites as bridging configurations for uncorrelated hops leads to an improved analytic model for vacancy-mediated dopant diffusion. The Monte Carlo simulations of vacancy motion on a doped silicon lattice verify the analytic results for moderate doping levels. For very high doping (≳2×1020 cm-3) the simulations show a very rapid increase in pair diffusivity due to interactions of vacancies with more than one dopant atom. This behavior has previously been observed experimentally for group IV and V atoms in silicon [Nylandsted Larsen et al., J. Appl. Phys. 73, 691 (1993)], and the simulations predict both the point of onset and doping dependence of the experimentally observed diffusivity enhancement.
Fractional statistics and quantum scaling properties of the integrable Penson-Kolb-Hubbard chain
NASA Astrophysics Data System (ADS)
Vitoriano, Carlindo; Coutinho-Filho, M. D.
2010-09-01
We investigate the ground-state and low-temperature properties of the integrable version of the Penson-Kolb-Hubbard chain. The model obeys fractional statistical properties, which give rise to fractional elementary excitations and manifest differently in the four regions of the phase diagram U/t versus n , where U is the Coulomb coupling, t is the correlated hopping amplitude, and n is the particle density. In fact, we can find local pair formation, fractionalization of the average occupation number per orbital k , or U - and n -dependent average electric charge per orbital k . We also study the scaling behavior near the U -driven quantum phase transitions and characterize their universality classes. Finally, it is shown that in the regime of parameters where local pair formation is energetically more favorable, the ground state exhibits power-law superconductivity; we also stress that above half filling the pair-hopping term stabilizes local Cooper pairs in the repulsive- U regime for U
Charge carrier coherence and Hall effect in organic semiconductors
Yi, H. T.; Gartstein, Y. N.; Podzorov, V.
2016-01-01
Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354
Development of NTD Ge Sensors for Superconducting Bolometer
NASA Astrophysics Data System (ADS)
Garai, A.; Mathimalar, S.; Singh, V.; Dokania, N.; Nanal, V.; Pillay, R. G.; Ramakrishnan, S.; Shrivastava, A.; Jagadeesan, K. C.; Thakare, S. V.
2016-08-01
Neutron transmutation-doped (NTD) Ge sensors have been prepared by irradiating device-grade Ge with thermal neutrons at Dhruva reactor, BARC, Mumbai. These sensors are intended to be used for the study of neutrinoless double beta decay in ^{124}Sn with a superconducting Tin bolometer. Resistance measurements are performed on NTD Ge sensors in the temperature range 100-350 mK. The observed temperature dependence is found to be consistent with the variable-range hopping mechanism.
Hybrid spread spectrum radio system
Smith, Stephen F.; Dress, William B.
2010-02-02
Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.
Energy landscape in frustrated systems: Cation hopping in pyrochlores
NASA Astrophysics Data System (ADS)
Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.
2013-07-01
We investigate the dynamics of the local environment and electronic structure in inherently dipolar frustrated pyrochlore compounds to help identify the fundamental nature of dipolar disorder in pyrochlore systems and determine the necessary and sufficient conditions for dielectric relaxation. We map out the energy landscape associated with cation hopping events in three compounds and correlate the hopping pathway with experimental dielectric response. Comprehensive analysis of the calculations allows us to postulate rules to predict the occurrence of relaxation and cation hopping pathways.
Variable-range-hopping magnetoresistance
NASA Astrophysics Data System (ADS)
Azbel, Mark Ya
1991-03-01
The hopping magnetoresistance R of a two-dimensional insulator with metallic impurities is considered. In sufficiently weak magnetic fields it increases or decreases depending on the impurity density n: It decreases if n is low and increases if n is high. In high magnetic fields B, it always exponentially increases with √B . Such fields yield a one-dimensional temperature dependence: lnR~1/ √T . The calculation provides an accurate leading approximation for small impurities with one eigenstate in their potential well. In the limit of infinitesimally small impurities, an impurity potential is described by a generalized function. This function, similar to a δ function, is localized at a point, but, contrary to a δ function in the dimensionality above 1, it has finite eigenenergies. Such functions may be helpful in the study of scattering and localization of any waves.
Spin diffusion in disordered organic semiconductors
NASA Astrophysics Data System (ADS)
Li, Ling; Gao, Nan; Lu, Nianduan; Liu, Ming; Bässler, Heinz
2015-12-01
An analytical theory for spin diffusion in disordered organic semiconductors is derived. It is based on percolation theory and variable range hopping in a disordered energy landscape with a Gaussian density of states. It describes universally the dependence of the spin diffusion on temperature, carrier density, material disorder, magnetic field, and electric field at the arbitrary magnitude of the Hubbard energy of charge pairs. It is found that, compared to the spin transport carried by carriers hopping, the spin exchange will hinder the spin diffusion process at low carrier density, even under the condition of a weak electric field. Importantly, under the influence of a bias voltage, anomalous spreading of the spin packet will lead to an abnormal temperature dependence of the spin diffusion coefficient and diffusion length. This explains the recent experimental data for spin diffusion length observed in Alq3.
Mode selection in square resonator microlasers for widely tunable single mode lasing.
Tang, Ming-Ying; Sui, Shao-Shuai; Yang, Yue-De; Xiao, Jin-Long; Du, Yun; Huang, Yong-Zhen
2015-10-19
Mode selection in square resonator semiconductor microlasers is demonstrated by adjusting the width of the output waveguide coupled to the midpoint of one side. The simulation and experimental results reveal that widely tunable single mode lasing can be realized in square resonator microlasers. Through adjusting the width of the output waveguide, the mode interval of the high-Q modes can reach four times of the longitudinal mode interval. Therefore, mode hopping can be efficiently avoided and the lasing wavelength can be tuned continuously by tuning the injection current. For a 17.8-μm-side-length square microlaser with a 1.4-μm-width output waveguide, mode-hopping-free single-mode operation is achieved with a continuous tuning range of 9.2 nm. As a result, the control of the lasing mode is realized for the square microlasers.
[Abnormal growth of spine in patients with adolescent idiopathic thoracic scoliosis].
Bao, Hongda; Liu, Zhen; Qiu, Yong; Zhu, Feng; Zhu, Zezhang; Zhang, Wen
2014-05-01
To investigate if the growth patterns of the spine and pelvis are consistent in adolescent idiopathic scoliosis (AIS) patients with single thoracic curves. Forty-eight thoracic adolescent idiopathic scoliosis (T-AIS) female patients and 48 healthy age-matched adolescents were recruited consecutively between December 2011 and October 2012. Radiographic parameters including height of spine (HOS), length of spine (LOS), height of thoracic spine (HOT), length of thoracic spine (LOT), height of pelvis (HOP), width of pelvis (WOP) and width of thorax (WOT) were measured on the long-cassette posteroanterior standing radiographs. In addition, ratios including HOS/HOP, LOS/HOP, HOT/HOP, LOT/HOP, LOS/LOT, WOT/WOP were also calculated. Independent t-test was performed to compare the radiographic parameters and ratios between the two groups. Compared to the age-matched healthy adolescents, T-AIS patients had a significantly higher LOS and LOT (t = -2.364 and -1.495, P = 0.020 and 0.043) and smaller HOS and HOT (t = 2.060 and 3.359, P = 0.042 and 0.001). Yet, all of HOP, WOP and WOT showed no significant difference between T-AIS patients and healthy adolescents. Similarly, LOS/HOP and LOT/HOP were significantly higher in T-AIS patients as may be expected with an average LOS/HOP of 2.26 ± 0.14 in normal controls.In addition, LOS/LOT in normal controls had a trend of increase with age which was different from the stable LOS/LOT in T-AIS patients, indicating an increased growth of thoracic vertebra compared to lumbar vertebra. Compared to the age-matched healthy adolescents, T-AIS patients have an abnormal growth characteristics with longer spine. The growth of pelvis and thorax show no significant differences between T-AIS patients and healthy adolescents.
Bertelli, Davide; Brighenti, Virginia; Marchetti, Lucia; Reik, Anna; Pellati, Federica
2018-06-01
Humulus lupulus L. (hop) represents one of the most cultivated crops, it being a key ingredient in the brewing process. Many health-related properties have been described for hop extracts, making this plant gain more interest in the field of pharmaceutical and nutraceutical research. Among the analytical tools available for the phytochemical characterization of plant extracts, quantitative nuclear magnetic resonance (qNMR) represents a new and powerful technique. In this ambit, the present study was aimed at the development of a new, simple, and efficient qNMR method for the metabolite fingerprinting of bioactive compounds in hop cones, taking advantage of the novel ERETIC 2 tool. To the best of our knowledge, this is the first attempt to apply this method to complex matrices of natural origin, such as hop extracts. The qNMR method set up in this study was applied to the quantification of both prenylflavonoids and bitter acids in eight hop cultivars. The performance of this analytical method was compared with that of HPLC-UV/DAD, which represents the most frequently used technique in the field of natural product analysis. The quantitative data obtained for hop samples by means of the two aforementioned techniques highlighted that the amount of bioactive compounds was slightly higher when qNMR was applied, although the order of magnitude of the values was the same. The accuracy of qNMR was comparable to that of the chromatographic method, thus proving to be a reliable tool for the analysis of these secondary metabolites in hop extracts. Graphical abstract Graphical abstract related to the extraction and analytical methods applied in this work for the analysis of bioactive compounds in Humulus lupulus L. (hop) cones.
Granata, K P; Padua, D A; Wilson, S E
2002-04-01
Leg stiffness was compared between age-matched males and females during hopping at preferred and controlled frequencies. Stiffness was defined as the linear regression slope between the vertical center of mass (COM) displacement and ground-reaction forces recorded from a force plate during the stance phase of the hopping task. Results demonstrate that subjects modulated the vertical displacement of the COM during ground contact in relation to the square of hopping frequency. This supports the accuracy of the spring-mass oscillator as a representative model of hopping. It also maintained peak vertical ground-reaction load at approximately three times body weight. Leg stiffness values in males (33.9+/-8.7 kN/m) were significantly (p<0.01) greater than in females (26.3+/-6.5 kN/m) at each of three hopping frequencies, 3.0, 2.5 Hz, and a preferred hopping rate. In the spring-mass oscillator model leg stiffness and body mass are related to the frequency of motion. Thus male subjects necessarily recruited greater leg stiffness to drive their heavier body mass at the same frequency as the lighter female subjects during the controlled frequency trials. However, in the preferred hopping condition the stiffness was not constrained by the task because frequency was self-selected. Nonetheless, both male and female subjects hopped at statistically similar preferred frequencies (2.34+/-0.22 Hz), therefore, the females continued to demonstrate less leg stiffness. Recognizing the active muscle stiffness contributes to biomechanical stability as well as leg stiffness, these results may provide insight into the gender bias in risk of musculoskeletal knee injury.
Willigenburg, Nienke; Hewett, Timothy E.
2016-01-01
Objective To define the relationship between FMS™ scores and hop performance, hip strength, and knee strength in collegiate football players. Design Cross-sectional cohort. Participants Freshmen of a division I collegiate American football team (n=59). Main Outcome Measures The athletes performed the FMS™, as well as a variety of hop tests, isokinetic knee strength and isometric hip strength tasks. We recorded total FMS™ score, peak strength and hop performance, and we calculated asymmetries between legs on the different tasks. Spearman’s correlation coefficients quantified the relationships these measures, and chi-square analyses compared the number of athletes with asymmetries on the different tasks. Results We observed significant correlations (r=0.38–0.56, p≤0.02) between FMS™ scores and hop distance, but not between FMS™ scores and hip or knee strength (all p≥0.21). The amount of asymmetry on the FMS™ test was significantly correlated to the amount of asymmetry on the timed 6m hop (r=0.44, p<0.01), but not to hip or knee strength asymmetries between limbs (all p≥0.34). Conclusions FMS™ score was positively correlated to hop distance, and limb asymmetry in FMS™ tasks was correlated to limb asymmetry in 6m hop time in football players. No significant correlations were observed between FMS™ score and hip and knee strength, or between FMS™ asymmetry and asymmetries in hip and knee strength between limbs. These results indicate that a simple hop for distance test may be a time and cost efficient alternative to FMS™ testing in athletes and that functional asymmetries between limbs do not coincide with strength asymmetries. PMID:26886801
Willigenburg, Nienke; Hewett, Timothy E
2017-03-01
To define the relationship between Functional Movement Screen (FMS) scores and hop performance, hip strength, and knee strength in collegiate football players. Cross-sectional cohort. Freshmen of a Division I collegiate American football team (n = 59). The athletes performed the FMS, and also a variety of hop tests, isokinetic knee strength, and isometric hip strength tasks. We recorded total FMS score, peak strength, and hop performance, and we calculated asymmetries between legs on the different tasks. Spearman correlation coefficients quantified the relationships between these measures, and χ analyses compared the number of athletes with asymmetries on the different tasks. We observed significant correlations (r = 0.38-0.56, P ≤ 0.02) between FMS scores and hop distance but not between FMS scores and hip or knee strength (all P ≥ 0.21). The amount of asymmetry on the FMS test was significantly correlated to the amount of asymmetry on the timed 6-m hop (r = 0.44, P < 0.01) but not to hip or knee strength asymmetries between limbs (all P ≥ 0.34). Functional Movement Screen score was positively correlated to hop distance, and limb asymmetry in FMS tasks was correlated to limb asymmetry in 6-m hop time in football players. No significant correlations were observed between FMS score and hip and knee strength or between FMS asymmetry and asymmetries in hip and knee strength between limbs. These results indicate that a simple hop for distance test may be a time-efficient and cost-efficient alternative to FMS testing in athletes and that functional asymmetries between limbs do not coincide with strength asymmetries.
Zininga, Tawanda; Makumire, Stanely; Gitau, Grace Wairimu; Njunge, James M; Pooe, Ofentse Jacob; Klimek, Hanna; Scheurr, Robina; Raifer, Hartmann; Prinsloo, Earl; Przyborski, Jude M; Hoppe, Heinrich; Shonhai, Addmore
2015-01-01
Heat shock proteins (Hsps) play an important role in the development and pathogenicity of malaria parasites. One of the most prominent functions of Hsps is to facilitate the folding of other proteins. Hsps are thought to play a crucial role when malaria parasites invade their host cells and during their subsequent development in hepatocytes and red blood cells. It is thought that Hsps maintain proteostasis under the unfavourable conditions that malaria parasites encounter in the host environment. Although heat shock protein 70 (Hsp70) is capable of independent folding of some proteins, its functional cooperation with heat shock protein 90 (Hsp90) facilitates folding of some proteins such as kinases and steroid hormone receptors into their fully functional forms. The cooperation of Hsp70 and Hsp90 occurs through an adaptor protein called Hsp70-Hsp90 organising protein (Hop). We previously characterised the Hop protein from Plasmodium falciparum (PfHop). We observed that the protein co-localised with the cytosol-localised chaperones, PfHsp70-1 and PfHsp90 at the blood stages of the malaria parasite. In the current study, we demonstrated that PfHop is a stress-inducible protein. We further explored the direct interaction between PfHop and PfHsp70-1 using far Western and surface plasmon resonance (SPR) analyses. The interaction of the two proteins was further validated by co-immunoprecipitation studies. We observed that PfHop and PfHsp70-1 associate in the absence and presence of either ATP or ADP. However, ADP appears to promote the association of the two proteins better than ATP. In addition, we investigated the specific interaction between PfHop TPR subdomains and PfHsp70-1/ PfHsp90, using a split-GFP approach. This method allowed us to observe that TPR1 and TPR2B subdomains of PfHop bind preferentially to the C-terminus of PfHsp70-1 compared to PfHsp90. Conversely, the TPR2A motif preferentially interacted with the C-terminus of PfHsp90. Finally, we observed that recombinant PfHop occasionally eluted as a protein species of twice its predicted size, suggesting that it may occur as a dimer. We conducted SPR analysis which suggested that PfHop is capable of self-association in presence or absence of ATP/ADP. Overall, our findings suggest that PfHop is a stress-inducible protein that directly associates with PfHsp70-1 and PfHsp90. In addition, the protein is capable of self-association. The findings suggest that PfHop serves as a module that brings these two prominent chaperones (PfHsp70-1 and PfHsp90) into a functional complex. Since PfHsp70-1 and PfHsp90 are essential for parasite growth, findings from this study are important towards the development of possible antimalarial inhibitors targeting the cooperation of these two chaperones.
Electrical conductivity and dielectric behavior in sodium zinc divanadates
NASA Astrophysics Data System (ADS)
Sallemi, F.; Louati, B.; Guidara, K.
2014-11-01
The Na2ZnV2O7 compound was obtained by the conventional solid-state reaction. The sample was characterized by X-ray powder diffraction, Raman and impedance spectroscopy. The ac electrical conductivity and dielectric properties have been investigated in the frequency and temperature range of 200 Hz-1 MHz and 513 K-729 K, respectively. The direct current conductivity process is thermally activated. The frequency dependence of the conductivity is interpreted using the power law. The close values of activation energies obtained from the analysis of hopping frequency and dc conductivity implies that the transport is due to Na+ cation displacement parallel to (0 0 1) plane located between ZnO4 and VO4 tetrahedra. The evolution of the complex permittivity as a function of angular frequency was investigated. Several important parameters such as charge carrier concentration, ionic mobility and diffusion coefficient were determined. Thermodynamic parameters such as the free energy of activation ∆F, the enthalpy ∆H, and the change in entropy ∆S have been calculated.
Emons, Theo T; Li, Jianquan; Nazar, Linda F
2002-07-24
The new mesoporous transparent conducting oxide based on indium-tin-oxide, meso-ITO, has been synthesized by a modified sol-gel method, using CTAB as the surfactant. Critical was the employment of triethanolamine to control the rate of hydrolysis and inhibit deposition of the bulk oxides. Removal of the surfactant by calcination yielded a relatively well-ordered worm-hole motif arrangement of pores visible in the TEM and stable to 400 degrees C. BET measurements revealed no hysteresis in the absorption-desorption isotherm, consistent with a narrow pore-size distribution (between 20 and 40 A depending on the In:Sn ratio); surface areas ranged between 270 and 310 m2/g. This colorless material is the first mesoporous oxide exhibiting substantial framework conductivity, with a conductivity at 25 degrees C of 1.2 x 10-3 S/cm. This distinguishes it from mesoporous mixed-valence transition-metal oxides that exhibit weak hopping semiconductor behavior and much lower conductivity.
NASA Astrophysics Data System (ADS)
Terzic, J.; Zheng, H.; Ye, Feng; Zhao, H. D.; Schlottmann, P.; De Long, L. E.; Yuan, S. J.; Cao, G.
2017-08-01
We report an unusual magnetic ground state in single-crystal, double-perovskite B a2YIr O6 and Sr-doped B a2YIr O6 with I r5 +(5 d4) ions. Long-range magnetic order below 1.7 K is confirmed by dc magnetization, ac magnetic susceptibility, and heat-capacity measurements. The observed magnetic order is extraordinarily delicate and cannot be explained in terms of either a low-spin S =1 state, or a singlet Jeff=0 state imposed by the spin-orbit interactions (SOI). Alternatively, the magnetic ground state appears consistent with a SOI that competes with comparable Hund's rule coupling and inherently large electron hopping, which cannot stabilize the singlet Jeff=0 ground state. However, this picture is controversial, and conflicting magnetic behavior for these materials is reported in both experimental and theoretical studies, which highlights the intricate interplay of interactions that determine the ground state of materials with strong SOI.
How Many Parameters Actually Affect the Mobility of Conjugated Polymers?
NASA Astrophysics Data System (ADS)
Fornari, Rocco P.; Blom, Paul W. M.; Troisi, Alessandro
2017-02-01
We describe charge transport along a polymer chain with a generic theoretical model depending in principle on tens of parameters, reflecting the chemistry of the material. The charge carrier states are obtained from a model Hamiltonian that incorporates different types of disorder and electronic structure (e.g., the difference between homo- and copolymer). The hopping rate between these states is described with a general rate expression, which contains the rates most used in the literature as special cases. We demonstrate that the steady state charge mobility in the limit of low charge density and low field ultimately depends on only two parameters: an effective structural disorder and an effective electron-phonon coupling, weighted by the size of the monomer. The results support the experimental observation [N. I. Craciun, J. Wildeman, and P. W. M. Blom, Phys. Rev. Lett. 100, 056601 (2008), 10.1103/PhysRevLett.100.056601] that the mobility in a broad range of (polymeric) semiconductors follows a universal behavior, insensitive to the chemical detail.
Mode Hopping in Semiconductor Lasers
NASA Astrophysics Data System (ADS)
Heumier, Timothy Alan
Semiconductor lasers have found widespread use in fiberoptic communications, merchandising (bar-code scanners), entertainment (videodisc and compact disc players), and in scientific inquiry (spectroscopy, laser cooling). Some uses require a minimum degree of stability of wavelength which is not met by these lasers: Under some conditions, semiconductor lasers can discontinuously switch wavelengths in a back-and-forth manner. This is called mode hopping. We show that mode hopping is directly correlated to noise in the total intensity, and that this noise is easily detected by a photodiode. We also show that there are combinations of laser case temperature and injection current which lead to mode hopping. Conversely, there are other combinations for which the laser is stable. These results are shown to have implications for controlling mode hopping.
Electronic transport in smectic liquid crystals
NASA Astrophysics Data System (ADS)
Shiyanovskaya, I.; Singer, K. D.; Twieg, R. J.; Sukhomlinova, L.; Gettwert, V.
2002-04-01
Time-of-flight measurements of transient photoconductivity have revealed bipolar electronic transport in phenylnaphthalene and biphenyl liquid crystals (LC), which exhibit several smectic mesophases. In the phenylnaphthalene LC, the hole mobility is significantly higher than the electron mobility and exhibits different temperature and phase behavior. Electron mobility in the range ~10-5 cm2/V s is temperature activated and remains continuous at the phase transitions. However, hole mobility is nearly temperature independent within the smectic phases, but is very sensitive to smectic order, 10-3 cm2/V s in the smectic-B (Sm-B) and 10-4 cm2/V s in the smectic-A (Sm-A) mesophases. The different behavior for holes and electron transport is due to differing transport mechanisms. The electron mobility is apparently controlled by rate-limiting multiple shallow trapping by impurities, but hole mobility is not. To explain the lack of temperature dependence for hole mobility within the smectic phases we consider two possible polaron transport mechanisms. The first mechanism is based on the hopping of Holstein small polarons in the nonadiabatic limit. The polaron binding energy and transfer integral values, obtained from the model fit, turned out to be sensitive to the molecular order in smectic mesophases. A second possible scenario for temperature-independent hole mobility involves the competion between two different polaron mechanisms involving so-called nearly small molecular polarons and small lattice polarons. Although the extracted transfer integrals and binding energies are reasonable and consistent with the model assumptions, the limited temperature range of the various phases makes it difficult to distinguish between any of the models. In the biphenyl LCs both electron and hole mobilities exhibit temperature activated behavior in the range of 10-5 cm2/V s without sensitivity to the molecular order. The dominating transport mechanism is considered as multiple trapping in the impurity sites. Temperature-activated mobility was treated within the disorder formalism, and activation energy and width of density of states have been calculated.
Magalhães, Paulo J; Vieira, Joana S; Gonçalves, Luís M; Pacheco, João G; Guido, Luís F; Barros, Aquiles A
2010-05-07
The aim of the present work was the development of a suitable methodology for the separation and determination of phenolic compounds in the hop plant. The developed methodology was based on the sample purification by adsorption of phenolic compounds from the matrix to polyvinylpolypyrrolidone (PVPP) and subsequent desorption of the adsorbed polyphenols with acetone/water (70:30, v/v). At last, the extract was analyzed by HPLC-DAD and HPLC-ESI-MS/MS. The first phase of this work consisted of the study of the adsorption behavior of several classes of phenolic compounds (e.g. phenolic acids, flavonols, and flavanols) by PVPP in model solutions. It has been observed that the process of adsorption of the different phenolic compounds to PVPP (at low concentrations) is differentiated, depending on the structure of the compound (number of OH groups, aromatic rings, and stereochemistry hindrance). For example, within the phenolic acids class (benzoic, p-hydroxybenzoic, protocatechuic and gallic acids) the PVPP adsorption increases with the number of OH groups of the phenolic compound. On the other hand, the derivatization of OH groups (methylation and glycosylation) resulted in a greatly diminished binding. The use of PVPP revealed to be very efficient for adsorption of several phenolic compounds such as catechin, epicatechin, xanthohumol and quercetin, since high adsorption and recovery values were obtained. The methodology was further applied for the extraction and isolation of phenolic compounds from hops. With this methodology, it was possible to obtain high adsorption values (>or=80%) and recovery yield values (>or=70%) for the most important phenolic compounds from hops such as xanthohumol, catechin, epicatechin, quercetin and kaempferol glycosides, and in addition it allows the identification of about 30 phenolic compounds by HPLC-DAD and HPLC-ESI-MS/MS. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Hop powdery mildew control through alteration of spring pruning practices
USDA-ARS?s Scientific Manuscript database
Since 1997, Podosphaera macularis, the causal agent of hop powdery mildew, has become a recurrent threat to hops in the Pacific Northwest because of the potential to reduce cone yield and quality. Disease management practices often involve preventative fungicide applications, but alternative approac...
Nicaise, Valerie; Joe, Anna; Jeong, Byeong-ryool; Korneli, Christin; Boutrot, Freddy; Westedt, Isa; Staiger, Dorothee; Alfano, James R; Zipfel, Cyril
2013-03-06
Pathogens target important components of host immunity to cause disease. The Pseudomonas syringae type III-secreted effector HopU1 is a mono-ADP-ribosyltransferase required for full virulence on Arabidopsis thaliana. HopU1 targets several RNA-binding proteins including GRP7, whose role in immunity is still unclear. Here, we show that GRP7 associates with translational components, as well as with the pattern recognition receptors FLS2 and EFR. Moreover, GRP7 binds specifically FLS2 and EFR transcripts in vivo through its RNA recognition motif. HopU1 does not affect the protein-protein associations between GRP7, FLS2 and translational components. Instead, HopU1 blocks the interaction between GRP7 and FLS2 and EFR transcripts in vivo. This inhibition correlates with reduced FLS2 protein levels upon Pseudomonas infection in a HopU1-dependent manner. Our results reveal a novel virulence strategy used by a microbial effector to interfere with host immunity.
HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis.
Kang, Yongsung; Jelenska, Joanna; Cecchini, Nicolas M; Li, Yujie; Lee, Min Woo; Kovar, David R; Greenberg, Jean T
2014-06-01
A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.
Hop Optimization and Relay Node Selection in Multi-hop Wireless Ad-Hoc Networks
NASA Astrophysics Data System (ADS)
Li, Xiaohua(Edward)
In this paper we propose an efficient approach to determine the optimal hops for multi-hop ad hoc wireless networks. Based on the assumption that nodes use successive interference cancellation (SIC) and maximal ratio combining (MRC) to deal with mutual interference and to utilize all the received signal energy, we show that the signal-to-interference-plus-noise ratio (SINR) of a node is determined only by the nodes before it, not the nodes after it, along a packet forwarding path. Based on this observation, we propose an iterative procedure to select the relay nodes and to calculate the path SINR as well as capacity of an arbitrary multi-hop packet forwarding path. The complexity of the algorithm is extremely low, and scaling well with network size. The algorithm is applicable in arbitrarily large networks. Its performance is demonstrated as desirable by simulations. The algorithm can be helpful in analyzing the performance of multi-hop wireless networks.
White, Craig R; Matthews, Philip G D; Seymour, Roger S
2006-06-01
Semi-fossorial animals (burrowing surface foragers) need to balance the competing morphological requirements of terrestrial and burrowing locomotion. These species rarely show the same degree of claw, forelimb and pectoral girdle structural development that fully fossorial forms (burrowing subterranean foragers) do, but nevertheless invest considerable amounts of energy in burrow systems. The compromise between terrestrial and burrowing locomotion was investigated by measuring net costs of burrowing and pedestrian transport in the spinifex hopping mouse, Notomys alexis, a species that forages in open areas in arid environments and is adapted for saltatorial locomotion. The net cost of transport by burrowing of hopping mice was found to be more expensive than for specialised fossorial species, and burrows were estimated to represent an energy investment equivalent to the terrestrial locomotion expected to be incurred in 17-100 days. A phylogenetically independent-contrasts approach revealed that morphological specialisation for burrowing was associated with low maximum running speeds in fossorial mammals and, for non-fossorial rodents and marsupials, maximum running speed was positively correlated with an index of habitat structure that ranged from arboreal to open desert. The high terrestrial speeds attainable by this semi-fossorial species by saltatory locomotion apparently outweigh the energetic savings that would be associated with burrowing specialisation.
Effect of Carbon on the Electrical Properties of Copper Oxide-Based Bulk Composites
NASA Astrophysics Data System (ADS)
Kalinin, Yu. E.; Kashirin, M. A.; Makagonov, V. A.; Pankov, S. Yu.; Sitnikov, A. V.
2018-04-01
The effect of carbon filler on the electrical resistance and the thermopower of copper oxide-based composites produced by ceramic technology by hot pressing has been studied. It is found that the dependences of the electrical resistivity on the filler concentration are characteristic by S-like curves that are typical of percolation systems; in this case, the resistivity decreases more substantially as the carbon content increases as compared to the decrease in thermopower value, which is accompanied by the existence of the maximum of the factor of thermoelectric power near the percolation threshold. The studies of the temperature dependences of the resistivity and the thermopower at low temperatures show that, in the range 240-300 K, the predominant mechanism of the electrotransfer of all the composites under study is the hopping mechanism. At temperatures lower than 240 K, the composites with a nanocrystalline CuO matrix have a hopping conductivity with a variable hopping distance over localized states of the matrix near the Fermi level, which is related to the conductivity over intergrain CuO boundaries. A schematic model of the band structure of nanocrystalline CuO with carbon filler is proposed on the base of the analysis of the found experimental regularities of the electrotransfer.
Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo
2016-06-01
In hip-hop dance, the elements of motion that discriminate the skill levels of dancers and that influence the evaluations by judges have not been clearly identified. This study set out to extract these motion characteristics from the side-step movements of hip-hop dancing. Eight expert and eight non-expert dancers performed side-step movements, which were recorded using a motion capture system. Nine experienced judges evaluated the dancers' performances. Several parameters, including the range of motion (ROM) of the joint angles (neck, trunk, hip, knee, and face inclination) and phase delays between these angular motions were calculated. A quarter-cycle phase delay between the neck motion and other body parts, seen only in the expert dancers, is highlighted as an element that can distinguish dancers' skill levels. This feature of the expert dancers resulted in a larger ROM during the face inclination than that for the non-expert dancers. In addition, the experts exhibited a bottom-to-top segmental sequence in the horizontal direction while the non-experts did not demonstrate any such sequential motion. Of these kinematic parameters, only the ROM of the face inclination was highly correlated to the judging score and is regarded as being the most appealing element of the side-step movement.
NASA Astrophysics Data System (ADS)
Thiemann, Christian; Treiber, Martin; Kesting, Arne
2008-09-01
Intervehicle communication enables vehicles to exchange messages within a limited broadcast range and thus self-organize into dynamical and geographically embedded wireless ad hoc networks. We study the longitudinal hopping mode in which messages are transported using equipped vehicles driving in the same direction as a relay. Given a finite communication range, we investigate the conditions where messages can percolate through the network, i.e., a linked chain of relay vehicles exists between the sender and receiver. We simulate message propagation in different traffic scenarios and for different fractions of equipped vehicles. Simulations are done with both, modeled and empirical traffic data. These results are used to test the limits of applicability of an analytical model assuming a Poissonian distance distribution between the relays. We found a good agreement for homogeneous traffic scenarios and sufficiently low percentages of equipped vehicles. For higher percentages, the observed connectivity was higher than that of the model while in stop-and-go traffic situations it was lower. We explain these results in terms of correlations of the distances between the relay vehicles. Finally, we introduce variable transmission ranges and found that this additional stochastic component generally increased connectivity compared to a deterministic transmission with the same mean.
High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT).
Howard, E L; Whittock, S P; Jakše, J; Carling, J; Matthews, P D; Probasco, G; Henning, J A; Darby, P; Cerenak, A; Javornik, B; Kilian, A; Koutoulis, A
2011-05-01
Implementation of molecular methods in hop (Humulus lupulus L.) breeding is dependent on the availability of sizeable numbers of polymorphic markers and a comprehensive understanding of genetic variation. However, use of molecular marker technology is limited due to expense, time inefficiency, laborious methodology and dependence on DNA sequence information. Diversity arrays technology (DArT) is a high-throughput cost-effective method for the discovery of large numbers of quality polymorphic markers without reliance on DNA sequence information. This study is the first to utilise DArT for hop genotyping, identifying 730 polymorphic markers from 92 hop accessions. The marker quality was high and similar to the quality of DArT markers previously generated for other species; although percentage polymorphism and polymorphism information content (PIC) were lower than in previous studies deploying other marker systems in hop. Genetic relationships in hop illustrated by DArT in this study coincide with knowledge generated using alternate methods. Several statistical analyses separated the hop accessions into genetically differentiated North American and European groupings, with hybrids between the two groups clearly distinguishable. Levels of genetic diversity were similar in the North American and European groups, but higher in the hybrid group. The markers produced from this time and cost-efficient genotyping tool will be a valuable resource for numerous applications in hop breeding and genetics studies, such as mapping, marker-assisted selection, genetic identity testing, guidance in the maintenance of genetic diversity and the directed breeding of superior cultivars.
Hop acid-rich spent craft brewer's yeast modulates gut bacterial growth
USDA-ARS?s Scientific Manuscript database
Alpha and beta hop acids (humulones and lupulones) from Humulus lupulus are inhibitors of Gram-positive organisms and important natural antibiotics for beer fermentation and carbohydrate feed stocks for biofuel production. Recent observations (Bryant and Cohen) of high levels of hop acids in spent ...
HopBase: A unified resource for Humulus genomics
USDA-ARS?s Scientific Manuscript database
Hop (Humulus lupulus L. var lupulus) is a plant of worldwide significance, used primarily for its’ bittering and flavoring in brewing beer. Studies on the medicinal properties of several unique compounds produced by hop has led to additional interest from pharmacy and healthcare industries as well a...
NASA Astrophysics Data System (ADS)
Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin
2014-08-01
Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.
Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films
NASA Astrophysics Data System (ADS)
Wienkes, Lee Raymond
Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.
NASA Astrophysics Data System (ADS)
Li, Maozhi; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Ho, Kai-Ming
2008-05-01
Molecular dynamics simulations are performed to study the structure and dynamical heterogeneity in the liquid and glass states of Al using a frequently employed embedded atom potential. While the pair correlation function of the glass and liquid states displays only minor differences, the icosahedral short-range order (ISRO) and the dynamics of the two states are very different. The ISRO is much stronger in the glass than in the liquid. It is also found that both the most mobile and the most immobile atoms in the glass state tend to form clusters, and the clusters formed by the immobile atoms are more compact. In order to investigate the local environment of each atom in the liquid and glass states, a local density is defined to characterize the local atomic packing. There is a strong correlation between the local packing density and the mobility of the atoms. These results indicate that dynamical heterogeneity in glasses is directly correlated to the local structure. We also analyze the diffusion mechanisms of atoms in the liquid and glass states. It is found that for the mobile atoms in the glass state, initially they are confined in the cages formed by their nearest neighbors and vibrating. On the time scale of β relaxation, the mobile atoms try to break up the cage confinement and hop into new cages. In the supercooled liquid states, however, atoms continuously diffuse. Furthermore, it is found that on the time scale of β relaxation, some of the mobile atoms in the glass state cooperatively hop, which is facilitated by the stringlike cluster structures. On the longer time scale, it is found that a certain fraction of atoms can simultaneously hop, although they are not nearest neighbors. Further analysis shows that these hopping atoms form big and more compact clusters than the characterized most mobile atoms. The cooperative rearrangement of these big compact clusters might facilitate the simultaneous hopping of atoms in the glass states on the long time scale.
Hopping into Economics: First Graders Learn about Economics through an Easter Theme.
ERIC Educational Resources Information Center
Davis, Gaylene
A 3-month study unit introducing first grade students to economics through an Easter theme is outlined in five sections. Sections 1 and 2 describe rationale, goals, and learning objectives. Section 3 provides learning activities. A wide range of instructional strategies is used to teach the basic economic concepts of want, need, scarcity,…
The Brothers and Sisters Learn To Write: Popular Literacies in Childhood and School Cultures.
ERIC Educational Resources Information Center
Dyson, Anne Haas
Building on the author's groundbreaking work in "Building Superheroes," this book traces the influence of a wide-ranging set of "textual toys" from children's lives--church and hip-hop songs, rap music, movies, TV, traditional jump-rope rhymes, the words of professional sports announcers and radio deejays--upon school learning…
Investigating Cultural Collision: Educators' Perceptions of Hip-Hop Culture
ERIC Educational Resources Information Center
Beachum, Floyd D.
2013-01-01
Hip-hop music has been embraced worldwide by youth, pummeled in the media for supposedly increasing social misery and hailed as a significant musical breakthrough. Hip-hop culture has transcended musical boundaries and now impacts speech, clothing, mannerisms, movies, websites, television programming, magazines, and energy drinks (Dyson, 2007;…
Optimum Detection Of Slow-Frequency-Hopping Signals
NASA Technical Reports Server (NTRS)
Levitt, Barry K.; Cheng, Unjeng
1994-01-01
Two papers present theoretical analyses of various schemes for coherent and noncoherent detection of M-ary-frequency-shift-keyed (MFSK) signals with slow frequency hopping. Special attention focused on continuous-phase-modulation (CPM) subset of SFH/MFSK signals, for which frequency modulation such carrier phase remains continuous (albeit unknown) during each hop.
Toward Hip-Hop Pedagogies for Music Education
ERIC Educational Resources Information Center
Kruse, Adam J.
2016-01-01
Music education scholarship in the areas of popular, vernacular, and participatory musicianship has grown in the past decades; however, music education research concerned specifically with hip-hop has been relatively scarce. Because hip-hop music can differ tremendously from the traditional western genres with which many music educators are most…
21 CFR 172.560 - Modified hop extract.
Code of Federal Regulations, 2010 CFR
2010-04-01
... manufactured by one of the following processes: (1) The additive is manufactured from a hexane extract of hops... solids is made up in approximately 0.012 n alkaline methyl alcohol (6 milliliters of 1 n sodium hydroxide... hops by a sequence of extractions and fractionations, using methylene chloride, hexane, and methyl...
21 CFR 172.560 - Modified hop extract.
Code of Federal Regulations, 2013 CFR
2013-04-01
... manufactured by one of the following processes: (1) The additive is manufactured from a hexane extract of hops... solids is made up in approximately 0.012 n alkaline methyl alcohol (6 milliliters of 1 n sodium hydroxide... hops by a sequence of extractions and fractionations, using methylene chloride, hexane, and methyl...
21 CFR 172.560 - Modified hop extract.
Code of Federal Regulations, 2012 CFR
2012-04-01
... manufactured by one of the following processes: (1) The additive is manufactured from a hexane extract of hops... solids is made up in approximately 0.012 n alkaline methyl alcohol (6 milliliters of 1 n sodium hydroxide... hops by a sequence of extractions and fractionations, using methylene chloride, hexane, and methyl...
21 CFR 172.560 - Modified hop extract.
Code of Federal Regulations, 2011 CFR
2011-04-01
... manufactured by one of the following processes: (1) The additive is manufactured from a hexane extract of hops... solids is made up in approximately 0.012 n alkaline methyl alcohol (6 milliliters of 1 n sodium hydroxide... hops by a sequence of extractions and fractionations, using methylene chloride, hexane, and methyl...