Long-range temporal correlations in the Kardar-Parisi-Zhang growth: numerical simulations
NASA Astrophysics Data System (ADS)
Song, Tianshu; Xia, Hui
2016-11-01
To analyze long-range temporal correlations in surface growth, we study numerically the (1 + 1)-dimensional Kardar-Parisi-Zhang (KPZ) equation driven by temporally correlated noise, and obtain the scaling exponents based on two different numerical methods. Our simulations show that the numerical results are in good agreement with the dynamic renormalization group (DRG) predictions, and are also consistent with the simulation results of the ballistic deposition (BD) model.
Studying Turbulence Using Numerical Simulation Databases - X Proceedings of the 2004 Summer Program
NASA Technical Reports Server (NTRS)
Moin, Parviz; Mansour, Nagi N.
2004-01-01
This Proceedings volume contains 32 papers that span a wide range of topics that reflect the ubiquity of turbulence. The papers have been divided into six groups: 1) Solar Simulations; 2) Magnetohydrodynamics (MHD); 3) Large Eddy Simulation (LES) and Numerical Simulations; 4) Reynolds Averaged Navier Stokes (RANS) Modeling and Simulations; 5) Stability and Acoustics; 6) Combustion and Multi-Phase Flow.
Numerical simulation of the transonic flow past the blunted wedge in the diverging channel
NASA Astrophysics Data System (ADS)
Ryabinin, Anatoly
2018-05-01
Positions of shock waves in the 2D channel with a blunted wedge are studied numerically. Solutions of the Euler equations are obtained with finite-volume solver SU2 for 15 variants of channel geometry. Numerical simulations reveal a considerable hysteresis in the shock wave position versus the supersonic Mach number given at the inlet. In the certain range of inlet Mach number, there are asymmetrical solutions of the equations. Small change in the geometry of the channel leads to shift of boundaries of the hysteresis range.
Coincidental match of numerical simulation and physics
NASA Astrophysics Data System (ADS)
Pierre, B.; Gudmundsson, J. S.
2010-08-01
Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.
Heat transfer coefficient of cryotop during freezing.
Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J
2013-01-01
Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).
Numerical simulations of catastrophic disruption: Recent results
NASA Technical Reports Server (NTRS)
Benz, W.; Asphaug, E.; Ryan, E. V.
1994-01-01
Numerical simulations have been used to study high velocity two-body impacts. In this paper, a two-dimensional Largrangian finite difference hydro-code and a three-dimensional smooth particle hydro-code (SPH) are described and initial results reported. These codes can be, and have been, used to make specific predictions about particular objects in our solar system. But more significantly, they allow us to explore a broad range of collisional events. Certain parameters (size, time) can be studied only over a very restricted range within the laboratory; other parameters (initial spin, low gravity, exotic structure or composition) are difficult to study at all experimentally. The outcomes of numerical simulations lead to a more general and accurate understanding of impacts in their many forms.
Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds.
Pressel, Kyle G; Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M; Tan, Zhihong
2017-06-01
Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS-II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS-II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid-scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS-II observations are identified. The results show that using weighted essentially non-oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest-fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high-quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest-fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model.
Numerics and subgrid‐scale modeling in large eddy simulations of stratocumulus clouds
Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M.; Tan, Zhihong
2017-01-01
Abstract Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS‐II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS‐II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid‐scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS‐II observations are identified. The results show that using weighted essentially non‐oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest‐fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high‐quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest‐fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model. PMID:28943997
NASA Astrophysics Data System (ADS)
Hu, P.; Dai, M. H.; Ying, L.; Shi, D. Y.; Zhao, K. M.; Lu, J. D.
2013-05-01
The warm forming technology of aluminum alloy has attracted attention from worldwide automotive engineering sector in recent years, with which the complex geometry parts can be realized at elevated temperature. A non-isothermal warm forming process for the heat treatable aluminum can quickly carry out its application on traditional production line by adding a furnace to heat up the aluminum alloy sheet. The 6000 aluminum alloy was investigated by numerical simulation and experiment using the Nakajima test model in this paper. A modified Fields-Backofen model was introduced into numerical simulation process to describe the thermo-mechanical flow behavior of a 6000 series aluminum alloy. The experimental data was obtained by conducting thermal-mechanical uniaxial tensile experiment in temperatures range of 25˜400°C to guarantee the numerical simulation more accurate. The numerical simulation was implemented with LS_DYNA software in terms of coupled dynamic explicit method for investigating the effect of initial forming temperature and the Binder Holder Force (BHF), which are critical process parameters in non-isothermal warm forming. The results showed that the optimal initial forming temperature range was 300°C˜350°C. By means of conducting numerical simulation in deep drawing box model, the forming window of BHF and temperature around the optimal initial forming temperature (275°, 300° and 325°) are investigated, which can provide guidance to actual experiment.
NASA Astrophysics Data System (ADS)
Mingari, Leonardo A.; Collini, Estela A.; Folch, Arnau; Báez, Walter; Bustos, Emilce; Soledad Osores, María; Reckziegel, Florencia; Alexander, Peter; Viramonte, José G.
2017-06-01
On 13 June 2015, the London Volcanic Ash Advisory Centre (VAAC) warned the Buenos Aires VAAC about a possible volcanic eruption from the Nevados Ojos del Salado volcano (6879 m), located in the Andes mountain range on the border between Chile and Argentina. A volcanic ash cloud was detected by the SEVIRI instrument on board the Meteosat Second Generation (MSG) satellites from 14:00 UTC on 13 June. In this paper, we provide the first comprehensive description of this event through observations and numerical simulations. Our results support the hypothesis that the phenomenon was caused by wind remobilization of ancient pyroclastic deposits (ca. 4.5 ka Cerro Blanco eruption) from the Bolsón de Fiambalá (Fiambalá Basin) in northwestern Argentina. We have investigated the spatiotemporal distribution of aerosols and the emission process over complex terrain to gain insight into the key role played by the orography and the condition that triggered the long-range transport episode. Numerical simulations of windblown dust were performed using the ARW (Advanced Research WRF) core of the WRF (Weather Research and Forecasting) model (WRF-ARW) and FALL3D modeling system with meteorological fields downscaled to a spatial resolution of 2 km in order to resolve the complex orography of the area. Results indicate that favorable conditions to generate dust uplifting occurred in northern Fiambalá Basin, where orographic effects caused strong surface winds. According to short-range numerical simulations, dust particles were confined to near-ground layers around the emission areas. In contrast, dust aerosols were injected up to 5-6 km high in central and southern regions of the Fiambalá Basin, where intense ascending airflows are driven by horizontal convergence. Long-range transport numerical simulations were also performed to model the dust cloud spreading over northern Argentina. Results of simulated vertical particle column mass were compared with the MSG-SEVIRI retrieval product. We tested two numerical schemes: with the default configuration of the FALL3D model, we found difficulties to simulate transport through orographic barriers, whereas an alternative configuration, using a numerical scheme to more accurately compute the horizontal advection in abrupt terrains, substantially improved the model performance.
Numerical simulation of artificial hip joint motion based on human age factor
NASA Astrophysics Data System (ADS)
Ramdhani, Safarudin; Saputra, Eko; Jamari, J.
2018-05-01
Artificial hip joint is a prosthesis (synthetic body part) which usually consists of two or more components. Replacement of the hip joint due to the occurrence of arthritis, ordinarily patients aged or older. Numerical simulation models are used to observe the range of motion in the artificial hip joint, the range of motion of joints used as the basis of human age. Finite- element analysis (FEA) is used to calculate stress von mises in motion and observes a probability of prosthetic impingement. FEA uses a three-dimensional nonlinear model and considers the position variation of acetabular liner cups. The result of numerical simulation shows that FEA method can be used to analyze the performance calculation of the artificial hip joint at this time more accurate than conventional method.
NASA Astrophysics Data System (ADS)
Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre-Louis
2015-09-01
Response of pressurized composite-Al vessels to hypervelocity impact of aluminum spheres have been numerically investigated to evaluate the influence of initial pressure on the vulnerability of these vessels. Investigated tanks are carbon-fiber overwrapped prestressed Al vessels. Explored internal air pressure ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from experiments (Xray radiographies, particle velocity measurement and post-mortem vessels) have been compared to numerical results given from LS-DYNA ALE-Lagrange-SPH full coupling models. Simulations exhibit an under estimation in term of debris cloud evolution and shock wave propagation in pressurized air but main modes of damage/rupture on the vessels given by simulations are coherent with post-mortem recovered vessels from experiments. First results of this numerical work are promising and further simulation investigations with additional experimental data will be done to increase the reliability of the simulation model. The final aim of this crossed work is to numerically explore a wide range of impact conditions (impact angle, projectile weight, impact velocity, initial pressure) that cannot be explore experimentally. Those whole results will define a rule of thumbs for the definition of a vulnerability analytical model for a given pressurized vessel.
NASA Astrophysics Data System (ADS)
Shaqfeh, Eric S. G.; Bernate, Jorge A.; Yang, Mengfei
2016-12-01
Within the past decade, the separation of particles via continuous flow through microfluidic devices has been developed largely through an Edisonian approach whereby devices have been developed based on observation and intuition. This is particularly true in the development of vector chromatography at vanishingly small Reynolds number for non-Brownian particles. Note that this latter phenomenon has its origins in the irreversible forces that are at work in the device, since Stokes flow reversibility typically prohibits their function otherwise. We present a numerical simulation of the vector separation of non-Brownian particles of different sizes and deformabilities in the Stokes flow through channels whose lower surface is composed of slanted cavities. The simulations are designed to understand the physical principles behind the separation as well as to provide design criteria for devices for separating particles in a given size and flexibility range. The numerical simulations are Stokes flow boundary element simulations using techniques defined elsewhere in the literature, but including a close-range repulsive force between the particles and the slanted cavities. We demonstrate that over a range of repulsive force that is comparable to the roughness in the experimental devices, the separation data (particularly in particle size) are predicted quantitatively and are a very weak function of the range of the force. We then vary the geometric parameters of the simulated devices to demonstrate the sensitivity of the separation efficiency to these parameters, thus making design predictions as to which devices are appropriate for separating particles in different size, shape, and deformability ranges.
Numerical simulation of the hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor
NASA Astrophysics Data System (ADS)
Fortova, S. V.; Shepelev, V. V.; Troshkin, O. V.; Kozlov, S. A.
2017-09-01
The paper presents the results of numerical simulation of the development of hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor encountered in experiments [1-3]. For the numerical solution used the TPS software package (Turbulence Problem Solver) that implements a generalized approach to constructing computer programs for a wide range of problems of hydrodynamics, described by the system of equations of hyperbolic type. As numerical methods are used the method of large particles and ENO-scheme of the second order with Roe solver for the approximate solution of the Riemann problem.
Rausch, Alexander M; Küng, Vera E; Pobel, Christoph; Markl, Matthias; Körner, Carolin
2017-09-22
The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts.
Rausch, Alexander M.; Küng, Vera E.; Pobel, Christoph; Körner, Carolin
2017-01-01
The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts. PMID:28937633
A simple analytical infiltration model for short-duration rainfall
NASA Astrophysics Data System (ADS)
Wang, Kaiwen; Yang, Xiaohua; Liu, Xiaomang; Liu, Changming
2017-12-01
Many infiltration models have been proposed to simulate infiltration process. Different initial soil conditions and non-uniform initial water content can lead to infiltration simulation errors, especially for short-duration rainfall (SHR). Few infiltration models are specifically derived to eliminate the errors caused by the complex initial soil conditions. We present a simple analytical infiltration model for SHR infiltration simulation, i.e., Short-duration Infiltration Process model (SHIP model). The infiltration simulated by 5 models (i.e., SHIP (high) model, SHIP (middle) model, SHIP (low) model, Philip model and Parlange model) were compared based on numerical experiments and soil column experiments. In numerical experiments, SHIP (middle) and Parlange models had robust solutions for SHR infiltration simulation of 12 typical soils under different initial soil conditions. The absolute values of percent bias were less than 12% and the values of Nash and Sutcliffe efficiency were greater than 0.83. Additionally, in soil column experiments, infiltration rate fluctuated in a range because of non-uniform initial water content. SHIP (high) and SHIP (low) models can simulate an infiltration range, which successfully covered the fluctuation range of the observed infiltration rate. According to the robustness of solutions and the coverage of fluctuation range of infiltration rate, SHIP model can be integrated into hydrologic models to simulate SHR infiltration process and benefit the flood forecast.
Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method
Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim
2012-01-01
Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939
Comparison of Nonlinear Random Response Using Equivalent Linearization and Numerical Simulation
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Muravyov, Alexander A.
2000-01-01
A recently developed finite-element-based equivalent linearization approach for the analysis of random vibrations of geometrically nonlinear multiple degree-of-freedom structures is validated. The validation is based on comparisons with results from a finite element based numerical simulation analysis using a numerical integration technique in physical coordinates. In particular, results for the case of a clamped-clamped beam are considered for an extensive load range to establish the limits of validity of the equivalent linearization approach.
NASA Astrophysics Data System (ADS)
Kumar, Anil; Maithani, Rajesh; Suri, Amar Raj Singh
2017-12-01
In this study, numerical and experimental investigation has been carried out for a range of system and operating parameters in order to analyse the effect of dimpled rib on heat and fluid flow behaviours in heat exchanger tube. Tube has, stream wise spacing ( x/ d d ) range of 15-35, span wise spacing ( y/ d d ) range of 15-35, ratio of dimpled depth to print diameter ( e/ d d ) of 1.0 and Reynolds number ( Re n ) ranges from 4000 to 28,000. Simulations were carried out to obtain heat and fluid flow behaviour of smooth and rough tube, using commercial CFD software, ANSYS 16.0 (Fluent). Renormalization k - ɛ model was employed to assess the influence of dimpled on turbulent flow and velocity field. Simulation results show that, the enhancement of 3.18 times in heat transfer and 2.87 times enhancement in thermal hydraulic performance as a function of stream wise direction ( x/ d d ) of 15 and span wise direction ( y/ d d ) of 15 respectively. Comparison between numerical and experimental simulation results showed that good agreement as the data fell within ±10% error band.
The Oceanographic Multipurpose Software Environment (OMUSE v1.0)
NASA Astrophysics Data System (ADS)
Pelupessy, Inti; van Werkhoven, Ben; van Elteren, Arjen; Viebahn, Jan; Candy, Adam; Portegies Zwart, Simon; Dijkstra, Henk
2017-08-01
In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). OMUSE aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales can be easily designed. Rapid development of simulation models is made possible through the creation of simple high-level scripts. The low-level core of the abstraction in OMUSE is designed to deploy these simulations efficiently on heterogeneous high-performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver to the global circulation model POP (Parallel Ocean Program). The uniform access to the codes' simulation state and the extensive automation of data transfer and conversion operations aids the implementation of model couplings. We discuss the types of couplings that can be implemented using OMUSE. We also present example applications that demonstrate the straightforward model initialization and the concurrent use of data analysis tools on a running model. We give examples of multiscale and multiphysics simulations by embedding a regional ocean model into a global ocean model and by coupling a surface wave propagation model with a coastal circulation model.
Clinical value of homodynamic numerical simulation applied in the treatment of cerebral aneurysm.
Zhang, Hailin; Li, Li; Cheng, Chongjie; Sun, Xiaochuan
2017-12-01
Our objective was to evaluate the clinical value of numerical simulation in diagnosing cerebral aneurysm based on the analysis of numerical simulation of hemodynamic model. The experimental method used was the numerical model of cerebral aneurysm hemodynamic, and the numerical value of blood flow at each point was analyzed. The results showed that, the wall shear stress (WSS) value on the top of CA1 was significantly lower than that of the top (P<0.05), the WSS value of each point on the CA2 tumor was significantly lower than that of tumor neck (P<0.05); the pressure value on the tumor top and tumor neck between CA1 and CA2 had no significant difference (P>0.05); the unsteady index of shear (UIS) value at the points of 20 had distinctly changed, the wave range was 0.6-1.5; the unsteady index of pressure value of every point was significantly lower than UIS value, the wave range was 0.25-0.40. In conclusion, the application of cerebral aneurysm hemodynamic research can help doctors to diagnose cerebral aneurysm more precisely and to grasp the opportunity of treatment during the formulating of the treatment strategies.
Numerical modeling of the destruction of steel plates with a gradient substrate
NASA Astrophysics Data System (ADS)
Orlov, M. Yu.; Glazyrin, V. P.; Orlov, Yu. N.
2017-10-01
The paper presents the results of numerical simulation of the shock loading process of steel barriers with a gradient substrate. In an elastic plastic axisymmetric statement, a shock is simulated along the normal in the range of initial velocities up to 300 m / s. A range of initial velocities was revealed, in which the presence of a substrate "saved" the obstacle from spallation. New tasks were announced to deepen scientific knowledge about the behavior of unidirectional gradient barriers at impact. The results of calculations are obtained in the form of graphs, calculated configurations of the "impact - barrier" and tables.
NASA Technical Reports Server (NTRS)
Kung, Ernest C.
1994-01-01
The contract research has been conducted in the following three major areas: analysis of numerical simulations and parallel observations of atmospheric blocking, diagnosis of the lower boundary heating and the response of the atmospheric circulation, and comprehensive assessment of long-range forecasting with numerical and regression methods. The essential scientific and developmental purpose of this contract research is to extend our capability of numerical weather forecasting by the comprehensive general circulation model. The systematic work as listed above is thus geared to developing a technological basis for future NASA long-range forecasting.
NASA Astrophysics Data System (ADS)
Osiptsov, Andrei A.
2017-06-01
The goal of this study is to evaluate the conductivity of random close packings of non-spherical, rod-shaped proppant particles under the closure stress using numerical simulation and lab tests, with application to the conductivity of hydraulic fractures created in subterranean formation to stimulate production from oil and gas reservoirs. Numerical simulations of a steady viscous flow through proppant packs are carried out using the lattice Boltzmann method for the Darcy flow regime. The particle packings were generated numerically using the sequential deposition method. The simulations are conducted for packings of spheres, ellipsoids, cylinders, and mixtures of spheres with cylinders at various volumetric concentrations. It is demonstrated that cylinders provide the highest permeability among the proppants studied. The dependence of the nondimensional permeability (scaled by the equivalent particle radius squared) on porosity obtained numerically is well approximated by the power-law function: K /Rv2 = 0.204ϕ4.58 in a wide range of porosity: 0.3 ≤ ϕ ≤ 0.7. Lattice-Boltzmann simulations are cross-verified against finite-volume simulations using Navier-Stokes equations for inertial flow regime. Correlations for the normalized beta-factor as a function of porosity and normalized permeability are presented as well. These formulae are in a good agreement with the experimental measurements (including packings of rod-shaped particles) and existing laboratory data, available in the porosity range 0.3 ≤ ϕ ≤ 0.5. Comparison with correlations by other authors is also given.
Investigations of Flow Over a Hemisphere Using Numerical Simulations (Postprint)
2015-06-22
ranging from missile defense, remote sensing , and imaging . An important aspect of these applications is determining the effective beam-on-target...Stokes (URANS), detached eddy simulation (DES), and hybrid RANS/LES. The numerical results were compared with the experiment conducted at Auburn...turret. Using the DES and hybrid RANS/LES turbulence models, Loci-Chem was able to capture the unsteady flow structures, such as the shear layer
Attractive particle interaction forces and packing density of fine glass powders
Parteli, Eric J. R.; Schmidt, Jochen; Blümel, Christina; Wirth, Karl-Ernst; Peukert, Wolfgang; Pöschel, Thorsten
2014-01-01
We study the packing of fine glass powders of mean particle diameter in the range (4–52) μm both experimentally and by numerical DEM simulations. We obtain quantitative agreement between the experimental and numerical results, if both types of attractive forces of particle interaction, adhesion and non-bonded van der Waals forces are taken into account. Our results suggest that considering only viscoelastic and adhesive forces in DEM simulations may lead to incorrect numerical predictions of the behavior of fine powders. Based on the results from simulations and experiments, we propose a mathematical expression to estimate the packing fraction of fine polydisperse powders as a function of the average particle size. PMID:25178812
Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems
NASA Astrophysics Data System (ADS)
Cullen, Torrey; LIGO Collaboration
2016-03-01
Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.
Femtosecond soliton source with fast and broad spectral tunability.
Masip, Martin E; Rieznik, A A; König, Pablo G; Grosz, Diego F; Bragas, Andrea V; Martinez, Oscar E
2009-03-15
We present a complete set of measurements and numerical simulations of a femtosecond soliton source with fast and broad spectral tunability and nearly constant pulse width and average power. Solitons generated in a photonic crystal fiber, at the low-power coupling regime, can be tuned in a broad range of wavelengths, from 850 to 1200 nm using the input power as the control parameter. These solitons keep almost constant time duration (approximately 40 fs) and spectral widths (approximately 20 nm) over the entire measured spectra regardless of input power. Our numerical simulations agree well with measurements and predict a wide working wavelength range and robustness to input parameters.
High-Order Multioperator Compact Schemes for Numerical Simulation of Unsteady Subsonic Airfoil Flow
NASA Astrophysics Data System (ADS)
Savel'ev, A. D.
2018-02-01
On the basis of high-order schemes, the viscous gas flow over the NACA2212 airfoil is numerically simulated at a free-stream Mach number of 0.3 and Reynolds numbers ranging from 103 to 107. Flow regimes sequentially varying due to variations in the free-stream viscosity are considered. Vortex structures developing on the airfoil surface are investigated, and a physical interpretation of this phenomenon is given.
NASA Technical Reports Server (NTRS)
Allan Brian G.; Owens, Lewis, R.
2006-01-01
This paper will investigate the validation of a NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as the baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a freestream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the length of the fan-face diameter. The numerical simulations with and without wind tunnel walls are performed, quantifying effects of the tunnel walls on the BLI inlet flow measurements. The wind tunnel test evaluated several different combinations of jet locations and mass flow rates as well as a vortex generator (VG) vane case. The numerical simulations will be performed on a single jet configuration for varying actuator mass flow rates at a fix inlet mass flow condition. Validation of the numerical simulations for the VG vane case will also be performed for varying inlet mass flow rates. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCPavg, very well for comparisons made within the designed operating range of the BLI inlet. However the CFD simulations did predict a total pressure recovery that was 0.01 lower than the experiment. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of the flow and that a miss alignment of the vanes in the experiment could have resulted in this difference. The numerical simulations of the BLI inlet with jets showed good agreement with the circumferential inlet distortion levels for a range of jet actuator mass flow ratios at a fixed inlet mass flow rate. The CFD simulations for the jet case also predicted an average total pressure recovery that was 0.01 lower than the experiment as was seen in the baseline. Comparison of the flow features the jet case revealed that the CFD predicted a much larger vortex at the engine fan-face when compare to the experiment.
On the Universality of the Kolmogorov Constant in Numerical Simulations of Turbulence
NASA Technical Reports Server (NTRS)
Yeung, P. K.; Zhou, Ye
1997-01-01
Motivated by a recent survey of experimental data, we examine data on the Kolmogorov spectrum constant in numerical simulations of isotropic turbulence, using results both from previous studies and from new direct numerical simulations over a range of Reynolds numbers (up to 240 on the Taylor scale) at grid resolutions up to 512(exp 3). It is noted that in addition to k(exp -5/3) scaling, identification of a true inertial range requires spectral isotropy in the same wavenumber range. We found that a plateau in the compensated three-dimensional energy spectrum at k(eta) approx. = 0.1 - -0.2, commonly used to infer the Kolmogorov constant from the compensated three-dimensional energy spectrum, actually does not represent proper inertial range behavior. Rather, a proper, if still approximate, inertial range emerges at k(eta) approx. = 0.02 - 0.05 when R(sub lambda) increases beyond 140. The new simulations indicate proportionality constants C(sub 1) and C in the one- and three-dimensional energy spectra respectively about 0.60 and 1.62. If the turbulence were perfectly isotropic then use of isotropy relations in wavenumber space (C(sub 1) = 18/55 C) would imply that C(sub 1) approx. = 0.53 for C = 1.62, in excellent agreement with experiments. However the one- and three-dimensional estimates are not fully consistent, because of departures (due to numerical and statistical limitations) from isotropy of the computed spectra at low wavenumbers. The inertial scaling of structure functions in physical space is briefly addressed. Since DNS is still restricted to moderate Reynolds numbers, an accurate evaluation of the Kolmogorov constant is very difficult. We focus on providing new insights on the interpretation of Kolmogorov 1941 similarity in the DNS literature and do not consider issues pertaining to the refined similarity hypotheses of Kolmogorov (K62).
An Experimental and Numerical Study of a Supersonic Burner for CFD Model Development
NASA Technical Reports Server (NTRS)
Magnotti, G.; Cutler, A. D.
2008-01-01
A laboratory scale supersonic burner has been developed for validation of computational fluid dynamics models. Detailed numerical simulations were performed for the flow inside the combustor, and coupled with finite element thermal analysis to obtain more accurate outflow conditions. A database of nozzle exit profiles for a wide range of conditions of interest was generated to be used as boundary conditions for simulation of the external jet, or for validation of non-intrusive measurement techniques. A set of experiments was performed to validate the numerical results. In particular, temperature measurements obtained by using an infrared camera show that the computed heat transfer was larger than the measured value. Relaminarization in the convergent part of the nozzle was found to be responsible for this discrepancy, and further numerical simulations sustained this conclusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reckinger, Scott James; Livescu, Daniel; Vasilyev, Oleg V.
A comprehensive numerical methodology has been developed that handles the challenges introduced by considering the compressive nature of Rayleigh-Taylor instability (RTI) systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification-dependent vorticity production. The computational framework is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.
The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)
NASA Astrophysics Data System (ADS)
Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.
2016-06-01
Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.
2-D transmitral flows simulation by means of the immersed boundary method on unstructured grids
NASA Astrophysics Data System (ADS)
Denaro, F. M.; Sarghini, F.
2002-04-01
Interaction between computational fluid dynamics and clinical researches recently allowed a deeper understanding of the physiology of complex phenomena involving cardio-vascular mechanisms. The aim of this paper is to develop a simplified numerical model based on the Immersed Boundary Method and to perform numerical simulations in order to study the cardiac diastolic phase during which the left ventricle is filled with blood flowing from the atrium throughout the mitral valve. As one of the diagnostic problems to be faced by clinicians is the lack of a univocal definition of the diastolic performance from the velocity measurements obtained by Eco-Doppler techniques, numerical simulations are supposed to provide an insight both into the physics of the diastole and into the interpretation of experimental data. An innovative application of the Immersed Boundary Method on unstructured grids is presented, fulfilling accuracy requirements related to the development of a thin boundary layer along the moving immersed boundary. It appears that this coupling between unstructured meshes and the Immersed Boundary Method is a promising technique when a wide range of spatial scales is involved together with a moving boundary. Numerical simulations are performed in a range of physiological parameters and a qualitative comparison with experimental data is presented, in order to demonstrate that, despite the simplified model, the main physiological characteristics of the diastole are well represented. Copyright
NASA Astrophysics Data System (ADS)
Lachinova, Svetlana L.; Vorontsov, Mikhail A.; Filimonov, Grigory A.; LeMaster, Daniel A.; Trippel, Matthew E.
2017-07-01
Computational efficiency and accuracy of wave-optics-based Monte-Carlo and brightness function numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence are evaluated. Simulation results are compared with theoretical estimates based on known analytical solutions for the modulation transfer function of an imaging system and the long-exposure image of a Gaussian-shaped incoherent light source. It is shown that the accuracy of both techniques is comparable over the wide range of path lengths and atmospheric turbulence conditions, whereas the brightness function technique is advantageous in terms of the computational speed.
Numerical Simulation of the Motion of Aerosol Particles in Open Cell Foam Materials
NASA Astrophysics Data System (ADS)
Solovev, S. A.; Soloveva, O. V.; Popkova, O. S.
2018-03-01
The motion of aerosol particles in open cell foam material is studied. The porous medium is investigated for a three-dimensional case with detailed simulation of cellular structures within an ordered geometry. Numerical calculations of the motion of particles and their deposition due to inertial and gravitational mechanisms are performed. Deposition efficiency curves for a broad range of particle sizes are constructed. The effect deposition mechanisms have on the efficiency of the porous material as a filter is analyzed.
Numerical Simulation of Abandoned Gob Methane Drainage through Surface Vertical Wells
Hu, Guozhong
2015-01-01
The influence of the ventilation system on the abandoned gob weakens, so the gas seepage characteristics in the abandoned gob are significantly different from those in a normal mining gob. In connection with this, this study physically simulated the movement of overlying rock strata. A spatial distribution function for gob permeability was derived. A numerical model using FLUENT for abandoned gob methane drainage through surface wells was established, and the derived spatial distribution function for gob permeability was imported into the numerical model. The control range of surface wells, flow patterns and distribution rules for static pressure in the abandoned gob under different well locations were determined using the calculated results from the numerical model. PMID:25955438
Simulation of forced convection in non-Newtonian fluid through sandstones
NASA Astrophysics Data System (ADS)
Gokhale, M. Y.; Fernandes, Ignatius
2017-11-01
Numerical simulation is carried out to study forced convection in non-Newtonian fluids flowing through sandstones. Simulation is carried out using lattice Boltzmann method (LBM) for both shear-thinning and shear-thickening, by varying the power law index from 0.5 to 1.5 in Carreau-Yasuda model. Parameters involved in LBM and Carreau model are identified to achieve numerical convergence. Permeability and porosity are varied in the range of 10-10-10-6 and 0.1-0.7, respectively, to match actual geometrical properties of sandstone. Numerical technology is validated by establishing Darcy's law by plotting the graph between velocity and pressure gradient. Consequently, investigation is carried out to study the influence of material properties of porous media on flow properties such as velocity profiles, temperature profiles, and Nusselt number.
NASA Astrophysics Data System (ADS)
Li, Wei-Yi; Zhang, Qi-Chang; Wang, Wei
2010-06-01
Based on the Silnikov criterion, this paper studies a chaotic system of cubic polynomial ordinary differential equations in three dimensions. Using the Cardano formula, it obtains the exact range of the value of the parameter corresponding to chaos by means of the centre manifold theory and the method of multiple scales combined with Floque theory. By calculating the manifold near the equilibrium point, the series expression of the homoclinic orbit is also obtained. The space trajectory and Lyapunov exponent are investigated via numerical simulation, which shows that there is a route to chaos through period-doubling bifurcation and that chaotic attractors exist in the system. The results obtained here mean that chaos occurred in the exact range given in this paper. Numerical simulations also verify the analytical results.
The void spectrum in two-dimensional numerical simulations of gravitational clustering
NASA Technical Reports Server (NTRS)
Kauffmann, Guinevere; Melott, Adrian L.
1992-01-01
An algorithm for deriving a spectrum of void sizes from two-dimensional high-resolution numerical simulations of gravitational clustering is tested, and it is verified that it produces the correct results where those results can be anticipated. The method is used to study the growth of voids as clustering proceeds. It is found that the most stable indicator of the characteristic void 'size' in the simulations is the mean fractional area covered by voids of diameter d, in a density field smoothed at its correlation length. Very accurate scaling behavior is found in power-law numerical models as they evolve. Eventually, this scaling breaks down as the nonlinearity reaches larger scales. It is shown that this breakdown is a manifestation of the undesirable effect of boundary conditions on simulations, even with the very large dynamic range possible here. A simple criterion is suggested for deciding when simulations with modest large-scale power may systematically underestimate the frequency of larger voids.
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Owens, Lewis R.
2006-01-01
This paper will investigate the validation of the NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as a baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet experiment conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a free-stream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the fanface diameter. The numerical simulations with and without tunnel walls are performed, quantifying tunnel wall effects on the BLI inlet flow. A comparison is made between the numerical simulations and the BLI inlet experiment for the baseline and VG vane cases at various inlet mass flow rates. A comparison is also made to a BLI inlet jet configuration for varying actuator mass flow rates at a fixed inlet mass flow rate. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCP avg, very well within the designed operating range of the BLI inlet. A comparison of the average total pressure recovery showed that the simulations were able to predict the trends but had a negative 0.01 offset when compared to the experimental levels. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion levels for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of the flow and that a misalignment of the vanes in the experiment could have resulted in this difference. The numerical simulations of the BLI inlet with jets showed good agreement with the circumferential inlet distortion levels for a range of jet actuator mass flow ratios at a fixed inlet mass flow rate. The CFD simulations for the jet case also predicted an average total pressure recovery offset that was 0.01 lower than the experiment as was seen in the baseline. Comparisons of the flow features for the jet cases revealed that the CFD predicted a much larger vortex at the engine fan-face when compare to the experiment.
Magnetic field line random walk in models and simulations of reduced magnetohydrodynamic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, A. P.; Ruffolo, D.; Oughton, S.
2013-12-10
The random walk of magnetic field lines is examined numerically and analytically in the context of reduced magnetohydrodynamic (RMHD) turbulence, which provides a useful description of plasmas dominated by a strong mean field, such as in the solar corona. A recently developed non-perturbative theory of magnetic field line diffusion is compared with the diffusion coefficients obtained by accurate numerical tracing of magnetic field lines for both synthetic models and direct numerical simulations of RMHD. Statistical analysis of an ensemble of trajectories confirms the applicability of the theory, which very closely matches the numerical field line diffusion coefficient as a functionmore » of distance z along the mean magnetic field for a wide range of the Kubo number R. This theory employs Corrsin's independence hypothesis, sometimes thought to be valid only at low R. However, the results demonstrate that it works well up to R = 10, both for a synthetic RMHD model and an RMHD simulation. The numerical results from the RMHD simulation are compared with and without phase randomization, demonstrating a clear effect of coherent structures on the field line random walk for a very low Kubo number.« less
Roman, Sophie; Abu-Al-Saud, Moataz O; Tokunaga, Tetsu; Wan, Jiamin; Kovscek, Anthony R; Tchelepi, Hamdi A
2017-12-01
When a wetting liquid is displaced by air in a capillary tube, a wetting film develops between the tube wall and the air that is responsible for the snap-off mechanism of the gas phase. By dissolving a dye in the wetting phase it is possible to relate a measure of the absorbance in the capillary to the thickness of liquid films. These data could be used to compare with cutting edge numerical simulations of the dynamics of snap-off for which experimental and numerical data are lacking. Drainage experiments in constricted capillary tubes were performed where a dyed wetting liquid is displaced by air for varying flow rates. We developed an optical method to measure liquid film thicknesses that range from 3 to 1000μm. The optical measures are validated by comparison with both theory and direct numerical simulations. In a constricted capillary tube we observed, both experimentally and numerically, a phenomenon of snap-off coalescence events in the vicinity of the constriction that bring new insights into our understanding and modeling of two-phase flows. In addition, the good agreement between experiments and numerical simulations gives confidence to use the numerical method for more complex geometries in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
magnum.fe: A micromagnetic finite-element simulation code based on FEniCS
NASA Astrophysics Data System (ADS)
Abert, Claas; Exl, Lukas; Bruckner, Florian; Drews, André; Suess, Dieter
2013-11-01
We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.
Numerical simulation of MPD thruster flows with anomalous transport
NASA Technical Reports Server (NTRS)
Caldo, Giuliano; Choueiri, Edgar Y.; Kelly, Arnold J.; Jahn, Robert G.
1992-01-01
Anomalous transport effects in an Ar self-field coaxial MPD thruster are presently studied by means of a fully 2D two-fluid numerical code; its calculations are extended to a range of typical operating conditions. An effort is made to compare the spatial distribution of the steady state flow and field properties and thruster power-dissipation values for simulation runs with and without anomalous transport. A conductivity law based on the nonlinear saturation of lower hybrid current-driven instability is used for the calculations. Anomalous-transport simulation runs have indicated that the resistivity in specific areas of the discharge is significantly higher than that calculated in classical runs.
Interacting steps with finite-range interactions: Analytical approximation and numerical results
NASA Astrophysics Data System (ADS)
Jaramillo, Diego Felipe; Téllez, Gabriel; González, Diego Luis; Einstein, T. L.
2013-05-01
We calculate an analytical expression for the terrace-width distribution P(s) for an interacting step system with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with several numerical simulations and experimental results. We explore the effect of the range of interactions q on the functional form of the terrace-width distribution and pair correlation functions. For physically plausible interactions, we find modest changes when next-nearest neighbor interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.
NASA Technical Reports Server (NTRS)
Bradshaw, Peter (Editor); Rogers, Michael M. (Technical Monitor)
2002-01-01
The ninth Summer Program of the Center for Turbulence Research was held during the period July 29th - August 23rd, 2002. The increase in number of participants, noted in the Preface to the Proceedings of the 2000 Program, continues: this year there were 50 participants from ten countries, and 30 hosts from Stanford and NASA-Ames. This Proceedings volume contains 32 papers that span a wide range of topics and an enormous range of physical scales. The papers have been divided into seven groups: Acoustics, RANS modeling, Combustion, Large-eddy simulation (LES), LES Numerics, Stratified Flows, and Fundamentals, In several cases, a paper could have fitted in more than one group so the classification is somewhat arbitrary.
Wide-range simulation of elastoplastic wave fronts and failure of solids under high-speed loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saveleva, Natalia, E-mail: saveleva@icmm.ru; Bayandin, Yuriy, E-mail: buv@icmm.ru; Naimark, Oleg, E-mail: naimark@icmm.ru
2015-10-27
The aim of this paper is numerical study of deformation processes and failure of vanadium under shock-wave loading. According developed statistical theory of solid with mesoscopic defects the constitutive equations were proposed in terms of two structural variables characterizing behavior of defects ensembles: defect density tensor and structural scaling parameter. On the basis of wide-range constitutive equations the mathematical model of deformation behavior and failure of vanadium was developed taking into account the bond relaxation mechanisms, multistage of fracture and nonlinearity kinetic of defects. Results of numerical simulation allow the description of the major effects of shock wave propagation (elasticmore » precursor decay, grow of spall strength under grow strain rate)« less
NASA Astrophysics Data System (ADS)
Chen, Zuojing; Polizzi, Eric
2010-11-01
Effective modeling and numerical spectral-based propagation schemes are proposed for addressing the challenges in time-dependent quantum simulations of systems ranging from atoms, molecules, and nanostructures to emerging nanoelectronic devices. While time-dependent Hamiltonian problems can be formally solved by propagating the solutions along tiny simulation time steps, a direct numerical treatment is often considered too computationally demanding. In this paper, however, we propose to go beyond these limitations by introducing high-performance numerical propagation schemes to compute the solution of the time-ordered evolution operator. In addition to the direct Hamiltonian diagonalizations that can be efficiently performed using the new eigenvalue solver FEAST, we have designed a Gaussian propagation scheme and a basis-transformed propagation scheme (BTPS) which allow to reduce considerably the simulation times needed by time intervals. It is outlined that BTPS offers the best computational efficiency allowing new perspectives in time-dependent simulations. Finally, these numerical schemes are applied to study the ac response of a (5,5) carbon nanotube within a three-dimensional real-space mesh framework.
Numerical investigation of sliding drops on an inclined surface
NASA Astrophysics Data System (ADS)
Legendre, Dominique; Pedrono, Annaig; Interface Group Team
2017-11-01
Despite it apparent simplicity, the behavior of a drop on an inclined solid surface is far to be properly reproduced by numerical simulation. It involves static, hysteresis and dynamic contact line behaviors. Depending on the fluid properties, the hysteresis and the wall inclination, different drop shapes (rounded, corner or pearling drop) can be observed. The 3D numerical simulations of sliding droplets presented in this work are based on a Volume of Fluid (VoF) solver without any interface reconstruction developed in the JADIM code. The surface tension is solved using the classical CSF (Continuum Surface Force) model and a sub grid model is used to describe under hysteresis conditions both the shape, the dissipation of the non resolved scales of a moving contact line. Numerical simulations are compared with the experiments of. The agreement with experiments is found to be very good for both he critical angle of inclination for siding as well as for the specific shapes: rounded, corner and pearling drops. The simulations have been used to extend the range of hysteresis covered by the experiments.
Hydrodynamic Simulations of Protoplanetary Disks with GIZMO
NASA Astrophysics Data System (ADS)
Rice, Malena; Laughlin, Greg
2018-01-01
Over the past several decades, the field of computational fluid dynamics has rapidly advanced as the range of available numerical algorithms and computationally feasible physical problems has expanded. The development of modern numerical solvers has provided a compelling opportunity to reconsider previously obtained results in search for yet undiscovered effects that may be revealed through longer integration times and more precise numerical approaches. In this study, we compare the results of past hydrodynamic disk simulations with those obtained from modern analytical resources. We focus our study on the GIZMO code (Hopkins 2015), which uses meshless methods to solve the homogeneous Euler equations of hydrodynamics while eliminating problems arising as a result of advection between grid cells. By comparing modern simulations with prior results, we hope to provide an improved understanding of the impact of fluid mechanics upon the evolution of protoplanetary disks.
High-Order Methods for Incompressible Fluid Flow
NASA Astrophysics Data System (ADS)
Deville, M. O.; Fischer, P. F.; Mund, E. H.
2002-08-01
High-order numerical methods provide an efficient approach to simulating many physical problems. This book considers the range of mathematical, engineering, and computer science topics that form the foundation of high-order numerical methods for the simulation of incompressible fluid flows in complex domains. Introductory chapters present high-order spatial and temporal discretizations for one-dimensional problems. These are extended to multiple space dimensions with a detailed discussion of tensor-product forms, multi-domain methods, and preconditioners for iterative solution techniques. Numerous discretizations of the steady and unsteady Stokes and Navier-Stokes equations are presented, with particular sttention given to enforcement of imcompressibility. Advanced discretizations. implementation issues, and parallel and vector performance are considered in the closing sections. Numerous examples are provided throughout to illustrate the capabilities of high-order methods in actual applications.
Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems
NASA Astrophysics Data System (ADS)
Yang, Ge; Wang, Jun; Fang, Wen
2015-04-01
In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.
A software tool for modeling and simulation of numerical P systems.
Buiu, Catalin; Arsene, Octavian; Cipu, Corina; Patrascu, Monica
2011-03-01
A P system represents a distributed and parallel bio-inspired computing model in which basic data structures are multi-sets or strings. Numerical P systems have been recently introduced and they use numerical variables and local programs (or evolution rules), usually in a deterministic way. They may find interesting applications in areas such as computational biology, process control or robotics. The first simulator of numerical P systems (SNUPS) has been designed, implemented and made available to the scientific community by the authors of this paper. SNUPS allows a wide range of applications, from modeling and simulation of ordinary differential equations, to the use of membrane systems as computational blocks of cognitive architectures, and as controllers for autonomous mobile robots. This paper describes the functioning of a numerical P system and presents an overview of SNUPS capabilities together with an illustrative example. SNUPS is freely available to researchers as a standalone application and may be downloaded from a dedicated website, http://snups.ics.pub.ro/, which includes an user manual and sample membrane structures. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Numerical Study of Underwater Explosions and Following Bubble Pulses
NASA Astrophysics Data System (ADS)
Abe, Atsushi; Katayama, Masahide; Murata, Kenji; Kato, Yukio; Tanaka, Katsumi
2007-06-01
Underwater explosions and following bubble pulses were simulated by using the hydrocode AUTODYN. The pressure gradient depended on the water depth was applied to the water, and the effects of the atmospheric pressure and the gravity on the bubble properties were investigated numerically. In the deep and shallow water depth cases the bubble properties or pressure histories obtained numerically were compared with the empirical formula or the experimental data. Not only the pressure gradient in the water and the atmospheric pressure but also the application of the JWL EOS to slow energy release of the non-ideal explosive (Miller model) were found to be of great importance to simulate the generation of the bubble pulse precisely. Although the gravitational term during the dynamic analysis can be neglected in numerical analyses for very short time phenomena, it is indispensable to simulate the buoyancy of the bubble because the time range of the bubble behavior is some hundred times longer than that of the explosion phenomena.
On the Numerical Study of Heavy Rainfall in Taiwan
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chen, Ching-Sen; Chen, Yi-Leng; Jou, Ben Jong-Dao; Lin, Pay-Liam; Starr, David OC. (Technical Monitor)
2001-01-01
Heavy rainfall events are frequently observed over the western side of the CMR (central mountain range), which runs through Taiwan in a north-south orientation, in a southwesterly flow regime and over the northeastern side of the CMR in a northeasterly flow regime. Previous studies have revealed the mechanisms by which the heavy rainfall events are formed. Some of them have examined characteristics of the heavy rainfall via numerical simulations. In this paper, some of the previous numerical studies on heavy rainfall events around Taiwan during the Mei-Yu season (May and June), summer (non-typhoon cases) and autumn will be reviewed. Associated mechanisms proposed from observational studies will be reviewed first, and then characteristics of numerically simulated heavy rainfall events will be presented. The formation mechanisms of heavy rainfall from simulated results and from observational analysis are then compared and discussed. Based on these previous modeling studies, we will also discuss what are the major observations and modeling processes which will be needed for understanding the heavy precipitation in the future.
Numerical simulation of fluid flow around a scramaccelerator projectile
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.
1991-01-01
Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.
Numerical simulation of compact intracloud discharge and generated electromagnetic pulse
NASA Astrophysics Data System (ADS)
Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.
2015-06-01
Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.
Numerical simulation of pseudoelastic shape memory alloys using the large time increment method
NASA Astrophysics Data System (ADS)
Gu, Xiaojun; Zhang, Weihong; Zaki, Wael; Moumni, Ziad
2017-04-01
The paper presents a numerical implementation of the large time increment (LATIN) method for the simulation of shape memory alloys (SMAs) in the pseudoelastic range. The method was initially proposed as an alternative to the conventional incremental approach for the integration of nonlinear constitutive models. It is adapted here for the simulation of pseudoelastic SMA behavior using the Zaki-Moumni model and is shown to be especially useful in situations where the phase transformation process presents little or lack of hardening. In these situations, a slight stress variation in a load increment can result in large variations of strain and local state variables, which may lead to difficulties in numerical convergence. In contrast to the conventional incremental method, the LATIN method solve the global equilibrium and local consistency conditions sequentially for the entire loading path. The achieved solution must satisfy the conditions of static and kinematic admissibility and consistency simultaneously after several iterations. 3D numerical implementation is accomplished using an implicit algorithm and is then used for finite element simulation using the software Abaqus. Computational tests demonstrate the ability of this approach to simulate SMAs presenting flat phase transformation plateaus and subjected to complex loading cases, such as the quasi-static behavior of a stent structure. Some numerical results are contrasted to those obtained using step-by-step incremental integration.
NASA Astrophysics Data System (ADS)
Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca
2018-06-01
We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.
Numerical Simulation of Flow Field Within Parallel Plate Plastometer
NASA Technical Reports Server (NTRS)
Antar, Basil N.
2002-01-01
Parallel Plate Plastometer (PPP) is a device commonly used for measuring the viscosity of high polymers at low rates of shear in the range 10(exp 4) to 10(exp 9) poises. This device is being validated for use in measuring the viscosity of liquid glasses at high temperatures having similar ranges for the viscosity values. PPP instrument consists of two similar parallel plates, both in the range of 1 inch in diameter with the upper plate being movable while the lower one is kept stationary. Load is applied to the upper plate by means of a beam connected to shaft attached to the upper plate. The viscosity of the fluid is deduced from measuring the variation of the plate separation, h, as a function of time when a specified fixed load is applied on the beam. Operating plate speeds measured with the PPP is usually in the range of 10.3 cm/s or lower. The flow field within the PPP can be simulated using the equations of motion of fluid flow for this configuration. With flow speeds in the range quoted above the flow field between the two plates is certainly incompressible and laminar. Such flows can be easily simulated using numerical modeling with computational fluid dynamics (CFD) codes. We present below the mathematical model used to simulate this flow field and also the solutions obtained for the flow using a commercially available finite element CFD code.
Arnold, L.R.; Langer, William H.; Paschke, Suzanne Smith
2003-01-01
Analytical solutions and numerical models were used to predict the extent of steady-state drawdown caused by mining of aggregate below the water table in hypothetical sand-and-gravel and fractured crystalline-rock aquifers representative of hydrogeologic settings in the Front Range area of Colorado. Analytical solutions were used to predict the extent of drawdown under a wide range of hydrologic and mining conditions that assume aquifer homogeneity, isotropy, and infinite extent. Numerical ground-water flow models were used to estimate the extent of drawdown under conditions that consider heterogeneity, anisotropy, and hydrologic boundaries and to simulate complex or unusual conditions not readily simulated using analytical solutions. Analytical simulations indicated that the drawdown radius (or distance) of influence increased as horizontal hydraulic conductivity of the aquifer, mine penetration of the water table, and mine radius increased; radius of influence decreased as aquifer recharge increased. Sensitivity analysis of analytical simulations under intermediate conditions in sand-and-gravel and fractured crystalline-rock aquifers indicated that the drawdown radius of influence was most sensitive to mine penetration of the water table and least sensitive to mine radius. Radius of influence was equally sensitive to changes in horizontal hydraulic conductivity and recharge. Numerical simulations of pits in sand-and- gravel aquifers indicated that the area of influence in a vertically anisotropic sand-and-gravel aquifer of medium size was nearly identical to that in an isotropic aquifer of the same size. Simulated area of influence increased as aquifer size increased and aquifer boundaries were farther away from the pit, and simulated drawdown was greater near the pit when aquifer boundaries were close to the pit. Pits simulated as lined with slurry walls caused mounding to occur upgradient from the pits and drawdown to occur downgradient from the pits. Pits simulated as refilled with water and undergoing evaporative losses had little hydro- logic effect on the aquifer. Numerical sensitivity analyses for simulations of pits in sand-and-gravel aquifers indicated that simulated head was most sensitive to horizontal hydraulic conductivity and the hydraulic conductance of general-head boundaries in the models. Simulated head was less sensitive to riverbed conductance and recharge and relatively insensitive to vertical hydraulic conductivity. Numerical simulations of quarries in fractured crystalline-rock aquifers indicated that the area of influence in a horizontally anisotropic aquifer was elongated in the direction of higher horizontal hydraulic conductivity and shortened in the direction of lower horizontal hydraulic conductivity compared to area of influence in a homogeneous, isotropic aquifer. Area of influence was larger in an aquifer with ground-water flow in deep, low-permeability fractures than in a homogeneous, isotropic aquifer. Area of influence was larger for a quarry intersected by a hydraulically conductive fault zone and smaller for a quarry intersected by a low-conductivity fault zone. Numerical sensitivity analyses for simulations of quarries in fractured crystalline-rock aquifers indicated simulated head was most sensitive to variations in recharge and horizontal hydraulic conductivity, had little sensitivity to vertical hydraulic conductivity and drain cells used to simulate valleys, and was relatively insensitive to drain cells used to simulate the quarry.
1978-02-01
Numerical methods in the form of a digital computer model were used to simulate and study the tide- and wind-induced circulation in Chandeleur -Breton...entrances through the Chandeleur Island chain, where speed reaches 50-60 cm/sec for short periods. Surface elevations were found to have an average tide range
NASA Astrophysics Data System (ADS)
Miloichikova, I. A.; Bespalov, V. I.; Krasnykh, A. A.; Stuchebrov, S. G.; Cherepennikov, Yu. M.; Dusaev, R. R.
2018-04-01
Simulation by the Monte Carlo method is widely used to calculate the character of ionizing radiation interaction with substance. A wide variety of programs based on the given method allows users to choose the most suitable package for solving computational problems. In turn, it is important to know exactly restrictions of numerical systems to avoid gross errors. Results of estimation of the feasibility of application of the program PCLab (Computer Laboratory, version 9.9) for numerical simulation of the electron energy distribution absorbed in beryllium, aluminum, gold, and water for industrial, research, and clinical beams are presented. The data obtained using programs ITS and Geant4 being the most popular software packages for solving the given problems and the program PCLab are presented in the graphic form. A comparison and an analysis of the results obtained demonstrate the feasibility of application of the program PCLab for simulation of the absorbed energy distribution and dose of electrons in various materials for energies in the range 1-20 MeV.
DIATOM (Data Initialization and Modification) Library Version 7.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, David A.; Schmitt, Robert G.; Hensinger, David M.
DIATOM is a library that provides numerical simulation software with a computational geometry front end that can be used to build up complex problem geometries from collections of simpler shapes. The library provides a parser which allows for application-independent geometry descriptions to be embedded in simulation software input decks. Descriptions take the form of collections of primitive shapes and/or CAD input files and material properties that can be used to describe complex spatial and temporal distributions of numerical quantities (often called “database variables” or “fields”) to help define starting conditions for numerical simulations. The capability is designed to be generalmore » purpose, robust and computationally efficient. By using a combination of computational geometry and recursive divide-and-conquer approximation techniques, a wide range of primitive shapes are supported to arbitrary degrees of fidelity, controllable through user input and limited only by machine resources. Through the use of call-back functions, numerical simulation software can request the value of a field at any time or location in the problem domain. Typically, this is used only for defining initial conditions, but the capability is not limited to just that use. The most recent version of DIATOM provides the ability to import the solution field from one numerical solution as input for another.« less
Large eddy simulation of turbine wakes using higher-order methods
NASA Astrophysics Data System (ADS)
Deskos, Georgios; Laizet, Sylvain; Piggott, Matthew D.; Sherwin, Spencer
2017-11-01
Large eddy simulations (LES) of a horizontal-axis turbine wake are presented using the well-known actuator line (AL) model. The fluid flow is resolved by employing higher-order numerical schemes on a 3D Cartesian mesh combined with a 2D Domain Decomposition strategy for an efficient use of supercomputers. In order to simulate flows at relatively high Reynolds numbers for a reasonable computational cost, a novel strategy is used to introduce controlled numerical dissipation to a selected range of small scales. The idea is to mimic the contribution of the unresolved small-scales by imposing a targeted numerical dissipation at small scales when evaluating the viscous term of the Navier-Stokes equations. The numerical technique is shown to behave similarly to the traditional eddy viscosity sub-filter scale models such as the classic or the dynamic Smagorinsky models. The results from the simulations are compared to experimental data for a Reynolds number scaled by the diameter equal to ReD =1,000,000 and both the time-averaged stream wise velocity and turbulent kinetic energy (TKE) are showing a good overall agreement. At the end, suggestions for the amount of numerical dissipation required by our approach are made for the particular case of horizontal-axis turbine wakes.
NASA Astrophysics Data System (ADS)
Ballabio, G.; Dipierro, G.; Veronesi, B.; Lodato, G.; Hutchison, M.; Laibe, G.; Price, D. J.
2018-06-01
We describe a new implementation of the one-fluid method in the SPH code PHANTOM to simulate the dynamics of dust grains in gas protoplanetary discs. We revise and extend previously developed algorithms by computing the evolution of a new fluid quantity that produces a more accurate and numerically controlled evolution of the dust dynamics. Moreover, by limiting the stopping time of uncoupled grains that violate the assumptions of the terminal velocity approximation, we avoid fatal numerical errors in mass conservation. We test and validate our new algorithm by running 3D SPH simulations of a large range of disc models with tightly and marginally coupled grains.
Effects of Buoyancy and Forcing on Transitioning and Turbulent Lifted Flames
NASA Technical Reports Server (NTRS)
Kosaly, George; Kramlich, John C.; Riley, James J.; Nichols, Joseph W.
2003-01-01
The objectives of this paper are two-fold. First, a numerical scheme for the simulation of a buoyant, reacting jet is presented with special attention given to boundary conditions. In the absence of coflow, a jet flame is particularly sensitive to boundary conditions enforced upon the computational domain. However, careful consideration of proper boundary conditions can minimize their effect upon the overall simulation. Second, results of some preliminary simulations are presented over a range of Froude and Damkohler numbers. This range was chosen so as to produce lifted flames in both normal gravity and microgravity environments.
Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers
NASA Astrophysics Data System (ADS)
Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav
2017-10-01
Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. [Figure not available: see fulltext.
Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers.
Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav
2017-10-01
Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Kawamori, E.; Igami, H.
2017-11-01
A diagnostic technique for detecting the wave numbers of electron density fluctuations at electron gyro-scales in an electron cyclotron frequency range is proposed, and the validity of the idea is checked by means of a particle-in-cell (PIC) numerical simulation. The technique is a modified version of the scattering technique invented by Novik et al. [Plasma Phys. Controlled Fusion 36, 357-381 (1994)] and Gusakov et al., [Plasma Phys. Controlled Fusion 41, 899-912 (1999)]. The novel method adopts forward scattering of injected extraordinary probe waves at the upper hybrid resonance layer instead of the backward-scattering adopted by the original method, enabling the measurement of the wave-numbers of the fine scale density fluctuations in the electron-cyclotron frequency band by means of phase measurement of the scattered waves. The verification numerical simulation with the PIC method shows that the technique has a potential to be applicable to the detection of electron gyro-scale fluctuations in laboratory plasmas if the upper-hybrid resonance layer is accessible to the probe wave. The technique is a suitable means to detect electron Bernstein waves excited via linear mode conversion from electromagnetic waves in torus plasma experiments. Through the numerical simulations, some problems that remain to be resolved are revealed, which include the influence of nonlinear processes such as the parametric decay instability of the probe wave in the scattering process, and so on.
Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations
NASA Astrophysics Data System (ADS)
Baker, Alexander; Beg, Marijan; Ashton, Gregory; Albert, Maximilian; Chernyshenko, Dmitri; Wang, Weiwei; Zhang, Shilei; Bisotti, Marc-Antonio; Franchin, Matteo; Hu, Chun Lian; Stamps, Robert; Hesjedal, Thorsten; Fangohr, Hans
2017-01-01
Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general.
High-Fidelity Simulations of Electrically-Charged Atomizing Diesel-Type Jets
NASA Astrophysics Data System (ADS)
Gaillard, Benoit; Owkes, Mark; van Poppel, Bret
2015-11-01
Combustion of liquid fuels accounts for over a third of the energy usage today. Improving efficiency of combustion systems is critical to meet the energy needs while limiting environmental impacts. Additionally, a shift away from traditional fossil fuels to bio-derived alternatives requires fuel injection systems that can atomize fuels with a wide range of properties. In this work, the potential benefits of electrically-charged atomization is investigated using numerical simulations. Particularly, the electrostatic forces on the hydrodynamic jet are quantified and the impact of the forces is analyzed by comparing simulations of Diesel-type jets at realistic flow conditions. The simulations are performed using a state-of-the-art numerical framework that globally conserves mass, momentum, and the electric charge density even at the gas-liquid interface where discontinuities exist.
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Angelidis, Dionysios; Mendelson, Leah; Techet, Alexandra
2017-11-01
Evolution has enabled fish to develop a range of thrust producing mechanisms to allow skillful movement and give them the ability to catch prey or avoid danger. Several experimental and numerical studies have been performed to investigate how complex maneuvers are executed and develop bioinspired strategies for aquatic robot design. We will discuss recent numerical advances toward the development of a computational framework for performing turbulent, two-phase flow, fluid-structure-interaction (FSI) simulations to investigate the dynamics of aquatic jumpers. We will also discuss the integration of such numerics with high-speed imaging and particle image velocimetry data to reconstruct anatomic fish models and prescribe realistic kinematics of fish motion. The capabilities of our method will be illustrated by applying it to simulate the motion of a small scale archer fish jumping out of the water to capture prey. We will discuss the rich vortex dynamics emerging during the hovering, rapid upward and gliding phases. The simulations will elucidate the thrust production mechanisms by the movement of the pectoral and anal fins and we will show that the fins significantly contribute to the rapid acceleration.
Verification on spray simulation of a pintle injector for liquid rocket engine
NASA Astrophysics Data System (ADS)
Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye
2016-02-01
The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.
Numerical sedimentation particle-size analysis using the Discrete Element Method
NASA Astrophysics Data System (ADS)
Bravo, R.; Pérez-Aparicio, J. L.; Gómez-Hernández, J. J.
2015-12-01
Sedimentation tests are widely used to determine the particle size distribution of a granular sample. In this work, the Discrete Element Method interacts with the simulation of flow using the well known one-way-coupling method, a computationally affordable approach for the time-consuming numerical simulation of the hydrometer, buoyancy and pipette sedimentation tests. These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates. Five samples with different particle-size distributions are modeled by about six million rigid spheres projected on two-dimensions, with diameters ranging from 2.5 ×10-6 m to 70 ×10-6 m, forming a water suspension in a sedimentation cylinder. DEM simulates the particle's movement considering laminar flow interactions of buoyant, drag and lubrication forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the suspension. The numerical simulations cannot replace the laboratory tests since they need the final granulometry as initial data, but, as the results show, these simulations can identify the strong and weak points of each method and eventually recommend useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.
Volcanology: Volcanic bipolar disorder explained
NASA Astrophysics Data System (ADS)
Jellinek, Mark
2014-02-01
Eruptions come in a range of magnitudes. Numerical simulations and laboratory experiments show that rare, giant super-eruptions and smaller, more frequent events reflect a transition in the essential driving forces for volcanism.
Communication: Polymer entanglement dynamics: Role of attractive interactions
Grest, Gary S.
2016-10-10
The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. To follow chain mobility by numerical simulations from the intermediate Rouse and reptation regimes to the late time diffusive regime, highly coarse grained models with purely repulsive interactions between monomers are widely used since they are computationally the most efficient. In this paper, using large scale molecular dynamics simulations, the effect of including the attractive interaction between monomers on the dynamics of entangled polymer melts is explored for the first time over a wide temperature range. Attractive interactions have little effect onmore » the local packing for all temperatures T and on the chain mobility for T higher than about twice the glass transition T g. Finally, these results, across a broad range of molecular weight, show that to study the dynamics of entangled polymer melts, the interactions can be treated as pure repulsive, confirming a posteriori the validity of previous studies and opening the way to new large scale numerical simulations.« less
Direct Numerical Simulation of dense particle-laden turbulent flows using immersed boundaries
NASA Astrophysics Data System (ADS)
Wang, Fan; Desjardins, Olivier
2009-11-01
Dense particle-laden turbulent flows play an important role in many engineering applications, ranging from pharmaceutical coating and chemical synthesis to fluidized bed reactors. Because of the complexity of the physics involved in these flows, current computational models for gas-particle processes, such as drag and heat transfer, rely on empirical correlations and have been shown to lack accuracy. In this work, direct numerical simulations (DNS) of dense particle-laden flows are conducted, using immersed boundaries (IB) to resolve the flow around each particle. First, the accuracy of the proposed approach is tested on a range of 2D and 3D flows at various Reynolds numbers, and resolution requirements are discussed. Then, various particle arrangements and number densities are simulated, the impact on particle wake interaction is assessed, and existing drag models are evaluated in the case of fixed particles. In addition, the impact of the particles on turbulence dissipation is investigated. Finally, a strategy for handling moving and colliding particles is discussed.
Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei
Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equationsmore » such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.« less
Simulation of random road microprofile based on specified correlation function
NASA Astrophysics Data System (ADS)
Rykov, S. P.; Rykova, O. A.; Koval, V. S.; Vlasov, V. G.; Fedotov, K. V.
2018-03-01
The paper aims to develop a numerical simulation method and an algorithm for a random microprofile of special roads based on the specified correlation function. The paper used methods of correlation, spectrum and numerical analysis. It proves that the transfer function of the generating filter for known expressions of spectrum input and output filter characteristics can be calculated using a theorem on nonnegative and fractional rational factorization and integral transformation. The model of the random function equivalent of the real road surface microprofile enables us to assess springing system parameters and identify ranges of variations.
Numerical simulation of multicellular natural convection in air-filled vertical cavities
NASA Astrophysics Data System (ADS)
Kunaeva, A. I.; Ivanov, N. G.
2017-11-01
The paper deals with 2D laminar natural convection in vertical air-filled cavities of aspect ratio 20, 30 and 40 with differentially heated sidewalls. The airflow and heat transfer were simulated numerically with an in-house Navier-Stokes code SINF. The focus is on the appearance of stationary vortex structures, “cat’s eyes”, and their transition to unsteady regime in the Rayleigh number range from 4.8×103 to 1.3×104. The dependence of the predicted flow features and the local and integral heat transfer on the aspect ratio value is analysed.
An approach to achieve progress in spacecraft shielding
NASA Astrophysics Data System (ADS)
Thoma, K.; Schäfer, F.; Hiermaier, S.; Schneider, E.
2004-01-01
Progress in shield design against space debris can be achieved only when a combined approach based on several tools is used. This approach depends on the combined application of advanced numerical methods, specific material models and experimental determination of input parameters for these models. Examples of experimental methods for material characterization are given, covering the range from quasi static to very high strain rates for materials like Nextel and carbon fiber-reinforced materials. Mesh free numerical methods have extraordinary capabilities in the simulation of extreme material behaviour including complete failure with phase changes, combined with shock wave phenomena and the interaction with structural components. In this paper the benefits from combining numerical methods, material modelling and detailed experimental studies for shield design are demonstrated. The following examples are given: (1) Development of a material model for Nextel and Kevlar-Epoxy to enable numerical simulation of hypervelocity impacts on complex heavy protection shields for the International Space Station. (2) The influence of projectile shape on protection performance of Whipple Shields and how experimental problems in accelerating such shapes can be overcome by systematic numerical simulation. (3) The benefits of using metallic foams in "sandwich bumper shields" for spacecraft and how to approach systematic characterization of such materials.
Badetti, Michel; Fall, Abdoulaye; Chevoir, François; Roux, Jean-Noël
2018-05-28
Rheometric measurements on assemblies of wet polystyrene beads, in steady uniform quasistatic shear flow, for varying liquid content within the small saturation (pendular) range of isolated liquid bridges, are supplemented with a systematic study by discrete numerical simulations. The numerical results agree quantitatively with the experimental ones provided that the intergranular friction coefficient is set to the value [Formula: see text], identified from the behaviour of the dry material. Shear resistance and solid fraction [Formula: see text] are recorded as functions of the reduced pressure [Formula: see text], which, defined as [Formula: see text], compares stress [Formula: see text], applied in the velocity gradient direction, to the tensile strength [Formula: see text] of the capillary bridges between grains of diameter a, and characterizes cohesion effects. The simplest Mohr-Coulomb relation with [Formula: see text]-independent cohesion c applies as a good approximation for large enough [Formula: see text] (typically [Formula: see text]. Numerical simulations extend to different values of μ and, compared to experiments, to a wider range of [Formula: see text]. The assumption that capillary stresses act similarly to externally applied ones onto the dry granular contact network (effective stresses) leads to very good (although not exact) predictions of the shear strength, throughout the numerically investigated range [Formula: see text] and [Formula: see text]. Thus, the internal friction coefficient [Formula: see text] of the dry material still relates the contact force contribution to stresses, [Formula: see text], while the capillary force contribution to stresses, [Formula: see text], defines a generalized Mohr-Coulomb cohesion c, depending on [Formula: see text] in general. c relates to [Formula: see text] , coordination numbers and capillary force network anisotropy. c increases with liquid content through the pendular regime interval, to a larger extent, the smaller the friction coefficient. The simple approximation ignoring capillary shear stress [Formula: see text] (referred to as the Rumpf formula) leads to correct approximations for the larger saturation range within the pendular regime, but fails to capture the decrease of cohesion for smaller liquid contents.
A Computational Study of the Flow Physics of Acoustic Liners
NASA Technical Reports Server (NTRS)
Tam, Christopher
2006-01-01
The present investigation is a continuation of a previous joint project between the Florida State University and the NASA Langley Research Center Liner Physics Team. In the previous project, a study of acoustic liners, in two dimensions, inside a normal incidence impedance tube was carried out. The study consisted of two parts. The NASA team was responsible for the experimental part of the project. This involved performing measurements in an impedance tube with a large aspect ratio slit resonator. The FSU team was responsible for the computation part of the project. This involved performing direct numerical simulation (DNS) of the NASA experiment in two dimensions using CAA methodology. It was agreed that upon completion of numerical simulation, the computed values of the liner impedance were to be sent to NASA for validation with experimental results. On following this procedure good agreements were found between numerical results and experimental measurements over a wide range of frequencies and sound-pressure-level. Broadband incident sound waves were also simulated numerically and measured experimentally. Overall, good agreements were also found.
Convective Self-Aggregation in Numerical Simulations: A Review
NASA Astrophysics Data System (ADS)
Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline
2017-11-01
Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is "self-aggregation," in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.
Convective Self-Aggregation in Numerical Simulations: A Review
NASA Astrophysics Data System (ADS)
Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline
Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is ``self-aggregation,'' in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.
Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ge; Wang, Jun; Fang, Wen, E-mail: fangwen@bjtu.edu.cn
In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also definedmore » in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.« less
Modelling of deformation and recrystallisation microstructures in rocks and ice
NASA Astrophysics Data System (ADS)
Bons, Paul D.; Evans, Lynn A.; Gomez-Rivas, Enrique; Griera, Albert; Jessell, Mark W.; Lebensohn, Ricardo; Llorens, Maria-Gema; Peternell, Mark; Piazolo, Sandra; Weikusat, Ilka; Wilson, Chris J. L.
2015-04-01
Microstructures both record the deformation history of a rock and strongly control its mechanical properties. As microstructures in natural rocks only show the final "post-mortem" state, geologists have attempted to simulate the development of microstructures with experiments and later numerical models. Especially in-situ experiments have given enormous insight, as time-lapse movies could reveal the full history of a microstructure. Numerical modelling is an alternative approach to simulate and follow the change in microstructure with time, unconstrained by experimental limitations. Numerical models have been applied to a range of microstructural processes, such as grain growth, dynamic recrystallisation, porphyroblast rotation, vein growth, formation of mylonitic fabrics, etc. The numerical platform "Elle" (www.elle.ws) in particular has brought progress in the simulation of microstructural development as it is specifically designed to include the competition between simultaneously operating processes. Three developments significantly improve our capability to simulate microstructural evolution: (1) model input from the mapping of crystallographic orientation with EBSD or the automatic fabric analyser, (2) measurement of grain size and crystallographic preferred orientation evolution using neutron diffraction experiments and (3) the implementation of the full-field Fast Fourier Transform (FFT) solver for modelling anisotropic crystal-plastic deformation. The latter enables the detailed modelling of stress and strain as a function of local crystallographic orientation, which has a strong effect on strain localisation such as, for example, the formation of shear bands. These models can now be compared with the temporal evolution of crystallographic orientation distributions in in-situ experiments. In the last decade, the possibility to combine experiments with numerical simulations has allowed not only verification and refinement of the numerical simulation technique but also increased significantly the ability to predict and/or interpret natural microstructures. This contribution will present the most recent developments in in-situ and numerical modelling of deformation and recrystallisation microstructures in rocks and in ice.
Lattice Boltzmann simulations of immiscible displacement process with large viscosity ratios
NASA Astrophysics Data System (ADS)
Rao, Parthib; Schaefer, Laura
2017-11-01
Immiscible displacement is a key physical mechanism involved in enhanced oil recovery and carbon sequestration processes. This multiphase flow phenomenon involves a complex interplay of viscous, capillary, inertial and wettability effects. The lattice Boltzmann (LB) method is an accurate and efficient technique for modeling and simulating multiphase/multicomponent flows especially in complex flow configurations and media. In this presentation we present numerical simulation results of displacement process in thin long channels. The results are based on a new psuedo-potential multicomponent LB model with multiple relaxation time collision (MRT) model and explicit forcing scheme. We demonstrate that the proposed model is capable of accurately simulating the displacement process involving fluids with a wider range of viscosity ratios (>100) and which also leads to viscosity-independent interfacial tension and reduction of some important numerical artifacts.
Resolved-particle simulation by the Physalis method: Enhancements and new capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierakowski, Adam J., E-mail: sierakowski@jhu.edu; Prosperetti, Andrea; Faculty of Science and Technology and J.M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede
2016-03-15
We present enhancements and new capabilities of the Physalis method for simulating disperse multiphase flows using particle-resolved simulation. The current work enhances the previous method by incorporating a new type of pressure-Poisson solver that couples with a new Physalis particle pressure boundary condition scheme and a new particle interior treatment to significantly improve overall numerical efficiency. Further, we implement a more efficient method of calculating the Physalis scalar products and incorporate short-range particle interaction models. We provide validation and benchmarking for the Physalis method against experiments of a sedimenting particle and of normal wall collisions. We conclude with an illustrativemore » simulation of 2048 particles sedimenting in a duct. In the appendix, we present a complete and self-consistent description of the analytical development and numerical methods.« less
Comparison of transport properties models for numerical simulations of Mars entry vehicles
NASA Astrophysics Data System (ADS)
Hao, Jiaao; Wang, Jingying; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian
2017-01-01
Effects of two different models for transport properties, including the approximate model and the collision integral model, on hypersonic flow simulations of Mars entry vehicles are numerically investigated. A least square fitting is firstly performed using the best-available data of collision integrals for Martian atmosphere species within the temperature range of 300-20,000 K. Then, the performance of these two transport properties models are compared for an equilibrium Martian atmosphere gas mixture at 10 kPa and temperatures ranging from 1000 to 10,000 K. Finally, four flight conditions chosen from the trajectory of the Mars Pathfinder entry vehicle are numerically simulated. It is indicated that the approximate model is capable of accurately providing the distributions of species mass fractions and temperatures in the flowfield. Both models give similar translational-rotational and vibrational heat fluxes. However, the chemical diffusion heat fluxes predicted by the approximate model are significantly larger than the results computed by the collision integral model, particularly in the vicinity of the forebody stagnation point, whose maximum relative error of 15% for the super-catalytic case. The diffusion model employed in the approximate model is responsible to the discrepancy. In addition, the wake structure is largely unaffected by the transport properties models.
NASA Astrophysics Data System (ADS)
Guerrero, Esteban; Chen, Daming; Hageman, Logan; Guzman, Amador
2017-11-01
This article describes a computational study of flow mixing in microchannels due to electrokinetic instabilities that are compared to experimental results obtained in a cross- microchannel with an ionic solution of potassium chloride with two different ionic concentrations, with the purpose of determining the parameter combinations to produce the onset of flow mixing and its characteristics. For the numerical simulation process carried out using a finite element method-based commercial code, we applied a typical zeta potential used in other articles as a boundary condition for the microchannel walls. For the experiments, we used a commercial silicon glass (Caliper NS95) microchannel. For determining a flow mixing regime, we use the concept of ``mixing index'' established by (Fu et al., 2005) for an electrical conductivity ratio range of 18 to 52 with an electric field range of 1100 to 1900 V/cm. From our numerical simulation results we have found a threshold for the electrical Rayleigh number for starting a flow mixing regime, and a minimum microchannel characteristic length for achieving a 90% of flow mixing that will allow us to significantly reduce the mixing time. Vicerrectoria de Investigacion y Departamento de Ingeniera Mecánica y Metalúrgica Pontificia Universidad Catolica de Chile.
A Numerical Model of Viscoelastic Layer Entrainment by Airflow in Cough
NASA Astrophysics Data System (ADS)
Mitran, Sorin M.
2008-07-01
Coughing is an alternative mode of ensuring mucus clearance in the lung when normal cilia induced flow breaks down. A numerical model of this process is presented with the following aspects. (1) A portion of the airway comprising the first three bronchus generations is modeled as radially reinforced elastic tubes. Elasticity equations are solved to predict airway deformation under effect of airway pressure. (2) The compressible, turbulent flow induced by rapid lung contraction is modeled by direct numerical simulation for Reynolds numbers in the range 5,000-10,000 and by Large Eddy Simulation for Reynolds numbers in the range 5,000-40,000. (3) A two-layer model of the airway surface liquid (ASL) covering the airway epithelial layer is used. The periciliary liquid (PCL) in direct contact with the epithelial layer is considered to be a Newtonian fluid. Forces modeling cilia beating can act upon this layer. The mucus layer between the PCL and the interior airflow is modeled as an Oldroyd-B fluid. The overall computation is a fluid-structure interaction simulation that tracks changes in ASL thickness and airway diameters that result from impulsive airflow boundary conditions imposed at bronchi ends. In particular, the amount of mucus that is evacuated from the system is computed as a function of cough intensity and mucus rheological properties.
Impact of Separation Distance on Multi-Vane Radiometer Configurations
NASA Astrophysics Data System (ADS)
Cornella, B. M.; Ketsdever, A. D.; Gimelshein, N. E.; Gimelshein, S. F.
2011-05-01
The radiometric force produced by a linear array of three radiometer vanes has been assessed numerically using an argon carrier gas and experimentally using air. The separation distance between the three vanes of the array was varied between 0 and 120 percent based on the height of an individual radiometer vane of 40 mm. Qualitative agreement between the numerical and experimental results is shown as a function of operating Knudsen number, vane separation distance, and surrounding chamber geometry. Both sets of results indicate an asymptotic trend in maximum force as the separation distance increases as well as a shift in the maximum force Knudsen number. Small chamber effects for both numerical and experimental results indicate an increase of the total force ranging from a factor of 2.5 to 4. Quantitatively, however, the numerical simulations yield forces approximately an order of magnitude higher than observed in the experiments due to differences in carrier gas and accommodation coefficient as well as the two dimensional nature of the numerical simulations versus the three dimensional experiment.
Numerical study of centrifugal compressor stage vaneless diffusers
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Soldatova, K.; Solovieva, O.
2015-08-01
The authors analyzed CFD calculations of flow in vaneless diffusers with relative width in range from 0.014 to 0.100 at inlet flow angles in range from 100 to 450 with different inlet velocity coefficients, Reynolds numbers and surface roughness. The aim is to simulate calculated performances by simple algebraic equations. The friction coefficient that represents head losses as friction losses is proposed for simulation. The friction coefficient and loss coefficient are directly connected by simple equation. The advantage is that friction coefficient changes comparatively little in range of studied parameters. Simple equations for this coefficient are proposed by the authors. The simulation accuracy is sufficient for practical calculations. To create the complete algebraic model of the vaneless diffuser the authors plan to widen this method of modeling to diffusers with different relative length and for wider range of Reynolds numbers.
Simulation of plasma loading of high-pressure RF cavities
NASA Astrophysics Data System (ADS)
Yu, K.; Samulyak, R.; Yonehara, K.; Freemire, B.
2018-01-01
Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have been performed in the range of parameters typical for practical muon cooling channels.
NASA Astrophysics Data System (ADS)
Rößler, Thomas; Stein, Olaf; Heng, Yi; Baumeister, Paul; Hoffmann, Lars
2018-02-01
The accuracy of trajectory calculations performed by Lagrangian particle dispersion models (LPDMs) depends on various factors. The optimization of numerical integration schemes used to solve the trajectory equation helps to maximize the computational efficiency of large-scale LPDM simulations. We analyzed global truncation errors of six explicit integration schemes of the Runge-Kutta family, which we implemented in the Massive-Parallel Trajectory Calculations (MPTRAC) advection module. The simulations were driven by wind fields from operational analysis and forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) at T1279L137 spatial resolution and 3 h temporal sampling. We defined separate test cases for 15 distinct regions of the atmosphere, covering the polar regions, the midlatitudes, and the tropics in the free troposphere, in the upper troposphere and lower stratosphere (UT/LS) region, and in the middle stratosphere. In total, more than 5000 different transport simulations were performed, covering the months of January, April, July, and October for the years 2014 and 2015. We quantified the accuracy of the trajectories by calculating transport deviations with respect to reference simulations using a fourth-order Runge-Kutta integration scheme with a sufficiently fine time step. Transport deviations were assessed with respect to error limits based on turbulent diffusion. Independent of the numerical scheme, the global truncation errors vary significantly between the different regions. Horizontal transport deviations in the stratosphere are typically an order of magnitude smaller compared with the free troposphere. We found that the truncation errors of the six numerical schemes fall into three distinct groups, which mostly depend on the numerical order of the scheme. Schemes of the same order differ little in accuracy, but some methods need less computational time, which gives them an advantage in efficiency. The selection of the integration scheme and the appropriate time step should possibly take into account the typical altitude ranges as well as the total length of the simulations to achieve the most efficient simulations. However, trying to summarize, we recommend the third-order Runge-Kutta method with a time step of 170 s or the midpoint scheme with a time step of 100 s for efficient simulations of up to 10 days of simulation time for the specific ECMWF high-resolution data set considered in this study. Purely stratospheric simulations can use significantly larger time steps of 800 and 1100 s for the midpoint scheme and the third-order Runge-Kutta method, respectively.
Numerical simulations of high-energy flows in accreting magnetic white dwarfs
NASA Astrophysics Data System (ADS)
Van Box Som, Lucile; Falize, É.; Bonnet-Bidaud, J.-M.; Mouchet, M.; Busschaert, C.; Ciardi, A.
2018-01-01
Some polars show quasi-periodic oscillations (QPOs) in their optical light curves that have been interpreted as the result of shock oscillations driven by the cooling instability. Although numerical simulations can recover this physics, they wrongly predict QPOs in the X-ray luminosity and have also failed to reproduce the observed frequencies, at least for the limited range of parameters explored so far. Given the uncertainties on the observed polar parameters, it is still unclear whether simulations can reproduce the observations. The aim of this work is to study QPOs covering all relevant polars showing QPOs. We perform numerical simulations including gravity, cyclotron and bremsstrahlung radiative losses, for a wide range of polar parameters, and compare our results with the astronomical data using synthetic X-ray and optical luminosities. We show that shock oscillations are the result of complex shock dynamics triggered by the interplay of two radiative instabilities. The secondary shock forms at the acoustic horizon in the post-shock region in agreement with our estimates from steady-state solutions. We also demonstrate that the secondary shock is essential to sustain the accretion shock oscillations at the average height predicted by our steady-state accretion model. Finally, in spite of the large explored parameter space, matching the observed QPO parameters requires a combination of parameters inconsistent with the observed ones. This difficulty highlights the limits of one-dimensional simulations, suggesting that multi-dimensional effects are needed to understand the non-linear dynamics of accretion columns in polars and the origins of QPOs.
NASA Astrophysics Data System (ADS)
Yun, S. H.; Chang, C.
2015-12-01
It is the numerical simulation using a VolcFlow model to determine the runout range of pyroclastic density currents where an eruption column had been formed by the explosive Plinian eruption and the collapse of the column had caused to occur on Mt. Baekdu. We assumed that the most realistic way for the simulation of a sustained volcanic column is to modify the topography with a cone above the crater to follow expert advice from Dr. Karim Kelfoun, the developer of VolcFlow. Then we set the radius and height of the cone, the volume of pyroclastic flow, and the duration and simulation time accoding to the volcanic explosivity index (VEI). Also we set the yield stress as 5,000 Pa, 10,000 Pa, 15,000 Pa, the basal friction angle as 3°, 5°, 10°, respectively. As the simulation results, the longest runout range was 2.3 km, 9.1 km, 14.4 km, 18.6 km, 23.4 km from VEI 3 to VEI 7, respectively. It can be used as a very important material to predict the impact range of pyroclastic density currents and to minimize human and material damages caused by pyroclastic density currents derived from the future explosive eruption of Mt. Baekdu. This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.
Design of Bi-Directional Hydrofoils for Tidal Current Turbines
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Wosnik, Martin
2015-11-01
Tidal Current Turbines operate in flows which reverse direction. Bi-directional hydrofoils have rotational symmetry and allow such turbines to operate without the need for pitch or yaw control, decreasing the initial and maintenance costs. A numerical test-bed was developed to automate the simulations of hydrofoils in OpenFOAM and was utilized to simulate the flow over eleven classes of hydrofoils comprising a total of 700 foil shapes at different angles of attack. For promising candidate foil shapes physical models of 75 mm chord and 150 mm span were fabricated and tested in the University of New Hampshire High-Speed Cavitation Tunnel (HiCaT). The experimental results were compared to the simulations for model validation. The numerical test-bed successfully generated simulations for a wide range of foil shapes, although, as expected, the k - ω - SST turbulence model employed here was not adequate for some of the foils and for large angles of attack at which separation occurred. An optimization algorithm is currently being coupled with the numerical test-bed and additional turbulence models will be implemented in the future.
Numerical simulation of fluid flow and heat transfer in enhanced copper tube
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Zhen, T.; Kadir, A. K.
2013-06-01
Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.
Enhancing 4D PC-MRI in an aortic phantom considering numerical simulations
NASA Astrophysics Data System (ADS)
Kratzke, Jonas; Schoch, Nicolai; Weis, Christian; Müller-Eschner, Matthias; Speidel, Stefanie; Farag, Mina; Beller, Carsten J.; Heuveline, Vincent
2015-03-01
To date, cardiovascular surgery enables the treatment of a wide range of aortic pathologies. One of the current challenges in this field is given by the detection of high-risk patients for adverse aortic events, who should be treated electively. Reliable diagnostic parameters, which indicate the urge of treatment, have to be determined. Functional imaging by means of 4D phase contrast-magnetic resonance imaging (PC-MRI) enables the time-resolved measurement of blood flow velocity in 3D. Applied to aortic phantoms, three dimensional blood flow properties and their relation to adverse dynamics can be investigated in vitro. Emerging "in silico" methods of numerical simulation can supplement these measurements in computing additional information on crucial parameters. We propose a framework that complements 4D PC-MRI imaging by means of numerical simulation based on the Finite Element Method (FEM). The framework is developed on the basis of a prototypic aortic phantom and validated by 4D PC-MRI measurements of the phantom. Based on physical principles of biomechanics, the derived simulation depicts aortic blood flow properties and characteristics. The framework might help identifying factors that induce aortic pathologies such as aortic dilatation or aortic dissection. Alarming thresholds of parameters such as wall shear stress distribution can be evaluated. The combined techniques of 4D PC-MRI and numerical simulation can be used as complementary tools for risk-stratification of aortic pathology.
NASA Astrophysics Data System (ADS)
Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin
2017-06-01
We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.
Simulation and analysis of a geopotential research mission
NASA Technical Reports Server (NTRS)
Schutz, B. E.
1987-01-01
Computer simulations were performed for a Geopotential Research Mission (GRM) to enable the study of the gravitational sensitivity of the range rate measurements between the two satellites and to provide a set of simulated measurements to assist in the evaluation of techniques developed for the determination of the gravity field. The simulations were conducted with two satellites in near circular, frozen orbits at 160 km altitudes separated by 300 km. High precision numerical integration of the polar orbits were used with a gravitational field complete to degree and order 360. The set of simulated data for a mission duration of about 32 days was generated on a Cray X-MP computer. The results presented cover the most recent simulation, S8703, and includes a summary of the numerical integration of the simulated trajectories, a summary of the requirements to compute nominal reference trajectories to meet the initial orbit determination requirements for the recovery of the geopotential, an analysis of the nature of the one way integrated Doppler measurements associated with the simulation, and a discussion of the data set to be made available.
Assessment of CFD Estimation of Aerodynamic Characteristics of Basic Reusable Rocket Configurations
NASA Astrophysics Data System (ADS)
Fujimoto, Keiichiro; Fujii, Kozo
Flow-fields around the basic SSTO-rocket configurations are numerically simulated by the Reynolds-averaged Navier-Stokes (RANS) computations. Simulations of the Apollo-like configuration is first carried out, where the results are compared with NASA experiments and the prediction ability of the RANS simulation is discussed. The angle of attack of the freestream ranges from 0° to 180° and the freestream Mach number ranges from 0.7 to 2.0. Computed aerodynamic coefficients for the Apollo-like configuration agree well with the experiments under a wide range of flow conditions. The flow simulations around the slender Apollo-type configuration are carried out next and the results are compared with the experiments. Computed aerodynamic coefficients also agree well with the experiments. Flow-fields are dominated by the three-dimensional massively separated flow, which should be captured for accurate aerodynamic prediction. Grid refinement effects on the computed aerodynamic coefficients are investigated comprehensively.
NASA Astrophysics Data System (ADS)
Varnhagen, Scott; Same, Adam; Remillard, Jesse; Park, Jae Wan
2011-03-01
Series plug-in hybrid electric vehicles of varying engine configuration and battery capacity are modeled using Advanced Vehicle Simulator (ADVISOR). The performance of these vehicles is analyzed on the bases of energy consumption and greenhouse gas emissions on the tank-to-wheel and well-to-wheel paths. Both city and highway driving conditions are considered during the simulation. When simulated on the well-to-wheel path, it is shown that the range extender with a Wankel rotary engine consumes less energy and emits fewer greenhouse gases compared to the other systems with reciprocating engines during many driving cycles. The rotary engine has a higher power-to-weight ratio and lower noise, vibration and harshness compared to conventional reciprocating engines, although performs less efficiently. The benefits of a Wankel engine make it an attractive option for use as a range extender in a plug-in hybrid electric vehicle.
Estimation of geopotential from satellite-to-satellite range rate data: Numerical results
NASA Technical Reports Server (NTRS)
Thobe, Glenn E.; Bose, Sam C.
1987-01-01
A technique for high-resolution geopotential field estimation by recovering the harmonic coefficients from satellite-to-satellite range rate data is presented and tested against both a controlled analytical simulation of a one-day satellite mission (maximum degree and order 8) and then against a Cowell method simulation of a 32-day mission (maximum degree and order 180). Innovations include: (1) a new frequency-domain observation equation based on kinetic energy perturbations which avoids much of the complication of the usual Keplerian element perturbation approaches; (2) a new method for computing the normalized inclination functions which unlike previous methods is both efficient and numerically stable even for large harmonic degrees and orders; (3) the application of a mass storage FFT to the entire mission range rate history; (4) the exploitation of newly discovered symmetries in the block diagonal observation matrix which reduce each block to the product of (a) a real diagonal matrix factor, (b) a real trapezoidal factor with half the number of rows as before, and (c) a complex diagonal factor; (5) a block-by-block least-squares solution of the observation equation by means of a custom-designed Givens orthogonal rotation method which is both numerically stable and tailored to the trapezoidal matrix structure for fast execution.
NASA Astrophysics Data System (ADS)
Jiang, Houshuo; Grosenbaugh, Mark A.
2002-11-01
Numerical simulations are used to study the laminar vortex ring formation in the presence of background flow. The numerical setup includes a round-headed axisymmetric body with a sharp-wedged opening at the posterior end where a column of fluid is pushed out by a piston inside the body. The piston motion is explicitly included into the simulations by using a deforming mesh. The numerical method is verified by simulating the standard vortex ring formation process in quiescent fluid for a wide range of piston stroke to cylinder diameter ratios (Lm/D). The results from these simulations confirm the existence of a universal formation time scale (formation number) found by others from experimental and numerical studies. For the case of vortex ring formation by the piston/cylinder arrangement in a constant background flow (i.e. the background flow is in the direction of the piston motion), the results show that a smaller fraction of the ejected circulation is delivered into the leading vortex ring, thereby decreasing the formation number. The mechanism behind this reduction is believed to be related to the modification of the shear layer profile between the jet flow and the background flow by the external boundary layer on the outer surface of the cylinder. In effect, the vorticity in the jet is cancelled by the opposite signed vorticity in the external boundary layer. Simulations using different end geometries confirm the general nature of the phenomenon. The thrust generated from the jet and the drag forces acting on the body are calculated with and without background flow for different piston programs. The implications of these results for squid propulsion are discussed.
The ideal Kolmogorov inertial range and constant
NASA Technical Reports Server (NTRS)
Zhou, YE
1993-01-01
The energy transfer statistics measured in numerically simulated flows are found to be nearly self-similar for wavenumbers in the inertial range. Using the measured self-similar form, an 'ideal' energy transfer function and the corresponding energy flux rate were deduced. From this flux rate, the Kolmogorov constant was calculated to be 1.5, in excellent agreement with experiments.
NASA Astrophysics Data System (ADS)
Mohd Sakri, F.; Mat Ali, M. S.; Sheikh Salim, S. A. Z.
2016-10-01
The study of physic fluid for a liquid draining inside a tank is easily accessible using numerical simulation. However, numerical simulation is expensive when the liquid draining involves the multi-phase problem. Since an accurate numerical simulation can be obtained if a proper method for error estimation is accomplished, this paper provides systematic assessment of error estimation due to grid convergence error using OpenFOAM. OpenFOAM is an open source CFD-toolbox and it is well-known among the researchers and institutions because of its free applications and ready to use. In this study, three types of grid resolution are used: coarse, medium and fine grids. Grid Convergence Index (GCI) is applied to estimate the error due to the grid sensitivity. A monotonic convergence condition is obtained in this study that shows the grid convergence error has been progressively reduced. The fine grid has the GCI value below 1%. The extrapolated value from Richardson Extrapolation is in the range of the GCI obtained.
Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation
Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; ...
1995-01-01
In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less
NASA Astrophysics Data System (ADS)
Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun
2017-11-01
Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.
Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics
Pant, Lalit M.; Weber, Adam Z.
2017-04-14
A new semi-analytical agglomerate model is presented for polymer-electrolyte fuel-cell cathodes. The model uses double-trap kinetics for the oxygen-reduction reaction, which can capture the observed potential-dependent coverage and Tafel-slope changes. An iterative semi-analytical approach is used to obtain reaction rate constants from the double-trap kinetics, oxygen concentration at the agglomerate surface, and overall agglomerate reaction rate. The analytical method can predict reaction rates within 2% of the numerically simulated values for a wide range of oxygen concentrations, overpotentials, and agglomerate sizes, while saving simulation time compared to a fully numerical approach.
Numerical experiments with flows of elongated granules
NASA Technical Reports Server (NTRS)
Elrod, Harold G.; Brewe, David E.
1992-01-01
Theory and numerical results are given for a program simulating two dimensional granular flow (1) between two infinite, counter-moving, parallel, roughened walls, and (2) for an infinitely wide slider. Each granule is simulated by a central repulsive force field ratcheted with force restitution factor to introduce dissipation. Transmission of angular momentum between particles occurs via Coulomb friction. The effect of granular hardness is explored. Gaps from 7 to 28 particle diameters are investigated, with solid fractions ranging from 0.2 to 0.9. Among features observed are: slip flow at boundaries, coagulation at high densities, and gross fluctuation in surface stress. A videotape has been prepared to demonstrate the foregoing effects.
Simulation of plasma loading of high-pressure RF cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, K.; Samulyak, R.; Yonehara, K.
2018-01-11
Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have also been performed in the range of parameters typical for practical muon cooling channels.
High-order hydrodynamic algorithms for exascale computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Nathaniel Ray
Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broadmore » range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.« less
Memory is relevant in the symmetric phase of the minority game
NASA Astrophysics Data System (ADS)
Ho, K. H.; Man, W. C.; Chow, F. K.; Chau, H. F.
2005-06-01
Minority game is a simple-mined econophysical model capturing the cooperative behavior among selfish players. Previous investigations, which were based on numerical simulations up to about 100 players for a certain parameter α in the range 0.1≲α≲1 , suggested that memory is irrelevant to the cooperative behavior of the minority game in the so-called symmetric phase. Here using a large scale numerical simulation up to about 3000 players in the parameter range 0.01≲α≲1 , we show that the mean variance of the attendance in the minority game actually depends on the memory in the symmetric phase. We explain such dependence in the framework of crowd-anticrowd theory. Our findings conclude that one should not overlook the feedback mechanism buried under the correlation in the history time series in the study of minority game.
Spreading of correlations in the Falicov-Kimball model
NASA Astrophysics Data System (ADS)
Herrmann, Andreas J.; Antipov, Andrey E.; Werner, Philipp
2018-04-01
We study dynamical properties of the one- and two-dimensional Falicov-Kimball model using lattice Monte Carlo simulations. In particular, we calculate the spreading of charge correlations in the equilibrium model and after an interaction quench. The results show a reduction of the light-cone velocity with interaction strength at low temperature, while the phase velocity increases. At higher temperature, the initial spreading is determined by the Fermi velocity of the noninteracting system and the maximum range of the correlations decreases with increasing interaction strength. Charge order correlations in the disorder potential enhance the range of the correlations. We also use the numerically exact lattice Monte Carlo results to benchmark the accuracy of equilibrium and nonequilibrium dynamical cluster approximation calculations. It is shown that the bias introduced by the mapping to a periodized cluster is substantial, and that from a numerical point of view, it is more efficient to simulate the lattice model directly.
Lapchuk, A; Pashkevich, G A; Prygun, O V; Yurlov, V; Borodin, Y; Kryuchyn, A; Korchovyi, A A; Shylo, S
2015-10-01
The quasi-spiral 2D diffractive optical element (DOE) based on M-sequence of length N=15 is designed and manufactured. The speckle suppression efficiency by the DOE rotation is measured. The speckle suppression coefficients of 10.5, 6, and 4 are obtained for green, violet, and red laser beams, respectively. The results of numerical simulation and experimental data show that the quasi-spiral binary DOE structure can be as effective in speckle reduction as a periodic 2D DOE structure. The numerical simulation and experimental results show that the speckle suppression efficiency of the 2D DOE structure decreases approximately twice at the boundaries of the visible range. It is shown that a replacement of this structure with the bilateral 1D DOE allows obtaining the maximum speckle suppression efficiency in the entire visible range of light.
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas
2011-01-01
A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.
Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube
NASA Technical Reports Server (NTRS)
Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok
2015-01-01
This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.
NASA Astrophysics Data System (ADS)
Zhang, Ruili; Wang, Yulei; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa
2018-02-01
Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.
Multiscale Analysis of Rapidly Rotating Dynamo Simulations
NASA Astrophysics Data System (ADS)
Orvedahl, R.; Calkins, M. A.; Featherstone, N. A.
2017-12-01
The magnetic field of the planets and stars are generated by dynamo action in their electrically conducting fluid interiors. Numerical models of this process solve the fundamental equations of magnetohydrodynamics driven by convection in a rotating spherical shell. Rotation plays an important role in modifying the resulting convective flows and the self-generated magnetic field. We present results of simulating rapidly rotating systems that are unstable to dynamo action. We use the pseudo-spectral code Rayleigh to generate a suite of direct numerical simulations. Each simulation uses the Boussinesq approximation and is characterized by an Ekman number (Ek=ν /Ω L2) of 10-5. We vary the degree of convective forcing to obtain a range of convective Rossby numbers. The resulting flows and magnetic structures are analyzed using a Reynolds decomposition. We determine the relative importance of each term in the scale-separated governing equations and estimate the relevant spatial scales responsible for generating the mean magnetic field.
NASA Technical Reports Server (NTRS)
Jones, Scott M.
2007-01-01
This document is intended as an introduction to the analysis of gas turbine engine cycles using the Numerical Propulsion System Simulation (NPSS) code. It is assumed that the analyst has a firm understanding of fluid flow, gas dynamics, thermodynamics, and turbomachinery theory. The purpose of this paper is to provide for the novice the information necessary to begin cycle analysis using NPSS. This paper and the annotated example serve as a starting point and by no means cover the entire range of information and experience necessary for engine performance simulation. NPSS syntax is presented but for a more detailed explanation of the code the user is referred to the NPSS User Guide and Reference document (ref. 1).
NASA Astrophysics Data System (ADS)
Fernández, V.; Dietrich, D. E.; Haney, R. L.; Tintoré, J.
In situ and satellite data obtained during the last ten years have shown that the circula- tion in the Mediterranean Sea is extremely complex in space, with significant features ranging from mesoscale to sub-basin and basin scale, and highly variable in time, with mesoscale to seasonal and interannual signals. Also, the steep bottom topography and the variable atmospheric conditions from one sub-basin to another, make the circula- tion to be composed of numerous energetic and narrow coastal currents, density fronts and mesoscale structures that interact at sub-basin scale with the large scale circula- tion. To simulate numerically and better understand these features, besides high grid resolution, a low numerical dispersion and low physical dissipation ocean model is required. We present the results from a 1/8z horizontal resolution numerical simula- tion of the Mediterranean Sea using DieCAST ocean model, which meets the above requirements since it is stable with low general dissipation and uses accurate fourth- order-accurate approximations with low numerical dispersion. The simulations are carried out with climatological surface forcing using monthly mean winds and relax- ation towards climatological values of temperature and salinity. The model reproduces the main features of the large basin scale circulation, as well as the seasonal variabil- ity of sub-basin scale currents that are well documented by observations in straits and channels. In addition, DieCAST brings out natural fronts and eddies that usually do not appear in numerical simulations of the Mediterranean and that lead to a natural interannual variability. The role of this intrinsic variability in the general circulation will be discussed.
Study on the wind field and pollutant dispersion in street canyons using a stable numerical method.
Xia, Ji-Yang; Leung, Dennis Y C
2005-01-01
A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin (SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity.
Direct numerical simulation of turbulent plane Couette flow under neutral and stable stratification
NASA Astrophysics Data System (ADS)
Mortikov, Evgeny
2017-11-01
Direct numerical simulation (DNS) approach was used to study turbulence dynamics in plane Couette flow under conditions ranging from neutral stability to the case of extreme stable stratification, where intermittency is observed. Simulations were performed for Reynolds numbers, based on the channel height and relative wall speed, up to 2 ×105 . Using DNS data, which covers a wide range of stability conditions, parameterizations of pressure correlation terms used in second-order closure turbulence models are discussed. Particular attention is also paid to the sustainment of intermittent turbulence under strong stratification. Intermittent regime is found to be associated with the formation of secondary large-scale structures elongated in the spanwise direction, which define spatially confined alternating regions of laminar and turbulent flow. The spanwise length of this structures increases with the increase in the bulk Richardson number and defines and additional constraint on the computational box size. In this work DNS results are presented in extended computational domains, where the intermittent turbulence is sustained for sufficiently higher Richardson numbers than previously reported.
NASA Astrophysics Data System (ADS)
Xie, Wen-Jie; Jiang, Zhi-Qiang; Gu, Gao-Feng; Xiong, Xiong; Zhou, Wei-Xing
2015-10-01
Many complex systems generate multifractal time series which are long-range cross-correlated. Numerous methods have been proposed to characterize the multifractal nature of these long-range cross correlations. However, several important issues about these methods are not well understood and most methods consider only one moment order. We study the joint multifractal analysis based on partition function with two moment orders, which was initially invented to investigate fluid fields, and derive analytically several important properties. We apply the method numerically to binomial measures with multifractal cross correlations and bivariate fractional Brownian motions without multifractal cross correlations. For binomial multifractal measures, the explicit expressions of mass function, singularity strength and multifractal spectrum of the cross correlations are derived, which agree excellently with the numerical results. We also apply the method to stock market indexes and unveil intriguing multifractality in the cross correlations of index volatilities.
Attitude algorithm and initial alignment method for SINS applied in short-range aircraft
NASA Astrophysics Data System (ADS)
Zhang, Rong-Hui; He, Zhao-Cheng; You, Feng; Chen, Bo
2017-07-01
This paper presents an attitude solution algorithm based on the Micro-Electro-Mechanical System and quaternion method. We completed the numerical calculation and engineering practice by adopting fourth-order Runge-Kutta algorithm in the digital signal processor. The state space mathematical model of initial alignment in static base was established, and the initial alignment method based on Kalman filter was proposed. Based on the hardware in the loop simulation platform, the short-range flight simulation test and the actual flight test were carried out. The results show that the error of pitch, yaw and roll angle is fast convergent, and the fitting rate between flight simulation and flight test is more than 85%.
Huff, Glenn F.; Braun, Christopher L.; Lee, Roger W.
2000-01-01
Redox conditions in the Numerous Sand Channels Zone beneath a petrochemical reclamation site in Harris County, Texas, range from sulfate reducing to methanogenic as indicated by the presence of methane in ground water and the range of molecular hydrogen concentrations. Assessment of the potential for reductive dechlorination using BIOCHLOR as a screening tool indicated conditions favoring anaerobic degradation of chlorinated organic compounds in the Numerous Sand Channels Zone. Evidence supporting reductive dechlorination includes apparently biogenic cis-1,2-dichloroethene; an increased ratio of 1,2-dichloroethane to 1,1,2-trichloroethane downgradient from the assumed contaminant source area; ethene and methane concentrations greater than background concentrations within the area of the contaminant plume; and a positive correlation of the ratio of ethene to vinyl chloride as a function of methane concentrations. The body of evidence presented in this report argues for hydrogenolysis of trichloroethene to cis-1,2-dichloroethene; of 1,1,2-trichloroethane to 1,2-dichloroethane; and of vinyl chloride to ethene within the Numerous Sand Channels Zone. Simulations using BIOCHLOR yielded apparent first-order decay constants for reductive dechlorination in the sequence Tetrachloroethene --> trichloroethene --> cis-1,2-dichloroethene --> vinyl chloride --> ethene within the range of literature values reported for each compound and apparent first-order decay constants for reductive dechlorination in the sequence 1,1,2-trichloroethane --> 1,2-dichloroethane slightly greater than literature values reported for each compound along the upgradient segment of a simulated ground-water flowpath. Except for vinyl chloride, apparent rates of reductive dechlorination for all simulated species show a marked decrease along the downgradient segment of the simulated ground-water flowpath. Evidence for reductive dechlorination of chlorinated ethenes within the Numerous Sand Channels Zone indicates potential for natural attenuation of chlorinated ethenes. Reductive dechlorination of chlorinated ethanes apparently occurs to a lesser extent, indicating relatively less potential for natural attenuation of chlorinated ethanes. Additional data are needed on the concentrations and distribution of chlorinated ethenes and ethanes in individual fine sand intervals of the Numerous Sand Channels Zone. This information, combined with lower minimum reporting levels for future chloroethane analyses, might enable a more complete and quantitative assessment of the potential for natural attenuation at the site.
The power spectrum of solar convection flows from high-resolution observations and 3D simulations
NASA Astrophysics Data System (ADS)
Yelles Chaouche, L.; Moreno-Insertis, F.; Bonet, J. A.
2014-03-01
Context. Understanding solar surface magnetoconvection requires the study of the Fourier spectra of the velocity fields. Nowadays, observations are available that resolve very small spatial scales, well into the subgranular range, almost reaching the scales routinely resolved in numerical magnetoconvection simulations. Comparison of numerical and observational data at present can provide an assessment of the validity of the observational proxies. Aims: Our aims are: (1) to obtain Fourier spectra for the photospheric velocity fields using the spectropolarimetric observations with the highest spatial resolution so far (~120 km), thus reaching for the first time spatial scales well into the subgranular range; (2) to calculate corresponding Fourier spectra from realistic 3D numerical simulations of magnetoconvection and carry out a proper comparison with their observational counterparts considering the residual instrumental degradation in the observational data; and (3) to test the observational proxies on the basis of the numerical data alone, by comparing the actual velocity field in the simulations with synthetic observations obtained from the numerical boxes. Methods: (a) For the observations, data from the SUNRISE/IMaX spectropolarimeter are used. (b) For the simulations, we use four series of runs obtained with the STAGGER code for different average signed vertical magnetic field values (0, 50, 100, and 200 G). Spectral line profiles are synthesized from the numerical boxes for the same line observed by IMaX (Fe I 5250.2 Å) and degraded to match the performance of the IMaX instrument. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlation tracking (LCT, for the horizontal component). Fourier power spectra are calculated and a comparison between the synthetic and observational data sets carried out. (c) For the internal comparison of the numerical data, velocity values on constant optical depth surfaces are used instead of on horizontal planes. Results: A very good match between observational and simulated Fourier power spectra is obtained for the vertical velocity data for scales between 200 km and 6 Mm. Instead, a clear vertical shift is obtained when the synthetic observations are not degraded to emulate the degradation in the IMaX data. The match for the horizontal velocity data is much less impressive because of the inaccuracies of the LCT procedure. Concerning the internal comparison of the direct velocity values of the numerical boxes with those from the synthetic observations, a high correlation (0.96) is obtained for the vertical component when using the velocity values on the log τ500 = -1 surface in the box. The corresponding Fourier spectra are near each other. A lower maximum correlation (0.5) is reached (at log τ500 = 0) for the horizontal velocities as a result of the coarseness of the LCT procedure. Correspondingly, the Fourier spectra for the LCT-determined velocities is well below that from the actual velocity components. Conclusions: As measured by the Fourier spectra, realistic numerical simulations of surface magnetoconvection provide a very good match to the observational proxies for the photospheric velocity fields at least on scales from several Mm down to around 200 km. Taking into account the spatial and spectral instrumental blurring is essential for the comparison between simulations and observations. Dopplergrams are an excellent proxy for the vertical velocities on constant-τ isosurfaces, while LCT is a much less reliable method of determining the horizontal velocities.
Transonic aerodynamic design experience
NASA Technical Reports Server (NTRS)
Bonner, E.
1989-01-01
Advancements have occurred in transonic numerical simulation that place aerodynamic performance design into a relatively well developed status. Efficient broad band operating characteristics can be reliably developed at the conceptual design level. Recent aeroelastic and separated flow simulation results indicate that systematic consideration of an increased range of design problems appears promising. This emerging capability addresses static and dynamic structural/aerodynamic coupling and nonlinearities associated with viscous dominated flows.
Numerical Simulations of Thick Aluminum Wire Behavior Under Megampere Current Drive
2009-06-01
time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...simulated time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...experiments involved a wide range of diagnostics , including current probes, streaked imaging of optical emission, 4-frame laser shadowgraphy, fast
Numerical simulation of the flow about the F-18 HARV at high angle of attack
NASA Technical Reports Server (NTRS)
Murman, Scott M.
1994-01-01
As part of NASA's High Alpha Technology Program, research has been aimed at developing and extending numerical methods to accurately predict the high Reynolds number flow about the NASA F-18 High Alpha Research Vehicle (HARV) at large angles of attack. The HARV aircraft is equipped with a bidirectional thrust vectoring unit which enables stable, controlled flight through 70 deg angle of attack. Currently, high-fidelity numerical solutions for the flow about the HARV have been obtained at alpha = 30 deg, and validated against flight-test data. It is planned to simulate the flow about the HARV through alpha = 60 deg, and obtain solutions of the same quality as those at the lower angles of attack. This report presents the status of work aimed at extending the HARV computations to the extreme angle of attack range.
Numerical study of dynamo action at low magnetic Prandtl numbers.
Ponty, Y; Mininni, P D; Montgomery, D C; Pinton, J-F; Politano, H; Pouquet, A
2005-04-29
We present a three-pronged numerical approach to the dynamo problem at low magnetic Prandtl numbers P(M). The difficulty of resolving a large range of scales is circumvented by combining direct numerical simulations, a Lagrangian-averaged model and large-eddy simulations. The flow is generated by the Taylor-Green forcing; it combines a well defined structure at large scales and turbulent fluctuations at small scales. Our main findings are (i) dynamos are observed from P(M)=1 down to P(M)=10(-2), (ii) the critical magnetic Reynolds number increases sharply with P(M)(-1) as turbulence sets in and then it saturates, and (iii) in the linear growth phase, unstable magnetic modes move to smaller scales as P(M) is decreased. Then the dynamo grows at large scales and modifies the turbulent velocity fluctuations.
NASA Astrophysics Data System (ADS)
Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.
2016-02-01
In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.
NASA Astrophysics Data System (ADS)
Blank, D. G.; Morgan, J.
2017-12-01
Large earthquakes that occur on convergent plate margin interfaces have the potential to cause widespread damage and loss of life. Recent observations reveal that a wide range of different slip behaviors take place along these megathrust faults, which demonstrate both their complexity, and our limited understanding of fault processes and their controls. Numerical modeling provides us with a useful tool that we can use to simulate earthquakes and related slip events, and to make direct observations and correlations among properties and parameters that might control them. Further analysis of these phenomena can lead to a more complete understanding of the underlying mechanisms that accompany the nucleation of large earthquakes, and what might trigger them. In this study, we use the discrete element method (DEM) to create numerical analogs to subduction megathrusts with heterogeneous fault friction. Displacement boundary conditions are applied in order to simulate tectonic loading, which in turn, induces slip along the fault. A wide range of slip behaviors are observed, ranging from creep to stick slip. We are able to characterize slip events by duration, stress drop, rupture area, and slip magnitude, and to correlate the relationships among these quantities. These characterizations allow us to develop a catalog of rupture events both spatially and temporally, for comparison with slip processes on natural faults.
On the breakdown modes and parameter space of Ohmic Tokamak startup
NASA Astrophysics Data System (ADS)
Peng, Yanli; Jiang, Wei; Zhang, Ya; Hu, Xiwei; Zhuang, Ge; Innocenti, Maria; Lapenta, Giovanni
2017-10-01
Tokamak plasma has to be hot. The process of turning the initial dilute neutral hydrogen gas at room temperature into fully ionized plasma is called tokamak startup. Even with over 40 years of research, the parameter ranges for the successful startup still aren't determined by numerical simulations but by trial and errors. However, in recent years it has drawn much attention due to one of the challenges faced by ITER: the maximum electric field for startup can't exceed 0.3 V/m, which makes the parameter range for successful startup narrower. Besides, this physical mechanism is far from being understood either theoretically or numerically. In this work, we have simulated the plasma breakdown phase driven by pure Ohmic heating using a particle-in-cell/Monte Carlo code, with the aim of giving a predictive parameter range for most tokamaks, even for ITER. We have found three situations during the discharge, as a function of the initial parameters: no breakdown, breakdown and runaway. Moreover, breakdown delay and volt-second consumption under different initial conditions are evaluated. In addition, we have simulated breakdown on ITER and confirmed that when the electric field is 0.3 V/m, the optimal pre-filling pressure is 0.001 Pa, which is in good agreement with ITER's design.
NASA Astrophysics Data System (ADS)
Wagner, Alexander; Schülein, Erich; Petervari, René; Hannemann, Klaus; Ali, Syed R. C.; Cerminara, Adriano; Sandham, Neil D.
2018-05-01
Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels were conducted by means of a slender wedge probe and direct numerical simulation. The study comprises comparative tunnel noise measurements at Mach 3, 6 and 7.4 in two Ludwieg tube facilities and a shock tunnel. Surface pressure fluctuations were measured over a wide range of frequencies and test conditions including harsh test environments not accessible to measurement techniques such as pitot probes and hot-wire anemometry. Quantitative results of the tunnel noise are provided in frequency ranges relevant for hypersonic boundary layer transition. In combination with the experimental studies, direct numerical simulations of the leading-edge receptivity to fast and slow acoustic waves were performed for the slender wedge probe at conditions corresponding to the experimental free-stream conditions. The receptivity to fast acoustic waves was found to be characterized by an early amplification of the induced fast mode. For slow acoustic waves an initial decay was found close to the leading edge. At all Mach numbers, and for all considered frequencies, the leading-edge receptivity to fast acoustic waves was found to be higher than the receptivity to slow acoustic waves. Further, the effect of inclination angles of the acoustic wave with respect to the flow direction was investigated. The combined numerical and experimental approach in the present study confirmed the previous suggestion that the slow acoustic wave is the dominant acoustic mode in noisy hypersonic wind tunnels.
NASA Astrophysics Data System (ADS)
Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang
2018-03-01
In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.
Numerical comparisons of ground motion predictions with kinematic rupture modeling
NASA Astrophysics Data System (ADS)
Yuan, Y. O.; Zurek, B.; Liu, F.; deMartin, B.; Lacasse, M. D.
2017-12-01
Recent advances in large-scale wave simulators allow for the computation of seismograms at unprecedented levels of detail and for areas sufficiently large to be relevant to small regional studies. In some instances, detailed information of the mechanical properties of the subsurface has been obtained from seismic exploration surveys, well data, and core analysis. Using kinematic rupture modeling, this information can be used with a wave propagation simulator to predict the ground motion that would result from an assumed fault rupture. The purpose of this work is to explore the limits of wave propagation simulators for modeling ground motion in different settings, and in particular, to explore the numerical accuracy of different methods in the presence of features that are challenging to simulate such as topography, low-velocity surface layers, and shallow sources. In the main part of this work, we use a variety of synthetic three-dimensional models and compare the relative costs and benefits of different numerical discretization methods in computing the seismograms of realistic-size models. The finite-difference method, the discontinuous-Galerkin method, and the spectral-element method are compared for a range of synthetic models having different levels of complexity such as topography, large subsurface features, low-velocity surface layers, and the location and characteristics of fault ruptures represented as an array of seismic sources. While some previous studies have already demonstrated that unstructured-mesh methods can sometimes tackle complex problems (Moczo et al.), we investigate the trade-off between unstructured-mesh methods and regular-grid methods for a broad range of models and source configurations. Finally, for comparison, our direct simulation results are briefly contrasted with those predicted by a few phenomenological ground-motion prediction equations, and a workflow for accurately predicting ground motion is proposed.
NASA Astrophysics Data System (ADS)
Faizien Haza, Zainul
2018-03-01
Debris flows of lahar flows occurred in post mount eruption is a phenomenon in which large quantities of water, mud, and gravel flow down a stream at a high velocity. It is a second stage of danger after the first danger of lava flows, pyroclastic, and toxic gases. The debris flow of lahar flows has a high density and also high velocity; therefore it has potential detrimental consequences against homes, bridges, and infrastructures, as well as loss of life along its pathway. The collision event between lahar flows and pier of a bridge is observed. The condition is numerically simulated using commercial software of computational fluid dynamic (CFD). The work is also conducted in order to investigate drag force generated during collision. Rheological data of lahar is observed through laboratory test of lahar model as density and viscosity. These data were used as the input data of the CFD simulation. The numerical model is involving two types of fluid: mud and water, therefore multiphase model is adopted in the current CFD simulation. The problem formulation is referring to the constitutive equations of mass and momentum conservation for incompressible and viscous fluid, which in perspective of two dimension (2D). The simulation models describe the situation of the collision event between lahar flows and pier of a bridge. It provides sequential view images of lahar flow impaction and the propagation trend line of the drag force coefficient values. Lahar flow analysis used non-dimensional parameter of Reynolds number. According to the results of numerical simulations, the drag force coefficients are in range 1.23 to 1.48 those are generated by value of flow velocity in range 11.11 m/s to 16.67 m/s.
NASA Astrophysics Data System (ADS)
Gusman, A. R.; Satake, K.; Goto, T.; Takahashi, T.
2016-12-01
Estimating tsunami amplitude from tsunami sand deposit has been a challenge. The grain size distribution of tsunami sand deposit may have correlation with tsunami inundation process, and further with its source characteristics. In order to test this hypothesis, we need a tsunami sediment transport model that can accurately estimate grain size distribution of tsunami deposit. Here, we built and validate a tsunami sediment transport model that can simulate grain size distribution. Our numerical model has three layers which are suspended load layer, active bed layer, and parent bed layer. The two bed layers contain information about the grain size distribution. This numerical model can handle a wide range of grain sizes from 0.063 (4 ϕ) to 5.657 mm (-2.5 ϕ). We apply the numerical model to simulate the sedimentation process during the 2011 Tohoku earthquake in Numanohama, Iwate prefecture, Japan. The grain size distributions at 15 sample points along a 900 m transect from the beach are used to validate the tsunami sediment transport model. The tsunami deposits are dominated by coarse sand with diameter of 0.5 - 1 mm and their thickness are up to 25 cm. Our tsunami model can well reproduce the observed tsunami run-ups that are ranged from 16 to 34 m along the steep valley in Numanohama. The shapes of the simulated grain size distributions at many sample points located within 300 m from the shoreline are similar to the observations. The differences between observed and simulated peak of grain size distributions are less than 1 ϕ. Our result also shows that the simulated sand thickness distribution along the transect is consistent with the observation.
NASA Astrophysics Data System (ADS)
Seryakov, A. V.; Konkin, A. V.
2017-11-01
The results of the numerical simulation of pulsations in the Laval-liked vapour channel of short low-temperature range heat pipes (HPs) are presented. The numerical results confirmed the experimentally obtained increase of the frequency of pulsations in the vapour channel of short HPs with increasing overheat of the porous evaporator relative to the boiling point of the working fluid. The occurrence of pressure pulsations inside the vapour channel in a short HPs is a complex phenomenon associated with the boiling beginning in the capillary-porous evaporator at high heat loads, and appearance the excess amount of vapour above it, leading to the increase in pressure P to a value at which the boiling point TB of the working fluid becomes higher than the evaporator temperature Tev. Vapour clot spreads through the vapour channel and condense, and then a rarefaction wave return from condenser in the evaporator, the boiling in which is resumed and the next cycle of the pulsations is repeated. Numerical simulation was performed using finite element method implemented in the commercial program ANSYS Multiphisics 14.5 in the two-dimensional setting of axis symmetric moist vapour flow with third kind boundary conditions.
Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes
NASA Astrophysics Data System (ADS)
Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent
2015-12-01
Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.
Neutralizer Hollow Cathode Simulations and Comparisons with Ground Test Data
NASA Technical Reports Server (NTRS)
Mikellides, Ioannis G.; Snyder, John S.; Goebel, Dan M.; Katz, Ira; Herman, Daniel A.
2009-01-01
The fidelity of electric propulsion physics-based models depends largely on the validity of their predictions over a range of operating conditions and geometries. In general, increased complexity of the physics requires more extensive comparisons with laboratory data to identify the region(s) that lie outside the validity of the model assumptions and to quantify the uncertainties within its range of application. This paper presents numerical simulations of neutralizer hollow cathodes at various operating conditions and orifice sizes. The simulations were performed using a two-dimensional axisymmetric model that solves numerically a relatively extensive system of conservation laws for the partially ionized gas in these devices. A summary of the comparisons between simulation results and Langmuir probe measurements is provided. The model has also been employed to provide insight into recent ground test observations of the neutralizer cathode in NEXT. It is found that a likely cause of the observed keeper voltage drop is cathode orifice erosion. However, due to the small magnitude of this change, is approx. 0.5 V (less than 5% of the beginning-of-life value) over 10 khrs, and in light of the large uncertainties of the cathode material sputtering yield at low ion energies, other causes cannot be excluded. Preliminary simulations to understand transition to plume mode suggest that in the range of 3-5 sccm the existing 2-D model reproduces fairly well the rise of the keeper voltage in the NEXT neutralizer as observed in the laboratory. At lower flow rates the simulation produces oscillations in the keeper current and voltage that require prohibitively small time-steps to resolve with the existing algorithms.
Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media
Ellefsen, K.J.; Croize, D.; Mazzella, A.T.; McKenna, J.R.
2009-01-01
Green's functions for radar waves propagating in heterogeneous 2.5D media might be calculated in the frequency domain using a hybrid method. The model is defined in the Cartesian coordinate system, and its electromagnetic properties might vary in the x- and z-directions, but not in the y-direction. Wave propagation in the x- and z-directions is simulated with the finite-difference method, and wave propagation in the y-direction is simulated with an analytic function. The absorbing boundaries on the finite-difference grid are perfectly matched layers that have been modified to make them compatible with the hybrid method. The accuracy of these numerical Greens functions is assessed by comparing them with independently calculated Green's functions. For a homogeneous model, the magnitude errors range from -4.16% through 0.44%, and the phase errors range from -0.06% through 4.86%. For a layered model, the magnitude errors range from -2.60% through 2.06%, and the phase errors range from -0.49% through 2.73%. These numerical Green's functions might be used for forward modeling and full waveform inversion. ?? 2009 Society of Exploration Geophysicists. All rights reserved.
The Formation of a Milky Way-sized Disk Galaxy. I. A Comparison of Numerical Methods
NASA Astrophysics Data System (ADS)
Zhu, Qirong; Li, Yuexing
2016-11-01
The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellar evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.
THE FORMATION OF A MILKY WAY-SIZED DISK GALAXY. I. A COMPARISON OF NUMERICAL METHODS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Qirong; Li, Yuexing, E-mail: qxz125@psu.edu
The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellarmore » evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.« less
NASA Astrophysics Data System (ADS)
Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.
2015-09-01
The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.
NASA Astrophysics Data System (ADS)
Babich, Leonid; Bochkov, Evgenii
2017-11-01
The hypothetical mechanism of electric field amplification at contact of positive and negative streamers in a streamer corona up to magnitudes required for the generation of runaway electrons and secondary Bremsstrahlung in the x-ray range, observed in long spark discharges in the open atmosphere, is analyzed. The development of two streamers, moving towards each other in interelectrode gaps of the centimetre range, is numerically simulated at applied voltages from 73 to 250 kV. It is shown that the size of the domain with strong electric field, with intensity sufficient for the thermal electron runaway, is of 1-2 mm. The mean field intensity in this domain increases up to magnitudes of ≈250-280 kV cm-1. The maximum energy, to which electrons are capable of energizing in such field, is in the range of 20-70 keV. However, the electron energy is limited by an extremely small life-time of the strong field domain (less than 20 ps).
Experimental and Numerical Study of Nozzle Plume Impingement on Spacecraft Surfaces
NASA Astrophysics Data System (ADS)
Ketsdever, A. D.; Lilly, T. C.; Gimelshein, S. F.; Alexeenko, A. A.
2005-05-01
An experimental and numerical effort was undertaken to assess the effects of a cold gas (To=300K) nozzle plume impinging on a simulated spacecraft surface. The nozzle flow impingement is investigated experimentally using a nano-Newton resolution force balance and numerically using the Direct Simulation Monte Carlo (DSMC) numerical technique. The Reynolds number range investigated in this study is from 0.5 to approximately 900 using helium and nitrogen propellants. The thrust produced by the nozzle was first assessed on a force balance to provide a baseline case. Subsequently, an aluminum plate was attached to the same force balance at various angles from 0° (parallel to the plume flow) to 10°. For low Reynolds number helium flow, a 16.5% decrease in thrust was measured for the plate at 0° relative to the free plume expansion case. For low Reynolds number nitrogen flow, the difference was found to be 12%. The thrust degradation was found to decrease at higher Reynolds numbers and larger plate angles.
Interface-Resolving Simulation of Collision Efficiency of Cloud Droplets
NASA Astrophysics Data System (ADS)
Wang, Lian-Ping; Peng, Cheng; Rosa, Bodgan; Onishi, Ryo
2017-11-01
Small-scale air turbulence could enhance the geometric collision rate of cloud droplets while large-scale air turbulence could augment the diffusional growth of cloud droplets. Air turbulence could also enhance the collision efficiency of cloud droplets. Accurate simulation of collision efficiency, however, requires capture of the multi-scale droplet-turbulence and droplet-droplet interactions, which has only been partially achieved in the recent past using the hybrid direct numerical simulation (HDNS) approach. % where Stokes disturbance flow is assumed. The HDNS approach has two major drawbacks: (1) the short-range droplet-droplet interaction is not treated rigorously; (2) the finite-Reynolds number correction to the collision efficiency is not included. In this talk, using two independent numerical methods, we will develop an interface-resolved simulation approach in which the disturbance flows are directly resolved numerically, combined with a rigorous lubrication correction model for near-field droplet-droplet interaction. This multi-scale approach is first used to study the effect of finite flow Reynolds numbers on the droplet collision efficiency in still air. Our simulation results show a significant finite-Re effect on collision efficiency when the droplets are of similar sizes. Preliminary results on integrating this approach in a turbulent flow laden with droplets will also be presented. This work is partially supported by the National Science Foundation.
Making and Testing Hybrid Gravitational Waves from Colliding Black Holes and Neutron Stars
NASA Astrophysics Data System (ADS)
Garcia, Alyssa; Lovelace, Geoffrey; SXS Collaboration
2016-03-01
The Laser Interferometer Gravitational-wave Observatory (LIGO) is a detector that is currently working to observe gravitational waves (GW) from astronomical sources, such as colliding black holes and neutron stars, which are among LIGO's most promising sources. Observing as many waves as possible requires accurate predictions of what the waves look like, which are only possible with numerical simulations. In this poster, I will present results from new simulations of colliding black holes made using the Spectral Einstein Code (SpEC). In particular, I will present results for extending new and existing waveforms and using an open-source library. To construct a waveform that spans the frequency range where LIGO is most sensitive, we combine inexpensive, post-Newtonian approximate waveforms (valid far from merger) and numerical relativity waveforms (valid near the time of merger, when all approximations fail), making a hybrid GW. This work is one part of a new prototype framework for Numerical INJection Analysis with Matter (Matter NINJA). The complete Matter NINJA prototype will test GW search pipelines' abilities to find hybrid waveforms, from simulations containing matter (such as black hole-neutron star binaries), hidden in simulated detector noise.
Parameterizing the Spatial Markov Model From Breakthrough Curve Data Alone
NASA Astrophysics Data System (ADS)
Sherman, Thomas; Fakhari, Abbas; Miller, Savannah; Singha, Kamini; Bolster, Diogo
2017-12-01
The spatial Markov model (SMM) is an upscaled Lagrangian model that effectively captures anomalous transport across a diverse range of hydrologic systems. The distinct feature of the SMM relative to other random walk models is that successive steps are correlated. To date, with some notable exceptions, the model has primarily been applied to data from high-resolution numerical simulations and correlation effects have been measured from simulated particle trajectories. In real systems such knowledge is practically unattainable and the best one might hope for is breakthrough curves (BTCs) at successive downstream locations. We introduce a novel methodology to quantify velocity correlation from BTC data alone. By discretizing two measured BTCs into a set of arrival times and developing an inverse model, we estimate velocity correlation, thereby enabling parameterization of the SMM in studies where detailed Lagrangian velocity statistics are unavailable. The proposed methodology is applied to two synthetic numerical problems, where we measure all details and thus test the veracity of the approach by comparison of estimated parameters with known simulated values. Our results suggest that our estimated transition probabilities agree with simulated values and using the SMM with this estimated parameterization accurately predicts BTCs downstream. Our methodology naturally allows for estimates of uncertainty by calculating lower and upper bounds of velocity correlation, enabling prediction of a range of BTCs. The measured BTCs fall within the range of predicted BTCs. This novel method to parameterize the SMM from BTC data alone is quite parsimonious, thereby widening the SMM's practical applicability.
Flexoelectric effect in functionally graded materials: A numerical study
NASA Astrophysics Data System (ADS)
Kumar, Anuruddh; Kiran, Raj; Kumar, Rajeev; Chandra Jain, Satish; Vaish, Rahul
2018-04-01
The flexoelectric effect has been observed in a wide range of dielectric materials. However, the flexoelectric effect can only be induced using the strain gradient. Researchers have examined the flexoelectricity using non-uniform loading (cantilever type) or non-uniform shape in dielectric materials, which may be undesirable in many applications. In the present article, we demonstrate induced flexoelectricity in dielectric functionally graded materials (FGMs) due to non-uniform Youngs's modulus along the thickness. To examine flexoelectricity, Ba0.6Sr0.4TiO3 (BST) and polyvinylidene fluoride (PVDF) were used to numerically simulate the performance of FGMs. 2D simulation suggests that output voltage can drastically enhance for optimum grading index of FGMs.
NASA Technical Reports Server (NTRS)
Huang, Junji; Duan, Lian; Choudhari, Meelan M.
2017-01-01
The acoustic radiation from the turbulent boundary layer on the nozzle wall of a Mach 6 Ludwieg Tube is simulated using Direct Numerical Simulations (DNS), with the flow conditions falling within the operational range of the Mach 6 Hypersonic Ludwieg Tube, Braunschweig (HLB). The mean and turbulence statistics of the nozzle-wall boundary layer show good agreement with those predicted by Pate's correlation and Reynolds Averaged Navier-Stokes (RANS) computations. The rms pressure fluctuation P'(rms)/T(w) plateaus in the freestream core of the nozzle. The intensity of the freestream noise within the nozzle is approximately 20% higher than that radiated from a single at pate with a similar freestream Mach number, potentially because of the contributions to the acoustic radiation from multiple azimuthal segments of the nozzle wall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molenkamp, C.R.; Grossman, A.
1999-12-20
A network of small balloon-borne transponders which gather very high resolution wind and temperature data for use by modern numerical weather predication models has been proposed to improve the reliability of long-range weather forecasts. The global distribution of an array of such transponders is simulated using LLNL's atmospheric parcel transport model (GRANTOUR) with winds supplied by two different general circulation models. An initial study used winds from CCM3 with a horizontal resolution of about 3 degrees in latitude and longitude, and a second study used winds from NOGAPS with a 0.75 degree horizontal resolution. Results from both simulations show thatmore » reasonable global coverage can be attained by releasing balloons from an appropriate set of launch sites.« less
Chung, C K; Shih, T R; Chen, T C; Wu, B H
2008-10-01
A planar micromixer with rhombic microchannels and a converging-diverging element has been systematically investigated by the Taguchi method, CFD-ACE simulations and experiments. To reduce the footprint and extend the operation range of Reynolds number, Taguchi method was used to numerically study the performance of the micromixer in a L(9) orthogonal array. Mixing efficiency is prominently influenced by geometrical parameters and Reynolds number (Re). The four factors in a L(9) orthogonal array are number of rhombi, turning angle, width of the rhombic channel and width of the throat. The degree of sensitivity by Taguchi method can be ranked as: Number of rhombi > Width of the rhombic channel > Width of the throat > Turning angle of the rhombic channel. Increasing the number of rhombi, reducing the width of the rhombic channel and throat and lowering the turning angle resulted in better fluid mixing efficiency. The optimal design of the micromixer in simulations indicates over 90% mixing efficiency at both Re > or = 80 and Re < or = 0.1. Experimental results in the optimal simulations are consistent with the simulated one. This planar rhombic micromixer has simplified the complex fabrication process of the multi-layer or three-dimensional micromixers and improved the performance of a previous rhombic micromixer at a reduced footprint and lower Re.
Stochastic analysis of multiphase flow in porous media: II. Numerical simulations
NASA Astrophysics Data System (ADS)
Abin, A.; Kalurachchi, J. J.; Kemblowski, M. W.; Chang, C.-M.
1996-08-01
The first paper (Chang et al., 1995b) of this two-part series described the stochastic analysis using spectral/perturbation approach to analyze steady state two-phase (water and oil) flow in a, liquid-unsaturated, three fluid-phase porous medium. In this paper, the results between the numerical simulations and closed-form expressions obtained using the perturbation approach are compared. We present the solution to the one-dimensional, steady-state oil and water flow equations. The stochastic input processes are the spatially correlated logk where k is the intrinsic permeability and the soil retention parameter, α. These solutions are subsequently used in the numerical simulations to estimate the statistical properties of the key output processes. The comparison between the results of the perturbation analysis and numerical simulations showed a good agreement between the two methods over a wide range of logk variability with three different combinations of input stochastic processes of logk and soil parameter α. The results clearly demonstrated the importance of considering the spatial variability of key subsurface properties under a variety of physical scenarios. The variability of both capillary pressure and saturation is affected by the type of input stochastic process used to represent the spatial variability. The results also demonstrated the applicability of perturbation theory in predicting the system variability and defining effective fluid properties through the ergodic assumption.
Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaylock, Myra L.; Maniaci, David Charles; Resor, Brian R.
2015-04-01
New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally above 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale. However, more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence inmore » their performance. Reynolds number regimes for the sub-scale rotor are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations in an effort to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.« less
Midwest Structural Sciences Center 2009 Annual Report
2010-08-01
simulations. Numerical simulations were carried with a single edge notch beam using an ABAQUS user-element subroutine in conjunction with bilinear and...this effort Digital Image Correlation (DIC) has been applied to measure the coefficient of thermal expansion of the nickel-based super alloy...between 30 and 650°C, the thermal expansion coefficient of Hastelloy X was measured over this entire range and found to be in good agreement with
Scherr, Thomas; Knapp, Gerald L.; Guitreau, Amy; Park, Daniel Sang-Won; Tiersch, Terrence; Nandakumar, Krishnaswamy
2017-01-01
Sperm cell activation plays a critical role in a range of biological and engineering processes, from fertilization to cryopreservation protocol evaluation. Across a range of species, ionic and osmotic effects have been discovered that lead to activation. Sperm cells of zebrafish (Danio rerio) initiate motility in a hypoosmotic environment. In this study, we employ a microfluidic mixer for the purpose of rapidly diluting the extracellular medium to initiate the onset of cell motility. The use of a microchannel offers a rapid and reproducible mixing profile throughout the device. This greatly reduces variability from trial to trial relative to the current methods of analysis. Coupling these experiments with numerical simulations, we were able to investigate the dynamics of intracellular osmolality as each cell moves along its path through the micromixer. Our results suggest that intracellular osmolality, and hence intracellular ion concentration, only slightly decreases, contrary to the common thought that larger changes in these parameters are required for activation. Utilizing this framework, microfluidics for controlled extracellular environments and associated numerical modeling, has practical applicability in standardizing high-throughput aquatic sperm activation, and more fundamentally, investigations of the intracellular environment leading to motility. PMID:26026298
NASA Astrophysics Data System (ADS)
Khosronejad, Ali; Sotiropoulos, Fotis
2012-11-01
We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium from of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both URANS and LES models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33. Computational resources were provided by the University of Minnesota Supercomputing Institute.
NASA Astrophysics Data System (ADS)
Weijs, Joost H.; Jeanneret, Raphaël; Dreyfus, Rémi; Bartolo, Denis
2015-03-01
We present experiments and numerical simulations of a microfluidic echo process, in which a large number of droplets interact in a periodically driven viscous fluid [Jeanneret & Bartolo, Nature Comm. 5, 3474 (2013)]. Upon increasing the driving amplitude we demonstrate the collective reversibility loss of the droplet dynamics. In addition we show that this genuine dynamical phase transition is associated with a structural one: at the onset of irreversibility the droplet ensemble self-organises into a random hyperuniform state. Numerical simulations evidence that the purely reversible hydrodynamic interactions together with hard-core repulsion account for most of our experimental findings. Hyperuniformity is relevant for the production of large-band-gap materials, but are difficult to construct both numerically and experimentally. The hydrodynamic echo-process may provide a robust, fast, and simple way to produce hyper uniform structures over a wide range of packing fractions.
Scale Rules for Macrosegregation during Direct-Chill Casting of Aluminum Alloys
NASA Astrophysics Data System (ADS)
Eskin, Dmitry G.; Du, Qiang; Katgerman, Laurens
2008-05-01
An analysis of published experimental and numerical results shows that there is a scaling relationship between the magnitude and direction of centerline segregation in direct-chill (DC) cast billets from aluminum alloys and the process parameters, i.e., billet diameter and casting speed. It seems that there is always a range of these process parameters where the centerline segregation is positive, and there is a threshold when the centerline segregation vanishes. Numerical simulations of macrosegregation during DC casting of a binary Al-Cu alloy were performed at different ratios of casting speed and billet diameter. The macrosegregation model takes into account only two mechanisms of macrosegregation, i.e., thermosolutal convection and shrinkage-induced flow. The results of these computer simulations fit well to the dependence obtained using numerous reference data. The results are discussed in terms of the contribution of different mechanisms of macrosegregation and the shape of the billet sump.
Positive-Negative Birefringence in Multiferroic Layered Metasurfaces.
Khomeriki, R; Chotorlishvili, L; Tralle, I; Berakdar, J
2016-11-09
We uncover and identify the regime for a magnetically and ferroelectrically controllable negative refraction of a light-traversing multiferroic, oxide-based metastructure consisting of alternating nanoscopic ferroelectric (SrTiO 3 ) and ferromagnetic (Y 3 Fe 2 (FeO 4 ) 3 , YIG) layers. We perform analytical and numerical simulations based on discretized, coupled equations for the self-consistent Maxwell/ferroelectric/ferromagnetic dynamics and obtain a biquadratic relation for the refractive index. Various scenarios of ordinary and negative refraction in different frequency ranges are analyzed and quantified by simple analytical formula that are confirmed by full-fledge numerical simulations. Electromagnetic waves injected at the edges of the sample are propagated exactly numerically. We discovered that, for particular GHz frequencies, waves with different polarizations are characterized by different signs of the refractive index, giving rise to novel types of phenomena such as a positive-negative birefringence effect and magnetically controlled light trapping and accelerations.
Turbulence dissipation challenge: particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Roytershteyn, V.; Karimabadi, H.; Omelchenko, Y.; Germaschewski, K.
2015-12-01
We discuss application of three particle in cell (PIC) codes to the problems relevant to turbulence dissipation challenge. VPIC is a fully kinetic code extensively used to study a variety of diverse problems ranging from laboratory plasmas to astrophysics. PSC is a flexible fully kinetic code offering a variety of algorithms that can be advantageous to turbulence simulations, including high order particle shapes, dynamic load balancing, and ability to efficiently run on Graphics Processing Units (GPUs). Finally, HYPERS is a novel hybrid (kinetic ions+fluid electrons) code, which utilizes asynchronous time advance and a number of other advanced algorithms. We present examples drawn both from large-scale turbulence simulations and from the test problems outlined by the turbulence dissipation challenge. Special attention is paid to such issues as the small-scale intermittency of inertial range turbulence, mode content of the sub-proton range of scales, the formation of electron-scale current sheets and the role of magnetic reconnection, as well as numerical challenges of applying PIC codes to simulations of astrophysical turbulence.
Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortazavi, M.; Urzay, J., E-mail: jurzay@stanford.edu; Mani, A.
2015-06-15
This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers andmore » induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of spatial disturbances. The results highlight the importance of accounting for spatial effects in the numerical computations when optical analyses of plasma lenses are pursued in this range of operating conditions.« less
High Frequency Bottom Interaction in Range Dependent Biot Media
1999-09-30
acoust . Soc. Am. Stephen, R.A. Benchmark models for propagation and scattering in Biot media. Fall ASA, Norfolk, VA, October...1998, J. Acoust . Soc. Am., 104, 1808. X. Zhu and G. A. McMechan, “Numerical simulation of seismic responses of poroelastic reservoirs using Biot...reverberation from rough and heterogeneous seafloors. J. acoust . Soc. Am. Stephen, R.A., in press. Optimum and standard beam widths for numerical modeling of interface scattering problems. J. acoust . Soc. Am.
Dynamic stresses in a Francis model turbine at deep part load
NASA Astrophysics Data System (ADS)
Weber, Wilhelm; von Locquenghien, Florian; Conrad, Philipp; Koutnik, Jiri
2017-04-01
A comparison between numerically obtained dynamic stresses in a Francis model turbine at deep part load with experimental ones is presented. Due to the change in the electrical power mix to more content of new renewable energy sources, Francis turbines are forced to operate at deep part load in order to compensate stochastic nature of wind and solar power and to ensure grid stability. For the extension of the operating range towards deep part load improved understanding of the harsh flow conditions and their impact on material fatigue of hydraulic components is required in order to ensure long life time of the power unit. In this paper pressure loads on a model turbine runner from unsteady two-phase computational fluid dynamics simulation at deep part load are used for calculation of mechanical stresses by finite element analysis. Therewith, stress distribution over time is determined. Since only few runner rotations are simulated due to enormous numerical cost, more effort has to be spent to evaluation procedure in order to obtain objective results. By comparing the numerical results with measured strains accuracy of the whole simulation procedure is verified.
Three-dimensional numerical study of heat transfer enhancement in separated flows
NASA Astrophysics Data System (ADS)
Kumar, Saurav; Vengadesan, S.
2017-11-01
The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.
NASA Astrophysics Data System (ADS)
Li, N.; Mohamed, M. S.; Cai, J.; Lin, J.; Balint, D.; Dean, T. A.
2011-05-01
Formability of steel and aluminium alloys in hot stamping and cold die quenching processes is studied in this research. Viscoplastic-damage constitutive equations are developed and determined from experimental data for the prediction of viscoplastic flow and ductility of the materials. The determined unified constitutive equations are then implemented into the commercial Finite Element code Abaqus/Explicit via a user defined subroutine, VUMAT. An FE process simulation model and numerical procedures are established for the modeling of hot stamping processes for a spherical part with a central hole. Different failure modes (failure takes place either near the central hole or in the mid span of the part) are obtained. To validate the simulation results, a test programme is developed, a test die set has been designed and manufactured, and tests have been carried out for the materials with different forming rates. It has been found that very close agreements between experimental and numerical process simulation results are obtained for the ranges of temperatures and forming rates carried out.
Ion Dynamics Model for Collisionless Radio Frequency Sheaths
NASA Technical Reports Server (NTRS)
Bose, Deepak; Govindan, T.R.; Meyyappan, M.
2000-01-01
Full scale reactor model based on fluid equations is widely used to analyze high density plasma reactors. It is well known that the submillimeter scale sheath in front of a biased electrode supporting the wafer is difficult to resolve in numerical simulations, and the common practice is to use results for electric field from some form of analytical sheath model as boundary conditions for full scale reactor simulation. There are several sheath models in the literature ranging from Child's law to a recent unified sheath model [P. A. Miller and M. E. Riley, J. Appl. Phys. 82, 3689 (1997)l. In the present work, the cold ion fluid equations in the radio frequency sheath are solved numerically to show that the spatiotemporal variation of ion flux inside the sheath, commonly ignored in analytical models, is important in determining the electric field and ion energy at the electrode. Consequently, a semianalytical model that includes the spatiotemporal variation of ion flux is developed for use as boundary condition in reactor simulations. This semianalytical model is shown to yield results for sheath properties in close agreement with numerical solutions.
The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2001-01-01
A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to 0.71 U(sub j).
CFD Simulations of the Supersonic Inflatable Aerodynamic Decelerator (SIAD) Ballistic Range Tests
NASA Technical Reports Server (NTRS)
Brock, Joseph; Stern, Eric; Wilder, Michael
2017-01-01
A series of ballistic range tests were performed on a scaled model of the Supersonic Flight Demonstration Test (SFDT) intended to test the Supersonic Inflatable Aerodynamic Decelerator (SIAD) geometry. The purpose of these experiments were to provide aerodynamic coefficients of the vehicle to aid in mission and vehicle design. The experimental data spans the moderate Mach number range, $3.8-2.0$, with a total angle of attack ($alpha_T$) range, $10o-20o$. These conditions are intended to span the Mach-$alpha$ space for the majority of the SFDT experiment. In an effort to validate the predictive capabilities of Computational Fluid Dynamics (CFD) for free-flight aerodynamic behavior, numerical simulations of the ballistic range experiment are performed using the unstructured finite volume Navier-Stokes solver, US3D. Comparisons to raw vehicle attitude, and post-processed aerodynamic coefficients are made between simulated results and experimental data. The resulting comparisons for both raw model attitude and derived aerodynamic coefficients show good agreement with experimental results. Additionally, near body pressure field values for each trajectory simulated are investigated. Extracted surface and wake pressure data gives further insights into dynamic flow coupling leading to a potential mechanism for dynamic instability.
Visualization in mechanics: the dynamics of an unbalanced roller
NASA Astrophysics Data System (ADS)
Cumber, Peter S.
2017-04-01
It is well known that mechanical engineering students often find mechanics a difficult area to grasp. This article describes a system of equations describing the motion of a balanced and an unbalanced roller constrained by a pivot arm. A wide range of dynamics can be simulated with the model. The equations of motion are embedded in a graphical user interface for its numerical solution in MATLAB. This allows a student's focus to be on the influence of different parameters on the system dynamics. The simulation tool can be used as a dynamics demonstrator in a lecture or as an educational tool driven by the imagination of the student. By way of demonstration the simulation tool has been applied to a range of roller-pivot arm configurations. In addition, approximations to the equations of motion are explored and a second-order model is shown to be accurate for a limited range of parameters.
Switchgrass Genetics: Status, Future Directions, and Implications for Simulations
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a C4 polymorphic species with two ploidy levels, two major and numerous minor ecotypes adapted to different plant hardiness zones and ecoregions in its range. Switchgrasses are determinate, photoperiod sensitive, and require short days to induce flowering. Photo...
COMMUNITY-SCALE MODELING FOR AIR TOXICS AND HOMELAND SECURITY
The purpose of this task is to develop and evaluate numerical and physical modeling tools for simulating ambient concentrations of airborne substances in urban settings at spatial scales ranging from <1-10 km. Research under this task will support client needs in human exposure ...
DOT National Transportation Integrated Search
2000-03-26
This study compared the effect of alternative graphic or : numeric cockpit display formats on the tactical aspects of : vertical navigation (VNAV). Display formats included: : a) a moving map with altitude range arc, b) the same : format, supplemente...
Numerical simulation of base flow of a long range flight vehicle
NASA Astrophysics Data System (ADS)
Saha, S.; Rathod, S.; Chandra Murty, M. S. R.; Sinha, P. K.; Chakraborty, Debasis
2012-05-01
Numerical exploration of base flow of a long range flight vehicle is presented for different flight conditions. Three dimensional Navier-Stokes equations are solved along with k-ɛ turbulence model using commercial CFD software. Simulation captured all essential flow features including flow separation at base shoulder, shear layer formation at the jet boundary, recirculation at the base region etc. With the increase in altitude, the plume of the rocket exhaust is seen to bulge more and more and caused more intense free stream and rocket plume interaction leading to higher gas temperature in the base cavity. The flow field in the base cavity is investigated in more detail, which is found to be fairly uniform at different instant of time. Presence of the heat shield is seen to reduce the hot gas entry to the cavity region due to different recirculation pattern in the base region. Computed temperature history obtained from conjugate heat transfer analysis is found to compare very well with flight measured data.
NASA Astrophysics Data System (ADS)
Matsuoka, Seikichi; Idomura, Yasuhiro; Satake, Shinsuke
2017-10-01
The neoclassical toroidal viscosity (NTV) caused by a non-axisymmetric magnetic field perturbation is numerically studied using two global kinetic simulations with different numerical approaches. Both simulations reproduce similar collisionality ( νb*) dependencies over wide νb * ranges. It is demonstrated that resonant structures in the velocity space predicted by the conventional superbanana-plateau theory exist in the small banana width limit, while the resonances diminish when the banana width becomes large. It is also found that fine scale structures are generated in the velocity space as νb* decreases in the large banana width simulations, leading to the νb* -dependency of the NTV. From the analyses of the particle orbit, it is found that the finite k∥ mode structure along the bounce motion appears owing to the finite orbit width, and it suffers from bounce phase mixing, suggesting the generation of the fine scale structures by the similar mechanism as the parallel phase mixing of passing particles.
Multiscale Analysis of Rapidly Rotating Dynamo Simulations
NASA Astrophysics Data System (ADS)
Orvedahl, Ryan; Calkins, Michael; Featherstone, Nicholas
2017-11-01
The magnetic field of the planets and stars are generated by dynamo action in their electrically conducting fluid interiors. Numerical models of this process solve the fundamental equations of magnetohydrodynamics driven by convection in a rotating spherical shell. Rotation plays an important role in modifying the resulting convective flows and the self-generated magnetic field. We present results of simulating rapidly rotating systems that are unstable to dynamo action. We use the pseudo-spectral code
Multi-scale simulations of droplets in generic time-dependent flows
NASA Astrophysics Data System (ADS)
Milan, Felix; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico
2017-11-01
We study the deformation and dynamics of droplets in time-dependent flows using a diffuse interface model for two immiscible fluids. The numerical simulations are at first benchmarked against analytical results of steady droplet deformation, and further extended to the more interesting case of time-dependent flows. The results of these time-dependent numerical simulations are compared against analytical models available in the literature, which assume the droplet shape to be an ellipsoid at all times, with time-dependent major and minor axis. In particular we investigate the time-dependent deformation of a confined droplet in an oscillating Couette flow for the entire capillary range until droplet break-up. In this way these multi component simulations prove to be a useful tool to establish from ``first principles'' the dynamics of droplets in complex flows involving multiple scales. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069. & European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No 339032.
Effects of elevated line sources on turbulent mixing in channel flow
NASA Astrophysics Data System (ADS)
Nguyen, Quoc; Papavassiliou, Dimitrios
2016-11-01
Fluids mixing in turbulent flows has been studied extensively, due to the importance of this phenomena in nature and engineering. Convection effects along with motion of three-dimensional coherent structures in turbulent flow disperse a substance more efficiently than molecular diffusion does on its own. We present here, however, a study that explores the conditions under which turbulent mixing does not happen, when different substances are released into the flow field from different vertical locations. The study uses a method which combines Direct Numerical Simulation (DNS) with Lagrangian Scalar Tracking (LST) to simulate a turbulent channel flow and track the motion of passive scalars with different Schmidt numbers (Sc). The particles are released from several instantaneous line sources, ranging from the wall to the center region of the channel. The combined effects of mean velocity difference, molecular diffusion and near-wall coherent structures lead to the observation of different concentrations of particles downstream from the source. We then explore in details the conditions under which particles mixing would not happen. Results from numerical simulation at friction Reynolds number of 300 and 600 will be discussed and for Sc ranging from 0.1 to 2,400.
NASA Astrophysics Data System (ADS)
Radev, Dimitar; Lokshina, Izabella
2010-11-01
The paper examines self-similar (or fractal) properties of real communication network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Advanced fractal models of sequentional generators and fixed-length sequence generators, and efficient algorithms that are used to simulate self-similar behavior of IP network traffic data are developed and applied. Numerical examples are provided; and simulation results are obtained and analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, April M; Piburn, Jesse O; McManamay, Ryan A
2017-01-01
Monte Carlo simulation is a popular numerical experimentation technique used in a range of scientific fields to obtain the statistics of unknown random output variables. Despite its widespread applicability, it can be difficult to infer required input probability distributions when they are related to population counts unknown at desired spatial resolutions. To overcome this challenge, we propose a framework that uses a dasymetric model to infer the probability distributions needed for a specific class of Monte Carlo simulations which depend on population counts.
Testing a full‐range soil‐water retention function in modeling water potential and temperature
Andraski, Brian J.; Jacobson, Elizabeth A.
2000-01-01
Recent work has emphasized development of full‐range water‐retention functions that are applicable under both wet and dry soil conditions, but evaluation of such functions in numerical modeling has been limited. Here we show that simulations using the Rossi‐Nimmo (RN) full‐range function compared favorably with those using the common Brooks‐Corey function and that the RN function can improve prediction of water potentials in near‐surface soil, particularly under dry conditions. Simulations using the RN function also improved prediction of temperatures throughout the soil profile. Such improvements could be important for calculations of liquid and vapor flow in near‐surface soils and in deep unsaturated zones of arid and semiarid regions.
NASA Astrophysics Data System (ADS)
González, J. A.; Guzmán, F. S.
2018-03-01
We present a method for estimating the velocity of a wandering black hole and the equation of state for the gas around it based on a catalog of numerical simulations. The method uses machine-learning methods based on convolutional neural networks applied to the classification of images resulting from numerical simulations. Specifically we focus on the supersonic velocity regime and choose the direction of the black hole to be parallel to its spin. We build a catalog of 900 simulations by numerically solving Euler's equations onto the fixed space-time background of a black hole, for two parameters: the adiabatic index Γ with values in the range [1.1, 5 /3 ], and the asymptotic relative velocity of the black hole with respect to the surroundings v∞, with values within [0.2 ,0.8 ]c . For each simulation we produce a 2D image of the gas density once the process of accretion has approached a stationary regime. The results obtained show that the implemented convolutional neural networks are able to correctly classify the adiabatic index 87.78% of the time within an uncertainty of ±0.0284 , while the prediction of the velocity is correct 96.67% of the time within an uncertainty of ±0.03 c . We expect that this combination of a massive number of numerical simulations and machine-learning methods will help us analyze more complicated scenarios related to future high-resolution observations of black holes, like those from the Event Horizon Telescope.
Computational Models of Laryngeal Aerodynamics: Potentials and Numerical Costs.
Sadeghi, Hossein; Kniesburges, Stefan; Kaltenbacher, Manfred; Schützenberger, Anne; Döllinger, Michael
2018-02-07
Human phonation is based on the interaction between tracheal airflow and laryngeal dynamics. This fluid-structure interaction is based on the energy exchange between airflow and vocal folds. Major challenges in analyzing the phonatory process in-vivo are the small dimensions and the poor accessibility of the region of interest. For improved analysis of the phonatory process, numerical simulations of the airflow and the vocal fold dynamics have been suggested. Even though most of the models reproduced the phonatory process fairly well, development of comprehensive larynx models is still a subject of research. In the context of clinical application, physiological accuracy and computational model efficiency are of great interest. In this study, a simple numerical larynx model is introduced that incorporates the laryngeal fluid flow. It is based on a synthetic experimental model with silicone vocal folds. The degree of realism was successively increased in separate computational models and each model was simulated for 10 oscillation cycles. Results show that relevant features of the laryngeal flow field, such as glottal jet deflection, develop even when applying rather simple static models with oscillating flow rates. Including further phonatory components such as vocal fold motion, mucosal wave propagation, and ventricular folds, the simulations show phonatory key features like intraglottal flow separation and increased flow rate in presence of ventricular folds. The simulation time on 100 CPU cores ranged between 25 and 290 hours, currently restricting clinical application of these models. Nevertheless, results show high potential of numerical simulations for better understanding of phonatory process. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Escobar Gómez, J. D.; Torres-Verdín, C.
2018-03-01
Single-well pressure-diffusion simulators enable improved quantitative understanding of hydraulic-testing measurements in the presence of arbitrary spatial variations of rock properties. Simulators of this type implement robust numerical algorithms which are often computationally expensive, thereby making the solution of the forward modeling problem onerous and inefficient. We introduce a time-domain perturbation theory for anisotropic permeable media to efficiently and accurately approximate the transient pressure response of spatially complex aquifers. Although theoretically valid for any spatially dependent rock/fluid property, our single-phase flow study emphasizes arbitrary spatial variations of permeability and anisotropy, which constitute key objectives of hydraulic-testing operations. Contrary to time-honored techniques, the perturbation method invokes pressure-flow deconvolution to compute the background medium's permeability sensitivity function (PSF) with a single numerical simulation run. Subsequently, the first-order term of the perturbed solution is obtained by solving an integral equation that weighs the spatial variations of permeability with the spatial-dependent and time-dependent PSF. Finally, discrete convolution transforms the constant-flow approximation to arbitrary multirate conditions. Multidimensional numerical simulation studies for a wide range of single-well field conditions indicate that perturbed solutions can be computed in less than a few CPU seconds with relative errors in pressure of <5%, corresponding to perturbations in background permeability of up to two orders of magnitude. Our work confirms that the proposed joint perturbation-convolution (JPC) method is an efficient alternative to analytical and numerical solutions for accurate modeling of pressure-diffusion phenomena induced by Neumann or Dirichlet boundary conditions.
Chen, Xuanzhen; Peng, Yong; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping
2017-01-01
This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture.
NASA Astrophysics Data System (ADS)
Meziri, B.; Hamel, M.; Hireche, O.; Hamidou, K.
2016-09-01
There are various matching ways between turbocharger and engine, the variable nozzle turbine is the most significant method. The turbine design must be economic with high efficiency and large capacity over a wide range of operational conditions. These design intents are used in order to decrease thermal load and improve thermal efficiency of the engine. This paper presents an original design method of a variable nozzle vane for mixed flow turbines developed from previous experimental and numerical studies. The new device is evaluated with a numerical simulation over a wide range of rotational speeds, pressure ratios, and different vane angles. The compressible turbulent steady flow is solved using the ANSYS CFX software. The numerical results agree well with experimental data in the nozzleless configuration. In the variable nozzle case, the results show that the turbine performance characteristics are well accepted in different open positions and improved significantly in low speed regime and at low pressure ratio.
Linking laser scanning to snowpack modeling: Data processing and visualization
NASA Astrophysics Data System (ADS)
Teufelsbauer, H.
2009-07-01
SnowSim is a newly developed physical snowpack model that can use three-dimensional terrestrial laser scanning data to generate model domains. This greatly simplifies the input and numerical simulation of snow covers in complex terrains. The program can model two-dimensional cross sections of general slopes, with complicated snow distributions. The model predicts temperature distributions and snow settlements in this cross section. Thus, the model can be used for a wide range of problems in snow science and engineering, including numerical investigations of avalanche formation. The governing partial differential equations are solved by means of the finite element method, using triangular elements. All essential data for defining the boundary conditions and evaluating the simulation results are gathered by automatic weather and snow measurement sites. This work focuses on the treatment of these measurements and the simulation results, and presents a pre- and post-processing graphical user interface (GUI) programmed in Matlab.
NASA Astrophysics Data System (ADS)
Zhao, Yue; Zhang, Wei; Zhu, Dianwen; Li, Changqing
2016-03-01
We performed numerical simulations and phantom experiments with a conical mirror based fluorescence molecular tomography (FMT) imaging system to optimize its performance. With phantom experiments, we have compared three measurement modes in FMT: the whole surface measurement mode, the transmission mode, and the reflection mode. Our results indicated that the whole surface measurement mode performed the best. Then, we applied two different neutral density (ND) filters to improve the measurement's dynamic range. The benefits from ND filters are not as much as predicted. Finally, with numerical simulations, we have compared two laser excitation patterns: line and point. With the same excitation position number, we found that the line laser excitation had slightly better FMT reconstruction results than the point laser excitation. In the future, we will implement Monte Carlo ray tracing simulations to calculate multiple reflection photons, and create a look-up table accordingly for calibration.
NASA Astrophysics Data System (ADS)
Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A. R.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E. M.; Emig, J.; Flocke, N.; Fiuza, F.; Forest, C. B.; Foster, J.; Graziani, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Ryu, D.; Ryutov, D.; Weide, K.; White, T. G.; Reville, B.; Miniati, F.; Schekochihin, A. A.; Froula, D. H.; Gregori, G.; Lamb, D. Q.
2017-04-01
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.
Phase Space Approach to Dynamics of Interacting Fermions
NASA Astrophysics Data System (ADS)
Davidson, Shainen; Sels, Dries; Kasper, Valentin; Polkovnikov, Anatoli
Understanding the behavior of interacting fermions is of fundamental interest in many fields ranging from condensed matter to high energy physics. Developing numerically efficient and accurate simulation methods is an indispensable part of this. Already in equilibrium, fermions are notoriously hard to handle due to the sign problem. Out of equilibrium, an important outstanding problem is the efficient numerical simulation of the dynamics of these systems. In this work we develop a new semiclassical phase-space approach (a.k.a. the truncated Wigner approximation) for simulating the dynamics of interacting lattice fermions in arbitrary dimensions. We demonstrate the strength of the method by comparing the results to exact diagonalization (ED) on small 1D and 2D systems. We furthermore present results on Many-Body Localized (MBL) systems in 1D and 2D, and demonstrate how the method can be used to determine the MBL transition.
NASA Astrophysics Data System (ADS)
Davis, L. J.; Boggess, M.; Kodpuak, E.; Deutsch, M.
2012-11-01
We report on a model for the deposition of three dimensional, aggregated nanocrystalline silver films, and an efficient numerical simulation method developed for visualizing such structures. We compare our results to a model system comprising chemically deposited silver films with morphologies ranging from dilute, uniform distributions of nanoparticles to highly porous aggregated networks. Disordered silver films grown in solution on silica substrates are characterized using digital image analysis of high resolution scanning electron micrographs. While the latter technique provides little volume information, plane-projected (two dimensional) island structure and surface coverage may be reliably determined. Three parameters governing film growth are evaluated using these data and used as inputs for the deposition model, greatly reducing computing requirements while still providing direct access to the complete (bulk) structure of the films throughout the growth process. We also show how valuable three dimensional characteristics of the deposited materials can be extracted using the simulated structures.
Rafkin, Scot C R; Sta Maria, Magdalena R V; Michaels, Timothy I
2002-10-17
Mesoscale (<100 km) atmospheric phenomena are ubiquitous on Mars, as revealed by Mars Orbiter Camera images. Numerical models provide an important means of investigating martian atmospheric dynamics, for which data availability is limited. But the resolution of general circulation models, which are traditionally used for such research, is not sufficient to resolve mesoscale phenomena. To provide better understanding of these relatively small-scale phenomena, mesoscale models have recently been introduced. Here we simulate the mesoscale spiral dust cloud observed over the caldera of the volcano Arsia Mons by using the Mars Regional Atmospheric Modelling System. Our simulation uses a hierarchy of nested models with grid sizes ranging from 240 km to 3 km, and reveals that the dust cloud is an indicator of a greater but optically thin thermal circulation that reaches heights of up to 30 km, and transports dust horizontally over thousands of kilometres.
Relativistic N-body simulations with massive neutrinos
NASA Astrophysics Data System (ADS)
Adamek, Julian; Durrer, Ruth; Kunz, Martin
2017-11-01
Some of the dark matter in the Universe is made up of massive neutrinos. Their impact on the formation of large scale structure can be used to determine their absolute mass scale from cosmology, but to this end accurate numerical simulations have to be developed. Due to their relativistic nature, neutrinos pose additional challenges when one tries to include them in N-body simulations that are traditionally based on Newtonian physics. Here we present the first numerical study of massive neutrinos that uses a fully relativistic approach. Our N-body code, gevolution, is based on a weak-field formulation of general relativity that naturally provides a self-consistent framework for relativistic particle species. This allows us to model neutrinos from first principles, without invoking any ad-hoc recipes. Our simulation suite comprises some of the largest neutrino simulations performed to date. We study the effect of massive neutrinos on the nonlinear power spectra and the halo mass function, focusing on the interesting mass range between 0.06 eV and 0.3 eV and including a case for an inverted mass hierarchy.
Effect of Electrode Loss on the Dynamic Range of Linearized Directional Coupler Modulators
2006-02-01
Coupler Modulators George A. Brost , Richard Michalak, Paul Payson, and Kevin Magde Abstract—Numerical simulations were used to study the effect of...RANGE OF LINEARIZED DIRECTIONAL COUPLER MODULATORS In-House N/A 62204F LINKI SN 01 George A. Brost , Richard Michalak, Paul Payson and Kevin Magde AFRL...Fazio Nash BROST et al.: EFFECT OF ELECTRODE LOSS ON THE DYNAMIC RANGE OF LINEARIZED DCMs 515 Fig. 1. Frequency dependence of SFDR for the 1 2 DCM (s
The efficiency of ceramic-faced metal targets at high-velocity impact
NASA Astrophysics Data System (ADS)
Tolkachev, V. F.; Konyaev, A. A.; Pakhnutova, N. V.
2017-11-01
The paper represents experimental results and engineering evaluation concerning the efficiency of composite materials to be used as an additional protection during the high- velocity interaction of a tungsten rod with a target in the velocity range of 1...5 km/s. The main parameter that characterizes the high-velocity interaction of a projectile with a layered target is the penetration depth. Experimental data, numerical simulation and engineering evaluation by modified models are used to determine the penetration depth. Boron carbide, aluminum oxide, and aluminum nickelide are applied as a front surface of targets. Based on experimental data and numerical simulation, the main characteristics of ceramics are determined, which allows composite materials to be effectively used as additional elements of protection.
Xu, Tianhong; Cao, Juncheng; Montrosset, Ivo
2015-01-01
The dynamical regimes and performance optimization of quantum dot monolithic passively mode-locked lasers with extremely low repetition rate are investigated using the numerical method. A modified multisection delayed differential equation model is proposed to accomplish simulations of both two-section and three-section passively mode-locked lasers with long cavity. According to the numerical simulations, it is shown that fundamental and harmonic mode-locking regimes can be multistable over a wide current range. These dynamic regimes are studied, and the reasons for their existence are explained. In addition, we demonstrate that fundamental pulses with higher peak power can be achieved when the laser is designed to work in a region with smaller differential gain.
Numerical simulation of a battlefield Nd:YAG laser
NASA Astrophysics Data System (ADS)
Henriksson, Markus; Sjoqvist, Lars; Uhrwing, Thomas
2005-11-01
A numeric model has been developed to identify the critical components and parameters in improving the output beam quality of a flashlamp pumped Q-switched Nd:YAG laser with a folded Porro-prism resonator and polarization output coupling. The heating of the laser material and accompanying thermo-optical effects are calculated using the finite element partial differential equations package FEMLAB allowing arbitrary geometries and time distributions. The laser gain and the cavity are modeled with the physical optics simulation code GLAD including effects such as gain profile, thermal lensing and stress-induced birefringence, the Pockels cell rise-time and component aberrations. The model is intended to optimize the pumping process of an OPO providing radiation to be used for ranging, imaging or optical countermeasures.
Role of short-range correlation in facilitation of wave propagation in a long-range ladder chain
NASA Astrophysics Data System (ADS)
Farzadian, O.; Niry, M. D.
2018-09-01
We extend a new method for generating a random chain, which has a kind of short-range correlation induced by a repeated sequence while retaining long-range correlation. Three distinct methods are considered to study the localization-delocalization transition of mechanical waves in one-dimensional disordered media with simultaneous existence of short and long-range correlation. First, a transfer-matrix method was used to calculate numerically the localization length of a wave in a binary chain. We found that the existence of short-range correlation in a long-range correlated chain can increase the localization length at the resonance frequency Ωc. Then, we carried out an analytical study of the delocalization properties of the waves in correlated disordered media around Ωc. Finally, we apply a dynamical method based on the direct numerical simulation of the wave equation to study the propagation of waves in the correlated chain. Imposing short-range correlation on the long-range background will lead the propagation to super-diffusive transport. The results obtained with all three methods are in agreement with each other.
Turbulent statistics and intermittency enhancement in coflowing superfluid 4He
NASA Astrophysics Data System (ADS)
Biferale, L.; Khomenko, D.; L'vov, V.; Pomyalov, A.; Procaccia, I.; Sahoo, G.
2018-02-01
The large-scale turbulent statistics of mechanically driven superfluid 4He was shown experimentally to follow the classical counterpart. In this paper, we use direct numerical simulations to study the whole range of scales in a range of temperatures T ∈[1.3 ,2.1 ] K. The numerics employ self-consistent and nonlinearly coupled normal and superfluid components. The main results are that (i) the velocity fluctuations of normal and super components are well correlated in the inertial range of scales, but decorrelate at small scales. (ii) The energy transfer by mutual friction between components is particulary efficient in the temperature range between 1.8 and 2 K, leading to enhancement of small-scale intermittency for these temperatures. (iii) At low T and close to Tλ, the scaling properties of the energy spectra and structure functions of the two components are approaching those of classical hydrodynamic turbulence.
Direct modeling of coda wave interferometry: comparison of numerical and experimental approaches
NASA Astrophysics Data System (ADS)
Azzola, Jérôme; Masson, Frédéric; Schmittbuhl, Jean
2017-04-01
The sensitivity of coda waves to small changes of the propagation medium is the principle of the coda waves interferometry, a technique which has been found to have a large range of applications over the past years. It exploits the evolution of strongly scattered waves in a limited region of space, to estimate slight changes like the wave velocity of the medium but also the location of scatterer positions or the stress field. Because of the sensitivity of the method, it is of a great value for the monitoring of geothermal EGS reservoir in order to detect fine changes. The aim of this work is thus to monitor the impact of different scatterer distributions and of the loading condition evolution using coda wave interferometry in the laboratory and numerically by modelling the scatter wavefield. In the laboratory, we analyze the scattering of an acoustic wave through a perforated loaded plate of DURAL. Indeed, the localized damages introduced behave as a scatter source. Coda wave interferometry is performed computing correlations of waveforms under different loading conditions, for different scatter distributions. Numerically, we used SPECFEM2D (a 2D spectral element code, (Komatitsch and Vilotte (1998)) to perform 2D simulations of acoustic and elastic seismic wave propagation and enables a direct comparison with laboratory and field results. An unstructured mesh is thus used to simulate the propagation of a wavelet in a loaded plate, before and after introduction of localized damages. The linear elastic deformation of the plate is simulated using Code Aster. The coda wave interferometry is performed similarly to experimental measurements. The accuracy of the comparison of the numerically and laboratory obtained results is strongly depending on the capacity to adapt the laboratory and numerical simulation conditions. In laboratory, the capacity to illuminate the medium in a similar way to that used in the numerical simulation deeply conditions among others the comparison. In the simulation, the gesture of the mesh and its dispersion also influences the rightness of the comparison and interpretation. Moreover, the spectral elements distribution of the mesh and its relative refinement could also be considered as an interesting scatter source.
Numerical simulation of the geodynamo reaches Earth's core dynamical regime
NASA Astrophysics Data System (ADS)
Aubert, J.; Gastine, T.; Fournier, A.
2016-12-01
Numerical simulations of the geodynamo have been successful at reproducing a number of static (field morphology) and kinematic (secular variation patterns, core surface flows and westward drift) features of Earth's magnetic field, making them a tool of choice for the analysis and retrieval of geophysical information on Earth's core. However, classical numerical models have been run in a parameter regime far from that of the real system, prompting the question of whether we do get "the right answers for the wrong reasons", i.e. whether the agreement between models and nature simply occurs by chance and without physical relevance in the dynamics. In this presentation, we show that classical models succeed in describing the geodynamo because their large-scale spatial structure is essentially invariant as one progresses along a well-chosen path in parameter space to Earth's core conditions. This path is constrained by the need to enforce the relevant force balance (MAC or Magneto-Archimedes-Coriolis) and preserve the ratio of the convective overturn and magnetic diffusion times. Numerical simulations performed along this path are shown to be spatially invariant at scales larger than that where the magnetic energy is ohmically dissipated. This property enables the definition of large-eddy simulations that show good agreement with direct numerical simulations in the range where both are feasible, and that can be computed at unprecedented values of the control parameters, such as an Ekman number E=10-8. Combining direct and large-eddy simulations, large-scale invariance is observed over half the logarithmic distance in parameter space between classical models and Earth. The conditions reached at this mid-point of the path are furthermore shown to be representative of the rapidly-rotating, asymptotic dynamical regime in which Earth's core resides, with a MAC force balance undisturbed by viscosity or inertia, the enforcement of a Taylor state and strong-field dynamo action. We conclude that numerical modelling has advanced to a stage where it is possible to use models correctly representing the statics, kinematics and now the dynamics of the geodynamo. This opens the way to a better analysis of the geomagnetic field in the time and space domains.
Design, qualification, manufacturing and integration of IXV Ablative Thermal Protection System
NASA Astrophysics Data System (ADS)
Cioeta, Mario; Di Vita, Gandolfo; Signorelli Maria, Teresa; Bianco, Gianluca; Cutroni, Maurizio; Damiani, Francesco; Ferretti, Viviana; Rotondo, Adriano
2016-07-01
In the present paper, all the activities carried out by Avio S.p.A in order to define, qualify, manufacture and integrate the IXV Ablative TPS will be presented. In particular the extensive numerical simulation in both small and full scale testing activities will be overviewed. Wide-ranging testing activity has been carried out in order to verify, confirm and correlate the numerical models used for TPS sizing. Tests ranged from classical thermo-mechanical characterization traction specimens to tests in plasma wind tunnels on dedicated prototypes. Finally manufacturing and integration activities will be described emphasizing technological aspects solved in order to meet the stringent requirements in terms of shape accuracy and integration tolerances.
Kappa, Jan; Schmitt, Klemens M; Rahm, Marco
2017-08-21
Efficient, high speed spatial modulators with predictable performance are a key element in any coded aperture terahertz imaging system. For spectroscopy, the modulators must also provide a broad modulation frequency range. In this study, we numerically analyze the electromagnetic behavior of a dynamically reconfigurable spatial terahertz wave modulator based on a micromirror grating in Littrow configuration. We show that such a modulator can modulate terahertz radiation over a wide frequency range from 1.7 THz to beyond 3 THz at a modulation depth of more than 0.6. As a specific example, we numerically simulated coded aperture imaging of an object with binary transmissive properties and successfully reconstructed the image.
Modeling of long range frequency sweeping for energetic particle modes
NASA Astrophysics Data System (ADS)
Nyqvist, R. M.; Breizman, B. N.
2013-04-01
Long range frequency sweeping events are simulated numerically within a one-dimensional, electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength, and it includes three distinct collisions operators: Drag (dynamical friction on the background electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented solution constitutes a step towards predictive modeling of frequency sweeping events in more realistic geometries.
Flame Kernel Interactions in a Turbulent Environment
2001-08-01
contours ranging from 1 ( fully burned) at the centre to 0 (unburned) on the outer contour. In each case the flames can clearly be seen to propagate outwards...called SENGA. The code solves a fully compressible reacting flow in three dimensions. High accuracy numerical schemes have been employed which are...Finally, results are presented and discussed for simulations with different initial non-dimensional turbulence intensities ranging from 5 to 23. 1
A Test of Superradiance in an FEL Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyce, R
We describe the design of an FEL Amplifier Test Experiment (FATE)1 to demonstrate the superradiant short bunch regime of a Free Electron Laser in the 1-3 {micro}m wavelength range starting from noise. The relevance to the LCLS X-ray FEL [1] proposal is discussed and numerical simulations are shown. It is numerically demonstrated for the first time with the 2-D code GINGER, that clean-up of noise in the superradiant regime occurs even at low power levels.
Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics
NASA Technical Reports Server (NTRS)
Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.
NASA Astrophysics Data System (ADS)
Jones, J. D.; Ma, Xia; Clements, B. E.; Gibson, L. L.; Gustavsen, R. L.
2017-06-01
Gas-gun driven plate-impact techniques were used to study the shock to detonation transition in LX-14 (95.5 weight % HMX, 4.5 weight % estane binder). The transition was recorded using embedded electromagnetic particle velocity gauges. Initial shock pressures, P, ranged from 2.5 to 8 GPa and the resulting distances to detonation, xD, were in the range 1.9 to 14 mm. Numerical simulations using the SURF reactive burn scheme coupled with a linear US -up / Mie-Grueneisen equation of state for the reactant and a JWL equation of state for the products, match the experimental data well. Comparison of simulation with experiment as well as the ``best fit'' parameter set for the simulations is presented.
Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.; ...
2016-11-08
Here, direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positionedmore » in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.
Here, direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positionedmore » in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.« less
NASA Astrophysics Data System (ADS)
Li, Le; Wang, Li-yong
2018-04-01
The application of accurate constitutive relationship in finite element simulation would significantly contribute to accurate simulation results, which plays a critical role in process design and optimization. In this investigation, the true stress-strain data of 3Cr20Ni10W2 heat-resisting alloy were obtained from a series of isothermal compression tests conducted in a wide temperature range of 1203-1403 K and strain rate range of 0.01-10 s-1 on a Gleeble 1500 testing machine. Then the constitutive relationship was modeled by an optimally constructed and well-trained back-propagation artificial neural network (BP-ANN). The evaluation of the BP-ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of 3Cr20Ni10W2 heat-resisting alloy. Meanwhile, a comparison between improved Arrhenius-type constitutive equation and BP-ANN model shows that the latter has higher accuracy. Consequently, the developed BP-ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions and construct the three-dimensional continuous response relationship for temperature, strain rate, strain, and stress. Finally, the three-dimensional continuous response relationship was applied to the numerical simulation of isothermal compression tests. The results show that such constitutive relationship can significantly promote the accuracy improvement of numerical simulation for hot forming processes.
Linearized lattice Boltzmann method for micro- and nanoscale flow and heat transfer.
Shi, Yong; Yap, Ying Wan; Sader, John E
2015-07-01
Ability to characterize the heat transfer in flowing gases is important for a wide range of applications involving micro- and nanoscale devices. Gas flows away from the continuum limit can be captured using the Boltzmann equation, whose analytical solution poses a formidable challenge. An efficient and accurate numerical simulation of the Boltzmann equation is thus highly desirable. In this article, the linearized Boltzmann Bhatnagar-Gross-Krook equation is used to develop a hierarchy of thermal lattice Boltzmann (LB) models based on half-space Gaussian-Hermite (GH) quadrature ranging from low to high algebraic precision, using double distribution functions. Simplified versions of the LB models in the continuum limit are also derived, and are shown to be consistent with existing thermal LB models for noncontinuum heat transfer reported in the literature. Accuracy of the proposed LB hierarchy is assessed by simulating thermal Couette flows for a wide range of Knudsen numbers. Effects of the underlying quadrature schemes (half-space GH vs full-space GH) and continuum-limit simplifications on computational accuracy are also elaborated. The numerical findings in this article provide direct evidence of improved computational capability of the proposed LB models for modeling noncontinuum flows and heat transfer at small length scales.
NASA Astrophysics Data System (ADS)
Kumari, Komal; Donzis, Diego
2017-11-01
Highly resolved computational simulations on massively parallel machines are critical in understanding the physics of a vast number of complex phenomena in nature governed by partial differential equations. Simulations at extreme levels of parallelism present many challenges with communication between processing elements (PEs) being a major bottleneck. In order to fully exploit the computational power of exascale machines one needs to devise numerical schemes that relax global synchronizations across PEs. This asynchronous computations, however, have a degrading effect on the accuracy of standard numerical schemes.We have developed asynchrony-tolerant (AT) schemes that maintain order of accuracy despite relaxed communications. We show, analytically and numerically, that these schemes retain their numerical properties with multi-step higher order temporal Runge-Kutta schemes. We also show that for a range of optimized parameters,the computation time and error for AT schemes is less than their synchronous counterpart. Stability of the AT schemes which depends upon history and random nature of delays, are also discussed. Support from NSF is gratefully acknowledged.
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Peck, Jeffrey A.
1992-01-01
Over the last three decades, multiwall structures have been analyzed extensively, primarily through experiment, as a means of increasing the protection afforded to spacecraft structure. However, as structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under impact loading conditions. This paper presents the results of a preliminary numerical/experimental investigation of the hypervelocity impact response of multiwall structures. The results of experimental high-speed impact tests are compared against the predictions of the HULL hydrodynamic computer code. It is shown that the hypervelocity impact response characteristics of a specific system cannot be accurately predicted from a limited number of HULL code impact simulations. However, if a wide range of impact loadings conditions are considered, then the ballistic limit curve of the system based on the entire series of numerical simulations can be used as a relatively accurate indication of actual system response.
NASA Astrophysics Data System (ADS)
Zhang, Yachun; He, Xiang; Chen, Jianping; Chen, Hongqing; Chen, Li; Zhang, Hongchao; Ni, Xiaowu; Lu, Jian; Shen, Zhonghua
2018-03-01
The relationships between return losses of the cylindrical inlet and plasma discharge parameters are investigated experimentally and numerically. The return losses are measured using a high dynamic range measurement system and simulated by COMSOL Multiphysics when the frequency band of the microwaves is in the range 1-4 GHz. The profiles of the plasma density are estimated using Epstein and Bessel functions. Results show that the incident microwaves can be absorbed by plasma efficaciously. The maximal return loss can reach -13.84 dB when the microwave frequency is 2.3 GHz. The increase of applied power implies augmentation of the return loss, which behaves conversely for gas pressure. The experimental and numerical results display reasonable agreement on return loss, suggesting that the use of plasma is effective in the radar cross section reduction of aircraft inlets.
Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry
NASA Astrophysics Data System (ADS)
Yue, L.; Hsu, T. J.
2017-12-01
Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.
Numerical simulation of marine currents in the Bunaken Strait, North Sulawesi, Indonesia
NASA Astrophysics Data System (ADS)
Rompas, P. T. D.; Manongko, J. D. I.
2016-04-01
This study intended for the generation of hydroelectric power at suitable area of the strait in order to provide electric current to a close environment. The project uses a three-dimensional model of taking flow into account the variation of hydrostatic pressure in the liquid vertical layers. We brought back to a two-dimensional calculation using the shallow water equations. The objectives of the study are getting simultaneous obtaining the velocities of currents by the component of velocities and distributions of the kinetic energy from the numerical results. The Bunaken strait is 5280 m width for an average depth of 130 m. Numerical calculation is simulated using horizontal meshes of 60 side meters. The numerical solutions obtained by using a time step of one second. It found that there was no great difference between 2D and 3D numerical simulations because the effect of flow velocity in the vertical direction is very small. The numerical results have shown that the average current velocities when low and high tide currents are 1.46 m/s and 0.85 m/s respectively. The kinetic energy ranged from 0.01 to 2.54 kW/m2 when low and high tide in the Bunaken strait area at discharge of 1 Sv, whereas at discharge 2 Sv, 0.11-17.40 kW/m2 and 0.11-2.77 kW/m2 (when low and high tide currents). These results can used in the design of turbines for power generation marine currents in the Bunaken strait at depths below 60 meters.
NASA Astrophysics Data System (ADS)
Sihi, D.; Davidson, E. A.; Savage, K. E.; Liang, D.
2017-12-01
Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are affected by complex interactions of temperature, moisture, and substrate supply, that is further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked conceptually to explain unusual observations like consumption of atmospheric N2O (reduction) in upland soils that co-occur with CH4 uptake (oxidation). To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis-Menten (DAMM) model, to apply it consistently for all three greenhouse gases (GHGs) with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2) as substrate or inhibitor for each process. Chamber-based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model. The area under a soil chamber is partitioned according to a bivariate lognormal probability distribution function of soil carbon (C) and moisture across a range of microsites, that leads to a distribution of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2 that determines the distribution of microsites that produce or consume CH4 and N2O, such that a range of microsite concentrations occur both above and below ambient values for both GHGs. At lower mean soil moisture, some microsites of methanogenesis still occur, but most become sites of methanotrophy. Likewise, concentrations of below ambient N2O (hotspots of N2O reduction) occur in microsites with high C and high moisture (further accentuated at high temperature). Net consumption and production of CH4 and N2O is simulated within a chamber based on the sum of the distribution of soil microsites. Results demonstrate that it is numerically feasible for microsites of N2O reduction and CH4 oxidation to co-occur under a single chamber. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging but affords confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.
Local lubrication model for spherical particles within incompressible Navier-Stokes flows.
Lambert, B; Weynans, L; Bergmann, M
2018-03-01
The lubrication forces are short-range hydrodynamic interactions essential to describe suspension of the particles. Usually, they are underestimated in direct numerical simulations of particle-laden flows. In this paper, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in an incompressible Navier-Stokes flow. Corrections are made locally on the surface of the interacting particles without any assumption on the global particle shape. The numerical model has been validated against experimental data and performs as well as existing numerical models that are limited to spherical particles.
HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES.
Felipe, T; Braun, D C; Crouch, A D; Birch, A C
2016-10-01
Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.
HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES
Felipe, T.; Braun, D. C.; Crouch, A. D.; Birch, A. C.
2018-01-01
Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure. PMID:29670301
HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felipe, T.; Braun, D. C.; Crouch, A. D.
Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effectmore » of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.« less
Alloy Shrinkage factors for the investment casting of 17-4PH stainless steel parts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S; Porter, Wallace D
2008-01-01
In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine. For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data measured property data is made. It was found that most material properties weremore » accurately predicted over the most of the temperature range of the process. Several assumptions were made in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted at heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution at heating and cooling. Thus, one generic simulation were performed with thermal expansion obtained at heating and another one with thermal expansion obtained at cooling. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly over-predicted.« less
Alloy Shrinkage Factors for the Investment Casting of 17-4PH Stainless Steel Parts
NASA Astrophysics Data System (ADS)
Sabau, Adrian S.; Porter, Wallace D.
2008-04-01
In this study, alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. The dimensions of the die tooling, wax pattern, and casting were measured using a coordinate measurement machine (CMM). For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data and measured property data is made. It was found that most material properties were accurately predicted over most of the temperature range of the process. Several assumptions were made, in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed a different evolution on heating and cooling. Thus, one generic simulation was performed with thermal expansion obtained on heating, and another one was performed with thermal expansion obtained on cooling. The alloy dimensions were obtained from the numerical simulation results of the solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly overpredicted.
WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method
NASA Astrophysics Data System (ADS)
Crevoisier, David; Voltz, Marc
2013-04-01
To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute fluxes - where Hydrus simulations may fail to converge - no numerical problem appears, and ii) accuracy of simulations even for loose spatial domain discretisations, which can only be obtained by Hydrus with fine discretisations.
Copper and Lead Corrosion in a Full Scale Home Plumbning system Simulation
The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from elevated lead and copper levels to blue water and copper pinhole leaks. If left untreate...
NASA Astrophysics Data System (ADS)
Ward, M. J.; Walløe, S. J.
2004-06-01
Numerical models are used extensively in the aerospace sector to identify appropriate manufacturing parameters, and to minimize the risk associated with new product introduction and manufacturing change. This usage is equally prevalent in original equipment manufacturers (OEMs), and in their supply chains. The wide range of manufacturing processes and production environments involved, coupled with the varying degrees of technology maturity associated with numerical models of different processes leads to a situation of significant complexity from the OEM perspective. In addition, the intended use of simulation technology can vary considerably between applications, from simple geometric assessment of die shape at one extreme, to full process design or development at the other. Consequently there is an increasing trend towards multi-scale modelling, i.e. the use of several different model types, with differing attributes in terms of accuracy and speed to support a range of different new product introduction decisions. This makes the allocation of appropriate levels of activity to the research and implementation of new capabilities a difficult problem. This paper uses a number of industrial cases studies to illustrate a framework for making such allocation decisions such that value to the OEM is maximized, and investigates how such a framework is likely to shift over the next few years based on technological developments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatsonis, Nikolaos A.; Spirkin, Anton
2009-06-01
The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error andmore » sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.« less
NASA Astrophysics Data System (ADS)
Guo, Donglin; Wang, Aihui; Li, Duo; Hua, Wei
2018-03-01
Change in the near-surface soil freeze/thaw cycle is critical for assessments of hydrological activity, ecosystems, and climate change. Previous studies investigated the near-surface soil freeze/thaw cycle change mostly based on in situ observations and satellite monitoring. Here numerical simulation method is tested to estimate the long-term change in the near-surface soil freeze/thaw cycle in response to recent climate warming for its application to predictions. Four simulations are performed at 0.5° × 0.5° resolution from 1979 to 2009 using the Community Land Model version 4.5, each driven by one of the four atmospheric forcing data sets (i.e., one default Climate Research Unit-National Centers for Environmental Prediction [CRUNCEP] and three newly developed Modern Era Retrospective-Analysis for Research and Applications, Climate Forecast System Reanalysis, and European Centre for Medium-Range Weather Forecasts Reanalysis Interim). The observations from 299 weather stations in both Russia and China are employed to validate the simulated results. The results show that all simulations reasonably reproduce the observed variations in the ground temperature, the freeze start and end dates, and the freeze duration (the correlation coefficients range from 0.47 to 0.99, and the Nash-Sutcliffe efficiencies range from 0.19 to 0.98). Part of the simulations also exactly simulate the trends of the ground temperature, the freeze start and end dates, and the freeze duration. Of the four simulations, the results from the simulation using the CRUNCEP data set show the best overall agreement with the in situ observations, indicating that the CRUNCEP data set could be preferentially considered as the basic atmospheric forcing data set for future prediction. The simulated area-averaged annual freeze duration shortened by 8.03 days on average from 1979 to 2009, with an uncertainty (one standard deviation) of 0.67 days caused by the different atmospheric forcing data sets. These results address the performance of numerical model in simulating the long-term changes in the near-surface soil freeze/thaw cycle and the role of different atmospheric forcing data sets in the simulation, which are useful for the prediction of future freeze/thaw dynamics.
Gao, Kai; Chung, Eric T.; Gibson, Richard L.; ...
2015-06-05
The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less
Scale-similar clustering of heavy particles in the inertial range of turbulence
NASA Astrophysics Data System (ADS)
Ariki, Taketo; Yoshida, Kyo; Matsuda, Keigo; Yoshimatsu, Katsunori
2018-03-01
Heavy particle clustering in turbulence is discussed from both phenomenological and analytical points of view, where the -4 /3 power law of the pair-correlation function is obtained in the inertial range. A closure theory explains the power law in terms of the balance between turbulence mixing and preferential-concentration mechanism. The obtained -4 /3 power law is supported by a direct numerical simulation of particle-laden turbulence.
Interacting scales and energy transfer in isotropic turbulence
NASA Technical Reports Server (NTRS)
Zhou, YE
1993-01-01
The dependence of the energy transfer process on the disparity of the interacting scales is investigated in the inertial and far-dissipation ranges of isotropic turbulence. The strategy for generating the simulated flow fields and the choice of a disparity parameter to characterize the scaling of the interactions is discussed. The inertial range is found to be dominated by relatively local interactions, in agreement with the Kolmogorov assumption. The far-dissipation is found to be dominated by relatively non-local interactions, supporting the classical notion that the far-dissipation range is slaved to the Kolmogorov scales. The measured energy transfer is compared with the classical models of Heisenberg, Obukhov, and the more detailed analysis of Tennekes and Lumley. The energy transfer statistics measured in the numerically simulated flows are found to be nearly self-similar for wave numbers in the inertial range. Using the self-similar form measured within the limited scale range of the simulation, an 'ideal' energy transfer function and the corresponding energy flux rate for an inertial range of infinite extent are constructed. From this flux rate, the Kolmogorov constant is calculated to be 1.5, in excellent agreement with experiments.
Davis, Kyle W.; Putnam, Larry D.
2013-01-01
The Ogallala aquifer is an important water resource for the Rosebud Sioux Tribe in Gregory and Tripp Counties in south-central South Dakota and is used for irrigation, public supply, domestic, and stock water supplies. To better understand groundwater flow in the Ogallala aquifer, conceptual and numerical models of groundwater flow were developed for the aquifer. A conceptual model of the Ogallala aquifer was used to analyze groundwater flow and develop a numerical model to simulate groundwater flow in the aquifer. The MODFLOW–NWT model was used to simulate transient groundwater conditions for water years 1985–2009. The model was calibrated using statistical parameter estimation techniques. Potential future scenarios were simulated using the input parameters from the calibrated model for simulations of potential future drought and future increased pumping. Transient simulations were completed with the numerical model. A 200-year transient initialization period was used to establish starting conditions for the subsequent 25-year simulation of water years 1985–2009. The 25-year simulation was discretized into three seasonal stress periods per year and used to simulate transient conditions. A single-layer model was used to simulate flow and mass balance in the Ogallala aquifer with a grid of 133 rows and 282 columns and a uniform spacing of 500 meters (1,640 feet). Regional inflow and outflow were simulated along the western and southern boundaries using specified-head cells. All other boundaries were simulated using no-flow cells. Recharge to the aquifer occurs through precipitation on the outcrop area. Model calibration was accomplished using the Parameter Estimation (PEST) program that adjusted individual model input parameters and assessed the difference between estimated and model-simulated values of hydraulic head and base flow. This program was designed to estimate parameter values that are statistically the most likely set of values to result in the smallest differences between simulated and observed values, within a given set of constraints. The potentiometric surface of the aquifer calculated during the 200-year initialization period established initial conditions for the transient simulation. Water levels for 38 observation wells were used to calibrate the 25-year simulation. Simulated hydraulic heads for the transient simulation were within plus or minus 20 feet of observed values for 95 percent of observation wells, and the mean absolute difference was 5.1 feet. Calibrated hydraulic conductivity ranged from 0.9 to 227 feet per day (ft/d). The annual recharge rates for the transient simulation (water years 1985–2009) ranged from 0.60 to 6.96 inches, with a mean of 3.68 inches for the Ogallala aquifer. This represents a mean recharge rate of 280.5 ft3/s for the model area. Discharge from the aquifer occurs through evapotranspiration, discharge to streams through river leakage and flow from springs and seeps, and well withdrawals. Water is withdrawn from wells for irrigation, public supply, domestic, and stock uses. Simulated mean discharge rates for water years 1985–2009 were about 185 cubic feet per second (ft3/s) for evapotranspiration, 66.7 ft3/s for discharge to streams, and 5.48 ft3/s for well withdrawals. Simulated annual evapotranspiration rates ranged from about 128 to 254 ft3/s, and outflow to streams ranged from 52.2 to 79.9 ft3/s. A sensitivity analysis was used to examine the response of the calibrated model to changes in model parameters for horizontal hydraulic conductivity, recharge, evapotranspiration, and spring and riverbed conductance. The model was most sensitive to recharge and maximum potential evapotranspiration and least sensitive to riverbed and spring conductances. Two potential future scenarios were simulated: a potential drought scenario and a potential increased pumping scenario. To simulate a potential drought scenario, a synthetic drought record was created, the mean of which was equal to 60 percent of the mean estimated recharge rate for the 25-year simulation period. Compared with the results of the calibrated model (non-drought simulation), the simulation representing a potential drought scenario resulted in water-level decreases of as much as 30 feet for the Ogallala aquifer. To simulate the effects of potential future increases in pumping, well withdrawal rates were increased by 50 percent from those estimated for the 25-year simulation period. Compared with the results of the calibrated model, the simulation representing an increased pumping scenario resulted in water-level decreases of as much as 26 feet for the Ogallala aquifer. Groundwater budgets for the potential future scenario simulations were compared with the transient simulation representing water years 1985–2009. The simulation representing a potential drought scenario resulted in lower aquifer recharge from precipitation and decreased discharge from streams, springs, seeps, and evapotranspiration. The simulation representing a potential increased pumping scenario was similar to results from the transient simulation, with a slight increase in well withdrawals and a slight decrease in discharge from river leakage and evapotranspiration. This numerical model is suitable as a tool that could be used to better understand the flow system of the Ogallala aquifer, to approximate hydraulic heads in the aquifer, and to estimate discharge to rivers, springs, and seeps in the study area. The model also is useful to help assess the response of the aquifer to additional stresses, including potential drought conditions and increased well withdrawals.
T-COMP—A suite of programs for extracting transmissivity from MODFLOW models
Halford, Keith J.
2016-02-12
Simulated transmissivities are constrained poorly by assigning permissible ranges of hydraulic conductivities from aquifer-test results to hydrogeologic units in groundwater-flow models. These wide ranges are derived from interpretations of many aquifer tests that are categorized by hydrogeologic unit. Uncertainty is added where contributing thicknesses differ between field estimates and numerical models. Wide ranges of hydraulic conductivities and discordant thicknesses result in simulated transmissivities that frequently are much greater than aquifer-test results. Multiple orders of magnitude differences frequently occur between simulated and observed transmissivities where observed transmissivities are less than 1,000 feet squared per day.Transmissivity observations from individual aquifer tests can constrain model calibration as head and flow observations do. This approach is superior to diluting aquifer-test results into generalized ranges of hydraulic conductivities. Observed and simulated transmissivities can be compared directly with T-COMP, a suite of three FORTRAN programs. Transmissivity observations require that simulated hydraulic conductivities and thicknesses in the volume investigated by an aquifer test be extracted and integrated into a simulated transmissivity. Transmissivities of MODFLOW model cells are sampled within the volume affected by an aquifer test as defined by a well-specific, radial-flow model of each aquifer test. Sampled transmissivities of model cells are averaged within a layer and summed across layers. Accuracy of the approach was tested with hypothetical, multiple-aquifer models where specified transmissivities ranged between 250 and 20,000 feet squared per day. More than 90 percent of simulated transmissivities were within a factor of 2 of specified transmissivities.
Hydrodynamic suppression of phase separation in active suspensions.
Matas-Navarro, Ricard; Golestanian, Ramin; Liverpool, Tanniemola B; Fielding, Suzanne M
2014-09-01
We simulate with hydrodynamics a suspension of active disks squirming through a Newtonian fluid. We explore numerically the full range of squirmer area fractions from dilute to close packed and show that "motility induced phase separation," which was recently proposed to arise generically in active matter, and which has been seen in simulations of active Brownian disks, is strongly suppressed by hydrodynamic interactions. We give an argument for why this should be the case and support it with counterpart simulations of active Brownian disks in a parameter regime that provides a closer counterpart to hydrodynamic suspensions than in previous studies.
The electrical conductivity of in vivo human uterine fibroids.
DeLonzor, Russ; Spero, Richard K; Williams, Joseph J
2011-01-01
The purpose of this study was to determine the value of electrical conductivity that can be used for numerical modelling in vivo radiofrequency ablation (RFA) treatments of human uterine fibroids. No experimental electrical conductivity data have previously been reported for human uterine fibroids. In this study electrical data (voltage) from selected in vivo clinical procedures on human uterine fibroids were used to numerically model the treatments. Measured versus calculated power dissipation profiles were compared to determine uterine fibroid electrical conductivity. Numerical simulations were conducted utilising a wide range of values for tissue thermal conductivity, heat capacity and blood perfusion coefficient. The simulations demonstrated that power dissipation was insensitive to the exact values of these parameters for the simulated geometry, treatment duration, and power level. Consequently, it was possible to determine tissue electrical conductivity without precise knowledge of the values for these parameters. Results of this study showed that an electrical conductivity for uterine fibroids of 0.305 S/m at 37°C and a temperature coefficient of 0.2%/°C can be used for modelling Radio Frequency Ablation of human uterine fibroids at a frequency of 460 kHz for temperatures from 37°C to 100°C.
Abarajith, H S; Dhir, V K; Warrier, G; Son, G
2004-11-01
Numerical simulation and experimental validation of the growth and departure of multiple merging bubbles and associated heat transfer on a horizontal heated surface during pool boiling under variable gravity conditions have been performed. A finite difference scheme is used to solve the equations governing mass, momentum, and energy in the vapor liquid phases. The vapor-liquid interface is captured by a level set method that is modified to include the influence of phase change at the liquid-vapor interface. Water is used as test liquid. The effects of reduced gravity condition and orientation of the bubbles on the bubble diameter, interfacial structure, bubble merger time, and departure time, as well as local heat fluxes, are studied. In the experiments, multiple vapor bubbles are produced on artificial cavities in the 2-10 micrometer diameter range, microfabricated on the polished silicon wafer with given spacing. The wafer was heated electrically from the back with miniature strain gage type heating elements in order to control the nucleation superheat. The experiments conducted in normal Earth gravity and in the low gravity environment of KC-135 aircraft are used to validate the numerical simulations.
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa A.; Abdol-Hamid, Khaled S.; Massey, Steven J.
2009-01-01
In this chapter numerical simulations of the flow around F-16XL are performed as a contribution to the Cranked Arrow Wing Aerodynamic Project International (CAWAPI) using the PAB3D CFD code. Two turbulence models are used in the calculations: a standard k-epsilon model, and the Shih-Zhu-Lumley (SZL) algebraic stress model. Seven flight conditions are simulated for the flow around the F-16XL where the free stream Mach number varies from 0.242 to 0.97. The range of angles of attack varies from 0 deg to 20 deg. Computational results, surface static pressure, boundary layer velocity profiles, and skin friction are presented and compared with flight data. Numerical results are generally in good agreement with flight data, considering that only one grid resolution is utilized for the different flight conditions simulated in this study. The Algebraic Stress Model (ASM) results are closer to the flight data than the k-epsilon model results. The ASM predicted a stronger primary vortex, however, the origin of the vortex and footprint is approximately the same as in the k-epsilon predictions.
Time and length scales within a fire and implications for numerical simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
TIESZEN,SHELDON R.
2000-02-02
A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principlesmore » solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.« less
Validity of flowmeter data in heterogeneous alluvial aquifers
NASA Astrophysics Data System (ADS)
Bianchi, Marco
2017-04-01
Numerical simulations are performed to evaluate the impact of medium-scale sedimentary architecture and small-scale heterogeneity on the validity of the borehole flowmeter test, a widely used method for measuring hydraulic conductivity (K) at the scale required for detailed groundwater flow and solute transport simulations. Reference data from synthetic K fields representing the range of structures and small-scale heterogeneity typically observed in alluvial systems are compared with estimated values from numerical simulations of flowmeter tests. Systematic errors inherent in the flowmeter K estimates are significant when the reference K field structure deviates from the hypothetical perfectly stratified conceptual model at the basis of the interpretation method of flowmeter tests. Because of these errors, the true variability of the K field is underestimated and the distributions of the reference K data and log-transformed spatial increments are also misconstrued. The presented numerical analysis shows that the validity of flowmeter based K data depends on measureable parameters defining the architecture of the hydrofacies, the conductivity contrasts between the hydrofacies and the sub-facies-scale K variability. A preliminary geological characterization is therefore essential for evaluating the optimal approach for accurate K field characterization.
Numerical simulation of the compressible Orszag-Tang vortex. Interim report, June 1988-February 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, R.B.; Picone, J.M.
Results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. Initial conditions consist of a nonrandom, periodic field in which the magnetic and velocity fields contain X-points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure-field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average flow Mach number of the flow. In the numerical simulations, this initial Mach number is varied from 0.2 to 0.6. These values correspond to average plasma beta valuesmore » ranging from 30.0 to 3.3, respectively. Compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as mass density and nonsolenoidal flow field. These effects include (1) retardation of growth of correlation between the magnetic field and the velocity field, (2) emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible-flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.« less
NASA Technical Reports Server (NTRS)
Chawla, Kalpana
1993-01-01
Attached as appendices to this report are documents describing work performed on the simulation of a landing powered-lift delta wing, the tracking of flow features using overset grids, and the simulation of flaps on the Wright Patterson Lab's fighter-lift-and-control (FLAC) wing. Numerical simulation of a powered-lift landing includes the computation of flow about a delta wing at four fixed heights as well as a simulated landing, in which the delta wing descends toward the ground. Comparison of computed and experimental lift coefficients indicates that the simulations capture the qualitative trends in lift-loss encountered by thrust-vectoring aircraft operating in ground effect. Power spectra of temporal variations of pressure indicate computed vortex shedding frequencies close to the jet exit are in the experimentally observed frequency range; the power spectra of pressure also provide insights into the mechanisms of lift oscillations. Also, a method for using overset grids to track dynamic flow features is described and the method is validated by tracking a moving shock and vortices shed behind a circular cylinder. Finally, Chimera gridding strategies were used to develop pressure coefficient contours for the FLAC wing for a Mach no. of 0.18 and Reynolds no. of 2.5 million.
Study on launch scheme of space-net capturing system.
Gao, Qingyu; Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang
2017-01-01
With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme.
Parametric spatiotemporal oscillation in reaction-diffusion systems.
Ghosh, Shyamolina; Ray, Deb Shankar
2016-03-01
We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.
NASA Astrophysics Data System (ADS)
Salin, M. B.; Dosaev, A. S.; Konkov, A. I.; Salin, B. M.
2014-07-01
Numerical simulation methods are described for the spectral characteristics of an acoustic signal scattered by multiscale surface waves. The methods include the algorithms for calculating the scattered field by the Kirchhoff method and with the use of an integral equation, as well as the algorithms of surface waves generation with allowance for nonlinear hydrodynamic effects. The paper focuses on studying the spectrum of Bragg scattering caused by surface waves whose frequency exceeds the fundamental low-frequency component of the surface waves by several octaves. The spectrum broadening of the backscattered signal is estimated. The possibility of extending the range of applicability of the computing method developed under small perturbation conditions to cases characterized by a Rayleigh parameter of ≥1 is estimated.
Study on launch scheme of space-net capturing system
Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang
2017-01-01
With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme. PMID:28877187
Parametric spatiotemporal oscillation in reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Ghosh, Shyamolina; Ray, Deb Shankar
2016-03-01
We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.
Numerical simulation of narrow bipolar electromagnetic pulses generated by thunderstorm discharges
NASA Astrophysics Data System (ADS)
Bochkov, E. I.; Babich, L. P.; Kutsyk, I. M.
2013-07-01
Using the concept of avalanche relativistic runaway electrons (REs), we perform numerical simulations of compact intracloud discharge (CID) as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-VHF range, called narrow bipolar pulses (NBPs). For several values of the field overvoltage and altitude at which the discharge develops, the numbers of seed electrons initiating the avalanche are evaluated, with which the calculated EMP characteristics are consistent with the measured NBP parameters. We note shortcomings in the hypothesis assuming participation of cosmic ray air showers in avalanche initiation. The discharge capable of generating NBPs produces REs in numbers close to those in the source of terrestrial γ-ray flashes (TGFs), which can be an argument in favor of a unified NBP and TGF source.
NASA Astrophysics Data System (ADS)
Le Tiec, Alexandre; Buonanno, Alessandra; Mroué, Abdul H.; Pfeiffer, Harald P.; Hemberger, Daniel A.; Lovelace, Geoffrey; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Bela; Taylor, Nicholas W.; Teukolsky, Saul A.
2013-12-01
We study the general relativistic periastron advance in spinning black hole binaries on quasicircular orbits, with spins aligned or antialigned with the orbital angular momentum, using numerical-relativity simulations, the post-Newtonian approximation, and black hole perturbation theory. By imposing a symmetry by exchange of the bodies’ labels, we devise an improved version of the perturbative result and use it as the leading term of a new type of expansion in powers of the symmetric mass ratio. This allows us to measure, for the first time, the gravitational self-force effect on the periastron advance of a nonspinning particle orbiting a Kerr black hole of mass M and spin S=-0.5M2, down to separations of order 9M. Comparing the predictions of our improved perturbative expansion with the exact results from numerical simulations of equal-mass and equal-spin binaries, we find a remarkable agreement over a wide range of spins and orbital separations.
NASA Astrophysics Data System (ADS)
Zhang, Qi; Bodony, Daniel
2014-11-01
Commercial jet aircraft generate undesirable noise from several sources, with the engines being the most dominant sources at take-off and major contributors at all other stages of flight. Acoustic liners, which are perforated sheets of metal or composite mounted within the engine, have been an effective means of reducing internal engine noise from the fan, compressor, combustor, and turbine but their performance suffers when subjected to a turbulent grazing flow or to high-amplitude incident sound due to poorly understood interactions between the liner orifices and the exterior flow. Through the use of direct numerical simulations, the flow-orifice interaction is examined numerically, quantified, and modeled over a range of conditions that includes current and envisioned uses of acoustic liners and with detail that exceeds experimental capabilities. A new time-domain model of acoustic liners is developed that extends currently-available reduced-order models to more complex flow conditions but is still efficient for use at the design stage.
2015-03-13
forcing at the right wall consisted of a free surface displacement of 0.48 m varying as sin(t) with a period of 12.4 hours. The bottom was flat with...be formed by flow over the local bathymetry. Simulations using the Shen Non- hydrostatic Model for Coastal Oceans (SNMCO) replicated the observed... pressure gage, and temperature and salinity vs. depth and range measurements. Numerical simulations which replicate aspects of the of the two
NASA Astrophysics Data System (ADS)
Bhardwaj, Manish; McCaughan, Leon; Olkhovets, Anatoli; Korotky, Steven K.
2006-12-01
We formulate an analytic framework for the restoration performance of path-based restoration schemes in planar mesh networks. We analyze various switch architectures and signaling schemes and model their total restoration interval. We also evaluate the network global expectation value of the time to restore a demand as a function of network parameters. We analyze a wide range of nominally capacity-optimal planar mesh networks and find our analytic model to be in good agreement with numerical simulation data.
Intermittent Reconnection and Plasmoids in UV Bursts in the Low Solar Atmosphere
NASA Astrophysics Data System (ADS)
Rouppe van der Voort, L.; De Pontieu, B.; Scharmer, G. B.; de la Cruz Rodríguez, J.; Martínez-Sykora, J.; Nóbrega-Siverio, D.; Guo, L. J.; Jafarzadeh, S.; Pereira, T. M. D.; Hansteen, V. H.; Carlsson, M.; Vissers, G.
2017-12-01
Magnetic reconnection is thought to drive a wide variety of dynamic phenomena in the solar atmosphere. Yet, the detailed physical mechanisms driving reconnection are difficult to discern in the remote sensing observations that are used to study the solar atmosphere. In this Letter, we exploit the high-resolution instruments Interface Region Imaging Spectrograph and the new CHROMIS Fabry-Pérot instrument at the Swedish 1-m Solar Telescope (SST) to identify the intermittency of magnetic reconnection and its association with the formation of plasmoids in so-called UV bursts in the low solar atmosphere. The Si IV 1403 Å UV burst spectra from the transition region show evidence of highly broadened line profiles with often non-Gaussian and triangular shapes, in addition to signatures of bidirectional flows. Such profiles had previously been linked, in idealized numerical simulations, to magnetic reconnection driven by the plasmoid instability. Simultaneous CHROMIS images in the chromospheric Ca II K 3934 Å line now provide compelling evidence for the presence of plasmoids by revealing highly dynamic and rapidly moving brightenings that are smaller than 0.″2 and that evolve on timescales of the order of seconds. Our interpretation of the observations is supported by detailed comparisons with synthetic observables from advanced numerical simulations of magnetic reconnection and associated plasmoids in the chromosphere. Our results highlight how subarcsecond imaging spectroscopy sensitive to a wide range of temperatures combined with advanced numerical simulations that are realistic enough to compare with observations can directly reveal the small-scale physical processes that drive the wide range of phenomena in the solar atmosphere.
NASA Astrophysics Data System (ADS)
Munir, Adnan; Zhao, Ming; Wu, Helen; Lu, Lin; Ning, Dezhi
2018-05-01
The vortex-induced vibration (VIV) of an elastically mounted rotating circular cylinder vibrating in a uniform flow is studied numerically. The cylinder is allowed to vibrate only in the cross-flow direction. In the numerical simulations, the Reynolds number, the mass ratio, and the damping ratio are kept constants to 500, 11.5, and 0, respectively. Simulations are performed for rotation rates of α = 0, 0.5, and 1 and a range of reduced velocities from 1 to 13, which covers the entire lock-in regime. It is found that the lock-in regime of a rotating cylinder is wider than that of a non-rotating cylinder for α = 0, 0.5, and 1. The vortex shedding pattern of a rotating cylinder is found to be similar to that of a non-rotating cylinder. Next, simulations are performed for three typical reduced velocities inside the lock-in regime and a range of higher rotation rates from α = 1.5 to 3.5 to investigate the effect of the rotation rate on the suppression of VIV. It is found that the VIV is suppressed when the rotation rate exceeds a critical value, which is dependent on the reduced velocity. For a constant reduced velocity, the amplitude of the vibration is found to increase with increasing rotation rate until the latter reaches its critical value for VIV suppression, beyond which the vibration amplitude becomes extremely small. If the rotation rate is greater than its critical value, vortex shedding ceases and hairpin vortices are observed due to the rotation of the cylinder.
Chen, Xuanzhen; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping
2017-01-01
This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture. PMID:28759617
A Monte Carlo (N,V,T) study of the stability of charged interfaces: A simulation on a hypersphere
NASA Astrophysics Data System (ADS)
Delville, A.; Pellenq, R. J.-M.; Caillol, J. M.
1997-05-01
We have used an exact expression of the Coulombic interactions derived on a hypersphere of an Euclidian space of dimension four to determine the swelling behavior of two infinite charged plates neutralized by exchangeable counterions. Monte Carlo simulations in the (N,V,T) ensemble allows for a derivation of short-ranged hard core repulsions and long-ranged electrostatic forces, which are the two components of the interionic forces in the context of the primitive model. Comparison with numerical results obtained by a classical Euclidian method illustrates the efficiency of the hyperspherical approach, especially at strong coupling between the charged particles, i.e., for divalent counterions and small plate separation.
Analysis Model and Numerical Simulation of Thermoelectric Response of CFRP Composites
NASA Astrophysics Data System (ADS)
Lin, Yueguo
2018-05-01
An electric current generates Joule heating, and under steady state conditions, a sample exhibits a balance between the strength dissipated by the Joule effect and the heat exchange with the environment by radiation and convection. In the present paper, theoretical model, numerical FEM and experimental methods have been used to analyze the radiation and free convection properties in CFRP composite samples heated by an electric current. The materials employed in these samples have applications in many aeronautic devices. This study addresses two types of composite materials, UD [0]8 and QI [45/90/-45/0]S, which were prepared for thermoelectric experiments. A DC electric current (ranging from 1A to 8A) was injected through the specimen ends to find the coupling effect between the electric current and temperature. An FE model and simplified thermoelectric analysis model are presented in detail to represent the thermoelectric data. These are compared with the experimental results. All of the test equipments used to obtain the experimental data and the numerical simulations are characterized, and we find that the numerical simulations correspond well with the experiments. The temperature of the surface of the specimen is almost proportional to the electric current. The simplified analysis model was used to calculate the balance time of the temperature, which is consistent throughout all of the experimental investigations.
NASA Astrophysics Data System (ADS)
Matsangouras, Ioannis T.; Nastos, Panagiotis T.; Pytharoulis, Ioannis
2014-05-01
Recent research revealed that NW Peloponnese, Greece is an area that favours pre-frontal tornadic incidence. This study presents the results of the synoptic analysis of the meteorological conditions during a tornado event over NW Peloponnese on March 25, 2009. Further, the role of topography in tornado genesis is examined. The tornado was formed approximately at 10:30 UTC, south-west of Vardas village, crossed the Nea Manolada and faded away at Lappas village, causing several damage. The length of its track was approximately 9-10 km and this tornado was characterized as F2 (Fujita scale) or T4-T5 in TORRO intensity scale. Synoptic analysis was based on ECMWF datasets, as well as on daily composite mean and anomaly of the geopotential heights at the middle and lower troposphere from NCEP/NCAR reanalysis. In addition, numerous datasets derived from weather observations and remote sensing were used in order to interpret better the examined extreme event. Finally, a numerical simulation was performed using the non-hydrostatic Weather Research and Forecasting model (WRF), initialized with ECMWF gridded analyses, with telescoping nested grids that allow the representation of atmospheric circulations ranging from the synoptic scale down to the meso-scale. In the numerical simulations the topography of the inner grid was modified by: a) 0% (actual topography) and b) -100% (without topography).
Behaviour of fractional loop delay zero crossing digital phase locked loop (FR-ZCDPLL)
NASA Astrophysics Data System (ADS)
Nasir, Qassim
2018-01-01
This article analyses the performance of the first-order zero crossing digital phase locked loops (FR-ZCDPLL) when fractional loop delay is added to loop. The non-linear dynamics of the loop is presented, analysed and examined through bifurcation behaviour. Numerical simulation of the loop is conducted to proof the mathematical analysis of the loop operation. The results of the loop simulation show that the proposed FR-ZCDPLL has enhanced the performance compared to the conventional zero crossing DPLL in terms of wider lock range, captured range and stable operation region. In addition, extensive experimental simulation was conducted to find the optimum loop parameters for different loop environmental conditions. The addition of the fractional loop delay network in the conventional loop also reduces the phase jitter and its variance especially when the signal-to-noise ratio is low.
Numerical analysis of steady and transient natural convection in an enclosed cavity
NASA Astrophysics Data System (ADS)
Mehedi, Tanveer Hassan; Tahzeeb, Rahat Bin; Islam, A. K. M. Sadrul
2017-06-01
The paper presents the numerical simulation of natural convection heat transfer of air inside an enclosed cavity which can be helpful to find out the critical width of insulation in air insulated walls seen in residential buildings and industrial furnaces. Natural convection between two walls having different temperatures have been simulated using ANSYS FLUENT 12.0 in both steady and transient conditions. To simulate different heat transfer and fluid flow conditions, Rayleigh number ranging from 103 to 105 has been maintained (i.e. Laminar flow.) In case of steady state analysis, the CFD predictions were in very good agreement with the reviewed literature. Transient simulation process has been performed by using User Defined Functions, where the temperature of the hot wall varies with time linearly. To obtain and compare the heat transfer properties, Nusselt number has been calculated at the hot wall at different conditions. The buoyancy driven flow characteristics have been investigated by observing the flow pattern in a graphical manner. The characteristics of the system at different temperature differences between the wall has been observed and documented.
PAB3D Simulations for the CAWAPI F-16XL
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa; Abdol-Hamid, K. S.; Massey, Steven J.
2007-01-01
Numerical simulations of the flow around F-16XL are performed as a contribution to the Cranked Arrow Wing Aerodynamic Project International (CAWAPI) using the PAB3D CFD code. Two turbulence models are used in the calculations: a standard k-! model, and the Shih-Zhu-Lumley (SZL) algebraic stress model. Seven flight conditions are simulated for the flow around the F-16XL where the free stream Mach number varies from 0.242 to 0.97. The range of angles of attack varies from 0deg to 20deg. Computational results, surface static pressure, boundary layer velocity profiles, and skin friction are presented and compared with flight data. Numerical results are generally in good agreement with flight data, considering that only one grid resolution is utilized for the different flight conditions simulated in this study. The ASM results are closer to the flight data than the k-! model results. The ASM predicted a stronger primary vortex, however, the origin of the vortex and footprint is approximately the same as in the k-! predictions.
Numerical simulation of calcium sulfate (CaSO4) fouling in the plate heat exchanger
NASA Astrophysics Data System (ADS)
Xu, Zhiming; Zhao, Yu; Han, Zhimin; Wang, Jingtao
2018-07-01
Plate heat exchanger is a widely used apparatus in the industrial production processes. Through a numerical simulation method, this paper calculates the deposition rate of CaSO4 fouling on heat transfer surfaces of the plate heat exchanger under saturation in the bulk. The effects of CaSO4 concentration in the range 0.7 kg/m3 to 1.5 kg/m3, inlet flow velocity under turbulent flow, and the fluid's inlet temperature from 288 K to 328 K on the deposition rate, removal mass rate and fouling resistance are investigated. The simulation results are compared with the experimental results showing similar trend. The simulation results show that the concentration and the flow velocity affect significantly the fouling characteristics in the plate heat exchanger. The deposition mass rate, removal mass rate, and asymptotic value of fouling resistance all increase with the increase in CaSO4 concentration and the inlet temperature of the hot fluid, while the asymptotic value of fouling resistance decreases with the increasing of inlet flow velocity. The influence of the inlet temperature of cold fluid may be negligible.
Modelling runoff on ceramic tile roofs using the kinematic wave equations
NASA Astrophysics Data System (ADS)
Silveira, Alexandre; Abrantes, João; de Lima, João; Lira, Lincoln
2016-04-01
Rainwater harvesting is a water saving alternative strategy that presents many advantages and can provide solutions to address major water resources problems, such as fresh water scarcity, urban stream degradation and flooding. In recent years, these problems have become global challenges, due to climatic change, population growth and increasing urbanisation. Generally, roofs are the first to come into contact with rainwater; thus, they are the best candidates for rainwater harvesting. In this context, the correct evaluation of roof runoff quantity and quality is essential to effectively design rainwater harvesting systems. Despite this, many studies usually focus on the qualitative aspects in detriment of the quantitative aspects. Laboratory studies using rainfall simulators have been widely used to investigate rainfall-runoff processes. These studies enabled a detailed exploration and systematic replication of a large range of hydrologic conditions, such as rainfall spatial and temporal characteristics, providing for a fast way to obtain precise and consistent data that can be used to calibrate and validate numerical models. This study aims to evaluate the performance of a kinematic wave based numerical model in simulating runoff on sloping roofs, by comparing the numerical results with the ones obtained from laboratory rainfall simulations on a real-scale ceramic tile roof (Lusa tiles). For all studied slopes, simulated discharge hydrographs had a good adjust to observed ones. Coefficient of determination and Nash-Sutcliffe efficiency values were close to 1.0. Particularly, peak discharges, times to peak and peak durations were very well simulated.
Automated Knowledge Discovery from Simulators
NASA Technical Reports Server (NTRS)
Burl, Michael C.; DeCoste, D.; Enke, B. L.; Mazzoni, D.; Merline, W. J.; Scharenbroich, L.
2006-01-01
In this paper, we explore one aspect of knowledge discovery from simulators, the landscape characterization problem, where the aim is to identify regions in the input/ parameter/model space that lead to a particular output behavior. Large-scale numerical simulators are in widespread use by scientists and engineers across a range of government agencies, academia, and industry; in many cases, simulators provide the only means to examine processes that are infeasible or impossible to study otherwise. However, the cost of simulation studies can be quite high, both in terms of the time and computational resources required to conduct the trials and the manpower needed to sift through the resulting output. Thus, there is strong motivation to develop automated methods that enable more efficient knowledge extraction.
A mass storage system for supercomputers based on Unix
NASA Technical Reports Server (NTRS)
Richards, J.; Kummell, T.; Zarlengo, D. G.
1988-01-01
The authors present the design, implementation, and utilization of a large mass storage subsystem (MSS) for the numerical aerodynamics simulation. The MSS supports a large networked, multivendor Unix-based supercomputing facility. The MSS at Ames Research Center provides all processors on the numerical aerodynamics system processing network, from workstations to supercomputers, the ability to store large amounts of data in a highly accessible, long-term repository. The MSS uses Unix System V and is capable of storing hundreds of thousands of files ranging from a few bytes to 2 Gb in size.
An Operator-Integration-Factor Splitting (OIFS) method for Incompressible Flows in Moving Domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Saumil S.; Fischer, Paul F.; Min, Misun
In this paper, we present a characteristic-based numerical procedure for simulating incompressible flows in domains with moving boundaries. Our approach utilizes an operator-integration-factor splitting technique to help produce an effcient and stable numerical scheme. Using the spectral element method and an arbitrary Lagrangian-Eulerian formulation, we investigate flows where the convective acceleration effects are non-negligible. Several examples, ranging from laminar to turbulent flows, are considered. Comparisons with a standard, semi-implicit time-stepping procedure illustrate the improved performance of the scheme.
NASA Astrophysics Data System (ADS)
Barucq, H.; Bendali, A.; Fares, M.; Mattesi, V.; Tordeux, S.
2017-02-01
A general symmetric Trefftz Discontinuous Galerkin method is built for solving the Helmholtz equation with piecewise constant coefficients. The construction of the corresponding local solutions to the Helmholtz equation is based on a boundary element method. A series of numerical experiments displays an excellent stability of the method relatively to the penalty parameters, and more importantly its outstanding ability to reduce the instabilities known as the "pollution effect" in the literature on numerical simulations of long-range wave propagation.
NASA Astrophysics Data System (ADS)
Mucha, Waldemar; Kuś, Wacław
2018-01-01
The paper presents a practical implementation of hybrid simulation using Real Time Finite Element Method (RTFEM). Hybrid simulation is a technique for investigating dynamic material and structural properties of mechanical systems by performing numerical analysis and experiment at the same time. It applies to mechanical systems with elements too difficult or impossible to model numerically. These elements are tested experimentally, while the rest of the system is simulated numerically. Data between the experiment and numerical simulation are exchanged in real time. Authors use Finite Element Method to perform the numerical simulation. The following paper presents the general algorithm for hybrid simulation using RTFEM and possible improvements of the algorithm for computation time reduction developed by the authors. The paper focuses on practical implementation of presented methods, which involves testing of a mountain bicycle frame, where the shock absorber is tested experimentally while the rest of the frame is simulated numerically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, D.S.; Eyler, L.L.
TEMPEST offers simulation capabilities over a wide range of hydrothermal problems that are definable by input instructions. These capabilities are summarized by categories as follows: modeling capabilities; program control; and I/O control. 10 refs., 22 figs., 2 tabs. (LSP)
Scattering of Acoustic Energy from Rough Deep Ocean Seafloor: a Numerical Modeling Approach.
NASA Astrophysics Data System (ADS)
Robertsson, Johan Olof Anders
1995-01-01
The highly heterogeneous and anelastic nature of deep ocean seafloor results in complex reverberation as acoustic energy incident from the overlaying water column interacts and scatters from it. To gain a deeper understanding of the mechanisms causing the reverberation in sonar and seafloor scattering experiments, we have developed numerical simulation techniques that are capable of modeling the principal physical properties of complex seafloor structures. A new viscoelastic finite-difference technique for modeling anelastic wave propagation in 2-D and 3-D heterogeneous media, as well as a computationally optimally efficient method for quantifying the anelastic properties in terms of viscoelastic mechanics are presented. A method for reducing numerical dispersion using a Galerkin-wavelet formulation that enables large computational savings is also presented. The widely different regimes of wave propagation occurring in ocean acoustic problems motivate the use of hybrid simulation techniques. HARVEST (Hybrid Adaptive Regime Visco-Elastic Simulation Technique) combines solutions from Gaussian beams, viscoelastic finite-differences, and Kirchhoff extrapolation, to simulate large offset scattering problems. Several scattering hypotheses based on finite -difference simulations of short-range acoustic scattering from realistic seafloor models are presented. Anelastic sediments on the seafloor are found to have a significant impact on the backscattered field from low grazing angle scattering experiments. In addition, small perturbations in the sediment compressional velocity can also dramatically alter the backscattered field due to transitions between pre- and post-critical reflection regimes. The hybrid techniques are employed to simulate deep ocean acoustic reverberation data collected in the vicinity of the northern mid-Atlantic ridge. In general, the simulated data compare well to the real data. Noise partly due to side-lobes in the beam-pattern of the receiver -array is the principal source of reverberation at lower levels. Overall, the employed seafloor models were found to model the real seafloor well. Inaccurately predicted events may partly be attributed to the intrinsic uncertainty in the stochastic seafloor models. For optimal comparison between real and HARVEST simulated data the experimental geometry should be chosen so that 3-D effects may be ignored, and to yield a cross-range resolution in the beam-formed acoustic data that is small relative to the lineation of the seafloor.
Fourth-power law structure of the shock wave fronts in metals and ceramics
NASA Astrophysics Data System (ADS)
Bayandin, Yuriy; Naimark, Oleg; Saveleva, Natalia
2017-06-01
The plate impact experiments were performed for solids during last fifty years. It was established that the dependence between the strain rate and the shock wave amplitude for metals and ceramics expressed by a fourth-power law. Present study is focused on the theoretical investigation and numerical simulation of plane shock wave propagation in metals and ceramics. Statistically based constitutive model of solid with defects (microcracks and microshears) was developed to provide the relation between damage induced mechanisms of structural relaxation, thermally activated plastic flow and material reactions for extreme loading conditions. Original approach based on the wide range constitutive equations was proposed for the numerical simulation of multiscale damage-failure transition mechanisms and plane shock wave propagation in solids with defects in the range of strain rate 103 -108s-1 . It was shown that mechanisms of plastic relaxation and damage-failure transitions are linked to the multiscale kinetics of defects leading to the self-similar nature of shock wave fronts in metals and ceramics. The work was supported by the Russian Science Foundation (Project No. 14-19-01173).
Sabol, Thomas A.; Springer, Abraham E.
2013-01-01
Seepage erosion and mass failure of emergent sandy deposits along the Colorado River in Grand Canyon National Park, Arizona, are a function of the elevation of groundwater in the sandbar, fluctuations in river stage, the exfiltration of water from the bar face, and the slope of the bar face. In this study, a generalized three-dimensional numerical model was developed to predict the time-varying groundwater level, within the bar face region of a freshly deposited eddy sandbar, as a function of river stage. Model verification from two transient simulations demonstrates the ability of the model to predict groundwater levels within the onshore portion of the sandbar face across a range of conditions. Use of this generalized model is applicable across a range of typical eddy sandbar deposits in diverse settings. The ability to predict the groundwater level at the onshore end of the sandbar face is essential for both physical and numerical modeling efforts focusing on the erosion and mass failure of eddy sandbars downstream of Glen Canyon Dam along the Colorado River.
NASA Astrophysics Data System (ADS)
Mvogo, Alain; Ben-Bolie, G. H.; Kofané, T. C.
2015-06-01
The dynamics of three coupled α-polypeptide chains of a collagen molecule is investigated with the influence of power-law long-range exciton-exciton interactions. The continuum limit of the discrete equations reveal that the collagen dynamics is governed by a set of three coupled nonlinear Schrödinger equations, whose dispersive coefficient depends on the LRI parameter r. We construct the analytic symmetric and asymmetric (antisymmetric) soliton solutions, which match with the structural features of collagen related with the acupuncture channels. These solutions are used as initial conditions for the numerical simulations of the discrete equations, which reveal a coherent transport of energy in the molecule for r > 3. The results also indicate that the width of the solitons is a decreasing function of r, which help to stabilize the solitons propagating in the molecule. To confirm further the efficiency of energy transport in the molecule, the modulational instability of the system is performed and the numerical simulations show that the energy can flow from one polypeptide chain to another in the form of nonlinear waves.
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.
2010-01-01
Preliminary flow matching has been demonstrated for a MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment was used to perform a thermodynamic cycle analysis to properly match the flows from an inlet to a MHD generator and from the exit of a supersonic turbojet to a MHD accelerator. Working with various operating conditions such as the enthalpy extraction ratio and isentropic efficiency of the MHD generator and MHD accelerator, interfacing studies were conducted between the pre-ionizers, the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis and describes the NPSS analysis of a supersonic turbojet engine with a MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to an explored and desired range of 0 to 7.0 Mach.
NASA Astrophysics Data System (ADS)
Inochkin, F. M.; Kruglov, S. K.; Bronshtein, I. G.; Kompan, T. A.; Kondratjev, S. V.; Korenev, A. S.; Pukhov, N. F.
2017-06-01
A new method for precise subpixel edge estimation is presented. The principle of the method is the iterative image approximation in 2D with subpixel accuracy until the appropriate simulated is found, matching the simulated and acquired images. A numerical image model is presented consisting of three parts: an edge model, object and background brightness distribution model, lens aberrations model including diffraction. The optimal values of model parameters are determined by means of conjugate-gradient numerical optimization of a merit function corresponding to the L2 distance between acquired and simulated images. Computationally-effective procedure for the merit function calculation along with sufficient gradient approximation is described. Subpixel-accuracy image simulation is performed in a Fourier domain with theoretically unlimited precision of edge points location. The method is capable of compensating lens aberrations and obtaining the edge information with increased resolution. Experimental method verification with digital micromirror device applied to physically simulate an object with known edge geometry is shown. Experimental results for various high-temperature materials within the temperature range of 1000°C..2400°C are presented.
Reduced-Order Direct Numerical Simulation of Solute Transport in Porous Media
NASA Astrophysics Data System (ADS)
Mehmani, Yashar; Tchelepi, Hamdi
2017-11-01
Pore-scale models are an important tool for analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Current direct numerical simulation (DNS) techniques, while very accurate, are computationally prohibitive for sample sizes that are statistically representative of the porous structure. Reduced-order approaches such as pore-network models (PNM) aim to approximate the pore-space geometry and physics to remedy this problem. Predictions from current techniques, however, have not always been successful. This work focuses on single-phase transport of a passive solute under advection-dominated regimes and delineates the minimum set of approximations that consistently produce accurate PNM predictions. Novel network extraction (discretization) and particle simulation techniques are developed and compared to high-fidelity DNS simulations for a wide range of micromodel heterogeneities and a single sphere pack. Moreover, common modeling assumptions in the literature are analyzed and shown that they can lead to first-order errors under advection-dominated regimes. This work has implications for optimizing material design and operations in manufactured (electrodes) and natural (rocks) porous media pertaining to energy systems. This work was supported by the Stanford University Petroleum Research Institute for Reservoir Simulation (SUPRI-B).
Transonic Navier-Stokes solutions of three-dimensional afterbody flows
NASA Technical Reports Server (NTRS)
Compton, William B., III; Thomas, James L.; Abeyounis, William K.; Mason, Mary L.
1989-01-01
The performance of a three-dimensional Navier-Stokes solution technique in predicting the transonic flow past a nonaxisymmetric nozzle was investigated. The investigation was conducted at free-stream Mach numbers ranging from 0.60 to 0.94 and an angle of attack of 0 degrees. The numerical solution procedure employs the three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations written in strong conservation form, a thin layer assumption, and the Baldwin-Lomax turbulence model. The equations are solved by using the finite-volume principle in conjunction with an approximately factored upwind-biased numerical algorithm. In the numerical procedure, the jet exhaust is represented by a solid sting. Wind-tunnel data with the jet exhaust simulated by high pressure air were also obtained to compare with the numerical calculations.
Numerical Simulation of Hydrogen Assisted Cracking in Supermartensitic Stainless Steel Welds
2005-01-27
Arc efficiency dependent on welding process (for GTAW it is in the range of 0.45 - 0 .7 5)TrDw2] 0 ,,or Fraction of hydrogen concentration at the...8 Figure 2-4: Region of y-, 6- and a-phase in the iron- chromium ...improve corrosion resistance and mechanical properties of this steel[sPM3 7 ][SPM 47] Since chromium with a content in the range of 11 to 14 wt.-% and
DSMC simulations of Mach 20 nitrogen flows about a 70 degree blunted cone and its wake
NASA Technical Reports Server (NTRS)
Moss, James N.; Dogra, Virendra K.; Wilmoth, Richard G.
1993-01-01
Numerical results obtained with the direct simulation Monte Carlo (DSMC) method are presented for Mach 20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are simulated with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is to characterize the wake flow under rarefied conditions. This is accomplished by calculating the influence of rarefaction on wake structure along with the impact that an afterbody has on flow features. This data report presents extensive information concerning flowfield features and surface quantities.
Numerical and Permeability Constraints on Simulation of Sill-Driven Hydrothermal Convection
NASA Astrophysics Data System (ADS)
Carr, P. M.; Cathles, L. M.; Barrie, C. T.; Manhardt, P.
2004-05-01
Volcanic-associated massive sulfide deposits are formed where seawater, heated to ~350oC by subsurface magma intrusions, is quenched by cold water at or near the seafloor. Many VMS districts, like the one at Matagami, Quebec, contain their zinc, lead, and copper in about a dozen discrete ore bodies, with one or two deposits containing more than half of the district's resources. We construct numerical models to investigate the causes of variations in deposit size. These models show that a process which stabilizes the location of hydrothermal venting plumes is required to numerically generate discrete VMS ore bodies by sill-driven hydrothermal convection. This is achieved in our models by increasing rock permeability in a fashion that makes vent plumes more permeable than their surroundings. Maintaining the Courant number ≤1 (so that a thermal anomaly traverses only one grid cell in one timestep of the simulation) is shown to be crucial to numerical convergence. If this rule is violated, visually compelling but incorrect hydrothermal vents result. Small hydrothermal convection cells over the interior of an areally-extensive sill with a tabular edge are smaller than those formed at the sill edge. However, for a sill with the geometry of that at Matagami, numerical simulations indicate that large ore deposits should form near the thickest part of the sill where metals extracted from the underside of the still-hot portions of the sill can optimally contribute. Thus it is essential to construct a model of the entire domain rather than slicing a portion local to the deposition. The numerical models replicate the ten-fold range in deposit size variation, and predict the largest deposits at Matagami will be discovered at 5 to 8 km depth between currently known deposits in the South Flank and Phelps Dodge areas.
NASA Astrophysics Data System (ADS)
Tsujimura, Maki; Watanabe, Yasuto; Ikeda, Koichi; Yano, Shinjiro; Abe, Yutaka
2016-04-01
Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time of subsurface water in time and space at the mountainous headwaters especially with steep slope. We investigated the temporal variation of the residence time of the spring and groundwater with tracing of hydrological flow processes in mountainous catchments underlain by granite, Yamanashi Prefecture, central Japan. We conducted intensive hydrological monitoring and water sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2013 in River Jingu Watershed underlain by granite, with an area of approximately 15 km2 and elevation ranging from 950 m to 2000 m. The CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Also, a numerical simulation was conducted to reproduce of the average residence times of the spring and groundwater. The residence time of the spring water estimated by the CFCs concentration ranged from 10 years to 60 years in space within the watershed, and it was higher (older) during the low flow season and lower (younger) during the high flow season. We tried to reproduce the seasonal change of the residence time in the spring water by numerical simulation, and the calculated residence time of the spring water and discharge of the stream agreed well with the observed values. The groundwater level was higher during the high flow season and the groundwater dominantly flowed through the weathered granite with higher permeability, whereas that was lower during the low flow season and that flowed dominantly through the fresh granite with lower permeability. This caused the seasonal variation of the residence time of the spring water, older in low flow season and younger in the high flow season in the watershed. As a result, the numerical model simulated successfully the dynamics of the groundwater flow and residence time in the spring water.
Investigating dynamic underground coal fires by means of numerical simulation
NASA Astrophysics Data System (ADS)
Wessling, S.; Kessels, W.; Schmidt, M.; Krause, U.
2008-01-01
Uncontrolled burning or smoldering of coal seams, otherwise known as coal fires, represents a worldwide natural hazard. Efficient application of fire-fighting strategies and prevention of mining hazards require that the temporal evolution of fire propagation can be sufficiently precise predicted. A promising approach for the investigation of the temporal evolution is the numerical simulation of involved physical and chemical processes. In the context of the Sino-German Research Initiative `Innovative Technologies for Detection, Extinction and Prevention of Coal Fires in North China,' a numerical model has been developed for simulating underground coal fires at large scales. The objective of such modelling is to investigate observables, like the fire propagation rate, with respect to the thermal and hydraulic parameters of adjacent rock. In the model, hydraulic, thermal and chemical processes are accounted for, with the last process complemented by laboratory experiments. Numerically, one key challenge in modelling coal fires is to circumvent the small time steps resulting from the resolution of fast reaction kinetics at high temperatures. In our model, this problem is solved by means of an `operator-splitting' approach, in which transport and reactive processes of oxygen are independently calculated. At high temperatures, operator-splitting has the decisive advantage of allowing the global time step to be chosen according to oxygen transport, so that time-consuming simulation through the calculation of fast reaction kinetics is avoided. Also in this model, because oxygen distribution within a coal fire has been shown to remain constant over long periods, an additional extrapolation algorithm for the coal concentration has been applied. In this paper, we demonstrate that the operator-splitting approach is particularly suitable for investigating the influence of hydraulic parameters of adjacent rocks on coal fire propagation. A study shows that dynamic propagation strongly depends on permeability variations. For the assumed model, no fire exists for permeabilities k < 10-10m2, whereas the fire propagation velocity ranges between 340ma-1 for k = 10-8m2, and drops to lower than 3ma-1 for k = 5 × 10-10m2. Additionally, strong temperature variations are observed for the permeability range 5 × 10-10m2 < k < 10-8m2.
Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.
2015-01-01
Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the isotropic turbulent flow decay, at a relatively high turbulent Mach number, show a nicely behaved spectral decay rate for medium to high wave numbers. The high-order CESE schemes offer very robust solutions even with the presence of strong shocks or widespread shocklets. The explicit formulation in conjunction with a close to unity theoretical upper Courant number bound has the potential to offer an efficient numerical framework for general compressible turbulent flow simulations with unstructured meshes.
A novel approach to the analysis of squeezed-film air damping in microelectromechanical systems
NASA Astrophysics Data System (ADS)
Yang, Weilin; Li, Hongxia; Chatterjee, Aveek N.; Elfadel, Ibrahim (Abe M.; Ender Ocak, Ilker; Zhang, TieJun
2017-01-01
Squeezed-film damping (SFD) is a phenomenon that significantly affects the performance of micro-electro-mechanical systems (MEMS). The total damping force in MEMS mainly include the viscous damping force and elastic damping force. Quality factor (Q factor) is usually used to evaluate the damping in MEMS. In this work, we measure the Q factor of a resonator through experiments in a wide range of pressure levels. In fact, experimental characterizations of MEMS have some limitations because it is difficult to conduct experiments at very high vacuum and also hard to differentiate the damping mechanisms from the overall Q factor measurements. On the other hand, classical theoretical analysis of SFD is restricted to strong assumptions and simple geometries. In this paper, a novel numerical approach, which is based on lattice Boltzmann simulations, is proposed to investigate SFD in MEMS. Our method considers the dynamics of squeezed air flow as well as fluid-solid interactions in MEMS. It is demonstrated that Q factor can be directly predicted by numerical simulation, and our simulation results agree well with experimental data. Factors that influence SFD, such as pressure, oscillating amplitude, and driving frequency, are investigated separately. Furthermore, viscous damping and elastic damping forces are quantitatively compared based on comprehensive simulation. The proposed numerical approach as well as experimental characterization enables us to reveal the insightful physics of squeezed-film air damping in MEMS.
NASA Astrophysics Data System (ADS)
Rossi, R.; Cattani, L.; Mocerino, A.; Bozzoli, F.; Rainieri, S.; Caminati, R.; Pagliarini, G.
2017-11-01
In this paper, we present the numerical analysis of the fully developed ow and heat transfer in pipes equipped with twisted-tape inserts in the laminar to transitional flow regime. The flow Reynolds number ranges from 210 to 3100 based on the pipe diameter, whereas the Prandtl number of the working fluid, a 40% mixture of water and ethylene glycol, is about 45 at the average film temperature. The numerical study is carried out via Scale Adaptive Simulations (SAS) where the k-ω SST model is employed for turbulence modeling. Using SAS and low-dissipation discretization schemes, the present study shows that it is possible to capture the transition from the laminar regime to the pulsating or pseudo-laminar flow regime induced by the twisted-tape at low Reynolds numbers, as well as the transition to moderate turbulent regime at the higher, yet non-turbulent for smooth pipes, range of Reynolds numbers. Numerical results, validated against experiments performed in a dedicated test rig, show very good agreement with measured data and an increase of the friction factor and Nusselt number in the range of 4 to 7 times and 6 to 15 times, respectively, of the values for an empty pipe.
A simple algorithm for beam profile diagnostics using a thermographic camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katagiri, Ken; Hojo, Satoru; Honma, Toshihiro
2014-03-15
A new algorithm for digital image processing apparatuses is developed to evaluate profiles of high-intensity DC beams from temperature images of irradiated thin foils. Numerical analyses are performed to examine the reliability of the algorithm. To simulate the temperature images acquired by a thermographic camera, temperature distributions are numerically calculated for 20 MeV proton beams with different parameters. Noise in the temperature images which is added by the camera sensor is also simulated to account for its effect. Using the algorithm, beam profiles are evaluated from the simulated temperature images and compared with exact solutions. We find that niobium ismore » an appropriate material for the thin foil used in the diagnostic system. We also confirm that the algorithm is adaptable over a wide beam current range of 0.11–214 μA, even when employing a general-purpose thermographic camera with rather high noise (ΔT{sub NETD} ≃ 0.3 K; NETD: noise equivalent temperature difference)« less
Low Mass-Damping Vortex-Induced Vibrations of a Single Cylinder at Moderate Reynolds Number.
Jus, Y; Longatte, E; Chassaing, J-C; Sagaut, P
2014-10-01
The feasibility and accuracy of large eddy simulation is investigated for the case of three-dimensional unsteady flows past an elastically mounted cylinder at moderate Reynolds number. Although these flow problems are unconfined, complex wake flow patterns may be observed depending on the elastic properties of the structure. An iterative procedure is used to solve the structural dynamic equation to be coupled with the Navier-Stokes system formulated in a pseudo-Eulerian way. A moving mesh method is involved to deform the computational domain according to the motion of the fluid structure interface. Numerical simulations of vortex-induced vibrations are performed for a freely vibrating cylinder at Reynolds number 3900 in the subcritical regime under two low mass-damping conditions. A detailed physical analysis is provided for a wide range of reduced velocities, and the typical three-branch response of the amplitude behavior usually reported in the experiments is exhibited and reproduced by numerical simulation.
NASA Astrophysics Data System (ADS)
Stoeckel, Gerhard P.; Doyle, Keith B.
2017-08-01
The Transiting Exoplanet Survey Satellite (TESS) is an instrument consisting of four, wide fieldof- view CCD cameras dedicated to the discovery of exoplanets around the brightest stars, and understanding the diversity of planets and planetary systems in our galaxy. Each camera utilizes a seven-element lens assembly with low-power and low-noise CCD electronics. Advanced multivariable optimization and numerical simulation capabilities accommodating arbitrarily complex objective functions have been added to the internally developed Lincoln Laboratory Integrated Modeling and Analysis Software (LLIMAS) and used to assess system performance. Various optical phenomena are accounted for in these analyses including full dn/dT spatial distributions in lenses and charge diffusion in the CCD electronics. These capabilities are utilized to design CCD shims for thermal vacuum chamber testing and flight, and verify comparable performance in both environments across a range of wavelengths, field points and temperature distributions. Additionally, optimizations and simulations are used for model correlation and robustness optimizations.
Inconsistencies in Numerical Simulations of Dynamical Systems Using Interval Arithmetic
NASA Astrophysics Data System (ADS)
Nepomuceno, Erivelton G.; Peixoto, Márcia L. C.; Martins, Samir A. M.; Rodrigues, Heitor M.; Perc, Matjaž
Over the past few decades, interval arithmetic has been attracting widespread interest from the scientific community. With the expansion of computing power, scientific computing is encountering a noteworthy shift from floating-point arithmetic toward increased use of interval arithmetic. Notwithstanding the significant reliability of interval arithmetic, this paper presents a theoretical inconsistency in a simulation of dynamical systems using a well-known implementation of arithmetic interval. We have observed that two natural interval extensions present an empty intersection during a finite time range, which is contrary to the fundamental theorem of interval analysis. We have proposed a procedure to at least partially overcome this problem, based on the union of the two generated pseudo-orbits. This paper also shows a successful case of interval arithmetic application in the reduction of interval width size on the simulation of discrete map. The implications of our findings on the reliability of scientific computing using interval arithmetic have been properly addressed using two numerical examples.
NASA Astrophysics Data System (ADS)
Poplavskaya, T. V.; Kirilovskiy, S. V.; Mironov, S. G.
2017-10-01
Numerical simulation of supersonic flow past a cylinder with a frontal gas-permeable insert is performed using the skeleton model of a highly porous cellular material. Numerical simulation was carried out within the framework of two-dimensional RANS equations written in an axisymmetric form. The skeleton model is a system of coaxial rings of different diameters, arranged in staggered order. The calculations were carried out in a wide range of determining parameters: Mach numbers M∞ = 3, 4.85 and 7, unit Reynolds numbers Re1∞ = 13.8×105 ÷ 13.8×106 m-1, the cylinder diameter 6÷40mm, the length of the porous insert 3÷45mm, the cell diameter of 1 and 3 mm. The results of the calculations are consistent with the available experimental data. The applicability of the skeleton model for the description of supersonic flow around axisymmetric bodies with front inserts from cellular-porous materials is shown.
NASA Astrophysics Data System (ADS)
Johnson, Ryan Federick; Chelliah, Harsha Kumar
2017-01-01
For a range of flow and chemical timescales, numerical simulations of two-dimensional laminar flow over a reacting carbon surface were performed to understand further the complex coupling between heterogeneous and homogeneous reactions. An open-source computational package (OpenFOAM®) was used with previously developed lumped heterogeneous reaction models for carbon surfaces and a detailed homogeneous reaction model for CO oxidation. The influence of finite-rate chemical kinetics was explored by varying the surface temperatures from 1800 to 2600 K, while flow residence time effects were explored by varying the free-stream velocity up to 50 m/s. The reacting boundary layer structure dependence on the residence time was analysed by extracting the ratio of chemical source and species diffusion terms. The important contributions of radical species reactions on overall carbon removal rate, which is often neglected in multi-dimensional simulations, are highlighted. The results provide a framework for future development and validation of lumped heterogeneous reaction models based on multi-dimensional reacting flow configurations.
Tzeferacos, Petros; Rigby, A.; Bott, A.; ...
2017-03-22
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputermore » at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. As a result, we validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.« less
A compressible multiphase framework for simulating supersonic atomization
NASA Astrophysics Data System (ADS)
Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark
2016-11-01
The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.
Games, Simulations and Virtual Labs for Science Education: a Compendium and Some Examples
NASA Astrophysics Data System (ADS)
Russell, R. M.
2012-12-01
We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations and games. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.
NASA Astrophysics Data System (ADS)
Jayhooni, S. M. H.; Rahimpour, M. R.
2013-06-01
In the present paper, free convection fluid flow and heat transfer of various water based nanofluids has been investigated numerically around a spherical mini-reactor. This numerical simulation is a finite-volume, steady, two dimensions, elliptic and multi-grid solver. The wall of the spherical mini-reactor are maintained at constant temperature TH and the temperature of nanofluid far from it is considered constant (TC). Computational fluid dynamics (CFD) is used for solving the relevant mathematical expressions for free convection heat transfer around it. The numerical simulation and available correlation are valid for based fluid. The effects of pertinent parameters, such as, Rayleigh number, and the volume fraction of the nanoparticles in the fluid flow and heat transfer around the spherical mini-reactor are investigated. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid is assumed to be less than 109 (Ra < 109). Besides, the percentages of the volumetric fraction of nanoparticle which is used for preparing the nanofluids, are between 0 and 4 (0 ⩽ φ ⩽ 4%). The obtained results show that the average Nusselt number for a range of the solid volume fraction of the nanofluid increases by increasing the Rayleigh number. Finally, the heat transfer has been enhanced not only by increasing the particle volume fraction but also by decreasing the size of particle diameter. Moreover, the Churchill's correlation is approximately appropriate for predicting the free convection heat transfer inside diverse kinds of nanofluids especially for high range of Rayleigh numbers.
Simulation of the oscillation regimes of bowed bars: a non-linear modal approach
NASA Astrophysics Data System (ADS)
Inácio, Octávio; Henrique, Luís.; Antunes, José
2003-06-01
It is still a challenge to properly simulate the complex stick-slip behavior of multi-degree-of-freedom systems. In the present paper we investigate the self-excited non-linear responses of bowed bars, using a time-domain modal approach, coupled with an explicit model for the frictional forces, which is able to emulate stick-slip behavior. This computational approach can provide very detailed simulations and is well suited to deal with systems presenting a dispersive behavior. The effects of the bar supporting fixture are included in the model, as well as a velocity-dependent friction coefficient. We present the results of numerical simulations, for representative ranges of the bowing velocity and normal force. Computations have been performed for constant-section aluminum bars, as well as for real vibraphone bars, which display a central undercutting, intended to help tuning the first modes. Our results show limiting values for the normal force FN and bowing velocity ẏbow for which the "musical" self-sustained solutions exist. Beyond this "playability space", double period and even chaotic regimes were found for specific ranges of the input parameters FN and ẏbow. As also displayed by bowed strings, the vibration amplitudes of bowed bars also increase with the bow velocity. However, in contrast to string instruments, bowed bars "slip" during most of the motion cycle. Another important difference is that, in bowed bars, the self-excited motions are dominated by the system's first mode. Our numerical results are qualitatively supported by preliminary experimental results.
Tuning direct current streaming dielectrophoresis of proteins
Nakano, Asuka; Camacho-Alanis, Fernanda; Chao, Tzu-Chiao; Ros, Alexandra
2012-01-01
Dielectrophoresis (DEP) of biomolecules has large potential to serve as a novel selectivity parameter for bioanalytical methods such as (pre)concentration, fractionation, and separation. However, in contrast to well-characterized biological cells and (nano)particles, the mechanism of protein DEP is poorly understood, limiting bioanalytical applications for proteins. Here, we demonstrate a detailed investigation of factors influencing DEP of diagnostically relevant immunoglobulin G (IgG) molecules using insulator-based DEP (iDEP) under DC conditions. We found that the pH range in which concentration of IgG due to streaming iDEP occurs without aggregate formation matches the pH range suitable for immunoreactions. Numerical simulations of the electrokinetic factors pertaining to DEP streaming in this range further suggested that the protein charge and electroosmotic flow significantly influence iDEP streaming. These predictions are in accordance with the experimentally observed pH-dependent iDEP streaming profiles as well as the determined IgG molecular properties. Moreover, we observed a transition in the streaming behavior caused by a change from positive to negative DEP induced through micelle formation for the first time experimentally, which is in excellent qualitative agreement with numerical simulations. Our study thus relates molecular immunoglobulin properties to observed iDEP, which will be useful for the future development of protein (pre)concentration or separation methods based on DEP. PMID:23908679
Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S
2016-05-01
The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. Copyright © 2016 Elsevier B.V. All rights reserved.
A case study to quantify prediction bounds caused by model-form uncertainty of a portal frame
NASA Astrophysics Data System (ADS)
Van Buren, Kendra L.; Hall, Thomas M.; Gonzales, Lindsey M.; Hemez, François M.; Anton, Steven R.
2015-01-01
Numerical simulations, irrespective of the discipline or application, are often plagued by arbitrary numerical and modeling choices. Arbitrary choices can originate from kinematic assumptions, for example the use of 1D beam, 2D shell, or 3D continuum elements, mesh discretization choices, boundary condition models, and the representation of contact and friction in the simulation. This work takes a step toward understanding the effect of arbitrary choices and model-form assumptions on the accuracy of numerical predictions. The application is the simulation of the first four resonant frequencies of a one-story aluminum portal frame structure under free-free boundary conditions. The main challenge of the portal frame structure resides in modeling the joint connections, for which different modeling assumptions are available. To study this model-form uncertainty, and compare it to other types of uncertainty, two finite element models are developed using solid elements, and with differing representations of the beam-to-column and column-to-base plate connections: (i) contact stiffness coefficients or (ii) tied nodes. Test-analysis correlation is performed to compare the lower and upper bounds of numerical predictions obtained from parametric studies of the joint modeling strategies to the range of experimentally obtained natural frequencies. The approach proposed is, first, to characterize the experimental variability of the joints by varying the bolt torque, method of bolt tightening, and the sequence in which the bolts are tightened. The second step is to convert what is learned from these experimental studies to models that "envelope" the range of observed bolt behavior. We show that this approach, that combines small-scale experiments, sensitivity analysis studies, and bounding-case models, successfully produces lower and upper bounds of resonant frequency predictions that match those measured experimentally on the frame structure. (Approved for unlimited, public release, LA-UR-13-27561).
The Australian Computational Earth Systems Simulator
NASA Astrophysics Data System (ADS)
Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.
2001-12-01
Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.
NASA Technical Reports Server (NTRS)
Chen, Jyh-Yuan; Echekki, Tarek
2001-01-01
Numerical simulations of 2-D triple flames under gravity force have been implemented to identify the effects of gravity on triple flame structure and propagation properties and to understand the mechanisms of instabilities resulting from both heat release and buoyancy effects. A wide range of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for downward-propagating (in the same direction with the gravity vector) and upward-propagating (in the opposite direction of the gravity vector) triple flames. Results of numerical simulations show that gravity strongly affects the triple flame speed through its contribution to the overall flow field. A simple analytical model for the triple flame speed, which accounts for both buoyancy and heat release, is developed. Comparisons of the proposed model with the numerical results for a wide range of gravity, heat release and mixing width conditions, yield very good agreement. The analysis shows that under neutral diffusion, downward propagation reduces the triple flame speed, while upward propagation enhances it. For the former condition, a critical Froude number may be evaluated, which corresponds to a vanishing triple flame speed. Downward-propagating triple flames at relatively strong gravity effects have exhibited instabilities. These instabilities are generated without any artificial forcing of the flow. Instead disturbances are initiated by minute round-off errors in the numerical simulations, and subsequently amplified by instabilities. A linear stability analysis on mean profiles of stable triple flame configurations have been performed to identify the most amplified frequency in spatially developed flows. The eigenfunction equations obtained from the linearized disturbance equations are solved using the shooting method. The linear stability analysis yields reasonably good agreements with the observed frequencies of the unstable triple flames. The frequencies and amplitudes of disturbances increase with the magnitude of the gravity vector. Moreover, disturbances appear to be most amplified just downstream of the premixed branches. The effects of mixing width and differential diffusion are investigated and their roles on the flame stability are studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhihui; Ma, Qiang; Wu, Junlin
2014-12-09
Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinatemore » points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.« less
Large-eddy simulation of the passage of a shock wave through homogeneous turbulence
NASA Astrophysics Data System (ADS)
Braun, N. O.; Pullin, D. I.; Meiron, D. I.
2017-11-01
The passage of a nominally plane shockwave through homogeneous, compressible turbulence is a canonical problem representative of flows seen in supernovae, supersonic combustion engines, and inertial confinement fusion. The interaction of isotropic turbulence with a stationary normal shockwave is considered at inertial range Taylor Reynolds numbers, Reλ = 100 - 2500 , using Large Eddy Simulation (LES). The unresolved, subgrid terms are approximated by the stretched-vortex model (Kosovic et al., 2002), which allows self-consistent reconstruction of the subgrid contributions to the turbulent statistics of interest. The mesh is adaptively refined in the vicinity of the shock to resolve small amplitude shock oscillations, and the implications of mesh refinement on the subgrid modeling are considered. Simulations are performed at a range of shock Mach numbers, Ms = 1.2 - 3.0 , and turbulent Mach numbers, Mt = 0.06 - 0.18 , to explore the parameter space of the interaction at high Reynolds number. The LES shows reasonable agreement with linear analysis and lower Reynolds number direct numerical simulations. LANL Subcontract 305963.
NASA Astrophysics Data System (ADS)
Yuen, Anthony C. Y.; Yeoh, Guan H.; Timchenko, Victoria; Cheung, Sherman C. P.; Chan, Qing N.; Chen, Timothy
2017-09-01
An in-house large eddy simulation (LES) based fire field model has been developed for large-scale compartment fire simulations. The model incorporates four major components, including subgrid-scale turbulence, combustion, soot and radiation models which are fully coupled. It is designed to simulate the temporal and fluid dynamical effects of turbulent reaction flow for non-premixed diffusion flame. Parametric studies were performed based on a large-scale fire experiment carried out in a 39-m long test hall facility. Several turbulent Prandtl and Schmidt numbers ranging from 0.2 to 0.5, and Smagorinsky constants ranging from 0.18 to 0.23 were investigated. It was found that the temperature and flow field predictions were most accurate with turbulent Prandtl and Schmidt numbers of 0.3, respectively, and a Smagorinsky constant of 0.2 applied. In addition, by utilising a set of numerically verified key modelling parameters, the smoke filling process was successfully captured by the present LES model.
Experimental and numerical investigation of the recovery ratio of a wedge-shaped hot-film probe
NASA Astrophysics Data System (ADS)
Krause, M.; Gaisbauer, U.; Kraemer, E.; Kosinov, A. D.
2017-03-01
The recovery ratio of a wedge-shaped hot-film probe was determined in an experimental as well as numerical study, since this information is still unpublished and essential for using the probe in hot-film anemometry. The experiments were conducted at the Khristianovich Institute of Theoretical and Applied Mechanics (ITAM) in Novosibirsk, Russia, and the simulations were performed with StarCCM+, a commercial 2nd order finite volume code. In the analysis, the Mach number was varied between M = 2 and M = 4, and the unit Reynolds number ranged from Re1 = 3.8•106 to Re1 = 26.1•106 m-1, depending on the Mach number. During the experiment, the stagnation temperature was kept constant for each Mach number at a separate value in the range of T 0 = 289 ± 7 K. Three different stagnation temperatures were used in the simulations: T 0 = 259 K, T 0 = 289 K, and T 0 = 319 K. The difference between the experimental and the numerical results is ≤ 0.5 %, and, therefore, both are in very good accordance. The influence of the Mach number, of the unit Reynolds number, and of the stagnation temperature was analysed, and three different fitting functions for the recovery ratio were established. In general, the recovery ratio shows small variations with all three tested parameters. These dependencies are of the same order of magnitude.
On the lift increments with the occurrence of airfoil tones at low Reynodls numbers
NASA Astrophysics Data System (ADS)
Ikeda, Tomoaki; Fujimoto, Daisuke; Inasawa, Ayumu; Asai, Masahito
2015-11-01
The aeroacoustic effects on the aerodynamics of an NACA 0006 airfoil are investigated experimentally at relatively low Reynolds numbers, Re = 30 , 000 - 70 , 000 . By employing two wind-testing airfoil models at different chord lengths, L = 40 and 100 [mm], the aerodynamic dependence on Mach number is examined at a given Reynolds number. In a particular range of Reynolds number, tonal peaks of trailing-edge noise are obtained from a shorter-chord airfoil, while no apparent tones are observed with longer chord length at a lower Mach number. Surprisingly, the occurrence of a tonal noise leads to a greater lift slope in the present wind-tunnel experiment, evaluated via a PIV approach. The lift curves obtained experimentally at higher Mach numbers agree well with two-dimensional numerical simulations, performed at M = 0 . 2 . At the Mach number, the numerical results clearly indicate the occurrence of an acoustic feedback loop with discrete tones, within a range of angle of attack. A few three dimensional numerical results are also presented. In the simulation at Re = 50 , 000 , the suppression of tonal noise corresponds to the development of a turbulent wedge in the suction-side boundary layer at the angle of attack 4 . 0 [deg.], which agrees with the experiment. This work was supported by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (Grant No. 25420139).
Numerical Simulation of Heat Transfer in Porous Metals for Cooling Applications
NASA Astrophysics Data System (ADS)
Gauna, Edgar Avalos; Zhao, Yuyuan
2017-08-01
Porous metals have low densities and novel physical, mechanical, thermal, electrical, and acoustic properties. Hence, they have attracted a large amount of interest over the last few decades. One of their applications is for thermal management in the electronics industry because of their fluid permeability and thermal conductivity. The heat transfer capability is achieved by the interaction between the internal channels within the porous metal and the coolant flowing through them. This paper studies the fluid flow and heat transfer in open-cell porous metals manufactured by space holder methods by numerical simulation using software ANSYS Fluent. A 3D geometric model of the porous structure was created based on the face-centered-cubic arrangement of spheres linked by cylinders. This model allows for different combinations of pore parameters including a wide range of porosity (50 to 80 pct), pore size (400 to 1000 µm), and metal particle size (10 to 75 µm). In this study, water was used as the coolant and copper was selected as the metal matrix. The flow rate was varied in the Darcian and Forchheimer's regimes. The permeability, form drag coefficient, and heat transfer coefficient were calculated under a range of conditions. The numerical results showed that permeability increased whereas the form drag coefficient decreased with porosity. Both permeability and form drag coefficient increased with pore size. Increasing flow rate and decreasing porosity led to better heat transfer performance.
Numerical simulation of microcarrier motion in a rotating wall vessel bioreactor.
Ju, Zhi-Hao; Liu, Tian-Qing; Ma, Xue-Hu; Cui, Zhan-Feng
2006-06-01
To analyze the forces of rotational wall vessel (RWV) bioreactor on small tissue pieces or microcarrier particles and to determine the tracks of microcarrier particles in RWV bioreactor. The motion of the microcarrier in the rotating wall vessel (RWV) bioreactor with both the inner and outer cylinders rotating was modeled by numerical simulation. The continuous trajectory of microcarrier particles, including the possible collision with the wall was obtained. An expression between the minimum rotational speed difference of the inner and outer cylinders and the microcarrier particle or aggregate radius could avoid collisions with either wall. The range of microcarrier radius or tissue size, which could be safely cultured in the RWV bioreactor, in terms of shear stress level, was determined. The model works well in describing the trajectory of a heavier microcarrier particle in rotating wall vessel.
NASA Astrophysics Data System (ADS)
Popov, A. P.; Priezzhev, A. V.; Myllylä, Risto
2005-11-01
The propagation of laser pulses in the 2% aqueous solution of intralipid — a suspension of lipid particles with optical properties close to those of the human skin, is numerically simulated at different glucose concentrations. The temporal profiles of 820-nm laser pulses diffusely backscattered from a flat, 2-mm thick solution layer are simulated. The laser pulse profiles are detected by fibreoptic detectors of diameter 0.3 mm with the numerical apertures 0.19, 0.29, and 0.39. It is shown that this method can be used to detect changes in the glucose level in the physiological concentration range (100-500 mg dL-1) by monitoring variations in the peak intensity and area of the laser pulse temporal profile (pulse energy).
NASA Astrophysics Data System (ADS)
Bellver, Fernando Gimeno; Garratón, Manuel Caravaca; Soto Meca, Antonio; López, Juan Antonio Vera; Guirao, Juan L. G.; Fernández-Martínez, Manuel
In this paper, we explore the chaotic behavior of resistively and capacitively shunted Josephson junctions via the so-called Network Simulation Method. Such a numerical approach establishes a formal equivalence among physical transport processes and electrical networks, and hence, it can be applied to efficiently deal with a wide range of differential systems. The generality underlying that electrical equivalence allows to apply the circuit theory to several scientific and technological problems. In this work, the Fast Fourier Transform has been applied for chaos detection purposes and the calculations have been carried out in PSpice, an electrical circuit software. Overall, it holds that such a numerical approach leads to quickly computationally solve Josephson differential models. An empirical application regarding the study of the Josephson model completes the paper.
Numerical analysis of hydrodynamics in a rotor-stator reactor for biodiesel synthesis
NASA Astrophysics Data System (ADS)
Wen, Zhuqing; Petera, Jerzy
2016-06-01
A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG) and methanol are introduced coaxially along the center line of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction species transport model by the CFD software ANSYS©Fluent v. 13.0. The effects of upper disk's spinning speed, gap size and flow rates at inlets are evaluated.
Direct Numerical Simulation and Theories of Wall Turbulence with a Range of Pressure Gradients
NASA Technical Reports Server (NTRS)
Coleman, G. N.; Garbaruk, A.; Spalart, P. R.
2014-01-01
A new Direct Numerical Simulation (DNS) of Couette-Poiseuille flow at a higher Reynolds number is presented and compared with DNS of other wall-bounded flows. It is analyzed in terms of testing semi-theoretical proposals for universal behavior of the velocity, mixing length, or eddy viscosity in pressure gradients, and in terms of assessing the accuracy of two turbulence models. These models are used in two modes, the traditional one with only a dependence on the wall-normal coordinate y, and a newer one in which a lateral dependence on z is added. For pure Couette flow and the Couette-Poiseuille case considered here, this z-dependence allows some models to generate steady streamwise vortices, which generally improves the agreement with DNS and experiment. On the other hand, it complicates the comparison between DNS and models.
Distribution of Steps with Finite-Range Interactions: Analytic Approximations and Numerical Results
NASA Astrophysics Data System (ADS)
GonzáLez, Diego Luis; Jaramillo, Diego Felipe; TéLlez, Gabriel; Einstein, T. L.
2013-03-01
While most Monte Carlo simulations assume only nearest-neighbor steps interact elastically, most analytic frameworks (especially the generalized Wigner distribution) posit that each step elastically repels all others. In addition to the elastic repulsions, we allow for possible surface-state-mediated interactions. We investigate analytically and numerically how next-nearest neighbor (NNN) interactions and, more generally, interactions out to q'th nearest neighbor alter the form of the terrace-width distribution and of pair correlation functions (i.e. the sum over n'th neighbor distribution functions, which we investigated recently.[2] For physically plausible interactions, we find modest changes when NNN interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.
Satake, S; Park, J-K; Sugama, H; Kanno, R
2011-07-29
Neoclassical toroidal viscosities (NTVs) in tokamaks are investigated using a δf Monte Carlo simulation, and are successfully verified with a combined analytic theory over a wide range of collisionality. A Monte Carlo simulation has been required in the study of NTV since the complexities in guiding-center orbits of particles and their collisions cannot be fully investigated by any means of analytic theories alone. Results yielded the details of the complex NTV dependency on particle precessions and collisions, which were predicted roughly in a combined analytic theory. Both numerical and analytic methods can be utilized and extended based on these successful verifications.
Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances
NASA Astrophysics Data System (ADS)
Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F.
2016-08-01
The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum.
NASA Astrophysics Data System (ADS)
Splinter, Robert; Littmann, Laszlo; Tuntelder, Jan R.; Svenson, Robert H.; Chuang, Chi Hui; Tatsis, George P.; Semenov, Serguei Y.; Nanney, Glenn A.
1995-01-01
Tissue samples ranging from 2 to 16 mm in thickness were irradiated at 1064 nm with energies ranging from 40 to 2400 J. Coagulation lesions of in vitro and in vivo experiments were subjected to temperature profiling and submitted for histology. Irreversible damage was calculated with the damage integral formalism, following the bioheat equation solved with Monte Carlo computer light-distribution simula-tions. Numerical temperature rise and coagulation depth compared well with the in vitro results. The in vivo data required a change in the optical properties based on integrating sphere measurements for high irradiance to make the experimental and numerical data converge. The computer model has successfully solved several light-tissue interaction situations in which scattering dominates over absorption.
Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances.
Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F
2016-12-01
The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum.
Numerical Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.
NASA Astrophysics Data System (ADS)
Inoue, S.; Shiraishi, J.; Takechi, M.; Matsunaga, G.; Isayama, A.; Hayashi, N.; Ide, S.
2017-11-01
An active stabilization effect of a rotating control field against an error field penetration is numerically studied. We have developed a resistive magnetohydrodynamic code ‘AEOLUS-IT’, which can simulate plasma responses to rotating/static external magnetic field. Adopting non-uniform flux coordinates system, the AEOLUS-IT simulation can employ high magnetic Reynolds number condition relevant to present tokamaks. By AEOLUS-IT, we successfully clarified the stabilization mechanism of the control field against the error field penetration. Physical processes of a plasma rotation drive via the control field are demonstrated by the nonlinear simulation, which reveals that the rotation amplitude at a resonant surface is not a monotonic function of the control field frequency, but has an extremum. Consequently, two ‘bifurcated’ frequency ranges of the control field are found for the stabilization of the error field penetration.
Recent Advances in the Theory and Simulation of Model Colloidal Microphase Formers.
Zhuang, Yuan; Charbonneau, Patrick
2016-08-18
This mini-review synthesizes our understanding of the equilibrium behavior of particle-based models with short-range attractive and long-range repulsive (SALR) interactions. These models, which can form stable periodic microphases, aim to reproduce the essence of colloidal suspensions with competing interparticle interactions. Ordered structures, however, have yet to be obtained in experiments. In order to better understand the hurdles to periodic microphase assembly, marked theoretical and simulation advances have been made over the past few years. Here, we present recent progress in the study of microphases in models with SALR interactions using liquid-state theory and density-functional theory as well as numerical simulations. Combining these various approaches provides a description of periodic microphases, and gives insights into the rich phenomenology of the surrounding disordered regime. Ongoing research directions in the thermodynamics of models with SALR interactions are also presented.
Validation of the Electromagnetic Code FACETS for Numerical Simulation of Radar Target Images
2009-12-01
Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong...Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong DRDC Ottawa...for simulating radar images of a target is obtained, through direct simulation-to-measurement comparisons. A 3-dimensional computer-aided design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudunuru, Maruti Kumar; Karra, Satish; Harp, Dylan Robert
Reduced-order modeling is a promising approach, as many phenomena can be described by a few parameters/mechanisms. An advantage and attractive aspect of a reduced-order model is that it is computational inexpensive to evaluate when compared to running a high-fidelity numerical simulation. A reduced-order model takes couple of seconds to run on a laptop while a high-fidelity simulation may take couple of hours to run on a high-performance computing cluster. The goal of this paper is to assess the utility of regression-based reduced-order models (ROMs) developed from high-fidelity numerical simulations for predicting transient thermal power output for an enhanced geothermal reservoirmore » while explicitly accounting for uncertainties in the subsurface system and site-specific details. Numerical simulations are performed based on equally spaced values in the specified range of model parameters. Key sensitive parameters are then identified from these simulations, which are fracture zone permeability, well/skin factor, bottom hole pressure, and injection flow rate. We found the fracture zone permeability to be the most sensitive parameter. The fracture zone permeability along with time, are used to build regression-based ROMs for the thermal power output. The ROMs are trained and validated using detailed physics-based numerical simulations. Finally, predictions from the ROMs are then compared with field data. We propose three different ROMs with different levels of model parsimony, each describing key and essential features of the power production curves. The coefficients in the proposed regression-based ROMs are developed by minimizing a non-linear least-squares misfit function using the Levenberg–Marquardt algorithm. The misfit function is based on the difference between numerical simulation data and reduced-order model. ROM-1 is constructed based on polynomials up to fourth order. ROM-1 is able to accurately reproduce the power output of numerical simulations for low values of permeabilities and certain features of the field-scale data. ROM-2 is a model with more analytical functions consisting of polynomials up to order eight, exponential functions and smooth approximations of Heaviside functions, and accurately describes the field-data. At higher permeabilities, ROM-2 reproduces numerical results better than ROM-1, however, there is a considerable deviation from numerical results at low fracture zone permeabilities. ROM-3 consists of polynomials up to order ten, and is developed by taking the best aspects of ROM-1 and ROM-2. ROM-1 is relatively parsimonious than ROM-2 and ROM-3, while ROM-2 overfits the data. ROM-3 on the other hand, provides a middle ground for model parsimony. Based on R 2-values for training, validation, and prediction data sets we found that ROM-3 is better model than ROM-2 and ROM-1. For predicting thermal drawdown in EGS applications, where high fracture zone permeabilities (typically greater than 10 –15 m 2) are desired, ROM-2 and ROM-3 outperform ROM-1. As per computational time, all the ROMs are 10 4 times faster when compared to running a high-fidelity numerical simulation. In conclusion, this makes the proposed regression-based ROMs attractive for real-time EGS applications because they are fast and provide reasonably good predictions for thermal power output.« less
Mudunuru, Maruti Kumar; Karra, Satish; Harp, Dylan Robert; ...
2017-07-10
Reduced-order modeling is a promising approach, as many phenomena can be described by a few parameters/mechanisms. An advantage and attractive aspect of a reduced-order model is that it is computational inexpensive to evaluate when compared to running a high-fidelity numerical simulation. A reduced-order model takes couple of seconds to run on a laptop while a high-fidelity simulation may take couple of hours to run on a high-performance computing cluster. The goal of this paper is to assess the utility of regression-based reduced-order models (ROMs) developed from high-fidelity numerical simulations for predicting transient thermal power output for an enhanced geothermal reservoirmore » while explicitly accounting for uncertainties in the subsurface system and site-specific details. Numerical simulations are performed based on equally spaced values in the specified range of model parameters. Key sensitive parameters are then identified from these simulations, which are fracture zone permeability, well/skin factor, bottom hole pressure, and injection flow rate. We found the fracture zone permeability to be the most sensitive parameter. The fracture zone permeability along with time, are used to build regression-based ROMs for the thermal power output. The ROMs are trained and validated using detailed physics-based numerical simulations. Finally, predictions from the ROMs are then compared with field data. We propose three different ROMs with different levels of model parsimony, each describing key and essential features of the power production curves. The coefficients in the proposed regression-based ROMs are developed by minimizing a non-linear least-squares misfit function using the Levenberg–Marquardt algorithm. The misfit function is based on the difference between numerical simulation data and reduced-order model. ROM-1 is constructed based on polynomials up to fourth order. ROM-1 is able to accurately reproduce the power output of numerical simulations for low values of permeabilities and certain features of the field-scale data. ROM-2 is a model with more analytical functions consisting of polynomials up to order eight, exponential functions and smooth approximations of Heaviside functions, and accurately describes the field-data. At higher permeabilities, ROM-2 reproduces numerical results better than ROM-1, however, there is a considerable deviation from numerical results at low fracture zone permeabilities. ROM-3 consists of polynomials up to order ten, and is developed by taking the best aspects of ROM-1 and ROM-2. ROM-1 is relatively parsimonious than ROM-2 and ROM-3, while ROM-2 overfits the data. ROM-3 on the other hand, provides a middle ground for model parsimony. Based on R 2-values for training, validation, and prediction data sets we found that ROM-3 is better model than ROM-2 and ROM-1. For predicting thermal drawdown in EGS applications, where high fracture zone permeabilities (typically greater than 10 –15 m 2) are desired, ROM-2 and ROM-3 outperform ROM-1. As per computational time, all the ROMs are 10 4 times faster when compared to running a high-fidelity numerical simulation. In conclusion, this makes the proposed regression-based ROMs attractive for real-time EGS applications because they are fast and provide reasonably good predictions for thermal power output.« less
Flows of Wet Foamsand Concentrated Emulsions
NASA Technical Reports Server (NTRS)
Nemer, Martin B.
2005-01-01
The aim of this project was is to advance a microstructural understanding of foam and emulsion flows. The dynamics of individual surfactant-covered drops and well as the collective behavior of dilute and concentrated was explored using numerical simulations. The long-range goal of this work is the formulation of reliable microphysically-based statistical models of emulsion flows.
The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from “blue” water to copper pinhole leaks. If left untreated, these problems can lead to health...
Simulation and analysis of a geopotential research mission
NASA Technical Reports Server (NTRS)
Schutz, B. E.
1986-01-01
A computer simulation was performed for a Geopotential Research Mission (GRM) to enable study of the gravitational sensitivity of the range/rate measurement between two satellites and to provide a set of simulated measurements to assist in the evaluation of techniques developed for the determination of the gravity field. The simulation, identified as SGRM 8511, was conducted with two satellites in near circular, frozen orbits at 160 km altitude and separated by 300 km. High precision numerical integration of the polar orbits was used with a gravitational field complete to degree and order 180 coefficients and to degree 300 in orders 0 to 10. The set of simulated data for a mission duration of about 32 days was generated on a Cray X-MP computer. The characteristics of the simulation and the nature of the results are described.
An approach for accurate simulation of liquid mixing in a T-shaped micromixer.
Matsunaga, Takuya; Lee, Ho-Joon; Nishino, Koichi
2013-04-21
In this paper, we propose a new computational method for efficient evaluation of the fluid mixing behaviour in a T-shaped micromixer with a rectangular cross section at high Schmidt number under steady state conditions. Our approach enables a low-cost high-quality simulation based on tracking of fluid particles for convective fluid mixing and posterior solving of a model of the species equation for molecular diffusion. The examined parameter range is Re = 1.33 × 10(-2) to 240 at Sc = 3600. The proposed method is shown to simulate well the mixing quality even in the engulfment regime, where the ordinary grid-based simulation is not able to obtain accurate solutions with affordable mesh sizes due to the numerical diffusion at high Sc. The obtained results agree well with a backward random-walk Monte Carlo simulation, by which the accuracy of the proposed method is verified. For further investigation of the characteristics of the proposed method, the Sc dependency is examined in a wide range of Sc from 10 to 3600 at Re = 200. The study reveals that the model discrepancy error emerges more significantly in the concentration distribution at lower Sc, while the resulting mixing quality is accurate over the entire range.
Numerical and analytical simulation of the production process of ZrO2 hollow particles
NASA Astrophysics Data System (ADS)
Safaei, Hadi; Emami, Mohsen Davazdah
2017-12-01
In this paper, the production process of hollow particles from the agglomerated particles is addressed analytically and numerically. The important parameters affecting this process, in particular, the initial porosity level of particles and the plasma gun types are investigated. The analytical model adopts a combination of quasi-steady thermal equilibrium and mechanical balance. In the analytical model, the possibility of a solid core existing in agglomerated particles is examined. In this model, a range of particle diameters (50μm ≤ D_{p0} ≤ 160 μ m) and various initial porosities ( 0.2 ≤ p ≤ 0.7) are considered. The numerical model employs the VOF technique for two-phase compressible flows. The production process of hollow particles from the agglomerated particles is simulated, considering an initial diameter of D_{p0} = 60 μm and initial porosity of p = 0.3, p = 0.5, and p = 0.7. Simulation results of the analytical model indicate that the solid core diameter is independent of the initial porosity, whereas the thickness of the particle shell strongly depends on the initial porosity. In both models, a hollow particle may hardly develop at small initial porosity values ( p < 0.3), while the particle disintegrates at high initial porosity values ( p > 0.6.
Goodarzi, M; Safaei, M R; Oztop, Hakan F; Karimipour, A; Sadeghinezhad, E; Dahari, M; Kazi, S N; Jomhari, N
2014-01-01
The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (10⁴) and turbulent flow (10⁸). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible.
Goodarzi, M.; Safaei, M. R.; Oztop, Hakan F.; Karimipour, A.; Sadeghinezhad, E.; Dahari, M.; Kazi, S. N.; Jomhari, N.
2014-01-01
The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (104) and turbulent flow (108). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible. PMID:24778601
A spacecraft's own ambient environment: The role of simulation-based research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketsdever, Andrew D.; Gimelshein, Sergey
2014-12-09
Spacecraft contamination has long been a subject of study in the rarefied gas dynamics community. Professor Mikhail Ivanov coined the term a spacecraft's 'own ambient environment' to describe the effects of natural and satellite driven processes on the conditions encountered by a spacecraft in orbit. Outgassing, thruster firings, and gas and liquid dumps all contribute to the spacecraft's contamination environment. Rarefied gas dynamic modeling techniques, such as Direct Simulation Monte Carlo, are well suited to investigate these spacebased environments. However, many advances were necessary to fully characterize the extent of this problem. A better understanding of modeling flows over largemore » pressure ranges, for example hybrid continuum and rarefied numerical schemes, were required. Two-phase flow modeling under rarefied conditions was necessary. And the ability to model plasma flows for a new era of propulsion systems was also required. Through the work of Professor Ivanov and his team, we now have a better understanding of processes that create a spacecraft's own ambient environment and are able to better characterize these environments. Advances in numerical simulation have also spurred on the development of experimental facilities to study these effects. The relationship between numerical results and experimental advances will be explored in this manuscript.« less
Static and moving solid/gas interface modeling in a hybrid rocket engine
NASA Astrophysics Data System (ADS)
Mangeot, Alexandre; William-Louis, Mame; Gillard, Philippe
2018-07-01
A numerical model was developed with CFD-ACE software to study the working condition of an oxygen-nitrogen/polyethylene hybrid rocket combustor. As a first approach, a simplified numerical model is presented. It includes a compressible transient gas phase in which a two-step combustion mechanism is implemented coupled to a radiative model. The solid phase from the fuel grain is a semi-opaque material with its degradation process modeled by an Arrhenius type law. Two versions of the model were tested. The first considers the solid/gas interface with a static grid while the second uses grid deformation during the computation to follow the asymmetrical regression. The numerical results are obtained with two different regression kinetics originating from ThermoGravimetry Analysis and test bench results. In each case, the fuel surface temperature is retrieved within a range of 5% error. However, good results are only found using kinetics from the test bench. The regression rate is found within 0.03 mm s-1 and average combustor pressure and its variation over time have the same intensity than the measurements conducted on the test bench. The simulation that uses grid deformation to follow the regression shows a good stability over a 10 s simulated time simulation.
Visible-light OCT to quantify retinal oxygen metabolism (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhang, Hao F.; Yi, Ji; Chen, Siyu; Liu, Wenzhong; Soetikno, Brian T.
2016-03-01
We explored, both numerically and experimentally, whether OCT can be a good candidate to accurately measure retinal oxygen metabolism. We first used statistical methods to numerically simulate photon transport in the retina to mimic OCT working under different spectral ranges. Then we analyze accuracy of OCT oximetry subject to parameter variations such as vessel size, pigmentation, and oxygenation. We further developed an experimental OCT system based on the spectral range identified by our simulation work. We applied the newly developed OCT to measure both retinal hemoglobin oxygen saturation (sO2) and retinal retinal flow. After obtaining the retinal sO2 and blood velocity, we further measured retinal vessel diameter and calculated the retinal oxygen metabolism rate (MRO2). To test the capability of our OCT, we imaged wild-type Long-Evans rats ventilated with both normal air and air mixtures with various oxygen concentrations. Our simulation suggested that OCT working within visible spectral range is able to provide accurate measurement of retinal MRO2 using inverse Fourier transform spectral reconstruction. We called this newly developed technology vis-OCT, and showed that vis-OCT was able to measure the sO2 value in every single major retinal vessel around the optical disk as well as in micro retinal vessels. When breathing normal air, the averaged sO2 in arterial and venous blood in Long-Evans rats was measured to be 95% and 72%, respectively. When we challenge the rats using air mixtures with different oxygen concentrations, vis-OCT measurement followed analytical models of retinal oxygen diffusion and pulse oximeter well.
Large perturbation flow field analysis and simulation for supersonic inlets
NASA Technical Reports Server (NTRS)
Varner, M. O.; Martindale, W. R.; Phares, W. J.; Kneile, K. R.; Adams, J. C., Jr.
1984-01-01
An analysis technique for simulation of supersonic mixed compression inlets with large flow field perturbations is presented. The approach is based upon a quasi-one-dimensional inviscid unsteady formulation which includes engineering models of unstart/restart, bleed, bypass, and geometry effects. Numerical solution of the governing time dependent equations of motion is accomplished through a shock capturing finite difference algorithm, of which five separate approaches are evaluated. Comparison with experimental supersonic wind tunnel data is presented to verify the present approach for a wide range of transient inlet flow conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.
2015-12-01
Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.
DSMC simulations of shock interactions about sharp double cones
NASA Astrophysics Data System (ADS)
Moss, James N.
2001-08-01
This paper presents the results of a numerical study of shock interactions resulting from Mach 10 flow about sharp double cones. Computations are made by using the direct simulation Monte Carlo (DSMC) method of Bird. The sensitivity and characteristics of the interactions are examined by varying flow conditions, model size, and configuration. The range of conditions investigated includes those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel.
Soliton propagation in tapered silicon core fibers.
Peacock, Anna C
2010-11-01
Numerical simulations are used to investigate soliton-like propagation in tapered silicon core optical fibers. The simulations are based on a realistic tapered structure with nanoscale core dimensions and a decreasing anomalous dispersion profile to compensate for the effects of linear and nonlinear loss. An intensity misfit parameter is used to establish the optimum taper dimensions that preserve the pulse shape while reducing temporal broadening. Soliton formation from Gaussian input pulses is also observed--further evidence of the potential for tapered silicon fibers to find use in a range of signal processing applications.
DSMC Simulations of Shock Interactions About Sharp Double Cones
NASA Technical Reports Server (NTRS)
Moss, James N.
2000-01-01
This paper presents the results of a numerical study of shock interactions resulting from Mach 10 flow about sharp double cones. Computations are made by using the direct simulation Monte Carlo (DSMC) method of Bird. The sensitivity and characteristics of the interactions are examined by varying flow conditions, model size, and configuration. The range of conditions investigated includes those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel.
NASA Technical Reports Server (NTRS)
Cambon, C.; Coleman, G. N.; Mansour, N. N.
1992-01-01
The effect of rapid mean compression on compressible turbulence at a range of turbulent Mach numbers is investigated. Rapid distortion theory (RDT) and direct numerical simulation results for the case of axial (one-dimensional) compression are used to illustrate the existence of two distinct rapid compression regimes. These regimes are set by the relationships between the timescales of the mean distortion, the turbulence, and the speed of sound. A general RDT formulation is developed and is proposed as a means of improving turbulence models for compressible flows.
NASA Technical Reports Server (NTRS)
Nosenchuck, D. M.; Littman, M. G.
1986-01-01
The Navier-Stokes computer (NSC) has been developed for solving problems in fluid mechanics involving complex flow simulations that require more speed and capacity than provided by current and proposed Class VI supercomputers. The machine is a parallel processing supercomputer with several new architectural elements which can be programmed to address a wide range of problems meeting the following criteria: (1) the problem is numerically intensive, and (2) the code makes use of long vectors. A simulation of two-dimensional nonsteady viscous flows is presented to illustrate the architecture, programming, and some of the capabilities of the NSC.
Lopresto, Vanni; Pinto, Rosanna; Farina, Laura; Cavagnaro, Marta
2017-08-01
Microwave thermal ablation (MTA) therapy for cancer treatments relies on the absorption of electromagnetic energy at microwave frequencies to induce a very high and localized temperature increase, which causes an irreversible thermal damage in the target zone. Treatment planning in MTA is based on experimental observations of ablation zones in ex vivo tissue, while predicting the treatment outcomes could be greatly improved by reliable numerical models. In this work, a fully dynamical simulation model is exploited to look at effects of temperature-dependent variations in the dielectric and thermal properties of the targeted tissue on the prediction of the temperature increase and the extension of the thermally coagulated zone. In particular, the influence of measurement uncertainty of tissue parameters on the numerical results is investigated. Numerical data were compared with data from MTA experiments performed on ex vivo bovine liver tissue at 2.45GHz, with a power of 60W applied for 10min. By including in the simulation model an uncertainty budget (CI=95%) of ±25% in the properties of the tissue due to inaccuracy of measurements, numerical results were achieved in the range of experimental data. Obtained results also showed that the specific heat especially influences the extension of the thermally coagulated zone, with an increase of 27% in length and 7% in diameter when a variation of -25% is considered with respect to the value of the reference simulation model. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Wedi, Nils P
2014-06-28
The steady path of doubling the global horizontal resolution approximately every 8 years in numerical weather prediction (NWP) at the European Centre for Medium Range Weather Forecasts may be substantially altered with emerging novel computing architectures. It coincides with the need to appropriately address and determine forecast uncertainty with increasing resolution, in particular, when convective-scale motions start to be resolved. Blunt increases in the model resolution will quickly become unaffordable and may not lead to improved NWP forecasts. Consequently, there is a need to accordingly adjust proven numerical techniques. An informed decision on the modelling strategy for harnessing exascale, massively parallel computing power thus also requires a deeper understanding of the sensitivity to uncertainty--for each part of the model--and ultimately a deeper understanding of multi-scale interactions in the atmosphere and their numerical realization in ultra-high-resolution NWP and climate simulations. This paper explores opportunities for substantial increases in the forecast efficiency by judicious adjustment of the formal accuracy or relative resolution in the spectral and physical space. One path is to reduce the formal accuracy by which the spectral transforms are computed. The other pathway explores the importance of the ratio used for the horizontal resolution in gridpoint space versus wavenumbers in spectral space. This is relevant for both high-resolution simulations as well as ensemble-based uncertainty estimation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx
NASA Astrophysics Data System (ADS)
Dean, C.; Soloviev, A.
2015-12-01
Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the pollution transport including oil spills. The near-surface data from the field experiments in the Gulf of Mexico during the SCOPE experiment were available for validation of numerical simulations. In particular, we observed a freshwater layer within a few-meter depth range and, in some cases, a density inversion at the edge of the freshwater lens, which is consistent with the results of numerical simulations. In conclusion, we discuss applicability of these results to the interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The results of this study indicate that 3D dynamics of the near-surface layer of the ocean are essential in the presence of freshwater inflow.
EXTENSION OF THE MURAM RADIATIVE MHD CODE FOR CORONAL SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rempel, M., E-mail: rempel@ucar.edu
2017-01-01
We present a new version of the MURaM radiative magnetohydrodynamics (MHD) code that allows for simulations spanning from the upper convection zone into the solar corona. We implement the relevant coronal physics in terms of optically thin radiative loss, field aligned heat conduction, and an equilibrium ionization equation of state. We artificially limit the coronal Alfvén and heat conduction speeds to computationally manageable values using an approximation to semi-relativistic MHD with an artificially reduced speed of light (Boris correction). We present example solutions ranging from quiet to active Sun in order to verify the validity of our approach. We quantifymore » the role of numerical diffusivity for the effective coronal heating. We find that the (numerical) magnetic Prandtl number determines the ratio of resistive to viscous heating and that owing to the very large magnetic Prandtl number of the solar corona, heating is expected to happen predominantly through viscous dissipation. We find that reasonable solutions can be obtained with values of the reduced speed of light just marginally larger than the maximum sound speed. Overall this leads to a fully explicit code that can compute the time evolution of the solar corona in response to photospheric driving using numerical time steps not much smaller than 0.1 s. Numerical simulations of the coronal response to flux emergence covering a time span of a few days are well within reach using this approach.« less
Study of eigenfrequencies with the help of Prony's method
NASA Astrophysics Data System (ADS)
Drobakhin, O. O.; Olevskyi, O. V.; Olevskyi, V. I.
2017-10-01
Eigenfrequencies can be crucial in the design of a construction. They define many parameters that determine limit parameters of the structure. Exceeding these values can lead to the structural failure of an object. It is especially important in the design of structures which support heavy equipment or are subjected to the forces of airflow. One of the most effective ways to acquire the frequencies' values is a computer-based numerical simulation. The existing methods do not allow to acquire the whole range of needed parameters. It is well known that Prony's method, is highly effective for the investigation of dynamic processes. Thus, it is rational to adapt Prony's method for such investigation. The Prony method has advantage in comparison with other numerical schemes because it provides the possibility to process not only the results of numerical simulation, but also real experimental data. The research was carried out for a computer model of a steel plate. The input data was obtained by using the Dassault Systems SolidWorks computer package with the Simulation add-on. We investigated the acquired input data with the help of Prony's method. The result of the numerical experiment shows that Prony's method can be used to investigate the mechanical eigenfrequencies with good accuracy. The output of Prony's method not only contains the information about values of frequencies themselves, but also contains data regarding the amplitudes, initial phases and decaying factors of any given mode of oscillation, which can also be used in engineering.
A wall interference assessment/correction system
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Ulbrich, N.; Sickles, W. L.; Qian, Cathy X.
1992-01-01
A Wall Signature method, the Hackett method, has been selected to be adapted for the 12-ft Wind Tunnel wall interference assessment/correction (WIAC) system in the present phase. This method uses limited measurements of the static pressure at the wall, in conjunction with the solid wall boundary condition, to determine the strength and distribution of singularities representing the test article. The singularities are used in turn for estimating wall interferences at the model location. The Wall Signature method will be formulated for application to the unique geometry of the 12-ft Tunnel. The development and implementation of a working prototype will be completed, delivered and documented with a software manual. The WIAC code will be validated by conducting numerically simulated experiments rather than actual wind tunnel experiments. The simulations will be used to generate both free-air and confined wind-tunnel flow fields for each of the test articles over a range of test configurations. Specifically, the pressure signature at the test section wall will be computed for the tunnel case to provide the simulated 'measured' data. These data will serve as the input for the WIAC method-Wall Signature method. The performance of the WIAC method then may be evaluated by comparing the corrected parameters with those for the free-air simulation. Each set of wind tunnel/test article numerical simulations provides data to validate the WIAC method. A numerical wind tunnel test simulation is initiated to validate the WIAC methods developed in the project. In the present reported period, the blockage correction has been developed and implemented for a rectangular tunnel as well as the 12-ft Pressure Tunnel. An improved wall interference assessment and correction method for three-dimensional wind tunnel testing is presented in the appendix.
Two-dimensional electrodynamic structure of the normal glow discharge in an axial magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surzhikov, S. T., E-mail: surg@ipmnet.ru
Results are presented from numerical simulations of an axisymmetric normal glow discharge in molecular hydrogen and molecular nitrogen in an axial magnetic field. The charged particle densities and averaged azimuthal rotation velocities of electrons and ions are studied as functions of the gas pressure in the range of 1–5 Torr, electric field strength in the range of 100–600 V/cm, and magnetic field in the range of 0.01–0.3 T. It is found that the axial magnetic field does not disturb the normal current density law.
Macroion solutions in the cell model studied by field theory and Monte Carlo simulations.
Lue, Leo; Linse, Per
2011-12-14
Aqueous solutions of charged spherical macroions with variable dielectric permittivity and their associated counterions are examined within the cell model using a field theory and Monte Carlo simulations. The field theory is based on separation of fields into short- and long-wavelength terms, which are subjected to different statistical-mechanical treatments. The simulations were performed by using a new, accurate, and fast algorithm for numerical evaluation of the electrostatic polarization interaction. The field theory provides counterion distributions outside a macroion in good agreement with the simulation results over the full range from weak to strong electrostatic coupling. A low-dielectric macroion leads to a displacement of the counterions away from the macroion. © 2011 American Institute of Physics
Building Interactive Simulations in Web Pages without Programming.
Mailen Kootsey, J; McAuley, Grant; Bernal, Julie
2005-01-01
A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network.
Impinging laminar jets at moderate Reynolds numbers and separation distances.
Bergthorson, Jeffrey M; Sone, Kazuo; Mattner, Trent W; Dimotakis, Paul E; Goodwin, David G; Meiron, Dan I
2005-12-01
An experimental and numerical study of impinging, incompressible, axisymmetric, laminar jets is described, where the jet axis of symmetry is aligned normal to the wall. Particle streak velocimetry (PSV) is used to measure axial velocities along the centerline of the flow field. The jet-nozzle pressure drop is measured simultaneously and determines the Bernoulli velocity. The flow field is simulated numerically by an axisymmetric Navier-Stokes spectral-element code, an axisymmetric potential-flow model, and an axisymmetric one-dimensional stream-function approximation. The axisymmetric viscous and potential-flow simulations include the nozzle in the solution domain, allowing nozzle-wall proximity effects to be investigated. Scaling the centerline axial velocity by the Bernoulli velocity collapses the experimental velocity profiles onto a single curve that is independent of the nozzle-to-plate separation distance. Axisymmetric direct numerical simulations yield good agreement with experiment and confirm the velocity profile scaling. Potential-flow simulations reproduce the collapse of the data; however, viscous effects result in disagreement with experiment. Axisymmetric one-dimensional stream-function simulations can predict the flow in the stagnation region if the boundary conditions are correctly specified. The scaled axial velocity profiles are well characterized by an error function with one Reynolds-number-dependent parameter. Rescaling the wall-normal distance by the boundary-layer displacement-thickness-corrected diameter yields a collapse of the data onto a single curve that is independent of the Reynolds number. These scalings allow the specification of an analytical expression for the velocity profile of an impinging laminar jet over the Reynolds number range investigated of .
Numerical simulation and analysis for low-frequency rock physics measurements
NASA Astrophysics Data System (ADS)
Dong, Chunhui; Tang, Genyang; Wang, Shangxu; He, Yanxiao
2017-10-01
In recent years, several experimental methods have been introduced to measure the elastic parameters of rocks in the relatively low-frequency range, such as differential acoustic resonance spectroscopy (DARS) and stress-strain measurement. It is necessary to verify the validity and feasibility of the applied measurement method and to quantify the sources and levels of measurement error. Relying solely on the laboratory measurements, however, we cannot evaluate the complete wavefield variation in the apparatus. Numerical simulations of elastic wave propagation, on the other hand, are used to model the wavefield distribution and physical processes in the measurement systems, and to verify the measurement theory and analyze the measurement results. In this paper we provide a numerical simulation method to investigate the acoustic waveform response of the DARS system and the quasi-static responses of the stress-strain system, both of which use axisymmetric apparatus. We applied this method to parameterize the properties of the rock samples, the sample locations and the sensor (hydrophone and strain gauges) locations and simulate the measurement results, i.e. resonance frequencies and axial and radial strains on the sample surface, from the modeled wavefield following the physical experiments. Rock physical parameters were estimated by inversion or direct processing of these data, and showed a perfect match with the true values, thus verifying the validity of the experimental measurements. Error analysis was also conducted for the DARS system with 18 numerical samples, and the sources and levels of error are discussed. In particular, we propose an inversion method for estimating both density and compressibility of these samples. The modeled results also showed fairly good agreement with the real experiment results, justifying the effectiveness and feasibility of our modeling method.
NASA Astrophysics Data System (ADS)
Cheng, Zhen; Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.
2016-05-01
The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to continental margins. Hence, studying fine sediment resuspensions in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycles. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with sediment availabilities. As the sediment availability and hence the sediment-induced stable stratification increases, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to hindered settling and particle inertia effects. Present numerical simulations including the particle inertia suggest that for a typical wave condition in continental shelves, the effect of particle inertia is negligible. Through additional numerical experiments, we also confirm that the particle inertia tends (up to the Stokes number St = 0.2) to attenuate flow turbulence. On the other hand, for flocs with lower gelling concentrations, the hindered settling can play a key role in sustaining a large amount of suspended sediments and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A sufficient condition for the occurrence of gelling ignition is hypothesized for a range of wave intensities as a function of sediment/floc properties and erodibility parameters.
NASA Astrophysics Data System (ADS)
Cheng, Gang; Barrière, Thierry
2018-05-01
The hot embossing process has been widely used in the manufacturing of polymer components, especially for the fabrication of micro or nano components. The significant advantage of the hot embossing process compared to the traditional injection moulding process is the excellent effective filling ratio for the high aspect ratio components and large surface structural components. The lack of material behavior modeling and numerical simulation limits the further development the hot embossing process, especially at the micro and nano scales. In this paper, a visco-elastoplastic behavior law has been proposed to describe the amorphous thermoplastic polymer mechanical properties in the hot embossing processing temperature range, which is lightly above their glass transition temperature. Uniaxial compression tests have been carried out in order to investigate the amorphous thermoplastic polymers properties. The material parameters in the visco-elastoplastic model have been identified according to the experimental results. A 3D numerical model has been created in the simulation software, which is based on the finite element method. The numerical simulation of the filling step of the hot embossing process has been effectuated by taking into account the viscous, elastic and plastic behaviors of thermoplastic polymers. The micro hot embossing process has been carried out using horizontal injection compression moulding equipment. A complete compression mould tool, equipped with the heating system, the cooling system, the ejection system and the vacuum system, has been designed and elaborated for this research work. The microfluidic devices based on the amorphous thermoplastic polymers have been successfully elaborated by hot embossing process. Proper agreement between the numerical simulation and the experimental elaboration has been obtained.
Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yong; LaBolle, Eric; Reeves, Donald M
2012-07-01
Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the currentmore » dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other continuum to the mass in the current continuum. Numerical examples show that this method is limited to certain ranges of parameters, due to an intrinsic assumption of an equilibrium concentration profile in the matrix blocks in building the transfer probability. Subsequently, this method fails in describing mass transfer for parameter combinations that violate this assumption, including small diffusion coefficients (i.e., the free-water molecular diffusion coefficient 1×10-11 meter2/second), relatively large fracture spacings (such as meter), and/or relatively large matrix retardation coefficients (i.e., ). These “outliers” in parameter range are common in UGTA applications. To address the above limitations, we then developed a Direct Numerical Simulation (DNS)-Reflective method. The novel DNS-Reflective method can directly track the particle dynamics across the fracture/matrix interface using a random walk, without any empirical assumptions. This advantage should make the DNS-Reflective method feasible for a wide range of parameters. Numerical tests of the DNS-Reflective, however, show that the method is computationally very demanding, since the time step must be very small to resolve particle transfer between fractures and matrix blocks. To improve the computational efficiency of the DNS approach, we then adopted Roubinet et al.’s method [2009], which uses first passage time distributions to simulate dual-domain mass transfer. The DNS-Roubinet method was found to be computationally more efficient than the DNS-Reflective method. It matches the analytical solution for the whole range of major parameters (including diffusion coefficient and fracture aperture values that are considered “outliers” for Liu et al.’s transfer probability method [2000]) for a single fracture system. The DNS-Roubinet method, however, has its own disadvantage: for a parallel fracture system, the truncation of the first passage time distribution creates apparent errors when the fracture spacing is small, and thus it tends to erroneously predict breakthrough curves (BTCs) for the parallel fracture system. Finally, we adopted the transient range approach proposed by Pan and Bodvarsson [2002] in RWHet. In this method, particle transfer between fractures and matrix blocks can be resolved without using very small time steps. It does not use any truncation of the first passage time distribution for particles. Hence it does not have the limitation identified above for the DNS-Reflective method and the DNS-Roubinet method. Numerical results were checked against analytical solutions, and also compared to DCPTV2.0 [Pan, 2002]. This version of RWHet (called RWHet-Pan&Bodvarsson in this report) can accurately capture contaminant transport in fractured porous media for a full range of parameters without any practical or theoretical limitations.« less
Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas
NASA Astrophysics Data System (ADS)
Yifat, Yuval; Ackerman, Matthew; Guyot-Sionnest, Philippe
2017-01-01
We report the fabrication of a colloidal quantum dot based photodetector designed for the 3-5 μm mid infrared wavelength range incorporated with optical nano-antenna arrays to enhance the photocurrent. The fabricated arrays exhibit a resonant behavior dependent on the length of the nano-antenna rods, in good agreement with numerical simulation. The device exhibits a three-fold increase in the spectral photoresponse compared to a photodetector device without antennas, and the resonance is polarized parallel to the antenna orientation. We numerically estimate the device quantum efficiency and investigate its bias dependence.
Inertial floaters in stratified turbulence
NASA Astrophysics Data System (ADS)
Sozza, A.; De Lillo, F.; Boffetta, G.
2018-01-01
We investigate numerically the dynamics and statistics of inertial particles transported by stratified turbulence, in the case of particle density intermediate in the average density profile of the fluid. Under these conditions, particles tend to form a thin layer around the corresponding fluid isopycnal. The thickness of the resulting layer is determined by a balance between buoyancy (which attracts the particle to the isopycnal) and inertia (which prevents them from following it exactly). By means of extensive numerical simulations, we explore the parameter space of the system and we find that in a range of parameters particles form fractal clusters within the layer.
Theory and Circuit Model for Lossy Coaxial Transmission Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genoni, T. C.; Anderson, C. N.; Clark, R. E.
2017-04-01
The theory of signal propagation in lossy coaxial transmission lines is revisited and new approximate analytic formulas for the line impedance and attenuation are derived. The accuracy of these formulas from DC to 100 GHz is demonstrated by comparison to numerical solutions of the exact field equations. Based on this analysis, a new circuit model is described which accurately reproduces the line response over the entire frequency range. Circuit model calculations are in excellent agreement with the numerical and analytic results, and with finite-difference-time-domain simulations which resolve the skindepths of the conducting walls.
Long-range monostatic remote sensing of geomaterial structure weak vibrations
NASA Astrophysics Data System (ADS)
Heifetz, Alexander; Bakhtiari, Sasan; Gopalsami, Nachappa; Elmer, Thomas W.; Mukherjee, Souvik
2018-04-01
We study analytically and numerically signal sensitivity in remote sensing measurements of weak mechanical vibration of structures made of typical construction geomaterials, such as concrete. The analysis includes considerations of electromagnetic beam atmospheric absorption, reflection, scattering, diffraction and losses. Comparison is made between electromagnetic frequencies of 35GHz (Ka-band), 94GHz (W-band) and 260GHz (WR-3 waveguide band), corresponding to atmospheric transparency windows of the electromagnetic spectrum. Numerical simulations indicate that 94GHz frequency is optimal in terms of signal sensitivity and specificity for long-distance (>1.5km) sensing of weak multi-mode vibrations.
Laser propagation and soliton generation in strongly magnetized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, W.; Li, J. Q.; Kishimoto, Y.
The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Mostmore » interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.« less
NASA Astrophysics Data System (ADS)
Huang, Xinyue; Li, Xueming; Yang, Jianchun; Tao, Chuanyi; Guo, Xiaogang; Bao, Hebin; Yin, Yanjun; Chen, Huifei; Zhu, Yuhua
2017-04-01
Ammonia is an important indicator among environmental monitoring parameters. In this work, thin-core fiber Mach-Zehnder interferometer deposited with poly (acrylic acid) (PAA), poly (allyamine hydrochloride) (PAH) and single-walled carbon nanotubes (SWCNTs-COOH) sensing film for the detection of ammonia gas has been presented. The thin-core fiber modal interferometer was made by fusion splicing a small section of thin-core fiber (TCF) between two standard single mode fibers (SMF). A beam propagation method (BPM) is employed for the design of proposed interferometer and numerical simulation. Based on the simulation results, interferometer with a length of 2 cm of thin-core fiber is fabricated and experimentally studied. (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film is deposited on the outer surface of thin-core fiber via layer-by-layer (LbL) self-assembly technique. The gas sensor coated with (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film towards NH3 gas exposure at concentrations range from 1 to 960 ppm are analyzed and the sensing capability is demonstrated by optical spectrum analyzer (OSA). Experimental results show that the characteristic wavelength shift has an approximately linear relationship in the range 1-20 ppm, which is in accordance with the numerical simulation. Thus, this paper reveals the potential application of this sensor in monitoring low concentration NH3 gas.
Two-Relaxation-Time Lattice Boltzmann Method for Advective-Diffusive-Reactive Transport
NASA Astrophysics Data System (ADS)
Yan, Z.; Hilpert, M.
2016-12-01
The lattice Boltzmann method (LBM) has been applied to study a wide range of reactive transport in porous and fractured media. The single-relaxation-time (SRT) LBM, employing single relaxation time, is the most popular LBM due to its simplicity of understanding and implementation. Nevertheless, the SRT LBM may suffer from numerical instability for small value of the relaxation time. By contrast, the multiple-relaxation-time (MRT) LBM, employing multiple relaxation times, can improve the numerical stability through tuning the multiple relaxation times, but the complexity of implementing this method restricts its applications. The two-relaxation-time (TRT) LBM, which employs two relaxation times, combines the advantages of SRT and MRT LBMs. The TRT LBM can produce simulations with better accuracy and stability than the SRT one, and is easier to implement than the MRT one. This work evaluated the numerical accuracy and stability of the TRT method by comparing the simulation results with analytical solutions of Gaussian hill transport and Taylor dispersion under different advective velocities. The accuracy generally increased with the tunable relaxation time τ, and the stability first increased and then decreased as τ increased, showing an optimal TRT method emerging the best numerical stability. The free selection of τ enabled the TRT LBM to simulate the Gaussian hill transport and Taylor dispersion under relatively high advective velocity, under which the SRT LBM suffered from numerical instability. Finally, the TRT method was applied to study the contaminant degradation by chemotactic microorganisms in porous media, which acted as a reprehensive of reactive transport in this study, and well predicted the evolution of microorganisms and degradation of contaminants for different transport scenarios. To sum up, the TRT LBM produced simulation results with good accuracy and stability for various advective-diffusive-reactive transport through tuning the relaxation time τ, illustrating its potential to study various biogeochemical behaviors in the subsurface environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; McPherson, Brian J.; Grigg, Reid B.
Numerical simulation is an invaluable analytical tool for scientists and engineers in making predictions about of the fate of carbon dioxide injected into deep geologic formations for long-term storage. Current numerical simulators for assessing storage in deep saline formations have capabilities for modeling strongly coupled processes involving multifluid flow, heat transfer, chemistry, and rock mechanics in geologic media. Except for moderate pressure conditions, numerical simulators for deep saline formations only require the tracking of two immiscible phases and a limited number of phase components, beyond those comprising the geochemical reactive system. The requirements for numerically simulating the utilization and storagemore » of carbon dioxide in partially depleted petroleum reservoirs are more numerous than those for deep saline formations. The minimum number of immiscible phases increases to three, the number of phase components may easily increase fourfold, and the coupled processes of heat transfer, geochemistry, and geomechanics remain. Public and scientific confidence in the ability of numerical simulators used for carbon dioxide sequestration in deep saline formations has advanced via a natural progression of the simulators being proven against benchmark problems, code comparisons, laboratory-scale experiments, pilot-scale injections, and commercial-scale injections. This paper describes a new numerical simulator for the scientific investigation of carbon dioxide utilization and storage in partially depleted petroleum reservoirs, with an emphasis on its unique features for scientific investigations; and documents the numerical simulation of the utilization of carbon dioxide for enhanced oil recovery in the western section of the Farnsworth Unit and represents an early stage in the progression of numerical simulators for carbon utilization and storage in depleted oil reservoirs.« less
The energetics of relativistic jets in active galactic nuclei with various kinetic powers
NASA Astrophysics Data System (ADS)
Musoke, Gibwa Rebecca; Young, Andrew; Molnar, Sandor; Birkinshaw, Mark
2018-01-01
Numerical simulations are an important tool in understanding the physical processes behind relativistic jets in active galactic nuclei. In such simulations different combinations of intrinsic jet parameters can be used to obtain the same jet kinetic powers. We present a numerical investigation of the effects of varying the jet power on the dynamic and energetic characteristics of the jets for two kinetic power regimes; in the first regime we change the jet density whilst maintaining a fixed velocity, in the second the jet density is held constant while the velocity is varied. We conduct 2D axisymmetric hydrodynamic simulations of bipolar jets propagating through an isothermal cluster atmosphere using the FLASH MHD code in pure hydrodynamics mode. The jets are simulated with kinetic powers ranging between 1045 and 1046 erg/s and internal Mach numbers ranging from 5.6 to 21.5.As the jets begin to propagate into the intracluster medium (ICM), the injected jet energy is converted into the thermal, kinetic and gravitational potential energy components of the jet cocoon and ICM. We explore the temporal evolution of the partitioning of the injected jet energy into the cocoon and the ICM and quantify the importance of entrainment process on the energy partitioning. We investigate the fraction of injected energy transferred to the thermal energy component of the jet-ICM system in the context of heating the cluster environments, noting that the jets simulated display peak thermalisation efficiencies of least 65% and a marked dependence on the jet density. We compare the efficiencies of the energy partitioning between the cocoon and ICM for the two kinetic power regimes and discuss the resulting efficiency-power scaling relations of each regime.
Quality, Quantity, And Surprise! Trade-Offs In X-Raser ASAT Attrition
NASA Astrophysics Data System (ADS)
Callaham, Michael B.; Scibilia, Frank M.
1984-08-01
In order to characterize the effects of technological superiority, numerical superiority, and pre-emption on space battle outcomes, we have constructed a battle simulation in which "Red" and "Blue" ASATs, each armed with a specified number of x-ray lasers of specified range, move along specified orbits and fire on one another according to a pair of battle management algorithms. The simulated battle proceeds until apparent steady-state force levels are reached. Battle outcomes are characterized by terminal force ratio and by terminal force-exchange ratio as effective weapon range, multiplicity (x-rasers per ASAT), and pre-emptive role are varied parametrically. A major conclusion is that pre-emptive advantage increases with increasing x-raser range and multiplicity (x-rasers per ASAT) and with increasing force size. That is, the "use 'em or lose 'em" dilemma will become more stark as such weapons are refined and proliferated.
GEOSIM: A numerical model for geophysical fluid flow simulation
NASA Technical Reports Server (NTRS)
Butler, Karen A.; Miller, Timothy L.; Lu, Huei-Iin
1991-01-01
A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment.
NASA Astrophysics Data System (ADS)
Owolabi, Kolade M.
2018-03-01
In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain (-∞, ∞), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.
Direct numerical simulations of on-demand vortex generators: Mathematical formulation
NASA Technical Reports Server (NTRS)
Koumoutsakos, Petros
1994-01-01
The objective of the present research is the development and application of efficient adaptive numerical algorithms for the study, via direct numerical simulations, of active vortex generators. We are using innovative computational schemes to investigate flows past complex configurations undergoing arbitrary motions. Some of the questions we try to answer are: Can and how may we control the dynamics of the wake? What is the importance of body shape and motion in the active control of the flow? What is the effect of three-dimensionality in laboratory experiments? We are interested not only in coupling our results to ongoing, related experimental work, but furthermore to develop an extensive database relating the above mechanisms to the vortical wake structures with the long-range objective of developing feedback control mechanisms. This technology is very important to aircraft, ship, automotive, and other industries that require predictive capability for fluid mechanical problems. The results would have an impact in high angle of attack aerodynamics and help design ways to improve the efficiency of ships and submarines (maneuverability, vortex induced vibration, and noise).
Experimental Investigations And Numerical Modelling of 210CR12 Steel in Semi-Solid State
NASA Astrophysics Data System (ADS)
Macioł, Piotr; Zalecki, Władysław; Kuziak, Roman; Jakubowicz, Aleksandra; Weglarczyk, Stanisław
2011-05-01
Experimental investigation, including hot compression and simple closed die filling was performed. Temperature range of tests was between 1225 °C and 1320 °C. Temperature selection was adequate with liquid fraction between 20 and 60%, which is typical for thixoforming processes. In the die filling test, steel dies with ceramic layer was used (highly refractory air-setting mortar JM 3300 manufactured by Thermal Ceramics). Experiments were carried out on the Gleeble 3800 physical simulator with MCU unit. In the paper, methodology of experimental investigation is described. Dependency of forming forces on temperature and forming velocities is analysed. Obtained results are discussed. The second part of the paper concerns numerical modelling of semi-solid forming. Numerical models for both sets of test were developed. Structural and Computational Fluid Dynamics models are compared. Initial works in microstructural modelling of 210CR12 steel behaviour are described. Lattice Boltzman Method model for thixotropic flows is introduced. Microscale and macroscale models were integrated into multiscale simulation of semi-solid forming. Some fundamental issues related to multiscale modelling of thixoforming are discussed.
Direct numerical simulations of on-demand vortex generators: Mathematical formulation
NASA Astrophysics Data System (ADS)
Koumoutsakos, Petros
1994-12-01
The objective of the present research is the development and application of efficient adaptive numerical algorithms for the study, via direct numerical simulations, of active vortex generators. We are using innovative computational schemes to investigate flows past complex configurations undergoing arbitrary motions. Some of the questions we try to answer are: Can and how may we control the dynamics of the wake? What is the importance of body shape and motion in the active control of the flow? What is the effect of three-dimensionality in laboratory experiments? We are interested not only in coupling our results to ongoing, related experimental work, but furthermore to develop an extensive database relating the above mechanisms to the vortical wake structures with the long-range objective of developing feedback control mechanisms. This technology is very important to aircraft, ship, automotive, and other industries that require predictive capability for fluid mechanical problems. The results would have an impact in high angle of attack aerodynamics and help design ways to improve the efficiency of ships and submarines (maneuverability, vortex induced vibration, and noise).
A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well
NASA Astrophysics Data System (ADS)
Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun
2017-11-01
Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.
2011-01-01
Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.
A system for the simulation and evaluation of satellite communication networks
NASA Technical Reports Server (NTRS)
Bagwell, J. W.
1983-01-01
With the emergence of a new era in satellite communications brought about by NASA's thrust into the Ka band with multibeam and onboard processing technologies, new and innovative techniques for evaluating these concepts and systems are required. To this end, NASA, in conjunction with its extensive program for advanced communications technology development, has undertaken to develop a concept for the simulation and evaluation of a complete communications network. Incorporated in this network will be proof of concept models of the latest technologies proposed for future satellite communications systems. These include low noise receivers, matrix switches, baseband processors, and solid state and tube type high power amplifiers. To accomplish this, numerous supporting technologies must be added to those aforementioned proof of concept models. These include controllers for synchronization, order wire, and resource allocation, gain compensation, signal leveling, power augmentation, and rain fade and range delay simulation. Taken together, these will be assembled to comprise a system capable of addressing numerous design and performance questions. The simulation and evaluation system as planned will be modular in design and implementation, capable of modification and updating to track and evaluate a continuum emerging concepts and technologies.
Discrete Particle Method for Simulating Hypervelocity Impact Phenomena.
Watson, Erkai; Steinhauser, Martin O
2017-04-02
In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms -1 . We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy-conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength.
Statistics of Magnetic Reconnection X-Lines in Kinetic Turbulence
NASA Astrophysics Data System (ADS)
Haggerty, C. C.; Parashar, T.; Matthaeus, W. H.; Shay, M. A.; Wan, M.; Servidio, S.; Wu, P.
2016-12-01
In this work we examine the statistics of magnetic reconnection (x-lines) and their associated reconnection rates in intermittent current sheets generated in turbulent plasmas. Although such statistics have been studied previously for fluid simulations (e.g. [1]), they have not yet been generalized to fully kinetic particle-in-cell (PIC) simulations. A significant problem with PIC simulations, however, is electrostatic fluctuations generated due to numerical particle counting statistics. We find that analyzing gradients of the magnetic vector potential from the raw PIC field data identifies numerous artificial (or non-physical) x-points. Using small Orszag-Tang vortex PIC simulations, we analyze x-line identification and show that these artificial x-lines can be removed using sub-Debye length filtering of the data. We examine how turbulent properties such as the magnetic spectrum and scale dependent kurtosis are affected by particle noise and sub-Debye length filtering. We subsequently apply these analysis methods to a large scale kinetic PIC turbulent simulation. Consistent with previous fluid models, we find a range of normalized reconnection rates as large as ½ but with the bulk of the rates being approximately less than to 0.1. [1] Servidio, S., W. H. Matthaeus, M. A. Shay, P. A. Cassak, and P. Dmitruk (2009), Magnetic reconnection and two-dimensional magnetohydrodynamic turbulence, Phys. Rev. Lett., 102, 115003.
A multi-species exchange model for fully fluctuating polymer field theory simulations.
Düchs, Dominik; Delaney, Kris T; Fredrickson, Glenn H
2014-11-07
Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complex Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.
The Effect of Dilution on the Structure of Microbial Communities
NASA Technical Reports Server (NTRS)
Mills, Aaron L.
2000-01-01
To determine how dilution of microbial communities affects the diversity of the diluted assemblage a series of numerical simulations were conducted that determined the theoretical change in diversity, richness, and evenness of the community with serial dilution. The results of the simulation suggested that the effects are non linear with a high degree of dependence on the initial evenness of the community being diluted. A series of incubation experiments using a range of dilutions of raw sewage as an inoculum into sterile sewage was used for comparison to the simulations. The diluted communities were maintained in batch fed reactors (three day retention time) for nine days. The communities were harvested and examined by conventional plating and by molecular analysis of the whole-community DNA using AFLP and T-RFLP. Additional, CLPP analysis was also applied. The effects on richness predicted by the numerical simulations were confirmed by the analyses used. The diluted communities fell into three groups, a low dilution, intermediate dilution, and high dilution group, which corresponded well with the groupings obtained for community richness in simulation. The grouping demonstrated the non-linear nature of dilution of whole communities. Furthermore, the results implied that the undiluted community consisted of a few dominant types accompanied by a number of rare (low abundance) types as is typical in unevenly distributed communities.
Discrete Particle Method for Simulating Hypervelocity Impact Phenomena
Watson, Erkai; Steinhauser, Martin O.
2017-01-01
In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms−1. We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy–conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength. PMID:28772739
Numerical Simulation of Transitional, Hypersonic Flows using a Hybrid Particle-Continuum Method
NASA Astrophysics Data System (ADS)
Verhoff, Ashley Marie
Analysis of hypersonic flows requires consideration of multiscale phenomena due to the range of flight regimes encountered, from rarefied conditions in the upper atmosphere to fully continuum flow at low altitudes. At transitional Knudsen numbers there are likely to be localized regions of strong thermodynamic nonequilibrium effects that invalidate the continuum assumptions of the Navier-Stokes equations. Accurate simulation of these regions, which include shock waves, boundary and shear layers, and low-density wakes, requires a kinetic theory-based approach where no prior assumptions are made regarding the molecular distribution function. Because of the nature of these types of flows, there is much to be gained in terms of both numerical efficiency and physical accuracy by developing hybrid particle-continuum simulation approaches. The focus of the present research effort is the continued development of the Modular Particle-Continuum (MPC) method, where the Navier-Stokes equations are solved numerically using computational fluid dynamics (CFD) techniques in regions of the flow field where continuum assumptions are valid, and the direct simulation Monte Carlo (DSMC) method is used where strong thermodynamic nonequilibrium effects are present. Numerical solutions of transitional, hypersonic flows are thus obtained with increased physical accuracy relative to CFD alone, and improved numerical efficiency is achieved in comparison to DSMC alone because this more computationally expensive method is restricted to those regions of the flow field where it is necessary to maintain physical accuracy. In this dissertation, a comprehensive assessment of the physical accuracy of the MPC method is performed, leading to the implementation of a non-vacuum supersonic outflow boundary condition in particle domains, and more consistent initialization of DSMC simulator particles along hybrid interfaces. The relative errors between MPC and full DSMC results are greatly reduced as a direct result of these improvements. Next, a new parameter for detecting rotational nonequilibrium effects is proposed and shown to offer advantages over other continuum breakdown parameters, achieving further accuracy gains. Lastly, the capabilities of the MPC method are extended to accommodate multiple chemical species in rotational nonequilibrium, each of which is allowed to equilibrate independently, enabling application of the MPC method to more realistic atmospheric flows.
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F.
2016-11-01
Francis turbines are subject to various types of the cavitation flow depending on the operating conditions. In order to compensate for the stochastic nature of renewable energy sources, it is more and more required to extend the operating range of the generating units, from deep part load to full load conditions. In the deep part load condition, the formation of cavitation vortices in the turbine blade to blade channels called inter-blade cavitation vortex is often observed. The understanding of the dynamic characteristics of these inter-blade vortices and their formation mechanisms is of key importance in an effort of developing reliable flow simulation tools. This paper reports the numerical and experimental investigations carried out in order to establish the vortex characteristics, especially the inception and the development of the vortex structure. The unsteady RANS simulation for the multiphase flow is performed with the SST- SAS turbulence model by using the commercial flow solver ANSYS CFX. The simulation results in terms of the vortex structure and the cavitation volume are evaluated by comparing them to the flow visualizations of the blade channel acquired through a specially instrumented guide vane as well as from the downstream of the runner across the draft tube cone. The inter-blade cavitation vortex is successfully captured by the simulation and both numerical and experimental results evidence that the inter-blade vortices are attached to the runner hub.
A hybrid hydrostatic and non-hydrostatic numerical model for shallow flow simulations
NASA Astrophysics Data System (ADS)
Zhang, Jingxin; Liang, Dongfang; Liu, Hua
2018-05-01
Hydrodynamics of geophysical flows in oceanic shelves, estuaries, and rivers, are often studied by solving shallow water model equations. Although hydrostatic models are accurate and cost efficient for many natural flows, there are situations where the hydrostatic assumption is invalid, whereby a fully hydrodynamic model is necessary to increase simulation accuracy. There is a growing concern about the decrease of the computational cost of non-hydrostatic pressure models to improve the range of their applications in large-scale flows with complex geometries. This study describes a hybrid hydrostatic and non-hydrostatic model to increase the efficiency of simulating shallow water flows. The basic numerical model is a three-dimensional hydrostatic model solved by the finite volume method (FVM) applied to unstructured grids. Herein, a second-order total variation diminishing (TVD) scheme is adopted. Using a predictor-corrector method to calculate the non-hydrostatic pressure, we extended the hydrostatic model to a fully hydrodynamic model. By localising the computational domain in the corrector step for non-hydrostatic pressure calculations, a hybrid model was developed. There was no prior special treatment on mode switching, and the developed numerical codes were highly efficient and robust. The hybrid model is applicable to the simulation of shallow flows when non-hydrostatic pressure is predominant only in the local domain. Beyond the non-hydrostatic domain, the hydrostatic model is still accurate. The applicability of the hybrid method was validated using several study cases.
Modeling Gravitational Radiation Waveforms from Black Hole Mergers
NASA Technical Reports Server (NTRS)
Baker, J. G.; Centrelia, J. M.; Choi, D.; Koppitz, M.; VanMeter, J.
2006-01-01
Gravitational radiation from merging binary black hole systems is anticipated as a key source for gravitational wave observations. Ground-based instruments, such as the Laser Interferometer Gravitational-wave Observatory (LIGO) may observe mergers of stellar-scale black holes, while the space-based Laser Interferometer Space Antenna (LISA) observatory will be sensitive to mergers of massive galactic-center black holes over a broad range of mass scales. These cataclysmic events may emit an enormous amount of energy in a brief time. Gravitational waves from comparable mass mergers carry away a few percent of the system's mass-energy in just a few wave cycles, with peak gravitational wave luminosities on the order of 10^23 L_Sun. Optimal analysis and interpretation of merger observation data will depend on developing a detailed understanding, based on general relativistic modeling, of the radiation waveforms. We discuss recent progress in modeling radiation from equal mass mergers using numerical simulations of Einstein's gravitational field equations, known as numerical relativity. Our simulations utilize Adaptive Mesh Refinement (AMR) to allow high-resolution near the black holes while simultaneously keeping the outer boundary of the computational domain far from the black holes, and making it possible to read out gravitational radiation waveforms in the weak-field wave zone. We discuss the results from simulations beginning with the black holes orbiting near the system's innermost stable orbit, comparing the recent simulations with earlier "Lazarus" waveform estimates based on an approximate hybrid numerical/perturbative technique.
Numerical modeling of an enhanced very early time electromagnetic (VETEM) prototype system
Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.; Abraham, J.D.
2000-01-01
In this paper, two numerical models are presented to simulate an enhanced very early time electromagnetic (VETEM) prototype system, which is used for buried-object detection and environmental problems. Usually, the VETEM system contains a transmitting loop antenna and a receiving loop antenna, which run on a lossy ground to detect buried objects. In the first numerical model, the loop antennas are accurately analyzed using the Method of Moments (MoM) for wire antennas above or buried in lossy ground. Then, Conjugate Gradient (CG) methods, with the use of the fast Fourier transform (FFT) or MoM, are applied to investigate the scattering from buried objects. Reflected and scattered magnetic fields are evaluated at the receiving loop to calculate the output electric current. However, the working frequency for the VETEM system is usually low and, hence, two magnetic dipoles are used to replace the transmitter and receiver in the second numerical model. Comparing these two models, the second one is simple, but only valid for low frequency or small loops, while the first modeling is more general. In this paper, all computations are performed in the frequency domain, and the FFT is used to obtain the time-domain responses. Numerical examples show that simulation results from these two models fit very well when the frequency ranges from 10 kHz to 10 MHz, and both results are close to the measured data.
NASA Astrophysics Data System (ADS)
Mier-Torrecilla, Monica; Geyer, Adelina; Phillips, Jeremy C.; Idelsohn, Sergio R.; Oñate, Eugenio
2010-05-01
In this work we investigate numerically the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid using the Particle Finite Element Method (PFEM), a newly developed tool that combines the flexibility of particle-based methods with the accuracy of the finite element discretization. In order to test the applicability of PFEM to the study of negatively buoyant jets, we have compared the two-dimensional numerical results with experiments investigating the injection of a jet of dyed water through a nozzle in the base of a cylindrical tank containing rapeseed oil. In both simulations and experiments, the fountain inlet flow velocity and nozzle diameter were varied to cover a wide range of Reynolds Re and Froude numbers Fr, such that 0.1 < Fr < 30, reproducing both weak and strong fountains in a laminar regime (8 < Re < 1350). Numerical results, together with the experimental observations, allow us to describe three different fountain behaviors that have not been previously reported. Based on the Re and Fr values for the numerical and experimental simulations, we have built a regime map to define how these values may control the occurrence of each of the observed flow types. Whereas the Fr number itself provides a prediction of the maximum penetration height of the jet, its combination with the Re number provides a prediction of the flow behavior for a specific nozzle diameter and injection velocity. Conclusive remarks concerning the dynamics of negatively buoyant jets may be applied later on to several geological situations, e.g. the flow structure of a fully submerged subaqueous eruptive vent discharging magma or the replenishment of magma chambers in the Earth's crust.
Beam-Dynamics Analysis of Long-Range Wakefield Effects on the SCRF Cavities at the Fast Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Young-Min; Bishofberger, Kip; Carlsten, Bruce
Long-range wakefields in superconducting RF (SCRF) cavities create complicated effects on beam dynamics in SCRF-based FEL beamlines. The driving bunch excites effectively an infinite number of structure modes (including HOMs) which oscillate within the SCRF cavity. Couplers with loads are used to damp the HOMs. However, these HOMs can persist for long periods of time in superconducting structures, which leads to long-range wakefields. Clear understanding of the long-range wakefield effects is a critical element for risk mitigation of future SCRF accelerators such as XFEL at DESY, LCLS-II XFEL, and MaRIE XFEL. We are currently developing numerical tools for simulating long-rangemore » wakefields in SCRF accelerators and plan to experimentally verify the tools by measuring these wakefields at the Fermilab Accelerator Science and Technology (FAST) facility. This paper previews the experimental conditions at the FAST 50 MeV beamline based on the simulation results.« less
NASA Astrophysics Data System (ADS)
Satoh, Masaki; Tomita, Hirofumi; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Miyamoto, Yoshiaki; Yamaura, Tsuyoshi; Miyakawa, Tomoki; Nakano, Masuo; Kodama, Chihiro; Noda, Akira T.; Nasuno, Tomoe; Yamada, Yohei; Fukutomi, Yoshiki
2017-12-01
This article reviews the major outcomes of a 5-year (2011-2016) project using the K computer to perform global numerical atmospheric simulations based on the non-hydrostatic icosahedral atmospheric model (NICAM). The K computer was made available to the public in September 2012 and was used as a primary resource for Japan's Strategic Programs for Innovative Research (SPIRE), an initiative to investigate five strategic research areas; the NICAM project fell under the research area of climate and weather simulation sciences. Combining NICAM with high-performance computing has created new opportunities in three areas of research: (1) higher resolution global simulations that produce more realistic representations of convective systems, (2) multi-member ensemble simulations that are able to perform extended-range forecasts 10-30 days in advance, and (3) multi-decadal simulations for climatology and variability. Before the K computer era, NICAM was used to demonstrate realistic simulations of intra-seasonal oscillations including the Madden-Julian oscillation (MJO), merely as a case study approach. Thanks to the big leap in computational performance of the K computer, we could greatly increase the number of cases of MJO events for numerical simulations, in addition to integrating time and horizontal resolution. We conclude that the high-resolution global non-hydrostatic model, as used in this five-year project, improves the ability to forecast intra-seasonal oscillations and associated tropical cyclogenesis compared with that of the relatively coarser operational models currently in use. The impacts of the sub-kilometer resolution simulation and the multi-decadal simulations using NICAM are also reviewed.
Simulations, Games, and Virtual Labs for Science Education: a Compendium and Some Examples
NASA Astrophysics Data System (ADS)
Russell, R. M.
2011-12-01
We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations, including the "Very, Very Simple Climate Model", and report on formative evaluations of these resources. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.
Masbruch, Melissa D.; Gardner, Philip M.
2014-01-01
Applications have been filed for several water-right changes and new water rights, with total withdrawals of about 1,800 acre-feet per year, in Snake Valley near Eskdale and Partoun, Utah. The Bureau of Land Management has identified 11 sites where the Bureau of Land Management holds water rights and 7 other springs of interest that could be affected by these proposed groundwater withdrawals. This report presents a hydrogeologic analysis of areas within Snake Valley to assess the potential effects on Bureau of Land Management water rights and other springs of interest resulting from existing and proposed groundwater withdrawals. A previously developed numerical groundwater-flow model was used to quantify potential groundwater drawdown and the capture, or groundwater withdrawals that results in depletion, of natural discharge resulting from existing and proposed groundwater withdrawals within Snake Valley. Existing groundwater withdrawals were simulated for a 50-year period prior to adding the newly proposed withdrawals to bring the model from pre-development conditions to the start of 2014. After this initial 50-year period, existing withdrawals, additional proposed withdrawals, and consequent effects were simulated for periods of 5, 10, 25, 50, and 100 years. Downward trends in water levels measured in wells indicate that the existing groundwater withdrawals in Snake Valley are affecting water levels. The numerical model simulated similar downward trends in water levels. The largest simulated drawdowns caused by existing groundwater withdrawals ranged between 10 and 26 feet and were near the centers of the agricultural areas by Callao, Eskdale, Baker, Garrison, and along the Utah-Nevada state line in southern Snake Valley. The largest simulated water-level declines were at the Bureau of Land Management water-rights sites near Eskdale, Utah, where simulated drawdowns ranged between 2 and 8 feet at the start of 2014. These results were consistent with, but lower than, observations from several wells monitored by the U.S. Geological Survey that indicated water-level declines of 6 to 18 feet near the Eskdale area since the mid-1970s and 1980s. The model cells where the simulated capture of natural groundwater discharge resulting from the existing withdrawals was greatest were those containing Kane Spring, Caine Spring, and Unnamed Spring 5, where existing groundwater withdrawals capture 13 to 29 percent of the total simulated natural discharge in these cells. Simulated drawdown and simulated capture of natural groundwater discharge resulting from the proposed withdrawals started in as few as 5 years at seven of the sites. After 100 years, four sites showed simulated drawdowns ranging between 1 and 2 feet; eight sites showed simulated drawdowns ranging between 0.1 and 0.9 feet; and five sites showed no simulated drawdown resulting from the proposed withdrawals. The largest amounts of simulated capture of natural groundwater discharge resulting from the proposed withdrawals after 100 years were in the model cells containing Coyote Spring, Kane Spring, and Caine Spring, which had capture amounts ranging between 5.5 and 9.1 percent of the total simulated natural discharge in these cells.
Numerical investigation of multi-element airfoils
NASA Technical Reports Server (NTRS)
Cummings, Russell M.
1993-01-01
The flow over multi-element airfoils with flat-plate lift-enhancing tabs was numerically investigated. Tabs ranging in height from 0.25 percent to 1.25 percent of the reference airfoil chord were studied near the trailing edge of the main-element. This two-dimensional numerical simulation employed an incompressible Navier-Stokes solver on a structured, embedded grid topology. New grid refinements were used to improve the accuracy of the solution near the overlapping grid boundaries. The effects of various tabs were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Both computed and measured results indicated that a tab in the main-element cove improved the maximum lift and lift-to-drag ratio relative to the baseline airfoil without a tab. Computed streamlines revealed that the additional turning caused by the tab may reduce the amount of separated flow on the flap. A three-element airfoil was also studied over a range of Reynolds numbers. For the optimized flap rigging, the computed and measured Reynolds number effects were similar. When the flap was moved from the optimum position, numerical results indicated that a tab may help to reoptimize the airfoil to within 1 percent of the optimum flap case.
A Markov model for the temporal dynamics of balanced random networks of finite size
Lagzi, Fereshteh; Rotter, Stefan
2014-01-01
The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between neuronal populations also opens new doors to analyze the joint dynamics of multiple interacting networks. PMID:25520644
A numerical investigation of the effect of surface wettability on the boiling curve.
Hsu, Hua-Yi; Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A
2017-01-01
Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° - 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights.
NASA Astrophysics Data System (ADS)
Pradipto; Purqon, Acep
2017-07-01
Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.
Numerical analysis of hydrodynamics in a rotor-stator reactor for biodiesel synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Zhuqing; Petera, Jerzy
A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG) and methanol are introduced coaxially along the center line of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reactionmore » species transport model by the CFD software ANSYS©Fluent v. 13.0. The effects of upper disk’s spinning speed, gap size and flow rates at inlets are evaluated.« less
Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling.
Berthier, Ludovic; Charbonneau, Patrick; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki; Yaida, Sho
2017-10-24
Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, because of the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally relevant timescales. In this work, we not only close the colossal gap between experiments and simulations but manage to create in silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four estimates of their configurational entropy. These measurements consistently confirm that the steep entropy decrease observed in experiments is also found in simulations, even beyond the experimental glass transition. Our numerical results thus extend the observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation. Published under the PNAS license.
Breaking the glass ceiling: Configurational entropy measurements in extremely supercooled liquids
NASA Astrophysics Data System (ADS)
Berthier, Ludovic
Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, due to the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally-relevant timescales. In this work we not only close the colossal gap between experiments and simulations but manage to create in-silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four independent estimates of their configurational entropy. These measurements consistently indicate that the steep entropy decrease observed in experiments is found in simulations even beyond the experimental glass transition. Our numerical results thus open a new observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation.
Simulation of two-dimensional turbulent flows in a rotating annulus
NASA Astrophysics Data System (ADS)
Storey, Brian D.
2004-05-01
Rotating water tank experiments have been used to study fundamental processes of atmospheric and geophysical turbulence in a controlled laboratory setting. When these tanks are undergoing strong rotation the forced turbulent flow becomes highly two dimensional along the axis of rotation. An efficient numerical method has been developed for simulating the forced quasi-geostrophic equations in an annular geometry to model current laboratory experiments. The algorithm employs a spectral method with Fourier series and Chebyshev polynomials as basis functions. The algorithm has been implemented on a parallel architecture to allow modelling of a wide range of spatial scales over long integration times. This paper describes the derivation of the model equations, numerical method, testing and performance of the algorithm. Results provide reasonable agreement with the experimental data, indicating that such computations can be used as a predictive tool to design future experiments.
NASA Astrophysics Data System (ADS)
Shved, G. M.; Virolainen, Ya. A.; Timofeyev, Yu. M.; Ermolenko, S. I.; Smyshlyaev, S. P.; Motsakov, M. A.; Kirner, O.
2018-01-01
Fourier and wavelet spectra of time series for the ozone column abundance in the atmospheric 0-25 and 25-60 km layers are analyzed from SBUV satellite observations and from numerical simulations based on the RSHU and EMAC models. The analysis uses datasets for three subarctic locations (St. Petersburg, Harestua, and Kiruna) for 2000-2014. The Fourier and wavelet spectra show periodicities in the range from 10 days to 10 years and from 1 day to 2 years, respectively. The comparison of the spectra shows overall agreement between the observational and modeled datasets. However, the analysis has revealed differences both between the measurements and the models and between the models themselves. The differences primarily concern the Rossby wave period region and the 11-year and semiannual periodicities. Possible reasons are given for the differences between the models and the measurements.
Buoyant miscible displacement flow of shear-thinning fluids: Experiments and Simulations
NASA Astrophysics Data System (ADS)
Ale Etrati Khosroshahi, Seyed Ali; Frigaard, Ian
2017-11-01
We study displacement flow of two miscible fluids with density and viscosity contrast in an inclined pipe. Our focus is mainly on displacements where transverse mixing is not significant and thus a two-layer, stratified flow develops. Our experiments are carried out in a long pipe, covering a wide range of flow-rates, inclination angles and viscosity ratios. Density and viscosity contrasts are achieved by adding Glycerol and Xanthan gum to water, respectively. At each angle, flow rate and viscosity ratio are varied and density contrast is fixed. We identify and map different flow regimes, instabilities and front dynamics based on Fr , Re / Frcosβ and viscosity ratio m. The problem is also studied numerically to get a better insight into the flow structure and shear-thinning effects. Numerical simulations are completed using OpenFOAM in both pipe and channel geometries and are compared against the experiments. Schlumberger, NSERC.
NASA Astrophysics Data System (ADS)
Monnier, Angélique; Loevenbruck, Anne; Gailler, Audrey; Hébert, Hélène
2016-04-01
The 11 March 2011 Tohoku-Oki event, whether earthquake or tsunami, is exceptionally well documented. A wide range of onshore and offshore data has been recorded from seismic, geodetic, ocean-bottom pressure and sea level sensors. Along with these numerous observations, advance in inversion technique and computing facilities have led to many source studies. Rupture parameters inversion such as slip distribution and rupture history permit to estimate the complex coseismic seafloor deformation. From the numerous published seismic source studies, the most relevant coseismic source models are tested. The comparison of the predicted signals generated using both static and cinematic ruptures to the offshore and coastal measurements help determine which source model should be used to obtain the more consistent coastal tsunami simulations. This work is funded by the TANDEM project, reference ANR-11-RSNR-0023-01 of the French Programme Investissements d'Avenir (PIA 2014-2018).
Modelling of creep hysteresis in ferroelectrics
NASA Astrophysics Data System (ADS)
He, Xuan; Wang, Dan; Wang, Linxiang; Melnik, Roderick
2018-05-01
In the current paper, a macroscopic model is proposed to simulate the hysteretic dynamics of ferroelectric ceramics with creep phenomenon incorporated. The creep phenomenon in the hysteretic dynamics is attributed to the rate-dependent characteristic of the polarisation switching processes induced in the materials. A non-convex Helmholtz free energy based on Landau theory is proposed to model the switching dynamics. The governing equation of single-crystal model is formulated by applying the Euler-Lagrange equation. The polycrystalline model is obtained by combining the single crystal dynamics with a density function which is constructed to model the weighted contributions of different grains with different principle axis orientations. In addition, numerical simulations of hysteretic dynamics with creep phenomenon are presented. Comparison of the numerical results and their experimental counterparts is also presented. It is shown that the creep phenomenon is captured precisely, validating the capability of the proposed model in a range of its potential applications.
Strain Rate and Stress Triaxiality Effects on Ductile Damage of Additive Manufactured TI-6AL-4V
NASA Astrophysics Data System (ADS)
Iannitti, Gianluca; Bonora, Nicola; Gentile, Domenico; Ruggiero, Andrew; Testa, Gabriel; Gubbioni, Simone
2017-06-01
In this work, the effects of strain rate and stress triaxiality on ductile damage of additive manufactured Ti-6Al-4V, also considering the build direction, were investigated. Raw material was manufactured by means of EOSSINT M2 80 machine, based on Direct Metal Laser Sintering technology, and machined to obtain round notched bar and Rod-on-Rod (RoR) specimens. Tensile tests on round notched bar specimens were performed in a wide range of strain rates. The failure strains at different stress triaxiality were used to calibrate the Bonora Damage Model. In order to design the RoR tests, numerical simulations were performed for assessing velocities at which incipient and fully developed damage occur. Tests at selected velocities were carried out and soft-recovered specimens were sectioning and polishing to observe the developed damage. Nucleated voids maps were compared with numerical simulations results.
Sushko, Gennady B; Verkhovtsev, Alexey V; Yakubovich, Alexander V; Schramm, Stefan; Solov'yov, Andrey V
2014-08-21
The process of self-diffusion of titanium atoms in a bulk material, on grain junctions and on surface is explored numerically in a broad temperature range by means of classical molecular dynamics simulation. The analysis is carried out for a nanoscale cylindrical sample consisting of three adjacent sectors and various junctions between nanocrystals. The calculated diffusion coefficient varies by several orders of magnitude for different regions of the sample. The calculated values of the bulk diffusion coefficient correspond reasonably well to the experimental data obtained for solid and molten states of titanium. Investigation of diffusion in the nanocrystalline titanium is of a significant importance because of its numerous technological applications. This paper aims to reduce the lack of data on diffusion in titanium and describe the processes occurring in bulk, at different interfaces and on surface of the crystalline titanium.
A numerical investigation of the effect of surface wettability on the boiling curve
Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A.
2017-01-01
Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° − 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights. PMID:29125847
Polymer translocation under a pulling force: Scaling arguments and threshold forces
NASA Astrophysics Data System (ADS)
Menais, Timothée
2018-02-01
DNA translocation through nanopores is one of the most promising strategies for next-generation sequencing technologies. Most experimental and numerical works have focused on polymer translocation biased by electrophoresis, where a pulling force acts on the polymer within the nanopore. An alternative strategy, however, is emerging, which uses optical or magnetic tweezers. In this case, the pulling force is exerted directly at one end of the polymer, which strongly modifies the translocation process. In this paper, we report numerical simulations of both linear and structured (mimicking DNA) polymer models, simple enough to allow for a statistical treatment of the pore structure effects on the translocation time probability distributions. Based on extremely extended computer simulation data, we (i) propose scaling arguments for an extension of the predicted translocation times τ ˜N2F-1 over the moderate forces range and (ii) analyze the effect of pore size and polymer structuration on translocation times τ .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rusek, Marian; Orlowski, Arkadiusz
2005-04-01
The dynamics of small ({<=}55 atoms) argon clusters ionized by an intense femtosecond laser pulse is studied using a time-dependent Thomas-Fermi model. The resulting Bloch-like hydrodynamic equations are solved numerically using the smooth particle hydrodynamics method without the necessity of grid simulations. As follows from recent experiments, absorption of radiation and subsequent ionization of clusters observed in the short-wavelength laser frequency regime (98 nm) differs considerably from that in the optical spectral range (800 nm). Our theoretical approach provides a unified framework for treating these very different frequency regimes and allows for a deeper understanding of the underlying cluster explosionmore » mechanisms. The results of our analysis following from extensive numerical simulations presented in this paper are compared both with experimental findings and with predictions of other theoretical models.« less
LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN
NASA Astrophysics Data System (ADS)
Barranco, Javier; Cai, Yunhai; Cameron, David; Crouch, Matthew; Maria, Riccardo De; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D.; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Veken, Frederik Van der; Zacharov, Igor
2017-12-01
The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted in this paper.
Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling
Berthier, Ludovic; Charbonneau, Patrick; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki
2017-01-01
Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, because of the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally relevant timescales. In this work, we not only close the colossal gap between experiments and simulations but manage to create in silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four estimates of their configurational entropy. These measurements consistently confirm that the steep entropy decrease observed in experiments is also found in simulations, even beyond the experimental glass transition. Our numerical results thus extend the observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation. PMID:29073056
Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling
NASA Astrophysics Data System (ADS)
Berthier, Ludovic; Charbonneau, Patrick; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki; Yaida, Sho
2017-10-01
Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, because of the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally relevant timescales. In this work, we not only close the colossal gap between experiments and simulations but manage to create in silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four estimates of their configurational entropy. These measurements consistently confirm that the steep entropy decrease observed in experiments is also found in simulations, even beyond the experimental glass transition. Our numerical results thus extend the observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation.
Coherent states formulation of polymer field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Man, Xingkun; Villet, Michael C.; Materials Research Laboratory, University of California, Santa Barbara, California 93106
2014-01-14
We introduce a stable and efficient complex Langevin (CL) scheme to enable the first direct numerical simulations of the coherent-states (CS) formulation of polymer field theory. In contrast with Edwards’ well-known auxiliary-field (AF) framework, the CS formulation does not contain an embedded nonlinear, non-local, implicit functional of the auxiliary fields, and the action of the field theory has a fully explicit, semi-local, and finite-order polynomial character. In the context of a polymer solution model, we demonstrate that the new CS-CL dynamical scheme for sampling fluctuations in the space of coherent states yields results in good agreement with now-standard AF-CL simulations.more » The formalism is potentially applicable to a broad range of polymer architectures and may facilitate systematic generation of trial actions for use in coarse-graining and numerical renormalization-group studies.« less
Impact erosion model for gravity-dominated planetesimals
NASA Astrophysics Data System (ADS)
Genda, Hidenori; Fujita, Tomoaki; Kobayashi, Hiroshi; Tanaka, Hidekazu; Suetsugu, Ryo; Abe, Yutaka
2017-09-01
Disruptive collisions have been regarded as an important process for planet formation, while non-disruptive, small-scale collisions (hereafter called erosive collisions) have been underestimated or neglected by many studies. However, recent studies have suggested that erosive collisions are also important to the growth of planets, because they are much more frequent than disruptive collisions. Although the thresholds of the specific impact energy for disruptive collisions (QRD*) have been investigated well, there is no reliable model for erosive collisions. In this study, we systematically carried out impact simulations of gravity-dominated planetesimals for a wide range of specific impact energy (QR) from disruptive collisions (QR ∼ QRD*) to erosive ones (QR << QRD*) using the smoothed particle hydrodynamics method. We found that the ejected mass normalized by the total mass (Mej/Mtot) depends on the numerical resolution, the target radius (Rtar) and the impact velocity (vimp), as well as on QR, but that it can be nicely scaled by QRD* for the parameter ranges investigated (Rtar = 30-300 km, vimp = 2-5 km/s). This means that Mej/Mtot depends only on QR/QRD* in these parameter ranges. We confirmed that the collision outcomes for much less erosive collisions (QR < 0.01 QRD*) converge to the results of an impact onto a planar target for various impact angles (θ) and that Mej/Mtot ∝ QR/QRD* holds. For disruptive collisions (QR ∼ QRD*), the curvature of the target has a significant effect on Mej/Mtot. We also examined the angle-averaged value of Mej/Mtot and found that the numerically obtained relation between angle-averaged Mej/Mtot and QR/QRD* is very similar to the cases for θ = 45° impacts. We proposed a new erosion model based on our numerical simulations for future research on planet formation with collisional erosion.
Emission of OH* and CO2* during the high-temperature oxidation of acetone in reflected shock waves
NASA Astrophysics Data System (ADS)
Tereza, A. M.; Smirnov, V. N.; Vlasov, P. A.; Shumova, V. V.; Garmash, A. A.
2018-01-01
Experimental and kinetic modeling study of the ignition of a stoichiometric mixture of acetone with oxygen diluted by argon was carried out behind reflected shock waves within the temperature range of 1350-1810 K for the total mixture concentration [M 50] ~ 10-5 mol/cm3. Emission signals were recorded simultaneously for three different wavelengths: OH* (λ = 308 nm) and {{{CO}}}2* (λ1 = 365 nm; λ2 = 451 nm). It was revealed that the time it takes to reach the maximum of emission of OH* and {{{CO}}}2* is practically the same over the whole temperature range. At the same time, the emission profiles of {{{CO}}}2* after the maximum was attained, recorded at λ2 = 451 nm, differ noticeably from the profiles recorded at λ1 = 365 nm. For numerical modeling of the emission profiles of OH* and {{{CO}}}2* , the corresponding sets of excitation and quenching reactions available in the literature were used. In the course of our numerical simulations we succeeded in good agreement of our own experimental and simulation results on acetone ignition and the results available in the literature for conditions under consideration.
Numerical simulation of separated flows. Ph.D. Thesis - Stanford Univ., Calif.
NASA Technical Reports Server (NTRS)
Spalart, P. R.; Leonard, A.; Baganoff, D.
1983-01-01
A new numerical method, based on the Vortex Method, for the simulation of two-dimensional separated flows, was developed and tested on a wide range of gases. The fluid is incompressible and the Reynolds number is high. A rigorous analytical basis for the representation of the Navier-Stokes equation in terms of the vorticity is used. An equation for the control of circulation around each body is included. An inviscid outer flow (computed by the Vortex Method) was coupled with a viscous boundary layer flow (computed by an Eulerian method). This version of the Vortex Method treats bodies of arbitrary shape, and accurately computes the pressure and shear stress at the solid boundary. These two quantities reflect the structure of the boundary layer. Several versions of the method are presented and applied to various problems, most of which have massive separation. Comparison of its results with other results, generally experimental, demonstrates the reliability and the general accuracy of the new method, with little dependence on empirical parameters. Many of the complex features of the flow past a circular cylinder, over a wide range of Reynolds numbers, are correctly reproduced.
Bossy, Emmanuel; Padilla, Frédéric; Peyrin, Françoise; Laugier, Pascal
2005-12-07
Three-dimensional numerical simulations of ultrasound transmission were performed through 31 trabecular bone samples measured by synchrotron microtomography. The synchrotron microtomography provided high resolution 3D mappings of bone structures, which were used as the input geometry in the simulation software developed in our laboratory. While absorption (i.e. the absorption of ultrasound through dissipative mechanisms) was not taken into account in the algorithm, the simulations reproduced major phenomena observed in real through-transmission experiments in trabecular bone. The simulated attenuation (i.e. the decrease of the transmitted ultrasonic energy) varies linearly with frequency in the MHz frequency range. Both the speed of sound (SOS) and the slope of the normalized frequency-dependent attenuation (nBUA) increase with the bone volume fraction. Twenty-five out of the thirty-one samples exhibited negative velocity dispersion. One sample was rotated to align the main orientation of the trabecular structure with the direction of ultrasonic propagation, leading to the observation of a fast and a slow wave. Coupling numerical simulation with real bone architecture therefore provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures. As an illustration, comparison between results obtained on bone modelled either as a fluid or a solid structure suggested the major role of mode conversion of the incident acoustic wave to shear waves in bone to explain the large contribution of scattering to the overall attenuation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.
2010-08-15
In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovativemore » concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)« less
Numerical simulation of jet aerodynamics using the three-dimensional Navier-Stokes code PAB3D
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
1996-01-01
This report presents a unified method for subsonic and supersonic jet analysis using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was used to obtain solutions for axisymmetric jets with on-design operating conditions at Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This report discusses computational methods, code implementation, computed results, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions. The Navier-Stokes method using the standard Jones-Launder two-equation kappa-epsilon turbulence model can accurately predict jet flow, and such predictions are made without any modification to the published constants for the turbulence model.
Benoit, Gaëlle; Heinkélé, Christophe; Gourdon, Emmanuel
2013-12-01
This paper deals with a numerical procedure to identify the acoustical parameters of road pavement from surface impedance measurements. This procedure comprises three steps. First, a suitable equivalent fluid model for the acoustical properties porous media is chosen, the variation ranges for the model parameters are set, and a sensitivity analysis for this model is performed. Second, this model is used in the parameter inversion process, which is performed with simulated annealing in a selected frequency range. Third, the sensitivity analysis and inversion process are repeated to estimate each parameter in turn. This approach is tested on data obtained for porous bituminous concrete and using the Zwikker and Kosten equivalent fluid model. This work provides a good foundation for the development of non-destructive in situ methods for the acoustical characterization of road pavements.
NASA Astrophysics Data System (ADS)
Kozak, Dalton Vinicius; Sharipov, Felix
2012-08-01
The aerothermodynamic characteristics of the Brazilian satellite Satélite de Reentrada Atmosférica were calculated for orbital-flight and atmospheric-reentry conditions with the direct simulation Monte Carlo method for a diatomic gas. The internal modes of molecule energy in the intermolecular interaction, such as the rotational energy, were taken into account. The numerical calculations cover a range of gas rarefactions wide enough to embrace the free-molecule and hydrodynamic regimes. Two Mach numbers were considered: 10 and 20. Numerical results include the drag force of the satellite, the energy flux, pressure coefficient, and skin friction coefficient over the satellite surface, the density and temperature distributions, and streamlines of the gas flow around the satellite. The influence of the satellite temperature upon these characteristics was evaluated at different satellite temperatures.
Development of As-Se tapered suspended-core fibers for ultra-broadband mid-IR wavelength conversion
NASA Astrophysics Data System (ADS)
Anashkina, E. A.; Shiryaev, V. S.; Koptev, M. Y.; Stepanov, B. S.; Muravyev, S. V.
2018-01-01
We designed and developed tapered suspended-core fibers of high-purity As39Se61 glass for supercontinuum generation in the mid-IR with a standard fiber laser pump source at 2 ${\\mu}$m. It was shown that microstructuring allows shifting a zero dispersion wavelength to the range shorter than 2 ${\\mu}$m in the fiber waist with a core diameter of about 1 ${\\mu}$m. In this case, supercontinuum generation in the 1-10 ${\\mu}$m range was obtained numerically with 150-fs 100-pJ pump pulses at 2 ${\\mu}$m. We also performed experiments on wavelength conversion of ultrashort optical pulses at 1.57 ${\\mu}$m from Er: fiber laser system in the manufactured As-Se tapered fibers. The measured broadening spectra were in a good agreement with the ones simulated numerically.
NASA Technical Reports Server (NTRS)
Leonard, A.
1980-01-01
Three recent simulations of tubulent shear flow bounded by a wall using the Illiac computer are reported. These are: (1) vibrating-ribbon experiments; (2) study of the evolution of a spot-like disturbance in a laminar boundary layer; and (3) investigation of turbulent channel flow. A number of persistent flow structures were observed, including streamwise and vertical vorticity distributions near the wall, low-speed and high-speed streaks, and local regions of intense vertical velocity. The role of these structures in, for example, the growth or maintenance of turbulence is discussed. The problem of representing the large range of turbulent scales in a computer simulation is also discussed.
Coulomb interactions in charged fluids.
Vernizzi, Graziano; Guerrero-García, Guillermo Iván; de la Cruz, Monica Olvera
2011-07-01
The use of Ewald summation schemes for calculating long-range Coulomb interactions, originally applied to ionic crystalline solids, is a very common practice in molecular simulations of charged fluids at present. Such a choice imposes an artificial periodicity which is generally absent in the liquid state. In this paper we propose a simple analytical O(N(2)) method which is based on Gauss's law for computing exactly the Coulomb interaction between charged particles in a simulation box, when it is averaged over all possible orientations of a surrounding infinite lattice. This method mitigates the periodicity typical of crystalline systems and it is suitable for numerical studies of ionic liquids, charged molecular fluids, and colloidal systems with Monte Carlo and molecular dynamics simulations.
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
NASA Astrophysics Data System (ADS)
Reisner, J. M.; Dubey, M. K.
2010-12-01
To both quantify and reduce uncertainty in ice activation parameterizations for stratus clouds occurring in the temperature range between -5 to -10 C ensemble simulations of an ISDAC golden case have been conducted. To formulate the ensemble, three parameters found within an ice activation model have been sampled using a Latin hypercube technique over a parameter range that induces large variability in both number and mass of ice. The ice activation model is contained within a Lagrangian cloud model that simulates particle number as a function of radius for cloud ice, snow, graupel, cloud, and rain particles. A unique aspect of this model is that it produces very low levels of numerical diffusion that enable the model to accurately resolve the sharp cloud edges associated with the ISDAC stratus deck. Another important aspect of the model is that near the cloud edges the number of particles can be significantly increased to reduce sampling errors and accurately resolve physical processes such as collision-coalescence that occur in this region. Thus, given these relatively low numerical errors, as compared to traditional bin models, the sensitivity of a stratus deck to changes in parameters found within the activation model can be examined without fear of numerical contamination. Likewise, once the ensemble has been completed, ISDAC observations can be incorporated into a Kalman filter to optimally estimate the ice activation parameters and reduce overall model uncertainty. Hence, this work will highlight the ability of an ensemble Kalman filter system coupled to a highly accurate numerical model to estimate important parameters found within microphysical parameterizations containing high uncertainty.
The Application of High Energy Resolution Green's Functions to Threat Scenario Simulation
NASA Astrophysics Data System (ADS)
Thoreson, Gregory G.; Schneider, Erich A.
2012-04-01
Radiation detectors installed at key interdiction points provide defense against nuclear smuggling attempts by scanning vehicles and traffic for illicit nuclear material. These hypothetical threat scenarios may be modeled using radiation transport simulations. However, high-fidelity models are computationally intensive. Furthermore, the range of smuggler attributes and detector technologies create a large problem space not easily overcome by brute-force methods. Previous research has demonstrated that decomposing the scenario into independently simulated components using Green's functions can simulate photon detector signals with coarse energy resolution. This paper extends this methodology by presenting physics enhancements and numerical treatments which allow for an arbitrary level of energy resolution for photon transport. As a result, spectroscopic detector signals produced from full forward transport simulations can be replicated while requiring multiple orders of magnitude less computation time.
SPH Simulation of Impact of a Surge on a Wall
NASA Astrophysics Data System (ADS)
Diwakar, Manoj Kumar; Mohapatra, Pranab Kumar; Tripathi, Shivam
2014-05-01
Structures located on the downstream of a dam are prone to impact of the surge due to dam break flow. Ramsden (1996) experimentally studied the run-up height on a vertical wall due to propagation of bore and surge on dry bed and measured their impact on the wall. Mohapatra et al. (2000) applied Navier Stokes equations to numerically study the impact of bore on vertical and inclined walls. They also obtained the evolution of surge on dry bed. In the present work, the impact of a surge wave due to dam break flow against the wall is modeled with a two-dimensional smoothed particle hydrodynamics (SPH) model. SPH is a mesh-free method that relies on the particle view of the field problem and approximates the continuity and momentum equations on a set of particles. The method solves the strong form of Navier-Stokes equations. The governing equations are solved numerically in the vertical plane. The propagation of the surge wave, its impact and the maximum run-up on the wall located at the boundary are analyzed. Surface profile, velocity field and pressure distributions are simulated. Non-dimensional run-up height obtained from the present numerical model is 0.86 and is in good agreement with the available experimental data of Ramsden (1996) which is in the range of 0.75-0.9. Also, the simulated profile of the surge tip was comparable to the empirical equations refereed in Ramsden (1996). The model is applied to the study the maximum force and the run-up height on inclined walls with different inclinations. The results indicate that the maximum force and the run-up height on the wall increase with the increment of wall inclination. Comparison of numerical results with analytical solutions derived from shallow water equations clearly shows the breakdown of shallow water assumption during the impact. In addition to these results, the numerical simulation yields the complete velocity and pressure ?elds which may be used to design structures located in the path of a dam-break wave. The study shows that the smoothed particle hydrodynamics can effectively simulate fluid flow dynamics. References: Mohapatra, P. K., Bhallamudi, S. M., and Eswaran, V. (2000). 'Numerical simulation of impact of bores against inclined walls.' J. Hydraulic. Engg., ASCE, 126(12), 942-945. Ramsden, J. D. (1996). 'Forces on a vertical wall due to long waves, bores, and dry-bed surges.' J. Waterway, Port, Coastal, and Ocean Engg., ASCE, 122(3), 134-141.
Song, Zhongchang; Zhang, Yu; Wang, Xianyan; Wei, Chong
2017-10-01
A finite element method was used to investigate the temperature influence on sound beams of the Indo-Pacific humpback dolphin. The numerical models of a dolphin, which originated from previous computed tomography (CT) scanning and physical measurement results, were used to investigate sound beam patterns of the dolphin in temperatures from 21 °C to 39 °C, in increments of 2 °C. The -3 dB beam widths across the temperatures ranged from 9.3° to 12.6°, and main beam angle ranged from 4.7° to 7.2° for these temperatures. The subsequent simulation suggested that the dolphin's sound beam patterns, side lobes in particular, were influenced by temperature.
Vranckx, Stijn; Vos, Peter; Maiheu, Bino; Janssen, Stijn
2015-11-01
Effects of vegetation on pollutant dispersion receive increased attention in attempts to reduce air pollutant concentration levels in the urban environment. In this study, we examine the influence of vegetation on the concentrations of traffic pollutants in urban street canyons using numerical simulations with the CFD code OpenFOAM. This CFD approach is validated against literature wind tunnel data of traffic pollutant dispersion in street canyons. The impact of trees is simulated for a variety of vegetation types and the full range of approaching wind directions at 15° interval. All these results are combined using meteo statistics, including effects of seasonal leaf loss, to determine the annual average effect of trees in street canyons. This analysis is performed for two pollutants, elemental carbon (EC) and PM10, using background concentrations and emission strengths for the city of Antwerp, Belgium. The results show that due to the presence of trees the annual average pollutant concentrations increase with about 8% (range of 1% to 13%) for EC and with about 1.4% (range of 0.2 to 2.6%) for PM10. The study indicates that this annual effect is considerably smaller than earlier estimates which are generally based on a specific set of governing conditions (1 wind direction, full leafed trees and peak hour traffic emissions). Copyright © 2015 Elsevier B.V. All rights reserved.
Testing the conditional mass function of dark matter haloes against numerical N-body simulations
NASA Astrophysics Data System (ADS)
Tramonte, D.; Rubiño-Martín, J. A.; Betancort-Rijo, J.; Dalla Vecchia, C.
2017-05-01
We compare the predicted conditional mass function (CMF) of dark matter haloes from two theoretical prescriptions against numerical N-body simulations, both in overdense and underdense regions and at different Eulerian scales ranging from 5 to 30 h-1 Mpc. In particular, we consider in detail a locally implemented rescaling of the unconditional mass function (UMF) already discussed in the literature, and also a generalization of the standard rescaling method described in the extended Press-Schechter formalism. First, we test the consistency of these two rescalings by verifying the normalization of the CMF at different scales, and showing that none of the proposed cases provides a normalized CMF. In order to satisfy the normalization condition, we include a modification in the rescaling procedure. After this modification, the resulting CMF generally provides a better description of numerical results. We finally present an analytical fit to the ratio between the CMF and the UMF (also known as the matter-to-halo bias function) in underdense regions, which could be of special interest to speed up the computation of the halo abundance when studying void statistics. In this case, the CMF prescription based on the locally implemented rescaling provides a slightly better description of the numerical results when compared to the standard rescaling.
Avoiding numerical pitfalls in social force models
NASA Astrophysics Data System (ADS)
Köster, Gerta; Treml, Franz; Gödel, Marion
2013-06-01
The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution.
NASA Astrophysics Data System (ADS)
King, Jacob; Kruger, Scott
2017-10-01
Flow can impact the stability and nonlinear evolution of range of instabilities (e.g. RWMs, NTMs, sawteeth, locked modes, PBMs, and high-k turbulence) and thus robust numerical algorithms for simulations with flow are essential. Recent simulations of DIII-D QH-mode [King et al., Phys. Plasmas and Nucl. Fus. 2017] with flow have been restricted to smaller time-step sizes than corresponding computations without flow. These computations use a mixed semi-implicit, implicit leapfrog time discretization as implemented in the NIMROD code [Sovinec et al., JCP 2004]. While prior analysis has shown that this algorithm is unconditionally stable with respect to the effect of large flows on the MHD waves in slab geometry [Sovinec et al., JCP 2010], our present Von Neumann stability analysis shows that a flow-induced numerical instability may arise when ad-hoc cylindrical curvature is included. Computations with the NIMROD code in cylindrical geometry with rigid rotation and without free-energy drive from current or pressure gradients qualitatively confirm this analysis. We explore potential methods to circumvent this flow-induced numerical instability such as using a semi-Lagrangian formulation instead of time-centered implicit advection and/or modification to the semi-implicit operator. This work is supported by the DOE Office of Science (Office of Fusion Energy Sciences).
NASA Astrophysics Data System (ADS)
Rozylo, Patryk; Teter, Andrzej; Debski, Hubert; Wysmulski, Pawel; Falkowicz, Katarzyna
2017-10-01
The object of the research are short, thin-walled columns with an open top-hat cross section made of multilayer laminate. The walls of the investigated profiles are made of plate elements. The entire columns are subjected to uniform compression. A detailed analysis allowed us to determine critical forces and post-critical equilibrium paths. It is assumed that the columns are articulately supported on the edges forming their ends. The numerical investigation is performed by the finite element method. The study involves solving the problem of eigenvalue and the non-linear problem of stability of the structure. The numerical analysis is performed by the commercial simulation software ABAQUS®. The numerical results are then validated experimentally. In the discussed cases, it is assumed that the material operates within a linearly-elastic range, and the non-linearity of the FEM model is due to large displacements.
Numerical simulation of the processes in the normal incidence tube for high acoustic pressure levels
NASA Astrophysics Data System (ADS)
Fedotov, E. S.; Khramtsov, I. V.; Kustov, O. Yu.
2016-10-01
Numerical simulation of the acoustic processes in an impedance tube at high levels of acoustic pressure is a way to solve a problem of noise suppressing by liners. These studies used liner specimen that is one cylindrical Helmholtz resonator. The evaluation of the real and imaginary parts of the liner acoustic impedance and sound absorption coefficient was performed for sound pressure levels of 130, 140 and 150 dB. The numerical simulation used experimental data having been obtained on the impedance tube with normal incidence waves. At the first stage of the numerical simulation it was used the linearized Navier-Stokes equations, which describe well the imaginary part of the liner impedance whatever the sound pressure level. These equations were solved by finite element method in COMSOL Multiphysics program in axisymmetric formulation. At the second stage, the complete Navier-Stokes equations were solved by direct numerical simulation in ANSYS CFX in axisymmetric formulation. As the result, the acceptable agreement between numerical simulation and experiment was obtained.
Black Holes, Gravitational Waves, and LISA
NASA Technical Reports Server (NTRS)
Baker, John
2009-01-01
Binary black hole mergers are central to many key science objectives of the Laser Interferometer Space Antenna (LISA). For many systems the strongest part of the signal is only understood by numerical simulations. Gravitational wave emissions are understood by simulations of vacuum General Relativity (GR). I discuss numerical simulation results from the perspective of LISA's needs, with indications of work that remains to be done. Some exciting scientific opportunities associated with LISA observations would be greatly enhanced if prompt electromagnetic signature could be associated. I discuss simulations to explore this possibility. Numerical simulations are important now for clarifying LISA's science potential and planning the mission. We also consider how numerical simulations might be applied at the time of LISA's operation.
Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; ...
2017-09-05
The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments.more » These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. Finally, the TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.« less
NASA Astrophysics Data System (ADS)
Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; Hilpert, Markus
2017-11-01
The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments. These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. The TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.
Numerical simulation of NQR/NMR: Applications in quantum computing.
Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C
2011-04-01
A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zhifeng; Yang, Xiaofan; Li, Siliang
The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments.more » These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. Finally, the TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.« less
Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations
NASA Technical Reports Server (NTRS)
Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.
2015-01-01
Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.
Shock probes in a one-dimensional Katz-Lebowitz-Spohn model
NASA Astrophysics Data System (ADS)
Chatterjee, Sakuntala; Barma, Mustansir
2008-06-01
We consider shock probes in a one-dimensional driven diffusive medium with nearest-neighbor Ising interaction (KLS model). Earlier studies based on an approximate mapping of the present system to an effective zero-range process concluded that the exponents characterizing the decays of several static and dynamical correlation functions of the probes depend continuously on the strength of the Ising interaction. On the contrary, our numerical simulations indicate that over a substantial range of the interaction strength, these exponents remain constant and their values are the same as in the case of no interaction (when the medium executes an ASEP). We demonstrate this by numerical studies of several dynamical correlation functions for two probes and also for a macroscopic number of probes. Our results are consistent with the expectation that the short-ranged correlations induced by the Ising interaction should not affect the large time and large distance properties of the system, implying that scaling forms remain the same as in the medium with no interactions present.
Towards Quantum Simulation with Circular Rydberg Atoms
NASA Astrophysics Data System (ADS)
Nguyen, T. L.; Raimond, J. M.; Sayrin, C.; Cortiñas, R.; Cantat-Moltrecht, T.; Assemat, F.; Dotsenko, I.; Gleyzes, S.; Haroche, S.; Roux, G.; Jolicoeur, Th.; Brune, M.
2018-01-01
The main objective of quantum simulation is an in-depth understanding of many-body physics, which is important for fundamental issues (quantum phase transitions, transport, …) and for the development of innovative materials. Analytic approaches to many-body systems are limited, and the huge size of their Hilbert space makes numerical simulations on classical computers intractable. A quantum simulator avoids these limitations by transcribing the system of interest into another, with the same dynamics but with interaction parameters under control and with experimental access to all relevant observables. Quantum simulation of spin systems is being explored with trapped ions, neutral atoms, and superconducting devices. We propose here a new paradigm for quantum simulation of spin-1 /2 arrays, providing unprecedented flexibility and allowing one to explore domains beyond the reach of other platforms. It is based on laser-trapped circular Rydberg atoms. Their long intrinsic lifetimes, combined with the inhibition of their microwave spontaneous emission and their low sensitivity to collisions and photoionization, make trapping lifetimes in the minute range realistic with state-of-the-art techniques. Ultracold defect-free circular atom chains can be prepared by a variant of the evaporative cooling method. This method also leads to the detection of arbitrary spin observables with single-site resolution. The proposed simulator realizes an X X Z spin-1 /2 Hamiltonian with nearest-neighbor couplings ranging from a few to tens of kilohertz. All the model parameters can be dynamically tuned at will, making a large range of simulations accessible. The system evolution can be followed over times in the range of seconds, long enough to be relevant for ground-state adiabatic preparation and for the study of thermalization, disorder, or Floquet time crystals. The proposed platform already presents unrivaled features for quantum simulation of regular spin chains. We discuss extensions towards more general quantum simulations of interacting spin systems with full control on individual interactions.
Entrainment range of nonidentical circadian oscillators by a light-dark cycle
NASA Astrophysics Data System (ADS)
Gu, Changgui; Xu, Jinshan; Liu, Zonghua; Rohling, Jos H. T.
2013-08-01
The suprachiasmatic nucleus (SCN) is a principal circadian clock in mammals, which controls physiological and behavioral daily rhythms. The SCN has two main features: Maintaining a rhythmic cycle of approximately 24 h in the absence of a light-dark cycle (free-running period) and the ability to entrain to external light-dark cycles. Both free-running period and range of entrainment vary from one species to another. To understand this phenomenon, we investigated the diversity of a free-running period by the distribution of coupling strengths in our previous work [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.80.030904 80, 030904(R) (2009)]. In this paper we numerically found that the dispersion of intrinsic periods among SCN neurons influence the entrainment range of the SCN, but has little influence on the free-running periods under constant darkness. This indicates that the dispersion of coupling strengths determines the diversity in free-running periods, while the dispersion of intrinsic periods determines the diversity in the entrainment range. A theoretical analysis based on two coupled neurons is presented to explain the results of numerical simulations.
Three-dimensional formulation of dislocation climb
NASA Astrophysics Data System (ADS)
Gu, Yejun; Xiang, Yang; Quek, Siu Sin; Srolovitz, David J.
2015-10-01
We derive a Green's function formulation for the climb of curved dislocations and multiple dislocations in three-dimensions. In this new dislocation climb formulation, the dislocation climb velocity is determined from the Peach-Koehler force on dislocations through vacancy diffusion in a non-local manner. The long-range contribution to the dislocation climb velocity is associated with vacancy diffusion rather than from the climb component of the well-known, long-range elastic effects captured in the Peach-Koehler force. Both long-range effects are important in determining the climb velocity of dislocations. Analytical and numerical examples show that the widely used local climb formula, based on straight infinite dislocations, is not generally applicable, except for a small set of special cases. We also present a numerical discretization method of this Green's function formulation appropriate for implementation in discrete dislocation dynamics (DDD) simulations. In DDD implementations, the long-range Peach-Koehler force is calculated as is commonly done, then a linear system is solved for the climb velocity using these forces. This is also done within the same order of computational cost as existing discrete dislocation dynamics methods.
Rafeie, Mehdi; Welleweerd, Marcel; Hassanzadeh-Barforoushi, Amin; Asadnia, Mohsen; Olthuis, Wouter; Ebrahimi Warkiani, Majid
2017-01-01
Mixing fluid samples or reactants is a paramount function in the fields of micro total analysis system (μTAS) and microchemical processing. However, rapid and efficient fluid mixing is difficult to achieve inside microchannels because of the difficulty of diffusive mass transfer in the laminar regime of the typical microfluidic flows. It has been well recorded that the mixing efficiency can be boosted by migrating from two-dimensional (2D) to three-dimensional (3D) geometries. Although several 3D chaotic mixers have been designed, most of them offer a high mixing efficiency only in a very limited range of Reynolds numbers (Re). In this work, we developed a 3D fine-threaded lemniscate-shaped micromixer whose maximum numerical and empirical efficiency is around 97% and 93%, respectively, and maintains its high performance (i.e., >90%) over a wide range of 1 < Re < 1000 which meets the requirements of both the μTAS and microchemical process applications. The 3D micromixer was designed based on two distinct mixing strategies, namely, the inducing of chaotic advection by the presence of Dean flow and diffusive mixing through thread-like grooves around the curved body of the mixers. First, a set of numerical simulations was performed to study the physics of the flow and to determine the essential geometrical parameters of the mixers. Second, a simple and cost-effective method was exploited to fabricate the convoluted structure of the micromixers through the removal of a 3D-printed wax structure from a block of cured polydimethylsiloxane. Finally, the fabricated mixers with different threads were tested using a fluorescent microscope demonstrating a good agreement with the results of the numerical simulation. We envisage that the strategy used in this work would expand the scope of the micromixer technology by broadening the range of efficient working flow rate and providing an easy way to the fabrication of 3D convoluted microstructures. PMID:28798843
Rafeie, Mehdi; Welleweerd, Marcel; Hassanzadeh-Barforoushi, Amin; Asadnia, Mohsen; Olthuis, Wouter; Ebrahimi Warkiani, Majid
2017-01-01
Mixing fluid samples or reactants is a paramount function in the fields of micro total analysis system (μTAS) and microchemical processing. However, rapid and efficient fluid mixing is difficult to achieve inside microchannels because of the difficulty of diffusive mass transfer in the laminar regime of the typical microfluidic flows. It has been well recorded that the mixing efficiency can be boosted by migrating from two-dimensional (2D) to three-dimensional (3D) geometries. Although several 3D chaotic mixers have been designed, most of them offer a high mixing efficiency only in a very limited range of Reynolds numbers ( Re ). In this work, we developed a 3D fine-threaded lemniscate-shaped micromixer whose maximum numerical and empirical efficiency is around 97% and 93%, respectively, and maintains its high performance (i.e., >90%) over a wide range of 1 < Re < 1000 which meets the requirements of both the μTAS and microchemical process applications. The 3D micromixer was designed based on two distinct mixing strategies, namely, the inducing of chaotic advection by the presence of Dean flow and diffusive mixing through thread-like grooves around the curved body of the mixers. First, a set of numerical simulations was performed to study the physics of the flow and to determine the essential geometrical parameters of the mixers. Second, a simple and cost-effective method was exploited to fabricate the convoluted structure of the micromixers through the removal of a 3D-printed wax structure from a block of cured polydimethylsiloxane. Finally, the fabricated mixers with different threads were tested using a fluorescent microscope demonstrating a good agreement with the results of the numerical simulation. We envisage that the strategy used in this work would expand the scope of the micromixer technology by broadening the range of efficient working flow rate and providing an easy way to the fabrication of 3D convoluted microstructures.
2000-12-01
Numerical Simulations ..... ................. .... 42 1.4.1. Impact of a rod on a rigid wall ..... ................. .... 42 1.4.2. Impact of two...dissipative properties of the proposed scheme . . . . 81 II.4. Representative Numerical Simulations ...... ................. ... 84 11.4.1. Forging of...Representative numerical simulations ...... ............. .. 123 111.3. Model Problem II: a Simplified Model of Thin Beams ... ......... ... 127 III
Scaling functions for systems with finite range of interaction
NASA Astrophysics Data System (ADS)
Sampaio-Filho, C. I. N.; Moreira, F. G. B.
2013-09-01
We present a numerical determination of the scaling functions of the magnetization, the susceptibility, and the Binder's cumulant for two nonequilibrium model systems with varying range of interactions. We consider Monte Carlo simulations of the block voter model (BVM) on square lattices and of the majority-vote model (MVM) on random graphs. In both cases, the satisfactory data collapse obtained for several system sizes and interaction ranges supports the hypothesis that these functions are universal. Our analysis yields an accurate estimation of the long-range exponents, which govern the decay of the critical amplitudes with the range of interaction, and is consistent with the assumption that the static exponents are Ising-like for the BVM and classical for the MVM.
NASA Technical Reports Server (NTRS)
Zhou, YE
1993-01-01
Measured raw transfer interactions from which local energy transfer is argued to result are summed in a way that directly indicates the scale disparity (s) of contributions to the net energy flux across the spectrum. It is found that the dependence upon s closely follows the s exp -4/3 form predicted by classical arguments. As a result, it is concluded that direct numerical simulation measurements lend support to the classical Kolmogorov phenomenology of local interactions and local transfer in an inertial range.
Feasibility of graphene CRLH metamaterial waveguides and leaky wave antennas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Derrick A.; Itoh, Tatsuo; Hon, Philip W. C.
2016-07-07
The feasibility of composite right/left-handed (CRLH) metamaterial waveguides based upon graphene plasmons is demonstrated via numerical simulation. Designs are presented that operate in the terahertz frequency range along with their various dimensions. Dispersion relations, radiative and free-carrier losses, and free-carrier based tunability are characterized. Finally, the radiative characteristics are evaluated, along with its feasibility for use as a leaky-wave antenna. While CRLH waveguides are feasible in the terahertz range, their ultimate utility will require precise nanofabrication, and excellent quality graphene to mitigate free-carrier losses.
All-fiber highly chirped dissipative soliton generation in the telecom range.
Kharenko, Denis S; Zhdanov, Innokentiy S; Bednyakova, Anastasia E; Podivilov, Evgeniy V; Fedoruk, Mikhail P; Apolonski, Alexander; Turitsyn, Sergei K; Babin, Sergey A
2017-08-15
A high-energy (0.93 nJ) all-fiber erbium femtosecond oscillator operating in the telecom spectral range is proposed and realized. The laser cavity, built of commercially available fibers and components, combines polarization maintaining (PM) and non-PM parts providing stable generation of highly chirped (chirp parameter 40) pulses compressed in an output piece of standard PM fiber to 165 fs. The results of the numerical simulation agree well with the experiment. The analyzed intracavity pulse dynamics enables the classification of the generated pulses as dissipative solitons.
The SCEC/USGS dynamic earthquake rupture code verification exercise
Harris, R.A.; Barall, M.; Archuleta, R.; Dunham, E.; Aagaard, Brad T.; Ampuero, J.-P.; Bhat, H.; Cruz-Atienza, Victor M.; Dalguer, L.; Dawson, P.; Day, S.; Duan, B.; Ely, G.; Kaneko, Y.; Kase, Y.; Lapusta, N.; Liu, Yajing; Ma, S.; Oglesby, D.; Olsen, K.; Pitarka, A.; Song, S.; Templeton, E.
2009-01-01
Numerical simulations of earthquake rupture dynamics are now common, yet it has been difficult to test the validity of these simulations because there have been few field observations and no analytic solutions with which to compare the results. This paper describes the Southern California Earthquake Center/U.S. Geological Survey (SCEC/USGS) Dynamic Earthquake Rupture Code Verification Exercise, where codes that simulate spontaneous rupture dynamics in three dimensions are evaluated and the results produced by these codes are compared using Web-based tools. This is the first time that a broad and rigorous examination of numerous spontaneous rupture codes has been performed—a significant advance in this science. The automated process developed to attain this achievement provides for a future where testing of codes is easily accomplished.Scientists who use computer simulations to understand earthquakes utilize a range of techniques. Most of these assume that earthquakes are caused by slip at depth on faults in the Earth, but hereafter the strategies vary. Among the methods used in earthquake mechanics studies are kinematic approaches and dynamic approaches.The kinematic approach uses a computer code that prescribes the spatial and temporal evolution of slip on the causative fault (or faults). These types of simulations are very helpful, especially since they can be used in seismic data inversions to relate the ground motions recorded in the field to slip on the fault(s) at depth. However, these kinematic solutions generally provide no insight into the physics driving the fault slip or information about why the involved fault(s) slipped that much (or that little). In other words, these kinematic solutions may lack information about the physical dynamics of earthquake rupture that will be most helpful in forecasting future events.To help address this issue, some researchers use computer codes to numerically simulate earthquakes and construct dynamic, spontaneous rupture (hereafter called “spontaneous rupture”) solutions. For these types of numerical simulations, rather than prescribing the slip function at each location on the fault(s), just the friction constitutive properties and initial stress conditions are prescribed. The subsequent stresses and fault slip spontaneously evolve over time as part of the elasto-dynamic solution. Therefore, spontaneous rupture computer simulations of earthquakes allow us to include everything that we know, or think that we know, about earthquake dynamics and to test these ideas against earthquake observations.
TRANSPORT BY MERIDIONAL CIRCULATIONS IN SOLAR-TYPE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, T. S.; Brummell, N. H., E-mail: tsw25@soe.ucsc.edu
2012-08-20
Transport by meridional flows has significant consequences for stellar evolution, but is difficult to capture in global-scale numerical simulations because of the wide range of timescales involved. Stellar evolution models therefore usually adopt parameterizations for such transport based on idealized laminar or mean-field models. Unfortunately, recent attempts to model this transport in global simulations have produced results that are not consistent with any of these idealized models. In an effort to explain the discrepancies between global simulations and idealized models, here we use three-dimensional local Cartesian simulations of compressible convection to study the efficiency of transport by meridional flows belowmore » a convection zone in several parameter regimes of relevance to the Sun and solar-type stars. In these local simulations we are able to establish the correct ordering of dynamical timescales, although the separation of the timescales remains unrealistic. We find that, even though the generation of internal waves by convective overshoot produces a high degree of time dependence in the meridional flow field, the mean flow has the qualitative behavior predicted by laminar, 'balanced' models. In particular, we observe a progressive deepening, or 'burrowing', of the mean circulation if the local Eddington-Sweet timescale is shorter than the viscous diffusion timescale. Such burrowing is a robust prediction of laminar models in this parameter regime, but has never been observed in any previous numerical simulation. We argue that previous simulations therefore underestimate the transport by meridional flows.« less
Comparison of numerical simulations to experiments for atomization in a jet nebulizer.
Lelong, Nicolas; Vecellio, Laurent; Sommer de Gélicourt, Yann; Tanguy, Christian; Diot, Patrice; Junqua-Moullet, Alexandra
2013-01-01
The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson) was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range) were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA) and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined geometrical and physical parameters.
Comparison of Numerical Simulations to Experiments for Atomization in a Jet Nebulizer
Lelong, Nicolas; Vecellio, Laurent; Sommer de Gélicourt, Yann; Tanguy, Christian; Diot, Patrice; Junqua-Moullet, Alexandra
2013-01-01
The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson) was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range) were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA) and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined geometrical and physical parameters. PMID:24244334
Computational simulation of laboratory-scale volcanic jets
NASA Astrophysics Data System (ADS)
Solovitz, S.; Van Eaton, A. R.; Mastin, L. G.; Herzog, M.
2017-12-01
Volcanic eruptions produce ash clouds that may travel great distances, significantly impacting aviation and communities downwind. Atmospheric hazard forecasting relies partly on numerical models of the flow physics, which incorporate data from eruption observations and analogue laboratory tests. As numerical tools continue to increase in complexity, they must be validated to fine-tune their effectiveness. Since eruptions are relatively infrequent and challenging to observe in great detail, analogue experiments can provide important insights into expected behavior over a wide range of input conditions. Unfortunately, laboratory-scale jets cannot easily attain the high Reynolds numbers ( 109) of natural volcanic eruption columns. Comparisons between the computational models and analogue experiments can help bridge this gap. In this study, we investigate a 3-D volcanic plume model, the Active Tracer High-resolution Atmospheric Model (ATHAM), which has been used to simulate a variety of eruptions. However, it has not been previously validated using laboratory-scale data. We conducted numerical simulations of three flows that we have studied in the laboratory: a vertical jet in a quiescent environment, a vertical jet in horizontal cross flow, and a particle-laden jet. We considered Reynolds numbers from 10,000 to 50,000, jet-to-cross flow velocity ratios of 2 to 10, and particle mass loadings of up to 25% of the exit mass flow rate. Vertical jet simulations produce Gaussian velocity profiles in the near exit region by 3 diameters downstream, matching the mean experimental profiles. Simulations of air entrainment are of the correct order of magnitude, but they show decreasing entrainment with vertical distance from the vent. Cross flow simulations reproduce experimental trajectories for the jet centerline initially, although confinement appears to impact the response later. Particle-laden simulations display minimal variation in concentration profiles between cases with different mass loadings and size distributions, indicating that differences in particle behavior may not be evident at this laboratory scale.
Radiation Protection Effectiveness of Polymeric Based Shielding Materials at Low Earth Orbit
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; Stewart-Sloan, Charlotte R.; Wilson, John W.; Adams, Daniel O.
2008-01-01
Correlations of limited ionizing radiation measurements onboard the Space Transportation System (STS; shuttle) and the International Space Station (ISS) with numerical simulations of charged particle transport through spacecraft structure have indicated that usage of hydrogen rich polymeric materials improves the radiation shielding performance of space structures as compared to the traditionally used aluminum alloys. We discuss herein the radiation shielding correlations between measurements on board STS-81 (Atlantis, 1997) using four polyethylene (PE) spheres of varying radii, and STS-89 (Endeavour, 1998) using aluminum alloy spheres; with numerical simulations of charged particle transport using the Langley Research Center (LaRC)-developed High charge (Z) and Energy TRaNsport (HZETRN) algorithm. In the simulations, the Galactic Cosmic Ray (GCR) component of the ionizing radiation environment at Low Earth Orbit (LEO) covering ions in the 1< or equals Z< or equals 28 range is represented by O'Neill's (2004) model. To compute the transmission coefficient for GCR ions at LEO, O'Neill's model is coupled with the angular dependent LaRC cutoff model. The trapped protons/electrons component of LEO environment is represented by a LaRC-developed time dependent procedure which couples the AP8min/AP8max, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment resulting from interaction of GCR ions with upper atmosphere is modeled through extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. With the validity of numerical simulations through correlation with PE and aluminum spheres measurements established, we further present results from the expansion of the simulations through the selection of high hydrogen content commercially available polymeric constituents such as PE foam core and Spectra fiber(Registered TradeMark) composite face sheet to assess their radiation shield properties as compared to generic PE.
Benzi, Roberto; Ching, Emily S C; De Angelis, Elisabetta; Procaccia, Itamar
2008-04-01
Numerical simulations of turbulent channel flows, with or without additives, are limited in the extent of the Reynolds number (Re) and Deborah number (De). The comparison of such simulations to theories of drag reduction, which are usually derived for asymptotically high Re and De, calls for some care. In this paper we present a study of drag reduction by rodlike polymers in a turbulent channel flow using direct numerical simulation and illustrate how these numerical results should be related to the recently developed theory.
NASA Astrophysics Data System (ADS)
Lange, Jacob; O'Shaughnessy, Richard; Healy, James; Lousto, Carlos; Shoemaker, Deirdre; Lovelace, Geoffrey; Scheel, Mark; Ossokine, Serguei
2016-03-01
In this talk, we describe a procedure to reconstruct the parameters of sufficiently massive coalescing compact binaries via direct comparison with numerical relativity simulations. For sufficiently massive sources, existing numerical relativity simulations are long enough to cover the observationally accessible part of the signal. Due to the signal's brevity, the posterior parameter distribution it implies is broad, simple, and easily reconstructed from information gained by comparing to only the sparse sample of existing numerical relativity simulations. We describe how followup simulations can corroborate and improve our understanding of a detected source. Since our method can include all physics provided by full numerical relativity simulations of coalescing binaries, it provides a valuable complement to alternative techniques which employ approximations to reconstruct source parameters. Supported by NSF Grant PHY-1505629.
A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
Ling, Hong; Luo, Ercang; Dai, Wei
2006-12-22
Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.
Gustafsson, Gustaf; Nishida, Masahiro; Ito, Yoshitaka; Häggblad, Hans-Åke; Jonsén, Pär; Takayama, Tetsuo; Todo, Mitsugu
2015-11-01
Poly(ε-caprolactone) (PCL) is a ductile, bioabsorbable polymer that has been employed as a blend partner for poly(L-lactic acid) (PLLA). An improvement of the material strength and impact resistance of PLLA/PCL polymer blends compared to pure PLLA has been shown previously. To use numerical simulations in the design process of new components composed of the PLLA/PCL blend, a constitutive model for the material has to be established. In this work, a constitutive model for a PLLA/PCL polymer blend is established from the results of compressive tests at high and low strain rates at three different temperatures, including the body temperature. Finite element simulations of the split Hopkinson pressure bar test using the established constitutive model are carried out under the same condition as the experiments. During the experiments, the changes in the diameter and thickness of the specimens are captured by a high-speed video camera. The accuracy of the numerical model is tested by comparing the simulation results, such as the stress, strain, thickness and diameter histories of the specimens, with those measured in the experiments. The numerical model is also validated against an impact test of non-homogenous strains and strain rates. The results of this study provide a validated numerical model for a PLLA/PCL polymer blend at strain rates of up to 1800 s(-1) in the temperature range between 22°C and 50°C. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction.
Gilles, Luc; Vogel, Curtis R; Ellerbroek, Brent L
2002-09-01
We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.
An elementary singularity-free Rotational Brownian Dynamics algorithm for anisotropic particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilie, Ioana M.; Briels, Wim J.; MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede
2015-03-21
Brownian Dynamics is the designated technique to simulate the collective dynamics of colloidal particles suspended in a solution, e.g., the self-assembly of patchy particles. Simulating the rotational dynamics of anisotropic particles by a first-order Langevin equation, however, gives rise to a number of complications, ranging from singularities when using a set of three rotational coordinates to subtle metric and drift corrections. Here, we derive and numerically validate a quaternion-based Rotational Brownian Dynamics algorithm that handles these complications in a simple and elegant way. The extension to hydrodynamic interactions is also discussed.
Mid-infrared supercontinuum in a Ge11:5As24Se64:5 chalcogenide waveguide
NASA Astrophysics Data System (ADS)
Sakunasinha, Panarit; Suwanarat, Suksan; Chiangga, Surasak
2015-07-01
We present results of numerical simulations of a supercontinuum generation (SCG) in a Ge11:5As24Se64:5 chalcogenide rectangular waveguide with air as an upper cladding and the lower cladding is magnesium fluoride. A broadband infrared 1.3-3.0 μm SCG could be achieved by pumping with femtosecond pulses in the two zero dispersion wavelengths. The effect of chirp on SCG spectrum has been also investigated. The simulation shows a significant SCG spectral flatness in the mid-infrared range with positive frequency chirp input pulses.
Hencky's model for elastomer forming process
NASA Astrophysics Data System (ADS)
Oleinikov, A. A.; Oleinikov, A. I.
2016-08-01
In the numerical simulation of elastomer forming process, Henckys isotropic hyperelastic material model can guarantee relatively accurate prediction of strain range in terms of large deformations. It is shown, that this material model prolongate Hooke's law from the area of infinitesimal strains to the area of moderate ones. New representation of the fourth-order elasticity tensor for Hencky's hyperelastic isotropic material is obtained, it possesses both minor symmetries, and the major symmetry. Constitutive relations of considered model is implemented into MSC.Marc code. By calculating and fitting curves, the polyurethane elastomer material constants are selected. Simulation of equipment for elastomer sheet forming are considered.
3D Simulations of Convection: From the Sun Toward Evolved Stars
NASA Astrophysics Data System (ADS)
Höfner, Susanne
2018-04-01
Basic physical considerations and detailed numerical simulations predict a dramatic increase in the sizes of convection cells during late phases of stellar evolution. The recent progress in high-angular-resolution techniques has made it possible to observe surface structures on several nearby giants and supergiants for a wide range of wavelengths. Such observations provide much-needed checkpoints for convection theory, in addition to the detailed comparisons of models and observations for the sun. In this talk I will give an overview of current 3D convection models for different types of stars and discuss related observable phenomena.
Monte Carlo Simulation of Visible Light Diffuse Reflection in Neonatal Skin
NASA Astrophysics Data System (ADS)
Atencio, J. A. Delgado; Rodríguez, E. E.; Rodríguez, A. Cornejo; Rivas-Silva, J. F.
2008-04-01
Neonatal jaundice is a medical condition that happens commonly in newborns as result of desbalance between the production and the elimination of the bilirubin. Around 50% of newborns in term and something more of 60% of the near-term becomes jaundiced in the first week of life. This excess of bilirubin in the blood is exhibited in the skin, the sclera of the eyes and the mucous of mouth like a characteristic yellow coloration. In this work we make several numerical simulations of the spectral diffuse reflection for the skin of newborns that present different values of the biological parameters (bilirubin content, grade of pigmentation and content of blood) that characterize it. These simulations will allow us to evaluate the influence of these parameters on the experimental determination of bilirubin by noninvasive optical methods. The simulations are made in the spectral range of 400-700 nm using the Monte Carlo code MCML and two programs developed in LabVIEW by the authors. We simulated the diffuse reflection spectrum of neonatal skin for concentrations of bilirubin in skin that covers an ample range: from physiological to harmful numbers. We considered the influence of factors such as grade of pigmentation and content of blood.
Simulation of shear plugging through thin plates using the GRIM Eulerian hydrocode
NASA Astrophysics Data System (ADS)
Church, P.; Cornish, R.; Cullis, I.; Lynch, N.
2000-03-01
Ballistic experiments have been performed using aluminum spheres against 10-mm rolled homogenous armour (RHA), MARS270, MARS300, and titanium alloy plates to investigate the influence of the plugging mechanism on material properties. The experiments have measured the threshold for plug mass and velocity as well as the recovered aluminum sphere mass over a range of velocities. Some of the experiments have been simulated using the in-house second generation Eulerian hydrocode GRIM. The calculations feature advanced material algorithms derived from interrupted tensile testing techniques and a triaxial failure model derived from notched tensile tests over a range of strain rates and temperatures. The effect of mesh resolution on the results has been investigated and understood. The simulation results illustrate the importance of the constitutive model in the shear localization process and the subsequent plugging phenomena. The stress triaxiality is seen as the dominant feature in controlling the onset and subsequent propagation of the crack leading to the shear plug. The simulations have demonstrated that accurate numerics coupled with accurate constitutive and fracture algorithms can successfully reproduce the observed experimental features. However, extrapolation of the fracture data leads to the simulations overpredicting the plug damage. The reasons for this are discussed.
PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Pao, S. Paul; Hunter, Craig A.; Deere, Karen A.; Massey, Steven J.; Elmiligui, Alaa
2006-01-01
This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions.
Recovery Discontinuous Galerkin Jacobian-free Newton-Krylov Method for all-speed flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
HyeongKae Park; Robert Nourgaliev; Vincent Mousseau
2008-07-01
There is an increasing interest to develop the next generation simulation tools for the advanced nuclear energy systems. These tools will utilize the state-of-art numerical algorithms and computer science technology in order to maximize the predictive capability, support advanced reactor designs, reduce uncertainty and increase safety margins. In analyzing nuclear energy systems, we are interested in compressible low-Mach number, high heat flux flows with a wide range of Re, Ra, and Pr numbers. Under these conditions, the focus is placed on turbulent heat transfer, in contrast to other industries whose main interest is in capturing turbulent mixing. Our objective ismore » to develop singlepoint turbulence closure models for large-scale engineering CFD code, using Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES) tools, requireing very accurate and efficient numerical algorithms. The focus of this work is placed on fully-implicit, high-order spatiotemporal discretization based on the discontinuous Galerkin method solving the conservative form of the compressible Navier-Stokes equations. The method utilizes a local reconstruction procedure derived from weak formulation of the problem, which is inspired by the recovery diffusion flux algorithm of van Leer and Nomura [?] and by the piecewise parabolic reconstruction [?] in the finite volume method. The developed methodology is integrated into the Jacobianfree Newton-Krylov framework [?] to allow a fully-implicit solution of the problem.« less
Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J
2012-05-01
Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahto, Navin Kumar; Choubey, Gautam; Suneetha, Lakka; Pandey, K. M.
2016-11-01
The two equation standard k-ɛ turbulence model and the two-dimensional compressible Reynolds-Averaged Navier-Stokes (RANS) equations have been used to computationally simulate the double cavity scramjet combustor. Here all the simulations are performed by using ANSYS 14-FLUENT code. At the same time, the validation of the present numerical simulation for double cavity has been performed by comparing its result with the available experimental data which is in accordance with the literature. The results are in good agreement with the schlieren image and the pressure distribution curve obtained experimentally. However, the pressure distribution curve obtained numerically is under-predicted in 5 locations by numerical calculation. Further, investigations on the variations of the effects of the length-to-depth ratio of cavity and Mach number on the combustion characteristics has been carried out. The present results show that there is an optimal length-to-depth ratio for the cavity for which the performance of combustor significantly improves and also efficient combustion takes place within the combustor region. Also, the shifting of the location of incident oblique shock took place in the downstream of the H2 inlet when the Mach number value increases. But after achieving a critical Mach number range of 2-2.5, the further increase in Mach number results in lower combustion efficiency which may deteriorate the performance of combustor.
Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-01
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10−7-10−3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10−3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters. PMID:28045056
Del Bello, Elisabetta; Taddeucci, Jacopo; De' Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-03
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕ p ) ranging 10 -7 -10 -3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕ p ~ 10 -3 . Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕ p . Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕ p . These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters.
NASA Astrophysics Data System (ADS)
Cai, Haibing; Xu, Liuxun; Yang, Yugui; Li, Longqi
2018-05-01
Artificial liquid nitrogen freezing technology is widely used in urban underground engineering due to its technical advantages, such as simple freezing system, high freezing speed, low freezing temperature, high strength of frozen soil, and absence of pollution. However, technical difficulties such as undefined range of liquid nitrogen freezing and thickness of frozen wall gradually emerge during the application process. Thus, the analytical solution of the freezing-temperature field of a single pipe is established considering the freezing temperature of soil and the constant temperature of freezing pipe wall. This solution is then applied in a liquid nitrogen freezing project. Calculation results show that the radius of freezing front of liquid nitrogen is proportional to the square root of freezing time. The radius of the freezing front also decreases with decreased the freezing temperature, and the temperature gradient of soil decreases with increased distance from the freezing pipe. The radius of cooling zone in the unfrozen area is approximately four times the radius of the freezing front. Meanwhile, the numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe is conducted using the Abaqus finite-element program. Results show that the numerical simulation of soil temperature distribution law well agrees with the analytical solution, further verifies the reliability of the established analytical solution of the liquid nitrogen freezing-temperature field of a single pipe.
Instabilities and spin-up behaviour of a rotating magnetic field driven flow in a rectangular cavity
NASA Astrophysics Data System (ADS)
Galindo, V.; Nauber, R.; Räbiger, D.; Franke, S.; Beyer, H.; Büttner, L.; Czarske, J.; Eckert, S.
2017-11-01
This study presents numerical simulations and experiments considering the flow of an electrically conducting fluid inside a cube driven by a rotating magnetic field (RMF). The investigations are focused on the spin-up, where a liquid metal (GaInSn) is suddenly exposed to an azimuthal body force generated by the RMF and the subsequent flow development. The numerical simulations rely on a semi-analytical expression for the induced electromagnetic force density in an electrically conducting medium inside a cuboid container with insulating walls. Velocity distributions in two perpendicular planes are measured using a novel dual-plane, two-component ultrasound array Doppler velocimeter with continuous data streaming, enabling long term measurements for investigating transient flows. This approach allows identifying the main emerging flow modes during the transition from stable to unstable flow regimes with exponentially growing velocity oscillations using the Proper Orthogonal Decomposition method. Characteristic frequencies in the oscillating flow regimes are determined in the super critical range above the critical magnetic Taylor number T ac≈1.26 ×1 05, where the transition from the steady double vortex structure of the secondary flow to an unstable regime with exponentially growing oscillations is detected. The mean flow structures and the temporal evolution of the flow predicted by the numerical simulations and observed in experiments are in very good agreement.
Method for simulating discontinuous physical systems
Baty, Roy S.; Vaughn, Mark R.
2001-01-01
The mathematical foundations of conventional numerical simulation of physical systems provide no consistent description of the behavior of such systems when subjected to discontinuous physical influences. As a result, the numerical simulation of such problems requires ad hoc encoding of specific experimental results in order to address the behavior of such discontinuous physical systems. In the present invention, these foundations are replaced by a new combination of generalized function theory and nonstandard analysis. The result is a class of new approaches to the numerical simulation of physical systems which allows the accurate and well-behaved simulation of discontinuous and other difficult physical systems, as well as simpler physical systems. Applications of this new class of numerical simulation techniques to process control, robotics, and apparatus design are outlined.
Marston, Thomas M.; Heilweil, Victor M.
2012-01-01
The Hurricane Bench area of Washington County, Utah, is a 70 square-mile area extending south from the Virgin River and encompassing Sand Hollow basin. Sand Hollow Reservoir, located on Hurricane Bench, was completed in March 2002 and is operated primarily as a managed aquifer recharge project by the Washington County Water Conservancy District. The reservoir is situated on a thick sequence of the Navajo Sandstone and Kayenta Formation. Total recharge to the underlying Navajo aquifer from the reservoir was about 86,000 acre-feet from 2002 to 2009. Natural recharge as infiltration of precipitation was approximately 2,100 acre-feet per year for the same period. Discharge occurs as seepage to the Virgin River, municipal and irrigation well withdrawals, and seepage to drains at the base of reservoir dams. Within the Hurricane Bench area, unconfined groundwater-flow conditions generally exist throughout the Navajo Sandstone. Navajo Sandstone hydraulic-conductivity values from regional aquifer testing range from 0.8 to 32 feet per day. The large variability in hydraulic conductivity is attributed to bedrock fractures that trend north-northeast across the study area.A numerical groundwater-flow model was developed to simulate groundwater movement in the Hurricane Bench area and to simulate the movement of managed aquifer recharge from Sand Hollow Reservoir through the groundwater system. The model was calibrated to combined steady- and transient-state conditions. The steady-state portion of the simulation was developed and calibrated by using hydrologic data that represented average conditions for 1975. The transient-state portion of the simulation was developed and calibrated by using hydrologic data collected from 1976 to 2009. Areally, the model grid was 98 rows by 76 columns with a variable cell size ranging from about 1.5 to 25 acres. Smaller cells were used to represent the reservoir to accurately simulate the reservoir bathymetry and nearby monitoring wells; larger cells were used in the northern and southern portions of the model where water-level data were limited. Vertically, the aquifer system was divided into 10 layers, which incorporated the Navajo Sandstone and Kayenta Formation. The model simulated recharge to the groundwater system as natural infiltration of precipitation and as infiltration of managed aquifer recharge from Sand Hollow Reservoir. Groundwater discharge was simulated as well withdrawals, shallow drains at the base of reservoir dams, and seepage to the Virgin River. During calibration, variables were adjusted within probable ranges to minimize differences among model-simulated and observed water levels, groundwater travel times, drain discharges, and monthly estimated reservoir recharge.
Power-law scaling in Bénard-Marangoni convection at large Prandtl numbers
NASA Astrophysics Data System (ADS)
Boeck, Thomas; Thess, André
2001-08-01
Bénard-Marangoni convection at large Prandtl numbers is found to exhibit steady (nonturbulent) behavior in numerical experiments over a very wide range of Marangoni numbers Ma far away from the primary instability threshold. A phenomenological theory, taking into account the different character of thermal boundary layers at the bottom and at the free surface, is developed. It predicts a power-law scaling for the nondimensional velocity (Peclet number) and heat flux (Nusselt number) of the form Pe~Ma2/3, Nu~Ma2/9. This prediction is in good agreement with two-dimensional direct numerical simulations up to Ma=3.2×105.
Skip trajectory flight of a ramjet-powered hypersonic vehicle
NASA Astrophysics Data System (ADS)
Fomin, V. M.; Aulchenko, S. M.; Zvegintsev, V. I.
2010-07-01
Possible skip trajectories of a flying vehicle with a periodically actuated ramjet are numerically simulated. An optimal choice of ramjet actuation areas and duration is demonstrated to ensure the maximum flight range with a given amount of the fuel. The main advantage of skip trajectories is found to be a significant (by an order of magnitude) decrease in thermal loads on the flying vehicle.
Multifractal spectra in shear flows
NASA Technical Reports Server (NTRS)
Keefe, L. R.; Deane, Anil E.
1989-01-01
Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.
Kazi, Salim Newaz; Sadeghinezhad, Emad
2014-01-01
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations. PMID:25254236
Yarmand, Hooman; Gharehkhani, Samira; Kazi, Salim Newaz; Sadeghinezhad, Emad; Safaei, Mohammad Reza
2014-01-01
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.
Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V.; Carpenter, K. G.; Ofman, L.
2010-01-01
We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.
Hot interstellar tunnels. 1: Simulation of interacting supernova remnants
NASA Technical Reports Server (NTRS)
Smith, B. W.
1976-01-01
The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected, with varying ease and speed, for a variety of assumed conditions in the outer shells of old remnants. Apparently neither radiative cooling nor thermal conduction in a large-scale galactic magnetic field can destroy hot cavity regions, if they grow, faster than they are reheated by supernova shock waves, but interstellar mass motions disrupt the contiguity of extensive cavities necessary for the dispersal of these shocks over a wide volume. Monte Carlo simulations show that a quasi-equilibrium is reached in the test space within 10 million yrs of the first supernova and is characterized by an average cavity filling fraction of the interstellar volume. Aspects of this equilibrium are discussed for a range of supernova rates. Two predictions are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities.
A model for the kinetics of a solar-pumped long path laser experiment
NASA Technical Reports Server (NTRS)
Stock, L. V.; Wilson, J. W.; Deyoung, R. J.
1986-01-01
A kinetic model for a solar-simulator pumped iodine laser system is developed and compared to an experiment in which the solar simulator output is dispersed over a large active volume (150 cu cm) with low simulator light intensity (approx. 200 solar constants). A trace foreign gas which quenches the upper level is introduced into the model. Furthermore, a constant representing optical absorption of the stimulated emission is introduced, in addition to a constant representing the scattering at each of the mirrors, via the optical cavity time constant. The non-uniform heating of the gas is treated as well as the pressure change as a function of time within the cavity. With these new phenomena introduced into the kinetic model, a best reasonable fit to the experimental data is found by adjusting the reaction rate coefficients within the range of known uncertainty by numerical methods giving a new bound within this range of uncertainty. The experimental parameters modeled are the lasing time, laser pulse energy, and time to laser threshold.
NASA Astrophysics Data System (ADS)
Tahir, Naeem Ahmad; Blanco Sancho, Juan; Schmidt, Ruediger; Shutov, Alaxander; Burkart, Florian; Wollmann, Daniel; Piriz, Antonio Roberto
2013-10-01
Numerical simulations have shown that the range of 7 TeV LHC protons in solid matter will be significantly increased due to hydrodynamic tunneling. For example, in solid copper and solid carbon, these protons and the shower can penetrate up to 35 m and 25 m, respectively. However, their corresponding static range in the two materials is 1 m and 3 m, respectively. This will have important implications on machine protection design. In order to validate these simulation results, experiments have been performed at the CERN HiRadMat facility using the 440 GeV SPS proton beam irradiating solid copper cylindrical target. The phenomenon of hydrodynamic tunneling has been experimentally confirmed and good agreement has been found between the simulations and the experimental results. A very interesting outcome of this work is that the HiRadMat facility can be used to generate High Energy Density matter including Warm Dense Matter and strongly coupled plasmas in the laboratory.
LES of Temporally Evolving Mixing Layers by an Eighth-Order Filter Scheme
NASA Technical Reports Server (NTRS)
Hadjadj, A; Yee, H. C.; Sjogreen, B.
2011-01-01
An eighth-order filter method for a wide range of compressible flow speeds (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) are employed for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) and Reynolds numbers. The high order filter method is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The value of Mc considered is for the TML range from the quasi-incompressible regime to the highly compressible supersonic regime. The three main characteristics of compressible TML (the self similarity property, compressibility effects and the presence of large-scale structure with shocklets for high Mc) are considered for the LES study. The LES results using the same scheme parameters for all studied cases agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002).
NASA Astrophysics Data System (ADS)
Grilli, Stéphan T.; Guérin, Charles-Antoine; Shelby, Michael; Grilli, Annette R.; Moran, Patrick; Grosdidier, Samuel; Insua, Tania L.
2017-08-01
In past work, tsunami detection algorithms (TDAs) have been proposed, and successfully applied to offline tsunami detection, based on analyzing tsunami currents inverted from high-frequency (HF) radar Doppler spectra. With this method, however, the detection of small and short-lived tsunami currents in the most distant radar ranges is challenging due to conflicting requirements on the Doppler spectra integration time and resolution. To circumvent this issue, in Part I of this work, we proposed an alternative TDA, referred to as time correlation (TC) TDA, that does not require inverting currents, but instead detects changes in patterns of correlations of radar signal time series measured in pairs of cells located along the main directions of tsunami propagation (predicted by geometric optics theory); such correlations can be maximized when one signal is time-shifted by the pre-computed long wave propagation time. We initially validated the TC-TDA based on numerical simulations of idealized tsunamis in a simplified geometry. Here, we further develop, extend, and apply the TC algorithm to more realistic tsunami case studies. These are performed in the area West of Vancouver Island, BC, where Ocean Networks Canada recently deployed a HF radar (in Tofino, BC), to detect tsunamis from far- and near-field sources, up to a 110 km range. Two case studies are considered, both simulated using long wave models (1) a far-field seismic, and (2) a near-field landslide, tsunami. Pending the availability of radar data, a radar signal simulator is parameterized for the Tofino HF radar characteristics, in particular its signal-to-noise ratio with range, and combined with the simulated tsunami currents to produce realistic time series of backscattered radar signal from a dense grid of cells. Numerical experiments show that the arrival of a tsunami causes a clear change in radar signal correlation patterns, even at the most distant ranges beyond the continental shelf, thus making an early tsunami detection possible with the TC-TDA. Based on these results, we discuss how the new algorithm could be combined with standard methods proposed earlier, based on a Doppler analysis, to develop a new tsunami detection system based on HF radar data, that could increase warning time. This will be the object of future work, which will be based on actual, rather than simulated, radar data.
Holmquist-Johnson, C. L.
2009-01-01
River spanning rock structures are being constructed for water delivery as well as to enable fish passage at barriers and provide or improve the aquatic habitat for endangered fish species. Current design methods are based upon anecdotal information applicable to a narrow range of channel conditions. The complex flow patterns and performance of rock weirs is not well understood. Without accurate understanding of their hydraulics, designers cannot address the failure mechanisms of these structures. Flow characteristics such as jets, near bed velocities, recirculation, eddies, and plunging flow govern scour pool development. These detailed flow patterns can be replicated using a 3D numerical model. Numerical studies inexpensively simulate a large number of cases resulting in an increased range of applicability in order to develop design tools and predictive capability for analysis and design. The analysis and results of the numerical modeling, laboratory modeling, and field data provide a process-based method for understanding how structure geometry affects flow characteristics, scour development, fish passage, water delivery, and overall structure stability. Results of the numerical modeling allow designers to utilize results of the analysis to determine the appropriate geometry for generating desirable flow parameters. The end product of this research will develop tools and guidelines for more robust structure design or retrofits based upon predictable engineering and hydraulic performance criteria. ?? 2009 ASCE.
A simulation-based analytic model of radio galaxies
NASA Astrophysics Data System (ADS)
Hardcastle, M. J.
2018-04-01
I derive and discuss a simple semi-analytical model of the evolution of powerful radio galaxies which is not based on assumptions of self-similar growth, but rather implements some insights about the dynamics and energetics of these systems derived from numerical simulations, and can be applied to arbitrary pressure/density profiles of the host environment. The model can qualitatively and quantitatively reproduce the source dynamics and synchrotron light curves derived from numerical modelling. Approximate corrections for radiative and adiabatic losses allow it to predict the evolution of radio spectral index and of inverse-Compton emission both for active and `remnant' sources after the jet has turned off. Code to implement the model is publicly available. Using a standard model with a light relativistic (electron-positron) jet, subequipartition magnetic fields, and a range of realistic group/cluster environments, I simulate populations of sources and show that the model can reproduce the range of properties of powerful radio sources as well as observed trends in the relationship between jet power and radio luminosity, and predicts their dependence on redshift and environment. I show that the distribution of source lifetimes has a significant effect on both the source length distribution and the fraction of remnant sources expected in observations, and so can in principle be constrained by observations. The remnant fraction is expected to be low even at low redshift and low observing frequency due to the rapid luminosity evolution of remnants, and to tend rapidly to zero at high redshift due to inverse-Compton losses.
NASA Astrophysics Data System (ADS)
Parsons, Reid; Holt, John
2016-03-01
Lobate debris aprons (LDAs) are midlatitude deposits of debris-covered ice formed during one or more periods of glaciation during the Amazonian period. However, little is known about the climate conditions that led to LDA formation. We explore a hypothesis in which a single, extended period of precipitation of ice on the steep slopes of Euripus Mons (45°S, 105°E—east of the Hellas Basin) produced a flowing ice deposit which was protected from subsequent ablation to produce the LDA found at this location. We test this hypothesis with a numerical ice flow model using an ice rheology based on low-temperature ice deformation experiments. The model simulates ice accumulation and flow for the northern and southern lobes of the Euripus Mons LDA using basal topography constrained by data from the Shallow Radar (SHARAD) and a range of ice viscosities (determined by ice temperature and ice grain size). Simulations for the northern lobe of the Euripus LDA produce good fits to the surface topography. Assuming an LDA age of ˜60 Myr and an expected temperature range of 200 to 204 K (for various obliquities) gives an ice grain size of ≈2 mm. Simulations of the southern section produce poor fits to surface topography and result in much faster flow timescales unless multiple ice deposition events or higher ice viscosities are considered.
Energy and variance budgets of a diffusive staircase with implications for heat flux scaling
NASA Astrophysics Data System (ADS)
Hieronymus, M.; Carpenter, J. R.
2016-02-01
Diffusive convection, the mode of double-diffusive convection that occur when both temperature and salinity increase with increasing depth, is commonplace throughout the high latitude oceans and diffusive staircases constitute an important heat transport process in the Arctic Ocean. Heat and buoyancy fluxes through these staircases are often estimated using flux laws deduced either from laboratory experiments, or from simplified energy or variance budgets. We have done direct numerical simulations of double-diffusive convection at a range of Rayleigh numbers and quantified the energy and variance budgets in detail. This allows us to compare the fluxes in our simulations to those derived using known flux laws and to quantify how well the simplified energy and variance budgets approximate the full budgets. The fluxes are found to agree well with earlier estimates at high Rayleigh numbers, but we find large deviations at low Rayleigh numbers. The close ties between the heat and buoyancy fluxes and the budgets of thermal variance and energy have been utilized to derive heat flux scaling laws in the field of thermal convection. The result is the so called GL-theory, which has been found to give accurate heat flux scaling laws in a very wide parameter range. Diffusive convection has many similarities to thermal convection and an extension of the GL-theory to diffusive convection is also presented and its predictions are compared to the results from our numerical simulations.
Huang, Xinyue; Li, Xueming; Yang, Jianchun; Tao, Chuanyi; Guo, Xiaogang; Bao, Hebin; Yin, Yanjun; Chen, Huifei; Zhu, Yuhua
2017-01-01
Ammonia is an important indicator among environmental monitoring parameters. In this work, thin-core fiber Mach-Zehnder interferometer deposited with poly (acrylic acid) (PAA), poly (allyamine hydrochloride) (PAH) and single-walled carbon nanotubes (SWCNTs-COOH) sensing film for the detection of ammonia gas has been presented. The thin-core fiber modal interferometer was made by fusion splicing a small section of thin-core fiber (TCF) between two standard single mode fibers (SMF). A beam propagation method (BPM) is employed for the design of proposed interferometer and numerical simulation. Based on the simulation results, interferometer with a length of 2 cm of thin-core fiber is fabricated and experimentally studied. (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film is deposited on the outer surface of thin-core fiber via layer-by-layer (LbL) self-assembly technique. The gas sensor coated with (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film towards NH3 gas exposure at concentrations range from 1 to 960 ppm are analyzed and the sensing capability is demonstrated by optical spectrum analyzer (OSA). Experimental results show that the characteristic wavelength shift has an approximately linear relationship in the range 1–20 ppm, which is in accordance with the numerical simulation. Thus, this paper reveals the potential application of this sensor in monitoring low concentration NH3 gas. PMID:28378783