Sample records for range order diffractometer

  1. Neutron diffraction study of aqueous Laponite suspensions at the NIMROD diffractometer.

    PubMed

    Tudisca, V; Bruni, F; Scoppola, E; Angelini, R; Ruzicka, B; Zulian, L; Soper, A K; Ricci, M A

    2014-09-01

    The process of dynamical arrest, leading to formation of different arrested states such as glasses and gels, along with the closely related process of aging, is central for both basic research and technology. Here we report on a study of the time-dependent structural evolution of two aqueous Laponite clay suspensions at different weight concentrations. Neutron diffraction experiments have been performed with the near and intermediate range order diffractometer (NIMROD) that allows studies of the structure of liquids and disordered materials over a continuous length scale ranging from 1 to 300 Å, i.e., from the atomistic to the mesoscopic scales. NIMROD is presently a unique diffractometer, bridging the length scales traditionally investigated by small angle neutron scattering or small angle x-ray scattering with that accessible by traditional diffractometers for liquids. Interestingly, we have unveiled a signature of aging of both suspensions in the length scale region of NIMROD. This phenomenon, ascribed to sporadic contacts between Laponite platelets at long times, has been observed with the sample arrested as gel or as repulsive glass. Moreover, water molecules within the layers closest to Laponite platelets surface show orientational and translational order, which maps into the crystalline structure of Laponite.

  2. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamalonis, A.; Weber, J. K. R.; Neuefeind, J. C.

    2015-09-01

    Five neutron collimator designs were constructed and tested at the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. In the Q-range 10-20 (angstrom) -1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 angstrom -1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 angstrom -1 was significantly decreased when the collimatorsmore » were installed.« less

  3. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    DOE PAGES

    Tamalonis, A.; Weber, J. K. R.; Neuefeind, J. C.; ...

    2015-09-09

    We constructed and tested five neutron collimator designs using the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. Moreover, in the Q-range 10-20 Å -1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å -1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 Å -1 was significantly decreased when themore » collimators were installed.« less

  4. NIMROD: The Near and InterMediate Range Order Diffractometer of the ISIS second target station.

    PubMed

    Bowron, D T; Soper, A K; Jones, K; Ansell, S; Birch, S; Norris, J; Perrott, L; Riedel, D; Rhodes, N J; Wakefield, S R; Botti, A; Ricci, M-A; Grazzi, F; Zoppi, M

    2010-03-01

    NIMROD is the Near and InterMediate Range Order Diffractometer of the ISIS second target station. Its design is optimized for structural studies of disordered materials and liquids on a continuous length scale that extends from the atomic, upward of 30 nm, while maintaining subatomic distance resolution. This capability is achieved by matching a low and wider angle array of high efficiency neutron scintillation detectors to the broad band-pass radiation delivered by a hybrid liquid water and liquid hydrogen neutron moderator assembly. The capabilities of the instrument bridge the gap between conventional small angle neutron scattering and wide angle diffraction through the use of a common calibration procedure for the entire length scale. This allows the instrument to obtain information on nanoscale systems and processes that are quantitatively linked to the local atomic and molecular order of the materials under investigation.

  5. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    DOE PAGES

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; ...

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  6. Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers

    PubMed Central

    Cheary, R. W.; Coelho, A. A.; Cline, J. P.

    2004-01-01

    The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile. PMID:27366594

  7. X-Ray diffraction on large single crystals using a powder diffractometer

    DOE PAGES

    Jesche, A.; Fix, M.; Kreyssig, A.; ...

    2016-06-16

    Information on the lattice parameter of single crystals with known crystallographic structure allows for estimations of sample quality and composition. In many cases it is sufficient to determine one lattice parameter or the lattice spacing along a certain, high- symmetry direction, e.g. in order to determine the composition in a substitution series by taking advantage of Vegard’s rule. Here we present a guide to accurate measurements of single crystals with dimensions ranging from 200 μm up to several millimeter using a standard powder diffractometer in Bragg-Brentano geometry. The correction of the error introduced by the sample height and the optimizationmore » of the alignment are discussed in detail. Finally, in particular for single crystals with a plate-like habit, the described procedure allows for measurement of the lattice spacings normal to the plates with high accuracy on a timescale of minutes.« less

  8. An X-ray diffractometer using mirage diffraction

    PubMed Central

    Fukamachi, Tomoe; Jongsukswat, Sukswat; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki

    2014-01-01

    Some characteristics are reported of a triple-crystal diffractometer with a (+, −, +) setting of Si(220) using mirage diffraction. The first crystal is flat, while the second and third crystals are bent. Basically, the first crystal is used as a collimator, the second as a monochromator and the third as the sample. The third crystal also works as an analyzer. The advantages of this diffractometer are that its setup is easy, its structure is simple, the divergence angle from the second crystal is small and the energy resolution of the third crystal is high, of the order of sub-meV. PMID:25242911

  9. A novel X-ray diffractometer for studies of liquid-liquid interfaces.

    PubMed

    Murphy, Bridget M; Greve, Matthais; Runge, Benjamin; Koops, Christian T; Elsen, Annika; Stettner, Jochim; Seeck, Oliver H; Magnussen, Olaf M

    2014-01-01

    The study of liquid-liquid interfaces with X-ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double-crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing-incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability. The available energy range is from 6.4 to 29.4 keV, covering many important absorption edges. The instrument provides access in momentum space out to 2.54 Å(-1) in the surface normal and out to 14.8 Å(-1) in the in-plane direction at 29.4 keV. Owing to its modular design the diffractometer is also suitable for heavy apparatus such as vacuum chambers. The instrument performance is described and examples of X-ray reflectivity studies performed under in situ electrochemical control and on biochemical model systems are given.

  10. A temperature-controlled cell for X-ray study of liquid systems using a commercial DRON-UM1 diffractometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrun`kin, S.P.; Garavina, E.V.; Trostin, V.N.

    1995-02-01

    A container (cell) and a temperature-control system have been designed enabling one to carry out x-ray diffraction study of liquid samples both at a fixed temperature and within a certain temperature range using a commercial DRON-UMl x-ray diffractometer. Special features of the cell and the materials used for it allow one to study both chemically inert and corrosive liquids.

  11. High-resolution neutron powder diffractometer SPODI at research reactor FRM II

    NASA Astrophysics Data System (ADS)

    Hoelzel, M.; Senyshyn, A.; Juenke, N.; Boysen, H.; Schmahl, W.; Fuess, H.

    2012-03-01

    SPODI is a high-resolution thermal neutron diffractometer at the research reactor Heinz Maier-Leibnitz (FRM II) especially dedicated to structural studies of complex systems. Unique features like a very large monochromator take-off angle of 155° and a 5 m monochromator-sample distance in its standard configuration achieve both high-resolution and a good profile shape for a broad scattering angle range. Two dimensional data are collected by an array of 80 vertical position sensitive 3He detectors. SPODI is well suited for studies of complex structural and magnetic order and disorder phenomena at non-ambient conditions. In addition to standard sample environment facilities (cryostats, furnaces, magnet) specific devices (rotatable load frame, cell for electric fields, multichannel potentiostat) were developed. Thus the characterisation of functional materials at in-operando conditions can be achieved. In this contribution the details of the design and present performance of the instrument are reported along with its specifications. A new concept for data reduction using a 2 θ dependent variable height for the intensity integration along the Debye-Scherrer lines is introduced.

  12. Vacuum System Upgrade for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) at SNS

    DOE PAGES

    Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.

    2016-09-23

    The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.

  13. Vacuum System Upgrade for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.

    The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.

  14. Short range structure of 0.35Sb2O3-0.65(Li2O-P2O5) glass: A neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Shinde, A. B.; Krishna, P. S. R.

    2018-04-01

    Neutron diffraction studies on Li2O-P2O5 and 0.35Sb2O3-0.65(Li2O-P2O5) glass are performed up to a Qmax of 15 Å-1 on the High-Q diffractometer, Dhruva. MCGR method is used to find pair correlation functions (g(r)) functions from experimentally obtained S(Q). We found that the Li-O and first Sb-O correlations to be around 2.04 Å & 2.15 Å. The O-O correlation from Phosphate & Antimony networks are found to be around 2.7 Å. The short range order of Sb is similar to its crystalline polymorph of valentinite instead of senarmonite. The short range order and network connectivity in this glass implies a structure composed of chains of corner sharing SbO3 pyramidal units connected to PO4 tetrahedra while Li acts as a modifier.

  15. The new materials science diffractometer STRESS-SPEC at FRM-II

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Schneider, R.; Seidl, G. A.; Rebelo-Kornmeier, J.; Wimpory, R. C.; Garbe, U.; Brokmeier, H.-G.

    2006-11-01

    In response to the development of new materials and the application of materials and components in new technologies the direct measurement, calculation and evaluation of textures and residual stresses has gained worldwide significance in recent years. In order to cater for the development of these analytical techniques the Materials Science Diffractometer STRESS-SPEC at FRM-II is designed to be equally applied to texture or residual stress analysis by virtue of its flexible configuration and the high neutron flux at the sample position. The instrument is now available for routine operation and here we present details of first experiments and instrument performance.

  16. New hardware and software platform for experiments on a HUBER-5042 X-ray diffractometer with a DISPLEX DE-202 helium cryostat in the temperature range of 20-300 K

    NASA Astrophysics Data System (ADS)

    Dudka, A. P.; Antipin, A. M.; Verin, I. A.

    2017-09-01

    Huber-5042 diffractometer with a closed-cycle Displex DE-202 helium cryostat is a unique scientific instrument for carrying out X-ray diffraction experiments when studying the single crystal structure in the temperature range of 20-300 K. To make the service life longer and develop new experimental techniques, the diffractometer control is transferred to a new hardware and software platform. To this end, a modern computer; a new detector reader unit; and new control interfaces for stepper motors, temperature controller, and cryostat vacuum pumping system are used. The system for cooling the X-ray tube, the high-voltage generator, and the helium compressor and pump for maintaining the desired vacuum in the cryostat are replaced. The system for controlling the primary beam shutter is upgraded. A biological shielding is installed. The new program tools, which use the Linux Ubuntu operating system and SPEC constructor, include a set of drivers for control units through the aforementioned interfaces. A program for searching reflections from a sample using fast continuous scanning and a priori information about crystal is written. Thus, the software package for carrying out the complete cycle of precise diffraction experiment (from determining the crystal unit cell to calculating the integral reflection intensities) is upgraded. High quality of the experimental data obtained on this equipment is confirmed in a number of studies in the temperature range from 20 to 300 K.

  17. In-line metrology for roll-to-roll UV assisted nanoimprint lithography using diffractometry

    NASA Astrophysics Data System (ADS)

    Kreuzer, Martin; Whitworth, Guy L.; Francone, Achille; Gomis-Bresco, Jordi; Kehagias, Nikolaos; Sotomayor-Torres, Clivia M.

    2018-05-01

    We describe and discuss the optical design of a diffractometer to carry out in-line quality control during roll-to-roll nanoimprinting. The tool measures diffractograms in reflection geometry, through an aspheric lens to gain fast, non-invasive information of any changes to the critical dimensions of target grating structures. A stepwise tapered linear grating with constant period was fabricated in order to detect the variation in grating linewidth through diffractometry. The minimum feature change detected was ˜40 nm to a precision of 10 nm. The diffractometer was then integrated with a roll-to-roll UV assisted nanoimprint lithography machine to gain dynamic measurements in situ.

  18. Studying Soft-matter and Biological Systems over a Wide Length-scale from Nanometer and Micrometer Sizes at the Small-angle Neutron Diffractometer KWS-2

    PubMed Central

    Radulescu, Aurel; Szekely, Noemi Kinga; Appavou, Marie-Sousai; Pipich, Vitaliy; Kohnke, Thomas; Ossovyi, Vladimir; Staringer, Simon; Schneider, Gerald J.; Amann, Matthias; Zhang-Haagen, Bo; Brandl, Georg; Drochner, Matthias; Engels, Ralf; Hanslik, Romuald; Kemmerling, Günter

    2016-01-01

    The KWS-2 SANS diffractometer is dedicated to the investigation of soft matter and biophysical systems covering a wide length scale, from nm to µm. The instrument is optimized for the exploration of the wide momentum transfer Q range between 1x10-4 and 0.5 Å-1 by combining classical pinhole, focusing (with lenses), and time-of-flight (with chopper) methods, while simultaneously providing high-neutron intensities with an adjustable resolution. Because of its ability to adjust the intensity and the resolution within wide limits during the experiment, combined with the possibility to equip specific sample environments and ancillary devices, the KWS-2 shows a high versatility in addressing the broad range of structural and morphological studies in the field. Equilibrium structures can be studied in static measurements, while dynamic and kinetic processes can be investigated over time scales between minutes to tens of milliseconds with time-resolved approaches. Typical systems that are investigated with the KWS-2 cover the range from complex, hierarchical systems that exhibit multiple structural levels (e.g., gels, networks, or macro-aggregates) to small and poorly-scattering systems (e.g., single polymers or proteins in solution). The recent upgrade of the detection system, which enables the detection of count rates in the MHz range, opens new opportunities to study even very small biological morphologies in buffer solution with weak scattering signals close to the buffer scattering level at high Q. In this paper, we provide a protocol to investigate samples with characteristic size levels spanning a wide length scale and exhibiting ordering in the mesoscale structure using KWS-2. We present in detail how to use the multiple working modes that are offered by the instrument and the level of performance that is achieved. PMID:28060296

  19. Texture analysis at neutron diffractometer STRESS-SPEC

    NASA Astrophysics Data System (ADS)

    Brokmeier, H.-G.; Gan, W. M.; Randau, C.; Völler, M.; Rebelo-Kornmeier, J.; Hofmann, M.

    2011-06-01

    In response to the development of new materials and the application of materials and components in advanced technologies, non-destructive measurement methods of textures and residual stresses have gained worldwide significance in recent years. The materials science neutron diffractometer STRESS-SPEC at FRM II (Garching, Germany) is designed to be applied equally to texture and residual stress analyses by virtue of its very flexible configuration. Due to the high penetration capabilities of neutrons and the high neutron flux of STRESS-SPEC it allows a combined analysis of global texture, local texture, strain pole figure and FWHM pole figure in a wide variety of materials including metals, alloys, composites, ceramics and geological materials. Especially, the analysis of texture gradients in bulk materials using neutron diffraction has advantages over laboratory X-rays and EBSD for many scientific cases. Moreover, neutron diffraction is favourable for coarse-grained materials, where bulk information averaged over texture inhomogeneities is needed, and also stands out due to easy sample preparation. In future, the newly developed robot system for STRESS-SPEC will allow much more flexibility than an Eulerian cradle as on standard instruments. Five recent measurements are shown to demonstrate the wide range of possible texture applications at STRESS-SPEC diffractometer.

  20. Pulsed Neutron Powder Diffraction for Materials Science

    NASA Astrophysics Data System (ADS)

    Kamiyama, T.

    2008-03-01

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-1

  1. POWTEX - A new High-Intensity Powder and Texture Diffractometer at FRM II, Garching Germany

    NASA Astrophysics Data System (ADS)

    Walter, J. M.; Brückel, T.; Dronskowski, R.; Hansen, B. T.; Houben, A.; Klein, H.; Leiss, B.; Vollbrecht, A.; Sowa, H.

    2009-05-01

    In recent years, neutron diffraction has become a routine tool in Geoscience for experimental high-field (HP/HT/HH) powder diffraction and for the quantitative analysis of the crystallographic preferred orientation (CPO). Quantitative texture analysis is e.g. involved in the research fields of fabric development in mono- and polyphase rocks, deformation histories and kinematics during mountain building processes and the characterization of flow kinematics in lava flows. Secondly the quantitative characterization of anisotropic physical properties of both rock and analogue materials is conducted by bulk texture measurements of sometimes larger sample volumes. This is easily achievable by neutron diffraction due to the high penetration capabilities of the neutrons. The resulting geoscientific need for increased measuring time at neutron diffraction facilities with the corresponding technical characteristics and equipment will in future be satisfied by this high-intensity diffractometer at the neutron research reactor FRM II in Garching, Germany. It will be built by a consortium of groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen, who will also operate the instrument. The diffractometer will be optimized to high intensities (flux) with an equivalent sufficient resolution for polyphase rocks. Furthermore a broad range of d-values (0.5 to 15 Å) will be measurable. The uniqueness of this instrument is the geoscientific focus on different sample environments for in situ-static and deformation experiments (stress, strain and annealing/recrystallisation) and (U)HP/(U)HT experiments. A LP/LT or atmospheric-P deformation rig for in situ-deformation experiments on ice, halite or rock analogue materials is planned, to allow in situ-measurements of the texture development during deformation and annealing. Additionally a uniaxial HT/MP deformation apparatus for salt deformation experiments and an adapted Griggs- type deformation rig are also designated. Furthermore an uniaxial stress frame for in situ stress investigations is planned to conduct simultaneous measurements of stress, elastic or plastic deformation and texture. Other sample environments for geoscientific application will be HP/HT furnaces and pressure cells for powder diffraction investigations. Furthermore the diffractometer will be built in combination with a high-pressure multi anvil up to 25 GPa and 2500 K built by the University of Bayreuth at the same beam line. The detector concept allows single shot texture measurements and therefore the measurement of larger geological sample series as necessary for the investigations of complete geological structures. This concept is complementary to the geoscience neutron texture diffractometer in Dubna, Russia and the stress diffractometer STRESS-SPEC located also at the Garching research reactor. For powder diffraction the diffractometer will be complementary to the existing high-resolution powder diffractometer SPODI at the FRM-II. It will offer the possibility of short, high-intensity parametric powder diffraction measurements in dependency of temperature, electrical, magnetic and stress fields due to the higher flux at the sample. The optimization to high-intensities and therefore short measuring times will also allow time-resolved measurements of kinetic reactions even of small sample volumes.

  2. Magnetic and Structural Characterization of Fe-Ga Using Kerr Microscopy and Neutron Scattering

    DTIC Science & Technology

    2010-01-01

    117 4.6 Schematic of triple axes single crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right...Therefore, USANS data is one-dimensional. 4.3.3 Single Crystal Neutron Diffraction The single crystal neutron diffractometer, TriCS at Paul Scherrer...crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right) [106] 4.4 Unpolarized SANS In this section, SANS

  3. The Optics and Alignment of the Divergent Beam Laboratory X-ray Powder Diffractometer and its Calibration Using NIST Standard Reference Materials.

    PubMed

    Cline, James P; Mendenhall, Marcus H; Black, David; Windover, Donald; Henins, Albert

    2015-01-01

    The laboratory X-ray powder diffractometer is one of the primary analytical tools in materials science. It is applicable to nearly any crystalline material, and with advanced data analysis methods, it can provide a wealth of information concerning sample character. Data from these machines, however, are beset by a complex aberration function that can be addressed through calibration with the use of NIST Standard Reference Materials (SRMs). Laboratory diffractometers can be set up in a range of optical geometries; considered herein are those of Bragg-Brentano divergent beam configuration using both incident and diffracted beam monochromators. We review the origin of the various aberrations affecting instruments of this geometry and the methods developed at NIST to align these machines in a first principles context. Data analysis methods are considered as being in two distinct categories: those that use empirical methods to parameterize the nature of the data for subsequent analysis, and those that use model functions to link the observation directly to a specific aspect of the experiment. We consider a multifaceted approach to instrument calibration using both the empirical and model based data analysis methods. The particular benefits of the fundamental parameters approach are reviewed.

  4. Composite germanium monochromators - Results for the TriCS single-crystal diffractometer at SINQ

    NASA Astrophysics Data System (ADS)

    Schefer, J.; Fischer, S.; Böhm, M.; Keller, L.; Horisberger, M.; Medarde, M.; Fischer, P.

    Composite germanium monochromators are foremost in application in neutron diffraction due to their good scattering properties, low absorption values and the diamond structure which avoids second-order contamination when using hhk reflections (all odd). Our slices for the monochromator are built from 24 wafers, each 0.4 mm thick. The alignment of the wafers within the final composite wafer package has been improved by adding tin for the soldering process with a sputtering method instead of foils. Nine slices, each 12.5 mm high, are mounted on separate miniature goniometer heads to the focusing monochromator. The focusing angle is controlled by only one motor/digitizer by using a sophisticated mechanism. Turning the monochromator by 9° around overlineω allow access of the 311 (primary) and 511 (secondary) reflection. We also show the importance of permanent quality control with neutrons. The monochromator will be used on the single-crystal diffractometer TriCS at SINQ.

  5. The neutron texture diffractometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  6. Phase purity of NiCo2O4, a catalyst candidate for electrolysis of water

    NASA Technical Reports Server (NTRS)

    Singer, J.; Fielder, W. L.; Garlick, R. G.; Negas, T.

    1987-01-01

    NiCo2O4 is shown to be difficult to obtain as a pure phase, and may never have been so obtained. High resolution x-ray diffractometry is required for its precise characterization. Film XRD is not likely to show the asymmetry in the spinel diffraction lines, caused by poorly crystallized NiO, as seen in diffractometer traces. The Co3O4 which is expected to accompany NiO as an impurity in NiCo2O4 syntheses has the same diffraction pattern as the binary oxide. Firings of the co-precipitated hydroxides at 300, 350, and 400 C, including one in pure O2, failed to produce single phase cobaltate. Scanning electron microscopy showed all the sintered products to range over several orders of magnitude in agglomerate/particle size. Surface areas by BET were all in the range 40 to 110 m sq/g, equivalent to particles of 200 to 100 Angstrom diameter. The spinel diffraction line breadths were compatible with those approximate dimensions.

  7. The new powder diffractometer D1B of the Institut Laue Langevin

    NASA Astrophysics Data System (ADS)

    Puente Orench, I.; Clergeau, J. F.; Martínez, S.; Olmos, M.; Fabelo, O.; Campo, J.

    2014-11-01

    D1B is a medium resolution high flux powder diffractometer located at the Institut Laue Langevin, ILL. D1B a suitable instrument for studying a large variety of polycrystalline materials. D1B runs since 1998 as a CRG (collaborating research group) instrument, being exploited by the CNRS (Centre National de la Recherche Scientifique, France) and CSIC (Consejo Superior de Investigaciones Cientificas, Spain). In 2008 the Spanish CRG started an updating program which included a new detector and a radial oscillating collimator (ROC). The detector, which has a sensitive height of 100mm, covers an angular range of 128°. Its 1280 gold wires provide a neutron detection point every 0.1°. The ROC is made of 198 gadolinium- based absorbing collimation blades, regular placed every 0.67°. Here the present characteristics of D1B are reviewed and the different experimental performances will be presented.

  8. Advanced setup for high-pressure and low-temperature neutron diffraction at hydrostatic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokshin, Konstantin A.; Zhao Yusheng

    2005-06-15

    We describe a design of the experimental setup for neutron diffraction studies at low temperatures and hydrostatic pressure. The significant benefit of the setup, compared to the previous methods, is that it makes possible the simultaneous collection of neutrons diffracted at the 30 deg. -150 deg. range with no contamination by the primary scattering from the sample surroundings and without cutting out the incident and diffracted beams. The suggested design is most useful for third-generation time-of-flight diffractometers and constant wavelength instruments. Application of the setup expands the capabilities of high-pressure neutron diffraction, allowing time-resolved kinetics and structural studies, multihistogram Rietveld,more » and pair distribution function and texture analyses. The high efficiency of the setup was proven for the HIPPO diffractometer at Los Alamos Neutron Science Center under pressures up to 10 kbar and temperatures from 4 to 300 K.« less

  9. X-ray diffraction studies of shocked lunar analogs

    NASA Technical Reports Server (NTRS)

    Hanss, R. E.

    1979-01-01

    The X-ray diffraction experiments on shocked rock and mineral analogs of particular significance to lunar geology are described. Materials naturally shocked by meteorite impact, nuclear-shocked, or artificially shocked in a flat plate accelerator were utilized. Four areas were outlined for investigation: powder diffractometer studies of shocked single crystal silicate minerals (quartz, orthoclase, oligoclase, pyroxene), powder diffractometer studies of shocked polycrystalline monomineralic samples (dunite), Debye-Scherrer studies of single grains of shocked granodiorite, and powder diffractometer studies of shocked whole rock samples. Quantitative interpretation of peak shock pressures experienced by materials found in lunar or terrestrial impact structures is presented.

  10. The new HMI beamline MAGS: an instrument for hard X-ray diffraction at BESSY.

    PubMed

    Dudzik, Esther; Feyerherm, Ralf; Diete, Wolfgang; Signorato, Riccardo; Zilkens, Christopher

    2006-11-01

    The Hahn-Meitner-Institute Berlin is operating the new hard X-ray diffraction beamline MAGS at the Berlin synchrotron radiation source BESSY. The beamline is intended to complement the existing neutron instrumentation at the Berlin Neutron Scattering Centre. The new beamline uses a 7 T multipole wiggler to produce photon fluxes in the 10(11)-10(12) photons s(-1) (100 mA)(-1) (0.1% bandwidth)(-1) range at energies from 4 to 30 keV at the experiment. It has active bendable optics to provide flexible horizontal and vertical focusing and to compensate the large heat load from the wiggler source. The experimental end-station consists of a six-circle Huber diffractometer which can be used with an additional (polarization) analyser and different sample environments. The beamline is intended for single-crystal diffraction and resonant magnetic scattering experiments for the study of ordering phenomena, phase transitions and materials science.

  11. Grain Refinement by Authigenic Inoculation Inherited from the Medium-Range Order Structure of Ni-Cr-W Superalloy

    NASA Astrophysics Data System (ADS)

    Gao, Zhongtang; Hu, Rui; Guo, Wei; Zhang, Chuanwei

    2018-04-01

    The combination of liquidus casting and thermal control solidification furnace was applied to obtain a fine-grained ingot. A rapid quenching method and x-ray diffraction measurement were used to investigate the effect of authigenic inoculation on grain refinement. The structure factor S(Q) of liquid Ni-Cr-W superalloy at 1400 °C (Liquidus temperature) and bright-field image of the microstructures quenched from 1400 °C have been measured by the high-temperature x-ray diffractometer and the transmission electron microscopy (TEM), respectively. The results show that a pre-peak exists on a S(Q) curve at the liquidus temperature. The clusters of atom in rapidly quenched microstructures obtained by isothermal heat treatment at 1400 °C were studied using TEM. Meanwhile, the effect of isothermal different temperatures on rapidly quenched microstructures was studied. The results also show that there are only the globular, equiaxed grains distributed in the solidification structure. These particles are inherited from the medium-range order structure, which is beneficial for grain refinement. The normalized work-hardening rate-strain curve indicates the work-hardening rate of fine grain is higher than that of conventional grain at the same temperature and the same deformation.

  12. Grain Refinement by Authigenic Inoculation Inherited from the Medium-Range Order Structure of Ni-Cr-W Superalloy

    NASA Astrophysics Data System (ADS)

    Gao, Zhongtang; Hu, Rui; Guo, Wei; Zhang, Chuanwei

    2018-05-01

    The combination of liquidus casting and thermal control solidification furnace was applied to obtain a fine-grained ingot. A rapid quenching method and x-ray diffraction measurement were used to investigate the effect of authigenic inoculation on grain refinement. The structure factor S( Q) of liquid Ni -Cr-W superalloy at 1400 °C (Liquidus temperature) and bright-field image of the microstructures quenched from 1400 °C have been measured by the high-temperature x-ray diffractometer and the transmission electron microscopy (TEM), respectively. The results show that a pre-peak exists on a S( Q) curve at the liquidus temperature. The clusters of atom in rapidly quenched microstructures obtained by isothermal heat treatment at 1400 °C were studied using TEM. Meanwhile, the effect of isothermal different temperatures on rapidly quenched microstructures was studied. The results also show that there are only the globular, equiaxed grains distributed in the solidification structure. These particles are inherited from the medium-range order structure, which is beneficial for grain refinement. The normalized work-hardening rate-strain curve indicates the work-hardening rate of fine grain is higher than that of conventional grain at the same temperature and the same deformation.

  13. A high-temperature neutron diffraction study of Nb 2AlC and TiNbAlC

    DOE PAGES

    Bentzel, Grady W.; Lane, Nina J.; Vogel, Sven C.; ...

    2014-12-16

    In this paper, we report on the crystal structures of Nb 2AlC and TiNbAlC actual composition (Ti 0.45,Nb 0.55) 2AlC compounds determined from Rietveld analysis of neutron diffraction patterns in the 300-1173 K temperature range. The average linear thermal expansion coefficients of a Nb 2AlC sample in the a and c directions are, respectively, 7.9(5)x10 -6 K -1 and 7.7(5)x10 -6 K -1 on one neutron diffractometer and 7.3(3)x10 -6 K -1 and 7.0(2)x10 -6 K -1 on a second diffractometer. The respective values for the (Ti 0.45,Nb 0.55) 2AlC composition - only tested on one diffractometer - are 8.5(3)x10more » -6 K -1 and 7.5(5)x10 -6 K -1. These values are relatively low compared to other MAX phases. Like other MAX phases, however, the atomic displacement parameters show that the Al atoms vibrate with higher amplitudes than the Ti and C atoms, and 1 more along the basal planes than normal to them. In addition, when the predictions of the atomic displacement parameters obtained from density functional theory are compared to the experimental results, good quantitative agreement is found for the Al atoms. In case of the Nb and C atoms, the agreement was more qualitative.« less

  14. Time-of-flight Extreme Environment Diffractometer at the Helmholtz-Zentrum Berlin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhnenko, Oleksandr, E-mail: prokhnenko@helmholtz-berlin.de; Stein, Wolf-Dieter; Bleif, Hans-Jürgen

    2015-03-15

    The Extreme Environment Diffractometer (EXED) is a new neutron time-of-flight instrument at the BER II research reactor at the Helmholtz-Zentrum Berlin, Germany. Although EXED is a special-purpose instrument, its early construction made it available for users as a general-purpose diffractometer. In this respect, EXED became one of the rare examples, where the performance of a time-of-flight diffractometer at a continuous source can be characterized. In this paper, we report on the design and performance of EXED with an emphasis on the unique instrument capabilities. The latter comprise variable wavelength resolution and wavelength band, control of the incoming beam divergence, themore » possibility to change the angular positions of detectors and their distance to the sample, and use of event recording and offline histogramming. These features combined make EXED easily tunable to the requirements of a particular problem, from conventional diffraction to small angle neutron scattering. The instrument performance is demonstrated by several reference measurements and user experiments.« less

  15. A 4 Tesla Superconducting Magnet Developed for a 6 Circle Huber Diffractometer at the XMaS Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, P. B. J.; Brown, S. D.; Bouchenoire, L.

    2007-01-19

    We report here on the development and testing of a 4 Tesla cryogen free superconducting magnet designed to fit within the Euler cradle of a 6 circle Huber diffractometer, allowing scattering in both the vertical and horizontal planes. The geometry of this magnet allows the field to be applied in three orientations. The first being along the beam direction, the second with the field transverse to the beam direction a horizontal plane and finally the field can be applied vertically with respect to the beam. The magnet has a warm bore and an open geometry of 180 deg. , allowingmore » large access to reciprocal space. A variable temperature insert has been developed, which is capable of working down to a temperature of 1.7 K and operating over a wide range of angles whilst maintaining a temperature stability of a few mK. Initial ferromagnetic diffraction measurements have been carried out on single crystal Tb and Dy samples.« less

  16. A furnace with rotating load frame for in situ high temperature deformation and creep experiments in a neutron diffraction beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiche, H. M.; New Mexico State University, Las Cruces, New Mexico 88003; Vogel, S. C.

    2012-05-15

    A resistive furnace combined with a load frame was built that allows for in situ neutron diffraction studies of high temperature deformation, in particular, creep. A maximum force of 2700 N can be applied at temperatures up to 1000 deg. C. A load control mode permits studies of, e.g., creep or phase transformations under applied uni-axial stress. In position control, a range of high temperature deformation experiments can be achieved. The examined specimen can be rotated up to 80 deg. around the vertical compression axis allowing texture measurements in the neutron time-of-flight diffractometer HIPPO (High Pressure - Preferred Orientation). Wemore » present results from the successful commissioning, deforming a Zr-2.5 wt.% Nb cylinder at 975 deg. C. The device is now available for the user program of the HIPPO diffractometer at the LANSCE (Los Alamos Neutron Science Center) user facility.« less

  17. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    DOE PAGES

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; ...

    2014-10-02

    Here we discuss a gripping capability that was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory.

  18. Neutron optics concept for the materials engineering diffractometer at the ESS

    NASA Astrophysics Data System (ADS)

    Šaroun, J.; Fenske, J.; Rouijaa, M.; Beran, P.; Navrátil, J.; Lukáš, P.; Schreyer, A.; Strobl, M.

    2016-09-01

    The Beamline for European Materials Engineering Research (BEER) has been recently proposed to be built at the European Spallation Source (ESS). The presented concept of neutron delivery optics for this instrument addresses the problems of bi-spectral beam extraction from a small moderator, optimization of neutron guides profile for long-range neutron transport and focusing at the sample under various constraints. They include free space before and after the guides, a narrow guide section with gaps for choppers, closing of direct line of sight and cost reduction by optimization of the guides cross-section and coating. A system of slits and exchangeable focusing optics is proposed in order to match various wavelength resolution options provided by the pulse shaping and modulation choppers, which permits to efficiently trade resolution for intensity in a wide range. Simulated performance characteristics such as brilliance transfer ratio are complemented by the analysis of the histories of “useful” neutrons obtained by back tracing neutrons hitting the sample, which helps to optimize some of the neutron guide parameters such as supermirror coating.

  19. POWTEX Neutron Diffractometer at FRM II - New Perspectives for In-Situ Rock Deformation Analysis

    NASA Astrophysics Data System (ADS)

    Walter, J. M.; Stipp, M.; Ullemeyer, K.; Klein, H.; Leiss, B.; Hansen, B. T.; Kuhs, W. F.

    2012-04-01

    In Geoscience quantitative texture analysis here defined as the quantitative analysis of the crystallographic preferred orientation (CPO), is a common tool for the investigation of fabric development in mono- and polyphase rocks, their deformation histories and kinematics. Bulk texture measurements also allow the quantitative characterisation of the anisotropic physical properties of rock materials. A routine tool to measure bulk sample volumes is neutron texture diffraction, as neutrons have large penetration capabilities of several cm in geological sample materials. The new POWTEX (POWder and TEXture) Diffractometer at the neutron research reactor FRM II in Garching, Germany is designed as a high-intensity diffractometer by groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen. Complementary to existing neutron diffractometers (SKAT at Dubna, Russia; GEM at ISIS, UK; HIPPO at Los Alamos, USA; D20 at ILL, France; and the local STRESS-SPEC and SPODI at FRM II) the layout of POWTEX is focused on fast time-resolved experiments and the measurement of larger sample series as necessary for the study of large scale geological structures. POWTEX is a dedicated beam line for geoscientific research. Effective texture measurements without sample tilting and rotation are possible firstly by utilizing a range of neutron wavelengths simultaneously (Time-of-Flight technique) and secondly by the high detector coverage (9.8 sr) and a high flux (~1 - 107 n/cm2s) at the sample. Furthermore the instrument and the angular detector resolution is designed also for strong recrystallisation textures as well as for weak textures of polyphase rocks. These instrument characteristics allow in-situ time-resolved texture measurements during deformation experiments on rocksalt, ice and other materials as large sample environments will be implemented at POWTEX. The in-situ deformation apparatus is operated by a uniaxial spindle drive with a maximum axial load of 250 kN, which will be redesigned to minimize shadowing effects inside the cylindrical detector. The HT deformatione experiments will be carried out in uniaxial compression or extension and an upgrade to triaxial deformation conditions is envisaged. The load frame can alternatively be used for ice deformation by inserting a cryostat cell for temperatures down to 77 K with a triaxial apparatus allowing also simple shear experiments on ice. Strain rates range between 10-8 and 10-3 s-1 reaching to at least 50 % axial strain. The deformation apparatus is designed for continuous long-term deformation experiments and can be exchanged between in-situ and ex-situ placements during continuous operation inside and outside the neutron detector.

  20. Development of a position sensitive X-ray detector for use in a light weight X-ray diffractometer

    NASA Technical Reports Server (NTRS)

    Semmler, R. A.

    1971-01-01

    A position sensitive proportional counter for use in an X-ray diffractometer is developed to permit drastic reductions in the power and weight requirements of the X-ray source and the elimination of the power, weight, and complexity of a moving slit. The final detector constructed and tested has a window spanning 138 and a free standing anode curved along an arc of 7.1 cm radius. Demonstration spectra of a quartz sample in a Debye-Sherrer geometry indicate a spatial resolution of 0.4 - 0.5 mm (0.3 - 0.4 theta). The lunar diffractometer consumed 25 watts in the X-ray generator and weighed about 20 pounds.

  1. Energy research with neutrons (ErwiN) and installation of a fast neutron powder diffraction option at the MLZ, Germany1

    PubMed Central

    Mühlbauer, Martin J.

    2018-01-01

    The need for rapid data collection and studies of small sample volumes in the range of cubic millimetres are the main driving forces for the concept of a new high-throughput monochromatic diffraction instrument at the Heinz Maier-Leibnitz Zentrum (MLZ), Germany. A large region of reciprocal space will be accessed by a detector with sufficient dynamic range and microsecond time resolution, while allowing for a variety of complementary sample environments. The medium-resolution neutron powder diffraction option for ‘energy research with neutrons’ (ErwiN) at the high-flux FRM II neutron source at the MLZ is foreseen to meet future demand. ErwiN will address studies of energy-related systems and materials with respect to their structure and uniformity by means of bulk and spatially resolved neutron powder diffraction. A set of experimental options will be implemented, enabling time-resolved studies, rapid parametric measurements as a function of external parameters and studies of small samples using an adapted radial collimator. The proposed powder diffraction option ErwiN will bridge the gap in functionality between the high-resolution powder diffractometer SPODI and the time-of-flight diffractometers POWTEX and SAPHiR at the MLZ. PMID:29896055

  2. Optimization of a multi-channel parabolic guide for the material science diffractometer STRESS-SPEC at FRM II

    NASA Astrophysics Data System (ADS)

    Rebelo Kornmeier, Joana; Ostermann, Andreas; Hofmann, Michael; Gibmeier, Jens

    2014-02-01

    Neutron strain diffractometers usually use slits to define a gauge volume within engineering samples. In this study a multi-channel parabolic neutron guide was developed to be used instead of the primary slit to minimise the loss of intensity and vertical definition of the gauge volume when using slits placed far away from the measurement position in bulky components. The major advantage of a focusing guide is that the maximum flux is not at the exit of the guide as for a slit system but at the focal point relatively far away from the exit of the guide. Monte Carlo simulations were used to optimise the multi-channel parabolic guide with respect to the instrument characteristics of the diffractometer STRESS-SPEC at the FRM II neutron source. Also the simulations are in excellent agreement with experimental measurements using the optimised multi-channel parabolic guide at the neutron diffractometer. In addition the performance of the guide was compared to the standard slit setup at STRESS-SPEC using a single bead weld sample used in earlier round robin tests for residual strain measurements.

  3. Motorized Beam Alignment of a Commercial X-ray Diffractometer

    NASA Technical Reports Server (NTRS)

    Van Zandt, Noah R.; Myers, James F.; Rogers, Richard B

    2013-01-01

    X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP) summer internship program and the budget goal was $1200. In this report, we will describe our motorization design and discuss the results of its implementation.

  4. Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination.

    PubMed

    Avilov, A; Kuligin, K; Nicolopoulos, S; Nickolskiy, M; Boulahya, K; Portillo, J; Lepeshov, G; Sobolev, B; Collette, J P; Martin, N; Robins, A C; Fischione, P

    2007-01-01

    We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession "Spinning Star" system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF(2) as revealed for the first time by precise electron diffractometry.

  5. New test of the dynamic theory of neutron diffraction by a moving grating

    NASA Astrophysics Data System (ADS)

    Zakharov, Maxim; Frank, Alexander; Kulin, German; Goryunov, Semyon

    2018-04-01

    Recently, multiwave dynamical theory of neutron diffraction by a moving grating was developed. The theory predicts that at a certain height of the grating profile a significant suppression of the zero-order diffraction may occur. The experiment to confirm predictions of this theory was performed. The resulting diffracted UCNs spectra were measured using time-of-flight Fourier diffractometer. The experimental data were compared with the results of numerical simulation and were found in a good agreement with theoretical predictions.

  6. Diffractometer data collecting method and apparatus

    DOEpatents

    Steinmeyer, P.A.

    1991-04-16

    Diffractometer data is collected without the use of a movable receiver. A scanning device, positioned in the diffractometer between a sample and detector, varies the amount of the beam diffracted from the sample that is received by the detector in such a manner that the beam is detected in an integrated form. In one embodiment, a variable diameter beam stop is used which comprises a drop of mercury captured between a pair of spaced sheets and disposed in the path of the diffracted beam. By varying the spacing between the sheets, the diameter of the mercury drop is varied. In another embodiment, an adjustable iris diaphragm is positioned in the path of the diffracted beam and the iris opening is adjusted to control the amount of the beam reaching the detector. 5 figures.

  7. Diffractometer data collecting method and apparatus

    DOEpatents

    Steinmeyer, Peter A.

    1991-04-16

    Diffractometer data is collected without the use of a movable receiving s. A scanning device, positioned in the diffractometer between a sample and detector, varies the amount of the beam diffracted from the sample that is received by the detector in such a manner that the beam is detected in an integrated form. In one embodiment, a variable diameter beam stop is used which comprises a drop of mercury captured between a pair of spaced sheets and disposed in the path of the diffracted beam. By varying the spacing between the sheets, the diameter of the mercury drop is varied. In another embodiment, an adjustable iris diaphragm is positioned in the path of the diffracted beam and the iris opening is adjusted to control the amount of the beam reaching the detector.

  8. Calibration of X-Ray diffractometer by the experimental comparison method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudka, A. P., E-mail: dudka@ns.crys.ras.ru

    2015-07-15

    A software for calibrating an X-ray diffractometer with area detector has been developed. It is proposed to search for detector and goniometer calibration models whose parameters are reproduced in a series of measurements on a reference crystal. Reference (standard) crystals are prepared during the investigation; they should provide the agreement of structural models in repeated analyses. The technique developed has been used to calibrate Xcalibur Sapphire and Eos, Gemini Ruby (Agilent) and Apex x8 and Apex Duo (Bruker) diffractometers. The main conclusions are as follows: the calibration maps are stable for several years and can be used to improve structuralmore » results, verified CCD detectors exhibit significant inhomogeneity of the efficiency (response) function, and a Bruker goniometer introduces smaller distortions than an Agilent goniometer.« less

  9. POWTEX Neutron Diffractometer at FRM II - New Perspectives in Rock Deformation and Recrystallisation Analysis

    NASA Astrophysics Data System (ADS)

    Walter, J. M.; Stipp, M.; Ullemeyer, K.; Klein, H.; Leiss, B.; Hansen, B.; Kuhs, W. F.

    2011-12-01

    Neutron diffraction has become a routine method in Geoscience for the quantitative analysis of crystallographic preferred orientations (CPOs) and for (experimental) powder diffraction. Quantitative texture analysis is a common tool for the investigation of fabric development in mono- and polyphase rocks, their deformation histories and kinematics. Furthermore the quantitative characterization of anisotropic physical properties by bulk texture measurements can be achieved due to the high penetration capabilities of neutrons. To cope with increasing needs for beam time at neutron diffraction facilities with the corresponding technical characteristics and equipment, POWTEX (POWder and TEXture Diffractometer) is designed as a high-intensity diffractometer at the neutron research reactor FRM II in Garching, Germany by groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen. Complementary to existing neutron diffractometers (SKAT at Dubna, Russia; GEM at ISIS, UK; HIPPO at Los Alamos, USA; D20 at ILL, France; and the local STRESS-SPEC and SPODI at FRM II) the layout of POWTEX is focused on fast (texture) measurements for either time-resolved experiments or the measurement of larger sample series as necessary for the study of large scale geological structures. By utilizing a range of neutron wavelengths simultaneously (TOF-technique), a high flux (~1 x 107 n/cm2s) and a high detector coverage ( 9.8 sr) effective texture measurements without sample tilting and rotation are possible. Furthermore the instrument and the angular detector resolution is sufficient for strong recrystallisation textures as well as weak textures of polyphase rocks. Thereby large sample environments will be implemented at POWTEX allowing in-situ time-resolved texture measurements during deformation experiments on rocksalt, ice and other materials. Furthermore a furnace for 3D-recrystallisation analysis of single grains will be realized complementary to the furnace that already exists for fine grained materials at the synchrotron beamline BW5 at HASYLAB, Germany (e.g. Klein et al. 2009). The in-situ triaxial deformation apparatus is operated by a uniaxial spindle drive with a maximum axial load of 200 kN, which will be redesigned to minimize shadowing effects on the detector. The HT experiments will be carried out in uniaxial compression or extension and an upgrade to triaxial deformation conditions is envisaged. The load frame can alternatively be used for ice deformation by inserting a cryostat cell for temperatures down to 77 K with a triaxial apparatus allowing also simple shear experiments on ice. Strain rates range between 10-8 and 10-3 s-1 reaching to at least 50 % axial strain. The furnace for the recrystallization analysis will be a mirror furnace with temperatures up to 1500° C, which will be rotatable around a vertical axis to obtain the required stereologic orientation information.

  10. Better powder diffractometers. II—Optimal choice of U, V and W

    NASA Astrophysics Data System (ADS)

    Cussen, L. D.

    2007-12-01

    This article presents a technique for optimising constant wavelength (CW) neutron powder diffractometers (NPDs) using conventional nonlinear least squares methods. This is believed to be the first such design optimisation for a neutron spectrometer. The validity of this approach and discussion should extend beyond the Gaussian element approximation used and also to instruments using different radiation, such as X-rays. This approach could later be extended to include vertical and perhaps horizontal focusing monochromators and probably other types of instruments such as three axis spectrometers. It is hoped that this approach will help in comparisons of CW and time-of-flight (TOF) instruments. Recent work showed that many different beam element combinations can give identical resolution on CW NPDs and presented a procedure to find these combinations and also find an "optimum" choice of detector collimation. Those results enable the previous redundancy in the description of instrument performance to be removed and permit a least squares optimisation of design. New inputs are needed and are identified as the sample plane spacing ( dS) of interest in the measurement. The optimisation requires a "quality factor", QPD, chosen here to be minimising the worst Bragg peak separation ability over some measurement range ( dS) while maintaining intensity. Any other QPD desired could be substituted. It is argued that high resolution and high intensity powder diffractometers (HRPDs and HIPDs) should have similar designs adjusted by a single scaling factor. Simulated comparisons are described suggesting significant improvements in performance for CW HIPDs. Optimisation with unchanged wavelength suggests improvements by factors of about 2 for HRPDs and 25 for HIPDs. A recently quantified design trade-off between the maximum line intensity possible and the degree of variation of angular resolution over the scattering angle range leads to efficiency gains at short wavelengths. This in turn leads in practice to another trade-off between this efficiency gain and losses at short wavelength due to technical effects. The exact gains from varying wavelength depend on the details of the short wavelength technical losses. Simulations suggest that the total potential PD performance gains may be very significant-factors of about 3 for HRPDs and more than 90 for HIPDs.

  11. Microgravity

    NASA Image and Video Library

    1998-06-16

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  12. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  13. PEARL: the high pressure neutron powder diffractometer at ISIS

    NASA Astrophysics Data System (ADS)

    Bull, C. L.; Funnell, N. P.; Tucker, M. G.; Hull, S.; Francis, D. J.; Marshall, W. G.

    2016-10-01

    The PEARL instrument at ISIS has been designed for, and dedicated to, in situ studies of materials at high pressure, using the Paris-Edinburgh press. In recent years, upgrades to the instrument have led to improvements in data quality and the range of achievable pressures and temperatures; currently 0.5-28 GPa and 80-1400 K. This paper describes the technical characteristics of the instrument, its current capabilities, and gives a brief overview of the science that has been performed, using representative examples.

  14. New high- and low-temperature apparatus for synchrotron polycrystalline X-ray diffraction.

    PubMed

    Tang, C C; Bushnell-Wye, G; Cernik, R J

    1998-05-01

    A high-temperature furnace with an induction heater coil and a cryogenic system based on closed-cycle refrigeration have been assembled to enhance the non-ambient powder diffraction facilities at the Synchrotron Radiation Source, Daresbury Laboratory. The commissioning of the high- and low-temperature devices on the high-resolution powder diffractometer of Station 2.3 is described. The combined temperature range provided by the furnace/cryostat is 10-1500 K. Results from Fe and NH(4)Br powder samples are presented to demonstrate the operation of the apparatus. The developments presented in this paper are applicable to a wide range of other experiments and diffraction geometries.

  15. Sample holder for X-ray diffractometry

    DOEpatents

    Hesch, Victor L.

    1992-01-01

    A sample holder for use with X-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

  16. In-situ data collection at the photon factory macromolecular crystallography beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Yusuke, E-mail: yusuke.yamada@kek.jp; Matsugaki, Naohiro; Kato, Ryuichi

    Crystallization trial is one of the most important but time-consuming steps in macromolecular crystallography, and in-situ diffraction experiment has a capability to make researchers to proceed this step more efficiently. At the Photon Factory, a new tabletop diffractometer for in-situ diffraction experiments has been developed. It consists of XYZ translation stages with a plate handler, an on-axis viewing system and a plate rack with a capacity for ten crystallization plates. These components sit on a common plate and are able to be placed on the existing diffractometer table. The CCD detector with a large active area and a pixel arraymore » detector with a small active area are used for acquiring diffraction images from crystals. Dedicated control software and a user interface have also been developed. The new diffractometer has been operational for users and used for evaluation of crystallization screening since 2014.« less

  17. Low dose radiation damage effects in silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  18. Microgravity

    NASA Image and Video Library

    1998-06-16

    Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  19. Peak broadening and peak shift pole figures investigations by STRESS-SPEC diffractometer at FRM II

    NASA Astrophysics Data System (ADS)

    Gan, W. M.; Randau, C.; Hofmann, M.; Brokmeier, H. G.; Mueller, M.; Schreyer, A.

    2012-02-01

    This paper studied for the first time peak intensity, peak position and FHWM pole figures with one time measurement at the neutron diffractometer STRESS-SPEC via in-situ tensile deformation on austenitic steel. Fibre distribution with its evolution from central tensile direction to normal direction of these three kinds of pole figures was obtained. Variation of peak position and FWHM can be correlated to the reorientation of the texture component.

  20. Defect structure of epitaxial layers of III nitrides as determined by analyzing the shape of X-ray diffraction peaks

    NASA Astrophysics Data System (ADS)

    Kyutt, R. T.

    2017-04-01

    The shape of X-ray diffraction epitaxial layers with high dislocation densities has been studied experimentally. Measurements with an X-ray diffractometer were performed in double- and triple-crystal setups with both Cu K α and Mo K α radiation. Epitaxial layers (GaN, AlN, AlGaN, ZnO, etc.) with different degrees of structural perfection grown by various methods on sapphire, silicon, and silicon carbide substrates have been examined. The layer thickness varied in the range of 0.5-30 μm. It has been found that the center part of peaks is well approximated by the Voigt function with different Lorentz fractions, while the wing intensity drops faster and may be represented by a power function (with the index that varies from one structure to another). A well-marked dependence on the ordering of dislocations was observed. The drop in intensity in the majority of structures with a regular system and regular threading dislocations was close to the theoretically predicted law Δθ-3; the intensity in films with a chaotic distribution decreased much faster. The dependence of the peak shape on the order of reflection, the diffraction geometry, and the epitaxial layer thickness was also examined.

  1. Monochromatic neutron beam production at Brazilian nuclear research reactors

    NASA Astrophysics Data System (ADS)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  2. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  3. Thermal stabilization of neutron Larmor diffractometers

    NASA Astrophysics Data System (ADS)

    Keller, T.; Tralmer, F.

    2017-06-01

    We report on the design of a support unit for the radio frequency (RF) coils of a Larmor diffractometer (LD) eliminating fluctuations of the Larmor phase resulting from thermal expansion of the support structures. The key component defining the spacing between the RF coils is a Zerodur bar with a very low thermal expansion coefficient (α = 7 × 10-8 K-1). This support unit will allow for LD measurements on the 10-6 accuracy level even if the ambient temperature is fluctuating.

  4. Designing new guides and instruments using McStas

    NASA Astrophysics Data System (ADS)

    Farhi, E.; Hansen, T.; Wildes, A.; Ghosh, R.; Lefmann, K.

    With the increasing complexity of modern neutron-scattering instruments, the need for powerful tools to optimize their geometry and physical performances (flux, resolution, divergence, etc.) has become essential. As the usual analytical methods reach their limit of validity in the description of fine effects, the use of Monte Carlo simulations, which can handle these latter, has become widespread. The McStas program was developed at Riso National Laboratory in order to provide neutron scattering instrument scientists with an efficient and flexible tool for building Monte Carlo simulations of guides, neutron optics and instruments [1]. To date, the McStas package has been extensively used at the Institut Laue-Langevin, Grenoble, France, for various studies including cold and thermal guides with ballistic geometry, diffractometers, triple-axis, backscattering and time-of-flight spectrometers [2]. In this paper, we present some simulation results concerning different guide geometries that may be used in the future at the Institut Laue-Langevin. Gain factors ranging from two to five may be obtained for the integrated intensities, depending on the exact geometry, the guide coatings and the source.

  5. Octahedral deformations and cationic displacements in the ferroelectric PbHf(0.8)Ti(0.2)O(3): a neutron powder diffraction study from 10 to 770 K

    PubMed

    Muller; Baudour; Bedoya; Bouree; Soubeyroux; Roubin

    2000-02-01

    Neutron powder diffraction data, collected over the temperature range 10-770 K, have been analysed in order to make a detailed characterization of the sequence of phase transitions occurring in the Hf-rich ferroelectric PbHf(0.8)Ti(0.2)O3, titanium hafnium lead oxide. Over the whole temperature range this compound undergoes two phase transitions, which involve cationic displacements and octahedral deformations (tilt and/or distortion) leading to strongly distorted perovskite-type structures. The first transition appears around 415 K between two ferroelectric rhombohedral phases: a low-temperature nonzero-tilt phase F(RL) (space group R3c) and an intermediate zero-tilt phase FRH (space group R3m). The second one, detected around 520 K, is associated with a ferroelectric to-paraelectric transition between the FRH phase and the Pc cubic phase (space group Pm3m). From high-resolution neutron powder diffraction data (diffractometer 3T2-LLB, Saclay, France, lambda = 1.2251 A), the crystallographic structure of the three successive phases has been accurately determined at the following temperatures: T = 10 K (FRL): space group R3c, Z = 6, a(hex) = 5.7827 (1), c(hex) = 14.2702 (4) A, V(hex) = 413.26 (2) A3; T = 150 K (F(RL)): space group R3c, Z = 6, a(hex) = 5.7871 (1), C(hex) = 14.2735 (4) A, V(hex) = 413.98 (3) A3; T = 290 K (FRL): space group R3c, Z = 6, a(hex) = 5.7943 (1), C(hex) = 14.2742 (5) A, V(hex) = 415.04 (3) A3; T = 440 K (F(RH)): space group R3c, Z = 6, a(hex) = 5.8025 (1), c(hex) = 14.2648 (4) A, V(hex) = 415.94 (3) A3; T = 520 K (Pc): space group Pm3m, Z = 1, a(cub) = 4.1072 (2) A, V(cub) = 69.29 (1) A3. In addition, a neutron powder thermodiffractometry experiment, performed between 290 and 770 K (diffractometer D1B-ILL, Grenoble, France, lambda = 2.533 A), has been used to study in situ the temperature-induced phase transitions. From sequential Rietveld refinements, the temperature dependence of the cation displacements and the rotation and/or distortion of oxygen octahedra was derived.

  6. Nanocomposites Derived From a Low-Color Aromatic Polyimide (CP2) and Amine-Functionalized Vapor-Grown Carbon Nanofibers: In Situ Polymerization and Characterization (Preprint)

    DTIC Science & Technology

    2007-01-01

    small metal catalyst (e.g., ferrocene, Fe (CO)5, etc.). They have an outer diameter of 60-200 nm, a hollow core of 30-90 nm, and length on the order...diffractions (WAXS) of compression-molded samples were recorded with a Rigaku RU-200 diffractometer using Ni-filtered Cu KR radiation (40 kV, 100 mA, λ...attributable to the sp3 C-H and sp2 C-H defects as methane is used as the major component in the feedstock for its production . Based on hydrogen

  7. Rotatable multifunctional load frames for neutron diffractometers at FRM II—design, specifications and applications

    NASA Astrophysics Data System (ADS)

    Hoelzel, M.; Gan, W. M.; Hofmann, M.; Randau, C.; Seidl, G.; Jüttner, Ph.; Schmahl, W. W.

    2013-05-01

    Novel tensile rigs have been designed and manufactured at the research reactor Heinz Maier-Leibnitz (FRM II, Garching near Munich). Besides tensile and compressive stress, also torsion can be applied. The unique Eulerian cradle type design (ω, χ, and φ axis) allows orienting the stress axis with respect to the scattering vector. Applications of these tensile rigs at our neutron diffractometers enable various investigations of structural changes under mechanical load, e.g. crystallographic texture evolution, stress-induced phase transformations or lattice expansion, and the anisotropy of mechanical response.

  8. Data acquisition of neutron crystallography on tetragonal and triclinic forms of hen-egg-white (HEW) lysozyme with an elastically bent Si monochromator

    NASA Astrophysics Data System (ADS)

    Tanaka, I.; Minezaki, Y.; Harada, K.; Niimura, N.

    An elastically bent silicon (EBSi) as a monochromator has been optimized for neutron diffractometers of biocrystallography. It was found that several stacked thin Si plates were easier to be bent much for the near focusing point and they increased neutron reflectivity by aligning the plates. Currently, an EBSi(1 1 1) monochromator system was equipped at a diffractometer (BIX-I). It took 50 days to collect about 12 000 reflections of hen-egg-white lysozyme. The minimum d-spacing was 2.1 Å.

  9. Neutron diffraction measurements on a reference metallic sample with a high-efficiency GEM side-on 10B-based thermal neutron detector

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Claps, G.; Fedrigo, A.; Grazzi, F.; Höglund, C.; Murtas, F.; Scherillo, A.; Schmidt, S.; Schooneveld, E. M.

    2018-03-01

    The upgraded version of the GEM side-on thermal neutron detector was successfully tested in a neutron diffraction experiment on a reference sample using the INES diffractometer at the ISIS spallation neutron source, UK. The performance of the new 10B4C-based detector is compared to that of a standard 3He tube, operating at the instrument as a part of the detectors assembly. The results show that the upgraded detector has a better resolution and an efficiency of the same order of magnitude of a 3He-based detector.

  10. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    NASA Astrophysics Data System (ADS)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  11. A 16-ch module for thermal neutron detection using ZnS:6LiF scintillator with embedded WLS fibers coupled to SiPMs and its dedicated readout electronics

    NASA Astrophysics Data System (ADS)

    Mosset, J.-B.; Stoykov, A.; Greuter, U.; Gromov, A.; Hildebrandt, M.; Panzner, T.; Schlumpf, N.

    2017-02-01

    A scalable 16-ch thermal neutron detection system has been developed in the framework of the upgrade of a neutron diffractometer. The detector is based on a ZnS:6LiF scintillator with embedded WLS fibers which are read out with SiPMs. In this paper, we present the 16-ch module, the dedicated readout electronics, a direct comparison between the performance of the diffractometer obtained with the current 3He detector and with the 16-ch detection module, and the channel-to-channel uniformity.

  12. 90-kilobar diamond-anvil high-pressure cell for use on an automatic diffractometer.

    PubMed

    Schiferl, D; Jamieson, J C; Lenko, J E

    1978-03-01

    A gasketed diamond-anvil high-pressure cell is described which can be used on a four-circle automatic diffractometer to collect x-ray intensity data from single-crystal samples subjected to truly hydrostatic pressures of over 90 kilobars. The force generating system exerts only forces normal to the diamond faces to obtain maximum reliability. A unique design allows exceptionally large open areas for maximum x-ray access and is particularly well suited for highly absorbing materials, as the x rays are not transmitted through the sample. Studies on ruby show that high-pressure crystal structure determinations may be done rapidly, reliably, and routinely with this system.

  13. Portable X-ray diffractometer equipped with XRF for archaeometry

    NASA Astrophysics Data System (ADS)

    Uda, M.; Ishizaki, A.; Satoh, R.; Okada, K.; Nakajima, Y.; Yamashita, D.; Ohashi, K.; Sakuraba, Y.; Shimono, A.; Kojima, D.

    2005-09-01

    A portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer was improved so as to get a diffraction pattern and a fluorescence spectrum simultaneously in air from one and the same small area on a specimen. Here, diffraction experiments were performed in two modes, i.e. an angle rotation mode and an energy dispersive mode. In the latter a diffraction pattern and a fluorescence spectrum were simultaneously recorded in a short time, 100 s or less, on one display. The diffractometer was tested in the field to confirm its performance. Targets chosen for this purpose were a bronze mirror from the Eastern Han Dynasty (25-220), and a stupa and its pedestal which are part of the painted statue of "Tamonten holding a stupa" from the Heian Period (794-1192), enshrined in the Engyouji temple founded in 996. The bronze mirror was identified as a product of the Han Dynasty from its chemical composition and the existence of the δ phase in the Cu-Sn alloy. The stupa and its pedestal were decorated with gold powder and gold leaf, respectively. From the XRF data of the pedestal, the underlying layer of gold leaf seems to have been painted with emerald green.

  14. Neutron Time-of-Flight Diffractometer HIPPO at LANSCE

    NASA Astrophysics Data System (ADS)

    Vogel, Sven; Williams, Darrick; Zhao, Yusheng; Bennett, Kristin; von Dreele, Bob; Wenk, Hans-Rudolf

    2004-03-01

    The High-Pressure Preferred Orientation (HIPPO) neutron diffractometer is the first third-generation neutron time-of-flight powder diffractometer to be constructed in the United States. It produces extremely high intensity by virtue of a short (9 m) initial flight path on a high intensity water moderator and 1380 3He detector tubes covering 4.5 m2 of detector area from 10' to 150' in scattering angles. HIPPO was designed and manufactured as a joint effort between LANSCE and University of California with the goals of attaining world-class science and making neutron powder diffractometry an accessible and available tool to the national user community. Over two decades of momentum transfer are available (0.1-30 A-1) to support studies of amorphous solids; magnetic diffraction; small crystalline samples; and samples subjected to extreme environments such as temperature, pressure, or magnetic fields. The exceptionally high data rates of HIPPO also make it useful for time-resolved studies. In addition to the standard ancillary equipment (100-position sample/texture changer, closed-cycle He refrigerator, furnace), HIPPO has unique high-pressure cells capable of achieving pressures of 30 GPA at ambient and high (2000 K) temperature with samples up to 100 mm3 in volume.

  15. Multifunctionality of nanocrystalline lanthanum ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Atma, E-mail: atma@iitp.ac.in; Thakur, Awalendra K.; Centre for Energy and Environment, Indian Institute of Technology Patna 800013 India

    2016-05-06

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ∼42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ∼3.45 m{sup 2}/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanummore » ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO{sub 3}.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.« less

  16. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  17. AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    PubMed Central

    Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Lösche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.

    2011-01-01

    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å−1. A detailed description of this flexible instrument and its performance characteristics in various operating modes are given. PMID:21892232

  18. Amorphous Analogs of Martian Global Soil: Pair Distribution Function Analyses and Implications for Scattering Models of Chemin X-ray Diffraction Data

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Bish, D. L.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Soils on Mars have been analyzed by the Mars Exploration Rovers (MER) and most recently by the Mars Science Laboratory (MSL) rover. Chemical analyses from a majority of soil samples suggest that there is a relatively uniform global soil composition across much of the planet. A soil site, Rocknest, was sampled by the MSL science payload including the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS). Che- Min X-ray diffraction (XRD) data revealed crystalline phases and a broad, elevated background, indicating the presence of amorphous or poorly ordered materials (Fig 1). Based on the chemical composition of the bulk soil measured by APXS and the composition of crystalline phases derived from unit-cell parameters determined with CheMin data, the percentages of crystalline and amorphous phases were calculated at 51% and 49%, respectively. Attempts to model the amorphous contribution to CheMin XRD patterns were made using amorphous standards and full-pattern fitting methods and show that the broad, elevated background region can be fitted by basaltic glass, allophane, and palagonite. However, the modeling shows only that these phases have scattering patterns similar to that for the soil, not that they represent unique solutions. Here, we use pair distribution function (PDF) analysis to determine the short-range order of amorphous analogs in martian soils and better constrain the amorphous material detected by CheMin.

  19. Adsorption of antibiotics on microplastics.

    PubMed

    Li, Jia; Zhang, Kaina; Zhang, Hua

    2018-06-01

    Microplastics and antibiotics are two classes of emerging contaminants with proposed negative impacts to aqueous ecosystems. Adsorption of antibiotics on microplastics may result in their long-range transport and may cause compound combination effects. In this study, we investigated the adsorption of 5 antibiotics [sulfadiazine (SDZ), amoxicillin (AMX), tetracycline (TC), ciprofloxacin (CIP), and trimethoprim (TMP)] on 5 types of microplastics [polyethylene (PE), polystyrene (PS), polypropylene (PP), polyamide (PA), and polyvinyl chloride (PVC)] in the freshwater and seawater systems. Scanning Electron Microscope (SEM) and X-ray diffractometer (XRD) analysis revealed that microplastics have different surface characterizes and various degrees of crystalline. Adsorption isotherms demonstrated that PA had the strongest adsorption capacity for antibiotics with distribution coefficient (K d ) values ranged from 7.36 ± 0.257 to 756 ± 48.0 L kg -1 in the freshwater system, which can be attributed to its porous structure and hydrogen bonding. Relatively low adsorption capacity was observed on other four microplastics. The adsorption amounts of 5 antibiotics on PS, PE, PP, and PVC decreased in the order of CIP > AMX > TMP > SDZ > TC with K f correlated positively with octanol-water partition coefficients (Log K ow ). Comparing to freshwater system, adsorption capacity in seawater decreased significantly and no adsorption was observed for CIP and AMX. Our results indicated that commonly observed polyamide particles can serve as a carrier of antibiotics in the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Neutron Scattering Measurements of Carbon Dioxide Adsorption in Pores within the Marcellus Shale: Implications for Sequestration.

    PubMed

    Stefanopoulos, Konstantinos L; Youngs, Tristan G A; Sakurovs, Richard; Ruppert, Leslie F; Bahadur, Jitendra; Melnichenko, Yuri B

    2017-06-06

    Shale is an increasingly viable source of natural gas and a potential candidate for geologic CO 2 sequestration. Understanding the gas adsorption behavior on shale is necessary for the design of optimal gas recovery and sequestration projects. In the present study neutron diffraction and small-angle neutron scattering measurements of adsorbed CO 2 in Marcellus Shale samples were conducted on the Near and InterMediate Range Order Diffractometer (NIMROD) at the ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory along an adsorption isotherm of 22 °C and pressures of 25 and 40 bar. Additional measurements were conducted at approximately 22 and 60 °C at the same pressures on the General-Purpose Small-Angle Neutron Scattering (GP-SANS) instrument at Oak Ridge National Laboratory. The structures investigated (pores) for CO 2 adsorption range in size from Å level to ∼50 nm. The results indicate that, using the conditions investigated densification or condensation effects occurred in all accessible pores. The data suggest that at 22 °C the CO 2 has liquid-like properties when confined in pores of around 1 nm radius at pressures as low as 25 bar. Many of the 2.5 nm pores, 70% of 2 nm pores, most of the <1 nm pores, and all pores <0.25 nm, are inaccessible or closed to CO 2 , suggesting that despite the vast numbers of micropores in shale, the micropores will be unavailable for storage for geologic CO 2 sequestration.

  1. A high performance neutron powder diffractometer at 3 MW Triga Mark-II research reactor in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamal, I., E-mail: imtiaz-kamal26@yahoo.com; Yunus, S. M., E-mail: yunussm11@yahoo.com; Datta, T. K., E-mail: tk-datta4@yahoo.com

    2016-07-12

    A high performance neutron diffractometer called Savar Neutron Diffractometer (SAND) was built and installed at radial beam port-2 of TRIGA Mark II research reactor at AERE, Savar, Dhaka, Bangladesh. Structural studies of materials are being done by this technique to characterize materials crystallograpohically and magnetically. The micro-structural information obtainable by neutron scattering method is very essential for determining its technological applications. This technique is unique for understanding the magnetic behavior in magnetic materials. Ceramic, steel, electronic and electric industries can be benefited from this facility for improving their products and fabrication process. This instrument consists of a Popovicimonochromator with amore » large linear position sensitive detector array. The monochromator consists of nine blades of perfect single crystal of silicon with 6 mm thickness each. The monochromator design was optimized to provide maximum flux on 3 mm diameter cylindrical sample with a relatively flat angular dependence of resolution. Five different wave lengths can be selected by orienting the crystal at various angles. A sapphire filter was used before the primary collimator to minimize the first neutron. The detector assembly is composed of 15 linear position sensitive proportional counters placed at either 1.1 m or 1.6 m from the sample position and enclosed in a air pad supported high density polythene shield. Position sensing is obtained by charge division using 1-wide NIM position encoding modules (PEM). The PEMs communicate with the host computer via USB. The detector when placed at 1.1 m, subtends 30° (2θ) at each step and covers 120° in 4 steps. When the detector is placed at 1.6 m it subtends 20° at each step and covers 120° in 6 steps. The instrument supports both low and high temperature sample environment. The instrument supports both low and high temperature sample environment. The diffractometer is a state-of-the art technology for diffraction study in our country.« less

  2. A high performance neutron powder diffractometer at 3 MW Triga Mark-II research reactor in Bangladesh

    NASA Astrophysics Data System (ADS)

    Kamal, I.; Yunus, S. M.; Datta, T. K.; Zakaria, A. K. M.; Das, A. K.; Aktar, S.; Hossain, S.; Berliner, R.; Yelon, W. B.

    2016-07-01

    A high performance neutron diffractometer called Savar Neutron Diffractometer (SAND) was built and installed at radial beam port-2 of TRIGA Mark II research reactor at AERE, Savar, Dhaka, Bangladesh. Structural studies of materials are being done by this technique to characterize materials crystallograpohically and magnetically. The micro-structural information obtainable by neutron scattering method is very essential for determining its technological applications. This technique is unique for understanding the magnetic behavior in magnetic materials. Ceramic, steel, electronic and electric industries can be benefited from this facility for improving their products and fabrication process. This instrument consists of a Popovicimonochromator with a large linear position sensitive detector array. The monochromator consists of nine blades of perfect single crystal of silicon with 6mm thickness each. The monochromator design was optimized to provide maximum flux on 3mm diameter cylindrical sample with a relatively flat angular dependence of resolution. Five different wave lengths can be selected by orienting the crystal at various angles. A sapphire filter was used before the primary collimator to minimize the first neutron. The detector assembly is composed of 15 linear position sensitive proportional counters placed at either 1.1 m or 1.6 m from the sample position and enclosed in a air pad supported high density polythene shield. Position sensing is obtained by charge division using 1-wide NIM position encoding modules (PEM). The PEMs communicate with the host computer via USB. The detector when placed at 1.1 m, subtends 30˚ (2θ) at each step and covers 120˚ in 4 steps. When the detector is placed at 1.6 m it subtends 20˚ at each step and covers 120˚ in 6 steps. The instrument supports both low and high temperature sample environment. The instrument supports both low and high temperature sample environment. The diffractometer is a state-of-the art technology for diffraction study in our country.

  3. Characterisation of the incident beam and current diffraction capabilities on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Romanelli, G.; Krzystyniak, M.; Senesi, R.; Raspino, D.; Boxall, J.; Pooley, D.; Moorby, S.; Schooneveld, E.; Rhodes, N. J.; Andreani, C.; Fernandez-Alonso, F.

    2017-09-01

    The VESUVIO spectrometer at the ISIS pulsed neutron and muon source is a unique instrument amongst those available at neutron facilities. This is the only inverted-geometry neutron spectrometer accessing values of energy and wavevector transfer above tens of eV and {\\mathringA}-1 , respectively, and where deep inelastic neutron scattering experiments are routinely performed. As such, the procedure at the base of the technique has been previously described in an article published by this journal (Mayers and Reiter 2012 Meas. Sci. Technol. 23 045902). The instrument has recently witnessed an upsurge of interest due to a new trend to accommodate, within a single experiment, neutron diffraction and transmission measurements in addition to deep inelastic neutron scattering. This work presents a broader description of the instrument following these recent developments. In particular, we assess the absolute intensity and two-dimensional profile of the incident neutron beam and the capabilities of the backscattering diffraction banks. All results are discussed in the light of recent changes to the moderator viewed by the instrument. We find that VESUVIO has to be considered a high-resolution diffractometer as much as other diffractometers at ISIS, with a resolution as high as 2× 10-3 in backscattering. Also, we describe the extension of the wavelength range of the instrument to include lower neutron energies for diffraction measurements, an upgrade that could be readily applied to other neutron instruments as well.

  4. Adsorption of Benzoic Acid in Aqueous Solution by Bagasse Fly Ash

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    2012-09-01

    This paper reports the studies on the benzoic acid (BA) onto bagasse fly ash (BFA) was studied in aqueous solution in a batch system. Physico-chemical properties including surface area, surface texture of the GAC before and after BA adsorption onto BFA were analysed using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The optimum initial pH for the adsorption of BA was found to be 5.56. The adsorbent dose was 10 g/l for BFA and the equilibrium time 8 h of reaction. Pseudo first and second order models were used to find the adsorption kinetics. It was found that intraparticle diffusion played important role in the adsorption mechanisms of BA and the adsorption kinetics followed pseudo-second order kinetic model rather than the pseudo first order kinetic model. Isotherm data were generated for BA solution having initial concentrations of BA in the range of 10-200 mg/l for the BFA dosage of 10 g/l at temperatures of 288, 303, and 318 K. The adsorption of BA onto BFA was favorably influenced by an increase in temperature. Equilibrium data were well represented by the Redlich-Peterson isotherm model. Values of the change in entropy ( ΔS 0), heat of adsorption ( ΔH 0) for adsorption of BA on BFA was found to be 120.10 and 19.61 kJ/mol respectively. The adsorption of BA onto BFA was an endothermic reaction. Desorption of BA from BFA was studied by various solvents method. Acetic acid was found to be a better eluant for desorption of BA with a maximum desorption efficiency of 55.2 %. Owing to its heating value, spent BFA can be used as a co-fuel for the production of heat in boiler furnaces.

  5. Improved sample manipulation at the STRESS-SPEC neutron diffractometer using an industrial 6-axis robot for texture and strain analyses

    NASA Astrophysics Data System (ADS)

    Randau, C.; Brokmeier, H. G.; Gan, W. M.; Hofmann, M.; Voeller, M.; Tekouo, W.; Al-hamdany, N.; Seidl, G.; Schreyer, A.

    2015-09-01

    The materials science neutron diffractometer STRESS-SPEC located at FRM II is a dedicated instrument for strain and pole figure measurements. Both methods make complementary demands on sample handling. On one hand pole figure measurements need a high degree of freedom to orient small samples and on the other hand in strain investigations it is often necessary to handle large and heavy components. Therefore a robot based sample positioning system was developed, which has the capability to provide both possibilities. Based on this new robot system further developments like a full automated sample changer system for texture measurements were accomplished. Moreover this system opens the door for combined strain and texture analysis at STRESS-SPEC.

  6. Structural and optical properties of ITO and Cu doped ITO thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Deepannita; Kaleemulla, S.; Rao, N. Madhusudhana; Subbaravamma, K.; Rao, G. Venugopal

    2018-04-01

    (In0.95Sn0.05)2O3 and (In0.90Cu0.05Sn0.05)2O3 thin films were coated onto glass substrate by electron beam evaporation technique. The structural and optical properties of ITO and Cu doped ITO thin films have been studied by X-ray diffractometer (XRD) and UV-Vis-NIR spectrophotometer. The crystallite size obtained for ITO and Cu doped ITO thin films was in the range of 24 nm to 22 nm. The optical band gap of 4 eV for ITO thin film sample has been observed. The optical band gap decreases to 3.85 eV by doping Cu in ITO.

  7. Study of cyanide removal from contaminated water using zinc peroxide nanomaterial.

    PubMed

    Uppal, Himani; Tripathy, S Swarupa; Chawla, Sneha; Sharma, Bharti; Dalai, M K; Singh, S P; Singh, Sukhvir; Singh, Nahar

    2017-05-01

    The present study highlights the potential application of zinc peroxide (ZnO 2 ) nanomaterial as an efficient material for the decontamination of cyanide from contaminated water. A process patent for ZnO 2 synthesis has been granted in United States of America (US Patent number 8,715,612; May 2014), South Africa, Bangladesh, and India. The ZnO 2 nanomaterial was capped with polyvinylpyrrolidone (PVP) to control the particle size. The PVP capped ZnO 2 nanomaterial (PVP-ZnO 2 ) before and after adsorption of cyanide was characterized by scanning electron microscope, transmission electron microscope, X-ray diffractometer, Fourier transform infrared spectroscopy and time of flight-secondary ion mass spectrometry. The remaining concentration of cyanide after adsorption by PVP-ZnO 2 was determined using ion chromatograph. The adsorption of cyanide over PVP-ZnO 2 was also studied as a function of pH, adsorbent dose, time and concentration of cyanide. The maximum removal of cyanide was observed in pH range 5.8-7.8 within 15min. The adsorption data was fitted to Langmuir and Fruendlich isotherm and it has been observed that data follows both the isotherms and also follows second order kinetics. Copyright © 2016. Published by Elsevier B.V.

  8. Dip coated TiO2 nanostructured thin film: synthesis and application

    NASA Astrophysics Data System (ADS)

    Vanaraja, Manoj; Muthukrishnan, Karthika; Boomadevi, Shanmugam; Karn, Rakesh Kumar; Singh, Vijay; Singh, Pramod K.; Pandiyan, Krishnamoorthy

    2016-02-01

    TiO2 thin film was fabricated by dip coating method using titanium IV chloride as precursor and sodium carboxymethyl cellulose as thickening as well as capping agent. Structural and morphological features of TiO2 thin film were characterized by X-ray diffractometer and field emission scanning electron microscope, respectively. Crystallinity of the film was confirmed with high-intensity peak at (101) plane, and its average crystallite size was found to be 28 nm. The ethanol-sensing properties of TiO2 thin film was studied by the chemiresistive method. Furthermore, various gases were tested in order to verify the selectivity of the sensor. Among the several gases, the fabricated TiO2 sensor showed very high selectivity towards ethanol at room temperature.

  9. An X-Ray Diffractometer for Mineralogical Analysis of Exomars Mission

    NASA Astrophysics Data System (ADS)

    Marinangeli, L.; Baliva, A.; Critani, F.; Stevoli, A.; Scandelli, L.; Holland, A.; Hutchinson, I.; Nelms, N.; Delhez, R.

    2006-12-01

    The new results of the Mars Exploration Rovers and the Mars Express mission outline the importance of a correct assessment of the variety of geological contexts to understand the evolution of a habitable environment. The need of having complex scientific payload to perform a broad range of in situ measurements is a necessary step for a successful exobiological exploration. Furthermore, the compositional analysis of the surface samples is of fundamental importance to characterize the geological environments where life could have arisen and their evolution through time. In the last years, there has been a strong interest in Europe to develop a x-ray diffractometer (XRD) for mineralogical analyses of planetary surfaces. The identification of minerals using the diffraction technique is based on the x-ray interference with the geometrical parameters of the crystal lattice allowing an unequivocal recognition of different minerals. An US XRD instrument, CHEMIN, will flight for the first time in the NASA Mars Science Laboratory in 2009. An European XRD design has also been selected for the Pasteur Payload of the ESA ExoMars mission, planned for 2011. The proposed instrument is a miniaturised concept (1 kg) configured in a reflection geometry and will allow the identification of a large spectrum of minerals including those related to the presence of water, key element for the development of life. The complete mineralogical analysis will be performed on very small quantities of powder rock samples, thought analysis of pristine (no grinded) sample can also be achieved with the reflection configuration. Information on the elemental composition of the sample can be roughly estimated by the analysis of the x-ray fluorescence spectrum simultaneously acquired by the detection system. In order to demonstrate the instrument technological readiness for the ExoMars mission, the construction of a demonstrative prototype is on going with ESA funding. Preliminary result of the scientific evaluation of the prototype will be shown to assess the capability of the proposed concept in the identification of rock mineralogy. IRSPS and and Laben are respectively the team science coordinator and the engineering responsible for the instrument development. The detector assembly for the prototype has been developed by UK and discussion for the UK involvement on the future instrument development is on going. Delft is providing scientific contribution for the prototype evaluation.

  10. A Novel X-ray Diffractometer for the Florida Split Coil 25 Tesla Magnet

    NASA Astrophysics Data System (ADS)

    Wang, Shengyu; Kovalev, Alexey; Suslov, Alexey; Siegrist, Theo

    2014-03-01

    At National High Magnetic Field Laboratory (NHMFL), we are developing a unique X-ray diffractometer for the 25 Tesla Florida Split Coil Magnet for scattering experiments under extremely high static magnetic fields. The X-ray source is a sealed tube (copper or molybdenum anode), connected to the magnet by an evacuated beam tunnel. The detectors are either an image plate or a silicon drift detector, with the data acquisition system based on LabVIEW. Our preliminary experimental results showed that the performance of the detector electronics and the X-ray generator is reliable in the fringe magnetic fields produced at the highest field of 25 T. Using this diffractometer, we will make measurements on standard samples, such as LaB6, Al2O3 and Si, to calibrate the diffraction system. Magnetic samples, such as single crystal HoMnO3 and stainless steel 301 alloys will be measured subsequently. The addition of X-ray diffraction to the unique split coil magnet will significantly expand the NHMFL experimental capabilities. Therefore, external users will be able to probe spin - lattice interactions at static magnetic fields up to 25T. This project is supported by NSF-DMR Award No.1257649. NHMFL is supported by NSF Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. DoE.

  11. Ab initio simulation of diffractometer instrumental function for high-resolution X-ray diffraction1

    PubMed Central

    Mikhalychev, Alexander; Benediktovitch, Andrei; Ulyanenkova, Tatjana; Ulyanenkov, Alex

    2015-01-01

    Modeling of the X-ray diffractometer instrumental function for a given optics configuration is important both for planning experiments and for the analysis of measured data. A fast and universal method for instrumental function simulation, suitable for fully automated computer realization and describing both coplanar and noncoplanar measurement geometries for any combination of X-ray optical elements, is proposed. The method can be identified as semi-analytical backward ray tracing and is based on the calculation of a detected signal as an integral of X-ray intensities for all the rays reaching the detector. The high speed of calculation is provided by the expressions for analytical integration over the spatial coordinates that describe the detection point. Consideration of the three-dimensional propagation of rays without restriction to the diffraction plane provides the applicability of the method for noncoplanar geometry and the accuracy for characterization of the signal from a two-dimensional detector. The correctness of the simulation algorithm is checked in the following two ways: by verifying the consistency of the calculated data with the patterns expected for certain simple limiting cases and by comparing measured reciprocal-space maps with the corresponding maps simulated by the proposed method for the same diffractometer configurations. Both kinds of tests demonstrate the agreement of the simulated instrumental function shape with the measured data. PMID:26089760

  12. A possibility of parallel and anti-parallel diffraction measurements on neu- tron diffractometer employing bent perfect crystal monochromator at the monochromatic focusing condition

    NASA Astrophysics Data System (ADS)

    Choi, Yong Nam; Kim, Shin Ae; Kim, Sung Kyu; Kim, Sung Baek; Lee, Chang-Hee; Mikula, Pavel

    2004-07-01

    In a conventional diffractometer having single monochromator, only one position, parallel position, is used for the diffraction experiment (i.e. detection) because the resolution property of the other one, anti-parallel position, is very poor. However, a bent perfect crystal (BPC) monochromator at monochromatic focusing condition can provide a quite flat and equal resolution property at both parallel and anti-parallel positions and thus one can have a chance to use both sides for the diffraction experiment. From the data of the FWHM and the Delta d/d measured on three diffraction geometries (symmetric, asymmetric compression and asymmetric expansion), we can conclude that the simultaneous diffraction measurement in both parallel and anti-parallel positions can be achieved.

  13. Remote analysis of planetary soils: X-ray diffractometer development

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1973-01-01

    A system is described suitable for remote low power mineralogical analysis of lunar, planetary, or asteroid soils. It includes an X-ray diffractometer, fluorescence spectrometer, and sample preparation system. A one Curie Fe-55 source provides a monochromatic X-ray beam of 5.9 keV. Seeman-Bohlin or focusing geometry is employed in the camera, allowing peak detection to proceed simultaneously at all angles and obviating the need for moving parts. The detector system is an array of 500-600 proportional counters with a wire-spacing of 1 mm. An electronics unit comprising preamplifier, postamplifier, window discriminators, and storage flipflops requiring only 3.5 milliwatts was designed and tested. Total instrument power is less than 5 watts. Powder diffraction patterns using a flat breadboard multiwire counter were recorded.

  14. Low-angle X-ray scattering properties of irradiated spices

    NASA Astrophysics Data System (ADS)

    Almeida, A. P. G.; Braz, D.; Barroso, R. C.; Lopes, R. T.

    2007-09-01

    The scattering of X-rays at low angles (LAXS) is a technique dominated by the coherent scattering process. One characteristic observation of low-angle coherent scattering is the so-called molecular interference effect, being characterized by the presence of one or more peaks in the forward direction of scattering. In the present study, LAXS profiles from five different spices are carefully measured in order to establish characteristic scattering signatures. Samples of Ceylon cinnamon, cumin, nutmeg, paprika and black pepper were bought in local market in Rio de Janeiro, Brazil. The LAXS patterns were obtained using a Shimadzu DRX 6000 diffractometer in reflection geometry. Coherent scattering patterns are measured for the samples for θ=5-35°. The data were collected in 0.05° increments every 3 s. In order to evaluate the possible molecular structure changes caused to the irradiation procedure, the signatures obtained for control (non-irradiated) spices were compared with spice samples irradiated with different doses varying from 3 to 40 kGy. The LAXS patterns of all samples were obtained after 30, 60, 90, 120 days to evaluate the effect of storage period. Scattering profiles from spices irradiated with different irradiation doses were obtained and the results compared. For each spice, there is no considerable deviation in shape in function of the irradiation dose. It indicates that the molecular structure of each analyzed spices is preserved considering the dose range chosen. The results show that the molecular structure was found to be stable during storage at the ambient temperature for up to 4 months.

  15. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-10-01

    Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al2O3-13 wt%TiO2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14-20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.

  16. Mechanical properties of Al-Cu alloy-SiC composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anggara, B. S., E-mail: anggorobs1960@yahoo.com; Handoko, E.; Soegijono, B.

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to getmore » better quality of back to back hardness Vickers of Al-Cu alloys.« less

  17. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    NASA Astrophysics Data System (ADS)

    Dasan, Y. K.; Bhat, A. H.; Faiz, A.

    2015-07-01

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC's were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC's are strongly dependent on the hydrolysis time and acid concentration.

  18. Influence of Accumulative Roll Bonding on the Texture and Tensile Properties of an AZ31 Magnesium Alloy Sheets

    PubMed Central

    Džugan, Ján; Németh, Gergely; Lukáč, Pavel; Bohlen, Jan

    2018-01-01

    Deformation behaviour of rolled AZ31 sheets that were subjected to the accumulative roll bonding was investigated. Substantially refined microstructure of samples was achieved after the first and second pass through the rolling mill. Sheets texture was investigated using an X-ray diffractometer. Samples for tensile tests were cut either parallel or perpendicular to the rolling direction. Tensile tests were performed at temperatures ranging from room temperature up to 300 °C. Tensile plastic anisotropy, different from the anisotropy observed in AZ31 sheets by other authors, was observed. This anisotropy decreases with an increasing number of rolling passes and increasing deformation temperature. Grain refinement and texture are the crucial factors influencing the deformation behaviour. PMID:29303975

  19. Mechanical properties of Al-Cu alloy-SiC composites

    NASA Astrophysics Data System (ADS)

    Anggara, B. S.; Handoko, E.; Soegijono, B.

    2014-09-01

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  20. Neutron scattering measurements of carbon dioxide adsorption in pores within the Marcellus Shale: Implications for sequestration

    USGS Publications Warehouse

    Stefanopoulos, Konstantinos L.; Youngs, Tristan G. A.; Sakurovs, Richard; Ruppert, Leslie F.; Bahadur, Jitendra; Melnichenko, Yuri B.

    2017-01-01

    Shale is an increasingly viable source of natural gas and a potential candidate for geologic CO2sequestration. Understanding the gas adsorption behavior on shale is necessary for the design of optimal gas recovery and sequestration projects. In the present study neutron diffraction and small-angle neutron scattering measurements of adsorbed CO2 in Marcellus Shale samples were conducted on the Near and InterMediate Range Order Diffractometer (NIMROD) at the ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory along an adsorption isotherm of 22 °C and pressures of 25 and 40 bar. Additional measurements were conducted at approximately 22 and 60 °C at the same pressures on the General-Purpose Small-Angle Neutron Scattering (GP-SANS) instrument at Oak Ridge National Laboratory. The structures investigated (pores) for CO2 adsorption range in size from Å level to ∼50 nm. The results indicate that, using the conditions investigated densification or condensation effects occurred in all accessible pores. The data suggest that at 22 °C the CO2 has liquid-like properties when confined in pores of around 1 nm radius at pressures as low as 25 bar. Many of the 2.5 nm pores, 70% of 2 nm pores, most of the <1 nm pores, and all pores <0.25 nm, are inaccessible or closed to CO2, suggesting that despite the vast numbers of micropores in shale, the micropores will be unavailable for storage for geologic CO2 sequestration.

  1. Growth and characterization of thin Cu-phthalocyanine films on MgO(001) layer for organic light-emitting diodes

    PubMed Central

    2012-01-01

    Surface morphology and thermal stability of Cu-phthalocyanine (CuPc) films grown on an epitaxially grown MgO(001) layer were investigated by using atomic force microscope and X-ray diffractometer. The (002) textured β phase of CuPc films were prepared at room temperature beyond the epitaxial MgO/Fe/MgO(001) buffer layer by the vacuum deposition technique. The CuPc structure remained stable even after post-annealing at 350°C for 1 h under vacuum, which is an important advantage of device fabrication. In order to improve the device performance, we investigated also current-voltage-luminescence characteristics for the new top-emitting organic light-emitting diodes with different thicknesses of CuPc layer. PMID:23181826

  2. Growth and characterization of thin Cu-phthalocyanine films on MgO(001) layer for organic light-emitting diodes.

    PubMed

    Bae, Yu Jeong; Lee, Nyun Jong; Kim, Tae Hee; Cho, Hyunduck; Lee, Changhee; Fleet, Luke; Hirohata, Atsufumi

    2012-11-26

    Surface morphology and thermal stability of Cu-phthalocyanine (CuPc) films grown on an epitaxially grown MgO(001) layer were investigated by using atomic force microscope and X-ray diffractometer. The (002) textured β phase of CuPc films were prepared at room temperature beyond the epitaxial MgO/Fe/MgO(001) buffer layer by the vacuum deposition technique. The CuPc structure remained stable even after post-annealing at 350°C for 1 h under vacuum, which is an important advantage of device fabrication. In order to improve the device performance, we investigated also current-voltage-luminescence characteristics for the new top-emitting organic light-emitting diodes with different thicknesses of CuPc layer.

  3. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE PAGES

    Gu, X.; Mildner, D. F. R.

    2016-05-16

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  4. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X.; Mildner, D. F. R.

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  5. Influence of precursor concentration on the structural, optical and electrical properties of indium oxide thin film prepared by a sol-gel method

    NASA Astrophysics Data System (ADS)

    Lau, L. N.; Ibrahim, N. B.; Baqiah, H.

    2015-08-01

    This research was carried out to study the effect of different precursor concentrations on the physical properties of indium oxide (In2O3) thin film. In2O3 is a promising n-type semiconductor material that has been used in optoelectronic applications because of its highly transparent properties. It is a transparent conducting oxide with a wide band gap (∼3.7 eV). The experiment was started by preparing different precursor concentrations of indium nitrate hydrate (In (NO3)·H2O) solution and followed by the spin coating technique prior to an annealing process at 500 °C. Indium oxide thin films were characterized using an X-ray diffractometer, an ultraviolet-visible spectroscopy, a field emission scanning electron microscope and a Hall Effect Measurement System in order to determine the influence caused by the different molarities of indium oxide. The result showed that the film thickness increased with the indium oxide molarity. Film thicknesses were in the range of 0.3-135.1 nm and optical transparency of films was over 94%. Lowest resistivity of 2.52 Ω cm with a mobility of 26.60 cm2 V-1 S-1 and carrier concentration of 4.27 × 1017 cm-3 was observed for the indium oxide thin film prepared at 0.30 M.

  6. New software to model energy dispersive X-ray diffraction in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Tabary, J.; Pouget, S.; Paulus, C.; Moulin, V.; Verger, L.; Duvauchelle, Ph.

    2012-02-01

    Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.

  7. On high-resolution reciprocal-space mapping with a triple-crystal diffractometer for high-energy X-rays.

    PubMed

    Liss, K D; Royer, A; Tschentscher, T; Suortti, P; Williams, A P

    1998-03-01

    High-energy X-rav diffraction by means of triple-crystal techniques is a powerful tool for investigating dislocations and strain in bulk materials. Radiation with an energy typically higher than 80 keV combines the advantage of low attenuation with high resolution at large momentum transfers. The triple-crystal diffractometer at the High Energy Beamline of the European Synchrotron Radiation Facility is described. It is shown how the transverse and longitudinal resolution depend on the choice of the crystal reflection, and how the orientation of a reciprocal-lattice distortion in an investigated sample towards the resolution element of the instrument can play an important role. This effect is demonstrated on a single crystal of silicon where a layer of macro pores reveals satellites around the Bragg reflection. The resulting longitudinal distortion can be investigated using the high transverse resolution of the instrument when choosing an appropriate reflection.

  8. SMA texture and reorientation: simulations and neutron diffraction studies

    NASA Astrophysics Data System (ADS)

    Gao, Xiujie; Brown, Donald W.; Brinson, L. Catherine

    2005-05-01

    With increased usage of shape memory alloys (SMA) for applications in various fields, it is important to understand how the material behavior is affected by factors such as texture, stress state and loading history, especially for complex multiaxial loading states. Using the in-situ neutron diffraction loading facility (SMARTS diffractometer) and ex situ inverse pole figure measurement facility (HIPPO diffractometer) at the Los Alamos Neutron Science Center (LANCE), the macroscopic mechanical behavior and texture evolution of Nickel-Titanium (Nitinol) SMAs under sequential compression in alternating directions were studied. The simplified multivariant model developed at Northwestern University was then used to simulate the macroscopic behavior and the microstructural change of Nitinol under this sequential loading. Pole figures were obtained via post-processing of the multivariant results for volume fraction evolution and compared quantitatively well to the experimental results. The experimental results can also be used to test or verify other SMA constitutive models.

  9. Role of Bi3+ substitution on structural, magnetic and optical properties of cobalt spinel ferrite

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Sehar, Fatima; Awan, M. S.; Zia, Rehana

    2016-04-01

    Bismuth-doped cobalt ferrite CoBi x Fe(2- x)O4 with x = 0, 0.1,0.2, 0.3, 0.4, 0.5 have been prepared using powder metallurgy route. The structural, morphological, elemental, magnetic and optical properties have been investigated using X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive X-rays, vibrating sample magnetometer and ultraviolet-visible spectrometer, respectively. X-ray diffractometer analysis confirms the formation of single-phase cubic spinel structure. As the substitution of larger ionic radii Bi3+ ions increases in cobalt ferrite which is responsible to increase the lattice parameters and decrease the crystallite size. SEM micrographs revealed the spherical shape of the particles with the nonuniform grain boundaries. The saturation magnetization decreases and bandgap energy increases as the concentration of non-magnetic Bi3+ ions increases.

  10. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my; Bhat, A. H., E-mail: aamir.bhat@petronas.com.my; Faiz, A., E-mail: faizahmad@petronas.com.my

    2015-07-22

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC’s were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC’s aremore » strongly dependent on the hydrolysis time and acid concentration.« less

  11. Protein structural dynamics in solution unveiled via 100-ps time-resolved x-ray scattering

    PubMed Central

    Anfinrud, Philip

    2010-01-01

    We have developed a time-resolved x-ray scattering diffractometer capable of probing structural dynamics of proteins in solution with 100-ps time resolution. This diffractometer, developed on the ID14B BioCARS (Consortium for Advanced Radiation Sources) beamline at the Advanced Photon Source, records x-ray scattering snapshots over a broad range of q spanning 0.02–2.5 Å-1, thereby providing simultaneous coverage of the small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) regions. To demonstrate its capabilities, we have tracked structural changes in myoglobin as it undergoes a photolysis-induced transition from its carbon monoxy form (MbCO) to its deoxy form (Mb). Though the differences between the MbCO and Mb crystal structures are small (rmsd < 0.2 Å), time-resolved x-ray scattering differences recorded over 8 decades of time from 100 ps to 10 ms are rich in structure, illustrating the sensitivity of this technique. A strong, negative-going feature in the SAXS region appears promptly and corresponds to a sudden > 22 Å3 volume expansion of the protein. The ensuing conformational relaxation causes the protein to contract to a volume ∼2 Å3 larger than MbCO within ∼10 ns. On the timescale for CO escape from the primary docking site, another change in the SAXS/WAXS fingerprint appears, demonstrating sensitivity to the location of the dissociated CO. Global analysis of the SAXS/WAXS patterns recovered time-independent scattering fingerprints for four intermediate states of Mb. These SAXS/WAXS fingerprints provide stringent constraints for putative models of conformational states and structural transitions between them. PMID:20406909

  12. Protein structural dynamics in solution unveiled via 100-ps time-resolved x-ray scattering.

    PubMed

    Cho, Hyun Sun; Dashdorj, Naranbaatar; Schotte, Friedrich; Graber, Timothy; Henning, Robert; Anfinrud, Philip

    2010-04-20

    We have developed a time-resolved x-ray scattering diffractometer capable of probing structural dynamics of proteins in solution with 100-ps time resolution. This diffractometer, developed on the ID14B BioCARS (Consortium for Advanced Radiation Sources) beamline at the Advanced Photon Source, records x-ray scattering snapshots over a broad range of q spanning 0.02-2.5 A(-1), thereby providing simultaneous coverage of the small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) regions. To demonstrate its capabilities, we have tracked structural changes in myoglobin as it undergoes a photolysis-induced transition from its carbon monoxy form (MbCO) to its deoxy form (Mb). Though the differences between the MbCO and Mb crystal structures are small (rmsd < 0.2 A), time-resolved x-ray scattering differences recorded over 8 decades of time from 100 ps to 10 ms are rich in structure, illustrating the sensitivity of this technique. A strong, negative-going feature in the SAXS region appears promptly and corresponds to a sudden > 22 A(3) volume expansion of the protein. The ensuing conformational relaxation causes the protein to contract to a volume approximately 2 A(3) larger than MbCO within approximately 10 ns. On the timescale for CO escape from the primary docking site, another change in the SAXS/WAXS fingerprint appears, demonstrating sensitivity to the location of the dissociated CO. Global analysis of the SAXS/WAXS patterns recovered time-independent scattering fingerprints for four intermediate states of Mb. These SAXS/WAXS fingerprints provide stringent constraints for putative models of conformational states and structural transitions between them.

  13. Study on the light-color mixing of rare earth luminescent materials for anti-counterfeiting application

    NASA Astrophysics Data System (ADS)

    Zhang, Jishu; Zhang, Yingzi; Tao, Jin; Zhu, Yanan

    2018-04-01

    In order to find out the light color mixing mechanism of rare earth luminescent materials used in anti-counterfeiting fibers, we prepared three kinds of rare earth luminescent materials according to RGB tri-primary color, and mixed it together to form different mixtures in certain proportion. The phase structures of the luminescent material monomers were measured by x-ray diffractometer. The photochromic properties of the luminescent materials were tested and analyzed by fluorescence spectrophotometer. The results show that the light color mixing was consistent with the blending principle of additive color, but not the same because of the photochromic properties of rare earth luminescent materials, and we explored the reasons in the light wavelength and intensity. It was found that the enhancement of the luminescence intensity of the mixture on account of the superimposing of luminescence.

  14. Mixed valent stannide EuRuSn 3 - Structure, magnetic properties, and Mössbauer spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Harmening, Thomas; Hermes, Wilfried; Eul, Matthias; Pöttgen, Rainer

    2010-02-01

    The stannide EuRuSn 3 was synthesized by induction melting of the elements in a sealed tantalum tube in a water-cooled quartz glass sample chamber. The structure was refined on the basis of single crystal X-ray diffractometer data (LaRuSn 3 type, Pm3¯n, a = 976.0(1) pm, wR2 = 0.0399, 317 F2 values, and 13 variables). EuRuSn 3 shows modified Curie-Weiss behaviour in the temperature range 50-305 K with an experimental magnetic moment of 7.34(1) μB per formula unit. Thus, the europium atoms are not in a purely divalent state. Low field susceptibility measurement indicates a ferro- or ferrimagnetic ordering at TC = 11.2(2) K and magnetization measurements indicate EuRuSn 3 as a non-collinear ferro- or ferrimagnet. 151Eu Mössbauer spectroscopic measurements suggested one europium site to be static mixed valent with a Eu 2+/Eu 3+ ratio close to one and the other site purely divalent. This was supported by substituting the Eu 3+ atoms with Y 3+ in a sample with a composition of Eu 0.7Y 0.3RuSn 3 ( a = 971.24(8) pm, wR2 = 0.0485, 313 F2 values, 14 variables). The 119Sn Mössbauer spectra show a pronounced Gol'danskii-Karyagin effect in the paramagnetic range and a magnetic hyperfine field distribution at 4.2 K, due to the complex magnetic structure. The influence of the valence electron concentration on the europium valence was tested via Ru/Pd substitution. A EuRu 0.8Pd 0.2Sn 3 sample shows almost purely divalent europium.

  15. Synthesis of Carbonate-Based Micro/Nanoscale Particles With Controlled Morphology and Mineralogy

    DTIC Science & Technology

    2013-04-01

    patterns were obtained using a Panalytical X’Pert Pro diffractometer using iron-filtered cobalt radiation, and analyzed using Panalytical X’Pert...develop composites by hydrothermal recrystallization of metastable phases. 15. SUBJECT TERMS Aragonite Calcite Calcium carbonate Dopant Mineralogy

  16. Effects of various applied voltages on physical properties of TiO2 nanotubes by anodization method

    NASA Astrophysics Data System (ADS)

    Hoseinzadeh, T.; Ghorannevis, Z.; Ghoranneviss, M.; Sari, A. H.; Salem, M. K.

    2017-09-01

    Three steps anodization process is used to synthesize highly ordered and uniform multilayered titanium oxide (TiO2) nanotubes and effect of different anodization voltages are studied on their physical properties such as structural, morphological and optical. The crystalized structure of the synthesized tubes is investigated by X-ray diffractometer analysis. To study the morphology of the tubes, field emission scanning electron microscopy is used, which showed that the wall thicknesses and the diameters of the tubes are affected by the different anodization voltages. Moreover, optical studies performed by diffuse reflection spectra suggested that band gap of the TiO2 nanotubes are also changed by applying different anodization voltages. In this study using physical investigations, an optimum anodization voltage is obtained to synthesize the uniform crystalized TiO2 nanotubes with suitable diameter, wall thickness and optical properties.

  17. Neutron apparatus for measuring strain in composites

    DOEpatents

    Kupperman, David S.; Majumdar, Saurindranath; Faber, Jr., John F.; Singh, J. P.

    1990-01-01

    A method and apparatus for orienting a pulsed neutron source and a multi-angle diffractometer toward a sample of a ceramic-matrix or metal-matrix composite so that the measurement of internal strain (from which stress is calculated) is reduced to uncomplicated time-of-flight measurements.

  18. A Neutron Diffractometer for a Long Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Sokol, Paul; Wang, Cailin

    Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.

  19. Modeling of the focusing device and the elliptical neutron guide for the DN-6 diffractometer at IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Belushkin, A. V.; Manoshin, S. A.; Kozlenko, D. P.; Kichanov, S. E.

    2018-06-01

    Possible options for modernization of the neutron beam forming system of the DN-6 diffractometer for the study of crystal and magnetic structures of microsamples at high pressures are being considered. It was demonstrated that for samples with the cross-section not exceeding 5 × 5 mm2 the most efficient option would be the use of an elliptical neutron guide. It allows to deliver neutrons for large distances from the source to samples with minimal losses using, as a rule, just one neutron reflection per dimension i.e. one at a side and one at top or bottom. For the present moment due to technical difficulties of such option realization, the simplified solution was proposed. At the end of the curved neutron guide it is planned to install a vertical plane focusing 7-meter-long parabolic section. Such a modernization will increase the neutron flux at the sample by a factor 1.5-3.5 and reduce respectively the typical measurement times.

  20. Development of a cryogenic load frame for the neutron diffractometer at Takumi in Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Jin, Xinzhe; Nakamoto, Tatsushi; Harjo, Stefanus; Hemmi, Tsutomu; Umeno, Takahiro; Ogitsu, Toru; Yamamoto, Akira; Sugano, Michinaka; Aizawa, Kazuya; Abe, Jun; Gong, Wu; Iwahashi, Takaaki

    2013-06-01

    To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an external driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.

  1. Hippo/crates-in-situ deformation strain and testure studies using neutron time-of-flight diffraction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, S. C.; Hartig, C.; Brissier, T. D.

    2005-01-01

    In situ deformation studies by diffraction allow studying of deformation mechanisms and provide valuable data to validate and improve deformation models. In particular, deformation studies using time-of-flight neutrons provide averages over large numbers of grains and allow to probing the response of lattice planes parallel and perpendicular to the applied load simultaneously. In this paper we describe the load-frame CRATES, designed for the HIPPO neutron time-of-flight diffractometer at LANSCE. The HIPPO/CRATES combination allows probing up to 20 diffraction vectors simultaneously and provides rotation of the sample in the beam while under load. With this, deformation texture, i.e. the change ofmore » grain orientation due to plastic deformation, or strain pole figures may be measured. We report initial results of a validation experiment, comparing deformation of a Zircaloy specimen measured using the NPD neutron diffractometer with results obtained for the same material using HIPPO/CRATES.« less

  2. Development of a cryogenic load frame for the neutron diffractometer at Takumi in Japan Proton Accelerator Research Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xinzhe; Nakamoto, Tatsushi; Ogitsu, Toru

    2013-06-15

    To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an externalmore » driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.« less

  3. Development of a cryogenic load frame for the neutron diffractometer at Takumi in Japan Proton Accelerator Research Complex.

    PubMed

    Jin, Xinzhe; Nakamoto, Tatsushi; Harjo, Stefanus; Hemmi, Tsutomu; Umeno, Takahiro; Ogitsu, Toru; Yamamoto, Akira; Sugano, Michinaka; Aizawa, Kazuya; Abe, Jun; Gong, Wu; Iwahashi, Takaaki

    2013-06-01

    To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an external driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.

  4. In situ Low-temperature Pair Distribution Function (PDF) Analysis of CH4 and CO2 Hydrates

    NASA Astrophysics Data System (ADS)

    Cladek, B.; Everett, M.; McDonnell, M.; Tucker, M.; Keffer, D.; Rawn, C.

    2017-12-01

    Gas hydrates occur in ocean floor and sub-surface permafrost deposits and are stable at moderate to high pressures and low temperatures. They are a clathrate structure composed of hydrogen bonded water cages that accommodate a wide variety of guest molecules. CO2 and CH4 hydrates both crystallize as the cubic sI hydrate and can form a solid solution. Natural gas hydrates are interesting as a potential methane source and for CO2 sequestration. Long-range diffraction studies on gas hydrates give valuable structural information but do not provide a detailed understanding of the disordered gas molecule interactions with the host lattice. In-situ low temperature total scattering experiments combined with pair distribution function (PDF) analysis are used to investigate the gas molecule motions and guest-cage interactions. CO2 and methane hydrates exhibit different decomposition behavior, and CO2 hydrate has a smaller lattice parameter despite it being a relatively larger molecule. Total scattering studies characterizing both the short- and long-range order simultaneously help to elucidate the structural source of these phenomena. Low temperature neutron total scattering data were collected using the Nanoscale Ordered MAterials Diffractometer (NOMAD) beamline at the Spallation Neutron Source (SNS) on CO2 and CH4 hydrates synthesized with D2O. Guest molecule motion within cages and interactions between gases and cages are investigated through the hydrate stability and decomposition regions. Data were collected from 2-80 K at a pressure of 55 mbar on CO2 and CH4 hydrates, and from 80-270 K at 25 bar on CH4 hydrate. The hydrate systems were modeled with classical molecular dynamic (MD) simulations to provide an analysis of the total energy into guest-guest, guest-host and host-host contributions. Combined Reitveld and Reverse Monte Carlo (RMC) structure refinement were used to fit models of the data. This combined modeling and simulation characterizes the effects of CO2 and CH4 as guest molecules on the structure and decomposition of gas hydrates. Structure and thermodynamic studies will provide a more comprehensive understanding of CO2-CH4 solid solutions, exchange kinetics, and implications on hydrate structure.

  5. Crystallization behavior of polyamide-6 microcellular nanocomposites

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Andreas Winardi

    2004-09-01

    The crystallization behaviors of polyamide-6 (PA-6) and its nanocomposites undergoing the microcellular injection molding process are studied using Transmission Electron Microscopy (TEM), X-ray Diffractometer (XRD), Polarized Optical Microscopy (POM), and Differential Scanning Calorimetry (DSC). The relationships among the morphology, the mechanical property of the...

  6. The role of order-disorder transitions in the quest for molecular multiferroics: structural and magnetic neutron studies of a mixed valence iron(II)-iron(III) formate framework.

    PubMed

    Cañadillas-Delgado, Laura; Fabelo, Oscar; Rodríguez-Velamazán, J Alberto; Lemée-Cailleau, Marie-Hélène; Mason, Sax A; Pardo, Emilio; Lloret, Francesc; Zhao, Jiong-Peng; Bu, Xian-He; Simonet, Virginie; Colin, Claire V; Rodríguez-Carvajal, Juan

    2012-12-05

    Neutron diffraction studies have been carried out to shed light on the unprecedented order-disorder phase transition (ca. 155 K) observed in the mixed-valence iron(II)-iron(III) formate framework compound [NH(2)(CH(3))(2)](n)[Fe(III)Fe(II)(HCOO)(6)](n). The crystal structure at 220 K was first determined from Laue diffraction data, then a second refinement at 175 K and the crystal structure determination in the low temperature phase at 45 K were done with data from the monochromatic high resolution single crystal diffractometer D19. The 45 K nuclear structure reveals that the phase transition is associated with the order-disorder of the dimethylammonium counterion that is weakly anchored in the cavities of the [Fe(III)Fe(II)(HCOO)(6)](n) framework. In the low-temperature phase, a change in space group from P31c to R3c occurs, involving a tripling of the c-axis due to the ordering of the dimethylammonium counterion. The occurrence of this nuclear phase transition is associated with an electric transition, from paraelectric to antiferroelectric. A combination of powder and single crystal neutron diffraction measurements below the magnetic order transition (ca. 37 K) has been used to determine unequivocally the magnetic structure of this Néel N-Type ferrimagnet, proving that the ferrimagnetic behavior is due to a noncompensation of the different Fe(II) and Fe(III) magnetic moments.

  7. Structural analysis of polymer thin films using GISAXS in the tender X-ray region: Concept and design of GISAXS experiments using the tender X-ray energy at BL-15A2 at the Photon Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.

    If small angle X-ray scattering (SAXS) utilizing the soft X-ray region is available, advanced and unique experiments, which differ from traditional SAXS methods, can be realized. For example, grazing-incidence small angle X-ray scattering (GISAXS) using hard X-ray is a powerful tool for understanding the nanostructure in both vertical and lateral directions of thin films, while GISAXS utilizing the tender X-ray region (SX-GISAXS) enables depth-resolved analysis as well as a standard GISAXS analysis in thin films. Thus, at BL-15A2 at the Photon Factory, a dedicated diffractometer for SX-GISAXS (above 2.1 keV) was constructed. This diffractometer is composed of four vacuum chambers andmore » can be converted into the vacuum state from the sample chamber in front of the detector surface. Diffractions are clearly observed until 12th peak when measuring collagen by SAXS with an X-ray energy of 2.40 keV and a camera length of 825 mm. Additionally, we conducted the model experiment using SX-GISAXS with an X-ray energy of 2.40 keV to confirm that a poly(methyl methacrylate)-poly(n-butyl acrylate) block copolymer thin film has a microphase-separated structure in the thin film, which is composed of lamellae aligned both parallel and perpendicular to the substrate surface. Similarly, in a polystyrene-poly(methyl methacrylate) block copolymer thin film, SX-GISAXS with 3.60 keV and 5.73 keV revealed that hexagonally packed cylinders are aligned parallel to the substrate surface. The incident angle dependence of the first order peak position of the q{sub z} direction obtained from experiments at various incident X-ray energies agrees very well with the theoretical one calculated from the distorted wave Born approximation.« less

  8. Microwave Diffraction Techniques from Macroscopic Crystal Models

    ERIC Educational Resources Information Center

    Murray, William Henry

    1974-01-01

    Discusses the construction of a diffractometer table and four microwave models which are built of styrofoam balls with implanted metallic reflecting spheres and designed to simulate the structures of carbon (graphite structure), sodium chloride, tin oxide, and palladium oxide. Included are samples of Bragg patterns and computer-analysis results.…

  9. Neutron diffraction studies of laser welding residual stresses

    NASA Astrophysics Data System (ADS)

    Petrov, Peter I.; Bokuchava, Gizo D.; Papushkin, Igor V.; Genchev, Gancho; Doynov, Nikolay; Michailov, Vesselin G.; Ormanova, Maria A.

    2016-01-01

    The residual stress and microstrain distribution induced by laser beam welding of the low-alloyed C45 steel plate was investigated using high-resolution time-of-flight (TOF) neutron diffraction. The neutron diffraction experiments were performed on FSD diffractometer at the IBR-2 pulsed reactor in FLNP JINR (Dubna, Russia). The experiments have shown that the residual stress distribution across weld seam exhibit typical alternating sign character as it was observed in our previous studies. The residual stress level is varying in the range from -60 MPa to 450 MPa. At the same time, the microstrain level exhibits sharp maxima at weld seam position with maximal level of 4.8·10-3. The obtained experimental results are in good agreement with FEM calculations according to the STAAZ model. The provided numerical model validated with measured data enables to study the influence of different conditions and process parameters on the development of residual welding stresses.

  10. Real-time observations of lithium battery reactions-operando neutron diffraction analysis during practical operation.

    PubMed

    Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji

    2016-06-30

    Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries.

  11. Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Çorlu, Tugba; Karaduman, Irmak; Yildirim, Memet Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    In this study, undoped, Cu-doped, and Ni-doped ZnO thin films have been successfully prepared by successive ionic layer adsorption and reaction method. The structural, compositional, and morphological properties of the thin films are characterized by x-ray diffractometer, energy dispersive x-ray analysis (EDX), and scanning electron microscopy, respectively. Doping effects on the NO gas sensing properties of these thin films were investigated depending on gas concentration and operating temperature. Cu-doped ZnO thin film exhibited a higher gas response than undoped and Ni-doped ZnO thin film at the operating temperature range. The sensor with Cu-doped ZnO thin film gave faster responses and recovery speeds than other sensors, so that is significant for the convenient application of gas sensor. The response and recovery speeds could be associated with the effective electron transfer between the Cu-doped ZnO and the NO molecules.

  12. Investigation of structural, optical and electrical properties of Co3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhargava, Richa; Khan, Shakeel; Ahmad, Naseem; Ansari, Mohd Mohsin Nizam

    2018-05-01

    In the current work, we report the synthesis of Cobalt oxide (Co3O4) NPs (NPs) by co-precipitation method. The structural analysis was confirmed by using X-ray diffractometer (XRD) which shows that the Co3O4 NPs have cubic phase. The average crystallite size and the lattice parameter were calculated for Co3O4 NPs. The functional groups of the as-synthesized sample were examined by Fourier transform infrared spectroscopy (FTIR). The optical band gap of Co3O4 NPs was estimated by using UV diffuse reflectance spectroscopy and the Band gap was evaluated by using Tauc relation. The temperature dependence of dielectric constant and dielectric loss were studied over a range of temperature 50-300 °C. The DC electrical resistivity of Co3O4 NPs shows a semiconducting behaviour and the value of activation energy was calculated by using Arrhenius equation.

  13. Synthesis and magnetic properties of NiFe2-xSmxO4 nanopowder

    NASA Astrophysics Data System (ADS)

    Hassanzadeh-Tabrizi, S. A.; Behbahanian, Shahrzad; Amighian, Jamshid

    2016-07-01

    NiFe2-xSmxO4 (x=0.00, 0.05, 0.10 and 0.15) nanopowders were synthesized via a sol-gel combustion route. The structural studies were carried out by X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The XRD results confirmed the formation of single-phase spinel cubic structure. The crystallite size decreased with an increase of samarium ion concentration, while lattice parameter and lattice strain increased with samarium substitution. TEM micrographs showed that agglomerated nanoparticles with particle sizes ranging from 35 to 90 nm were obtained. The magnetic studies were carried out using vibrating sample magnetometer. Magnetic measurements revealed that the saturation magnetization (Ms) of NiFe2-xSmxO4 nanoparticles decreases with increasing Sm3+substitution. The reduction of saturation magnetization is attributed to the dilution of the magnetic interaction. The coercivity (Hc) of samples increases by adding samarium.

  14. Real-time observations of lithium battery reactions—operando neutron diffraction analysis during practical operation

    PubMed Central

    Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji

    2016-01-01

    Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries. PMID:27357605

  15. Effect of growth parameters on the optical properties of ZnO nanostructures grown by simple solution methods

    NASA Astrophysics Data System (ADS)

    Kothari, Anjana

    2017-05-01

    ZnO, a wide band gap semiconductor is of significant interest for a range of practical applications. One of the highly attractive features of ZnO is to grow variety of nanostructures by using low-cost techniques. In this paper, we report deposition of ZnO nanostructure rod-arrays (NRA) via low-temperature, solution-based deposition techniques such as chemical bath deposition (CBD) and microwave-assisted chemical bath deposition (MACBD). A detailed study of film deposition parameters such as variation in concentration of precursors and deposition temperature has been carried out. Compositional and structural study of the films has been done by X-ray Diffractometer to know the phase and purity of the final product. Morphological study of these structures has been carried out by Scanning Electron Microscopy. Optical study such as transmittance and diffuse reflectance of the films has been carried out as a function of growth parameters.

  16. New large volume hydrothermal reaction cell for studying chemical processes under supercritical hydrothermal conditions using time-resolved in situ neutron diffraction.

    PubMed

    Ok, Kang Min; O'Hare, Dermot; Smith, Ronald I; Chowdhury, Mohammed; Fikremariam, Hanna

    2010-12-01

    The design and testing of a new large volume Inconel pressure cell for the in situ study of supercritical hydrothermal syntheses using time-resolved neutron diffraction is introduced for the first time. The commissioning of this new cell is demonstrated by the measurement of the time-of-flight neutron diffraction pattern for TiO(2) (Anatase) in supercritical D(2)O on the POLARIS diffractometer at the United Kingdom's pulsed spallation neutron source, ISIS, Rutherford Appleton Laboratory. The sample can be studied over a wide range of temperatures (25-450 °C) and pressures (1-355 bar). This novel apparatus will now enable us to study the kinetics and mechanisms of chemical syntheses under extreme environments such as supercritical water, and in particular to study the crystallization of a variety of technologically important inorganic materials.

  17. Development of a simultaneous SANS / FTIR measuring system and its application to polymer cocrystals

    NASA Astrophysics Data System (ADS)

    Kaneko, F.; Seto, N.; Sato, S.; Radulescu, A.; Schiavone, M. M.; Allgaier, J.; Ute, K.

    2016-09-01

    In order to provide plenty of structure information which would assist in the analysis and interpretation of small angle neutron scattering (SANS) profile, a novel method for the simultaneous time-resolved measurement of SANS and Fourier transform infrared (FTIR) spectroscopy has been developed. The method was realized by building a device consisting of a portable FTIR spectrometer and an optical system equipped with two aluminum coated quartz plates that are fully transparent to neutron beams but play as mirrors for infrared radiation. The optical system allows both a neutron beam and an infrared beam pass through the same position of a test specimen coaxially. The device was installed on a small angle neutron diffractometer, KWS2 of the Jülich Centre for Neutron Science (JCNS) outstation at Heinz Maier-Leibnitz Center (MLZ) in Garching, Germany. In order to check the performance of this simultaneous measuring system, the structural changes in the cocrystals of syndiotactic polystyrene during the course of heating were followed. It has been confirmed that FTIR spectra measured in parallel are able to provide information about the behavior of each component and also useful to grasp in real time what is actually happening in the sample system.

  18. Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.

    ERIC Educational Resources Information Center

    Ouseph, P. J.; And Others

    1982-01-01

    Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…

  19. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Tung, I. C.; Chang, S.-H.; Bhattacharya, A.; Fong, D. D.; Freeland, J. W.; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  20. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy.

    PubMed

    Lee, J H; Tung, I C; Chang, S-H; Bhattacharya, A; Fong, D D; Freeland, J W; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  1. A preliminary neutron crystallographic study of thaumatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teixeira, Susana C. M.; Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble; EPSAM and ISTM, Keele University, Staffordshire ST5 5BG

    2008-05-01

    Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin. A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL).more » The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.« less

  2. Investigation of the response of a neutron-Hand monitor dedicated to the powder diffractometer at CENM-Maamora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messous, M.Y.; Belhorma, B.; Labrim, H.

    2015-07-01

    Neutrons are used for the study of condensed matter. A neutron beam can indeed easily penetrate the solid material and undergo diffraction phenomena. Analysis of the diffused neutrons allows studying the atomic structure of crossed material. Their neutral electric charge makes them nondestructive probe of a great interest. In general, the size of the powder samples is very small and therefore the centering of the beam on these is very crucial. It is in this context we proceed to test a portable neutron monitor for centering and checking beam leak around the shielding to be installed around the diffractometer inmore » TRIGA Mark II of CENM. It's consisting of a scintillation neutron detector NE426 ({sup 6}LiF + ZnS (Ag)) with electronic module and data acquisition system. The effect of radiation from radioactive neutrons source {sup 252}Cf is shown. Sensitivity and differential linearity are also performed. This study indicates several advantages of this detector with very good detection sensitivity and excellent stability during the counting time. (authors)« less

  3. Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, Douglas L; Bilheux, Hassina Z; Meilleur, Flora

    2015-01-01

    This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentationmore » on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very effective tool for achieving the configuration and process control believed to be necessary for scientific instrument systems.« less

  4. From Soft to Hard X-ray with a Single Grating Monochromator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocco, D.; Bianco, A.; Kaulich, B.

    Even if not well defined a border exists between the soft and the hard X-ray region. The optics adopted in one region is not suitable for the other region and vice versa. Nevertheless, recently more and more experimentalists wish to investigate their samples by using an energy range as wide as possible. Without adopting complicated and very expensive mechanical solutions, it is a major challenge, for the optical designer, to find a solution suitable for both spectral ranges. This was our task for the TwinMic beamline at Elettra, the Italian 3rd generation synchrotron radiation source. This beamline will house amore » twin x-ray microscope, which combines scanning and full-field imaging in a single multipurpose end station and is operated in the 0.2-3 keV photon energy range. This energy range will be covered by a blazed grating, which has a very shallow blaze angle of 0.4 deg. With this grating mechanically ruled in the grating laboratory of Carl Zeiss very high diffraction efficiency can be achieved, expected to be higher then 10% over the whole range. This grating was tested at the KMC 1 beamline in BESSY, which is particularly suitable for this kind of measurements since it has a crystal monochromator that can go down to 1.7 keV and can be equipped with an high precision diffractometer. The obtained results demonstrate that it is possible to work with this grating up to 6 keV with still enough efficiency (5% at 6 keV and 15% at 1.8 keV). The efficiency in the lower part of the energy range was tested at Elettra, again with very good results (more then 20% at 950 eV and 15% at 600eV). A second grating, also produced by Carl Zeiss, with a blaze angle of 1.1 deg. will be mounted in the same monochromator, to cover the lower energy range. Both gratings have 600 grooves/mm, which is a good compromise for achieving the requested energy resolving power (of the order of 4000 in most of the range) and to have as much flux as possible, mandatory for the experiments proposed for this beamline. A multilayer mirror, mounted side by side with the two gratings, will permit a wide band selection of the incoming radiation. The beamline is expected to be operative in spring 2007.« less

  5. Applications of RIGAKU Dmax Rapid II micro-X-ray diffractometer in the analysis of archaeological metal objects

    NASA Astrophysics Data System (ADS)

    Mozgai, Viktória; Szabó, Máté; Bajnóczi, Bernadett; Weiszburg, Tamás G.; Fórizs, István; Mráv, Zsolt; Tóth, Mária

    2017-04-01

    During material analysis of archaeological metal objects, especially their inlays or corrosion products, not only microstructure and chemical composition, but mineralogical composition is necessary to be determined. X-ray powder diffraction (XRD) is a widely-used method to specify the mineralogical composition. However, when sampling is not or limitedly allowed due to e.g. the high value of the object, the conventional XRD analysis can hardly be used. Laboratory micro-XRD instruments provide good alternatives, like the RIGAKU Dmax Rapid II micro-X-ray diffractometer, which is a unique combination of a MicroMax-003 third generation microfocus, sealed tube X-ray generator and a curved 'image plate' detector. With this instrument it is possible to measure as small as 10 µm area in diameter on the object. Here we present case studies for the application of the micro-XRD technique in the study of archaeological metal objects. In the first case niello inlay of a Late Roman silver augur staff was analysed. Due to the high value of the object, since it is the only piece known from the Roman Empire, only non-destructive analyses were allowed. To reconstruct the preparation of the niello, SEM-EDX analysis was performed on the niello inlays to characterise their chemical composition and microstructure. Two types of niello are present: a homogeneous, silver sulphide niello (acanthite) and an inhomogeneous silver-copper sulphide niello (exsolution of acanthite and jalpaite or jalpaite and stromeyerite). The micro-X-ray diffractometer was used to verify the mineralogical composition of the niello, supposed on the base of SEM results. In the second case corrosion products of a Late Roman copper cauldron with uncertain provenance were examined, since they may hold clues about the burial conditions (pH, Eh, etc.) of the object. A layer by layer analysis was performed in cross sections of small metal samples by using electron microprobe and micro-X-ray diffractometer. The results show two corrosion zones: 1) the original (internal) surface zone of the metallic copper object was replaced by copper(I) oxide (cuprite), while 2) basic copper(II) carbonate (malachite) was deposited (externally) on the original surface. In our view these two minerals were formed during long-time burial, and protected the cauldron from further corrosion. Rarely copper(I) chloride (nantokite), basic copper(II) trihydroxychloride (atacamite/paratacamite) and basic copper(II) sulphate (brochantite) were also identified in the two corrosion zones. Their uneven distribution on the cauldron and their known formation conditions indicate, that these latter mineral phases may be the results of active corrosion, started possibly after excavation.

  6. Synthesis and luminescence properties of Sm3+ doped CaTiO3 nanophosphor for application in white LED under NUV excitation.

    PubMed

    Shivaram, M; Nagabhushana, H; Sharma, S C; Prashantha, S C; Daruka Prasad, B; Dhananjaya, N; Hari Krishna, R; Nagabhushana, B M; Shivakumara, C; Chakradhar, R P S

    2014-07-15

    CaTiO3:Sm(3+) (1-11 mol%) nanophosphors were successfully synthesized by a low temperature solution combustion method [LCS]. The structural and morphological properties of the phosphors were studied by using Powder X-ray diffractometer (PXRD), Fourier transform infrared (FTIR), X-ray photo electron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscopy (TEM). TEM studies indicate that the size of the phosphor is ∼20-35 nm. Photoluminescence (PL) properties of Sm(3+) (1-11 mol%) doped CaTiO3 for NUV excitation (407 nm) was studied in order to investigate the possibility of its use in White light emitting diode (WLED) applications. The emission spectra consists of intra 4f transitions of Sm(3+), such as (4)G5/2→(6)H5/2 (561 nm), (4)G5/2→(6)H7/2 (601-611 nm), (4)G5/2→(6)H9/2 (648 nm) and (4)G5/2→(6)H11/2 (703 nm) respectively. Further, the emission at 601-611 nm show strong orange-red emission and can be applied to the orange-red emission of phosphor for the application for near ultra violet (NUV) excitation. Thermoluminescence (TL) of the samples irradiated with gamma source in the dose range 100-500 Gy was recorded at a heating rate of 5°Cs(-1). Two well resolved glow peaks at 164°C and 214°C along with shouldered peak at 186°C were recorded. TL intensity increases up to 300 Gy and thereafter, it decreases with further increase of dose. The kinetic parameters namely activation energy (E), frequency factor (s) and order of kinetics were estimated and results were discussed in detail. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Thermal Shock and Ablation Behavior of Tungsten Nozzle Produced by Plasma Spray Forming and Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xiong, X.; Zhao, Z. W.; Xie, L.; Min, X. B.; Yan, J. H.; Xia, G. M.; Zheng, F.

    2015-08-01

    Tungsten nozzle was produced by plasma spray forming (PSF, relative density of 86 ± 2%) followed by hot isostatic pressing (HIPing, 97 ± 2%) at 2000 °C and 180 MPa for 180 min. Scanning electron microscope, x-ray diffractometer, Archimedes method, Vickers hardness, and tensile tests have been employed to study microstructure, phase composition, density, micro-hardness, and mechanical properties of the parts. Resistance of thermal shock and ablation behavior of W nozzle were investigated by hot-firing test on solid rocket motor (SRM). Comparing with PSF nozzle, less damage was observed for HIPed sample after SRM test. Linear ablation rate of nozzle made by PSF was (0.120 ± 0.048) mm/s, while that after HIPing reduced to (0.0075 ± 0.0025) mm/s. Three types of ablation mechanisms including mechanical erosion, thermophysical erosion, and thermochemical ablation took place during hot-firing test. The order of degree of ablation was nozzle throat > convergence > dilation inside W nozzle.

  8. Crystal-Site-Selective Spectrum of Fe3BO6 by Synchrotron Mössbauer Diffraction with Pure Nuclear Bragg Scattering

    NASA Astrophysics Data System (ADS)

    Nakamura, Shin; Mitsui, Takaya; Fujiwara, Kosuke; Ikeda, Naoshi; Kurokuzu, Masayuki; Shimomura, Susumu

    2017-08-01

    We have succeeded in obtaining the crystal-site-selective spectra of the collinear antiferromagnet Fe3BO6 using a synchrotron Mössbauer diffractometer with pure nuclear Bragg scattering at SPring-8 BL11XU. Well-resolved 300, 500, and 700 reflection spectra, having asymmetric line shapes owing to the higher-order interference effect between the nuclear energy levels, were quantitatively analyzed using a formula based on the dynamical theory of diffraction. Reasonable hyperfine parameters were obtained. The intensity ratio of Fe1 to Fe2 subspectra is in accordance with the nuclear structure factor. However, when the spectrum is measured at the peak position of the rocking curve (very near the Bragg position), the value of the center shift deviates from its intrinsic value. This is also due to the dynamical effect of γ-ray diffraction. To avoid this problem, it is necessary to use diffraction angles near the foot of the rocking curve, approximately 0.02° apart from the peak position.

  9. Multiple diffraction in an icosahedral Al-Cu-Fe quasicrystal

    NASA Astrophysics Data System (ADS)

    Fan, C. Z.; Weber, Th.; Deloudi, S.; Steurer, W.

    2011-07-01

    In order to reveal its influence on quasicrystal structure analysis, multiple diffraction (MD) effects in an icosahedral Al-Cu-Fe quasicrystal have been investigated in-house on an Oxford Diffraction four-circle diffractometer equipped with an Onyx™ CCD area detector and MoKα radiation. For that purpose, an automated approach for Renninger scans (ψ-scans) has been developed. Two weak reflections were chosen as the main reflections (called P) in the present measurements. As is well known for periodic crystals, it is also observed for this quasicrystal that the intensity of the main reflection may significantly increase if the simultaneous (H) and the coupling (P-H) reflections are both strong, while there is no obvious MD effect if one of them is weak. The occurrence of MD events during ψ-scans has been studied based on an ideal structure model and the kinematical MD theory. The reliability of the approach is revealed by the good agreement between simulation and experiment. It shows that the multiple diffraction effect is quite significant.

  10. Properties of WO3-x Electrochromic Thin Film Prepared by Reactive Sputtering with Various Post Annealing Temperatures

    NASA Astrophysics Data System (ADS)

    Kim, Min Hong; Choi, Hyung Wook; Kim, Kyung Hwan

    2013-11-01

    The WO3-x thin films were prepared on indium tin oxide (ITO) coated glass at 0.7 oxygen flow ratio [O2/(Ar+O2)] using the facing targets sputtering (FTS) system at room temperature. In order to obtain the annealing effect, as-deposited thin films were annealed at temperatures of 100, 200, 300, 400, and 500 °C for 1 h in open air. The structural properties of the WO3-x thin film were measured using an X-ray diffractometer. The WO3-x thin films annealed at up to 300 °C indicated amorphous properties, while those annealed above 400 °C indicated crystalline properties. The electrochemical and optical properties of WO3-x thin films were measured using cyclic voltammetry and a UV/vis spectrometer. The maximum value of coloration efficiency obtained was 34.09 cm2/C for thin film annealed at 200 °C. The WO3-x thin film annealed at 200 °C showed superior electrochromic properties.

  11. Residual strain mapping of Roman styli from Iulia Concordia, Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvemini, Filomena, E-mail: floriana.salvemini@fi.isc.cnr.it; Università degli Studi di Firenze, Dipartimento di Scienze della Terra; Grazzi, Francesco

    Iulia Concordia is an important Roman settlement known for the production of iron objects and weapons during the Roman Empire. A huge number of well-preserved styli were found in the past century in the bed of an old channel. In order to shed light about the production processes used by Roman for stylus manufacturing, a neutron diffraction residual strain analysis was performed on the POLDI materials science diffractometer at the Paul Scherrer Institut in Switzerland. Here, we present results from our investigation conducted on 11 samples, allowing to define, in a non-invasive way, the residual strain map related to themore » ancient Roman working techniques. - Highlights: • We examined 11 Roman styli from the settlement of Iulia Concordia, Italy. • We performed a neutron diffraction residual strain analysis on POLDI at PSI (CH). • We identified the production processes used by Roman for stylus manufacturing. • We clarified the way and direction of working applied for different classes of styli.« less

  12. Electronic Properties and Device Applications of III-V Compound Semiconductor Native Oxides

    DTIC Science & Technology

    2006-03-02

    MRD X-ray diffractometer with CuKa as the radiation source. The doping level in GaAs was meassured by electrochemical voltage (ECV) using an Accent... hard to prevent the gate metal from overlapping the mesa edge thus creating a parasitic leakage path to the channel42. To reduce the gate leakage

  13. Titration of a Solid Acid Monitored by X-Ray Diffraction

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  14. Status and Perspectives for a Slow Positron Beam Facility at the HH—NIPNE Bucharest

    NASA Astrophysics Data System (ADS)

    Constantin, Florin; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Straticiuc, Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed—is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)—the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  15. Status and Perspectives for a Slow Positron Beam Facility at the HH-NIPNE Bucharest

    NASA Astrophysics Data System (ADS)

    Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed-is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)-the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  16. ALICE—An advanced reflectometer for static and dynamic experiments in magnetism at synchrotron radiation facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrudan, R.; Helmholtz-Zentrum-Berlin for Materials and Energy, 12489 Berlin; Brüssing, F.

    2015-06-15

    We report on significant developments of a high vacuum reflectometer (diffractometer) and spectrometer for soft x-ray synchrotron experiments which allows conducting a wide range of static and dynamic experiments. Although the chamber named ALICE was designed for the analysis of magnetic hetero- and nanostructures via resonant magnetic x-ray scattering, the instrument is not limited to this technique. The versatility of the instrument was testified by a series of pilot experiments. Static measurements involve the possibility to use scattering and spectroscopy synchrotron based techniques (photon-in photon-out, photon-in electron-out, and coherent scattering). Dynamic experiments require either laser or magnetic field pulses tomore » excite the spin system followed by x-ray probe in the time domain from nano- to femtosecond delay times. In this temporal range, the demagnetization/remagnetization dynamics and magnetization precession in a number of magnetic materials (metals, alloys, and magnetic multilayers) can be probed in an element specific manner. We demonstrate here the capabilities of the system to host a variety of experiments, featuring ALICE as one of the most versatile and demanded instruments at the Helmholtz Center in Berlin-BESSY II synchrotron center in Berlin, Germany.« less

  17. Characterization of Sr-substituted W-type hexagonal ferrites synthesized by sol-gel autocombustion method

    NASA Astrophysics Data System (ADS)

    Ahmad, Mukhtar; Grössinger, R.; Kriegisch, M.; Kubel, F.; Rana, M. U.

    2013-04-01

    The magnetic and microwave characterization of single phase hexaferrites of entirely new composition Ba1-xSrxCo2AlFe15O27 (x=0.2-1.0) for application in a microwave absorber, have been reported. The samples synthesized by sol-gel method were investigated by differential thermal analyzer, Fourier transform infrared spectroscope, X-ray diffractometer, field emission gun scanning electron microscope, vibrating sample magnetometer and vector network analyzer. Platelet grains exhibit well defined hexagonal shape which is a better shape for microwave absorption. M-H loops for a selected sample were measured for a temperature range of 4.2-400 K. Moreover M-H loops for all Sr-substituted samples were also measured at room temperature up to a maximum applied field of 9 T. Saturation magnetization values were calculated by the law of approach to saturation. The room temperature coercivity for all the samples is found to be a few hundred oersteds which is necessary for electromagnetic materials and makes these ferrites ideal for microwave devices, security, switching and sensing applications. The complex permittivity, permeability and reflection losses of a selected ferrite-epoxy composite were also investigated over a frequency range of 0.5-13 GHz.

  18. A New High-Flux Chemical and Materials Crystallography Station at the SRS Daresbury. 1. Design, Construction and Test Results.

    PubMed

    Cernik, R J; Clegg, W; Catlow, C R; Bushnell-Wye, G; Flaherty, J V; Greaves, G N; Burrows, I; Taylor, D J; Teat, S J; Hamichi, M

    1997-09-01

    A new single-crystal diffraction facility has been constructed on beamline 9 of the SRS at Daresbury Laboratory for the study of structural problems in chemistry and materials science. The station utilizes up to 3.8 mrad horizontally from the 5 T wiggler magnet which can be focused horizontally and vertically. The horizontal focusing is provided by a choice of gallium-cooled triangular bent Si (111) or Si (220) monochromators, giving a wavelength range from 0.3 to 1.5 A. Focusing in the vertical plane is achieved by a cylindrically bent zerodur mirror with a 300 mum-thick palladium coating. The station is equipped with a modified Enraf-Nonius CAD-4 four-circle diffractometer and a Siemens SMART CCD area-detector system. High- and low-temperature facilities are available to cover the temperature range from about 80 to 1000 K. Early results on test compounds without optimization of the beam optics demonstrate that excellent refined structures can be obtained from samples giving diffraction patterns too weak to be measured with conventional laboratory X-ray sources, fulfilling a major objective of the project.

  19. The SPRING Nanoenergetics Hub at UTD

    DTIC Science & Technology

    2008-12-01

    synthesis and processing of advanced nanostructured materials, the structure and property characterization needed for materials optimization, the...nano-particles into hexane solvent a deposited films. Here we are modeling that processes to see how the droplet evaporation progresses in time. What...nanofibers was determined by powder X-ray diffraction (XRD) (Scintag XDS 2000 X-ray diffractometer with Cu Ka radiation). The fiber morphology was

  20. Crystal and Vibrational Structure of Energetic 3,5-dinitro 1,3,5-oxadiazinane (DOD) by Single Crystal X-ray Diffractometry and Raman Spectroscopy

    DTIC Science & Technology

    2018-03-19

    calculations using a temperature of 298 K. 15. SUBJECT TERMS 3,5-dinitro-1,3,5-oxadiazinane (DOD), X-ray crystallography , Raman, energetic material...X-ray analysis. 2.2 Characterization X-ray Crystallography . DOD crystals were characterized with a SuperNova, Dualflex, EosS2 diffractometer using

  1. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    DOE PAGES

    Lee, J. H.; Tung, I. C.; Chang, S. -H.; ...

    2016-01-05

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-raymore » and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Finally, additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.« less

  2. Growth and characterization of novel organic 3-Hydroxy Benzaldehyde-N-methyl 4 Stilbazolium Tosylate crystals for NLO applications.

    PubMed

    Jagannathan, K; Umarani, P; Ratchagar, V; Ramesh, V; Kalainathan, S

    2016-01-15

    The 3-Hydroxy Benzaldehyde-N-methyl 4-Stilbazolium Tosylate (3- HBST) is a new organic NLO crystal and it is a new derivative in stilbazolium tosylate family. In this work we have synthesized 3-HBST and the single crystal was grown by conventional slow cooling method. The structure and lattice parameters of the grown crystal were determined by the single crystal X-ray diffraction (XRD) technique and it is exhibiting good crystalline nature which is observed from the powder XRD. In order to check the crystalline quality the rocking curve was recorded using multi crystal X-ray diffractometer. The functional groups were identified from both FTIR and NMR spectral analyses. The π-π* and n-π* optical transition energy levels were estimated from the absorption peaks. The NLO property was confirmed by measuring relative SHG efficiency by Kurtz powder test; it shows 24 times higher SHG efficiency than that of urea. In order to test the mechanical stability the Vickers and Knoop micro hardness measurement were carried out and found that the micro hardness number decreases with increasing load. The melting point was determined from Differential Scanning Colorimetry (DSC). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Magnesium and cadmium containing Heusler phases REPd2Mg, REPd2Cd, REAg2Mg, REAu2Mg and REAu2Cd

    NASA Astrophysics Data System (ADS)

    Johnscher, Michael; Stein, Sebastian; Niehaus, Oliver; Benndorf, Christopher; Heletta, Lukas; Kersting, Marcel; Höting, Christoph; Eckert, Hellmut; Pöttgen, Rainer

    2016-02-01

    Twenty-eight new Heusler phases REPd2Mg, REPd2Cd, REAg2Mg, REAu2Mg and REAu2Cd with different rare earth elements were synthesized from the elements in sealed niobium ampoules in a water-cooled sample chamber of an induction furnace. The samples were characterized by powder X-ray diffraction. The cell volumes show the expected lanthanide contraction. The structures of YPd2Cd, GdPd2Cd, GdAu2Cd, Y1.12Ag2Mg0.88 and GdAg2Mg were refined based on single crystal diffractometer data. The magnetic properties were determined for fifteen phase pure samples. LuAu2Mg is a weak Pauli paramagnet with a susceptibility of 1.0(2) × 10-5 emu mol-1 at room temperature. The remaining samples show stable trivalent rare earth ions and most of them order magnetically at low temperatures. The ferromagnet GdAg2Mg shows the highest ordering temperature of TC = 98.3 K. 113Cd and 89Y MAS NMR spectra of YAu2Cd and YPd2Cd confirm the presence of unique crystallographic sites. The resonances are characterized by large Knight shifts, whose magnitude can be correlated with electronegativity trends.

  4. Effect Of Neodymium Substitution In Structural Characteristics Of Magnesium Ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thankachan, Smitha; Binu, P. J.; Xavier, Sheena

    2011-10-20

    The effect of Nd{sup 3+} substitution on the structural properties of Magnesium ferrite was studied in the series MgNd{sub x}Fe{sub 2-x}O{sub 4}, where x = 0 to 0.3 in steps of 0.05. The series was prepared by sol-gel technique which is one of the novel technique to prepare nanosized samples. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. XRD analysis reveals the prepared samples are single phasic till x = 0.2. From x0 = .25, a secondary phase of iron neodymium oxide appears along with the spinel phase. Particle size calculation shows the prepared samples aremore » in the 9nm to 11 nm regime. Lattice parameter was found to increase with concentration of Nd. XRD and FTIR analysis confirmed spinel structure of the prepared samples. XRF result shows the expected composition of prepared samples. The frequency dependence of the dielectric constant in the range 100 Hz--120MHz was also studied« less

  5. Effect of heat treatment on phase composition and crystal structure of thin WSi2 films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Biryukov, Y. P.; Dostanko, A. P.; Maltsev, A. A.; Shakhlevich, G. M.

    1984-10-01

    An experimental study of WSi2 films on silicon substrates with either 111 or 100 orientation was made, for the purpose of determining the effect of annealing by heat treatment on their phase composition and crystal structure. Films of 0.2 micron thickness were deposited at a rate of 0.5 nm/s on a silicon surface which was predecontaminated of SiO2 layers and adsorbate atoms by ion sputtering in one vacuum cycle. Deposition was by condensation, with the substrate held at various temperatures from 390 to 500 C, and then annealed in an argon atmosphere at various temperatures from 700 to 1000 C for 30 min. Subsequent phase analysis at room temperature was performed with a DRON-2 X-ray diffractometer, using a CuK (sub alpha)-radiation source and covering the 20 = 10 to 130 deg range of angles by the Debye-Sherer method, while the surface morphology was examined under an electron microscope.

  6. Correlation of film thickness to optical band gap of Sol-gel derived Ba0.9Gd0.1TiO3 thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Teh, Yen Chin; Saif, Ala'eddin A.; Azhar Zahid Jamal, Zul; Poopalan, Prabakaran

    2017-11-01

    Ba0.9Gd0.1TiO3 thin films have been fabricated on SiO2/Si and fused silica by sol-gel method. The films are prepared through a spin coating process and annealed at 900 °C to obtain crystallized films. The effect of film thickness on the microstructure and optical band gap has been investigated using X-ray diffractometer, atomic force microscope and ultraviolet-visible spectroscopy, respectively. XRD patterns confirm that the films crystallized with tetragonal phase perovskite structure. The films surface morphology is analysed through amplitude parameter analysis to find out that the grain size and surface roughness are increased with the increase of films thickness. The transmittance and absorbance spectra reveal that all films exhibit high absorption in UV region. The evaluated optical band gap is obtained in the range of 3.67 - 3.78 eV and is found to be decreased as the thickness increase.

  7. La+3 effectiveness replacement on the ferrite material (Cu0,2Zn0,45LaxFe2-xO4 ) On the structural and electrical and magnetic features

    NASA Astrophysics Data System (ADS)

    Hussain, Farouq I.; Alaa Najem, Rusul

    2018-05-01

    Nano ferrite with chemical formula (Ni 0.35 Cu 0.2 Zn 0.45 Lax Fe 2-x O 4), were chemically collected utilizing sol-gel auto – combustion procedure for the values of (X=0.0, 0.025, 0.05 and 0.075). The prepared samples were calcined at (900°C) for (2h), the formation of ferrite was assured using (XRD) and (SEM) techniques. X-ray diffractometer result shows that ferrite have spinal cubic phase with a particle size ranging from (22-29 nm),the Lattice constant and density (ρx-ray) increased with La+3content while the porosity was noticed to decrease. And have been studied dielectric properties It was also observed that the value of the dielectric constant and the dielectric loss factor decreased by increasing the frequency. The increase in alternating conductivity (σa.c) was also observed with increasing frequency.

  8. Fabrication and characterization of environmental-friendly Ni1-xRxTiO3 nanopigments with high NIR reflectance

    NASA Astrophysics Data System (ADS)

    Tong, Yu-Ping; Chen, Zheng; Wang, Hui-Xian; Zhang, Xu-Fang; Ma, Jun-Tao; Chen, Xi

    2015-04-01

    A series of novel high dispersed environmental-friendly nanopigments based on NiTiO3 doped with rare earth ion such as Y, La, Eu, Sm have been developed. The products were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), commission internationale de l'Eclairage (CIE) 1976 L*α*b* color scales and UV-Vis-near-infrared radiation (NIR) reflectance spectroscopy. The substitution of R3+ for Ni2+ in NiTiO3 can improve the yellowness of pigments, especially for Eu3+ substitution. The sample with the substitution of Eu3+ for Ni2+ processes the highest NIR reflectance and enhances the NIR reflectance to 89.0%. SEM results revealed that the obtained pigments were composed of well-dispersed spherical-like particles with the range of 40-60 nm. EDS results indicated that the distribution of Ni, Ti, R, O element was considerably uniform with no chemical segregation phenomenon.

  9. Structural and optical properties of Na-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Akcan, D.; Gungor, A.; Arda, L.

    2018-06-01

    Zn1-xNaxO (x = 0.0-0.05) solutions have been synthesized by the sol-gel technique using Zinc acetate dihydrate and Sodium acetate which were dissolved into solvent and chelating agent. Na-doped ZnO nanoparticles were obtained from solutions to find phase and crystal structure. Na-doped ZnO films have been deposited onto glass substrate by using sol-gel dip coating system. The effects of dopant concentration on the structure, morphology, and optical properties of Na-doped ZnO thin films deposited on glass substrate are investigated. Characterization of Zn1-xNaxO nanoparticles and thin films are examined using differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Scanning electron microscope (SEM) and X-Ray diffractometer (XRD). Optical properties of Zn1-xNaxO thin films were obtained by using PG Instruments UV-Vis-NIR spectrophotometer in 190-1100 nm range. The structure, morphology, and optical properties of thin films are presented.

  10. Temperature-Dependent Magnetic Response of Antiferromagnetic Doping in Cobalt Ferrite Nanostructures.

    PubMed

    Nairan, Adeela; Khan, Maaz; Khan, Usman; Iqbal, Munawar; Riaz, Saira; Naseem, Shahzad

    2016-04-18

    In this work Mn x Co 1- x Fe₂O₄ nanoparticles (NPs) were synthesized using a chemical co-precipitation method. Phase purity and structural analyses of synthesized NPs were performed by X-ray diffractometer (XRD). Transmission electron microscopy (TEM) reveals the presence of highly crystalline and narrowly-dispersed NPs with average diameter of 14 nm. The Fourier transform infrared (FTIR) spectrum was measured in the range of 400-4000 cm -1 which confirmed the formation of vibrational frequency bands associated with the entire spinel structure. Temperature-dependent magnetic properties in anti-ferromagnet (AFM) and ferromagnet (FM) structure were investigated with the aid of a physical property measurement system (PPMS). It was observed that magnetic interactions between the AFM (Mn) and FM (CoFe₂O₄) material arise below the Neel temperature of the dopant. Furthermore, hysteresis response was clearly pronounced for the enhancement in magnetic parameters by varying temperature towards absolute zero. It is shown that magnetic properties have been tuned as a function of temperature and an externally-applied field.

  11. Effect of oxidizer to fuel molar ratio on particle size and DC conductivity of CeO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harish, B. M.; Rajeeva, M. P.; Naveen, C. S.

    2016-05-06

    Cerium oxide nanoparticles were synthesized by solution combustion method with varying the oxidizer (cerium nitrate hexa hydrate) to fuel (Glycine) molar ratio. The prepared samples were characterized by UV-visible spectrometer, X-ray diffractometer (XRD), Scanning electron microscope (SEM) and Energy dispersive X-Ray analysis (EDAX). XRD pattern reveals the formation of cubic fluorite structure of CeO{sub 2}. It was observed that finest crystallites were found at extreme fuel-deficient condition and it is good enough to produce favorable powder characteristics. The average crystallite size was found to be 14.46 nm to 21.57 nm. The temperature dependent dc conductivity was carried out using Keithleymore » source meter between the temperature range from 300 K to 573 K. From this study it was found that the conductivity increases with increase of temperature due to semiconducting behavior of CeO{sub 2} and it decreases with particle size due to increase in the energy band gap.« less

  12. Magnetic Properties of Rapid Cooled FeCoB Based Alloys Produced by Injection Molding

    NASA Astrophysics Data System (ADS)

    Nabialek, M.; Jeż, B.; Jeż, K.; Pietrusiewicz, P.; Gruszka, K.; Błoch, K.; Gondro, J.; Rzącki, J.; Abdullah, M. M. A. B.; Sandu, A. V.; Szota, M.

    2018-06-01

    The paper presents the results of investigations of the structure and magnetic properties of massive rapid cooled Fe50-xCo20+xB20Cu1Nb9 alloys (where x = 0, 5). Massive alloys were made using the method of injecting a liquid alloy into a copper mold. Samples were obtained in the form of 0.5 mm thick plates. The structure of the obtained samples was examined using an X-ray diffractometer equipped with a CuKα lamp. The phase composition of the alloys formed was determined using the Match program. By using Sherrer’s dependence the grain sizes of the identified crystalline phases were estimated. Using the Faraday magnetic balance, the magnetization of samples as a function of temperature in the range from room temperature to 850K was measured. Magnetization of saturation and value of the coercive field for the prepared alloys were determined on the basis of magnetic hysteresis loop measurement using the LakeShore vibration magnetometer.

  13. Growth of rutile TiO2 on the convex surface of nanocylinders: from nanoneedles to nanorods and their electrochemical properties

    NASA Astrophysics Data System (ADS)

    Kong, Junhua; Wei, Yuefan; Zhao, Chenyang; Toh, Meng Yew; Yee, Wu Aik; Zhou, Dan; Phua, Si Lei; Dong, Yuliang; Lu, Xuehong

    2014-03-01

    In this work, bundles of rutile TiO2 nanoneedles/nanorods are hydrothermally grown on carbon nanofibers (CNFs), forming free-standing mats consisting of three dimensional hierarchical nanostructures (TiO2-on-CNFs). Morphologies and structures of the TiO2-on-CNFs are studied using a field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). Their electrochemical properties as electrodes in lithium ion batteries (LIBs) are investigated and correlated with the morphologies and structures. It is shown that the lateral size of the TiO2 nanoneedles/nanorods ranges from a few nanometers to tens of nanometers, and increases with the hydrothermal temperature. Small interspaces are observed between individual nanoneedles/nanorods, which are due to the diverging arrangement of nanoneedles/nanorods induced by growing on the convex surface of nanocylinders. It is found that the growth process can be divided into two stages: initial growth on the CNF surface and further growth upon re-nucleation on the TiO2 bundles formed in the initial growth stage. In order to achieve good electrochemical performance in LIBs, the size of the TiO2 nanostructures needs to be small enough to ensure complete alloying and fast charge transport, while the further growth stage has to be avoided to realize direct attachment of TiO2 nanostructures on the CNFs, facilitating electron transport. The sample obtained after hydrothermal treatment at 130 °C for 2 h (TiO2-130-2) shows the above features and hence exhibits the best cyclability and rate capacity among all samples; the cyclability and rate capacity of TiO2-130-2 are also superior to those of other rutile TiO2-based LIB electrodes.In this work, bundles of rutile TiO2 nanoneedles/nanorods are hydrothermally grown on carbon nanofibers (CNFs), forming free-standing mats consisting of three dimensional hierarchical nanostructures (TiO2-on-CNFs). Morphologies and structures of the TiO2-on-CNFs are studied using a field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). Their electrochemical properties as electrodes in lithium ion batteries (LIBs) are investigated and correlated with the morphologies and structures. It is shown that the lateral size of the TiO2 nanoneedles/nanorods ranges from a few nanometers to tens of nanometers, and increases with the hydrothermal temperature. Small interspaces are observed between individual nanoneedles/nanorods, which are due to the diverging arrangement of nanoneedles/nanorods induced by growing on the convex surface of nanocylinders. It is found that the growth process can be divided into two stages: initial growth on the CNF surface and further growth upon re-nucleation on the TiO2 bundles formed in the initial growth stage. In order to achieve good electrochemical performance in LIBs, the size of the TiO2 nanostructures needs to be small enough to ensure complete alloying and fast charge transport, while the further growth stage has to be avoided to realize direct attachment of TiO2 nanostructures on the CNFs, facilitating electron transport. The sample obtained after hydrothermal treatment at 130 °C for 2 h (TiO2-130-2) shows the above features and hence exhibits the best cyclability and rate capacity among all samples; the cyclability and rate capacity of TiO2-130-2 are also superior to those of other rutile TiO2-based LIB electrodes. Electronic supplementary information (ESI) available: FESEM image of carbonized electrospinning-derived carbon nanofibers. FESEM images of TiO2 nanostructures grown on carbon nanofibers using titanium(iv) isopropoxide and titanium(iv) butoxide as precursors. TGA curves of the samples from 24 h hydrothermal growth at 90 °C, 130 °C and 180 °C. The cycling capacity of pure carbon nanofibers at a current rate of 50 mA g-1 and a voltage range of 1.0-2.8 V. The cycling capacity of the samples from 24 h hydrothermal growth at 90 °C, 130 °C and 180 °C. See DOI: 10.1039/c3nr04308h

  14. JPRS Report Science & Technology Japan

    DTIC Science & Technology

    1989-06-02

    Electronics •Superconducting Wiring in LSI •One Wafer Computer •Josephson Devices •SQUID Devices Infrared Sensor Magnetic Sensor •Superconducting...Guinier- de Wolff monochromatic focusing camera (CoK* radiation) and with Philips APD-10 auto-powder diffractometer (CuKÄ radiation). Pure Si was used as...crystallized and smooth surface. The values indicated in Fig. 2 were the thickness monitored by a quartz oscillating sensor located near the

  15. Single-crystal diffraction instrument TriCS at SINQ

    NASA Astrophysics Data System (ADS)

    Schefer, J.; Könnecke, M.; Murasik, A.; Czopnik, A.; Strässle, Th; Keller, P.; Schlumpf, N.

    2000-03-01

    The single-crystal diffractometer TriCS at the Swiss Continuous Spallation Source (SINQ) is presently in the commissioning phase. A two-dimensional wire detector produced by EMBL was delivered in March 1999. The instrument is presently tested with a single detector. First measurements on magnetic structures have been performed. The instrument is remotely controlled using JAVA-based software and a UNIX DEC-α host computer.

  16. Standard Reference Material (SRM 1990) for Single Crystal Diffractometer Alignment

    USGS Publications Warehouse

    Wong-Ng, W.; Siegrist, T.; DeTitta, G.T.; Finger, L.W.; Evans, H.T.; Gabe, E.J.; Enright, G.D.; Armstrong, J.T.; Levenson, M.; Cook, L.P.; Hubbard, C.R.

    2001-01-01

    An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material?? for single crystal diffractometer alignment. This SRM is a set of ???3500 units of Cr-doped Al2O3, or ruby spheres [(0 420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals' the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 A?? ?? 0.0062 A??, and c=12.9979 A?? ?? 0.020 A?? (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Ha??gg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies_ are rhombohedral, with space group R3c. The certified mean unit cell parameters are a=4.76080 ?? 0.00029 A??, and c=12 99568 A?? ?? 0.00087 A?? (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Ha??gg transmission measurements on five samples of powdered rubies (a=4.7610 A?? ?? 0.0013 A??, and c=12.9954 A?? ?? 0.0034 A??) agreed well with the values obtained from the single crystal spheres.

  17. Standard Reference Material (SRM 1990) For Single Crystal Diffractometer Alignment

    PubMed Central

    Wong-Ng, W.; Siegrist, T.; DeTitta, G. T.; Finger, L. W.; Evans, H. T.; Gabe, E. J.; Enright, G. D.; Armstrong, J. T.; Levenson, M.; Cook, L. P.; Hubbard, C. R.

    2001-01-01

    An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material® for single crystal diffractometer alignment. This SRM is a set of ≈3500 units of Cr-doped Al2O3, or ruby spheres [(0.420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals: the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 ű0.0062 Å, and c=12.9979 ű0.020 Å (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Hägg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies– are rhombohedral, with space group R3¯c. The certified mean unit cell parameters are a=4.76080±0.00029 Å, and c=12.99568 ű0.00087 Å (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Hägg transmission measurements on five samples of powdered rubies (a=4.7610 ű0.0013 Å, and c = 12.9954 ű0.0034 Å) agreed well with the values obtained from the single crystal spheres. PMID:27500067

  18. Characterization and variability of particle size distributions in Hudson Bay, Canada

    NASA Astrophysics Data System (ADS)

    Xi, Hongyan; Larouche, Pierre; Tang, Shilin; Michel, Christine

    2014-06-01

    Particle size distribution (PSD) plays a significant role in many aspects of aquatic ecosystems, including phytoplankton dynamics, sediment fluxes, and optical scattering from particulates. As of yet, little is known on the variability of particle size distribution in marine ecosystems. In this study, we investigated the PSD properties and variability in Hudson Bay based on measurements from a laser diffractometer (LISST-100X Type-B) in concert with biogeochemical parameters collected during summer 2010. Results show that most power-law fitted PSD slopes ranged from 2.5 to 4.5, covering nearly the entire range observed for natural waters. Offshore waters showed a predominance of smaller particles while near the coast, the effect of riverine inputs on PSD were apparent. Particulate inorganic matter contributed more to total suspended matter in coastal waters leading to lower PSD slopes than offshore. The depth distribution of PSD slopes shows that larger particles were associated with the pycnocline. Below the pycnocline, smaller particles dominated the spectra. A comparison between a PSD slope-based method to derive phytoplankton size class (PSC) and pigment-based derived PSC showed the two methods agreed relatively well. This study provides valuable baseline information on particle size properties and phytoplankton composition estimates in a sub-arctic environment subject to rapid environmental change.

  19. Yttria-Stabilized Zirconia Ceramic Deposition on SS430 Ferritic Steel Grown by PLD - Pulsed Laser Deposition Method

    NASA Astrophysics Data System (ADS)

    Khalid Rivai, Abu; Mardiyanto; Agusutrisno; Suharyadi, Edi

    2017-01-01

    Development of high temperature materials are one of the key issues for the deployment of advanced nuclear reactors due to higher temperature operation. One of the candidate materials for that purpose is ceramic-coated ferritic steel that one of the functions is to be a thermal barrier coating (TBC). Thin films of YSZ (Ytrria-Stabilized Zirconia) ceramic have been deposited on a SS430 ferritic steel using Pulsed Laser Deposition (PLD) at Center For Science and Technology of Advanced Materials laboratory - National Nuclear Energy Agency of Indonesia (BATAN). The thin film was deposited with the chamber pressure range of 200-225 mTorr, the substrate temperature of 800oC, and the number of laser shots of 3×104, 6×104 and 9×104. Afterward, the samples were analyzed using Scanning Electron Microscope - Energy Dispersive X-ray Spectroscope (SEM-EDS), X-Ray Diffractometer (XRD), Atomic Force Microscope (AFM) and Vickers hardness tester. The results showed that the YSZ could homogeneously and sticky deposited on the surface of the ferritic steel. The surfaces were very smoothly formed with the surface roughness was in the range of 70 nm. Furthermore, thickness, composition of Zr4+ dan Y3+, the crystallinity, and hardness property was increased with the increasing the number of the shots.

  20. Acquisition of an X-Ray Diffractometer with WAXS and SAXS for Materials Research

    DTIC Science & Technology

    2015-03-31

    2. This ligand is known as a sensitizer for applications in dye -sensitized solar cells, and the presence of the amino groups could potentially...achieve different surface properties, thus making them excellent candidates for use as fillers in bio-based biodegradable composite materials...These CNCs are environmentally safe sustainable, biodegradable , carbon neutral, and have low environmental, health and safety risks. Figure 9 below

  1. A User’s Manual for Fiber Diffraction: The Automated Picker and Huber Diffractometers

    DTIC Science & Technology

    1990-07-01

    17 3. Layer line scan of degummed silk ( Bombyx mori ) ................................. 18...index (arbitrary units) Figure 3. Layer line scan of degummed silk ( Bombyx mori ) showing layers 0 through 6. If the fit is rejected, new values for... originally made at intervals larger than 0.010. The smoothing and interpolation is done by a least-squares polynomial fit to segments of the data. The number

  2. Bruker SMART X2S Benchtop System: A Means to Making X-Ray Crystallography More Mainstream in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Guzei, Ilia A.; Hill, Nicholas J.; Zakai, Uzma I.

    2010-01-01

    Bruker SMART X2S is a portable benchtop diffractometer that requires only a 110 V outlet to operate. The instrument operation is intuitive and facile with an automation layer governing the workflow from behind the scenes. The user participation is minimal. At the end of an experiment, the instrument attempts to solve the structure automatically;…

  3. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer.

    PubMed

    Benafan, O; Padula, S A; Skorpenske, H D; An, K; Vaidyanathan, R

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel(®) 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ∼1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  4. A new fast detection system at the KWS-2 high-intensity SANS diffractometer of the JCNS at MLZ - prototype test

    NASA Astrophysics Data System (ADS)

    Radulescu, A.; Arend, N.; Drochner, M.; Ioffe, A.; Kemmerling, G.; Ossovyi, V.; Staringer, S.; Vehres, G.; McKinny, K.; Olechnowicz, B.; Yen, D.

    2016-09-01

    A new detection system based on an array of 3He tubes and innovative fast detection electronics was designed and produced by GE Reuter Stokes for the high-intensity small-angle neutron scattering diffractometer KWS-2, operated by the Jülich Centre for Neutron Science (JCNS) at the Heinz Meier-Leibnitz Zentrum (MLZ). The new detector consists of a panel array of 144 3He tubes and a new fast read-out electronics. The electronics is mounted in a closed case in the backside of the 3He tubes panel array and will operate at ambient atmosphere under cooling air stream. The new detection system is composed of eighteen 8-pack modules of 3He-tubes that work independently of one another (each unit has its own processor and electronics). Knowing beforehand the performance of one detector unit and of one single tube detector is prerequisite for tuning and maximizing the performance of the complete detection system. In this paper we present the results of the tests of the prototyped 8-pack of 3He-tubes and corresponding electronics, which have been carried out at the JCNS instruments KWS-2 (in high flux conditions) and TREFF.

  5. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel® 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N.m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ˜1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  6. Reciprocal Space Mapping of Macromolecular Crystals in the Laboratory

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Boggon, T. J.; Fewster, P. F.; Siddons, D. P.; Stojanof, V.; Pusey, M. L.

    1998-01-01

    The technique of reciprocal space mapping applied to the physical measurement of macromolecular crystals will be described. This technique uses a triple axis diffractometer setup whereby the monochromator is the first crystal, the sample is the second and the third crystal (of the same material as the monochromator) analyzes the diffracted beam. The geometry is such that it is possible to separate mosaic volume effects from lattice strain effects. The deconvolution of the instrument parameters will also be addressed. Results from measurements at Brookhaven National Synchrotron Radiation Source carried out on microgravity and ground-grown crystals will be presented. The required beam characteristics for reciprocal space mapping are also ideal for topographic studies and the first topographs ever recorded from microgravity protein crystal samples will be shown. We are now working on a system which will enable reciprocal space mapping, mosaicity and topography studies to be carried out in the home laboratory. This system uses a rotating anode X-ray source to provide an intense beam then a Bartels double crystal, four reflection monochromator to provide the spectral and geometric beam conditioning necessary such that the instrument characteristics do not mask the measurement. This is coupled to a high precision diffractometer and sensitive detector. Commissioning data and first results from the system will be presented.

  7. Experience with exchange and archiving of raw data: comparison of data from two diffractometers and four software packages on a series of lysozyme crystals.

    PubMed

    Tanley, Simon W M; Schreurs, Antoine M M; Helliwell, John R; Kroon-Batenburg, Loes M J

    2013-02-01

    The International Union of Crystallography has for many years been advocating archiving of raw data to accompany structural papers. Recently, it initiated the formation of the Diffraction Data Deposition Working Group with the aim of developing standards for the representation of these data. A means of studying this issue is to submit exemplar publications with associated raw data and metadata. A recent study on the effects of dimethyl sulfoxide on the binding of cisplatin and carboplatin to histidine in 11 different lysozyme crystals from two diffractometers led to an investigation of the possible effects of the equipment and X-ray diffraction data processing software on the calculated occupancies and B factors of the bound Pt compounds. 35.3 Gb of data were transferred from Manchester to Utrecht to be processed with EVAL. A systematic comparison shows that the largest differences in the occupancies and B factors of the bound Pt compounds are due to the software, but the equipment also has a noticeable effect. A detailed description of and discussion on the availability of metadata is given. By making these raw diffraction data sets available via a local depository, it is possible for the diffraction community to make their own evaluation as they may wish.

  8. Crystal growth, perfection, linear and nonlinear optical, photoconductivity, dielectric, thermal and laser damage threshold properties of 4-methylimidazolium picrate: an interesting organic crystal for photonic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Rajesh, K.; Arun, A.; Mani, A.; Praveen Kumar, P.

    2016-10-01

    The 4-methylimidazolium picrate has been synthesized and characterized successfully. Single and powder x-ray diffraction studies were conducted which confirmed the crystal structure, and the value of the strain was calculated. The crystal perfection was determined by a HRXR diffractometer. The transmission spectrum exhibited a better transmittance of the crystal in the entire visible region with a lower cut-off wavelength of 209 nm. The linear absorption value was calculated by the optical limiting method. A birefringence study was also carried out. Second and third order nonlinear optical properties of the crystal were found by second harmonic generation and the z-scan technique. The crystals were also characterized by dielectric measurement and a photoconductivity analyzer to determine the dielectric property and the optical conductivity of the crystal. The laser damage threshold activity of the grown crystal was studied by a Q-switched Nd:YAG laser beam. Thermal studies established that the compound did not undergo a phase transition and was stable up to 240 °C.

  9. Crystal structure and magnetic properties of Cr doped barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Supriya, Sweety; Pandey, Rabichandra; Pradhan, Lagen Kumar; Kar, Manoranjan

    2018-04-01

    The Cr3+ substituted BaFe12O19 has been synthesized by modified sol-gel method to tailor the magnetic anisotropy and coercivity for technological applications. Some basic studies have revealed that this substitution leads to unusual interactions among the magnetic sublattices of the M-type hexaferrite. In order to investigate these interactions, BaFe12-xCrxO19 (x = 0.0, 0.5, 1.0, 2.0, and 4.0) M-type hexaferrites were characterized by employing XRD (X-ray Diffractometer). It is confirmed that, all the samples are in nanocrystalline and single phase, no impurity has been detected within the XRD limit. The magnetic hysteresis (m-H) loops revealed the ferromagnetic nature of nanoparticles (NPs). The coercive field were increasing with the increasing Cr3+ content, but after the percolation limit it decreases. The magnetocrystalline anisotropy is increasing with the Cr3+ concentration in samples and high values of magnetocrystalline anisotropy revealed that all samples are hard magnetic materials. Magnetic hysteresis loops were analyzed using the Law of Approach to Saturation method.

  10. Electrical characteristics of organic perylene single-crystal-based field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Woo; Kang, Han-Saem; Kim, Min-Ki; Kim, Kihyun; Cho, Mi-Yeon; Kwon, Young-Wan; Joo, Jinsoo; Kim, Jae-Il; Hong, Chang-Seop

    2007-12-01

    We report on the fabrication of organic field-effect transistors (OFETs) using perylene single crystal as the active material and their electrical characteristics. Perylene single crystals were directly grown from perylene powder in a furnace using a relatively short growth time of 1-3 h. The crystalline structure of the perylene single crystals was characterized by means of a single-crystal x-ray diffractometer. In order to place the perylene single crystal onto the Au electrodes of the field-effect transistor, a polymethlymethacrylate thin layer was spin-coated on top of the crystal surface. The OFETs fabricated using the perylene single crystal showed a typical p-type operating mode. The field-effect mobility of the perylene crystal based OFETs was measured to be ˜9.62×10-4 cm2/V s at room temperature. The anisotropy of the mobility implying the existence of different mobilities when applying currents in different directions was observed for the OFETs, and the existence of traps in the perylene crystal was found through the measurements of the temperature-dependent mobility at various operating drain voltages.

  11. Electroplated L1{sub 0} CoPt thick-film permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oniku, Ololade D., E-mail: ololadeoniku@ufl.edu; Qi, Bin; Arnold, David P.

    2014-05-07

    The fabrication and magnetic characterization of 15-μm-thick electroplated L1{sub 0} CoPt hard magnets with good magnetic properties is reported in this paper. Experimental study of the dependence of the magnets' properties on annealing temperature reveals that an intrinsic coercivity H{sub ci} = ∼800 kA/m (10 kOe), squareness >0.8, and energy product of >150 kJ/m{sup 3} are obtained for photolithographically patterned structures (250 μm × 2 mm stripes; 15 μm thickness) electroplated on silicon substrates and annealed in hydrogen forming gas at 700 °C. Scanning electron microscopy is used to inspect the morphology of both the as-deposited and annealed magnetic layers, and X-ray Diffractometer analysis on the magnets annealed at 700 °Cmore » confirm a phase transformation to an ordered L1{sub 0} CoPt structure, with a minor phase of hcp Co. These thick films are intended for microsystems/MEMS applications.« less

  12. Synchrotron radiation topography studies of the phase transition in LaGaO 3 crystals

    NASA Astrophysics Data System (ADS)

    Yao, G.-D.; Dudley, M.; Wang, Y.; Liu, X.; Liebermann, R. C.

    1991-05-01

    An investigation of the orthorhombic to rhombohedral phase transformation occurring at 145°C in lanthanum gallate has been conducted using white beam synchrotron X-ray topography (WBSXRT). The existence of the first order transition was confirmed by differential thermal analysis and X-ray diffractometer powder analysis. Subsequent to this, synchrotron white beam Laue patterns were recorded in situ as a function of temperature, during the transition. Before the transition point was reached, (112) orth type reflection twinning was found to be dominant although a small amount of (110) orth type twinning was also observed in the same crystal. Beyond the transition point, not only did the structural change become evident but also reflection twinning on the (110) rhom planes was observed. The scale of this twinning became finer as the temperature was increased beyond the transition temperature. The twinning observed in both the low and high temperature phases gives rise to deformation of the (011) rhom surface plane which creates problems for the potential use of this material as a substrate for growing high Tc superconducting epitaxial layers.

  13. Study of DDT and its derivatives DDD, DDE adsorption and degradation over Fe-SBA-15 at low temperature.

    PubMed

    Wang, Hailin; Tian, Hua; Hao, Zhengping

    2012-01-01

    Mesoporous SBA-15 with different Fe2O3 loading were synthesized by an in-situ coating progress for removals of dichlorodiphenyltrichloroethane (DDT) and its derivatives, i.e., 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis-(4-chloro -phenyl) ethane (DDE). The results from XRD (X-ray diffractometer), TEM (transmission electron microscopy) indicated that the iron could be well dispersed on SBA-15 within 6 wt.% Fe2O3 loading. Nitrogen adsorption-desorption tests indicated that the synthesized materials were characterized by ordered meso-structure, high surface area and large pore volume. DDTs were removed from aqueous media in 12-hr treatment and high removal efficiency of DDTs was achieved at over 94%. DDTs could be completely degraded at 350 degrees C under the existence of SBA-15 with 4 wt.% Fe2O3 loading. The final degradation products of DDT were dichlorobenzophenone (DCB) and bis-(4-chloro-phenyl) methane (DDM), suggesting a complete dechlorination from trichloromethyl.

  14. First observation of magnetoelectric effect in M-type hexaferrite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohebbi, Marjan; Ebnabbasi, Khabat; Vittoria, Carmine

    2013-05-07

    The magnetoelectric (ME) effect in M-type hexaferrite thin films is reported. Prior to this work, the ME effect in hexaferrite materials was observed only in bulk polycrystalline materials. Thin films of SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} were grown on sapphire (0001) using pulsed laser deposition. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1250 G, g-factor of 2.66, and coercive field of 20 Oe for these magnetoelectric M-type hexaferrite thin films. The magnetoelectric effect was confirmed by monitoring the change rate in remanence magnetizationmore » with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 12.8% with the application of only 1 V (DC voltage). We deduced a magnetoelectric coupling, {alpha}, of 6.07 Multiplication-Sign 10{sup -9} s m{sup -1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films.« less

  15. Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres.

    PubMed

    Sivakumar, M; Rao, K Panduranga

    2003-05-01

    In this work, composite microspheres were prepared from bioactive ceramics such as coralline hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] granules, a biodegradable polymer, sodium alginate, and an antibiotic, gentamicin. Previously, we have shown a gentamicin release from coralline hydroxyapatite granules-chitosan composite microspheres. In the present investigation, we attempted to prepare composite microspheres containing coralline hydroxyapatite granules and sodium alginate by the dispersion polymerization technique with gentamicin incorporated by absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. Fourier transform infrared spectra clearly indicated the presence of per-acid of sodium alginate, phosphate, and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs showed that the composite microspheres were spherical in shape and porous in nature. The particle size of composite microspheres was analyzed, and the average size was found to be 15 microns. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns. Copyright 2003 Wiley Periodicals, Inc.

  16. Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite-gelatin composite microspheres.

    PubMed

    Sivakumar, M; Panduranga Rao, K

    2002-08-01

    Composite microspheres have been prepared from bioactive ceramics such as coralline hydroxyapatite [CHA, Ca10(PO4)6(OH)2] granules, a biodegradable polymer, gelatin and an antibiotic, gentamicin. In our earlier work, we have shown a gentamicin release from CHA granules--chitosan composite microspheres. In the present investigation, an attempt was made to prepare the composite microspheres containing coralline hydroxyapatite and gelatin (CHA-G), which were prepared by the dispersion polymerization technique and the gentamicin was incorporated by the absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. The Fourier transformed infrared spectrum clearly indicated the presence of amide and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs show that the composite microspheres are spherical in shape and porous in nature. The particle size of composite microspheres was analyzed and the average size was found to be 16 microm. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns.

  17. Single Crystal Diffractometry

    NASA Astrophysics Data System (ADS)

    Arndt, U. W.; Willis, B. T. M.

    2009-06-01

    Preface; Acknowledgements; Part I. Introduction; Part II. Diffraction Geometry; Part III. The Design of Diffractometers; Part IV. Detectors; Part V. Electronic Circuits; Part VI. The Production of the Primary Beam (X-rays); Part VII. The Production of the Primary Beam (Neutrons); Part VIII. The Background; Part IX. Systematic Errors in Measuring Relative Integrated Intensities; Part X. Procedure for Measuring Integrated Intensities; Part XI. Derivation and Accuracy of Structure Factors; Part XII. Computer Programs and On-line Control; Appendix; References; Index.

  18. Unusual Thermal Stability of High-Entropy Alloy Amorphous Structure

    DTIC Science & Technology

    2012-06-20

    incident angle X - ray diffractometer (GIAXRD, RIGAKU D/MAX2500) with Cu Kα radiation and at the incident angle of 1°. The surface morphology and...microanalyzer (EPMA, JEOL JAX-8800). The crystallographic structures of as-deposited and annealed metallic films were characterized utilizing a glancing ...field image and selected-area- diffraction (SAD) patterns of (a) 800 °C-, (b) 850 °C- and (c) 900 °C-annealed alloy thin films, respectively. Both

  19. Boron Carbide Aluminum Cermets for External Pressure Housing Applications

    DTIC Science & Technology

    1992-09-01

    CHEMISTRY AND MICROSTRUCTURES OF THE B4C/Al SYSTEM ......................................... 4 3.2 MECHANICAL PROPERTIES OF B4C/AI COMPOSITES ....... 10...TABLES 1. Phase chemistry of B4C/A1 composites as a function of baking temperature (by stereology) .................. ...... 10 2. Summary of the...diffractometer using CuKo radiation and a scan rate of 2° per minute. The chemistry of all phases was determined from electron microprobe analysis of

  20. Hydrothermal synthesis and characterization of a novel supramolecular network compound of Co(NIA) 2(H 2O) 4 with molecular ladder hydrogen bond chains (NIA=nicotinate)

    NASA Astrophysics Data System (ADS)

    Jia, Hong-Bin; Yu, Jie-Hui; Xu, Ji-Qing; Ye, Ling; Ding, Hong; Jing, Wei-Jie; Wang, Tie-Gang; Xu, Jia-Ning; Li, Zeng-Chun

    2002-10-01

    By hydrothermal method, a novel supramolecular compound, Co(NIA) 2(H 2O) 4 was synthesized and its structure was characterized with elemental analysis, FT-IR spectrum, TGA and X-ray diffractometer, indicating that it is a novel polyporous supramolecule with molecular ladder hydrogen-bonded chains. TGA curve shows its thermal stability up to 520 °C.

  1. Single-step uncalcined N-TiO2 synthesis, characterizations and its applications on alachlor photocatalytic degradations

    NASA Astrophysics Data System (ADS)

    Suwannaruang, Totsaporn; Wantala, Kitirote

    2016-09-01

    The aims of this research were to synthesize nitrogen doped TiO2 (N-TiO2) photocatalysts produced by hydrothermal technique and to test the degradation performance of alachlor by photocatalytic process under UV irradiations in the effect of aging temperature and time in the preparation process. The characterizations of synthesized TiO2 such as specific surface area, particle size, phase structure and elements were analyzed by using the Brunauer-Emmett-Teller (BET) technique, Transmission Electron Microscopy (TEM), X-ray Diffractometer (XRD) and Energy Dispersive X-ray spectrometer (EDX), respectively. The Central Composite Design (CCD) was used to design the experiment to determine the optimal condition, main effects and their interactions by using specific surface area, percent alachlor removal and observed first-order rate constant as responses. The kinetic reactions of alachlor degradation were explained by using Langmuir-Hinshelwood expression to confirm the reaction took place on the surface of photocatalyst. The results showed that the effect of aging temperatures was significant on surface area, whereas aging time was insignificant. Additionally, the square term of aging temperature and interaction term were shown significant on the specific surface area as well. The highest specific surface area from response surface at aging temperature between 150-175 °C and aging time between 6-13 h was found in a range of 100-106 m2/g. The average particle size of TiO2 was similar to crystallite size. Therefore, it can be concluded that one particle has only one crystal. The element analysis has shown 10% of nitrogen in TiO2 structure that the energy band-gap about 2.95 eV was found. Although, the effects of aging temperature and time on percent alachlor removal and observed first-order rate constants were insignificant, both terms were significant in term of the square for alachlor photocatalytic degradation. The optimal condition of both responses was achieved at an aging temperature of 145 °C and aging time of 12 h.

  2. Molecular beam studies of the growth and kinetics of self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Schwartz, Peter Vincent

    Low energy helium diffraction, a quantitative structural characterization tool, has been used to measure the growth kinetics of self-assembled monolayers (SAMs). Special attention was given to the growth of decanethiol monolayers deposited from a molecular beam onto the (111) face of gold single crystals especially at the initial stages of growth. The influence of changing impingement rate, substrate temperature, and annealing treatments was investigated. We also studied the structure and dynamics of physisorbed adlayers on top of the monolayers and structural variations in monolayers caused by changes in chemical composition such as the addition of phenyl groups, and hydroxyl groups. Experimental work involved renovations to the existing diffractometer. The apparatus was improved with respect to its signal to noise ratio; efficiency in sample preparation and data collection; and the reproducibility of obtaining clean crystal surfaces. The renovations greatly extended the range of experiments of which the diffraction machine is capable. The growth of n-decanethiol SAMs by gas deposition was identified as a multi-stage process where the initial "lying down" layer grows on the bare gold surface with a near unity sticking coefficient, while the subsequent, "standing-up" phase grows with a sticking coefficient of about 10sp{-3}. The ordering and chemisorption of a single "lying down" layer of decanethiol was investigated by annealing a single layer physisorbed on a 130 K Au(111) surface to incrementally higher temperatures. The molecules first align themselves with the underlying gold substrate, then orient themselves in the "head to head" two molecule unit mesh, then chemisorb at still higher temperatures. Overlayers of long chain molecules grown on top of monolayers on Au(111) are found to be more ordered than the underlying monolayers themselves. The energy of adsorption to the organic surface is found to be very close to that of the bulk value, even for a gold-adlayer separation distance of about 4 A. Debye-Waller experiments were done to measure the stiffness of monolayers of different chain lengths, coverages and functional groups as well as overlayers.

  3. Doping effect on SILAR synthesized crystalline nanostructured Cu-doped ZnO thin films grown on indium tin oxide (ITO) coated glass substrates and its characterization

    NASA Astrophysics Data System (ADS)

    Dhaygude, H. D.; Shinde, S. K.; Velhal, Ninad B.; Takale, M. V.; Fulari, V. J.

    2016-08-01

    In the present study, a novel chemical route is used to synthesize the undoped and Cu-doped ZnO thin films in aqueous solution by successive ionic layer adsorption and reaction (SILAR) method. The synthesized thin films are characterized by x-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDAX), contact angle goniometer and UV-Vis spectroscopic techniques. XRD study shows that the prepared films are polycrystalline in nature with hexagonal crystal structure. The change in morphology for different doping is observed in the studies of FE-SEM. EDAX spectrum shows that the thin films consist of zinc, copper and oxygen elements. Contact angle goniometer is used to measure the contact angle between a liquid and a solid interface and after detection, the nature of the films is initiated from hydrophobic to hydrophilic. The optical band gap energy for direct allowed transition ranging between 1.60-2.91 eV is observed.

  4. [Preparation and characterization of magnetic nano-particles with radiofrequency-induced hyperthermia for cancer treatment].

    PubMed

    Fan, Xiangshan; Zhang, Dongsheng; Zheng, Jie; Gu, Ning; Ding, Anwei; Jia, Xiupeng; Qing, Hongyun; Jin, Liqiang; Wan, Meiling; Li, Qunhui

    2006-08-01

    Mn0.5Zn0.5Fe2O4 nano-particles were prepared by the chemical co-precipitation, their characteristics were observed with transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermal analysis system, and etc. The temperature changes of the nano-particles of Mn0.5Zn0.5Fe2O4 and its magnetic fluid explored in radiofrequency(RF,200 KHz, 4 KW) were measured. The proliferation ratio of L929 cells cultured in soak of Mn0.5Zn0.5Fe2O4 nano-particles were observed. The experiment indicates that the magnetic particles were about 40 nm diameter in average, round, had strong magnetism, and were proved to be consistent with the standard data of chart of XRD. Its magnetic fluid exposed to RF could be heated up to temperature range from 40 degrees C to 51 degrees C due to the amount of the magnetic nano-particles and intensity of the alternating magnetic field. Magnetic nano-particles were found to have no obvious cytotoxicity to L929 cells.

  5. Decoration of gold nanoparticles on thin multiwall carbon nanotubes and their use as a glucose sensor

    NASA Astrophysics Data System (ADS)

    Gangwar, Rajesh K.; Dhumale, Vinayak A.; Date, Kalyani S.; Alegaonkar, Prashant; Sharma, Rishi B.; Datar, Suwarna

    2016-03-01

    Thin multiwall carbon nanotubes (MWCNTs) have been decorated with gold nanoparticles (Au NPs) with polyaniline (PANI) as an inter-linker by a simple wet chemical method. The synthesized AuNPs:MWCNT:PANI composite was studied with UV-vis, FTIR, Raman spectroscopy, x-ray diffractometer, transmission electron microscopy (TEM) and atomic force microscopy (AFM). Conducting AFM (C-AFM) images of the composite reveal the role played by the two components in electrochemical reactions. The size of the Au NPs was found to be 13 ± 2 nm in the composite as observed from TEM. The synthesized AuNPs:MWCNT:PANI composite was further drop casted onto a glassy carbon electrode (GCE) for electrocatalytic study. The resulting composite exhibits good electrocatalytic activity towards reduction of H2O2 and O2. A glucose biosensor was developed by immobilizing glucose oxidase into AuNPs:MWCNT:PANI composite film on GCE. The fabricated sensor demonstrates good linear response to glucose (i.e. R = 0.9975) in the range of 2 to 12 mM.

  6. nanoparticles but affecting morphology under broader view

    NASA Astrophysics Data System (ADS)

    Karkare, Manasi Manoj

    2014-07-01

    In this study, anatase titanium dioxide nanoparticles were successfully prepared by a sol-gel method using two different precursors, titanium isopropoxide and titanium butoxide. Hydrochloric acid or nitric acid was added to adjust the pH of the solution. The sols obtained were dried at 80 °C and calcined at 450 °C for 3 h. The nanostructures were characterised by scanning electron microscopy, FTIR and ultraviolet-visible spectroscopy. The phase transformations were investigated by an X-ray diffractometer. Highly crystalline anatase titania nanoparticles could be obtained through the controlled hydrolysis reaction rate. The sizes of synthesized particles were in the range 5-13 nm, i.e. 9 nm on an average and with a regular shape. The size of nanoparticles was not affected by the choice of precursor. The broad view of the samples prepared using titanium isopropoxide showed film-like structures, whereas the samples prepared using titanium butoxide showed spherical granules. A red shift of 0.13 eV was observed in the band gap in the case of non-spherical particles compared to spherical ones.

  7. Synthesis, characterization and properties of carbon nanotubes microspheres from pyrolysis of polypropylene and maleated polypropylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junhao, E-mail: jhzhang6@mail.ustc.edu.cn; Department of Chemistry, University of Science and Technology of China, Heifei, Anhui 230026; Du, Jin

    Microspheres assembled from carbon nanotubes (MCNTs), with the diameters ranging from 5.5 to 7.5 {mu}m, were synthesized by means of pyrolysis of polypropylene and maleated polypropylene in an autoclave. The characterization of structure and morphology was carried out by X-ray diffractometer (XRD), field-emission scanning electron microscopy (FESEM), (high resolution) transmission electron microscope [(HR)TEM)], selected-area electron diffraction (SAED) and Raman spectrum. As a typical morphology, the possible growth process of MCNTs was also investigated and discussed. The results of nitrogen adsorption-desorption indicate that the Brunauer-Emett-Teller (BET) surface area (140.6 m{sup 2}/g) of the MCNTs obtained at 600 {sup o}C is aboutmore » twice as that (74.5 m{sup 2}/g) of carbon nanotubes obtained at 700 {sup o}C. The results of catalytic experiment show that MCNTs based catalyst has higher catalytic activity than the carbon nanotubes based catalyst for the preparation of methanol and dimethoxy-ethane by oxidation of dimethyl ether.« less

  8. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    NASA Astrophysics Data System (ADS)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  9. The system K2Mg2(SO4)3 (langbeinite)-K2Ca2(SO4)3 (calcium-langbeinite)

    USGS Publications Warehouse

    Morey, G.W.; Rowe, J.J.; Fournier, R.O.

    1964-01-01

    The join between the compositions K2Mg2(SO4)3 and K2Ca2(SO4)3 was studied by means of high-temperature equilibrium quenching techniques and by means of a heating stage mounted on an X-ray diffractometer. Complete solid solution exists in the system, but at 25??C members of the solid solution series are isometric only in the composition range 0-73??5 wt. per cent K2Ca2(SO4)3. At compositions richer in K2Ca2(SO4)3 than 73??5 wt. per cent, members of the series are optically biaxial. At higher temperatures members of the solid solution series are isometric at successively more calcium-rich compositions and pure K2Ca2(SO4)3 is isometric above about 200 ?? 2??C. The system is not binary, as mixtures richer in K2Ca2(SO4)3 than 42 wt. per cent decompose with the formation of liquid and CaSO4. ?? 1964.

  10. Characterization and Selection of Polymer Materials for Binary Munitions Storage. Part 3. Branch Content Determination.

    DTIC Science & Technology

    1987-09-01

    accuracy. The data aquisition system combines a position- sensitive X-ray detector with a 65 kilobyte microcomputer capable of operating as a...The rapid X-ray diffraction system measures intensity versus 20 patterns by placing the detector with its sensitivity axis positioned parallel to the...plane of the diffractometer (see Figure 2). As shown in Figure 2, the detector sensitivity axis z is coplanar with both the incident beam and the

  11. A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Stephen E; Mook Jr, Herbert A

    2008-01-01

    Neutron scattering at the Oak Ridge National Laboratory dates back to 1945 when Ernest Wollan installed a modified x-ray diffractometer on a beam port of the original graphite reactor. Subsequently, Wollan and Clifford Shull pioneered neutron diffraction and laid the foundation for an active neutron scattering effort that continued through the 1950s, using the Oak Ridge Research reactor after 1958, and, starting in 1966, the High Flux Isotope Reactor, or HFIR.

  12. Mesoporous Nitrogen Doped Carbon-Glass Ceramic Cathode for High Performance Lithium-Oxygen Battery

    DTIC Science & Technology

    2012-06-01

    dry room with controlled moisture content. Composite 3 films on nickel foam were used as working cathodes along with lithium metal as anode and the...cathode formulation [6,7,8,9,10], efficient oxygen reduction catalysts [11,12], electrolyte compositions [13,14], effect of moisture [15], etc...specimens. Structure and purity of these materials were performed by powder X-ray diffraction (XRD) on a Rigaku D/MAX-2250 diffractometer fitted with CuKα

  13. Novel Epitaxy Between Oxides and Semiconductors - Growth and Interfacial Structures

    DTIC Science & Technology

    2007-05-16

    observed to be impressively good. 15. SUBJECT TERMS Nanotechnology, Gallium Nitride 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as...with precursors or gases, a high-purity sapphire was employed in this work. E-beam evaporation was used due to the high melting point of sapphire, and...were carried out on a four-circle triple -axes diffractometer, using a 12 kW rotating anode Cu K-alpha source. A pair of graphite crystals is used to

  14. The Wide Angle Neutron Diffractometer (WAND) at HFIR: possibilities and future

    NASA Astrophysics Data System (ADS)

    Frontzek, Matthias; Andrews, Katie M.; Chakoumakos, Bryan C.

    The Wide Angle Neutron Diffractometer (WAND) at the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) has been built and continues to be, a joint project between ORNL and the Japan Atomic Energy Agency. Equipped with a 1-dimensional position sensitive detector (PSD), the instrument is a multi-purpose instrument for both powder and single crystal diffraction. WAND is currently in the process of a 2-phase upgrade to become a world class, general purpose instrument. In phase 1, finished in the beginning of 2016, the whole instrument was practically re-built from scratch, keeping only the front end and the 1-D PSD. Phase 2 will replace the 1-D PSD with the state of the art BNL120 2D-PSD which comes from the Lujan Neutron Scattering Center. We are currently integrating the detector off-line into the data acquisition architecture at HFIR. The new instrument, WAND2, will be available for general users in the proposal call 2018A. In our contribution we present results from experiments on WAND after phase 1. The upgrade now allows mounting the whole suite of available sample environment (50 mK to 1500 K, magnetic fields (5 T), high pressures (4 GPa)). We will further discuss the scientific impact the new capabilities of WAND2 will have.

  15. Structural studies on artificial sweeteners: itN-(4-(1-propyloxy)-phenyl)-urea

    NASA Astrophysics Data System (ADS)

    Hooft, Rob W. W.; Kanters, Jan A.; Kroon, Jan

    1991-12-01

    C 10N 2O 2H 14, M r=194.23, triclinic, itP1. At T=298 K: a=7.0292 (12), b=7.0394 (14), c=21.761 (2) Å, α=97.637 (13), β=97.326 (12), γ=96.14 (2)°, V=1050.0 (3) Å 3, Z=4, Dx=1.229 Mg m -3, λ(Cu Kα)=1.54184 Å, μ=6.7 cm -1, F(000)=416 and R=0.037 for 4268 unique observed diffractometer data (itI≥ 2.5σ(itI)). At T=100 K: a=6.8724 (4), b=6.8748 (6), c=21.773 (3) Å, α=96.680 (8), β=97.010 (7), γ=94.558 (6)°, V= 1009.5 (2) Å 3, Z=4, Dx=1.278 Mg m -3, λ(Mo Kα)=0.71073 Å, μ=0.8cm -1, F(000)=416 and R=0.056 for 3765 unique observed diffractometer data (itI≥2.5σ(itI)). At room temperature the methyl group C atoms have a high thermal motion which is possibly librational. The molecules form NH⋯0-type hydrogen-bonded networks, each oxygen accepting three hydrogen bonds. A systematic search for the so-called AH⋯B moieties which are thought to be responsible for the sweet taste revealed a number of possible candidates.

  16. Ca-doped LTO using waste eggshells as Ca source to improve the discharge capacity of anode material for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Setiawan, D.; Subhan, A.; Saptari, S. A.

    2017-07-01

    The necessity of high charge-discharge capacity lithium-ion battery becomes very urgent due to its applications demand. Several researches have been done to meet the demand including Ca doping on Li4Ti5O12 for anode material of lithium-ion batteries. Ca-doped Li4Ti5O12 (LTO) in the form of Li4-xCaxTi5O12 (x = 0, 0.05, 0.075, and 0.1) have been synthesized using simple solid state reaction. The materials preparation involved waste eggshells in the form of CaCO3 as Ca source. The structure and capacity of as-prepared samples were characterized using X-Ray Diffractometer and Cyclic Voltametry. X-Ray Diffractometer characterization revealed that all amount of dopant had entered the lattice structure of LTO successfully. The crystalline sizes were obtained by using Scherrer equation. No significant differences are detected in lattice parameters (˜8.35 Å) and crystalline sizes (˜27 nm) between all samples. Cyclic Voltametry characterization shows that Li4-xCaxTi5O12 (x = 0.05) has highest charge-discharge capacity of 177.14 mAh/g and 181.92 mAh/g, respectively. Redox-potentials of samples show no significant differences with the average of 1.589 V.

  17. The enhancement in dielectric and magnetic property in Na and Mn co substituted lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline solid solutions of La1-xNaxFe1-yMnyO3 (x=y=0.00 and 0.25) were prepared via modified Pechini route. No evidence of secondary or impurity phase has been detected up to the detection of error limit of high power X-ray diffractometer. Dielectric property of the samples has been investigated in the frequency range 100 Hz-4MHz at temperature ranging 300-450K. The value of relative permittivity (ɛr) increases drastically and shows colossal dielectric response (˜104) by cosubstitution of Na and Mn as compared to pure LaFeO3. Dielectric relaxation peak in loss tangent in both samples have been found and shift towards higher frequency region as temperature increases. Magnetization-Field (M-H) loop of the calcined sample have been recorded at room temperature (300K) at field ±60kOe. Magnetic property also enhanced by co substitution of Na and Mn. The change in Fe/Mn-O-Fe/Mn angle by co-substitution of Na and Mn in LaFeO3 and indirect exchange interaction between two different magnetic sub lattices Fe and Mn might be responsible for drastic change. Saturation/maximum magnetic moment increase ˜four times in LNFM25 (5.335emu/g) as compared to pure LaFeO3 (1.302emu/g).

  18. Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31.

    PubMed

    Khan, Razia; Fulekar, M H

    2016-08-01

    The present study aims at exploiting Bacillus amyloliquefaciens for the biosynthesis of titanium dioxide nanoparticles and also investigates role of bacterial enzymes in the biosynthesis of titanium dioxide nanoparticles. Bacterial synthesized as well as metal doped titanium dioxide nanoparticles were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDAX). Amylase activity (43.37IU) in culture supernatant evinced a potential involvement of extracellular enzyme in TiO2 nanoparticle biosynthesis. Crystallite size of bio-synthesized nanoparticles was found to be in the range of 15.23-87.6nm. FTIR spectroscopy and native-PAGE (Polyacrylamide Gel Electrophoresis) clearly indicated involvement of alpha amylase in biosynthesis of TiO2 nanoparticles and in their stabilization. TEM micrographs of the synthesized titanium dioxide nanoparticles revealed the formation of spherical nanoparticles with a size range of 22.11-97.28nm. Photocatalytic degradation of Reactive Red 31 (RR31) dye was carried out using bio-synthesized TiO2 nanoparticles under UV radiation. Photocatalytic activity of synthesized nanoparticles was enhanced by Ag, La, Zn and Pt doping. Platinum doped TiO2 showed highest potential (90.98%) in RR31 degradation as compared to undoped (75.83%). Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Edge-Selectively Functionalized Graphene-Like Platelets as a Co-curing Agent and a Nanoscale Additive to Epoxy Resin

    DTIC Science & Technology

    2012-08-12

    21 For mass production , the Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is...analyzer. The field emission scanning electron microscope ( FE -SEM) used in this work was a NanoSem 230 (FEI, USA). High-resolution transmission...WAXD) powder patterns were recorded with a Rigaku RU-200 diffractometer using Ni-filtered Cu K radiation (40 kV, 100 mA,  = 0.15418 nm). Dynamic

  20. Destination Innovation: Episode 4 CheMin

    NASA Image and Video Library

    2012-08-02

    Destination Innovation is a new series that explores the research, science and other projects underway at the NASA Ames Research Center. Episode 4 focuses on the CheMin instrument aboard the Mars Science Laboratory, NASA' s latest robotic explorer to visit Mars. CheMin, short for 'Chemistry and Mineralogy,' was developed at NASA Ames Research Center and is one of 10 instruments aboard the rover Curiosity. The instrument is an x-ray diffractometer, which will be able to identify minerals in the Martial rock and soil.

  1. High Rate Deposition of Thick CrN and Cr2N Coatings Using Modulated Pulse Power (MPP) Magnetron Sputtering

    DTIC Science & Technology

    2010-12-01

    in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA

  2. Short review on chemical bath deposition of thin film and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mugle, Dhananjay, E-mail: dhananjayforu@gmail.com; Jadhav, Ghanshyam, E-mail: ghjadhav@rediffmail.com

    2016-05-06

    This reviews the theory of early growth of the thin film using chemical deposition methods. In particular, it critically reviews the chemical bath deposition (CBD) method for preparation of thin films. The different techniques used for characterizations of the chemically films such as X-ray diffractometer (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Electrical conductivity and Energy Dispersive Spectroscopy (EDS) are discussed. Survey shows the physical and chemical properties solely depend upon the time of deposition, temperature of deposition.

  3. SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: Electrolyte effect.

    PubMed

    Nikam, Pratibha R; Baviskar, Prashant K; Majumder, Sutripto; Sali, Jaydeep V; Sankapal, Babasaheb R

    2018-08-15

    Controlled growth of different sizes of cadmium selenide (CdSe) nanoparticles over well aligned ZnO nanorods have been performed using successive ionic layer adsorption and reaction (SILAR) technique at room temperature (27 °C) in order to form nano heterostructure solar cells. Deposition of compact layer of zinc oxide (ZnO) by SILAR technique on fluorine doped tin oxide (FTO) coated glass substrate followed by growth of vertically aligned ZnO nanorods array using chemical bath deposition (CBD) at low temperature (<100 °C). Different characterization techniques viz. X-ray diffractometer, UV-Vis spectrophotometer, field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy have been used to know the structural, optical, morphological and compositional properties of synthesized nano heterostructure. The photovoltaic performance of the cells with variation in SILAR cycles for CdSe and with use of different electrolytes have been recorded as J-V characteristics and the maximum conversion efficiency of 0.63% have been attained with ferro/ferri cyanide electrolyte for 12 cycles CdSe coating over 1-D ZnO nanorods. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Study on preferred crystal orientations of Mg-Zr-O composite protective layer in AC-PDP

    NASA Astrophysics Data System (ADS)

    Bingang, G.; Chunliang, L.; Zhongxiao, S.; Liu, L.; Yufeng, F.; Xing, X.; Duowang, F.

    2006-11-01

    In order to study the preferred crystal orientations of Mg-Zr-O composite protective layers in PDP, Mg-Zr-O composite protective layers were deposited by Electron-beam Evaporator using (MgO+ZrO{2}) powder mixture as evaporation source material. X-ray diffractometer (XRD) was used to determine preferred crystal orientations of Mg-Zr-O composite protective layers, surface morphologies of films were analyzed by FESEM and voltage characteristics were examined in a testing macroscopic discharge cell of AC-PDP. On the basis of experimental analysis, the influence of oxide addition and deposition conditions on preferred orientations of Mg-Zr-O composite protective layers were investigated. The results showed that the preferred orientations of Mg-Zr-O films were determined by lattice distortion of MgO crystal. The deposition conditions have great effects on the preferred orientations of Mg-Zr-O films. The preferred orientations affect voltage characteristics through affecting surface morphology of Mg-Zr-O films. A small amount of Zr solution in MgO can decrease firing voltage compared with using pure MgO film. Firing voltage is closely related with the [ ZrO{2}/(MgO+ZrO{2})] ratio of evaporation source materials.

  5. Photoluminescent and Thermoluminescent Studies of Dy3+ and Eu3+ Doped Y2O3 Phosphors.

    PubMed

    Verma, Tarkeshwari; Agrawal, Sadhana

    2018-01-01

    Eu 3+ doped and Dy 3+ codoped yttrium oxide (Y 2 O 3 ) phosphors have been prepared using solid-state reaction technique (SSR). The prepared phosphors were characterized by X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR) techniques. Photoluminescence (PL) and Thermoluminescence (TL) properties were studied in detail. PL emission spectra were recorded for prepared phosphors under excitation wavelength 254 nm, which show a high intense peak at 613 nm for Y 2 O 3 :Dy 3+ , Eu 3+ (1:1.5 mol %) phosphor. The correlated color temperature (CCT) and CIE analysis have been performed for the synthesized phosphors. TL glow curves were recorded for Eu 3+ doped and Dy 3+ codoped phosphors to study the heating rate effect and dose response. The kinetic parameters were calculated using peak shape method for UV and γ exposures through computerized glow curve deconvolution (CGCD) technique. The phosphors show second order kinetics and activation energies varying from 5.823 × 10 - 1 to 18.608 × 10 - 1  eV.

  6. Ternary germanides RERhGe2 (RE = Y, Gd-Ho) - New representatives of the YIrGe2 type

    NASA Astrophysics Data System (ADS)

    Voßwinkel, Daniel; Heletta, Lukas; Hoffmann, Rolf-Dieter; Pöttgen, Rainer

    2016-11-01

    The YIrGe2 type ternary germanides RERhGe2 (RE = Y, Gd-Ho) were synthesized from the elements by arc-melting and characterized by powder X-ray diffraction. The structure of DyRhGe2 was refined from single crystal X-ray diffractometer data: Immm, a = 426.49(9), b = 885.0(2), c = 1577.4(3) pm, wR2 = 0.0533, 637 F2 values, 30 variables (300 K data). The structure contains two crystallographically independent dysprosium atoms in pentagonal prismatic and hexagonal prismatic coordination. The three-dimensional [RhGe2] polyanion is stabilized through covalent Rh-Ge (243-261 pm) and Ge-Ge (245-251 pm) bonding. The close structural relationship with the slightly rhodium-poorer germanides RE5Rh4Ge10 (≡ RERh0.8Ge2) is discussed. Temperature-dependent magnetic susceptibility measurements reveal Pauli paramagnetism for YRhGe2 and Curie-Weiss paramagnetism for RERhGe2 with RE = Gd, Tb, Dy and Ho. These germanides order antiferromagnetically at TN = 7.2(5), 10.6(5), 8.1(5), and 6.4(5) K, respectively.

  7. Potentiality of Neopestalotiopsis clavispora ASU1 in biosorption of cadmium and zinc.

    PubMed

    Hassan, Sedky H A; Koutb, Mostafa; Nafady, Nivien Allam; Hassan, Elhagag Ahmed

    2018-07-01

    In this study, a fungal isolate was isolated from avocado fruit collected from a market in Makkah city, Saudi Arabia, and identified as Neopestalotiopsis clavispora ASU1. The biomass of Neopestalotiopsis clavispora ASU1 was used as a natural bio-sorbent for removal of Cd(II) and Zn(II) from aqueous solutions. Characterization of fungal biomass was performed using Fourier transform infrared spectroscopy, X-ray Diffractometer, and BET surface area. Different factors on Cd(II) and Zn(II) biosorption were studied to evaluate the maximum conditions for metals biosorption. The (q max ) for Cd(II) and Zn (II) by N. clavispora ASU1 calculated from the Langmuir adsorption isotherm was 185.3 ± 0.25 and 153.8 ± 0.21 mg/g, respectively. Based on r 2 , the equilibrium biosorption isotherms fitted well with Langmuir model than Freundlich isotherm. The adsorption kinetics was studied, and the biosorption followed to the pseudo-second-order model. Thus, the current study indicated that the biomass of N. clavispora ASU1 is an effective adsorbent for the removal of heavy metals from aqueous solutions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Tandem transmission/reflection mode XRD instrument including XRF for in situ measurement of Martian rocks and soils

    NASA Astrophysics Data System (ADS)

    Delhez, Robert; Van der Gaast, S. J.; Wielders, Arno; de Boer, J. L.; Helmholdt, R. B.; van Mechelen, J.; Reiss, C.; Woning, L.; Schenk, H.

    2003-02-01

    The mineralogy of the surface material of Mars is the key to disclose its present and past life and climates. Clay mineral species, carbonates, and ice (water and CO2) are and/or contain their witnesses. X-ray powder diffraction (XRPD) is the most powerful analytical method to identify and quantitatively characterize minerals in complex mixtures. This paper discusses the development of a working model of an instrument consisting of a reflection mode diffractometer and a transmission mode CCD-XRPD instrument, combined with an XRF module. The CCD-XRD/XRF instrument is analogous to the instrument for Mars missions developed by Sarrazin et al. (1998). This part of the tandem instrument enables "quick and dirty" analysis of powdered (!) matter to monitor semi-quantitatively the presence of clay minerals as a group, carbonates, and ices and yields semi-quantitative chemical information from X-ray fluorescence (XRF). The reflection mode instrument (i) enables in-situ measurements of rocks and soils and quantitative information on the compounds identified, (ii) has a high resolution and reveals large spacings for accurate identification, in particular of clay mineral species, and (iii) the shape of the line profiles observed reveals the kind and approximate amounts of lattice imperfections present. It will be shown that the information obtained with the reflection mode diffractometer is crucial for finding signs of life and changes in the climate on Mars. Obviously this instrument can also be used for other extra-terrestrial research.

  9. Influence of bath PH value on microstructure and corrosion resistance of phosphate chemical conversion coating on sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Xue, Long-fei; Wang, Xiu-chun; Ding, Kai-hong; Cui, Sheng-li; Sun, Yong-cong; Li, Mu-sen

    2016-10-01

    The effect of bath PH value on formation, microstructure and corrosion resistance of the phosphate chemical conversion (PCC) coatings as well as the effect on the magnetic property of the magnets is investigated in this paper. The results show that the coating mass and thickness increase with the decrease of the bath PH value. Scanning electron microscopy observation demonstrates that the PCC coatings are in a blocky structure with different grain size. Transmission electron microscope and X-ray diffractometer tests reveal the coatings are polycomponent and are mainly composed of neodymium phosphate hydrate and praseodymium phosphate hydrate. The electrochemical analysis and static immersion corrosion test show the corrosion resistance of the PCC coatings prepared at bath PH value of 0.52 is worst. Afterwards the corrosion resistance increases first and then decreases with the increasing of the bath PH values. The magnetic properties of all the samples with PCC treatment are decreased. The biggest loss is occurred when the bath PH value is 0.52. Taken together, the optimum PH range of 1.00-1.50 for the phosphate solution has been determined.

  10. Investigation of Monodisperse Dendrimeric Polysaccharide Nanoparticle Dispersions Using Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Atkinson, John; Nickels, Jonathan; Papp-Szabo, Erzsi; Katsaras, John; Dutcher, John

    2015-03-01

    Phytoglycogen is a highly branched polysaccharide that is very similar to the energy storage molecule glycogen. We have isolated monodisperse phytoglycogen nanoparticles from corn and these particles are attractive for applications in the cosmetic, food and beverage, and biomedical industries. Many of these promising applications are due to the special interaction between the nanoparticles and water, which results in: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Our rheology measurements indicate that the nanoparticles behave like hard spheres in water, with the viscosity diverging for concentrations >25% (w/w). Because of this, aqueous suspensions of phytoglycogen provide an ideal platform for detailed testing of theories of colloidal glasses and jamming. To further explore the interaction of the phytoglycogen particles and water, we have performed small angle neutron scattering (SANS) measurements on the Extended Q-Range SANS (EQ-SANS) diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Measurements performed on phytoglycogen dispersions in mixtures of hydrogenated and deuterated water have allowed us to determine the particle size and average particle spacing as a function of the phytoglycogen concentration in the limits of dilute and concentrated dispersions.

  11. Synthesis and dc electrical conductivity of Cr-doped CeO2 nanoparticles by solution combustion method

    NASA Astrophysics Data System (ADS)

    Harish, B. M.; Avinash, B. S.; Chaturmukha, V. S.; Jayanna, H. S.; Suresh, S.; Naveen, C. S.; Lamani, Ashok R.

    2018-04-01

    NPs of Ce1-xCrxO2 (x=0, 0.04, 0.08, 0.12) have been synthesized by solution combustion method using glycine as fuel. The effect of chromium on structural and dc electrical conductivity of cerium oxide nanoparticles were investigated. The obtained powder is characterized by UV-visible spectrometer, X-ray diffractometer (XRD), Scanning electron microscope (SEM) and Energy dispersive X-Ray analysis (EDS). X-ray diffraction analysis carried out on calcined samples reveals that successful incorporation of Cr2+ in CeO2 lattice where as SEM studies confirms the porous morphological structure of the prepared sample. The Keithley source meter is used to measure the dc conductivity of samples in the temperature range from 303K to 623K. The conductivity was found to be increases with increase of temperature as well as the Cr concentration due to semiconducting behavior of material and change in the charge carrier concentration. The activation energy decreases with increasing chromium concentration. The present work deals with the effect of chromium additive on structural and the D.C electrical properties Ce1-xCrxO2 NPs.

  12. Influence of palmitic acid and hexadecanol on the phase transition temperature and molecular packing of dipalmitoylphosphatidyl-choline monolayers at the air-water interface

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee C.; Gopal, Ajaykumar; von Nahmen, Anja; Zasadzinski, Joseph A.; Majewski, Jaroslaw; Smith, Gregory S.; Howes, Paul B.; Kjaer, Kristian

    2002-01-01

    Palmitic acid (PA) and 1-hexadecanol (HD) strongly affect the phase transition temperature and molecular packing of dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. The phase behavior and morphology of mixed DPPC/PA as well as DPPC/HD monolayers were determined by pressure-area-isotherms and fluorescence microscopy. The molecular organization was probed by synchrotron grazing incidence x-ray diffraction using a liquid surface diffractometer. Addition of PA or HD to DPPC monolayers increases the temperature of the liquid-expanded to condensed phase transition. X-ray diffraction shows that DPPC forms mixed crystals both with PA and HD over a wide range of mixing ratios. At a surface pressure (π) of 40 mN/m, increasing the amount of the single chain surfactant leads to a reduction in tilt angle of the aliphatic chains from nearly 30° for pure DPPC to almost 0° in a 1:1 molar ratio of DPPC and PA or HD. At this composition we also find closest packing of the aliphatic chains. Further increase of the amount of PA or HD does not change the lattice or the tilt.

  13. Laboratory and In-Flight In-Situ X-ray Imaging and Scattering Facility for Materials, Biotechnology and Life Sciences

    NASA Technical Reports Server (NTRS)

    2003-01-01

    We propose a multifunctional X-ray facility for the Materials, Biotechnology and Life Sciences Programs to visualize formation and behavior dynamics of materials, biomaterials, and living organisms, tissues and cells. The facility will combine X-ray topography, phase micro-imaging and scattering capabilities with sample units installed on the goniometer. This should allow, for the first time, to monitor under well defined conditions, in situ, in real time: creation of imperfections during growth of semiconductors, metal, dielectric and biomacromolecular crystals and films, high-precision diffraction from crystals within a wide range of temperatures and vapor, melt, solution conditions, internal morphology and changes in living organisms, tissues and cells, diffraction on biominerals, nanotubes and particles, radiation damage, also under controlled formation/life conditions. The system will include an ultrabright X-ray source, X-ray mirror, monochromator, image-recording unit, detectors, and multipurpose diffractometer that fully accommodate and integrate furnaces and samples with other experimental environments. The easily adjustable laboratory and flight versions will allow monitoring processes under terrestrial and microgravity conditions. The flight version can be made available using a microsource combined with multilayer or capillary optics.

  14. Sizes of X-ray radiation coherent domains in thin SmS films and their visualization

    NASA Astrophysics Data System (ADS)

    Sharenkova, N. V.; Kaminskii, V. V.; Petrov, S. N.

    2011-09-01

    The size of X-ray radiation coherent domains (250 ± 20 Å) is determined in a thin polycrystalline SmS film using X-ray diffraction patterns (θ-2θ scanning, DRON-2 diffractometer, Cu K α radiation) and the Selyakov-Scherrer formula with allowance for the effect of microstrains. An image of this film is taken with a transmission electron microscope, and regions with a characteristic size of 240 Å are clearly visible in it. It is concluded that X-ray radiation coherent domains are visualized.

  15. Acquisition of a High-Resolution High-Intensity X-ray Diffractometer for Research and Education

    DTIC Science & Technology

    2015-07-20

    NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 X-ray diffraction; germanium- tin alloys...is in progress for others. Comprehensive data were acquired for pseudomorphic germanium- tin alloys grown on germanium by molecular beam epitaxy...Research  100+  2000  Federal grant  Germanium‐ tin  alloys  Tech transfer  9  180  Startup company  Metallurgy  Research  5  100  Federal grant  SAXS  Total

  16. Dissolution Rates of Allophane, FE-Containing Allophane, and Hisingerite and Implications for Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Ralston, S. J.; Hausrath, E. M.; Tschauner, O.; Rampe, E. B.; Christoffersen, R.

    2018-01-01

    Investigations with the CheMin Xray Diffractometer (XRD) onboard the Curiosity rover in Gale Crater demonstrate that all rock and soil samples measured to date contain approximately 15-70 weight percentage X-ray amorphous materials. The diffuse scattering hump from the X-ray amorphous materials in CheMin XRD patterns can be fit with a combination of allophane, ferrihydrite, and rhyolitic and basaltic glass. Because of the iron-rich nature of Mars' surface, Fe-rich poorly-crystalline phases, such as hisingerite, may be present in addition to allophane.

  17. Magnetic and structural properties of CoFe 2O 4 thin films synthesized via a sol-gel process

    NASA Astrophysics Data System (ADS)

    dos S. Duque, J. G.; Macêdo, M. A.; Moreno, N. O.; Lopez, J. L.; Pfanes, H.-D.

    2001-05-01

    Using a sol-gel process having the coconut water as a precursor of organic chain, we synthesized thin films of cobalt ferrite. The films were characterized by using a SQUID magnetometer, an X-ray diffractometer, an X-ray spectrophotometer, Mössbauer spectroscopy and atomic force microscope. Co ferrite films annealed at 500°C for 2 h show grain sizes between 10 and 20 nm, grown as single-phase spinel structure and exhibit high coercivity and a moderate saturation magnetization (above 30 kOe).

  18. The statistical kinematical theory of X-ray diffraction as applied to reciprocal-space mapping

    PubMed

    Nesterets; Punegov

    2000-11-01

    The statistical kinematical X-ray diffraction theory is developed to describe reciprocal-space maps (RSMs) from deformed crystals with defects of the structure. The general solutions for coherent and diffuse components of the scattered intensity in reciprocal space are derived. As an example, the explicit expressions for intensity distributions in the case of spherical defects and of a mosaic crystal were obtained. The theory takes into account the instrumental function of the triple-crystal diffractometer and can therefore be used for experimental data analysis.

  19. Viscosity studies of water based magnetite nanofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anu, K.; Hemalatha, J.

    2016-05-23

    Magnetite nanofluids of various concentrations have been synthesized through co-precipitation method. The structural and topographical studies made with the X-Ray Diffractometer and Atomic Force Microscope are presented in this paper. The density and viscosity studies for the ferrofluids of various concentrations have been made at room temperature. The experimental viscosities are compared with theoretical values obtained from Einstein, Batchelor and Wang models. An attempt to modify the Rosensweig model is made and the modified Rosensweig equation is reported. In addition, new empirical correlation is also proposed for predicting viscosity of ferrofluid at various concentrations.

  20. Development of TiN particulates reinforced SS316 based metal matrix composite by direct metal laser sintering technique and its characterization

    NASA Astrophysics Data System (ADS)

    Hussain, Manowar; Mandal, Vijay; Kumar, Vikas; Das, A. K.; Ghosh, S. K.

    2017-12-01

    The present study describes the fabrication of TiN particulates reinforced SS316 based Metal Matrix Composites (MMCs) in nitrogen and argon atmosphere. The influence of sintering process parameters on microstructure, density, porosity, wear rate and microhardness of the fabricated samples has been analyzed. The input variable process parameters, such as, laser power density (range: 4.13-5.57 W/cm2 (× 104)), scanning speed (range: 3500-4500 mm/min) and the constant parameters, such as, laser beam diameter (0.4 mm), hatching distance (0.2 mm) and layer thickness (0.4 mm) have been considered in the process. It has been observed from Field Emission Scanning Electron Microscopy (FESEM) analysis that TiN and SS316 powder mixture can be sintered in which chromium acts as a binder. Fine gaps are not found at the interface between TiN and SS316 when the mixture is sintered in nitrogen atmosphere. With an increase in the percentage of TiN, the density and wear rate decreases. However, when the reinforcement is taken beyond 18% by weight, the wear rate starts increasing. The microhardness also increases with an increase in the percentage of TiN. The microstructure, elemental compositions and phase characterization of the developed sintered MMCs have been examined by FESEM, EDX (Energy-dispersive X-ray spectroscopy) and XRD (X-ray diffractometer) analysis, respectively. The results have demonstrated the suitability of the TiN reinforced SS316 MMCs for industrial applications.

  1. The enhancement in dielectric and magnetic property in Na and Mn co substituted lanthanum ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Atma, E-mail: atma@iitp.ac.in; Thakur, Awalendra K., E-mail: akt@iitp.ac.in; Centre for Energy and Environment Indian Institute of Technology Patna 800013 India

    2016-05-06

    Nanocrystalline solid solutions of La{sub 1-x}Na{sub x}Fe{sub 1-y}Mn{sub y}O{sub 3} (x=y=0.00 and 0.25) were prepared via modified Pechini route. No evidence of secondary or impurity phase has been detected up to the detection of error limit of high power X-ray diffractometer. Dielectric property of the samples has been investigated in the frequency range 100 Hz-4MHz at temperature ranging 300–450K. The value of relative permittivity (ε{sub r}) increases drastically and shows colossal dielectric response (∼10{sup 4}) by cosubstitution of Na and Mn as compared to pure LaFeO{sub 3}. Dielectric relaxation peak in loss tangent in both samples have been found and shiftmore » towards higher frequency region as temperature increases. Magnetization-Field (M-H) loop of the calcined sample have been recorded at room temperature (300K) at field ±60kOe. Magnetic property also enhanced by co substitution of Na and Mn. The change in Fe/Mn-O-Fe/Mn angle by co-substitution of Na and Mn in LaFeO{sub 3} and indirect exchange interaction between two different magnetic sub lattices Fe and Mn might be responsible for drastic change. Saturation/maximum magnetic moment increase ∼four times in LNFM25 (5.335emu/g) as compared to pure LaFeO{sub 3} (1.302emu/g).« less

  2. Bulk Crystal Growth, and High-Resolution X-ray Diffraction Results of LiZnAs Semiconductor Material

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Reichenberger, Michael A.; Sunder, Madhana; Ugorowski, Philip B.; Nelson, Kyle A.; Henson, Luke C.; McGregor, Douglas S.

    2017-08-01

    LiZnAs is being explored as a candidate for solid-state neutron detectors. The compact form, solid-state device would have greater efficiency than present day gas-filled 3He and 10BF3 detectors. Devices fabricated from LiZnAs having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. The 6Li( n, t)4He reaction yields a total Q-value of 4.78 MeV, an energy larger than that of the 10B reaction, which can easily be identified above background radiations. LiZnAs material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace (Montag et al. in J Cryst Growth 412:103, 2015). The raw synthesized LiZnAs was purified by a static vacuum sublimation in quartz (Montag et al. in J Cryst Growth 438:99, 2016). Bulk crystalline LiZnAs ingots were grown from the purified material with a high-temperature Bridgman-style growth process described here. One of the largest LiZnAs ingots harvested was 9.6 mm in diameter and 4.2 mm in length. Samples were harvested from the ingot and were characterized for crystallinity using a Bruker AXS Inc. D8 AXS Inc. D2 CRYSO, energy dispersive x-ray diffractometer, and a Bruker AXS Inc. D8 DISCOVER, high-resolution x-ray diffractometer equipped with molybdenum radiation, Gobel mirror, four bounce germanium monochromator and a scintillation detector. The primary beam divergence was determined to be 0.004°, using a single crystal Si standard. The x-ray based characterization revealed that the samples nucleated in the (110) direction and a high-resolution open detector rocking curve recorded on the (220) LiZnAs yielded a full width at half maximum (FWHM) of 0.235°. Sectional pole figures using off-axis reflections of the (211) LiZnAs confirmed in-plane ordering, and also indicated the presence of multiple domains. The LiZnAs bulk crystals exhibited a Primitive Cubic Bravais lattice instead of the commonly reported Face-centered Cubic Bravais lattice. The lattice constant was determined to be 5.5146 ± 0.0003 Å.

  3. A novel sol-gel-derived calcium silicate cement with short setting time for application in endodontic repair of perforations

    PubMed Central

    Lee, Bor-Shiunn; Lin, Hong-Ping; Chan, Jerry Chun-Chung; Wang, Wei-Chuan; Hung, Ping-Hsuan; Tsai, Yu-Hsin; Lee, Yuan-Ling

    2018-01-01

    Mineral trioxide aggregate (MTA) is the most frequently used repair material in endodontics, but the long setting time and reduced mechanical strength in acidic environments are major shortcomings. In this study, a novel sol-gel-derived calcium silicate cement (sCSC) was developed using an initial Ca/Si molar ratio of 3, with the most effective mixing orders of reactants and optimal HNO3 catalyst volumes. A Fourier transform infrared spectrometer, scanning electron microscope with energy-dispersive X-ray spectroscopy, and X-ray powder diffractometer were used for material characterization. The setting time, compressive strength, and microhardness of sCSC after hydration in neutral and pH 5 environments were compared with that of MTA. Results showed that sCSC demonstrated porous microstructures with a setting time of ~30 min, and the major components of sCSC were tricalcium silicate, dicalcium silicate, and calcium oxide. The optimal formula of sCSC was sn200, which exhibited significantly higher compressive strength and microhardness than MTA, irrespective of neutral or pH 5 environments. In addition, both sn200 and MTA demonstrated good biocompatibility because cell viability was similar to that of the control. These findings suggest that sn200 merits further clinical study for potential application in endodontic repair of perforations. PMID:29386894

  4. A novel sol-gel-derived calcium silicate cement with short setting time for application in endodontic repair of perforations.

    PubMed

    Lee, Bor-Shiunn; Lin, Hong-Ping; Chan, Jerry Chun-Chung; Wang, Wei-Chuan; Hung, Ping-Hsuan; Tsai, Yu-Hsin; Lee, Yuan-Ling

    2018-01-01

    Mineral trioxide aggregate (MTA) is the most frequently used repair material in endodontics, but the long setting time and reduced mechanical strength in acidic environments are major shortcomings. In this study, a novel sol-gel-derived calcium silicate cement (sCSC) was developed using an initial Ca/Si molar ratio of 3, with the most effective mixing orders of reactants and optimal HNO 3 catalyst volumes. A Fourier transform infrared spectrometer, scanning electron microscope with energy-dispersive X-ray spectroscopy, and X-ray powder diffractometer were used for material characterization. The setting time, compressive strength, and microhardness of sCSC after hydration in neutral and pH 5 environments were compared with that of MTA. Results showed that sCSC demonstrated porous microstructures with a setting time of ~30 min, and the major components of sCSC were tricalcium silicate, dicalcium silicate, and calcium oxide. The optimal formula of sCSC was sn200, which exhibited significantly higher compressive strength and microhardness than MTA, irrespective of neutral or pH 5 environments. In addition, both sn200 and MTA demonstrated good biocompatibility because cell viability was similar to that of the control. These findings suggest that sn200 merits further clinical study for potential application in endodontic repair of perforations.

  5. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers.

    PubMed

    Benea, Lidia; Celis, Jean-Pierre

    2016-04-06

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voßwinkel, Daniel; Heletta, Lukas; Hoffmann, Rolf-Dieter

    The YIrGe{sub 2} type ternary germanides RERhGe{sub 2} (RE = Y, Gd-Ho) were synthesized from the elements by arc-melting and characterized by powder X-ray diffraction. The structure of DyRhGe{sub 2} was refined from single crystal X-ray diffractometer data: Immm, a = 426.49(9), b = 885.0(2), c = 1577.4(3) pm, wR2 = 0.0533, 637 F{sup 2} values, 30 variables (300 K data). The structure contains two crystallographically independent dysprosium atoms in pentagonal prismatic and hexagonal prismatic coordination. The three-dimensional [RhGe{sub 2}] polyanion is stabilized through covalent Rh–Ge (243–261 pm) and Ge–Ge (245–251 pm) bonding. The close structural relationship with the slightlymore » rhodium-poorer germanides RE{sub 5}Rh{sub 4}Ge{sub 10} (≡ RERh{sub 0.8}Ge{sub 2}) is discussed. Temperature-dependent magnetic susceptibility measurements reveal Pauli paramagnetism for YRhGe{sub 2} and Curie-Weiss paramagnetism for RERhGe{sub 2} with RE = Gd, Tb, Dy and Ho. These germanides order antiferromagnetically at T{sub N} = 7.2(5), 10.6(5), 8.1(5), and 6.4(5) K, respectively. - Graphical abstract: The germanides RERhGe{sub 2} (RE = Y, Gd-Ho) are new representatives of the YIrGe{sub 2} type.« less

  7. On the use of response surface methodology to predict and interpret the preferred c-axis orientation of sputtered AlN thin films

    NASA Astrophysics Data System (ADS)

    Adamczyk, J.; Horny, N.; Tricoteaux, A.; Jouan, P.-Y.; Zadam, M.

    2008-01-01

    This paper deals with experimental design applied to response surface methodology (RSM) in order to determine the influence of the discharge conditions on preferred c-axis orientation of sputtered AlN thin films. The thin films have been deposited by DC reactive magnetron sputtering on Si (1 0 0) substrates. The preferred orientation was evaluated using a conventional Bragg-Brentano X-ray diffractometer ( θ-2 θ) with the CuKα radiation. We have first determined the experimental domain for 3 parameters: sputtering pressure (2-6 mTorr), discharge current (312-438 mA) and nitrogen percentage (17-33%). For the setup of the experimental design we have used a three factors Doehlert matrix which allows the use of the statistical response surface methodology (RSM) in a spherical domain. A four dimensional surface response, which represents the (0 0 0 2) peak height as a function of sputtering pressure, discharge current and nitrogen percentage, was obtained. It has been found that the main interaction affecting the preferential c-axis orientation was the pressure-nitrogen percentage interaction. It has been proved that a Box-Cox transformation is a very useful method to interpret and discuss the experimental results and leads to predictions in good agreement with experiments.

  8. Visible light photocatalytic activities of template free porous graphitic carbon nitride-BiOBr composite catalysts towards the mineralization of reactive dyes

    NASA Astrophysics Data System (ADS)

    Kanagaraj, Thamaraiselvi; Thiripuranthagan, Sivakumar; Paskalis, Sahaya Murphin Kumar; Abe, Hideki

    2017-12-01

    Template free porous g-C3N4 (pGCN) and flower like bismuth oxybromide catalysts were synthesized by poly condensation and precipitation methods respectively. Various weight percentages of porous GCN-BiOBr composite catalysts (x% pGCN-BiOBr where x = 5, 10, 30, 50 & 70 wt% of pGCN) were synthesized by impregnation method. All the synthesized catalysts were characterized by X-Ray diffractometer, Fourier transform infrared spectrophotometer, BET surface area analyzer, UV Visible diffuse reflectance spectrophotometer, X-Ray photoelectron spectrophotometer, SEM with Energy dispersive X-ray analyzer (SEM/EDAX) and elemental mapping, Transmission electron microscope, Photoluminescence spectrophotometer and Electrochemical impedance. Photocatalytic degradation of all the synthesized catalysts were tested towards the harmful reactive dyes such as reactive blue 198 (RB 198), reactive black 5 (RB 5) and reactive yellow 145 (RY 145) in presence of visible irradiation. Among the catalysts 30% pGCN-BiOBr resulted in the highest photocatalytic activity towards the degradation of all the three dyes in presence of UV, visible and solar irradiations. Kinetics studies on the photocatalytic mineralization of dyes indicated that it followed pseudo first order. HPLC, TOC and COD studies confirm that the dyes are mineralized into CO2, water and mineral salts.

  9. Degradation phenomena of magnetic attachments used clinically in the oral environment

    NASA Astrophysics Data System (ADS)

    Chung, Chae-Heon; Choe, Han-Cheol; Kwak, Jong-Ha

    2006-08-01

    The purpose of this study was to investigate the mechanisms involved in the failure of magnetic attachments used to retain dental prostheses. Dyna magnets were retrieved from dentures that had failed after 34 months of clinical use. These magnetic attachments were prepared and sectioned so as to observe the corrosion surface and layer in order to analyze the corrosion behaviors of the attachments. The corroded surface was observed under a field emission scanning electron microscope (FE-SEM) (JSM 840A, JEOL, Japan). An X-ray diffractometer (XRD) was used to analyze the corrosion product formed due to corrosion in the oral environment. Erosion-corrosion started in the uneven portion of the stainless steel cover in the magnetic attachments composed with Nd-Fe-B alloy. Corrosion was initiated on the worn stainless steel surface, followed by spalling of magnetic material due to corrosive solution. The corrosion rate increased drastically after the corrosion product caused spalling in Nd-Fe-B alloy. Corrosion initiated in the uneven stainless steel surface as well as in the welded zone. In conclusion, the failure of magnetic attachments may occur by either welding failure or breakdown of the encapsulating material. Thus, we believe that treating the surface of magnetic attachments would resolve the corrosion problem seen in magnetic attachments to some extent.

  10. New in-situ neutron diffraction cell for electrode materials

    NASA Astrophysics Data System (ADS)

    Biendicho, Jordi Jacas; Roberts, Matthew; Offer, Colin; Noréus, Dag; Widenkvist, Erika; Smith, Ronald I.; Svensson, Gunnar; Edström, Kristina; Norberg, Stefan T.; Eriksson, Sten G.; Hull, Stephen

    2014-02-01

    A novel neutron diffraction cell has been constructed to allow in-situ studies of the structural changes in materials of relevance to battery applications during charge/discharge cycling. The new design is based on the coin cell geometry, but has larger dimensions compared to typical commercial batteries in order to maximize the amount of electrode material and thus, collect diffraction data of good statistical quality within the shortest possible time. An important aspect of the design is its modular nature, allowing flexibility in both the materials studied and the battery configuration. This paper reports electrochemical tests using a Nickel-metal-hydride battery (Ni-MH), which show that the cell is able to deliver 90% of its theoretical capacity when using deuterated components. Neutron diffraction studies performed on the Polaris diffractometer using nickel metal and a hydrogen-absorbing alloy (MH) clearly show observable changes in the neutron diffraction patterns as a function of the discharge state. Due to the high quality of the diffraction patterns collected in-situ (i.e. good peak-to-background ratio), phase analysis and peak indexing can be performed successfully using data collected in around 30 min. In addition to this, structural parameters for the β-phase (charged) MH electrode obtained by Rietveld refinement are presented.

  11. Investigation of magnetic properties on spin-ordering effects of FeGa2S4 and FeIn2S4

    NASA Astrophysics Data System (ADS)

    Myoung, Bo Ra; Lim, Jung Tae; Kim, Chul Sung

    2017-09-01

    We have studied crystal and magnetic properties of chalcogenides FeGa2S4 and FeIn2S4 with X-ray diffractometer (XRD), magnetic property measurement system (MPMS), magnetometer, physical property measurement system (PPMS), and Mössbauer spectrometer. The crystal structure has 2-dimension triangular lattice structure with P-3m1 of FeGa2S4, while FeIn2S4 has inverse spinel with space group Fd3m. The AC magnetic susceptibility measurements show that FeGa2S4 is an insulating spin glass material, exhibiting geometrical frustration, unlike in the antiferromagnetic [AFM] metallic spin glass FeIn2S4. From hysteresis (M-H) curves at 4.2 K, FeGa2S4 has spin-flop behavior with an angle of 120° of triangle, as against linear slope of FeIn2S4 due to anti-parallel spin. The gap energy by splitting of 5T2g, Δ1 and electric quadrupole splitting ΔEQ of FeIn2S4 are much higher than that of FeGa2S4 at 4.2 K because FeGa2S4 is geometrically frustrated magnet having degenerate ground state at low temperature.

  12. X-ray scattering signatures of β-thalassemia

    NASA Astrophysics Data System (ADS)

    Desouky, Omar S.; Elshemey, Wael M.; Selim, Nabila S.

    2009-08-01

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm -1, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; β-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of β-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm -1, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  13. New micro-beam beamline at SPring-8, targeting at protein micro-crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, Kunio; Ueno, Go; Nisawa, Atsushi

    2010-06-23

    A new protein micro-crystallography beamline BL32XU at SPring-8 is under construction and scheduled to start operation in 2010. The beamline is designed to provide the stabilized and brilliant micro-beam to collect high-quality data from micro-crystals. The beamline consists of a hybrid in-vacuum undulator, a liquid-nitrogen cooled double crystal monochromator, and K-B focusing mirrors with large magnification factor. Development of data acquisition system and end station consists of high-precision diffractometer, high-efficiency area detector, sample auto-changer etc. are also in progress.

  14. A New Camera for Powder Diffraction of Macromolecular Crystallography at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Keiko; Inoue, Katsuaki; Goto, Shunji

    2004-05-12

    A powder diffractometer of Guinier geometry was developed and tested on a beamline, BL40B2, at SPring-8. The long specimen-to-detector distance, 1,000 mm, is advantageous in recording diffraction from Bragg spacing of 20 nm or larger. The angular resolution, 0.012 degrees, was realized together with the focusing optics, the long specimen-to-detector distance and the small pixel size of Blue-type Imaging Plate detector. Such a high resolution makes the peak separation possible in the powder diffraction from microcrystals with large unit cell and low symmetry of biological macromolecules.

  15. High resolution powder diffraction at HASYLAB

    NASA Astrophysics Data System (ADS)

    Wroblewski, Thomas; Ihringer, Jorg; Maichle, Josef

    1988-04-01

    HASYLAB's beamline F1 was modified for powder diffraction in a triple-axis geometry. The diffractometer consists of two independent circles for θ and 2θ motion on either side of the beam. The θ circle can be translated along its axis. This makes the instrument highly flexible for the installation of different attachments like a cryostat which was used for low temperature measurements on the new high Tc superconductors. Measurements on zeolites demonstrate the excellent resolution and signal-to-noise ratio. Novel measuring strategies concerning the use of multiple analyzers, the examination of phase transitions and anomalous dispersion are presented.

  16. Investigation on thermo physical characteristics of ethylene glycol based Al:ZnO nanofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiruba, R., E-mail: krbranjini@gmail.com, E-mail: drkingson@karunya.edu; George, Ritty; Gopalakrishnan, M.

    2015-06-24

    The present work describes the experimental aspects of viscosity and thermal conductivity characteristics of nanofluids. Aluminium doped zinc oxide nanostructures were synthesized by chemical precipitation method. Ultrasonic technique is used to disperse the nanostructures in ethylene glycol. Structural and morphological properties of Al doped ZnO nanostructures are characterized using X-ray diffractometer and scanning electron microscopic technique. The effect of concentration and temperature on thermo-physical properties of Al/ZnO nanofluids is also investigated. The experimental results showed there is enhancement in thermal conductivity with rise in temperature which can be utilized for coolant application.

  17. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Bin

    Neutron scattering and fully atomistic molecular dynamics (MD) are employed to investigate the structural and dynamical properties of polyamidoamine (PAMAM) dendrimers with ethylenediamine (EDA) core under various charge conditions. Regarding to the conformational characteristics, we focus on scrutinizing density profile evolution of PAMAM dendrimers as the molecular charge of dendrimer increases from neutral state to highly charged condition. It should be noted that within the context of small angle neutron scattering (SANS), the dendrimers are composed of hydrocarbon component (dry part) and the penetrating water molecules. Though there have been SANS experiments that studied the charge-dependent structural change of PAMAM dendrimers, their results were limited to the collective behavior of the aforementioned two parts. This study is devoted to deepen the understanding towards the structural responsiveness of intra-molecular polymeric and hydration parts separately through advanced contrast variation SANS data analysis scheme available recently and unravel the governing principles through coupling with MD simulations. Two kinds of acids, namely hydrochloric and sulfuric acids, are utilized to tune the pH condition and hence the molecular charge. As far as the dynamical properties, we target at understanding the underlying mechanism that leads to segmental dynamic enhancement observed from quasielstic neutron scattering (QENS) experiment previously. PAMAM dendrimers have a wealth of potential applications, such as drug delivery agency, energy harvesting medium, and light emitting diodes. More importantly, it is regarded as an ideal system to test many theoretical predictions since dendrimers conjugate both colloid-like globular shape and polymer-like flexible chains. This Ph.D. research addresses two main challenges in studying PAMAM dendrimers. Even though neutron scattering is an ideal tool to study this PAMAM dendrimer solution due to its matching temporal and spatial instrumental scales, understanding experimental results involves extensive and difficult data analysis based on liquid theory and condensed matter physics. Therefore, a model that successfully describes the inter- and intra-dendrimer correlations is crucial in obtaining and delivering reliable information. On the other hand, making meaningful comparisons between molecular dynamics and neutron scattering is a fundamental challenge to link simulations and experiments at the nano-scale. This challenge stems from our approach to utilize MD simulation to explain the underlying mechanism of experimental observation. The SANS measurements were conducted on a series of SANS spectrometers including the Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) and the General-Purpose Small-Angle Neutron Scattering Diffractometer (GP-SANS) at the Oak Ridge National Laboratory (ORNL), and NG7 Small Angle Neutron Scattering Spectrometer at National Institute of Standards (NIST) and Technology in U.S.A., large dynamic range small-angle diffractometer D22 at Institut Laue-Langevin (ILL) in France, and 40m-SANS Spectrometer at Korea Atomic Energy Research Institute (KAERI) in Korea. On the other hand, the Amber molecular dynamics simulation package is utilized to carry out the computational study. In this dissertation, the following observations have been revealed. The previously developed theoretical model for polyelectrolyte dendrimers are adopted to analyze SANS measurements and superb model fitting quality is found. Coupling with advanced contrast variation small angle neutron scattering (CVSANS) data analysis scheme reported recently, the intra-dendrimer hydration and hydrocarbon components distributions are revealed experimentally. The results indeed indicate that the maximum density is located in the molecular center rather than periphery, which is consistent to previous SANS studies and the back-folding picture of PAMAM dendrimers. According to this picture, at neutral condition, the exterior residues folding back into interior would necessarily lead to higher entropy and equivalently lower free energy and thereby is energetically favored. As one decreases the pH condition of PAMAM dendrimers, the constituent residues would carry positive charges. The resultant inter-residue Coulomb repulsion would naturally result in conformational evolution. We found from CVSANS analysis that when dendrimers are charged by different acids, this conformational evolution is not the same. For dendrimers charged by DCl, the mass is seen to relocate from molecular interior to periphery. Nevertheless, those acidified by D 2SO4 exhibit surprisingly minor structural change under variation of molecular charge. To explain the above observation, we performed MD simulations and calculated the excess free energy of Cl- and SO 42- counterions. The binding between sulfate ions and charged amines of PAMAM dendrimers are found to be much stronger than the case for chlorides. This more energetic binding would serve as better screening effect among charged residues. Consequently, electrostatic repulsion triggered outstretching tendency is effectively diminished. In order to make direct comparison between MD simulations and neutron scattering experiments, we proposed and implemented a rigorous method, which incorporates the contribution from those invasive water molecules, to calculate scattering functions of a single PAMAM dendrimer using equilibrium MD trajectories. The bridge between neutron scattering experiments and MD simulation is successfully established. Aside from structural comparisons between MD simulations and experiments, we utilized MD simulation to decipher the previously reported QENS experimental observation that the segmental dynamics of PAMAM dendrimer would enhance with increasing molecular charge. We pursued the mechanism from the perspective of hydrocarbon component of dendrimer and solvent (water) interaction as a form similar to hydrogen bonding. It is found that the population of this bonding would increase and the corresponding relaxation would slow down as molecular charge increases. We perceive that through more and longer interaction between penetrating water molecules and polymeric part of dendrimer, the dynamics of latter could be enhanced.

  18. Preparation, Structural and Dielectric Behaviors of CoxMn1-xMn2O4 (0 ≤ x ≤ 1) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Taufiq, A.; Muzammil, M.; Fuad, A.; Hidayat, N.; Sunaryono, S.; Mufti, N.; Hidayat, A.; Diantoro, M.; Munasir, M.

    2018-05-01

    Cobalt-manganese oxide nanoparticles become remarkable metal oxides due to their physical characters, for example, their electrical properties. In this paper, we report the synthesis of Co x Mn1-x Mn2O4 (0 ≤ x ≤ 1) nanoparticles via a precipitation method. The structural and dielectric properties were investigated by means of X-ray diffractometer (XRD) and LCR-meter. From the data analysis, it was found that the Co x Mn1-x Mn2O4 particles structured spinel cubic with the particle size ranging from 22.7 to 28.6 nm. Increasing Co2+ ions led to declining lattice and crystal volume of the Co x Mn1-x Mn2O4 nanoparticles. Such phenomenon was originated from the substitution process of Co2+ ions that change the metal construction both at the octahedral and tetrahedral sites. Furthermore, the Co2+ ion substitution resulted in an increase in the dielectric properties of the Co x Mn1-x Mn2O4 nanoparticles regarding with dipole moment. Interestingly, the increase was also influenced by reducing the particle size and crystal volume of the Co x Mn1-x Mn2O4 nanoparticles.

  19. The development of a new optical sensor based on the Mn doped ZnS quantum dots modified with the molecularly imprinted polymers for sensitive recognition of florfenicol

    NASA Astrophysics Data System (ADS)

    Sadeghi, Susan; Jahani, Moslem; Belador, Foroogh

    2016-04-01

    The Mn doped ZnS quantum dots (Mn:ZnS QDs) capped with the florfenicol molecularly imprinted polymer (Mn:ZnS QDs@MIP) were prepared via the sol-gel surface imprinting approach using 3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross-linker for the optosensing of the florfenicol. Transmission electron microscopy (TEM), X-ray diffractometer, IR spectroscopy, UV-Vis absorption spectrophotometry, and spectrofluorometry were used to elucidate the formation, morphology, and identification of the products. To illustrate the usefulness of the new imprinted material, the non-imprinted coated Mn:ZnS QDs (Mn:ZnS QDs@NIP) were synthesized without the presence of the florfenicol. It was revealed that the fluorescence (FL) intensity of the Mn:ZnS QDs@MIP increased with increasing the FF concentration. Under the optimal conditions, changes in the FL intensity in the presence of the target molecule showed a linear response in the concentration range of 30-700 μmol L- 1 with a detection limit of 24 μmol L- 1. The developed method was finally applied successfully to the determination of FF in different meat samples with satisfactory recoveries.

  20. The development of a new optical sensor based on the Mn doped ZnS quantum dots modified with the molecularly imprinted polymers for sensitive recognition of florfenicol.

    PubMed

    Sadeghi, Susan; Jahani, Moslem; Belador, Foroogh

    2016-04-15

    The Mn doped ZnS quantum dots (Mn:ZnS QDs) capped with the florfenicol molecularly imprinted polymer (Mn:ZnS QDs@MIP) were prepared via the sol-gel surface imprinting approach using 3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross-linker for the optosensing of the florfenicol. Transmission electron microscopy (TEM), X-ray diffractometer, IR spectroscopy, UV-Vis absorption spectrophotometry, and spectrofluorometry were used to elucidate the formation, morphology, and identification of the products. To illustrate the usefulness of the new imprinted material, the non-imprinted coated Mn:ZnS QDs (Mn:ZnS QDs@NIP) were synthesized without the presence of the florfenicol. It was revealed that the fluorescence (FL) intensity of the Mn:ZnS QDs@MIP increased with increasing the FF concentration. Under the optimal conditions, changes in the FL intensity in the presence of the target molecule showed a linear response in the concentration range of 30-700 μmol L(-1) with a detection limit of 24 μmol L(-1). The developed method was finally applied successfully to the determination of FF in different meat samples with satisfactory recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Structural characterization of semicrystalline polymer morphologies by imaging-SANS

    NASA Astrophysics Data System (ADS)

    Radulescu, A.; Fetters, L. J.; Richter, D.

    2012-02-01

    Control and optimization of polymer properties require the global knowledge of the constitutive microstructures of polymer morphologies in various conditions. The microstructural features can be typically explored over a wide length scale by combining pinhole-, focusing- and ultra-small-angle neutron scattering (SANS) techniques. Though it proved to be a successful approach, this involves major efforts related to the use of various scattering instruments and large amount of samples and the need to ensure the same crystallization kinetics for the samples investigated at various facilities, in different sample cell geometries and at different time intervals. With the installation and commissioning of the MgF2 neutron lenses at the KWS-2 SANS diffractometer installed at the Heinz Maier-Leibnitz neutron source (FRMII reactor) in Garching, a wide Q-range, between 10-4Å-1 and 0.5Å-1, can be covered at a single instrument. This enables investigation of polymer microstructures over a length scale from lnm up to 1μm, while the overall polymer morphology can be further examined up to 100μm by optical microscopy (including crossed polarizers). The study of different semi-crystalline polypropylene-based polymers in solution is discussed and the new imaging-SANS approach allowing for an unambiguous and complete structural characterization of polymer morphologies is presented.

  2. Temperature dependence of field-responsive mechanisms in lead zirconate titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Ching-Chang; Fancher, Chris M.; Isaac, Catherine

    2017-05-17

    An electric field loading stage was designed for use in a laboratory diffractometer that enables in situ investigations of the temperature dependence in the field response mechanisms of ferroelectric materials. The stage was demonstrated in this paper by measuring PbZr 1-xTi xO 3 (PZT) based materials—a commercially available PZT and a 1% Nb-doped PbZr 0.56Ti 0.44O 3 (PZT 56/44)—over a temperature range of 25°C to 250°C. The degree of non-180° domain alignment (η 002) of the PZT as a function of temperature was quantified. η 002 of the commercially available PZT increases exponentially with temperature, and was analyzed as amore » thermally activated process as described by the Arrhenius law. The activation energy for thermally activated domain wall depinning process in PZT was found to be 0.47 eV. Additionally, a field-induced rhombohedral to tetragonal phase transition was observed 5°C below the rhombohedral-tetragonal transition in PZT 56/44 ceramic. The field-induced tetragonal phase fraction was increased 41.8% after electrical cycling. Finally, a large amount of domain switching (η 002=0.45 at 1.75 kV/mm) was observed in the induced tetragonal phase.« less

  3. A novel perovskite-like Ta-bronze KTa1+zO3: preparation, stoichiometry, conductivity and crystal structure studies.

    PubMed

    Arakcheeva, A; Chapuis, G; Grinevitch, V; Shamray, V

    2001-04-01

    A new cubic Ta-bronze (1) KTa(1+z)(+(5-delta))O(3) [z approximately 0.107 (3)] was obtained on a cathode by molten salt electrolysis of the system K(2)TaOF(5)-K(3)TaO(2)F(4)-(KF + NaF + LiF)(eutectic). Black, metallic cubic crystals of (1) are formed together with tetragonal beta-Ta. The perovskite-like crystal structure of (1) [a = 4.005 (1) A, space group Pm3m] was refined with anharmonic displacement parameters for Ta and K atoms and anisotropic displacement parameters for a split O-atom position [KM4CCD diffractometer; lambda(Mo Kalpha); 3320 measured reflections with I > 3sigma(I); R = 0.0095, wR = 0.0065, Deltarho(min) = -0.91 e A(-3), Deltarho(max) = 0.65 e A(-3)]. Defects in the O and K atomic positions were found. (1) is a semiconductor in the temperature range 4-300 K, whereas the well studied and closely related colourless transparent crystals KTa(+5)O(3) (2) are dielectric. Differences in the properties of (1) and (2) are assumed to be connected with the existence of Ta dumb-bells statistically distributed into the KTaO(3) matrix.

  4. Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering

    NASA Astrophysics Data System (ADS)

    Senol, Abdulkadir; Gulen, Mahir; Yildirim, Gurcan; Ozturk, Ozgur; Varilci, Ahmet; Terzioglu, Cabir; Belenli, Ibrahim

    2013-03-01

    In this study, we investigate the effect of annealing temperature on electrical, optical and microstructural properties of indium tin oxide (ITO) films deposited onto Soda lime glass substrates by conventional direct current (DC) magnetron reactive sputtering technique at 100 watt using an ITO ceramic target (In2O3:SnO2, 90:10 wt. %) in argon atmosphere at room temperature. The films obtained are exposed to the calcination process at different temperature up to 700 ° C. Resistivity, Hall Effect, X-ray diffractometer (XRD), ultra violet-visible spectrometer (UV-vis) and atomic force microscopy (AFM) measurements are performed to characterize the samples. Moreover, phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. Furthermore, mobility, carrier density and conductivity characteristics of the samples prepared are carried out as function of temperature in the range of 80-300 K at the magnetic field of 0.550 T. The results obtained show that all the properties depend strongly on the annealing temperature and in fact the film annealed at 400 ° C obtains the better optical properties due to the high refractive index while the film produced at 100 °C exhibits much better photoactivity than the other films as a result of the large optical energy band gap.

  5. Effect of Sc{sup 3+} on structural and magnetic properties of Mn-Zn nano ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angadi, Jagadeesha V.; Matteppanavar, Shidaling; Srinatha, N.

    2016-05-23

    In the present investigation, for the first time, we report on the effect of Sc{sup 3+} on the structural and magnetic properties of Mn{sub 0.5}Zn{sub 0.5}Sc{sub y}Fe{sub 2-y}O{sub 4} (y = 0.01, 0.03 and 0.05) nanoferrites synthesized by solution combustion method using the mixture of fuels. As synthesized powders were characterized for the detailed structural analysis by X-ray diffractometer (XRD), Fourier transmission infrared spectroscopy (FTIR) and room temperature magnetic properties by using vibrating sample magnetometer (VSM). The results of XRD and FTIR confirm that the formation of nano crystalline, single-phased Mn-Zn ferrite with cubic spinel structure belongs to Fd-3m spacemore » group. The room temperature magnetic studies shows that, the saturation magnetization (M{sub S}), remanence magnetization (M{sub R}) and magnetic moment (η{sub B}), magnetic particle size (D{sub m}) have found to increase with Sc{sup 3+} ion concentration up to x = 0.3 and then decrease. The values of αY-K and the magnetic particle size (D{sub m}) are found to be in the range of 68-75° and 10-19 nm respectively, with Sc{sup 3+} concentration.« less

  6. A Nanoporous Carbon/Exfoliated Graphite Composite For Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Rosi, Memoria; Ekaputra, Muhamad P.; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2010-12-01

    Nanoporous carbon was prepared from coconut shells using a simple heating method. The nanoporous carbon is subjected to different treatments: without activation, activation with polyethylene glycol (PEG), and activation with sodium hydroxide (NaOH)-PEG. The exfoliated graphite was synthesized from graphite powder oxidized with zinc acetate (ZnAc) and intercalated with polyvinyl alcohol (PVA) and NaOH. A composite was made by mixing the nanoporous carbon with NaOH-PEG activation, the exfoliated graphite and a binder of PVA solution, grinding the mixture, and annealing it using ultrasonic bath for 1 hour. All of as-synthesized materials were characterized by employing a scanning electron microscope (SEM), a MATLAB's image processing toolbox, and an x-ray diffractometer (XRD). It was confirmed that the composite is crystalline with (002) and (004) orientations. In addition, it was also found that the composite has a high surface area, a high distribution of pore sizes less than 40 nm, and a high porosity (67%). Noting that the pore sizes less than 20 nm are significant for ionic species storage and those in the range of 20 to 40 nm are very accessible for ionic clusters mobility across the pores, the composite is a promising material for the application as supercapacitor electrodes.

  7. Optical and structural properties of cadmium telluride films grown by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Ehsani, M. H.; Rezagholipour Dizaji, H.; Azizi, S.; Ghavami Mirmahalle, S. F.; Siyanaki, F. Hosseini

    2013-08-01

    Cadmium telluride films were grown by the glancing angle deposition (GLAD) technique. The samples were prepared under different incident deposition flux angles (α = 0°, 20° and 70° measured from the normal to the substrate surface). During deposition, the substrate temperature was maintained at room temperature. The structural study was performed using an x-ray diffraction diffractometer. The samples were found to be poly-crystalline with cubic structure for those deposited at α = 0° and 20° and hexagonal structure for the one deposited at 70°. The images of samples obtained by the field emission scanning electron microscopy technique showed that the GLAD method could produce a columnar layer tilted toward the incident deposition flux. The optical properties study by the UV-Vis spectroscopy technique showed that the use of this growth technique affected the optical properties of the films. A higher absorption coefficient in the visible and near-IR spectral range was observed for the sample deposited at α = 70°. This is an important result from the photovoltaic applications point of view where absorber materials with large absorption coefficients are needed. Also, it seems that the sample with a high incident deposition flux angle has the capability of making an n-CdTe/p-CdTe homo-junction.

  8. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Chandra Babu Naidu, K.; Madhuri, W.

    2016-12-01

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni-Mg ferrites of general chemical formula Ni1-xMgxFe2O4 (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K-873 K and 42 Hz-5 MHz.

  9. Microstructure and Microhardness of 17-4PH Deposited with Co-based Alloy Hardfacing Coating

    NASA Astrophysics Data System (ADS)

    Deng, D. W.; Zhang, C. P.; Chen, R.; Xia, H. F.

    Hardfacing is widely used to improve the performance of components exposed to severe service conditions. In this paper, the surface modification was evaluated for precipitation hardening martensitic stainless steel 17-4PH deposited with Co-based alloy stellite12 by the plasma-transferred arc welding (PTAW). The microstructure and microhardness of coating and heat affected zone(HAZ) of base metal were characterized by optical microscope (OM), scanning electron scanning microscope (SEM), X-ray diffractometer and hardness tester. The results show that the interface between weld metal and base metal is favorable without pore and crack, at the same time elements diffusion is observed in the fusion area. However, as the distance from the interface increases, HAZ comprises three different microstructural zones, namely, zones of coarse overheated structures, quenching martensite and martensite, ferrite. The microhardness decreases gradually from the HAZ near interface to the base metal, except the zone of coarse overheated structures. The microhardness of the coating improves a lot and fluctuates in a definitive range, and microstructural gradient is observed including the fusion area (the planar region and the bulky dendrite in a direction perpendicular to the weld interface), the transition zone (the dendrite in a multi-direction way) and the fine grain zone near the surface in the coating (fine equiaxial structure).

  10. Fabrication of magnetic alginate beads with uniform dispersion of CoFe2O4 by the polydopamine surface functionalization for organic pollutants removal

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Lu, Haijun; Zhang, Yun; He, Fu; Jing, Lingyun; He, Xinghua

    2016-12-01

    A simple and efficient method for production of magnetic composites by decorating CoFe2O4 with polydopamine (PDA) through oxidative polymerization of dopamine was conducted. Further, magnetic alginate beads with porous structure containing well-dispersed CoFe2O4-PDA were fabricated by ionic crosslinking technology. The resulting SA@CoFe2O4-PDA beads were characterized using scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffractometer, vibrating sample magnetometer and X-ray photoelectron spectroscopy. Adsorption potential of SA@CoFe2O4-PDA beads for organic dyes including Methylene Blue (MB), Crystal Violet (CV) and Malachite Green (MG) was evaluated. SA@CoFe2O4-PDA beads exhibited excellent adsorption performances due to the composite effect, large surface area and porous structure. Organic dyes could be removed from water solution with high efficiency in a wide pH range of 4.0-9.0. Moreover, it exhibited much higher adsorptivity towards MB and CV with the maximum adsorption capacities of 466.60 and 456.52 mg/g, respectively, which were much higher than that of MG (248.78 mg/g). Ca-electrolyte had obvious adverse effects on MB and CV adsorption than MG. FTIR and XPS demonstrated that carboxylate, catechol, hydroxyl and amine groups might be involved in adsorption of organic dyes. The characteristics of wide pH range, high adsorption capacity and convenient magnetic separation would make SA@CoFe2O4-PDA beads as effective adsorbent for removal of organic dyes from wastewater.

  11. Koster van Groos, A F

    NASA Astrophysics Data System (ADS)

    Guggenheim, S.

    2008-12-01

    The deep-ocean environment, including the ocean floor and crust, represents one of the last scientific frontiers on earth. The surprising lack of information on the mineralogy, the geochemical processes, or the biota of the ocean floor is the result of the inability to simulate ocean-floor conditions and to study geochemical systems at these conditions. A proto-type high-pressure environmental chamber (HPEC) has been constructed for use on a transmission- mode X-ray diffractometer to study geochemical processes at the deep-ocean sediment cover and crust. The HPEC has a designed pressure range to 1000 bars and temperature range from -20 oC to 200 oC. In this chamber, a liquid (e.g., sea water) plus sample in suspension can be pressurized either by gas or liquid. A cell-pump system continuously agitates the liquid to keep particles in suspension, thereby allowing the examination of mineral phases, including clays minerals. A major feature of the HPEC is that the mineral component moves freely and can react with its environment while being illuminated by the X-ray beam. The cell-pump also allows applied gas, such as CH4 or CO2, or O2, to interact efficiently with the aqueous liquid so that the system may rapidly reach equilibrium. In addition, mixing these gases with inert gases, e.g. He or Ar, allows control of the fugacity of these gas components. The design components and how data are manipulated to remove X-ray dispersion effects caused by the liquid will be discussed, along with examples showing the effects of temperature, pressure, and salt content on smectite clay.

  12. Ternary aurides La4In3Au10 and Yb4In3Au10 and platinide U4In3Pt10 with ordered Zr7Ni10 type structure

    NASA Astrophysics Data System (ADS)

    Muts, Ihor; Kharkhalis, Anton; Hlukhyy, Viktor; Kaczorowski, Dariusz; Rodewald, Ute Ch.; Pöttgen, Rainer; Zaremba, Vasyl` I.

    2017-09-01

    The ternary aurides La4In3Au10 and Yb4In3Au10 and the platinide U4In3Pt10 with ordered Zr7Ni10 type structure were synthesized from the elements by induction-melting in sealed tantalum tubes or via arc-melting. The polycrystalline samples were characterized by powder X-ray diffraction and the structures were refined from single crystal X-ray diffractometer data: Cmce, a = 1426.7(3), b = 1020.3(2), c = 1025.2(2) pm, wR2 = 0.0441, 1510 F2 values, 46 variables for La4In3Au10, a = 1361.5(3), b = 998.3(2), c = 1007.8(2), wR2 = 0.0804, 1404 F2 values, 46 variables for Yb4In3Au10 and a = 1344.4(3), b = 973.9(2), c = 978.9(2), wR2 = 0.0922, 741 F2 values, 48 variables for U4.15In3.03Pt9.82 (with small degrees of In/U, respectively Pt/In mixing on Wyckoff sites 4a and 8 f). The La4In3Au10, Yb4In3Au10 and U4In3Pt10 structures contain pronounced two-dimensional gold, respectively platinum substructures which are filled and condensed by two crystallographically independent indium and rare earth atoms. The crystal chemical features clearly classify these intermetallics as aurides and platinides. The physical properties of U4In3Pt10 were characterized by means of magnetic and electrical transport measurements. The compound exhibits metallic conductivity and shows no magnetic ordering down to 1.72 K. Its magnetic behavior is governed by hybridization between 5f and ligand electrons that results in significant delocalization of the 5f states.

  13. Bent silicon strip crystals for high-energy charged particle beam collimation

    NASA Astrophysics Data System (ADS)

    Germogli, G.; Mazzolari, A.; Guidi, V.; Romagnoni, M.

    2017-07-01

    For applications in high energy particles accelerators, such as the crystal-assisted beam collimation, several strip crystals exploiting anticlastic curvature were produced in the last decade at the Sensor and Semiconductor Laboratory (SSL) of Ferrara by means of revisited techniques for silicon micromachining, such as photolitography and wet etching. Those techniques were recently enhanced by introducing a further treatment called Magnetorheological Finishing (MRF), which allowed to fabricate crystals with ultraflat surface and miscut very close to zero. The technology of the mechanical devices used to hold and bend crystals has been also improved by employing a titanium alloy to realize the holders. Characterization method were also improved: the usage of a high resolution X-rays diffractometer was introduced to directly measure crystal bending and torsion. Accuracy of the diffractometer was furtherly enhanced with an autocollimator, which found an important application in miscut characterization. A new infrared light interferometer was used to map the thickness of the starting swafers with sub-micrometric precision, as well as to measure the length along the beam of the strips. Crystals were characterized at the H8 external lines of CERN-SPS with various hundreds-GeV ion beams, which gave results in agreement with the precharacterization performed at SSL. One strip was selected among the crystals to be installed in the LHC beam pipe during the Long Shutdown 1 in 2014. These crystals were very recently tested in a crystal-assisted collimation experiment with a 6.5 TeV proton beam, resulting in the first observation of channeling at this record energy, being also the first observation of channeling of the beam circulating in the LHC.

  14. Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction

    DOE PAGES

    Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn; ...

    2018-04-30

    In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less

  15. Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn

    In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less

  16. Early Years of Neutron Scattering and Its Manpower Development in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsongkohadi

    In this paper I shall give a short history of the development of neutron scattering at the Research Centre for Nuclear Techniques (PPTN), in Bandung, and the early development of a more advanced facilities at the Neutron Scattering Laboratory (NSL BATAN), Centre of Technology for Nuclear Industrial Materials, in Serpong. The first research reactor in Indonesia was the TRIGA MARK II in Bandung, which became operational in 1965, with a power of 250 KW, upgraded to 1 MW in 1971, and to 2 MW in 2000. The neutron scattering activities was started in 1967, with the design and construction ofmore » the first powder diffractometer, and put in operation in 1970. It was followed by the second instrument, the filter detector spectrometer built in 1975 in collaboration with the Bhabha Atomic Research Centre (BARC), India. A powder diffractometer for magnetic studies was built in 1980, and finally, a modification of the filter detector spectrometer to measure textures was made in 1986. A brief description of the design and construction of the instruments, and a highlight of some research topics will be presented. Early developments of neutron scattering activities at the 30 MW, RSG-GAS reactor in Serpong in choosing suitable research program, which will be mainly centred around materials testing/characterization, and materials/condensed matter researches has been agreed. Instrument planning and layout which were appropriate to carry out the program had been decided. Manpower development for the neutron scattering laboratory is a severe problem. The efforts to overcome this problem has been solved. International Cooperation through workshops and on the job trainings also support the supply of qualified manpower.« less

  17. Quantitative phase analysis of challenging samples using neutron powder diffraction. Sample #4 from the CPD QPA round robin revisited

    DOE PAGES

    Whitfield, Pamela S.

    2016-04-29

    Here, quantitative phase analysis (QPA) using neutron powder diffraction more often than not involves non-ambient studies where no sample preparation is possible. The larger samples and penetration of neutrons versus X-rays makes neutron diffraction less susceptible to inhomogeneity and large grain sizes, but most well-characterized QPA standard samples do not have these characteristics. Sample #4 from the International Union of Crystallography Commission on Powder Diffraction QPA round robin was one such sample. Data were collected using the POWGEN time-of-flight (TOF) neutron powder diffractometer and analysed together with historical data from the C2 diffractometer at Chalk River. The presence of magneticmore » reflections from Fe 3O 4 (magnetite) in the sample was an additional consideration, and given the frequency at which iron-containing and other magnetic compounds are present during in-operando studies their possible impact on the accuracy of QPA is of interest. Additionally, scattering from thermal diffuse scattering in the high-Qregion (<0.6 Å) accessible with TOF data could impact QPA results during least-squares because of the extreme peak overlaps present in this region. Refinement of POWGEN data was largely insensitive to the modification of longer d-spacing reflections by magnetic contributions, but the constant-wavelength data were adversely impacted if the magnetic structure was not included. A robust refinement weighting was found to be effective in reducing quantification errors using the constant-wavelength neutron data both where intensities from magnetic reflections were ignored and included. Results from the TOF data were very sensitive to inadequate modelling of the high- Q (low d-spacing) background using simple polynomials.« less

  18. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE PAGES

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; ...

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr 64Ni 36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less

  19. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauro, N. A., E-mail: namauro@noctrl.edu; Vogt, A. J.; Derendorf, K. S.

    2016-01-15

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)« less

  20. Plasma-induced damage of tungsten coatings on graphite limiters

    NASA Astrophysics Data System (ADS)

    Fortuna, E.; Rubel, M. J.; Psoda, M.; Andrzejczuk, M.; Kurzydowski, K. J.; Miskiewicz, M.; Philipps, V.; Pospieszczyk, A.; Sergienko, G.; Spychalski, M.; Zielinski, W.

    2007-03-01

    Vaccum plasma sprayed tungsten coatings with an evaporated sandwich Re-W interlayer on graphite limiter blocks were studied after the experimental campaign in the TEXTOR tokamak. The coating morphology was modified by high-heat loads and co-deposition of species from the plasma. Co-deposits contained fuel species, carbon, boron and silicon. X-ray diffractometer phase analysis indicated the coexistence of metallic tungsten and its carbides (WC and W2C) and boride (W2B). In the Re-W layer the presence of carbon was detected in a several micrometres thick zone. In the overheated part of the limiter, the Re-W layer was transformed into a sigma phase.

  1. A comparison of techniques for nondestructive composition measurements in CdZnTe substrates

    NASA Astrophysics Data System (ADS)

    Tobin, S. P.; Tower, J. P.; Norton, P. W.; Chandler-Horowitz, D.; Amirtharaj, P. M.; Lopes, V. C.; Duncan, W. M.; Syllaios, A. J.; Ard, C. K.; Giles, N. C.; Lee, Jaesun; Balasubramanian, R.; Bollong, A. B.; Steiner, T. W.; Thewalt, M. L. W.; Bowen, D. K.; Tanner, B. K.

    1995-05-01

    We report an overview and a comparison of nondestructive optical techniques for determining alloy composition x in Cd1-xZnxTe substrates for HgCdTe epitaxy. The methods for single-point measurements include a new x-ray diffraction technique for precision lattice parameter measurements using a standard highresolution diffractometer, room-temperature photoreflectance, and low-temperature photoluminescence. We compare measurements on the same set of samples by all three techniques. Comparisons of precision and accuracy, with a discussion of the strengths and weaknesses of different techniques, are presented. In addition, a new photoluminescence excitation technique for full-wafer imaging of composition variations is described.

  2. Martensitic transformation and phase diagram in ternary Co-V-Ga Heusler alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagashima, Akihide; Nagasako, Makoto; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2017-03-01

    We report the martensitic transformation behavior in Co-V-Ga Heusler alloys. Thermoanalysis and thermomagnetization measurements were conducted to observe the martensitic transformation. By using a transmission electron microscope and an in situ X-ray diffractometer, martensitic transformation was found to occur from the L21 Heusler parent phase to the D022 martensite phase. Phase diagrams were determined for two pseudo-binary sections where martensitic transformation was detected. Magnetic properties, including the Curie temperatures and spontaneous magnetization of the parent phase, were also investigated. The magnetic properties showing behaviors different from those of NiMn-based alloys were found.

  3. Electrochromic TiO2 Thin Film Prepared by Dip-Coating Technique

    NASA Astrophysics Data System (ADS)

    Suriani, S.; Kamisah, M. M.

    2002-12-01

    Titanium dioxide (TiO2) thin films were prepared by using sol-gel dip coating technique. The coating solutions were prepared by reacting titanium isopropoxide as precursors and ethanol as solvent. The films were formed on transparent ITO-coated glass by a dip coating technique and final dried at various temperatures up to 600 °C for 30 minutes. The films were characterized with the UV-Vis-NIR Spectrometer, Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). XRD results show that the films dried at 600 °C form anatase structure. From the spectroscopic studies, the sample shows electrochromic property.

  4. Structural and magnetic analysis of Cu, Co substituted NiFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Hakikat; Bala, Kanchan; Negi, N. S.

    2016-05-01

    In the present work we prepared NiFe2O4, Ni0.95Cu0.05Fe2O4 and Ni0.94Cu0.05Co0.01 Fe2O4 thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).

  5. Improved structural integrity through advances in reliable residual stress measurement: the impact of ENGIN-X

    NASA Astrophysics Data System (ADS)

    Edwards, L.; Santisteban, J. R.

    The determination of accurate reliable residual stresses is critical to many fields of structural integrity. Neutron stress measurement is a non-destructive technique that uniquely provides insights into stress fields deep within engineering components and structures. As such, it has become an increasingly important tool within engineering, leading to improved manufacturing processes to reduce stress and distortion as well as to the definition of more precise lifing procedures. This paper describes the likely impact of the next generation of dedicated engineering stress diffractometers currently being constructed and the utility of the technique using examples of residual stresses both beneficial and detrimental to structural integrity.

  6. Electrical and magnetic properties of nano-sized magnesium ferrite

    NASA Astrophysics Data System (ADS)

    T, Smitha; X, Sheena; J, Binu P.; Mohammed, E. M.

    2015-02-01

    Nano-sized magnesium ferrite was synthesized using sol-gel techniques. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. Vibration Sample Magnetometer was used to record the magnetic measurements. XRD analysis reveals the prepared sample is single phasic without any impurity. Particle size calculation shows the average crystallite size of the sample is 19nm. FTIR analysis confirmed spinel structure of the prepared samples. Magnetic measurement study shows that the sample is ferromagnetic with high degree of isotropy. Hysterisis loop was traced at temperatures 100K and 300K. DC electrical resistivity measurements show semiconducting nature of the sample.

  7. Electrochemical fabrication of SrTiO3 nanowires with nanoporous alumina template.

    PubMed

    Kang, Jinwook; Ryu, Jaemin; Ko, Eunseong; Tak, Yongsug

    2007-11-01

    Strontium titanate nanowires were electrochemically synthesized with nanoporous alumina template. Both chemical and electrical variables such as electrolyte pH, temperature, and current waveform were modulated to investigate the synthesis process of SrTiO3 nanowires. Superimposed cathodic pulse and diffusion time accelerated the growth of SrTiO3 nanowires, which suggested that the concentration of H+ and Sr2+ ion inside alumina template had a strong influence on the formation of SrTiO3 nanowires. Morphology and crystallinity of SrTiO3 nanowires were investigated with scanning electron microscope, X-ray diffractometer and energy dispersive X-ray spectroscopy.

  8. Removal of heavy metal Cu(II) in simulated aquaculture wastewater by modified palygorskite.

    PubMed

    Cao, Jia-Shun; Wang, Cheng; Fang, Fang; Lin, Jun-Xiong

    2016-12-01

    Palygorskite (PAL) is a good heavy metal adsorbent due to its high surface area, low cost, and environmentally compatibility. But the natural PAL has limited its adsorption capacity and selectivity. In this study, a cost-effective and readily-generated absorbent, l-threonine-modified palygorskite (L-PAL), was used and its performance for Cu(II) removal in simulated aquaculture wastewater was evaluated. After preparation, L-PAL was characterized by using Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis. The impacts of pH, adsorbent dosage, contact time, and initial Cu(II) concentration on the adsorption capacity of L-PAL were examined. The Cu(II) adsorption capacity on L-PAL was enhanced almost 10 times than that of raw PAL. The adsorption isotherms of Cu(II) fit the Langmuir isotherms, and the adsorption kinetics was dominated by the pseudo-second-order model. The thermodynamic parameters at four temperatures were calculated, which indicated that the adsorption was spontaneous and endothermic. The adsorption mechanism involves complexation, chelation, electrostatic attraction, and micro-precipitation. Furthermore, L-PAL is shown to have a high regeneration capacity. These results indicate that L-PAL is a cheap and promising absorbent for Cu(II) removal and hold potential to be used for aquaculture wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Structural studies on sweet taste inhibitors: lactisole, DL-2(4-methoxyphenoxy)-propanoic acid

    NASA Astrophysics Data System (ADS)

    Matholouthi, M.; Angiboust, J. F.; Kacurakova, M.; Hooft, R. W. W.; Kanters, J. A.; Kroon, J.

    1994-09-01

    Lactisole, DL-2-(4-methoxyphenoxy)-propanoic acid (HPMP) has the formula C 10O 4H 12, Mr = 196.20, and is monoclinic, C2/c. a = 34.944(5), b = 5.2146(14), c = 11.201(2) Å, β = 101.495(13)°, V = 2000.1(7) Å 3, Z = 8, Dx = 1.3031(5) mg m -3, λ(Mo Kα) = 0.71073 Å, μ = 0.9 cm -1, F(000) = 832, R = 0.0392 for 1468 unique observed diffractometer data ( I ⩾ 2.5σ( I)). In the molecule two planar fragments, the acetic acid group and the phenyl ring, are almost perpendicular (interplanar angle 80.4(1)°). The crystal structure is characterized by cyclic dimers formed by hydrogen bonds between carboxyl groups across centers of inversion. The sodium salt of lactisole, NaPMP, is also a selective inhibitor of the sweetness of sucrose and was studied in aqueous solution in order to elucidate the mechanism of sweet taste inhibition. Solution properties, FT-IR spectra and the effect of NaPMP on the structure of water as determined by Raman spectra in the region of the OH stretching vibration were investigated. The hydrophobicity of NaPMP together with the steric hindrance caused by this molecule at the entrance of the sweet taste receptor site are probably at the origin of its inhibitory effect.

  10. Surface modifications of AISI 420 stainless steel by low energy Yttrium ions

    NASA Astrophysics Data System (ADS)

    Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito; Martina, Luigi

    2018-01-01

    In this work, we study surface modifications of AISI 420 stainless steel specimens in order to improve their surface properties. Oxidation resistance and surface micro-hardness were analyzed. Using an ion beam delivered by a Laser Ion Source (LIS) coupled to an electrostatic accelerator, we performed implantation of low energy yttrium ions on the samples. The ions experienced an acceleration passing through a gap whose ends had a potential difference of 60 kV. The gap was placed immediately before the samples surface. The LIS produced high ions fluxes per laser pulse, up to 3x1011 ions/cm2, resulting in a total implanted flux of 7x1015 ions/cm2. The samples were characterized before and after ion implantation using two analytical techniques. They were also thermally treated to investigate the oxide scale. The crystal phases were identified by an X-ray diffractometer, while the micro-hardness was assayed using the scratch test and a profilometer. The first analysis was applied to blank, implanted and thermally treated sample surface, while the latter was applied only to blank and implanted sample surfaces. We found a slight increase in the hardness values and an increase to oxygen resistance. The implantation technique we used has the advantages, with respect to conventional methods, to modify the samples at low temperature avoiding stray diffusion of ions inside the substrate bulk.

  11. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers

    PubMed Central

    Benea, Lidia; Celis, Jean-Pierre

    2016-01-01

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers. PMID:28773395

  12. Ordering of cations in the voids of the anionic framework of the crystal structure of catapleiite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakubovich, O. V., E-mail: yakubol@geol.msu.ru; Karimova, O. V.; Ivanova, A. G.

    2013-05-15

    The pseudohexagonal crystal structure of the mineral catapleiite Na{sub 1.5}Ca{sub 0.2}[ZrSi{sub 3}(O,OH){sub 9}] {center_dot} 2(H{sub 2}O,F) from the Zhil'naya Valley in the central part of the Khibiny alkaline massif (Kola Peninsula, Russia) is studied by X-ray diffraction (XCalibur-S diffractometer, R = 0.0346): a = 20.100(4), b = 25.673(5), and c = 14.822(3) A; space group Fdd2, Z = 32, and {rho}{sub calcd} = 2.76 g/cm{sup 3}. Fluorine atoms substituting part of H{sub 2}O molecules in open channels of the crystal structure have been found for the first time in the catapleiite composition by microprobe analysis. The pattern of distribution ofmore » Na and Ca atoms over the voids of the mixed anionic framework consisting of Zr-octahedra and three-membered rings of Si-tetrahedra accounts for the pronounced pseudoperiodicity along the a and c axes of the pseudohexagonal unit cell and for the lowering of crystal symmetry to the orthorhombic one. It is shown that part of the hydrogen atoms of water molecules is statistically disordered; their distribution correlates with the pattern of the population of large eight-vertex polyhedra by Na and Ca atoms.« less

  13. Multiaxial constitutive behavior of an interstitial-free steel: Measurements through X-ray and digital image correlation

    PubMed Central

    Jeong, Y.; Iadicola, M.A.; Gnäupel-Herold, T.; Creuziger, A.

    2017-01-01

    Constitutive behaviors of an interstitial-free steel sample were measured using an augmented Marciniak experiment. In these tests, multiaxial strain field data of the flat specimens were measured by the digital image correlation technique. In addition, the flow stress was measured using an X-ray diffractometer. The flat specimens in three different geometries were tested in order to achieve 1) balanced biaxial strain, and plane strain tests with zero strain in either 2) rolling direction or 3) transverse direction. The multiaxial stress and strain data were processed to obtain plastic work contours with reference to a uniaxial tension test along the rolling direction. The experimental results show that the mechanical behavior of the subjected specimen deviates significantly from isotropic behavior predicted by the von Mises yield criterion. The initial yield loci measured by a Marciniak tester is in good agreement with what is predicted by Hill's yield criterion. However, as deformation increases beyond the vonMises strain of 0.05, the shape of the work contour significantly deviates from that of Hill's yield locus. A prediction made by a viscoplastic self-consistent model is in better agreement with the experimental observation than the Hill yield locus with the isotropic work-hardening rule. However, none of the studied models matched the initial or evolving anisotropic behaviors of the interstitial-free steel measured by the augmented Marciniak experiment. PMID:28690400

  14. Effect of mechanical alloying synthesis process on the dielectric properties of (Bi{sub 0.5}Na{sub 0.5}){sub 0.94}Ba{sub 0.06}TiO{sub 3} piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghazanfari, Mohammad Reza, E-mail: Ghazanfari.mr@gmail.com; Amini, Rasool; Shams, Seyyedeh Fatemeh

    Highlights: • MA samples show higher dielectric permittivity and Curie temperature. • In MA samples, dielectric loss is almost 27% less than conventional ones. • In MA samples, sintering time and temperature are lower than conventional ones. • In MA samples, particle morphology is more homogeneous conventional ones. • In MA samples, crystallite size is smaller conventional ones. - Abstract: In present work, in order to study the effects of synthesis techniques on dielectric properties, the BNBT lead-free piezoceramics with (Bi{sub 0.5}Na{sub 0.5}){sub 0.94}Ba{sub 0.06}TiO{sub 3} stoichiometry (called as BNBT6) were synthesized by mechanical alloying (MA) and conventional mixed oxidesmore » methods. The structural, microstructural, and dielectric properties were carried out by X-ray diffractometer (XRD), scanning electron microscope (SEM), and impedance analyzer LCR meter, respectively. Based on results, the density of MA samples is considerably higher than conventional samples owning to smaller particles size and more uniformity of particle shape of MA samples. Moreover, the dielectric properties of MA samples are comparatively improved in which the dielectric loss of these samples is almost 27% less than conventional ones. Furthermore, MA samples exhibit obviously higher dielectric permittivity and Curie temperature compared to the conventional samples.« less

  15. Structural differences between single crystal and polycrystalline UBe 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia

    Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less

  16. Multiaxial constitutive behavior of an interstitial-free steel: Measurements through X-ray and digital image correlation.

    PubMed

    Jeong, Y; Iadicola, M A; Gnäupel-Herold, T; Creuziger, A

    2016-06-15

    Constitutive behaviors of an interstitial-free steel sample were measured using an augmented Marciniak experiment. In these tests, multiaxial strain field data of the flat specimens were measured by the digital image correlation technique. In addition, the flow stress was measured using an X-ray diffractometer. The flat specimens in three different geometries were tested in order to achieve 1) balanced biaxial strain, and plane strain tests with zero strain in either 2) rolling direction or 3) transverse direction. The multiaxial stress and strain data were processed to obtain plastic work contours with reference to a uniaxial tension test along the rolling direction. The experimental results show that the mechanical behavior of the subjected specimen deviates significantly from isotropic behavior predicted by the von Mises yield criterion. The initial yield loci measured by a Marciniak tester is in good agreement with what is predicted by Hill's yield criterion. However, as deformation increases beyond the vonMises strain of 0.05, the shape of the work contour significantly deviates from that of Hill's yield locus. A prediction made by a viscoplastic self-consistent model is in better agreement with the experimental observation than the Hill yield locus with the isotropic work-hardening rule. However, none of the studied models matched the initial or evolving anisotropic behaviors of the interstitial-free steel measured by the augmented Marciniak experiment.

  17. Enhanced Adsorption of Selenium Ions from Aqueous Solution Using Iron Oxide Impregnated Carbon Nanotubes

    PubMed Central

    Bakather, Omer Y.; Khraisheh, Majeda; Nasser, Mustafa S.

    2017-01-01

    The aim of this research was to investigate the potential of raw and iron oxide impregnated carbon nanotubes (CNTs) as adsorbents for the removal of selenium (Se) ions from wastewater. The original and modified CNTs with different loadings of Fe2O3 nanoparticles were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffractometer (XRD), Brunauer, Emmett, and Teller (BET) surface area analyzer, thermogravimetric analysis (TGA), zeta potential, and energy dispersive X-ray spectroscopy (EDS). The adsorption parameters of the selenium ions from water using raw CNTs and iron oxide impregnated carbon nanotubes (CNT-Fe2O3) were optimized. Total removal of 1 ppm Se ions from water was achieved when 25 mg of CNTs impregnated with 20 wt.% of iron oxide nanoparticles is used. Freundlich and Langmuir isotherm models were used to study the nature of the adsorption process. Pseudo-first and pseudo-second-order models were employed to study the kinetics of selenium ions adsorption onto the surface of iron oxide impregnated CNTs. Maximum adsorption capacity of the Fe2O3 impregnated CNTs, predicted by Langmuir isotherm model, was found to be 111 mg/g. This new finding might revolutionize the adsorption treatment process and application by introducing a new type of nanoadsorbent that has super adsorption capacity towards Se ions. PMID:28555093

  18. Microstructure control of SOFC cathode material: The role of dispersing agent

    NASA Astrophysics Data System (ADS)

    Ismail, Ismariza; Jani, Abdul Mutalib Md; Osman, Nafisah

    2017-09-01

    In the present works, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode powders were synthesized by a sol-gel method with the aid of ethylene glycol which served as the dispersing agent. The phase formation and morphology of the powders were examined by X-Ray diffractometer (XRD) and field emission scanning electron microscopy (FESEM), respectively. The electrochemical properties of the synthesized cathode were obtained using an electrochemical impedance spectroscopy (EIS). The characteristic peaks for LSCF phase appears in the X-ray diffractogram after calcined at 500 °C and complete formation of LSCF single phase was attained at 700 °C. FESEM micrographs showed the presence of spherical particles of the powders with approximate particle size between 10 to 60 nm along with agglomerate morphologies. Well dispersed particles and fewer aggregates were observed for samples prepared with addition of ethylene glycol as the synthesizing aid. The surface area obtained for powder sample prepared with the aid of dispersing agent is 12.0 m2g-1. The EIS measurement results depicts a lower area specific resistance (ASR) obtained for sample prepared with addition of the ethylene glycol as compared to the pristine sample. The present results encourage the optimization of the cathode particle design in order to further improve the cathode performance.

  19. Structural differences between single crystal and polycrystalline UBe 13

    DOE PAGES

    Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia; ...

    2018-05-16

    Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less

  20. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Dai, Chang-Song; Wei, Jie; Wen, Zhao-Hui

    2012-11-01

    In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG-DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca10(PO4)6(OH)2) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40-110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS ≤ 0.25 g, nHA ≤ 2.0 g in 200 ml of a CS-acetic acid aqueous solution and nHA ≤ 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating obtained under the above optimal condition had a flake-like crystal structure. The EPD in the nHA/CS-acetic acid/ethanol suspension resulted in hydroxyapatite, chitosan, brushite (DCPD, CaHPO4·2H2O) and Ca(OH)2 in the coatings. After the as-prepared coating materials were immersed into PBS, Ca(OH)2 could be converted into HA and DCPD. The results of the electrochemical tests manifested that the corrosion resistance of the Mg alloy was improved by coating this composite film.

  1. YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeting, Christoph; Eckert, Hellmut; Langer, Thorsten

    2012-06-15

    The stannides YPdSn and YPd{sub 2}Sn were synthesized by high-frequency melting of the elements in sealed tantalum tubes. Both structures were refined on the basis of single crystal X-ray diffractometer data: TiNiSi type, Pnma, a=715.4(1), b=458.8(1), c=789.1(1) pm, wR2=0.0461, 510 F{sup 2} values, 20 variables for YPdSn and MnCu{sub 2}Al type, Fm3 Macron m, a=671.44(8), wR2=0.0740, 55 F{sup 2} values, 5 parameters for YPd{sub 2}Sn. The yttrium atoms in the new stannide YPdSn are coordinated by two tilted Pd{sub 3}Sn{sub 3} hexagons (ordered AlB{sub 2} superstructure). In the Heusler phase YPd{sub 2}Sn each yttrium atom has octahedral tin coordination andmore » additionally eight palladium neighbors. The cubic site symmetry of yttrium is reflected in the {sup 119}Sn Moessbauer spectrum which shows no quadrupole splitting. In contrast, YPdSn shows a single signal at {delta}=1.82(1) mm/s subjected to quadrupole splitting of {Delta}E{sub Q}=0.93(1) mm/s. Both compounds have been characterized by high-resolution {sup 89}Y solid state NMR spectroscopy, which indicates the presence of strong Knight shifts. The spectrum of YPd{sub 2}Sn is characterized by an unusually large linewidth, suggesting the presence of a Knight shift distribution reflecting local disordering effects. The range of {sup 89}Y Knight shifts of several binary and ternary intermetallic yttrium compounds is briefly discussed. - Graphical abstract: YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of ternary stannides YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopic investigation of YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 89}Y solid state NMR of intermetallics.« less

  2. Elastic behaviour and high-pressure phase transition of the P21/n LiAlGe2O6pyroxene

    NASA Astrophysics Data System (ADS)

    Artac, Andreas; Miletich-Pawliczek, Ronald; Nestola, Fabrizio; Redhammer, Günther J.; Secco, Luciano

    2014-05-01

    In a recent work by Redhammer et al. (2012), investigating a synthetic pyroxene sample with composition LiAlGe2O6, a new space group for the big family of pyroxenes has been surprisingly discovered renewing the interest for Li-bearing pyroxene compounds. Actually, the authors of that work intended to investigate the effect of the Si-Ge substitution on the high-pressure behaviour and possibly on the phase transition with respect to spodumene, LiAlSi2O6, investigated by Arlt and Angel in 2000. Spodumene in fact, not only shows a strong first order phase transition at 3.19 GPa from C2/c to P21/c but the low symmetry C2/c shows the greatest bulk modulus never found in pyroxenes (i.e. 144.2 GPa with the first pressure derivative fixed to 4). Redhammer et al. (2012) discovered that substituting Si for Ge in the spodumene structure the effect is dramatic in terms of symmetry change at room conditions with the Ge-spodumene showing a P21/n space group, first discovery of such symmetry in the big family of pyroxene. In this work we loaded one crystal of LiAlGe2O6 in a diamond-anvil cell and investigated the elastic behaviour and its possible high-pressure phase transition by single-crystal X-ray diffraction. In detail, we measured the unit-cell parameters using a Huber four-circle diffractometer equipped with a point detector up to about 9 GPa. The crystal structure was measured at different pressures loading simultaneously two fragments of the same crystal with a different orientation in the same diamond-anvil cell in order to cover a wider portion of the reciprocal space. The intensity data were measured on a STADI IV four-circle diffractometer equipped with a CCD using a diamond-backing plate cell, which gives better structural results with respect to a beryllium backing plate one (i.e. Periotto et al. 2011). The first important result of our work is that we found at about 5.2 GPa a very strong first-order phase transformation from P21/n to P21/c and this is the first discover of such a transition in pyroxenes. The volume discontinuity at the transition is marked by a big volume decrease reaching a variation of about 3.6% between 5.207 and 5.249 GPa. The entire volume decrease up to 9 GPa is of nearly 10%. The equation of states of the two symmetries P2/n and P21/c clearly show that the high pressure phase is slightly less compressible than the P21/n and this is an anomalous behaviour in Li-bearing pyroxenes, which usually show the higher symmetry phase having a higher compressibility (i.e. Nestola et al. 2008). Structural details and elasticity data will be discussed. References Arlt T., Angel R.J. (2000) Displacive phase transitions in C-centered clinopyroxenes: spodumene, LiScSi2O6 and ZnSiO3. Physics and Chemistry of Minerals, 27, 719-731. Periotto B., Nestola F., Balic-Zunic T., Angel R.J., Miletich R., Olsen L.A. (2011) Comparison between beryllium and diamond-backing plates in diamond-anvil cells: Application to single-crystal x-ray diffraction high-pressure data. Review of Scientific Instruments, 82, Article Number: 055111. Redhammer G.J., Nestola F., Miletich R. (2012) Synthetic LiAlGe2O6: the first pyroxene with P21/n symmetry. American Mineralogist, 97, 1213-1218. Nestola F., Boffa Ballaran T., Ohashi H. (2008) The high-pressure C2/c - P21/c phase transition along the LiAlSi2O6-LiGaSi2O6 solid solution. Physics and Chemistry of Minerals, 35, 477-484.

  3. Dielectric Properties of PMMA and its Composites with ZrO2

    NASA Astrophysics Data System (ADS)

    Sannakki, Basavaraja; Anita

    The polymer films of PMMA with different thickness and its composites with ZrO2 at various weight percentages but of same thickness have been studied. The determination of its dielectric properties, dielectric loss, a.conductivity and dielectric modulus were carried out using capacitance measurements of the above samples as a function of frequency, over the range 50 Hz - 5 MHz at room temperature. The films of PMMA and its composites have been characterized using X-Ray Diffractometer. The dielectric permittivity of films of PMMA behaves nonlinearly as frequency increases over the range 50-300 Hz, where as above 300 Hz the values of dielectric constant remains constant. But it is observed that the dielectric constant of PMMA increases as thickness of the film increases. In case of composite films of PMMA with ZrO2 the values of dielectric permittivity decreases gradually up to frequency of around 1 KHz and at higher frequencies it remains constant for all the weight percentages of ZrO2. The complex form of dielectric modulus of PMMA is obtained from the experimentally measured data of dielectric constant and dielectric loss values. The relaxation time of the orientation of dipoles is obtained from the peak value of angular frequency through the plots of imaginary part of electrical modulus as function of frequency. The impedance of PMMA polymer increases as thickness of the films increases. The a c conductivity of PMMA film remains constant up to frequency of 1 MHz and above. It shows a nonlinear phenomenon with peak values at frequency 4 MHz. Shape and size of the nanoparticles of composite film of PMMA with ZrO2 was analyzed by Field Emission Scanning Electron Microscope (FESEM).

  4. X-ray line profile analysis of BaTiO3 thin film prepared by sol-gel deposition

    NASA Astrophysics Data System (ADS)

    Ooi, Zeen Vee; Saif, Ala'eddin A.; Wahab, Yufridin; Jamal, Zul Azhar Zahid

    2017-04-01

    Barium titanate (BaTiO3) thin film was prepared using sol-gel method and spun-coated on SiO2/Si substrate. The phase and crystallinity of the synthesized film were identified using X-ray diffractometer (XRD), which scanned at the range of 20° to 60°. The phase and lattice parameters of the fabricated film were extracted from the recorded XRD patterns using lattice geometry equations. The crystallite size and lattice strain were determined using X-ray line profile analysis (XLPA) with various approaches. The Scherrer equation was applied to the perovskite peaks of the film to explore the size contribution on the peak broadening. Meanwhile, the Williamson-Hall and size-strain plot (SSP) methods were used to review two main independent contributions, i.e. crystallite sizes and lattice strain, on the X-ray line broadening. From the analysis, it is found that Scherrer method gives smallest crystallite size value by ignoring the strain-induced broadening effect. On the other hand, Williamson-Hall and SSP graphs revealed the existence of the lattice strain within the film, which contributes to the broadening in the Bragg peak. The results that analyzed via both techniques show a linear trend with all data points fitted. However, result obtained from SSP method gives better settlement due to the best fit of the data.

  5. Synthesis of one-dimensional gold nanostructures and the electrochemical application of the nanohybrid containing functionalized graphene oxide for cholesterol biosensing.

    PubMed

    Nandini, Seetharamaiah; Nalini, Seetharamaiah; Reddy, M B Madhusudana; Suresh, Gurukar Shivappa; Melo, Jose Savio; Niranjana, Pathappa; Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2016-08-01

    This manuscript reports a new approach for the synthesis of one dimensional gold nanostructure (AuNs) and its application in the development of cholesterol biosensor. Au nanostructures have been synthesized by exploiting β-diphenylalanine (β-FF) as an sacrificial template, whereas the Au nanoparticles (AuNPs) were synthesized by ultrasound irradiation. X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDAX) have been employed to characterize the morphology and composition of the prepared samples. With the aim to develop a highly sensitive cholesterol biosensor, cholesterol oxidase (ChOx) was immobilized on AuNs which were appended on the graphite (Gr) electrode via chemisorption onto thiol-functionalized graphene oxide (GO-SH). This Gr/GO-SH/AuNs/ChOx biosensor has been characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy and chronoamperometry. CV results indicated a direct electron transfer between the enzyme and the electrode surface. A new potentiostat intermitant titration technique (PITT) has been studied to determine the diffusion coefficient and maxima potential value. The proposed biosensor showed rapid response, high sensitivity, wide linear range and low detection limit. Furthermore, our AuNs modified electrode showed excellent selectivity, repeatability, reproducibility and long term stability. The proposed electrode has also been used successfully to determine cholesterol in serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Earth, soil and environmental science research facility at sector 13 of the Advanced Photon Source. II. Scientific program and experimental instrumentation (abstract)

    NASA Astrophysics Data System (ADS)

    Sutton, S.; Eng., P. J.; Jaski, Y. R.; Lazaraz, N.; Pluth, J.; Murray, P.; Rarback, H.; Rivers, M.

    1996-09-01

    The GSECARS (APS sector 13) scientific program will provide fundamental new information on the deep structure and composition of the Earth and other planets, the formation of economic mineral deposits, the cycles and fate of toxic metals in the environment, and the mechanisms of nutrient uptake and disease in plants. In the four experimental stations (2 per beamline), scientists will have access to three main x-ray techniques: diffraction (microcrystal, powder, diamond anvil cell, and large volume press), fluorescence microprobe, and spectroscopy (conventional, microbeam, liquid and solid surfaces). The high pressure facilities will be capable of x-ray crystallography at P≳360 GPa and T˜6000 K with the diamond anvil cell and P˜25 GPa and T˜2500 °C with the large volume press. Diffractometers will allow study of 1 micrometer crystals and micro-powders. The microprobe (1 micrometer focused beam) will be capable of chemical analyses in the sub-ppm range using wavelength and energy dispersive detectors. Spectroscopy instrumentation will be available for XANES and EXAFS with microbeams as well as high sensitivity conventional XAS and studies of liquid and solid interfaces. Visiting scientists will be able to setup, calibrate, and test experiments in off-line laboratories with equipment such as micromanipulators, optical microscopes, clean bench, glove boxes, high powered optical and Raman spectrometers.

  7. Tunable optical properties of plasmonic Au/Al2O3 nanocomposite thin films analyzed by spectroscopic ellipsometry accounting surface characteristics.

    PubMed

    Jaiswal, Jyoti; Mourya, Satyendra; Malik, Gaurav; Chandra, Ramesh

    2018-05-01

    In the present work, we have fabricated plasmonic gold/alumina nanocomposite (Au/Al 2 O 3 NC) thin films on a glass substrate at room temperature by RF magnetron co-sputtering. The influence of the film thickness (∼10-40  nm) on the optical and other physical properties of the samples was investigated and correlated with the structural and compositional properties. The X-ray diffractometer measurement revealed the formation of Au nanoparticles with average crystallite size (5-9.2 nm) embedded in an amorphous Al 2 O 3 matrix. The energy-dispersive X ray and X-ray photoelectron spectroscopy results confirmed the formation of Au/Al 2 O 3 NC quantitatively and qualitatively and it was observed that atomic% of Au increased by increasing thickness. The optical constants of the plasmonic Au/Al 2 O 3 NC thin films were examined by variable angle spectroscopic ellipsometry in the wide spectral range of 246-1688 nm, accounting the surface characteristics in the optical stack model, and the obtained results are expected to be unique. Additionally, a thickness-dependent blueshift (631-590 nm) of surface plasmon resonance peak was observed in the absorption spectra. These findings of the plasmonic Au/Al 2 O 3 NC films may allow the design and fabrication of small, compact, and efficient devices for optoelectronic and photonic applications.

  8. One-pot facile green synthesis of biocidal silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Nudrat Hazarika, Shabiha; Gupta, Kuldeep; Shamin, Khan Naseem Ahmed Mohammed; Bhardwaj, Pushpender; Boruah, Ratan; Yadav, Kamlesh K.; Naglot, Ashok; Deb, P.; Mandal, M.; Doley, Robin; Veer, Vijay; Baruah, Indra; Namsa, Nima D.

    2016-07-01

    The plant root extract mediated green synthesis method produces monodispersed spherical shape silver nanoparticles (AgNPs) with a size range of 15-30 nm as analyzed by atomic force and transmission electron microscopy. The material showed potent antibacterial and antifungal properties. Synthesized AgNPs display a characteristic surface plasmon resonance peak at 420 nm in UV-Vis spectroscopy. X-ray diffractometer analysis revealed the crystalline and face-centered cubic geometry of in situ prepared AgNPs. Agar well diffusion and a colony forming unit assay demonstrated the potent biocidal activity of AgNPs against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas diminuta and Mycobacterium smegmatis. Intriguingly, the phytosynthesized AgNPs exhibited activity against pathogenic fungi, namely Trichophyton rubrum, Aspergillus versicolor and Candida albicans. Scanning electron microscopy observations indicated morphological changes in the bacterial cells incubated with silver nanoparticles. The genomic DNA isolated from the bacteria was incubated with an increasing concentration of AgNPs and the replication fidelity of 16S rDNA was observed by performing 18 and 35 cycles PCR. The replication efficiency of small (600 bp) and large (1500 bp) DNA fragments in the presence of AgNPs were compromised in a dose-dependent manner. The results suggest that the Thalictrum foliolosum root extract mediated synthesis of AgNPs could be used as a promising antimicrobial agent against clinical pathogens.

  9. Microstructure and Properties of DCP-Derived W-ZrC Composite Using Nontoxic Sodium Alginate to Fabricate WC Preform

    NASA Astrophysics Data System (ADS)

    Najafzadeh Khoee, Ali Asghar; Habibolahzadeh, Ali; Qods, Fathallah; Baharvandi, Hamidreza

    2015-04-01

    In the present work, tungsten carbide (WC) preforms were fabricated by gel-casting process, using different nontoxic Na-alginate to tertiary calcium phosphate ratios and different loadings of WC powder in the initial slurries. The gel-cast green bodies were dried and pre-sintered at 1723 K for 4 h and then reactively infiltrated by molten Zr2Cu at 1623 K for 0.5 h, to produce W-ZrC composite via displacive compensation of porosity process. The phases, microstructures, and mechanical properties of the preforms and the W-ZrC composites were investigated by Fourier transform infrared spectroscope, x-ray diffractometer (XRD), scanning electron microscope (SEM), image analyzer, and universal mechanical testing machine. XRD results, SEM micrographs, and elemental maps indicated uniform distribution of phases (W and ZrC) and elements (W, Zr, and C). Flexural strengths and hardness of the fabricated composites were in the ranges of 429-460 MPa and 7.5-9.5 GPa, respectively. Fractography studies revealed two types of dimple rupture and cleavage fracture modes in different composite samples. The W-ZrC composite was ablated by an oxyacetylene flame for 60 s. The mean value of mass and linear ablation rates of the composite were 2.1 ± 0.1 mg/s and 3.6 ± 0.5 µm/s, respectively.

  10. A compact electron gun for time-resolved electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A., E-mail: derek.wann@york.ac.uk

    A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolutionmore » of the diffraction pattern.« less

  11. Study of residual stresses in CT test specimens welded by electron beam

    NASA Astrophysics Data System (ADS)

    Papushkin, I. V.; Kaisheva, D.; Bokuchava, G. D.; Angelov, V.; Petrov, P.

    2018-03-01

    The paper reports result of residual stress distribution studies in CT specimens reconstituted by electron beam welding (EBW). The main aim of the study is evaluation of the applicability of the welding technique for CT specimens’ reconstitution. Thus, the temperature distribution during electron beam welding of a CT specimen was calculated using Green’s functions and the residual stress distribution was determined experimentally using neutron diffraction. Time-of-flight neutron diffraction experiments were performed on a Fourier stress diffractometer at the IBR-2 fast pulsed reactor in FLNP JINR (Dubna, Russia). The neutron diffraction data estimates yielded a maximal stress level of ±180 MPa in the welded joint.

  12. Electrodeposition of Manganese-Nickel Oxide Films on a Graphite Sheet for Electrochemical Capacitor Applications.

    PubMed

    Lee, Hae-Min; Lee, Kangtaek; Kim, Chang-Koo

    2014-01-09

    Manganese-nickel (Mn-Ni) oxide films were electrodeposited on a graphite sheet in a bath consisting of manganese acetate and nickel chloride, and the structural, morphological, and electrochemical properties of these films were investigated. The electrodeposited Mn-Ni oxide films had porous structures covered with nanofibers. The X-ray diffractometer pattern revealed the presence of separate manganese oxide (g-MnO₂) and nickel oxide (NiO) in the films. The electrodeposited Mn-Ni oxide electrode exhibited a specific capacitance of 424 F/g in Na₂SO₄ electrolyte. This electrode maintained 86% of its initial specific capacitance over 2000 cycles of the charge-discharge operation, showing good cycling stability.

  13. Crystal Structure of Hydrazinium Iodide by Neutron Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Eric V.; Wang, Xiaoping; Miller, Joel S.

    The structure of hydrazinium iodide, [H 5N 2] +·I -, at 100 K has monoclinic (P2 1/n) symmetry from single crystal neutron diffraction with a = 7.4599(7) Å, b = 5.3185(6) Å, c = 10.1628(11) Å, β = 103.150(10)°, V = 392.64(7) Å 3, Z = 4. The refinement converged to R = 0.0575, wR 2 = 0.1602, S = 1.022. Data for the crystal structure was collected on the SNS TOPAZ single-crystal time-of-flight Laue diffractometer. The compound has a one-dimensional structure which displays N–H···N hydrogen bonding. Finally, accurate intra- and intermolecular N–H distances have been determined.

  14. Study the effect of nitrogen flow rate on tribological properties of tantalum nitride based coatings

    NASA Astrophysics Data System (ADS)

    Chauhan, Dharmesh B.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Makwana, Nishant S.; Dave, Divyeshkumar P.; Rawal, Sushant K.

    2018-05-01

    Tantalum Nitride (TaN) based coatings are well-known for their high temperature stability and chemical inertness. We have studied the effect of nitrogen flow rate variation on the structural and tribological properties of TaN based coating deposited by RF magnetron sputtering process. The nitrogen flow rate was varied from 5 to 30 sccm. X-ray diffractometer (XRD) and Atomic Force Microscopy (AFM) were used to determine structure and surface topography of coating. Pin on disc tribometer was used to determine tribological properties of coating. TaN coated brass and mild steel substrates shows higher wear resistance compared to uncoated substrates of brass and mild steel.

  15. HA/Bioglass composite films deposited by pulsed laser with different substrate temperature

    NASA Astrophysics Data System (ADS)

    Wang, D. G.; Chen, C. Z.; Jin, Q. P.; Li, H. C.; Pan, Y. K.

    2014-03-01

    In this experiment, the HA/Bioglass composite films on Ti-6Al-4V were deposited by a pulsed laser at Ar atmosphere, and the influence of substrate temperature on the morphology, phase constitutions, bonding configurations and adhesive strength of the films was studied. The obtained films were characterized by an electron probe microanalyzer (EPMA), scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), scratch apparatus, and so on. The results show that the amount of the droplets, the crystallinity, and the critical load of the deposited films all increase with the increase of the substrate temperature; however, the substrate temperature has little influence on the functional groups of the films.

  16. Crystal Structure of Hydrazinium Iodide by Neutron Diffraction

    DOE PAGES

    Campbell, Eric V.; Wang, Xiaoping; Miller, Joel S.

    2017-10-31

    The structure of hydrazinium iodide, [H 5N 2] +·I -, at 100 K has monoclinic (P2 1/n) symmetry from single crystal neutron diffraction with a = 7.4599(7) Å, b = 5.3185(6) Å, c = 10.1628(11) Å, β = 103.150(10)°, V = 392.64(7) Å 3, Z = 4. The refinement converged to R = 0.0575, wR 2 = 0.1602, S = 1.022. Data for the crystal structure was collected on the SNS TOPAZ single-crystal time-of-flight Laue diffractometer. The compound has a one-dimensional structure which displays N–H···N hydrogen bonding. Finally, accurate intra- and intermolecular N–H distances have been determined.

  17. Redetermination of Na(3)TaF(8).

    PubMed

    Langer, Vratislav; Smrcok, Lubomír; Boca, Miroslav

    2010-09-01

    The crystal structure of trisodium octafluoridotantalate, Na(3)TaF(8), has been redetermined using diffractometer data collected at 153 K, resulting in more accurate bond distances and angles than obtained from a previous structure determination based on film data. The structure is built from layers running along [101], which are formed by distorted [TaF(8)] antiprisms and [NaF(6)] rectangular bipyramids sharing edges and corners. The individual layers are separated by eight-coordinated Na ions. Two atoms in the asymmetric unit are in special positions: the Ta atom is on a twofold axis in Wyckoff position 4e and one of the Na ions lies on an inversion centre in Wyckoff site 4d.

  18. Electrochemical Deposition of Si-Ca/P on Nanotube Formed Beta Ti Alloy by Cyclic Voltammetry Method.

    PubMed

    Jeong, Yong-Hoon; Choe, Han-Cheol

    2015-08-01

    The purpose of this study was to investigate electrochemical deposition of Si-Ca/P on nanotube formed Ti-35Nb-10Zr alloy by cyclic voltammetry method. Electrochemical deposition of Si substituted Ca/P was performed by pulsing the applied potential on nanotube formed surface. The surface characteristics were observed by field-emission scanning electron microscopy, X-ray diffractometer, and potentiodynamic polarization test. The phase structure and surface morphologies of Si-Ca/P deposition were affected by deposition cycles. From the anodic polarization test, nanotube formed surface at 20 V showed the high corrosion resistance with lower value of Icorr, I300, and Ipass.

  19. Non-platinum metal-organic framework based electro-catalyst for promoting oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Das, Dipanwita; Raut, Vrushali; Kireeti, Kota V. M. K.; Jha, Neetu

    2018-04-01

    We developed two non-precious Metal Organic Framework (MOF) based electrocatalysts, MOF-5 and MOF-i using solvothermal and refluxing methods. The MOFs prepared has been characterized by powder X-ray diffractometer (XRD), Fourier Transform Infra-Red Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) for structural and morphological insights. SEM images reveal cubic shape for solvothermally synthesized MOF-5, whereas refluxing method leads to platelet morphology of MOF-i. The synthesized MOFs has been investigated for Oxygen Reduction Reaction (ORR) studies using Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV), with MOF modified Glassy Carbon (GC) as working electrode. The electrochemical data suggests higher activity of MOF-5 towards ORR compared to MOF-i.

  20. Titanium-bearing phases in the Earth's mantle (evidence from experiments in the MgO-SiO2-TiO2 ±Al2O3 system at 10-24 GPa)

    NASA Astrophysics Data System (ADS)

    Sirotkina, Ekaterina; Bobrov, Andrey; Bindi, Luca; Irifune, Tetsuo

    2017-04-01

    Introduction Despite significant interest of experimentalists to the study of geophysically important phase equilibria in the Earth's mantle and a huge experimental database on a number of the model and multicomponent systems, incorporation of minor elements in mantle phases was mostly studied on a qualitative level. The influence of such elements on structural peculiarities of high-pressure phases is poorly investigated, although incorporation of even small portions of them may have a certain impact on the PT-parameters of phase transformations. Titanium is one of such elements with the low bulk concentrations in the Earth's mantle (0.2 wt % TiO2) [1]; however, Ti-rich lithologies may occur in the mantle as a result of oceanic crust subduction. Thus, the titanium content is 0.6 wt% in Global Oceanic Subducted Sediments (GLOSS) [2], and 1.5 wt% TiO2, in MORB [3]. In this regard, accumulation of titanium in the Earth's mantle is related to crust-mantle interaction during the subduction of crustal material at different depths of the mantle. Experimental methods At 10-24 GPa and 1600°C, we studied the full range of the starting materials in the MgSiO3 (En) - MgTiO3 (Gkl) system in increments of 10-20 mol% Gkl and 1-3 GPa, which allowed us to plot the phase PX diagram for the system MgSiO3-MgTiO3 and synthesize titanium-bearing phases with a wide compositional range. The experiments were performed using a 2000-t Kawai-type multi-anvil high-pressure apparatus at the Geodynamics Research Center, Ehime University (Japan). The quenched samples were examined by single-crystal X-ray diffractometer, and the composition of phases was analyzed using SEM-EDS. Results The main phases obtained in experiments were rutile, wadsleyite, MgSiO3-enstatite, MgTiO3-ilmenite, MgTiSi2O7 with the weberite structure type (Web), Mg(Si,Ti)O3 and MgSiO3 with perovskite-type structure. At a pressure of 13 GPa for Ti-poor bulk compositions, an association of En+Wad+Rt is replaced by the paragenesis of Web+Wad+Rt. With increasing Glk content in the starting composition, Gkl+Wad+Rt association is formed. At a pressure of >17 GPa, an association of two phases with Prv-type structure is stable within a narrow range of starting compositions. Addition of Al to the starting material allows us to simulate the composition of natural bridgmanites, since lower mantle bridgmanites are characterized by significant Al contents. In addition, this study shows that, in contrast to Al, the high contents of Ti can stabilize bridgmanite-like compounds at considerably lower pressure (18 GPa) in comparison with pure MgSiO3 bridgmanite. Small crystals of titanium-rich phases, including Ti-Al-Brd and Web were examined by single-crystal X-ray diffractometer, which allowed us to study the influence of Ti on crystallochemical peculiarities of the mantle phases and on the phase transformations. This study was supported by the Foundation of the President of the Russian Federation for Young Ph.D. (projects no. MK 1277.2017.5 to E.A. Sirotkina) and partly supported by the Russian Foundation for Basic Research (project nos. 17-55-50062 to E.A. Sirotkina and A.V.Bobrov) [1] Ringwood, A.E. The chemical composition and origin of the Earth. In: Advances in Earth science. Hurley, P.M. (Editors), M.I.T. Press, Cambridge. 1966. P. 287-356 [2] Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325-394. [3] Wilson, M. (1989) Igneous Petrogenesis—A global tectonic approach, 466 p. Kluwer, Dordrecht.

  1. Preparation of Er3+:Y3Al5O12/WO3-KNbO3 composite and application in treatment of methamphetamine under ultrasonic irradiation.

    PubMed

    Zhang, Hongbo; Huang, Yingying; Li, Guanshu; Wang, Guowei; Fang, Dawei; Song, Youtao; Wang, Jun

    2017-03-01

    Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 composite powder as an effective sonocatalyst was prepared via collosol-gelling-hydrothermal and high-temperature calcination methods. The textures of materials were observed by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). In order to estimate the sonocatalytic activity of Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 composite powder, the sonocatalytic degradation of methamphetamine (MAPA) was performed. Furthermore, the influences of mass ratio of WO 3 and KNbO 3 , ultrasonic irradiation time, catalyst addition amount, initial methamphetamine (MAPA) concentration and used times on the sonocatalytic degradation of methamphetamine (MAPA) caused by Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 composite powder were investigated by using gas chromatography. Under optimal conditions of 1.00g/L Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 addition amount and 10.00mg/L methamphetamine (MAPA) initial concentration, 68% of methamphetamine (MAPA) could be removed after 150min ultrasonic irradiation. The experimental results showed that the Er 3+ :Y 3 Al 5 O 12 /WO 3 -KNbO 3 as sonocatalyst displayed an excellent sonocatalytic activity in degradation of methamphetamine (MAPA) under ultrasonic irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Structure and properties of solid polymer electrolyte based on chitosan and ZrO{sub 2} nanoparticle for lithium ion battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudaryanto,, E-mail: dryanto@batan.go.id; Yulianti, Evi, E-mail: yulianti@batan.go.id; Patimatuzzohrah, E-mail: pzohrah@yahoo.com

    In order to develop all solid lithium ion battery, study on the structure and properties of solid polymer electrolytes (SPE) based on chitosan has been done. The SPE were prepared by adding Zirconia (ZrO{sub 2}) nanoparticle and LiClO{sub 4} as lithium salt into the chitosan solution followed by casting method. Effect of the ZrO{sub 2} and salt concentration to the structure and properties of SPE were elaborated using several methods. The structure of the SPE cast film, were characterized mainly by using X-ray diffractometer (XRD). While the electrical properties of SPE were studied by electrochemical impedance spectrometer (EIS) and ionmore » transference number measurement. XRD profiles show that the addition of ZrO{sub 2} and LiClO{sub 4} disrupts the crystality of chitosan. The decrease in sample crytalinity with the nanoparticle and salt addition may increase the molecular mobility result in the increasing sample conductivity and cathionic transference number as determined by EIS and ion transference number measurement, respectively. The highest ionic conductivity (3.58×10{sup −4} S cm{sup −1}) was obtained when 4 wt% of ZrO{sub 2} nanoparticle and 40 wt% of LiClO{sub 4} salt were added to the chitosan. The ion transference number with that composition was 0.55. It is high enough to be used as SPE for lithium ion battery.« less

  3. DEVELOPMENT OF ISOTOPICALLY ENRICHED BORON-DOPED ALUMINA DOSIMETER FOR THERMAL NEUTRONS.

    PubMed

    Sato, Fuminobu; Maekawa, Tatsuro; Kariba, Tomoharu; Kusaka, Sachie; Tanaka, Teruya; Murata, Isao

    2017-12-01

    A novel optically stimulated luminescence (OSL) detector containing isotopically enriched boron was developed for thermal neutron dosimetry. Alumina containing isotopically enriched boron (Al2O3:B) was synthesised by the sol-gel method. The Al2O3:B was annealed up to ~1800 K. For X-ray diffractometer (XRD) analysis, the diffraction pattern of the Al2O3:B had reflex peaks corresponding to α-Al2O3. The sensitivity of Al2O3:B to photons was slightly 2% of that of a commercial Al2O3:C. The Al2O3:B detector had satisfactory linearity in X-ray dose measurement. A thermal neutron field was constructed using a 241Am-Be neutron source and graphite blocks. A pair of Al2O3:10B and Al2O3:11B detectors were set in the thermal neutron field. The response of Al2O3:10B was larger than that of Al2O3:11B owing to the 10B(n,α)7Li reactions. The sensitivity of Al2O3:10B to thermal neutrons was estimated to be two orders less than the photon sensitivity. Therefore, the pair of Al2O3:10B and Al2O3:11B detectors were useful for thermal neutron dosimetry. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Fabrications and application of single crystalline GaN for high-performance deep UV photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velazquez, R.; Rivera, M.; Feng, P., E-mail: p.feng@upr.edu

    2016-08-15

    High-quality single crystalline Gallium Nitride (GaN) semiconductor has been synthesized using molecule beam epitaxy (MBE) technique for development of high-performance deep ultraviolet (UV) photodetectors. Thickness of the films was estimated by using surface profile meter and scanning electron microscope. Electronic states and elemental composition of the films were obtained using Raman scattering spectroscopy. The orientation, crystal structure and phase purity of the films were examined using a Siemens x-ray diffractometer radiation. The surface microstructure was studied using high resolution scanning electron microscopy (SEM). Two types of metal pairs: Al-Al, Al-Cu or Cu-Cu were used for interdigital electrodes on GaN filmmore » in order to examine the Schottky properties of the GaN based photodetector. The characterizations of the fabricated prototype include the stability, responsivity, response and recovery times. Typical time dependent photoresponsivity by switching different UV light source on and off five times for each 240 seconds at a bias of 2V, respectively, have been obtained. The detector appears to be highly sensitive to various UV wavelengths of light with very stable baseline and repeatability. The obtained photoresponsivity was up to 354 mA/W at the bias 2V. Higher photoresponsivity could be obtained if higher bias was applied but it would unavoidably result in a higher dark current. Thermal effect on the fabricated GaN based prototype was discussed.« less

  5. The Effects of Sn Addition on the Microstructure and Surface Properties of Laser Deposited Al-Si-Sn Coatings on ASTM A29 Steel

    NASA Astrophysics Data System (ADS)

    Fatoba, Olawale S.; Akinlabi, Stephen A.; Akinlabi, Esther T.

    2018-03-01

    Aluminium and its alloys have been successful metal materials used for many applications like commodity roles, automotive and vital structural components in aircrafts. A substantial portion of Al-Fe-Si alloy is also used for manufacturing the packaging foils and sheets for common heat exchanger applications. The present research was aimed at studying the morphology and surface analyses of laser deposited Al-Sn-Si coatings on ASTM A29 steel. These Fe-intermetallic compounds influence the material properties during rapid cooling by laser alloying technique and play a crucial role for the material quality. Thus, it is of considerable technological interest to control the morphology and distribution of these phases in order to eliminate the negative effects on microstructure. A 3 kW continuous wave ytterbium laser system (YLS) attached to a KUKA robot which controls the movement of the alloying process was utilized for the fabrication of the coatings at optimum laser parameters. The fabricated coatings were investigated for its hardness and wear resistance performance. The field emission scanning electron microscope equipped with energy dispersive spectroscopy (SEM/EDS) was used to study the morphology of the fabricated coatings and X-ray diffractometer (XRD) for the identification of the phases present in the coatings. The coatings were free of cracks and pores with homogeneous and refined microstructures. The enhanced hardness and wear resistance performance were attributed to metastable intermetallic compounds formed.

  6. Neutron Diffraction Studies of Carbonate Apatite

    NASA Astrophysics Data System (ADS)

    Moghaddam, Hadi Y.; Leventouri, Theodora; Chakoumakos, Bryan C.

    1998-11-01

    Moghaddam H.Y., Leventouri Th.* (Dept. of Physics & Alloy Research Center, Florida Atlantic Univ.) Chakoumakos B.C. (Solid State Division, Oak Ridge National Lab.**,kou@ornl.gov) We report Rietveld structural refinements of neutron diffraction data of a highly crystalline, single-phase natural carbonate apatite,(francolite of Epirus, Greece), in order to elucidate the details of carbonate substitution in the apatites. The composition is Ca9.56Na0.38Mg0.08(PO4)4.82(CO3)0.946(SO4)0.2F2.34, as determined by electron microprobe analysis. We report refinements of data for the native francolite as a function of temperature between 296K and 10K after the material had been heated at 750 °C to drive off adsorbed water and CO2. The neutron diffractioii@data were collected using a wavelength 1.0912 A on the HB4 high resolution powder diffractometer at the High Flux Isotope Reactor at Oak Ridge National Laboratory. Analysis of the temperature dependence of the anisotropic displacement parameters can reveal the contribution from the temperature independent static positional disorder. Difference displacement parameters evaluated along various bonding directions are being used to describe the mechanics and dynamics of the carbonate for phosphate substitution.*Supported by a SURA-ORNL Summer Cooperative Research Program 1998.**Supported by the Division of Materials Sciences,U.S. D.O.E. (contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation).

  7. Recovery of nickel and cobalt as MHP from limonitic ore leaching solution: Kinetics analysis and precipitate characterization

    NASA Astrophysics Data System (ADS)

    Safitri, Nina; Mubarok, M. Zaki; Winarko, Ronny; Tanlega, Zela

    2018-05-01

    In the present study, precipitation of nickel and cobalt as mixed hydroxide precipitate (MHP) from pregnant leach solution of nickel limonite ore from Soroako after iron removal stage was carried out. A series of MHP precipitation experiments was conducted by using MgO slurry as neutralizing agent and the effects of pH, temperature, duration of precipitation and the addition of MHP seed on the precipitation behavior of nickel, cobalt, as well as iron and manganese was studied. Characterization of MHP product was performed by particle size analyzer (PSA) as well as X-Ray Fluorescence (XRF), X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM) analyses. Kinetics analysis was made by using differential-integral method for the rate of homogenous reaction. Precipitation at pH 7, temperature 50°C for 30 minute, without seed addition resulted in nickel and cobalt recoveries of 82.8% and 92%, respectively with co-precipitated iron and manganese of 70% and 24.2%, respectively. The seed addition increases nickel and cobalt precipitations significantly to 99.9% and 99.1%, respectively. However, the addition of seed into led to a significant increase of manganese co-precipitation from 24.2% without seed addition to 39.5% at the addition of 1 g seed per 200 mL of PLS. Kinetics analysis revealed that Ni precipitation to form MHP follows the second-order reaction kinetics with activation energy of 94.6 kJ/mol.

  8. Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials.

    PubMed

    Fang, Guiyin; Li, Hui; Chen, Zhi; Liu, Xu

    2010-09-15

    Flame retardant n-hexadecane/silicon dioxide (SiO(2)) composites as thermal energy storage materials were prepared using sol-gel methods. In the composites, n-hexadecane was used as the phase change material for thermal energy storage, and SiO(2) acted as the supporting material that is fire resistant. In order to further improve flame retardant property of the composites, the expanded graphite (EG) was added in the composites. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine chemical structure, crystalloid phase and microstructure of flame retardant n-hexadecane/SiO(2) composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the n-hexadecane was well dispersed in the porous network of the SiO(2). The DSC results indicated that the melting and solidifying latent heats of the composites are 147.58 and 145.10 kJ/kg when the mass percentage of the n-hexadecane in the composites is 73.3%. The TGA results showed that the loading of the EG increased the charred residue amount of the composites at 700 degrees C, contributing to the improved thermal stability of the composites. It was observed from SEM photographs that the homogeneous and compact charred residue structure after combustion improved the flammability of the composites. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Highly crumpled solar reduced graphene oxide electrode for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Mohanapriya, K.; Ahirrao, Dinesh J.; Jha, Neetu

    2018-04-01

    Highly crumpled solar reduced graphene oxide (CSRGO) was synthesized by simple and rapid method through freezing the solar reduced graphene oxide aqueous suspension using liquid nitrogen and used as electrode material for supercapacitor application. This electrode material was characterized by transmission electron microscope (TEM), X-Ray diffractometer (XRD) and Raman Spectroscopy techniques to understand the morphology and structure. The electrochemical performance was studied by cyclic voltammetry (CV), galvanostatic charge/discharge (CD) and electrochemical impedance spectroscopy (EIS) using 6M KOH electrolyte. The CSRGO exhibit high specifc capacitance of 210.1 F g-1 at the current density of 0.5 A g-1 and shows excellent rate capability. These features make the CSRGO material as promising electrode for high-performance supercapacitors.

  10. Growth of crystals for synchrotron radiation Mössbauer investigation

    NASA Astrophysics Data System (ADS)

    Kotrbova, M.; Hejduk, J.; Malnev, V. V.; Seleznev, V. N.; Yagupov, S. V.; Andronova, N. V.; Chechin, A. I.; Mikhailov, A. Yu.

    1991-10-01

    Iron borate crystals (FeBO 3) were flux grown at the Physical Institute (Prague) and at Simferopol State University. During the crystal growth procedure the temperature regime was held constant to 0.1°C accuracy. Crystals were investigated with the help of a double crystal X-ray diffractometer DRON-2 (SiO 2(30 overline33)FeBO 3(444), MoK α 1 radiation). The rocking curve measurements were carried out in a constant magnetic field of 1kG. Most of the crystal surface has a rocking curve 10″-15″ wide. Some parts of some crystals with the area 1 × 1 mm 2 have rocking curves of 3″-4″ width and can be considered ideal.

  11. Performance of the Taiwan Contract Beamline BL12B2 at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, M.-T.; Du, C.-H.; Lee, J.-F.

    2004-05-12

    The recent status of the SPring-8 Taiwan Contract Beamline BL12B2 is reported. The beamline was designed to provide multiple applications for materials and biological researches. It is equipped with four end stations, including an EXAFS station, a Huber 6-circle diffractometer for X-ray scattering, a curved image plate for the studies of powder diffraction, and a station for the protein crystallography. The beamline construction was completed in 2000 and it has been in full speed operation since September 2001. To enhance the focusing capacity, the beamline optics has been modified in 2002 and a gain of factor of 10 in photonmore » flux was consequently obtained at protein crystallography station.« less

  12. Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films

    NASA Astrophysics Data System (ADS)

    Aryanto, D.; Hastuti, E.; Husniya, N.; Sudiro, T.; Nuryadin, B. W.

    2018-03-01

    Nanocrystalline Ni-doped ZnO (NZO) thin films were synthesized on glass substrate using sol-gel spin coating methods. The effect of annealing on the structural and optical properties of nanocrystalline thin film was studied using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), UV-VIS spectrophotometry, and photoluminescence (PL). The results showed that the annealing temperature strongly influenced the physical properties of nanocrystalline NZO thin films. The photocatalytic properties of nanocrystalline NZO thin films were evaluated using an aqueous solution of Rhodamine-B. The photocatalytic activity of nanocrystalline NZO thin films increased with the increase of annealing temperature. The results indicated that the structure, morphology, and band gap energy of nanocrystalline NZO thin films played an important role in photocatalytic activity.

  13. Structural and magnetic analysis of Cu, Co substituted NiFe{sub 2}O{sub 4} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hakikat; Bala, Kanchan; Negi, N. S.

    2016-05-23

    In the present work we prepared NiFe{sub 2}O{sub 4}, Ni{sub 0.95}Cu{sub 0.05}Fe{sub 2}O{sub 4} and Ni{sub 0.94}Cu{sub 0.05}Co{sub 0.01} Fe{sub 2}O{sub 4} thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).

  14. Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument

    DOE PAGES

    Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu; ...

    2018-02-06

    Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less

  15. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.

    PubMed

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol

    2013-03-01

    In this study, surface phenomena of hydroxyapatite (HA) film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants have been investigated by electron beam physical vapor deposition (EB-PVD), field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), potentiostat and contact angle. The microstructure of Ti-29Nb-xZr alloys exhibited equiaxed structure and alpha" phase decreased, whereas beta phase increased as Zr content increased. The increment of Zr contents in HA coated nanotubular Ti-29Nb-xZr alloys showed good corrosion potential in 0.9% NaCI solution. The wettability of HA coated nanotubular surface was higher than that of non-coated samples.

  16. Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu

    Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less

  17. A history of neutrons in biology: the development of neutron protein crystallography at BNL and LANL.

    PubMed

    Schoenborn, Benno P

    2010-11-01

    The first neutron diffraction data were collected from crystals of myoglobin almost 42 years ago using a step-scan diffractometer with a single detector. Since then, major advances have been made in neutron sources, instrumentation and data collection and analysis, and in biochemistry. Fundamental discoveries about enzyme mechanisms, biological complex structures, protein hydration and H-atom positions have been and continue to be made using neutron diffraction. The promise of neutrons has not changed since the first crystal diffraction data were collected. Today, with the developments of beamlines at spallation neutron sources and the use of the Laue method for data collection, the field of neutrons in structural biology has renewed vitality.

  18. Optical Fourier diffractometry applied to degraded bone structure recognition

    NASA Astrophysics Data System (ADS)

    Galas, Jacek; Godwod, Krzysztof; Szawdyn, Jacek; Sawicki, Andrzej

    1993-09-01

    Image processing and recognition methods are useful in many fields. This paper presents the hybrid optical and digital method applied to recognition of pathological changes in bones involved by metabolic bone diseases. The trabecular bone structure, registered by x ray on the photographic film, is analyzed in the new type of computer controlled diffractometer. The set of image parameters, extracted from diffractogram, is evaluated by statistical analysis. The synthetic image descriptors in discriminant space, constructed on the base of 3 training groups of images (control, osteoporosis, and osteomalacia groups) by discriminant analysis, allow us to recognize bone samples with degraded bone structure and to recognize the disease. About 89% of the images were classified correctly. This method after optimization process will be verified in medical investigations.

  19. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    NASA Technical Reports Server (NTRS)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  20. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Feichao; Liu, Shengguang; Zhu, Pengfei

    2014-08-15

    A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities inmore » various areas of sciences.« less

  1. Touch-free in situ investigation of ancient Egyptian pigments.

    PubMed

    Uda, M; Sassa, S; Taniguchi, K; Nomura, S; Yoshimura, S; Kondo, J; Iskander, N; Zaghloul, B

    2000-06-01

    Some of the pigments painted on the Funerary Stele of Amenemhat (ca. 2000 B.C.) exhibited at the Egyptian Museum, Cairo and on the walls of the Tomb of Userhat (ca. 1420 B.C.), a rock-cut tomb in Thebes, Egypt, were investigated in situ using both a convenient home-made hand-held type of X-ray diffractometer and a commercial X-ray fluorescence spectrometer in a complementary way under touch-free conditions. CaCO3.3MgCO3 (huntite) was found in the white-painted parts of these two ancient monuments. An arsenic (As)-bearing phase was detected in the yellow-painted parts of the latter monument. The occurrence of huntite in Egypt has not been reported previously.

  2. The binary system K2SO4CaSO4

    USGS Publications Warehouse

    Rowe, J.J.; Morey, G.W.; Hansen, I.D.

    1965-01-01

    The binary system K2SO4CaSO4 was studied by means of heating-cooling curves, differential thermal analysis, high-temperature quenching technique and by means of a heating stage mounted on an X-ray diffractometer. Compositions and quench products were identified optically and by X-ray. Limited solid solution of CaSO4 in K2SO4 was found. There is a eutectic at 875??C and 34 wt. per cent CaSO4. Calcium langbeinite melts incongruently at 1011??C. The melting-point of CaSO4 (1462??C) was determined by the quenching technique using sealed platinum tubes. The only intermediate crystalline phase found in the system is K2SO4??2CaSO4 (calcium langbeinite). ?? 1965.

  3. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun.

    PubMed

    Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao; Zhang, Jie; Cao, Jianming

    2014-08-01

    A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakubovich, O. V., E-mail: yakubol@geol.msu.ru; Biralo, G. V.; Dimitrova, O. V.

    The crystal structure of the (Al,V){sub 4}(P{sub 4}O{sub 12}){sub 3} solid solution, obtained in the single-crystal form by hydrothermal synthesis in the Al(OH){sub 3}-VO{sub 2}-NaCl-H{sub 3}PO{sub 4}-H{sub 2}O system, has been solved by X-ray diffraction analysis (Xcalibur-S-CCD diffractometer, R = 0.0257): a = 13.7477(2) Angstrom-Sign , sp. gr. I 4 bar 3d, Z = 4, and {rho}{sub calcd} = 2.736 g/cm{sup 3}. It is shown that the crystal structure of the parent cubic Al{sub 4}(P{sub 4}O{sub 12}){sub 3} modification can formally be considered an archetype for the formation of double isosymmetric tetraphosphates on its basis.

  5. Neutron Scattering and Diffraction Studies of Fluids and Fluid-Solid Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, David R; Herwig, Kenneth W; Mamontov, Eugene

    2006-01-01

    There can be no disputing the fact that neutron diffraction and scattering have made a clear contribution to our current understanding of the structural and dynamical characteristics of liquid water and water containing dissolved ions at ambient conditions and to a somewhat lesser degree other state conditions involving a change in temperature and pressure. Indeed, a molecular-level understanding of how fluids (e.g., water, CO{sub 2}, CH{sub 4}, higher hydrocarbons, etc.) interact with and participate in reactions with other solid earth materials are central to the development of predictive models that aim to quantify a wide array of geochemical processes. Inmore » the context of natural systems, interrogation of fluids and fluid-solid interactions at elevated temperatures and pressures is an area requiring much more work, particularly for complex solutions containing geochemically relevant cations, anions, and other important dissolved species such as CO{sub 2} or CH{sub 4}. We have tried to describe a series of prototypical interfacial and surface problems using neutron scattering to stimulate the thinking of earth scientists interested applying some of these approaches to confined systems of mineralogical importance. Our ability to predict the molecular-level properties of fluids and fluid-solid interactions relies heavily on the synergism between experiments such as neutron diffraction or inelastic neutron scattering and molecular-based simulations. Tremendous progress has been made in closing the gap between experimental observations and predicted behavior based on simulations due to improvements in the experimental methodologies and instrumentation on the one hand, and the development of new potential models of water and other simple and complex fluids on the other. For example there has been an emergence of studies taking advantage of advanced computing power that can accommodate the demands of ab initio molecular dynamics. On the neutron instrumentation side while much of the quasielastic work described has been performed using instrumentation located at reactor based sources, the advent of 2{sup nd} generation spallation neutron sources like ISIS, new generation sources like the SNS at the Oak Ridge National Laboratory and the low repetition rate 2{sup nd} target station at ISIS offer significant opportunities for the study of interfacial and entrained liquids. At the very least, an improvement of the counting statistics by one to two orders of magnitude on many instruments such as vibrational and time-of-flight spectrometers at SNS will allow parametric studies of many systems which otherwise would be prohibitively time consuming. The extended-Q SANS diffractometer at SNS will offer very high intensity and unparalleled Q-range to extend the accessible length scale in the real space, from 0. 05 nm to150 nm. The backscattering spectrometer will provide very high intensity and excellent energy resolution through unprecedented range of energy transfers, thereby allowing simultaneous studies of translational and rotational diffusion components in various systems. The vibrational spectrometer with two orders of magnitude improvement in performance and the capability to perform simultaneous structural measurements should present exciting opportunities to and engender an entire new population of users in the neutron community.« less

  6. Impurity incorporation, deposition kinetics, and microstructural evolution in sputtered Ta films

    NASA Astrophysics Data System (ADS)

    Whitacre, Jay Fredric

    There is an increasing need to control the microstructure in thin sputtered Ta films for application as high-temperature coatings or diffusion barriers in microelectronic interconnect structures. To this end, the relationship between impurity incorporation, deposition kinetics, and microstructural evolution was examined for room-temperature low growth rate DC magnetron sputtered Ta films. Impurity levels present during deposition were controlled by pumping the chamber to various base pressures before growth. Ar pressures ranging from 2 to 20 mTorr were used to create contrasting kinetic environments in the sputter gas. This affected both the distribution of adatom kinetic energies at the substrate as well as the rate of impurity desorption from the chamber walls: at higher Ar pressures adatoms has lower kinetic energies, and there was an increase in impurity concentration. X-ray diffraction, high-resolution transmission electron microscopy (HREM), transmission electron diffraction (TED), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and x-ray photoelectron. spectroscopy (XPS) were used to examine film crystallography, microstructure, and composition. A novel laboratory-based in-situ x-ray diffractometer was constructed. This new set-up allowed for the direct observation of microstructural evolution during growth. Films deposited at increasingly higher Ar pressures displayed a systematic decrease in grain size and degree of texturing, while surface morphology was found to vary from a nearly flat surface to a rough surface with several length scales of organization. In-situ x-ray results showed that the rate of texture evolution was found to be much higher in films grown using lower Ar pressures. These effects were studied in films less than 200 A thick using high resolution x-ray diffraction in conjunction with a synchrotron light source (SSRL B.L. 7-2). Films grown using higher Ar pressures (above 10 mTorr) with a pre-growth base pressure of 1 x 10--6 Torr had grains less than 10 nm in diameter and significant amorphous content Calculated radial distribution functions show a significant increase in average inter-atomic spacing in films grown using higher base pressures and Ar pressures. The amorphous content in the films was determined via comparison between ideal crystalline diffraction patterns and actual data. Thinner films grown at higher Ar pressures had relatively greater amorphous content. Real-time process control using the in-situ diffractometer was also demonstrated. The effects observed are discussed in the context of previous theories and experiments that document room-temperature sputter film growth. The changes in film microstructure observed were impurity mediated. Specifically, oxygen desorbed from the chamber walls during growth were incorporated into the film and subsequently limited grain development and texturing. A second phase consisting of amorphous Ta2O5 formed between the grain nuclei. Adatom kinetics played a role in determining surface morphology: at low Ar pressures (2 mTorr) significant adatom kinetic energies served to flattened the film surface, though impurity levels dominated grain development even in these conditions.

  7. High-pressure high-temperature crystal growth of equiatomic rare earth stannides RENiSn and REPdSn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heymann, Gunter; Heying, Birgit; Rodewald, Ute Ch.

    2016-04-15

    The two series of equiatomic rare earth (RE) stannides RENiSn and REPdSn were systematically studied with respect to high-pressure modifications. The normal-pressure (NP) low-temperature (LT) modifications were synthesized by arc-melting and subsequently treated under high-pressure (P{sub max}=11.5 GPa) and high-temperature (T{sub max}=1570 K) conditions in a Walker-type multi-anvil press. The pressure and temperature conditions were systematically varied in order to improve the crystallization conditions. The new ZrNiAl-type high-pressure modifications HP-RENiSn (RE=Sc, Y, La, Gd–Lu) and HP-REPdSn (RE=Y, Sm–Dy) were obtained in 80 mg quantities, several of them in X-ray pure form. Some of the REPdSn stannides with the heavy raremore » earth elements show high-temperature (HT) modifications. The structures of HP-ScNiSn, HP-GdNiSn, HP-DyNiSn (both ZrNiAl-type), NP-YbNiSn, and HT-ErPdSn (both TiNiSi-type) were refined from single crystal diffractometer data, indicating full ordering of the transition metal and tin sites. TiNiSi-type NP-EuPdSn transforms to MgZn{sub 2}-type HP-EuPdSn: P6{sub 3}/mmc, a=588.5(2), c=917.0(3) pm, wR2=0.0769, 211 F{sup 2} values, 11 variables. The structure refinement indicated statistical occupancy of the palladium and tin sites on the tetrahedral network. The X-ray pure high-pressure phases were studied with respect to their magnetic properties. HP-YPdSn is a Pauli paramagnet. The susceptibility data of HP-TbNiSn, HP-DyNiSn, HP-GdPdSn, and HP-TbPdSn show experimental magnetic moments close to the free ion values of RE{sup 3+} and antiferromagnetic ordering at low temperature with the highest Néel temperature of 15.8 K for HP-TbPdSn. HP-SmPdSn shows the typical Van Vleck type behavior along with antiferromagnetic ordering at T{sub N}=5.1 K. HP-EuPdSn shows divalent europium and antiferromagnetic ordering at 8.9 K followed by a spin reorientation at 5.7 K. - Graphical abstract: Packing of the polyhedra in the high-pressure phase of EuPdSn. - Highlights: • High-pressure phases of the stannides RENiSn and REPdSn. • Crystal growth conditions. • Pressure- and temperature-driven phase transitions. • Magnetic properties.« less

  8. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Ali, Nisar; Umm-i-Kalsoom; Yousaf, Daniel; Faizan-ul-Haq; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 1012 to 26 × 1013 ions/cm2. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation, augmentation, recombination and annihilation of the ion-induced defects.

  9. Introducing a New Capability at SSRL: Resonant Soft X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Lee, Jun-Sik; Jang, Hoyoung; Lu, Donghui; Kao, Chi-Chang

    Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC recently developed a setup for the resonant soft x-ray scattering (RSXS). In general, the RSXS technique uniquely probes not only structural information, but also chemical specific information. This is because this technique can explore the spatial periodicities of charge, orbital, spin, and lattice with spectroscopic aspect. Moreover, the soft x-ray range is particularly relevant for a study of soft materials as it covers the K-edge of C, N, F, and O, as well as the L-edges of transition metals and M-edges of rare-earth elements. Hence, the RSXS capability has been regarded as a very powerful technique for investigating the intrinsic properties of materials such as quantum- and energy-materials. The RSXS capability at the SSRL composes of in-vacuum 4-circle diffractometer. There are also the fully motorized sample-motion manipulations. Also, the sample can be cooled down to 25 K via the liquid helium. This capability has been installed at BL 13-3, where the photon source is from elliptically polarized undulator (EPU). Covering the photon energies is from 230 eV to 1400 eV. Furthermore, this EPU system offers more degree of freedoms for controlling x-ray polarizations (linear and circular). Using the advance of controlling x-ray polarization, we can also investigate a morphology effect of local domain/grain in materials. The detailed introduction of the RSXS end-station and several results will be touched in this poster presentation.

  10. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.

    PubMed

    Xu, Chi; Liu, Jian; Zhao, Zhen; Yu, Fei; Cheng, Kai; Wei, Yuechang; Duan, Aijun; Jiang, Guiyuan

    2015-05-01

    Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased. Copyright © 2015. Published by Elsevier B.V.

  11. Performance of RF sputtered p-Si/n-ZnO nanoparticle thin film heterojunction diodes in high temperature environment

    NASA Astrophysics Data System (ADS)

    Singh, Satyendra Kumar; Hazra, Purnima

    2017-04-01

    In this article, temperature-dependent current-voltage characteristics of n-ZnO/p-Si nanoparticle thin film heterojunction diode grown by RF sputtering technique are analyzed in the temperature range of 300-433 k to investigate the performance of the device in high temperature environment. The microstructural, morphological, optical and temptrature dependent electrical properties of as-grown nanoparticle thin film were characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM), field emmision scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), variable angle ellipsometer and semiconductor device analyzer. XRD spectra of as-grown ZnO films are exhibited that highly c-axis oriented ZnO nanostructures are grown on p- Si〈100〉 substrate whereas AFM and FESEM images confirm the homogeneous deposition of ZnO nanoparticles on surface of Si substratewith minimum roughness.The optical propertiesof as-grown ZnO nanoparticles have been measured in the spectral range of 300-800 nm using variable angle ellipsometer.To measure electrical parameters of the device prototype in the temperature range of room temperature (300 K) to 433 K, large area ohmic contacts were fabricated on both side of the ZnO/Si heterostructure. From the current-voltage charcteristics of ZnO/Si heterojunction device, it is observed that the device exhibits rectifing nature at room temperature. However, with increase in temperature, reverse saturation current and barrier height are found to increase, whereas ideality factor is started decreasing. This phenomenon confirms that barrier inhomogeneities are present at the interface of ZnO/Si heterojunction, as a result of lattice constant and thermal coefficient mismatch between Si and ZnO. Therefore, a modified value of Richardson constant [33.06 Acm-2K-2] has been extracted from the temperature-dependent electrical characteristics after assuming the Gaussian distribution of special barrier height inhomogeneities across the Si/ZnO interface which is close to its theoretical value [32 Acm-2K-2]. This result indicates that regardless of presence of barrier height inmogeneities, ZnO/Si heterojunction diode still hasability to perform well in high temperature environment.

  12. Green urea synthesis catalyzed by hematite nanowires in magnetic field

    NASA Astrophysics Data System (ADS)

    Yahya, Noorhana; Qureshi, Saima; Rehman, Zia ur; Alqasem, Bilal; Fai Kait, Chong

    2017-04-01

    The catalytic activity of hematite (α-Fe2O3) nanowires under the influence of magnetic field on urea synthesis is considered green. The adsorption and subsequent dissociative reaction of hydrogen, nitrogen and carbon dioxide gases on the α-Fe2O3 (111) nanowires were investigated using the density functional theory (DFT) method. The average adsorption energy is -4.12 kcal/mole at different sites. The adsorption of gases resulted in a difference in density and net spin of electrons from 68 to 120 and 0-21 respectively. In addition, it induces magnetic moment value of 36.33 μB, which confirms the enhanced magnetic behaviour of hematite. α-Fe2O3 nanowires (NWs) synthesized by heating iron wire in a box furnace at (750-800) °C and as synthesized α-Fe2O3 nanoparticles (NPs) were received to use as a catalyst in the magnetic reaction of urea synthesis. X-ray Diffractometer (XRD) confirms the peaks of rhombohedral structure of α-Fe2O3 and Raman spectrum analyses confirms the α-Fe2O3 peaks at 410 cm-1, 500 cm-1 and 616 cm-1. The needle-like shape of hematite nanowires with length ranging from 16-25) μm and diameter from 74 to 145 nm confirmed by Field emission scanning electron microscopy (FESEM). The magnetic properties of the nanowires exhibited different levels of saturation magnetization, for α-Fe2O3 perpendicularly aligned direction (13.18 emu/g) and random direction (10.73 emu/g). Urea synthesis was done under magnetic field ranges from 0.0 to 2.5 T. The activation energy of α-Fe2O3 NWs for urea production is lower than NPs in the range of 0-1 T, whereas it is reversed for higher magnetic induction values. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of urea at the peaks of 1690-1600 cm-1. This green urea employing magnetically induced method could be a contender to the Haber-Bosch process currently used by the current industry which utilizes high temperature and high pressure.

  13. Preparation of manganese doped cadmium sulfide nanoparticles in zincblende phase and their magnetic properties.

    PubMed

    Nakaya, Masafumi; Tanaka, Itaru; Muramatsu, Atsushi

    2012-12-01

    In this study, the random dope of Mn into CdS nanoparticles in zincblende phase has been carried out under the mild reaction condition. The resulting nanoparticles were characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray diffractometer (XRD), UV-Vis spectrometer, PL spectrometer, and SQUID. EDX showed that the compositions of Mn doped CdS nanoparticles were readily controlled. TEM showed the particle sizes were not significantly affected by the compositions, retaining to be ca. 3 nm with a narrow size distribution. UV-Vis and PL spectra of the resulting nanoparticles showed the intra-Mn level may be affected by the quantum size effect. SQUID measurement showed that the resulting nanoparticles showed diamagnetism, paramagnetism and superparamagnetism dependent on Mn content.

  14. Dye-Sensitized Solar Cells (DSSCs) reengineering using TiO2 with natural dye (anthocyanin)

    NASA Astrophysics Data System (ADS)

    Subodro, Rohmat; Kristiawan, Budi; Ramelan, Ari Handono; Wahyuningsih, Sayekti; Munawaroh, Hanik; Hanif, Qonita Awliya; Saputri, Liya Nikmatul Maula Zulfa

    2017-01-01

    This research on Dye-Sensitized Solar Cells (DSSCs) reengineering was carried out using TiO2 with natural dye (anthocyanin). The fabrication of active carbon layer/TiO2 DSSC solar cell was based on natural dye containing anthocyanins such as mangosteen peel, red rose flower, black glutinous rice, and purple eggplant peel. DSSC was prepared with TiO2 thin layer doped with active carbon; Natural dye was analyzed using UV-Vis and TiO2 was analyzed using X-ray diffractometer (XRD), meanwhile scanning electron microscope (SEM) was used to obtain the size of the crystal. Keithley instrument test was carried out to find out I-V characteristics indicating that the highest efficiency occurred in DSSCs solar cell with 24-hour soaking with mangosteen peel 0.00047%.

  15. Growth and studies of cyclohexylammonium 4-methoxy benzoate single crystal for nonlinear optical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathya, P.; Gopalakrishnan, R., E-mail: krgkrishnan@annauniv.edu

    2015-06-24

    Cyclohexylammonium 4-Methoxy Benzoate (C4MB) was synthesised and the functional groups were confirmed by FTIR analysis. The purified C4MB (by repeated recrystallisation) was used for single crystal growth. Single crystal of cyclohexylammonium 4-methoxy benzoate was successfully grown by slow evaporation solution growth method at ambient temperature. Structural orientations were determined from single crystal X-ray diffractometer. Optical absorption and cut off wavelength were identified by UV-Visible spectroscopy. Thermal stability of the crystal was studied from thermogravimetric and differential thermal analyses curves. Mechanical stability of the grown crystal was analysed by Vicker’s microhardness tester. The Second Harmonic Generation (SHG) study revealed that themore » C4MB compound exhibits the SHG efficiency 3.3 times greater than KDP crystal.« less

  16. Cementation and Aqueous Alteration of a Sandstone Unit Under Acidic Conditions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Blake, D. F.; Ming, D. W.; Morris, R. V.; Gellert, R.; Clark, B.; Vaniman, D. T.; Chipera, S. J.; Thompson, L. M.; Bristow, T. F.; hide

    2016-01-01

    The Curiosity rover landed on Mars in August 2012 to explore the sedimentary history and to assess the habitability of Gale Crater. After 1200 sols of surface operations and over 12 km of traverse distance, the mineralogy of 10 samples has been determined by the CheMin X-ray diffractometer (XRD) and the chemical composition of nearly 300 targets has been established by the Alpha Particle X-ray Spectrometer (APXS). Light-toned fracture zones containing elevated concentrations of silica have been studied by Curiosity's instruments to determine the nature of the fluids that resulted in the enrichment of SiO2. Multiple fluid exposures are evident, and the chemistry and mineralogy data indicate at least two aqueous episodes may have occurred under acidic conditions.

  17. Different structures of monoclinic martensitic phases in titanium nickelide

    NASA Astrophysics Data System (ADS)

    Voronin, V. I.; Naish, V. E.; Novoselova, T. V.; Pushin, V. G.; Sagaradze, I. V.

    2000-03-01

    The detailed theoretical and experimental analysis has been undertaken to bring to light the true structure of the monoclinic phase in titanium nickelide (NiTi). Theoretical models for such a phase have been proposed to describe the experimental data. In addition to the well-known B19‧ phase two more structures - new monoclinic M phase with Cm space group and triclinic phase with P1 space group - have been produced and analyzed in detail. Diffraction patterns have been obtained from different NiTi samples by using the neutron diffractometer IVV2 at different temperatures. From the refinement by DBWS-9411 program all these neutron patterns have been decoded successfully. The proposed new structures and stereotype B19‧ one agree with correspondent experimental data and the agreement is quite good.

  18. Thermal neutron radiative capture on cadmium as a counting technique at the INES beam line at ISIS: A preliminary investigation of detector cross-talk.

    PubMed

    Festa, G; Grazzi, F; Pietropaolo, A; Scherillo, A; Schooneveld, E M

    2017-12-01

    Experimental tests are presented that assess the cross-talk level among three scintillation detectors used as neutron counters exploiting the thermal neutron radiative capture on Cd. The measurements were done at the INES diffractometer operating at the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK). These tests follow a preliminary set of measurements performed on the same instrument to study the effectiveness of this thermal neutron counting strategy in neutron diffraction measurements, typically performed on INES using squashed 3 He filled gas tubes. The experimental data were collected in two different geometrical configurations of the detectors and compared to results of Monte Carlo simulations, performed using the MCNP code. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    NASA Astrophysics Data System (ADS)

    Makhloufi, M.; Salah, H.

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway.

  20. Diffractometric measurement of the temperature dependence of piezoelectric tensor in GMO monocrystal

    NASA Astrophysics Data System (ADS)

    Breczko, Teodor; Lempaszek, Andrzej

    2007-04-01

    Functional materials, of which an example is ferroelectric, ferroelastic monocrystal of molybdate (III) gadolinium (VI), are often used in the micro-motor operators (micro-servo motors) working in changeable environment conditions. Most frequently this change refers to temperature. That is why the important practical problem is the precise measurement of the value of piezoelectric tensor elements in dependence on the temperature of a particular monocrystal. In the presented article for this kind of measurements, the use of X-ray diffractometer has been shown. The advantage of the method presented is that, apart from precise dependence measurement between the temperature of a monocrystal and the value of piezoelectric tensor elements, it enables synchronous measurement of the value of thermal expansion tensor elements for a monocrystal.

  1. Growing barium hexaferrite (BaFe{sub 12}O{sub 19}) thin films using chemical solution deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budiawanti, Sri, E-mail: awanty77@yahoo.com; Faculty of Teacher Training and Education, Sebelas Maret University; Soegijono, Bambang

    Barium hexaferrite (BaFe{sub 12}O{sub 19}, or simply known as BaM) thin films has been recognized as a potential candidate for microwave-based devices, magnetic recording media and data storage. To grow BaM thin films, chemical solution deposition is conducted using the aqueous solution of metal nitrates, which involves spin coatings on Si substrates. Furthermore, Thermal Gravimeter Analysis (TGA), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) are applied to evaluate the decomposition behavior, structure, morphology, and magnetic properties of BaM thin films. Additionally, the effects of number of layers variation are also investigated. Finally, magnetic properties analysismore » indicates the isotropic nature of the films.« less

  2. Structural properties of medium-range order in CuNiZr alloy

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Hu, Xuechen; Xie, Quan; Li, Yidan; Ren, Lei

    2017-10-01

    The evolution characteristics of icosahedral clusters during the rapid solidification of Cu50Ni10Zr40 alloy at cooling rate of 1011 K s-1 are investigated based on molecular dynamics simulations. The structural properties of the short-range order and medium-range order of Cu50Ni10Zr40 alloy are analyzed by several structural characterization methods. The results reveal that the icosahedral clusters are the dominant short-range order structure, and that they assemble themselves into medium-range order by interpenetrating connections. The different morphologies of medium-range order are found in the system and include chain, triangle, tetrahedral, and their combination structures. The tetrahedral morphologies of medium-range order have excellent structural stability with decreasing temperature. The Zr atoms are favorable to form longer chains, while the Cu atoms are favorable to form shorter chains in the system. Those chains interlocked with each other to improve the structural stability.

  3. Positional short-range order in the nematic phase of n BABAs

    NASA Astrophysics Data System (ADS)

    Usha Deniz, K.; Pepy, G.; Parette, G.; Keller, P.

    1991-10-01

    The positional short-range order, SRO ⊥, perpendicular to the nematic director n̂ has been studied in the fibre-type nematics, nBABAs, by neutron diffraction. SRO ⊥ is found to be dependent on other types of nematic short-range order but not on the orientational long-range order.

  4. In situ X-ray diffraction strain-controlled study of Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys: crystal lattice and transformation features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubinskiy, S.; National University of Science and Technology “MISIS”, 4, Leninskiy prosp., Moscow 119049; Prokoshkin, S.

    2014-02-15

    Phase and structure transformations in biomedical Ti–21.8Nb–6.0Zr (TNZ) and Ti–19.7Nb–5.8Ta (TNT) shape memory alloys (at.%) under and without load in the − 150 to 100 °S temperature range are studied in situ using an original tensile module for a low-temperature chamber of an X-ray diffractometer. Alpha″- and beta-phase lattice parameters, the crystallographic resource of recovery strain, phase and structure transformation sequences, and microstress appearance and disappearance are examined, compared and discussed. For both alloys, the crystallographic resource of recovery strain decreases with temperature increase to become 4.5% for TNZ and 2.5% for TNT alloy (at RT). Loading at low temperaturesmore » leads to additional α″-phase formation and reorientation. Heating under load, as compared to strain-free heating, affects the reverse transformation sequence of both alloys in different ways. For TNZ alloy, strain-free heating results in simultaneous ω→β and α″→β transformations, whereas during heating under stress, they are sequential: β + ω→α″ precedes α″→β. For TNT alloy, strain-free heating results in reverse α″→β transformation, whereas during heating under stress, α″→β transformation is preceded by α″-phase reorientation. - Highlights: • Comparative in situ XRD analysis of Ti–Nb–Zr(Ta) shape memory alloys is realized. • Lattice parameters of β- and α″-phases are calculated in the − 150 to + 100 °C range. • The higher the temperature, the lower the α″→β transformation strain. • Loading at low temperatures results in α″-phase formation and reorientation. • Transformation sequences upon heating with and without loading are different.« less

  5. Transmission X-ray Diffraction (XRD) Patterns Relevant to the MSL Chemin Amorphous Component: Sulfates And Silicates

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.

    2015-01-01

    The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous components.

  6. High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.

    2004-01-01

    Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results of our studies show, that Sic nanocrystals have the features of two phases, each with its distinct elastic properties. and under pressures up to 8 GPa.

  7. Phase, compositional, and morphological changes of human dentin after Nd:YAG laser treatment.

    PubMed

    Lin, C P; Lee, B S; Lin, F H; Kok, S H; Lan, W H

    2001-06-01

    Although techniques for repairing root fracture have been proposed, the prognosis is generally poor. If the fusion of a root fracture by laser is possible, it will offer an alternative to extraction. Our group has attempted to use lasers to fuse a low melting-point bioactive glass to fractured dentin. This report is focused on the phase, compositional, and morphological changes observed by means of X-ray diffractometer, Fourier transforming infrared spectroscopy, and scanning electron microscopy-energy dispersive X-ray spectroscopy in human dentin after exposure to Nd:YAG laser. The irradiation energies were from 150 mJ/ pulse-10 pps-4 s to 150 mJ/pulse-30 pps-4 s. After exposure to Nd:YAG laser, dentin showed four peaks on the X-ray diffractometer that corresponding to a-tricalcium phosphate (TCP) and beta-TCP at 20 = 30.78 degrees/34.21 degrees and 32.47 degrees/33.05 degrees, respectively. The peaks of a-TCP and beta-TCP gradually increased in intensity with the elevation of irradiation energy. In Fourier transforming infrared analysis, two absorption bands at 2200 cm(-1) and 2015 cm(-1) could be traced on dentin treated by Nd:YAG laser with the irradiation energies beyond 150 mJ/pulse-10 pps-4 s. The energy dispersive X-ray results showed that the calcium/phosphorus ratios of the irradiated area proportionally increased with the elevation of irradiation energy. The laser energies of 150 mJ/ pulse-30 pps-4 s and 150 mJ/pulse-20 pps-4 s could result in the a-TCP formation and collagen breakdown. However, the formation of glass-like melted substances without a-TCP at the irradiated site was induced by the energy output of 150 mJ/ pulse-10 pps-4 s. Scanning electron micrographs also revealed that the laser energy of 150 mJ/ pulse-10 pps-4 s was sufficient to prompt melting and recrystallization of dentin crystals without cracking. Therefore, we suggest that the irradiation energy of Nd:YAG laser used to fuse a low melting-point bioactive glass to dentin is 150 mJ/ pulse-10 pps-4 s.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.

    This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted themore » SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.« less

  9. Additional of polyethylene glycol on the preparation of LaPO4:Eu3+ phosphor

    NASA Astrophysics Data System (ADS)

    Panatarani, Camellia; Joni, I. Made

    2013-09-01

    Solution phase method was used to synthesis nanocrystal LaPO4:Eu3+. Polyethylene glycol with vary molecular weight (MW) was added to allow an exothermic reaction to get a high crystalinity of LaPO4:Eu3+. The x-ray pattern of as prepared LaPO4 was obtained by using an X'pert PANalytical diffractometer with CuKα radiation (λ = 1.5406 Å) and the photoluminescent measurement spectra is obtained by using Fluorescence Spectrometer LS55, Perkin Elmer. The additional of various MW of polyethylene glycol into the precursor solution of LaPO4:Eu3+ affected the crystal structure and luminescent properties. Higher MW of PEG depressing the luminescent spectra. The emission origin from 5D0-7F4 transition vanished by additional 500,000 and 2,000,000 MW of PEG.

  10. Effect of annealing temperature on physical properties of solution processed nickel oxide thin films

    NASA Astrophysics Data System (ADS)

    Sahoo, Pooja; Thangavel, R.

    2018-05-01

    In this report, NiO thin films were prepared at different annealing temperatures from nickel acetate precursor by sol-gel spin coating method. These films were characterized by different analytical techniques to obtain their structural, optical morphological and electrical properties using X-ray diffractometer (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis NIR double beam spectrophotometer and Keithley 2450 source meter respectively. FESEM images clearly indicates the formation of a homogenous and porous films. Due to their porosity, they can be used in sensing applications. The optical absorption spectra elucidated that the films are highly transparent and have a suitable band gap which are in similar agreement with earlier reports. The current enhancement under illumination shows the suitability of nanostructured NiO thin films in its application in photovoltaics.

  11. Synthesis and crystal structure of bis(di- n-butyldithiocarbamato)(1,10-phenanthroline)cadmium(II)

    NASA Astrophysics Data System (ADS)

    Ivanchenko, A. V.; Gromilov, S. A.; Zemskova, S. M.; Baidina, I. A.; Glinskaya, L. A.

    2002-02-01

    A new mixed-ligand complex, Cd(S2CN(C4H9)2)2Phen, is synthesized and investigated by thermal, element, and IR analyses and by diffractometry of polycrystals (DRON-3M, CuKα radiation, Ni filter). The crystal structure was determined on a CAD-4 Enraf-Nonius automatic diffractometer (MoKα radiation, θ from 1.5 to 25‡, 2325 nonzero independent reflections, 190 refined parameters, R = 0.036 for I > 2Σ(I)). Crystal data for C30H44CdN4S4 : a = 15.592(3), b = 22.724(5), c = 9.922(2) å, space group Pbcn, V = 3515.5(12) å3, Z = 4, M = 701.33, dcalc = 1.325 g/cm3. The structure involves monomeric molecules in which the cadmium atom has a distorted octahedral environment.

  12. The crystal structure of the new ternary antimonide Dy 3Cu 20+xSb 11-x ( x≈2)

    NASA Astrophysics Data System (ADS)

    Fedyna, L. O.; Bodak, O. I.; Fedorchuk, A. O.; Tokaychuk, Ya. O.

    2005-06-01

    New ternary antimonide Dy 3Cu 20+xSb 11-x ( x≈2) was synthesized and its crystal structure was determined by direct methods from X-ray powder diffraction data (diffractometer DRON-3M, Cu Kα-radiation, R=6.99%,R=12.27%,R=11.55%). The compound crystallizes with the own cubic structure type: space group F 4¯ 3m, Pearson code cF272, a=16.6150(2) Å,Z=8. The structure of the Dy 3Cu 20Sb 11-x ( x≈2) can be obtained from the structure type BaHg 11 by doubling of the lattice parameter and subtraction of 16 atoms. The studied structure was compared with the structures of known compounds, which crystallize in the same space group with similar cell parameters.

  13. Study on GaN nanostructures: Growth and the suppression of the yellow emission

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Chen, Fei; Ji, Xiaohong; Zhang, Qinyuan

    2018-07-01

    GaN nanostructures were synthesized via a simple chemical vapor deposition using Ga2O3 and NH3 as precursors. Structural and morphological properties were systematically characterized by field emission scanning electron microscopy, X-ray diffractometer, transmission electron microscopy, and Raman spectroscopy. The configuration of GaN nanostructures was found to be strongly dependent on the growth temperature and the NH3 flow rate. Photoluminescence analysis revealed that all the fabricated GaN NSs exhibited a strong ultra-violet emission (∼364 nm), and the yellow emission of GaN nanorods can be suppressed at appropriate III/V ratio. The suppression of the yellow emission was attributed to the low density of surface or the VGa defect. The work demonstrates that the GaN nanostructures have potential applications in the optoelectronic and nanoelectronic devices.

  14. The preparation and hydrogen brittleness resistance of Pd71.5Cu12Si16.5 metallic glass ribbons

    NASA Astrophysics Data System (ADS)

    Du, Xiaoqing; Ye, Xiaoqiu; Ren, Qingbo

    2017-12-01

    Pd71.5Cu12Si16.5 metallic glass ribbons as wide as 10mm were prepared by splat quenching. Structure was identified with X-ray diffraction (XRD) spectrums from the conventional X-ray diffractometer and also short wavelength X-ray stress analyzer. The results confirm fully amorphous structure of the ribbons. Multiple H2 adsorption and desorption cycles under a pressure of 100kPa were carried out in the metallic glass ribbon and also pure palladium membrane for comparison. The former didn’t show any cracks after more than 10 cycles, and thermal desorption spectroscopy (TDS) measurement confirms that hydrogen was adsorbed abundantly in the metallic glass ribbon. Pd71.5Cu12Si16.5 metallic glass ribbons demonstrate excellent hydrogen brittleness resistance.

  15. Feasibility study of ferromagnetic/ferroelectric films for enhanced microwave devices

    NASA Technical Reports Server (NTRS)

    Ijiri, Yumi

    2005-01-01

    This report summarizes exploratory work conducted to assess the feasibility of ferromagnetic/ferroelectric films for next-generation microwave devices. From literature review, it is established that while an increasing number of ferroelectric/ferromagnetic composites are being investigated, a number have transition temperatures that are too low and structures that are not robust enough for low cost, room temperature antenna arrays. On the other hand, several promising systems are identified, including the multiferroic BiFeO3 and a composite system of Ba/SrTiO3 and a related perovskite manganite. It is suggested that when the NASA pulsed laser deposition chamber is fully operational, thin films of these systems be investigated. In preparation for such work, we have reconfirmed several structural features of an existing Ba/SrTiO3 film using the x-ray diffractometer at Oberlin College.

  16. Preparation, Structural Characterization and Magnetic Properties of La-SUBSTITUTED co Ferrites via a Modified Citrate Precursor Route

    NASA Astrophysics Data System (ADS)

    Ai, Lunhong; Jiang, Jing

    CoLaxFe2-xO4 (x = 0.00, 0.05 and 0.1) nanoparticles were prepared simply by a modified citrate precursor route. Effects of La-substituting level on the their magnetic properties were investigated on the basis of the structural analysis. The thermal evolution of the precursor, as well as the microstructure of as-prepared products were studied by means of a thermogravimetric analyzer (TGA), X-ray diffractometer (XRD) and Fourier transform infrared (FTIR) spectrometer. The magnetic properties of the as-prepared samples were measured using a vibrating sample magnetometer (VSM). It was found that the magnetic properties were dependent on many factors such as La-substituting level, particle size and microstructure. The observed saturation magnetization decreased with increasing La content, whereas coercivity exhibited reverse behavior.

  17. Diffraction on heavy samples at STRESS-SPEC using a robot system

    NASA Astrophysics Data System (ADS)

    Al-Hamdany, N.; Gan, W. M.; Randau, C.; Brokmeier, H.-G.; Hofmann, M.

    2015-04-01

    The material science diffractometer STRESS-SPEC has high flux and a high flexible monochromator arrangement to optimize the needed wavelength. Many specific sample handling stages and sample environments are available. One of them is a Staubli RX 160 robot with nominal load capacity of 20 kg and more freedom for texture mapping than the Huber 512 Eulerian type cradle. Demonstration experiments of non-destructive pole figures and strain measurements of Cu-tube segments weighing 12 kg weight and 250 mm in length and 140 mm diameter have been carried out. The residual strains measured by the robot and by the XYZ- stage fit quite well, that means the robot is reliable for strain measurements. The texture of the Cu-tube has dominant recrystallization texture components represented by the cube and the rotated cube.

  18. Sensitive and Specific Guest Recognition through Pyridinium-Modification in Spindle-Like Coordination Containers.

    PubMed

    Bhuvaneswari, Nagarajan; Dai, Feng-Rong; Chen, Zhong-Ning

    2018-05-02

    An elaborately designed pyridinium-functionalized octanuclear zinc(II) coordination container 1-Zn was prepared through the self-assembly of Zn 2+ , p-tert-butylsulfonylcalix[4]arene, and pyridinium-functionalized angular flexible dicarboxylate linker (H 2 BrL1). The structure was determined by a single-crystal X-ray diffractometer. 1-Zn displays highly sensitive and specific recognition to 2-picolylamine as revealed by drastic blueshifts of the absorption and emission spectra, ascribed to the decrease of intramolecular charge transfer (ICT) character of the container and the occurrence of intermolecular charge transfer between the host and guest molecules. The intramolecular charge transfer plays a key role in the modulation of the electronic properties and is tunable through endo-encapsulation of specific guest molecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Reciprocal Space Mapping of Macromolecular Crystals in the Home Laboratory

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Fewster, P. F.; Andrew, Norman; Boggon, T. J.; Judge, Russell A.; Pusey, Marc A.

    1999-01-01

    Reciprocal space mapping techniques are used widely by the materials science community to provide physical information about their crystal samples. We have used similar methods at synchrotron sources to look at the quality of macromolecular crystals produced both on the ground and under microgravity conditions. The limited nature of synchrotron time has led us to explore the use of a high resolution materials research diffractometer to perform similar measurements in the home laboratory. Although the available intensity is much reduced due to the beam conditioning necessary for high reciprocal space resolution, lower resolution data can be collected in the same detail as the synchrotron source. Experiments can be optimized at home to make most benefit from the synchrotron time available. Preliminary results including information on the mosaicity and the internal strains from reciprocal space maps will be presented.

  20. Synthesis, Characterization and Comparative Luminescence Studies of Rare-Earth-Doped Gd2O3 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Pyngrope, D.; Singh, L. R.; Prasad, A. I.; Bora, A.

    2018-04-01

    A facile direct precipitation method was used for the synthesis of luminescence nanomaterial. Gd2O3 doped with rare earth element Eu3+ is synthesized by polyol route. The synthesized nanoparticles show their characteristic red emission. The nanoparticles are characterized by x-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and photoluminescence (PL) study. The synthesized nanoparticles are spherical particles with 30 nm size. The photoluminescence studies show the characteristic Eu3+ red emission. The PL study shows the intensity of the magnetic dipole transition ( 5 D0 \\to 7 F1 ) at 592 nm compared to that of the electronic dipole transition ( 5 D0 \\to 7 F2 ) at 615 nm. The nanomaterials can show significant application in various display devices and biomedical applications for tracking.

  1. Thermal etching rate of GaN during MOCVD growth interruption in hydrogen and ammonia ambient determined by AlGaN/GaN superlattice structures

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Ikeda, Masao; Zhang, Shuming; Liu, Jianping; Tian, Aiqin; Wen, Pengyan; Cheng, Yang; Yang, Hui

    2017-10-01

    Thermal etching effect of GaN during growth interruption in the metalorganic chemical vapor deposition reactor was investigated in this paper. The thermal etching rate was determined by growing a series of AlGaN/GaN superlattice structures with fixed GaN growth temperature at 735 °C and various AlGaN growth temperature changing from 900 °C to 1007 °C. It was observed that the GaN layer was etched off during the growth interruption when the growth temperature ramped up to AlGaN growth temperature. The etching thickness was determined by high resolution X-ray diffractometer and the etching rate was deduced accordingly. An activation energy of 2.53 eV was obtained for the thermal etching process.

  2. Synthesis of Flexible Graphene/Polymer Composites for Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Pal, Himangshu; Bhubna, Shuvam; Kumar, Praduman; Mahapatra, Rajat; Chatterjee, Somenath

    2018-01-01

    In this paper, the graphene was synthesized using biocompatible cellulosic component from onions. Onion epidermal cells were chosen as raw material. During heating at high temperature, the bonding among atoms in material was rearranged and forms two-dimensional hexagonal carbon layer (graphene). The characterization of synthesized graphene was done by x-ray diffractometer, Raman spectrometer and field emission scanning electron microscopy, respectively. An attempt has been taken to form the capacitors with two different current collector electrodes, anticipating the performance of the supercapacitors. The observed capacitance values as-obtained for Al and Au current collector were 1.3 μF and 6.08 μF, respectively. However, when thermally exfoliated graphene was used as an electrode on Al and Au current collector, the capacitance value was drastically increased and found to be 1.6 and 41.25 μF, respectively.

  3. Synthesis of K2O/Zeolite catalysts by KOH impregnation for biodiesel production from waste frying oil

    NASA Astrophysics Data System (ADS)

    Fitriana, N.; Husin, H.; Yanti, D.; Pontas, K.; Alam, P. N.; Ridho, M.; Iskandar

    2018-03-01

    K2O/Zeolite compounds were successfully synthesized using KOH as starting material and natural zeolite as support. The catalysts were calcined at 500°C for 3 h and then characterized by X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM). The SEM images reveal that the zeolite and K2O/zeolite particles are irregular in shape (100 to 400 nm). The independent variables were impregnated amounts of KOH (15 - 25%), catalyst to oil ratios of 1.0 - 6.0 wt.%, and reaction time of 2 h. The highest biodiesel yield of 95% was produced from the reaction with 2.1 wt.% catalyst of 25% KOH impregnated. The properties of produced biodiesel complied with SNI. The catalytic stability test showed that the 25% KOH impregnated catalyst was stable.

  4. Residual stress determination in an overlay dissimilar welded pipe by neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Wan Chuck; Em, Vyacheslav; Hubbard, Camden R

    2011-01-01

    Residual stresses were determined through the thickness of a dissimilar weld overlay pipe using neutron diffraction. The specimen has a complex joining structure consisting of a ferritic steel (SA508), austenitic steel (F316L), Ni-based consumable (Alloy 182), and overlay of Ni-base superalloy (Alloy 52M). It simulates pressurized nozzle components, which have been a critical issue under the severe crack condition of nuclear power reactors. Two neutron diffractometers with different spatial resolutions have been utilized on the identical specimen for comparison. The macroscopic 'stress-free' lattice spacing (d{sub o}) was also obtained from both using a 2-mm width comb-like coupon. The results showmore » significant changes in residual stresses from tension (300-400 MPa) to compression (-600 MPa) through the thickness of the dissimilar weld overlay pipe specimen.« less

  5. Leonardo da Vinci's drapery studies: characterization of lead white pigments by µ-XRD and 2D scanning XRF

    NASA Astrophysics Data System (ADS)

    Gonzalez, Victor; Calligaro, Thomas; Pichon, Laurent; Wallez, Gilles; Mottin, Bruno

    2015-11-01

    This work focuses on the composition and microstructure of the lead white pigment employed in a set of paintworks, using a combination of µ-XRD and 2D scanning XRF, directly applied on five drapery studies attributed to Leonardo da Vinci (1452-1519) and conserved in the Département des Arts Graphiques, Musée du Louvre and in the Musée des Beaux- Arts de Rennes. Trace elements present in the composition as well as in the lead white highlights were imaged by 2D scanning XRF. Mineral phases were determined in a fully noninvasive way using a special µ-XRD diffractometer. Phase proportions were estimated by Rietveld refinement. The analytical results obtained will contribute to differentiate lead white qualities and to highlight the artist's technique.

  6. Characterization of Micro-arc Oxidation Coatings on 6N01 Aluminum Alloy Under Different Electrolyte Temperature Control Modes

    NASA Astrophysics Data System (ADS)

    Wang, Xuefei; Zhu, Zongtao; Li, Yuanxing; Chen, Hui

    2018-03-01

    The micro-arc oxidation coatings of 6N01 aluminum alloy produced under different control modes of the electrolyte temperature are discussed in detail. Compared to those coated by a thermostatically controlled treatment, the coatings had different surface characterizations when they were coated without controlling the electrolyte temperature, particularly after treatment involving boiling electrolytes. Scanning electron microscopy and confocal laser scanning microscopy were used to observe the morphology of the coatings. Energy-dispersive spectrometry and x-ray diffractometer were used to characterize their elemental and crystalline phase compositions. The results indicate that the treatment without a controlled electrolyte temperature ultimately led to a thicker and rougher film with a respectably thick inner barrier film, a lower content of γ-Al2O3 and better corrosion resistance.

  7. Parameterization of the Van Hove dynamic self-scattering law Ss(Q,omega)

    NASA Astrophysics Data System (ADS)

    Zetterstrom, P.

    In this paper we present a model of the Van Hove dynamic scattering law SME(Q, omega) based on the maximum entropy principle which is developed for the first time. The model is aimed to be used in the calculation of inelastic corrections to neutron diffraction data. The model is constrained by the first and second frequency moments and detailed balance, but can be expanded to an arbitrary number of frequency moments. The second moment can be varied by an effective temperature to account for the kinetic energy of the atoms. The results are compared with a diffusion model of the scattering law. Finally some calculations of the inelastic self-scattering for a time-of-flight diffractometer are presented. From this we show that the inelastic self-scattering is very sensitive to the details of the dynamic scattering law.

  8. U-PuO2, U-PuC, U-PuN cermet fuel for fast reactor

    NASA Astrophysics Data System (ADS)

    Mishra, Sudhir; Kaity, Santu; Banerjee, Joydipta; Nandi, Chiranjeet; Dey, G. K.; Khan, K. B.

    2018-02-01

    Cermet fuel combines beneficial properties of both ceramic and metal and attracts global interest for research as a candidate fuel for nuclear reactors. In the present study, U matrix PuC/PuN/PuO2 cermet for fast reactor have been fabricated on laboratory scale by the powder metallurgy route. Characterization of the fuel has been carried out using Dilatometer, Differential Thermal analysis (DTA), X-ray diffractometer and Optical microscope. X ray diffraction study of the fuel reveals presence of different phases. The PuN dispersed cermet was observed to have high solidus temperature as compared to PuC and PuO2 dispersed cermet. Swelling was observed in U matrix PuO2 cermet which also showed higher thermal expansion. Among the three cermets studied, U matrix PuC cermet showed maximum thermal conductivity.

  9. Microstructural, optical and electrical properties of LaFe0.5Cr0.5O3 perovskite nanostructures

    NASA Astrophysics Data System (ADS)

    Ali, S. Asad; Naseem, Swaleha; Khan, Wasi; Sharma, A.; Naqvi, A. H.

    2016-05-01

    Perovskite nanocrystalline powder of LaFe0.5Cr0.5O3 was synthesized by sol-gel combustion route and characterized by x-ray diffractometer (XRD), scanning electron microscopy (SEM) equipped with EDS, UV-visible and LCR meter at room temperature Rietveld refinement of the XRD data confirms that the sample is in single phase-rhombohedral structure with space group R-3C. SEM micrograph shows clear nanostructure of the sample and EDS ensures the presence of all elements in good stoichiometric. The optical absorption indicates the maximum absorption at 315 nm and optical band gap of 2.94 eV was estimated using Tauc's relation. Dielectric constant (ɛ') and loss were found to decrease with increase in frequencies. The dielectric behavior was explained on the basis of Maxwell-Wagner's two layer model.

  10. Significant enhancement in volumetric and gravimetric capacitance of Cu-TiO2/PPY composite for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Purty, B.; Choudhary, R. B.

    2018-04-01

    Copper doped titanium dioxide-polypyrrole (Cu-TiO2/PPY) composite was successfully synthesized via chemical oxidative in-situ polymerization process. The structural and morphological properties of Cu-TiO2/PPY composite were investigated using X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and transmission electron microscopy(TEM) techniques. The electrochemical properties of as-synthesized composite were studied using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopic (EIS) techniques. The novel Cu-TiO2/PPY composite showed enhanced volumetric capacitance ˜714 F cm-1 and gravimetric capacitance ˜674 F g-1 at 1 A g-1. In addition an excellent coulombic efficiency and comparabley low charge transfer resistance than pure PPY suggests improved supercapacitive performance of Cu-TiO2/PPY composite as an electrode material.

  11. Surface morphological properties of Ag-Al2O3 nanocermet layers using dip-coating technique

    NASA Astrophysics Data System (ADS)

    Muhammad, Nor Adhila; Suhaimi, Siti Fatimah; Zubir, Zuhana Ahmad; Daud, Sahhidan

    2017-12-01

    Ag-Al2O3 nanocermet layer was deposited on Cu coated glass substrate using dip-coating technique. The aim of this study was to observe the surface morphology properties of Ag-Al2O3 nanocermet layers after annealing process at 350°C in H2. The surface morphology of Ag-Al2O3 nanocermet will be characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-Ray Diffractometer (XRD), respectively. The results show that nearly isolated Ag particles having a large and small size were present in the Al2O3 dielectric matrix after annealing process. The face centered cubic crystalline structure of Ag nanoparticles inclusion in the amorphous alumina dielectric matrix was confirmed using XRD pattern and supported by EDX spectra analysis.

  12. Optical, structural, and chemical properties of CR-39 implanted with 5.2 MeV doubly charged carbon ions

    NASA Astrophysics Data System (ADS)

    Ali, Dilawar; Butt, M. Z.; Ishtiaq, Mohsin; Waqas Khaliq, M.; Bashir, Farooq

    2016-11-01

    Poly-allyl-diglycol-carbonate (CR-39) specimens were irradiated with 5.2 MeV doubly charged carbon ions using Pelletron accelerator. Ion dose was varied from 5 × 1013 to 5 × 1015 ions cm-2. Optical, structural, and chemical properties were investigated by UV-vis spectroscopy, x-ray diffractometer, and FTIR/Raman spectroscopy, respectively. It was found that optical absorption increases with increasing ion dose. Absorption edge shifts from UV region to visible region. The measured opacity values of pristine and ion implanted CR-39 range from 0.0519 to 4.7959 mm-1 following an exponential growth (9141%) with the increase in ion dose. The values of direct and indirect band gap energy decrease exponentially with an increase in ion dose by 59% and 71%, respectively. However, average refractive index in the visible region increases from 1.443 to 2.864 with an increase in ion dose, by 98%. A linear relation between band gap energy and crystallite size was observed. Both the number of carbon atoms in conjugation length and the number of carbon atoms per cluster increase linearly with the increase in ion dose. FTIR spectra showed that on C+2 ions irradiation, the intensity of all bands decreases gradually without appearance of any new band, indicating degradation of polymer after irradiation. Raman spectra revealed that the density of -CH2- group decreases on C+2 ions irradiation. However, the structure of CR-39 is completely destroyed on irradiation with ion dose 1 × 1015 and 5 × 1015 ions cm-2.

  13. Size dependent structural and magnetic properties of Al substituted Co–Mg ferrites synthesized by the sol–gel auto-combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Imran, E-mail: imraan77@yahoo.com; Abbas, Tahir; Ziya, A.B.

    2014-04-01

    Highlights: • Well-crystalline Co{sub 0.7}Mg{sub 0.3}AlFeO{sub 4} nanoparticles with small grain size were obtained. • The approach is sol–gel auto-combustion technique for obtained nanoparticles. • The prepared Co{sub 0.7}Mg{sub 0.3}AlFeO{sub 4} ferrites are decent soft materials with low coercivity. • The minor decrease in lattice parameter with increase of temperature was observed. - Abstract: Single phased nanocrystalline Co{sub 0.7}Mg{sub 0.3}FeAlO{sub 4} ferrites having low coercivity were synthesized by the sol–gel auto-combustion route. The subsequent powder materials were sintered in a temperature range of 800–1200 °C for 2 h. The effects of sintering temperatures on the structure, morphology and magnetic propertiesmore » of the prepared soft magnetic material were studied. X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and magnetic property measurement system (MPMS) were used to characterize the samples. X-ray diffraction analysis confirmed a single-phase cubic spinel structure and ruled out the presence of impurities like hematite. The higher sintering temperatures have caused in enhanced mark of crystallinity and bigger average grain size of the nanocrystals. A slight decrease in lattice parameters was noticed with a rise of grain size. Magnetic measurements revealed that grain size increase led to a decrease in the coercivity and, in difference, an increase in the saturation magnetization.« less

  14. Electrochemical properties of rapidly solidified Si-Ti-Ni(-Cu) base anode for Li-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook

    2013-11-01

    In this study, rapidly solidified Si-Ti-Ni-Cu alloys have been investigated as high capacity anodes for Li-ion secondary batteries. To obtain nano-sized Si particles dispersed in the inactive matrix, the alloy ribbons were fabricated using the melt spinning process. The thin ribbons were pulverized using ball-milling to make a fine powder of ˜ 4 µm average size. Coin-cell assembly was carried out under an argon gas in a glove box, in which pure lithium was used as a counter-electrode. The cells were cycled using the galvanostatic method in the potential range of 0.01 V and 1.5 V vs. Li/Li+. The microstructure and morphology were examined using an x-ray diffractometer, Field-Emission Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy. Among the anode alloys, the Si70Ti15Ni15 electrodes had the highest discharge capacity (974.1 mAh/g) after the 50th cycle, and the Si60Ti16Ni16Cu8 electrode showed the best coulombic efficiency of ˜95.9% in cyclic behavior. It was revealed that the Si7Ni4Ti4 crystal phase coexisting with an amorphous phase, could more efficiently act as a buffer layer than the fully crystallized Si7Ni4Ti4 phase. Consequently, the electrochemical properties of the anode materials pronouncedly improved when the nano-sized primary Si particle was dispersed in the inactive Si7Ni4Ti4-based matrix mixed with an amorphous structure.

  15. Operational performance characteristics of the WISH detector array on the ISIS spallation neutron source

    NASA Astrophysics Data System (ADS)

    Duxbury, D.; Khalyavin, D.; Manuel, P.; Raspino, D.; Rhodes, N.; Schooneveld, E.; Spill, E.

    2014-12-01

    The performance of the position sensitive neutron detector array of the WISH diffractometer is discussed. WISH (Wide angle In a Single Histogram) is one of the seven instruments currently available for users on the second target station (TS2) of the ISIS spallation neutron source, and is used mainly for magnetic studies of materials. WISH is instrumented with an array of 10 detector panels, covering an angular range of 320o, orientated in two semi-cylindrical annuli around a central sample position at a radius of 2.2m. In total the 10 detector panels are composed of 1520 3He based position sensitive detector tubes. Each tube has an active length of one metre, a diameter of 8mm and is filled with 3He at 15 bar. The specification for the WISH detectors included a neutron detection efficiency of 50% at a neutron wavelength of 1Å with good gamma rejection. A position resolution better than 8 mm FWHM along the length of the tubes was also required which has been met experimentally. Results obtained from the detector arrays showing pulse height and positional information both prior to and post installation are shown. The first 5 of the 10 detector panels have been operational since 2009, and comparable diffraction data from powder and single crystal samples taken from the remaining 5 panels (installation completed in 2013) shows that we have a detector array with a highly stable performance which is easily assembled and maintained. Finally some real user data is shown, highlighting the excellent quality of data attainable with this instrument.

  16. Structure and absolute configuration of some 5-chloro-2-methoxy-N-phenylbenzamide derivatives

    NASA Astrophysics Data System (ADS)

    Galal, Alaaeldin M. F.; Shalaby, Elsayed M.; Abouelsayed, Ahmed; Ibrahim, Medhat A.; Al-Ashkar, Emad; Hanna, Atef G.

    2018-01-01

    The absolute configuration of 5-chloro-2-methoxy-N-phenylbenzamide single crystal [compound (1)] and the effect of introducing -[CH2]n-, n = 1,2 group adjacent to the amide group [compounds (2) and (3)], were studied. Furthermore, the replacement of the methoxy group with a hydroxy group [compound (4)] was defined. Proton and carbon-13 NMR spectrometer were used to record the structural information of the prepared compounds. X-ray single crystal diffractometer were used to elucidate the 3D structural configurations. Intensity data for the studied compounds were collected at room temperature. The X-ray data prove that compound (1) is almost planar, with maximum r.m.s. deviations of 0.210(3) Å corresponds to C13. This planarity starts to disturb by adding -[CH2]n-, n = 1,2 groups between the NH group and the phenyl ring in compounds (2) and (3), respectively. By replacing the OCH3 group by an OH group in compound (4), the plane of the chlorophenyl moiety is nearly perpendicular to that of the phenyl ring. Such new structural configurations were further illustrated by the infrared, and ultraviolet-visible spectroscopy measurements in the frequency range 400-4000 cm-1 and 190-1100 nm, respectively. Spectroscopic analyses were verified with the help of molecular modeling using density functional theory. The estimated total dipole moment for the prepared compounds reflects its ability to interact with its surrounding molecules. The higher dipole moment for a given structures is combined with the higher reactivity for potential use in medicinal applications.

  17. Grain-size analysis of volcanic ash for the rapid assessment of respiratory health hazard.

    PubMed

    Horwell, Claire J

    2007-10-01

    Volcanic ash has the potential to cause acute and chronic respiratory diseases if the particles are sufficiently fine to enter the respiratory system. Characterization of the grain-size distribution (GSD) of volcanic ash is, therefore, a critical first step in assessing its health hazard. Quantification of health-relevant size fractions is challenging without state-of-the-art technology, such as the laser diffractometer. Here, several methods for GSD characterization for health assessment are considered, the potential for low-cost measurements is investigated and the first database of health-pertinent GSD data is presented for a suite of ash samples from around the world. Methodologies for accurate measurement of the GSD of volcanic ash by laser diffraction are presented by experimental analysis of optimal refractive indices for different magmatic compositions. Techniques for representative sampling of small quantities of ash are also experimentally investigated. GSD results for health-pertinent fractions for a suite of 63 ash samples show that the fraction of respirable (<4 microm) material ranges from 0-17 vol%, with the variation reflecting factors such as the style of the eruption and the distance from the source. A strong correlation between the amount of <4 and <10 microm material is observed for all ash types. This relationship is stable at all distances from the volcano and with all eruption styles and can be applied to volcanic plume and ash fallout models. A weaker relationship between the <4 and <63 microm fractions provides a novel means of estimating the quantity of respirable material from data obtained by sieving.

  18. Experiments on planetary ices at UCL

    NASA Astrophysics Data System (ADS)

    Grindrod, P. M.; Fortes, A. D.; Wood, I. G.; Dobson, D.; Sammonds, P. R.; Stone-Drake, L.; Vocadlo, L.

    2007-08-01

    Using a suite of techniques and equipment, we conduct several different types of experiments on planetary ices at UCL. Samples are prepared in the Ice Physics Laboratory, which consists of a 5 chamber complex of inter-connected cold rooms, controllable from +30 to -30 deg C. Within this laboratory we have a functioning triaxial deformation cell operating at low temperature (down to -90 deg C) and high pressures (300 MPa), an Automatic Ice Fabric Analyser (AIFA) and a low-temperature microscope with CCD output. Polycrystalline samples, 40mm diameter by 100mm long, are compressed in the triaxial rig with a confining pressure; single crystal specimens are compressed in a separate uniaxial creep rig which operates at zero confining pressure for surface studies. A cold stage is also available for study of ice microstructural studies on our new Jeol JSM-6480LV SEM, which also allows tensile, compression and/or bending tests, with load ranges from less than 2N to 5000N. Finally, we also use a cold stage on a new PANalytical, X'pert PRO MPD, high resolution powder diffractometer to study the structure and phase behaviour of icy materials. Recent highlights of our work include: (1) derivation of a manufacturing process for methane clathrate at low temperatures, analysed in the X-Ray Diffraction Laboratory, for future rheological experiments, (2) analysed the growth behaviour of MS11, (3) refurbished and commenced calibration tests on the triaxial deformation cell using ice Ih, and (4) performed creep tests on gypsum and epsomite using the single crystal deformation cell. Further experiments will build on these preliminary results.

  19. Growth of surface structures correlated with structural and mechanical modifications of brass by laser-induced Si plasma ions implantation

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel

    2017-04-01

    Laser-produced Si plasma is employed as an ion source for implantation on the brass substrate for its surface, structural, and mechanical modifications. Thomson parabola technique is employed for the measurement of energy and flux of Si ions using CR-39. In response to stepwise increase in number of laser pulses from 3000 to 12000, four brass substrates were implanted by laser-induced Si plasma ions of energy 290 keV at different fluxes ranging from 45 × 1012 to 75 × 1015 ions/cm2. SEM analysis reveals the formation of nano/micro-sized irregular shaped cavities and pores for the various ion fluxes for varying numbers of laser pulses from 3000 to 9000. At the maximum ion flux for 12,000 pulses, distinct and organized grains with hexagonal and irregular shaped morphology are revealed. X-ray diffractometer (XRD) analysis exhibits that a new phase of CuSi (311) is identified which confirms the implantation of Si ions in brass substrate. A significant decrease in mechanical properties of implanted brass, such as Yield Stress (YS), Ultimate Tensile Strength (UTS), and hardness, with increasing laser pulses from 3000 to 6000 is observed. However, with increasing laser pulses from 9000 to a maximum value of 12,000, an increase in mechanical properties like hardness, YS, and UTS is observed. The generation as well as annihilation of defects, recrystallization, and intermixing of Si precipitates with brass matrix is considered to be responsible for variations in surface, structural, and mechanical modifications of brass.

  20. An Avoidance Model for Short-Range Order Induced by Soft Repulsions in Systems of Rigid Rods

    NASA Astrophysics Data System (ADS)

    Han, Jining; Herzfeld, Judith

    1996-03-01

    The effects of soft repulsions on hard particle systems are calculated using an avoidance model which improves upon the simple mean field approximation. Avoidance reduces, but does not eliminate, the energy due to soft repulsions. On the other hand, it also reduces the configurational entropy. Under suitable conditions, this simple trade-off yields a free energy that is lower than the mean field value. In these cases, the variationally determined avoidance gives an estimate for the short-range positional order induced by soft repulsions. The results indicate little short-range order for isotropically oriented rods. However, for parallel rods, short-range order increases to significant levels as the particle axial ratio increases. The implications for long- range positional ordering are also discussed. In particular, avoidance may explain the smectic ordering of tobacco mosaic virus at volume fractions lower than those necessary for smectic ordering of hard particles.

  1. Synthesis and statistical modelling of dry sliding wear of Al 8011/6 vol.% AlB2 in situ composite

    NASA Astrophysics Data System (ADS)

    Kumar, Narendra; Singh, Sandeep Kumar; Gautam, Gaurav; Padap, Aditya Kumar; Mohan, Anita; Mohan, Sunil

    2017-10-01

    The present study has used response surface methodology (RSM) and central composite design (CCD) for modelling, using wear parameters to predict the wear performance of an Al 8011/6.0 vol.% AlB2 composite. The effect of applied load and sliding velocity was studied at five levels for a fixed sliding distance. To understand wear behaviour, sliding wear tests were planned according to CCD and performed on a pin-on-disc apparatus at ambient temperature. An analysis of variance (ANOVA) was conducted to show the relative significance of the parameters. A second-order regression model was developed to predict the wear loss and to establish the relationships between wear parameters. Response surface and contour plots were drawn to analyse the wear results. Worn surfaces were examined under scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS) was used to interpret the operative wear mechanisms. Validation tests results show good agreement between experimental and predicted data. As an initial step of this study, AlB2 particles were reinforced in Al 8011 alloy by an in situ technique to synthesise an Al 8011/6.0 vol.% AlB2 composite. During synthesis an in situ reaction takes place between molten alloy and inorganic salt KBF4 at 850 °C, which leads to the formation of AlB2 particles. The composite was analysed by x-ray diffractometer (XRD) to detect the phases present, while optical and scanning electron microscopy (OM & SEM) were carried out to ascertain morphology and particle distribution. Hardness was evaluated by a Vickers hardness testing machine.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghammraoui, B; M Popescu, L; Badano, A

    Purpose: To investigate the ability of Coherent Scatter Computed Tomography (CSCT) to distinguish non-invasively between type I calcifications, consisting of calcium oxalate dihydrate (CO) compounds which are more often associated with benign lesions, and type II calcifications containing hydroxyapatite (HA) which are predominantly associated with malignant tumors. Methods: The coherent scatter cross sections of HA and CO were measured using an energy dispersive x-ray diffractometer. The measured cross sections were introduced into MC-GPU Monte Carlo simulation code for studying the applicability of CSCT to discriminate between the two types of microcalcifications within the whole breast. Simulations were performed on amore » virtual phantom with inserted HA and CO spots of different sizes and placed in regions of interest having different background compositions. We considered a polychromatic x-ray source and an energy resolving photon counting detector. We applied an algorithm that estimates scatter components in projection space in order to obtain material-specific images of the breast. As material components adipose, glandular, HA and CO were used. The relative contrast of HA and CO components were used for type I and type II microcalcification discrimination. Results: The reconstructed CSCT images showed material-specific component-contrast values, with the highest CO or HA component contrast corresponding generally to the actual CO or HA feature, respectively. The discrimination performance varies with the x-ray intensity, calcification size, and background composition. The results were summarized using receiver operating characteristic (ROC) analysis with the area under the curve (AUC) taken as an overall indicator of discrimination performance and showing high AUC values up to unity. Conclusion: The simulation results obtained for a uniform breast imaging phantom indicate that CSCT has potential to be used as a non-invasive method for discrimination between type I and type II microcalcifications.« less

  3. Defluoridation of water using activated alumina in presence of natural organic matter via response surface methodology.

    PubMed

    Samarghandi, Mohammad Reza; Khiadani, Mehdi; Foroughi, Maryam; Zolghadr Nasab, Hasan

    2016-01-01

    Adsorption by activated alumina is considered to be one of the most practiced methods for defluoridation of freshwater. This study was conducted, therefore, to investigate the effect of natural organic matters (NOMs) on the removal of fluoride by activated alumina using response surface methodology. To the authors' knowledge, this has not been previously investigated. Physico-chemical characterization of the alumina was determined by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), and X-ray diffractometer (XRD). Response surface methodology (RSM) was applied to evaluate the effect of single and combined parameters on the independent variables such as the initial concentration of fluoride, NOMs, and pH on the process. The results revealed that while presence of NOM and increase of pH enhance fluoride adsorption on the activated alumina, initial concentration of fluoride has an adverse effect on the efficiency. The experimental data were analyzed and found to be accurately and reliably fitted to a second-order polynomial model. Under optimum removal condition (fluoride concentration 20 mg/L, NOM concentration 20 mg/L, and pH 7) with a desirability value of 0.93 and fluoride removal efficiency of 80.6%, no significant difference was noticed with the previously reported sequence of the co-exiting ion affinity to activated alumina for fluoride removal. Moreover, aluminum residual was found to be below the recommended value by the guideline for drinking water. Also, the increase of fluoride adsorption on the activated alumina, as NOM concentrations increase, could be due to the complexation between fluoride and adsorbed NOM. Graphical abstract ᅟ.

  4. In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors

    NASA Astrophysics Data System (ADS)

    Takahasi, Masamitu

    2018-05-01

    The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.

  5. Short range smectic order driving long range nematic order: Example of cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markiewicz, R. S.; Lorenzana, J.; Seibold, G.

    We present a model for describing the combined presence of nematic and ‘smectic’ or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a ‘Pomeranchuk wave’. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. Lastly, a variety of experimental results are shown to be consistent with our theoretical predictions.

  6. Short range smectic order driving long range nematic order: Example of cuprates

    DOE PAGES

    Markiewicz, R. S.; Lorenzana, J.; Seibold, G.; ...

    2016-01-27

    We present a model for describing the combined presence of nematic and ‘smectic’ or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a ‘Pomeranchuk wave’. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. Lastly, a variety of experimental results are shown to be consistent with our theoretical predictions.

  7. Anomalous Orthopyroxene Cell Volumes from Unshocked Equilibrated H Chondrites

    NASA Astrophysics Data System (ADS)

    Folco, L.; Mellini, M.; Pillinger, C. T.

    1995-09-01

    Thirteen orthopyroxenes were extracted from eight unshocked equilibrated H-chondrites representatives of the petrographic types 4 to 6 [1] for crystal-chemical analyses. Chemical compositions were determined through a WDS JEOL JX 8600 electron microprobe. Three to six spot analyses were run on each crystal and no significant chemical variation was detected. High quality single crystal X-ray diffraction data were obtained by a SIEMENS P4 diffractometer using MoK alpha radiation, and site occupancies by least squares structure refinements. Figure 1a shows a significant cell volume (Vc) increase with petrographic type, and a _1.5 Angstrom^3 spread within each petrographic type. In solid solutions, Vc is expected to mainly vary with the chemical composition: the higher the proportion of the large ions present, the larger the Vc. In particular, as shown by [2], Vc variations in orthopyroxenes are essentially linear with Fe/(Fe+Mg), and our data fall within this general trend. However, no such a correlation exists at the scale of our values (Fig.1b), rather, each petrographic type plots along a different roughly negative trend. Furthermore, as experimentally obtained by [3], the decrease of the Fe-Mg ordering between the M1 and M2 sites in orthopyroxenes (a temperature-time-dependent process), causes significant Vc increase due to the displacement of the large Fe2+ ions from the larger M2 to the smaller M1 sites. Again, in the Vc versus kD (i.e., the intracrystalline Fe-Mg distribution coefficient) diagram (Fig.1c), we observe no such a correlation. Contrary to the most immediate expectations, our data suggest that the net increase in Vc from H4 to H6 does not significantly depend upon chemical composition and degree of ordering, and demands that another as yet unidentified parameter accounts for the observed trends. Acknowledgments: We thank EUROMET for the Frontier Mt. samples, and PNRA for supporting this study. References: [1] Folco L. et al., this volume. [2] Sykes-Nord J. A. and Molin G. M. (1993) Am. Mineral., 78, 921-931. [3] Domeneghetti M. C. et al. (1985). Am. Mineral., 70, 987-995.

  8. Magnetism and atomic short-range order in Ni-Rh alloys

    NASA Astrophysics Data System (ADS)

    Carnegie, D. W., Jr.; Claus, H.

    1984-07-01

    Low-field ac susceptibility measurements of Ni-Rh samples of various concentrations are presented. Giant effects of the metallurgical state on the magnetic ordering temperature are associated with changes in the degree of atomic short-range order. By careful control of this degree of short-range order, it is possible to demonstrate the existence of a spin-glass state in Ni-Rh alloys.

  9. Simultaneous occurrence of multiferroism and short-range magnetic order in DyFeO 3

    DOE PAGES

    Wang, Jinchen; Liu, Juanjuan; Sheng, Jieming; ...

    2016-04-06

    In this paper, we present a combined neutron scattering and magnetization study on the multiferroic DyFeO 3, which shows a very strong magnetoelectric effect. Applying magnetic field along the c axis, the weak ferromagnetic order of the Fe ions is quickly recovered from a spin reorientation transition, and the long-range antiferromagnetic order of Dy becomes a short-range one. We found that the short-range order concurs with the multiferroic phase and is responsible for its sizable hysteresis. In conclusion, our H-T phase diagram suggests that the strong magnetoelectric effect in DyFeO 3 has to be understood with not only the weakmore » ferromagnetism of Fe but also the short-range antiferromagnetic order of Dy.« less

  10. Robust edge states in amorphous gyromagnetic photonic lattices

    NASA Astrophysics Data System (ADS)

    Mansha, Shampy; Chong, Y. D.

    2017-09-01

    We numerically study amorphous analogs of a two-dimensional photonic Chern insulator. The amorphous lattices consist of gyromagnetic rods that break time-reversal symmetry, with the lattice sites generated by a close-packing algorithm. The level of short-range order is adjustable, and there is no long-range order. The topologically nontrivial gaps of the photonic Chern insulator are found to persist into the amorphous regime, so long as there is sufficient short-range order. Strongly nonreciprocal robust transmission occurs via edge states, which are shown to propagate ballistically despite the absence of long-range order, and to be exponentially localized along the lattice edge. Interestingly, there is an enhancement of nonreciprocal transmission even at very low levels of short-range order, where there are no discernible spectral gaps.

  11. The structure study of thin semiconductor and dielectric films by diffraction of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yurjev, G. S.; Fainer, N. I.; Maximovskiy, E. A.; Kosinova, M. L.; Sheromov, M. A.; Rumyantsev, Yu. M.

    1998-02-01

    The structure of semiconductor and dielectric thin (100-300 nm) films was studied by diffraction of synchrotron radiation. The diffraction experiments were performed at both the station "Anomalous scattering" of the storage ring synchrotron facility VEPP-3 and DRON-4 diffractometer. The structure of CdS thin films grown on fused silica, single Si(100) and InP(100) substrates was investigated. The structure of Cu 2S thin films grown on fused silica, single Si(100) substrates and CdS/Si(100)-heterostructure was studied. The structure study was performed on Si 3N 4 films grown on GaAs(100) substrates. The structure of thin BN layers grown on single Si(100) substrates was studied. It was established that structural parameters of above-mentioned thin films coincide on the parameters of JCPDS International Centre for Diffraction Data.

  12. Supercrystallization of KCl from solution irradiated by soft X-rays

    NASA Astrophysics Data System (ADS)

    Janavičius, A. J.; Rinkūnas, R.; Purlys, R.

    2016-10-01

    The X-rays influence on KCl crystallization in a saturated water solution has been investigated for the aim of comparing it with previously considered NaCl crystallization. The rate of crystallization has been measured in the drying drop in the solution activated by the irradiation. We have measured the influence of the irradiation time of the solution on the rates of KCl crystallization as well as the beginning of the crystallization processes on drying drops. For a longer irradiation time of the solution early crystallization in the drops occurs. A saturated water solution of KCl was irradiated with the diffractometer DRON-3M (Russian device) and this had a great influence on the two-step processes of crystallization. The ionization of the solution by soft X-rays can produce ions, metastable radicals in water, excited crystals' seeds and vacancies in growing crystals by Auger's effect. The X-rays generate a very fast crystallization in the drying drop.

  13. New X-Ray Technique to Characterize Nanoscale Precipitates in Aged Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Sitdikov, V. D.; Murashkin, M. Yu.; Valiev, R. Z.

    2017-10-01

    This paper puts forward a new technique for measurement of x-ray patterns, which enables to solve the problem of identification and determination of precipitates (nanoscale phases) in metallic alloys of the matrix type. The minimum detection limit of precipitates in the matrix of the base material provided by this technique constitutes as little as 1%. The identification of precipitates in x-ray patterns and their analysis are implemented through a transmission mode with a larger radiation area, longer holding time and higher diffractometer resolution as compared to the conventional reflection mode. The presented technique has been successfully employed to identify and quantitatively describe precipitates formed in the Al alloy of the Al-Mg-Si system as a result of artificial aging. For the first time, the x-ray phase analysis has been used to identify and measure precipitates formed during the alloy artificial aging.

  14. Extracting grain-orientation-dependent data from in situ time-of-flight neutron diffraction. I. Inverse pole figures

    DOE PAGES

    Stoica, Grigoreta M.; Stoica, Alexandru Dan; An, Ke; ...

    2014-11-28

    The problem of calculating the inverse pole figure (IPF) is analyzed from the perspective of the application of time-of flight neutron diffraction toin situmonitoring of the thermomechanical behavior of engineering materials. On the basis of a quasi-Monte Carlo (QMC) method, a consistent set of grain orientations is generated and used to compute the weighting factors for IPF normalization. The weighting factors are instrument dependent and were calculated for the engineering materials diffractometer VULCAN (Spallation Neutron Source, Oak Ridge National Laboratory). The QMC method is applied to face-centered cubic structures and can be easily extended to other crystallographic symmetries. Examples includemore » 316LN stainless steelin situloaded in tension at room temperature and an Al–2%Mg alloy, substantially deformed by cold rolling and in situannealed up to 653 K.« less

  15. Model and prediction of stress relaxation of polyurethane fiber

    NASA Astrophysics Data System (ADS)

    You, Gexin; Wang, Chunyan; Mei, Shuqin; Yang, Bo; Zhou, Xiuwen

    2018-03-01

    In this study, the effect of small strain (less than 10%) on hydrogen bond (H-bond) and crystallinity of dry-spun polyurethane fiber was investigated with fourier transform infrared spectroscopy and x-ray diffractometer, respectively. The results showed that the H-bond of hard segments hardly broke and its degree of crystallinity scarcely varied below strain of 10%. The fiber stress relaxation behavior at 25 °C under small strain was researched using dynamic mechanical analyzer. The stress relaxation modulus constitutive equation was obtained by transforming the non-linear relationship between stress and time into the linear relationship between stress and strain. The stress relaxation modulus master curve at 25 °C was established in terms of short-term stress relaxation tests at elevated temperatures (35 °C, 45 °C, 65 °C and 75 °C) according to time-temperature superposition principle (TTS) to predict long-term behavior within 353 year.

  16. Solvothermal synthesis of nickel-tungsten sulfides for 2-propanol dehydration.

    PubMed

    Gómez-Gutiérrez, Claudia M; Luque, P A; Guerra-Rivas, G; López-Sánchez, J A; Armenta, M A; Quintana, J M; Olivas, A

    2015-01-01

    The bimetallic nickel-tungsten catalysts were prepared via solvothermal method. The X-ray Diffractometer (XRD) analysis revealed that the corresponding peaks at 14°, 34°, and 58° were for tungsten disulfide (WS2 ) hexagonal phase. The catalysts displayed different crystalline phase with nickel addition, and as an effect the WS2 surface area decreased from 74.7 to 2.0 m(2) g(--1) . In this sense, high-resolution transmission electron microscopy (HRTEM) showed the layers set in direction (002) with an onion-like morphology, and in the center of the particles there is a large amount of nickel contained with 6-8 layers covering it. The catalytic dehydration of 2-propanol was selective to propene in 100% at 250 °C for the sample with 0.7 of atomic ratio of Ni/Ni + W. © Wiley Periodicals, Inc.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rabindar K., E-mail: rkrksharma6@gmail.com; Reddy, G. B., E-mail: rkrksharma6@gmail.com

    In this report, we synthesize vertically aligned molybdenum trioxide (α−MoO{sub 3}) nanoflakes (NFs) with high aspect ratio (height/thickness >15) on the cobalt coated glass substrates by the plasma assisted sublimation process, employing Mo metal strip as a sublimation source. The effect of substrate temperature, nature of substrate as well as the geometry of the sublimation source (Mo-strip) have been investigated on the morphological, structural and optical properties of the grown NFs, keeping plasma parameters as fixed. The surface morphology, crystalline structure and optical properties of MoO{sub 3} NFs have been studied systematically by using scanning electron microscope (SEM), transmission electronmore » microscope (TEM) with selected area electron diffraction (SAED), X-ray diffractometer, and IR- spectroscopy. The experimental observations endorse that the characteristics of MoO{sub 3} NFs are strongly depend on substrate temperature, substrate nature as well as geometry of Mo-strip. All the observed results are well in consonance with each other.« less

  18. Solid state parameters, structure elucidation, High Resolution X-Ray Diffraction (HRXRD), phase matching, thermal and impedance analysis on L-Proline trichloroacetate (L-PTCA) NLO single crystals.

    PubMed

    Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S

    2014-11-11

    Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. X-ray investigations related to the shock history of the Shergotty achondrite

    NASA Technical Reports Server (NTRS)

    Horz, F.; Hanss, R.; Serna, C.

    1986-01-01

    The shock stress suffered by naturally shocked materials from the Shergotty achondrite was studied using X-ray diffraction techniques and experimentally shocked augite and enstatite as standards. The Shergotty pyroxenes revealed the formation of continuous diffraction rings, line broadening, preferred orientation of small scale diffraction domains, and other evidence of substantial lattice disorders. As disclosed by the application of Debye-Scherrer techniques, they are hybrids between single crystals and fine-grained random powders. The pyroxene lattice is very resistant to shock damage on smaller scales. While measurable lattice disaggregation and progressive fragmentation occur below 25 GPa, little additional damage is suffered from application of pressures between 30 to 60 GPa, making pressure calibration of naturally shocked pyroxenes via X-ray methods difficult. Powder diffractometer scans on pure maskelynite fractions of Shergotty revealed small amounts of still coherently diffracting plagioclase, which may contribute to the high refractive indices of the diaplectic feldspar glasses of Shergotty.

  20. Vacuum and low oxygen pressure influence on BaFe12O19 film deposited by pulse laser deposition

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Gaur, Anurag; Choudhary, R. J.

    2018-05-01

    BaFe12O19 hexaferrite thin films are deposited on Si (111) substrate by the pulse laser deposition (PLD) technique in high vacuum 10-6 Torr and low oxygen pressure (10 mTorr) at 650°C substrate temperature. The effects of high vacuum and low pressure on magnetic and optical properties are studied. These films are characterized by the x-ray diffractometer (XRD), SQUID-VSM magnetometer, and Photo-luminescence spectroscopy. XRD pattern reveals that the BaFe12O19 film well formed in both environments without any impurity pick. High magnetic saturazation 317 emu/cm3 and coercivity 130 Oe are observed for the film deposited in vacuum. Photoluminescence emission spectrum of BaFe12O19 film reveals that the higher intensity emission peak at ˜372 nm under the excitation wavelength of 270 nm is observed for the film grown in vacuum.

  1. Mineralogical Changes in a Predominantly Fluviolacustrine Succession at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Ming, D. W.; Grotzinger. J. P.; Bristow, T. F.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Gellert, R.; Morris, R. V.; Morrison, S. M.

    2017-01-01

    The Mars Science Laboratory Curiosity rover landed in Gale crater in August 2012 to investigate the strata of lower Aeolis Mons (i.e., Mount Sharp) and characterize their depositional and diagenetic environments. Visible/short-wave infrared spectra from orbit of these strata show variations in phyllosilicate, sulfate, and Fe-oxide minerals, suggesting these units record environmental changes that occurred during the early Hesperian. Curiosity has traversed over 15 km and has climbed through Approx. 200 m of stratigraphic section, made up of predominantly fluviolacustrine (i.e., the Bradbury group and the Murray formation) and aeolian (i.e., the Stimson formation) units. Multiple geochemical and mineralogical instruments are onboard Curiosity to study these ancient rocks, including the Chemistry and Mineralogy (CheMin) instrument, which is an X-ray diffractometer (XRD) and X-ray fluorescence spectrometer, and the Alpha Particle X-ray Spectrometer (APXS).

  2. Synthesis and characterization of nickel oxide particulate annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Sharma, Khem Raj; Thakur, Shilpa; Negi, N. S.

    2018-04-01

    Nickel oxide has been synthesized by solution combustion technique. The nickel oxide ceramic was annealed at 600°C and 1000°C for 2 hours. Structural, electrical, dielectric and magnetic properties were analyzed which are strongly dependent upon the synthesis method. Structural properties were examined by X-ray diffractometer (XRD), which confirmed the purity and cubic phase of nickel oxide. XRD data reveals the increase in crystallite size and decrease in full width half maximum (FWHM) as the annealing temperature increases. Electrical conductivity is found to increase from 10-6 to 10-5 (Ω-1cm-1) after annealing. Dielectric constant is observed to increase from 26 to 175 when the annealing temperature is increased from 600°C to 1000°C. Low value of coercive field is found which shows weak ferromagnetic behavior of NiO. It is observed that all the properties of NiO particulate improve with increasing annealing temperature.

  3. Structural and optical studies of CuO nanostructures

    NASA Astrophysics Data System (ADS)

    Chand, Prakash; Gaur, Anurag; Kumar, Ashavani

    2014-04-01

    In the present study, copper oxide (CuO) nanostructures have been synthesized at 140 °C for different aging periods, 1, 24, 48 and 96 hrs by hydrothermal method to investigate their effects on structural and optical properties. The X-ray diffractometer (XRD) pattern indicates the pure phase formation of CuO and the particle size, calculated from XRD data, has been found to be increasing from 21 to 36 nm for the samples synthesized at different aging periods. Field emission scanning electron microscope (FESEM) analysis also shows that the average diameter and length of these rectangular nano flakes increases with increasing the aging periods. Moreover Raman spectrums also confirm the phase formation of CuO. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 2.92 to 2.69 eV with increase in aging periods, 1 to 96 hrs, respectively.

  4. In situ synthesis of hydroxyapatite coating by laser cladding.

    PubMed

    Wang, D G; Chen, C Z; Ma, J; Zhang, G

    2008-10-15

    HA bioceramic coatings were synthesized on titanium substrate by laser cladding using cheap calcium carbonate and calcium hydrogen phosphate. The thermodynamic condition for synthesizing HA was calculated by software Matlab 5.0, the microstructure and phase analysis of laser clad HA bioceramic coatings were studied by electron probe microanalyser (EPMA), X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The theoretical results show that the Gibbs free enthalpy for the synthesis of HA phase is satisfied, and the presence of HA phase in the clad coatings was then further verified by XRD and the selected area diffraction patterns. When the laser power is 600W and the scanning speed is 3.5mm/s, the compact HA bioceramic coatings were obtained, which have cellular dendritic structure and consist of the phases of HA, alpha-Ca(2)P(2)O(7), CaO and CaTiO(3).

  5. Synthesis of Zn1-xCdxO Nanoparticles by Co-Precipitation: Structural, Optical and Photodetection Analysis

    NASA Astrophysics Data System (ADS)

    Jacob, Anju Anna; Balakrishnan, L.; Meher, S. R.; Shambavi, K.; Alex, Z. C.

    Zinc oxide (ZnO) is a wide bandgap semiconductor with excellent photoresponse in ultra-violet (UV) regime. Tuning the bandgap of ZnO by alloying with cadmium can shift its absorption cutoff wavelength from UV to visible (Vis) region. Our work aims at synthesis of Zn1-xCdxO nanoparticles by co-precipitation method for the fabrication of photodetector. The properties of nanoparticles were analyzed using X-ray diffractometer, UV-Vis spectrometer, scanning electron microscope and energy dispersive spectrometer. The incorporation of cadmium without altering the wurtzite structure resulted in the red shift in the absorption edge of ZnO. Further, the photoresponse characteristics of Zn1-xCdxO nanopowders were investigated by fabricating photodetectors. It has been found that with Cd alloying the photosensitivity was increased in the UVA-violet as well in the blue region.

  6. Alloy composition effects on oxidation products of VIA, B-1900, 713C, and 738X: A high temperature diffractometer study

    NASA Technical Reports Server (NTRS)

    Garlick, R. G.; Lowell, C.

    1973-01-01

    High temperature X-ray diffraction studies were performed to investigate isothermal and cyclic oxidation at 1000 and 1100 C of the nickel-base superalloys VIA, B-1900, 713C, and 738X. Oxidation was complex. The major oxides, Al2O3, Cr2O3, and the spinels, formed in amounts consistent with alloy chemistry. The alloys VIA and B-1900 (high Al, low Cr alloys) tended to form Al2O3 and NiAl2O4; 738X (high Cr, low Al) formed Cr2O3 and NiCr2O4. A NiTa2O6 type of oxide formed in amounts approximately proportional to the refractory metal content of the alloy. One of the effects of cycling was to increase the amount of spinels formed.

  7. Measurement of erythrocyte deformability by two laser diffraction methods.

    PubMed

    Wang, X; Zhao, H; Zhuang, F Y; Stoltz, J F

    1999-01-01

    The aim of this work is to study the deformability of red blood cells (RBC) by two laser diffraction methods: the Laser-assisted Optical Rotational Cell Analyser (LORCA, Mechatronics, Amsterdam, Netherlands) and a Shear Stress Diffractometer (RHEODYN SSD, Myrenne, Roetgen, Germany). Experiments were carried out on 46 healthy human subjects. The elongation index EI of normal and hardened RBCs (obtained by heating blood at 49 degrees C or by incubating RBCs in solutions of diamide) was measured. The results showed that the standard deviations of the experimental data for normal RBCs were relatively small, especially at high shear stresses (more than 3.0 Pa), but higher than those reported before. Some correlations between the results given by the two instruments were also found. It should be noted that for hardened RBCs, the standard deviations of the measurements were important compared with the mean values in the two instruments.

  8. The effect of calcination temperature on the formation and magnetic properties of ZnMn2O4 spinel

    NASA Astrophysics Data System (ADS)

    Hermanto, B.; Ciswandi; Afriani, F.; Aryanto, D.; Sudiro, T.

    2018-03-01

    The spinel based on transition-metal oxides has a typical composition of AB2O4. In this study, the ZnMn2O4 spinel was synthesized using a powder metallurgy technique. The Zn and Mn metallic powders with an atomic ratio of 1:2 were mechanically alloyed for 3 hours in aqueous solution. The mixed powder was then calcined in a muffle furnace at elevated temperature of 400, 500 and 600 °C. The X-ray Diffractometer (XRD) was used to evaluate the formation of a ZnMn2O4 spinel structure. The magnetic properties of the sample at varying calcination temperatures were characterized by a Vibrating Sample Magnetometer (VSM). The results show that the fraction of ZnMn2O4 spinel formation increases with the increase of calcination temperature. The calcination temperature also affects the magnetic properties of the samples.

  9. Dissolution and precipitation behaviors of silicon-containing ceramic coating on Mg-Zn-Ca alloy in simulated body fluid.

    PubMed

    Pan, Yaokun; Chen, Chuanzhong; Wang, Diangang; Huang, Danlan

    2014-10-01

    We prepared Si-containing and Si-free coatings on Mg-1.74Zn-0.55Ca alloy by micro-arc oxidation. The dissolution and precipitation behaviors of Si-containing coating in simulated body fluid (SBF) were discussed. Corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectrometer (XPS). Electrochemical workstation, inductively coupled plasma atomic emission spectrometer (ICP-AES), flame atomic absorption spectrophotometer (AAS) and pH meter were employed to detect variations of electrochemical parameter and ions concentration respectively. Results indicate that the fast formation of calcium phosphates is closely related to the SiOx(n-) groups, which induce the heterogeneous nucleation of amorphous hydroxyapatite (HA) by sorption of calcium and phosphate ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Geotechnical characterization of some Indian fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.K.; Yudhbir

    2005-10-01

    This paper reports the findings of experimental studies with regard to some common engineering properties (e.g., grain size, specific gravity, compaction characteristics, and unconfined compression strength) of both low and high calcium fly ashes, to evaluate their suitability as embankment materials and reclamation fills. In addition, morphology, chemistry, and mineralogy of fly ashes are studied using scanning electron microscope, electron dispersive x-ray analyzer, x-ray diffractometer, and infrared absorption spectroscopy. In high calcium fly ash, mineralogical and chemical differences are observed for particles, {gt}75 {mu} m and the particles of {lt} 45 {mu} m size. The mode and duration of curingmore » significantly affect the strength and stress-strain behavior of fly ashes. The geotechnical properties of fly ash are governed by factors like lime content (CaO), iron content (Fe{sub 2}O{sub 3}) and loss on ignition. The distinct difference between self-hardening and pozzolanic reactivity has been emphasized.« less

  11. Low orthopyroxene from a lunar deep crustal rock - A new pyroxene polymorph of space group P21ca

    NASA Technical Reports Server (NTRS)

    Smyth, J. R.

    1974-01-01

    Bronzite crystals (En86Fs11Wo3) from a slowly-cooled lunar troctolitic granulite, have space group P21ca, a postulated, but previously unreported space group. Diffractions violating the b-glide extinction conditions have been observed in long-exposure X-ray precession photographs from three of these crystals and on an automated X-ray diffractometer. P21ca is a subgroup of the common orthopyroxene space group Pbca, and its cell dimensions (a = 18.235 plus or minus 0.004 A, b = 8.831 plus or minus 0.002 A, c = 5.189 plus or minus 0.001 A) are similar to those of terrestrial bronzites. It is postulated that the lower symmetry space group has developed as a result of very slow cooling at pressures of one to two kilobars deep in the lunar crust.

  12. Simultaneous recovery of phosphorus and potassium as magnesium potassium phosphate from synthetic sewage sludge effluent.

    PubMed

    Nakao, Satoshi; Nishio, Takayuki; Kanjo, Yoshinori

    2017-10-01

    Bench-scale experiments were performed to investigate simultaneous recovery of phosphorus and potassium from synthetic sewage sludge effluent as crystals of magnesium potassium phosphate (MPP or struvite-(K), MgKPO 4 ·6H 2 O). The optimal pH of MPP formation was 11.5. A phosphorus level of at least 3 mM and K:P molar ratio over 3 were necessary to form MPP, which showed higher content rate of phosphorus and potassium in precipitate. MPP crystallization was confirmed by analysing the precipitates using a scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) apparatus and an X-ray Diffractometer (XRD). Inhibition of MPP crystallization by iron and aluminium was confirmed by precipitation experiments and SEM-EDX analysis. Potassium ratio against magnesium in precipitate decreased for iron concentrations greater than over 0.2 mM and aluminium concentrations over 0.05 mM.

  13. Confidence Hills Mineralogy and Chemin Results from Base of Mt. Sharp, Pahrump Hills, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Cavanagh, P. D.; Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Morris, R. V.; Ming, D. W.; Rampe, E. B.; Achilles, C. N.; Chipera, S. J.; Treiman, A. H.; hide

    2015-01-01

    The Mars Science Laboratory (MSL) rover Curiosity recently completed its fourth drill sampling of sediments on Mars. The Confidence Hills (CH) sample was drilled from a rock located in the Pahrump Hills region at the base of Mt. Sharp in Gale Crater. The CheMin X-ray diffractometer completed five nights of analysis on the sample, more than previously executed for a drill sample, and the data have been analyzed using Rietveld refinement and full-pattern fitting to determine quantitative mineralogy. Confidence Hills mineralogy has several important characteristics: 1) abundant hematite and lesser magnetite; 2) a 10 angstrom phyllosilicate; 3) multiple feldspars including plagioclase and alkali feldspar; 4) mafic silicates including forsterite, orthopyroxene, and two types of clinopyroxene (Ca-rich and Ca-poor), consistent with a basaltic source; and 5) minor contributions from sulfur-bearing species including jarosite.

  14. Investigation of rail wheel steel crystallographic texture changes due to modification and thermomechanical treatment

    NASA Astrophysics Data System (ADS)

    Lychagina, T.; Nikolayev, D.; Sanin, A.; Tatarko, J.; Ullemeyer, K.

    2015-04-01

    In this work crystallographic texture for a set of rail wheel steel samples with different regimes of thermo-mechanical treatment and with and without modification by system Al-Mg-Si- Fe-C-Ca-Ti-Ce was measured by neutron diffraction. The texture measurements were carried out by using time-of-flight technique at SKAT diffractometer situated at IBR-2 reactor (Dubna, JINR, Russia). The three complete pole figures (110), (200), (211) of α-Fe phase in 5°×5°grid were extracted from a set of 1368 spectra measured for each sample. The samples were cut from rail wheel rim and from transitional zone (between rail wheel hub and wheel disk). It was concluded that the steel modification and some changes in the heat treatment modes of the rail wheels from the experimental (modified) and the conventional (non-modified) steel lead to reorientation of texture component.

  15. Thermal Conductivity on the Nanofluid of Graphene and Silver Nanoparticles Composite Material.

    PubMed

    Myekhlai, Munkhshur; Lee, Taejin; Baatar, Battsengel; Chung, Hanshik; Jeong, Hyomin

    2016-02-01

    The composite material consisted of graphene (GN) and silver nanoparticles (AgNPs) has been essential topic in science and industry due to its unique thermal, electrical and antibacterial proper- ties. However, there are scarcity studies based on their thermal properties of nanofluids. Therefore, GN-AgNPs composite material was synthesized using facile and environment friendly method and further nanofluids were prepared by ultrasonication in this study. The morphological and structural investigations were carried out using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) as well as ultra violet (UV)-visible spectroscopy. Furthermore, thermal conductivity measurements were performed for as-prepared nanofluids. As a result of thermal conductivity study, GN-AgNPs composite material was considerably enhanced the thermal conductivity of base fluid (water) by to 6.59% for the nanofluid (0.2 wt% GN and 0.4 wt% AgNPs).

  16. Acenaphthenequinone thiosemicarbazone and its transition metal complexes: synthesis, structure, and biological activity.

    PubMed

    Rodriguez-Argüelles, M C; Belicchi Ferrari, M; Gasparri Fava, G; Pelizzi, C; Pelosi, G; Albertini, R; Bonati, A; Dall'Aglio, P P; Lunghi, P; Pinelli, S

    1997-04-01

    The reaction of iron, nickel, copper, and zinc chlorides or acetates with acenaphthenequinone thiosemicarbazone, Haqtsc leads to the formation of novel complexes that have been characterized by spectroscopic studies (NMR, IR) and biological properties. The crystal structures of the free ligand Haqtsc 1 and of the compound [Ni(aqtsc)2].DMF 2, have also been determined by X-ray methods from diffractometer data. In 1, the conformation of the two nonequivalent molecules is governed by intramolecular hydrogen bonds, while an intermolecular hydrogen bond is responsible for dimer-like groups formation. In 2, the coordination geometry about nickel is distorted octahedral, and the two ligand molecules are terdentate monodeprotonated. Biological studies have shown that, for the first time at least up the used doses, a free ligand is active both in the inhibition of cell proliferation and in the induced differentiation on Friend erythroleukemia cells (FLC).

  17. A method for the monitoring of metal recrystallization based on the in-situ measurement of the elastic energy release using neutron diffraction.

    PubMed

    Christien, F; Telling, M T F; Knight, K S; Le Gall, R

    2015-05-01

    A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature ramping as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.

  18. Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition.

    PubMed

    Jiang, Xishun; Zhang, Miao; Shi, Shiwei; He, Gang; Song, Xueping; Sun, Zhaoqi

    2014-01-01

    Cuprous oxide (Cu2O) thin films were prepared by using electrodeposition technique at different applied potentials (-0.1, -0.3, -0.5, -0.7, and -0.9 V) and were annealed in vacuum at a temperature of 100°C for 1 h. Microstructure and optical properties of these films have been investigated by X-ray diffractometer (XRD), field-emission scanning electron microscope (SEM), UV-visible (vis) spectrophotometer, and fluorescence spectrophotometer. The morphology of these films varies obviously at different applied potentials. Analyses from these characterizations have confirmed that these films are composed of regular, well-faceted, polyhedral crystallites. UV-vis absorption spectra measurements have shown apparent shift in optical band gap from 1.69 to 2.03 eV as the applied potential becomes more cathodic. The emission of FL spectra at 603 nm may be assigned as the near band-edge emission.

  19. High-pressure systematic of NaMe3+Si2O6 pyroxenes: volume compression vs Me3+ cation radius

    NASA Astrophysics Data System (ADS)

    Periotto, Benedetta; Nestola, Fabrizio; Balic-Zunic, Tonci; Pasqual, Daria; Alvaro, Matteo; Ohashi, Haruo

    2010-05-01

    Recent investigations have been experimentally demonstrated that Na-clinopyroxenes (Na-cpx) can be stable throughout a wide range of temperatures and pressures in the upper mantle and several works have been carried out in order to better constrain their physical properties. In this work the equation of state of a synthetic NaInSi2O6 clinopyroxene characterized by a trivalent non 3d-transition metal at the Me3+ crystallographic site (space group C2/c) was determined up to about 8 GPa by in situ single-crystal X-ray diffraction. Since previous investigations on CaMe2+Si2O6 showed a different effect when 3d- and non 3d-transition elements located at Me site, the aim of this study is to provide a definitive model capable to predict the high-pressure behaviour of (Ca,Na)(Me2+, Me3+)Si2O6 clinopyroxenes. A single crystal of NaInSi2O6 with size 150*80*50 microns3 was selected for the high-pressure single-crystal X-ray diffraction study. The sample was loaded in an ETH-type diamond anvil cell assembled with a diamond culet of 600 microns in diameter and a gasket preindented to 90 microns with a spark eroded hole of 200 microns in diameter. The cpx was loaded together with a single-crystal of quartz used as an internal pressure standard and some ruby chips used for more approximate determination of the internal pressure. The measurements were performed using a four-circles STOE STADI IV diffractometer on which the software SINGLE08 has been recently installed allowing to perform the eight-position diffracted-beam centering and to fit the diffraction peak profiles. Such centering procedure allows to obtain precise and accurate unit-cell parameters in order to provide values of room pressure bulk modulus affected by a significantly small error. The NaInSi2O6 cpx was investigated at 12 different pressures up to 7.83 GPa. No evidences of phase transformation were found throughout the pressure range investigated. The sample compresses anisotropically with the b direction being strongly the softest one (as expected for cpx) and a and c axes compressing by similar rates. Using a third-order Birch-Murnaghan equation of state (BM3) to fit the pressure - unit-cell volume data we could refine simultaneously the unit-cell volume V0, the room pressure bulk modulus KT0 and its first pressure derivative K'. Using EoSFIT5.2 software we obtained the following coefficients: V0 = 463.42(3) Å3, KT0 = 109.0(6) GPa, K' = 3.3(2). In order to obtain a reliable comparison among NaMe3+Si2O6 pyroxenes, we have plotted the relative compression V/V0 calculated to 10 GPa versus the cation radius of Me3+ site for NaVSi2O6, NaAlSi2O6, NaCrSi2O6, NaFe3+Si2O6 end-members (all C2/c space group). For the NaTiSi2O6 end-member we have performed such calculation using the published P-V data up to 4.34 GPa as at greater pressures this cpx transforms to a triclinic symmetry and cannot be considered for a comparison. According to this comparison, a perfect linear relation is showed for those cpx having a 3d-transition element at Me3+ site, while those cpx with Al and In at Me3+ site totally lie out of trend. In good agreement with a previous work on CaMe2+Si2O6 C2/c compounds (Me2+ = Mg, Fe, Ni), the results of this work confirm that the empirical KT0 * V0 = constant relationship is followed in C2/c cpx only if the same valence electron character is shared and provide a definitive model for (Ca,Na)(Me2+,Me3+)Si2O6 clinopyroxene compounds.

  20. 75 FR 57061 - Public Land Order No. 7748; Extension of Public Land Order No. 6797; Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... of the Whiskey Mountain Bighorn Sheep Winter Range in Fremont County. DATES: Effective Date... Whiskey Mountain Bighorn Sheep Winter Range. The withdrawal extended by this order will expire on....C. Ch. 2) to protect the Whiskey Mountain Bighorn Sheep Winter Range, is hereby extended for an...

  1. Compositional Tuning, Crystal Growth, and Magnetic Properties of Iron Phosphate Oxide

    NASA Astrophysics Data System (ADS)

    Tarne, Michael

    Iron phosphate oxide, Fe3PO4O 3, is a crystalline solid featuring magnetic Fe3+ ions on a complex lattice composed of closely-spaced triangles. Previous work from our research group on this compound has proposed a helical magnetic structure below T = 163 K attributed to J1 - J2 competing interactions between nearest-neighbor and next-nearest-neighbor iron atoms. This was based on neutron powder diffraction featuring unique broad, flat-topped magnetic reflections due to needle-like magnetic domains. In order to confirm the magnetic structure and origins of frustration, this thesis will expand upon the research focused on this compound. The first chapter focuses on single crystal growth of Fe3PO 4O3. While neutron powder diffraction provides insight to the magnetic structure, powder and domain averaging obfuscate a conclusive structure for Fe3PO4O3 and single crystal neutron scattering is necessary. Due to the incongruency of melting, single crystal growth has proven challenging. A number of techniques including flux growth, slow cooling, and optical floating zone growth were attempted and success has been achieved via heterogenous chemical vapor transport from FePO 4 using ZrCl4 as a transport agent. These crystals are of sufficient size for single crystal measurements on modern neutron diffractometers. Dilution of the magnetic sublattice in frustrated magnets can also provide insight into the nature of competing spin interactions. Dilution of the Fe 3+ lattice in Fe3PO4O3 is accomplished by substituting non-magnetic Ga3+ to form the solid solution series Fe3-xGaxPO4O3 with x = 0, 0.012, 0.06, 0.25, 0.5, 1.0, 1.5. The magnetic susceptibility and neutron powder diffraction data of these compounds are presented. A dramatic decrease of the both the helical pitch length and the domain size is observed with increasing x; for x > 0.5, the compounds lack long range magnetic order. The phases that do exhibit magnetic order show a decrease in helical pitch with increasing x as determined from the magnitude of the magnetic propagation vector. This trend can be qualitatively reproduced by increasing the ratio of J2/ J1 in the Heisenberg model. Intriguingly, the domain size extracted from peak broadening of the magnetic reflections is nearly equal to the pitch length for each value of x, which suggests that the two qualities are linked in this unusual antiferromagnet. The last chapter focuses on the oxyfluoride Fe3PO7-x Fx. Through fluorination using low-temperature chimie douce reactions with polytetrafluoroethylene, the magnetic properties show changes in the magnetic susceptibility, isothermal magnetization, and neutron powder diffraction. The magnetic susceptibility shows a peak near T = 13 K and a zero field cooled/field cooled splitting at T = 78 K. The broad, flat-topped magnetic reflections in the powder neutron diffraction exhibit a decrease in width and increase in intensity. The changes in the neutron powder diffraction suggest an increase in correlation length in the ab plane of the fluorinated compound. Iron phosphate oxide is a unique lattice showing a rich magnetic phase diagram in both the gallium-substituted and fluorinated species. While mean-field interactions are sufficient to describe interactions in the solid solution series Fe3-xGaxPO4O3, the additional magnetic transitions in Fe3PO7-xFx suggest a more complicated set of interactions.

  2. Wide-range narrowband multilayer mirror for selecting a single-order harmonic in the photon energy range of 40-70 eV.

    PubMed

    Hatayama, Masatoshi; Ichimaru, Satoshi; Ohcni, Tadayuki; Takahashi, Eiji J; Midorikawa, Katsumi; Oku, Satoshi

    2016-06-27

    An experimental demonstration of a wide-range narrowband multilayer mirror for selecting a single-order high-harmonic (HH) beam from multiple-order harmonics in the photon energy range between 40 eV and 70 eV was carried out. This extreme ultraviolet (XUV) mirror, based on a pair of Zr and Al0.7Si0.3 multilayers, has a reflectivity of 20-35% and contrast of more than 7 with respect to neighboring HHs at angles of incidence from 10 to 56.9 degrees, assuming HHs pumped at 1.55 eV. Thus, specific single-order harmonic beams can be arbitrarily selected from multiple-order harmonics in this photo energy range. In addition, the dispersion for input pulses of the order of 1 fs is negligible. This simple-to-align optical component is useful for the many various applications in physics, chemistry and biology that use ultrafast monochromatic HH beams.

  3. Range of validity for perturbative treatments of relativistic sum rules

    NASA Astrophysics Data System (ADS)

    Cohen, Scott M.

    2003-10-01

    The range of validity of perturbative calculations of relativistic sum rules is investigated by calculating the second-order relativistic corrections to the Bethe sum rule and its small momentum limit, the Thomas-Reiche-Kuhn (TRK) sum rule. For the TRK sum rule and atomic systems, the second-order correction is found to be less than 0.5% up to about Z=70. The total relativistic corrections should then be accurate at least through this range of Z, and probably beyond this range if the second-order terms are included. For Rn (Z=86), however, the second-order corrections are nearly 1%. The total corrections to the Bethe sum rule are largest at small momentum, never being significantly larger than the corresponding corrections to the TRK sum rule. The first-order corrections to the Bethe sum rule also give better than 0.5% accuracy for Z<70, and inclusion of the second-order corrections should extend this range, as well.

  4. a Study of the Synchrotron Laue Method for Quantitative Crystal Structure Analysis.

    NASA Astrophysics Data System (ADS)

    Gomez de Anderez, Dora M.

    1990-01-01

    Available from UMI in association with The British Library. Quantitative crystal structure analyses have been carried out on small molecule crystals using synchrotron radiation and the Laue method. A variety of single crystal structure determinations and associated refinements are used and compared with the monochromatic analyses. The new molecular structure of 7-amino-5-bromo -4-methyl-2-oxo-1,2,3,4-tetrahidro-1, 6 -naphthyridine-8-carbonitrile (C_{10 }H_9ON_4 Br.H_2O) has been determined, first using monochromatic Mo Kalpha radiation and a four-circle diffractometer, then using synchrotron Laue diffraction photography. The structure refinements showed a R-factor of 4.97 and 14.0% for the Mo Kalpha and Laue data respectively. The molecular structure of (S)-2-chloro-2-fluoro-N-((S)-1-phenylethyl) ethanamide, (C_{10}H _{11}ClFNO), has been determined using the same crystal throughout for X-ray monochromatic analyses (Mo Kalpha and Cu K alpha) followed by synchrotron Laue data collection. The Laue and monochromatic data compare favourably. The R -factors (on F) were 6.23, 6.45 and 8.19% for the Mo K alpha, Cu Kalpha and Laue data sets respectively. The molecular structure of 3-(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)-1,3-diphenyl -prop- 2-en-1-one, (C_{25 }H_{20}N _2O_2) has been determined using the synchrotron Laue method. The results compare very well with Mo Kalpha monochromatic data. The R-factors (on F) were 4.60 and 5.29% for Mo Kalpha and Laue analysis respectively. The Laue method is assessed in locating the 20 hydrogen atoms in this structure. The structure analysis of the benzil compound ((C_6H_5 O.CO_2)) is carried out using the synchrotron Laue method firstly at room temperature and secondly at low temperature -114 ^circC. The structure shows an R-factor (on F) of 13.06% and 6.85% for each data set respectively. The synchrotron Laue method was used to collect data for ergocalciferol (Vitamin D_2). The same crystal was also used to record oscillation data with the synchrotron radiation monochromatic beam. A new molecular structure of (Dinitrato-(N,N ^'-dimethylethylene-diamine)copper(II)) has been determined using Mo Kalpha radiation on a four circle diffractometer. The refinement resulted in an R-factor (on F) of 4.06%.

  5. A Study of the Synchrotron Laue Method for Quantitative Crystal Structure Analysis

    NASA Astrophysics Data System (ADS)

    Gomez de Anderez, Dora M.

    1990-01-01

    Quantitative crystal structure analyses have been carried out on small molecule crystals using synchrotron radiation and the Laue method. A variety of single crystal structure determinations and associated refinements are used and compared with the monochromatic analyses. The new molecular structure of 7-amino-5-bromo -4-methyl-2-oxo-1,2,3,4 -tetrahidro-1,6 -naphthyridine-8-carbonitrile (C_{10 }H_9ON_4 BrcdotH_2O) has been determined, first using monochromatic Mo K alpha radiation and a four-circle diffractometer, then using synchrotron Laue diffraction photography. The structure refinements showed an R-factor of 4.97 and 14.0% for the Mo Kalpha and Laue data respectively. The molecular structure of (S)-2-chloro-2-fluoro-N-((S)-1-phenylethyl) ethanamide, (C_{10}H _{11}ClFNO), has been determined using the same crystal throughout for X-ray monochromatic analyses (Mo Kalpha and Cu K alpha) followed by synchrotron Laue data collection. The Laue and monochromatic data compare favourably. The R -factors (on F) were 6.23, 6.45 and 8.19% for the Mo K alpha, Cu Kalpha and Laue data sets respectively. The molecular structure of 3-(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)-1,3-diphenyl -prop-2-en-1-one, (C_{25}H _{20}N_2 O_2) has been determined using the synchrotron Laue method. The results compare very well with Mo Kalpha monochromatic data. The R-factors (on F) were 4.60 and 5.29% for Mo Kalpha and Laue analyses respectively. The Laue method is assessed in locating the 20 hydrogen atoms in this structure. The structure analyses of the benzil compound ((C_6H_5 OcdotCO_2)) is carried out using the synchrotron Laue method firstly at room temperature and secondly at low temperature. The structure shows an R-factor (on F) of 13.06% and 6.85% for each data set respectively. The synchrotron Laue method was used to collect data for ergocalciferol (Vitamin D_2). The same crystal was also used to record oscillation data with the synchrotron radiation monochromatic beam. A new molecular structure of (Dinitrato-(N,N ^'-dimethylethylene-diamine)copper(II)) has been determined using Mo Kalpha radiation on a four circle diffractometer. The refinement resulted in an R-factor (on F) of 4.06%.

  6. Size-dependent phase diagrams of metallic alloys: A Monte Carlo simulation study on order–disorder transitions in Pt–Rh nanoparticles

    PubMed Central

    Stahl, Christian; Albe, Karsten

    2012-01-01

    Summary Nanoparticles of Pt–Rh were studied by means of lattice-based Monte Carlo simulations with respect to the stability of ordered D022- and 40-phases as a function of particle size and composition. By thermodynamic integration in the semi-grand canonical ensemble, phase diagrams for particles with a diameter of 7.8 nm, 4.3 nm and 3.1 nm were obtained. Size-dependent trends such as the lowering of the critical ordering temperature, the broadening of the compositional stability range of the ordered phases, and the narrowing of the two-phase regions were observed and discussed in the context of complete size-dependent nanoparticle phase diagrams. In addition, an ordered surface phase emerges at low temperatures and low platinum concentration. A decrease of platinum surface segregation with increasing global platinum concentration was observed, when a second, ordered phase is formed inside the core of the particle. The order–disorder transitions were analyzed in terms of the Warren–Cowley short-range order parameters. Concentration-averaged short-range order parameters were used to remove the surface segregation bias of the conventional short-range order parameters. Using this procedure, it was shown that the short-range order in the particles at high temperatures is bulk-like. PMID:22428091

  7. Soil physicochemical properties to evaluate soil degradation under different land use types in a high rainfall tropical region: A case study from South Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Lopulisa, C.; Imran, A. M.; Baja, S.

    2018-05-01

    Intensive cropping in the tropical region always becomes one of important driving forces of soil degradation. The primary aim of this study is to analyze the states and the dynamics of soil physicochemical properties to evaluate soil degradation in the tropical region a high rainfall on agricultural areas in South Sulawesi. A number of soil characteristics were analyzed for physical and chemical properties, and clay minerals with X-ray diffractometer. The degree of soil degradation is determined using Wischmeier and Smith equation. This study reveals that mean annual precipitation in 1979-2016 ranged from 1853.15 to 2981.30 mm/year. For land used for paddy field, palm oil, cacao and coffee plantation, the texture dominated with silt loam-clay loam, cation exchange capacity was 18.63-26.32 cmol+ kg-1, 0.98-2.91% of C-organic, 32-55% of base saturation, 0.1-3.5 cm h-1 of permeability, soil clay minerals were montmorillonite-kaolinite-halloysite, and the index erodibility was 0.3-0.5. Land used for mixed plants and shrubs, the texture dominated with silt loam-sandy clay loam, cation exchange capacity was 18.63-27.12 cmol+ kg-1, 1.09-2.89% of C-organic, 32-55% of base saturation, 0.2-4.9 cm/h of permeability, soil clay minerals were kaolinite-halloysite, and index erodibility was 0.1-0.3. Land use for cultivated in the high intensity of rainfall has changed the physicochemical properties of soils, but cultivated in monoculture has at some degree increased soil erodibility.

  8. A tribological and biomimetic study of potential bone joint repair materials

    NASA Astrophysics Data System (ADS)

    Ribeiro, Rahul

    This research investigates materials for bone-joint failure repair using tribological and biomimicking approaches. The materials investigated represent three different repairing strategies. Refractory metals with and without treatment are candidates for total joint replacements due to their mechanical strength, high corrosion resistance and biocompatibility. A composite of biodegradable polytrimethylene carbonate, hydroxyl apatite, and nanotubes was investigated for application as a tissue engineering scaffold. Non-biodegradable polymer polyimide combined with various concentrations of nanotubes was investigated as a cartilage replacement material. A series of experimental approaches were used in this research. These include analysis of material surfaces and debris using high-resolution techniques and tribological experiments, as well as evaluation of nanomechanical properties. Specifically, the surface structure and wear mechanisms were investigated using a scanning electron microscope and an atomic force microscope. Debris morphology and structure was investigated using a transmission electron microscope. The debris composition was analyzed using an X-ray diffractometer. Nanoindentation was incorporated to investigate the surface nanomechanical properties. Polytrimythelene carbonate combined with hydroxyapatite and nanotubes exhibited a friction coefficient lower than UHMWPE. The nanoindentation response mimicked cartilage more closely than UHMWPE. A composite formed with PI and nanotubes showed a varying friction coefficient and varying nanoindentation response with variation in nanotube concentration. Low friction coefficients corresponded with low modulus values. A theory was proposed to explain this behavior based on surface interactions between nanotubes and between nanotubes and PI. A model was developed to simulate the modulus as a function of nanotube concentration. The boronized refractory metals exhibited brittleness and cracking. Higher friction coefficients were associated with the formation of amorphous debris. The friction coefficient for boronized Cr (˜0.06) under simulated body fluid conditions was in the range found in natural joints.

  9. Rapid synthesis of tin oxide nanostructures by microwave-assisted thermal oxidation for sensor applications

    NASA Astrophysics Data System (ADS)

    Phadungdhitidhada, S.; Ruankham, P.; Gardchareon, A.; Wongratanaphisan, D.; Choopun, S.

    2017-09-01

    In the present work nanostructures of tin oxides were synthesized by a microwave-assisted thermal oxidation. Tin precursor powder was loaded into a cylindrical quartz tube and further radiated in a microwave oven. The as-synthesized products were characterized by scanning electron microscope, transmission electron microscope, and x-ray diffractometer. The results showed that two different morphologies of SnO2 microwires (MWs) and nanoparticles (NPs) were obtained in one minute of microwave radiation under atmospheric ambient. A few tens of the SnO2 MWs with the length of 10-50 µm were found. Some parts of the MWs were decorated with the SnO2 NPs. However, most of the products were SnO2 NPs with the diameter ranging from 30-200 nm. Preparation under loosely closed system lead to mixed phase SnO-SnO2 NPs with diameter of 30-200 nm. The single-phase of SnO2 could be obtained by mixing the Sn precursor powders with CuO2. The products were mostly found to be SnO2 nanowires (NWs) and MWs. The diameter of SnO2 NWs was less than 50 nm. The SnO2 NPs, MWs, and NWs were in the cassiterite rutile structure phase. The SnO NPs was in the tetragonal structure phase. The growth direction of the SnO2 NWs was observed in (1 1 0) and (2 2 1) direction. The ethanol sensor performance of these tin oxide nanostructures showed that the SnO-SnO2 NPs exhibited extremely high sensitivity. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  10. Study of pH Stability of R-Salbutamol Sulfate Aerosol Solution and Its Antiasthmatic Effects in Guinea Pigs.

    PubMed

    Liu, Qing; Li, Qingrui; Han, Ting; Hu, Tingting; Zhang, Xuemei; Hu, Junhua; Hu, Hui; Tan, Wen

    2017-09-01

    Currently, all commercial available nebulized salbutamol in China is in its racemic form. It is known that only R-salbutamol (eutomer) has therapeutic effects, while S-salbutamol (distomer) may exacerbate asthma after chronic use. Therefore, it is an unmet clinical need to develop R-salbutamol as a nebulized product that is more convenient for young and old patients. In our study, a stable aerosol solution of R-salbutamol sulfate was established, and its antiasthmatic effects were confirmed. The decomposition rate and racemization effect of the R-salbutamol sulfate solution were evaluated over a pH range from 1 to 10 (except pH=7, 8) at 60°C. The aerodynamic particle size of the R-salbutamol sulfate solution and commercial RS-salbutamol sulfate solution were both tested in vitro by Next-Generation Impactor (NGI) in 5°C. Laser diffractometer was used to characterize the droplet-size distribution (DSD) of both solutions. We next conducted an in vivo animal study to document the antiasthmatic effect of R-salbutamol aerosol sulfate solution and determine the relationship to RS-salbutamol. The results showed that the R-salbutamol sulfate solution was more stable at pH 6. In vitro comparison studies indicated that there was no distribution difference between R-salbutamol sulfate solution and the commercial RS-salbutamol solution. The animal results showed that R-salbutamol was more potent than RS-salbutamol against the same dose of histamine challenge. Unlike commercial RS-salbutamol, which was acidified to a pH of 3.5 to extend bench life but may cause bronchoconstriction in asthmatic patients, the neutralized R-salbutamol solution was more suitable for clinic use.

  11. Evolution of residual stresses in micro-arc oxidation ceramic coatings on 6061 Al alloy

    NASA Astrophysics Data System (ADS)

    Shen, Dejiu; Cai, Jingrui; Guo, Changhong; Liu, Peiyu

    2013-11-01

    Most researches on micro-arc oxidation mainly focus on the application rather than discovering the evolution of residual stresses. However, residual stresses in the surface coatings of structural components have adverse effects on their properties, such as fatigue life, dimensional stability and corrosion resistance, etc. The micro-arc oxidation ceramic coatings are produced on the surfaces of 6061 aluminum alloy by a homemade asymmetric AC type of micro-arc oxidation equipment of 20 kW. A constant current density of 4.4±0.1 A/dm2 and a self-regulated composite electrolyte are used. The micro-arc oxidation treatment period ranges from 10 min to 40 min, and the thickness of the ceramic coatings is more than 20 μm. Residual stresses attributed to γ-Al2O3 constituent in the coatings at different micro-arc oxidation periods are analyzed by an X-ray diffractometer using the sin2 ψ method. The analysis results show that the residual stress in the ceramic coatings is compressive in nature, and it increases first and then decreases with micro-arc oxidation time increase. The maximum stress value is 1 667±20 MPa for period of 20 min. Through analyzing the coating thickness, surface morphology and phase composition, it is found that the residual stress in the ceramic coatings is linked closely with the coating growth, the phase composition and the micro cracks formed. It is also found that both the heat treatment and the ultrasonic action release remarkably the residual compressive stress. The heat treatment makes the residual compressive stress value decrease 1 378 MPa. The ultrasonic action even alters the nature of the residual stress, making the residual compressive stress change into a residual tensile stress.

  12. Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass

    DOE PAGES

    Gammer, C.; Escher, B.; Ebner, C.; ...

    2017-03-21

    Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less

  13. Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammer, C.; Escher, B.; Ebner, C.

    Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less

  14. A modulation wave approach to the order hidden in disorder

    PubMed Central

    Withers, Ray

    2015-01-01

    The usefulness of a modulation wave approach to understanding and interpreting the highly structured continuous diffuse intensity distributions characteristic of the reciprocal spaces of the very large family of inherently flexible materials which exhibit ordered ‘disorder’ is pointed out. It is shown that both longer range order and truly short-range order are simultaneously encoded in highly structured diffuse intensity distributions. The long-range ordered crystal chemical rules giving rise to such diffuse distributions are highlighted, along with the existence and usefulness of systematic extinction conditions in these types of structured diffuse distributions. PMID:25610629

  15. Low-temperature high magnetic field powder x-ray diffraction setup for field-induced structural phase transition studies from 2 to 300 K and at 0 to 8-T field

    NASA Astrophysics Data System (ADS)

    Shahee, Aga; Sharma, Shivani; Kumar, Dhirendra; Yadav, Poonam; Bhardwaj, Preeti; Ghodke, Nandkishor; Singh, Kiran; Lalla, N. P.; Chaddah, P.

    2016-10-01

    A low-temperature and high magnetic field powder x-ray diffractometer (XRD) has been developed at UGC-DAE CSR (UGC: University Grant Commission, DAE: Department of Atomic Energy, and CSR: Consortium for scientific research), Indore, India. The setup has been developed around an 18 kW rotating anode x-ray source delivering Cu-Kα x-rays coming from a vertical line source. It works in a symmetric θ-2θ parallel beam geometry. It consists of a liquid helium cryostat with an 8 T split-pair Nb-Ti superconducting magnet comprising two x-ray windows each covering an angular range of 65°. This is mounted on a non-magnetic type heavy duty goniometer equipped with all necessary motions along with data collection accessories. The incident x-ray beam has been made parallel using a parabolic multilayer mirror. The scattered x-ray is detected using a NaI detector through a 0.1° acceptance solar collimator. To control the motions of the goniometer, a computer programme has been developed. The wide-angle scattering data can be collected in a range of 2°-115° of 2θ with a resolution of ˜0.1°. The whole setup is tightly shielded for the scattered x-rays using a lead hutch. The functioning of the goniometer and the artifacts arising possibly due to the effect of stray magnetic field on the goniometer motions, on the x-ray source, and on the detector have been characterized by collecting powder XRD data of a National Institute of Standards and Technology certified standard reference material LaB6 (SRM-660b) and Si powder in zero-field and in-field conditions. Occurrence of field induced structural-phase transitions has been demonstrated on various samples like Pr0.5Sr0.5MnO3, Nd0.49Sr0.51MnO3-δ and La0.175Pr0.45Ca0.375MnO3 by collecting data in zero field cool and field cool conditions.

  16. Target recognition of ladar range images using even-order Zernike moments.

    PubMed

    Liu, Zheng-Jun; Li, Qi; Xia, Zhi-Wei; Wang, Qi

    2012-11-01

    Ladar range images have attracted considerable attention in automatic target recognition fields. In this paper, Zernike moments (ZMs) are applied to classify the target of the range image from an arbitrary azimuth angle. However, ZMs suffer from high computational costs. To improve the performance of target recognition based on small samples, even-order ZMs with serial-parallel backpropagation neural networks (BPNNs) are applied to recognize the target of the range image. It is found that the rotation invariance and classified performance of the even-order ZMs are both better than for odd-order moments and for moments compressed by principal component analysis. The experimental results demonstrate that combining the even-order ZMs with serial-parallel BPNNs can significantly improve the recognition rate for small samples.

  17. On the structure of the disordered Bi 2Te 4O 11 phase

    NASA Astrophysics Data System (ADS)

    Masson, O.; Thomas, P.; Durand, O.; Hansen, T.; Champarnaud, J. C.; Mercurio, D.

    2004-06-01

    The structure of the disordered metastable Bi 2Te 4O 11 phase has been investigated using both neutron powder diffraction and reverse Monte Carlo (RMC) modelling. The average structure, of fluorite-type (space group Fm 3¯m ), is characterized by very high Debye-Waller parameters, especially for oxygen. Whereas the cations form a fairly well-defined FCC lattice, the oxygen sublattice is very disordered. It is shown that the local order is similar to that present in the stable monoclinic Bi 2Te 4O 11 phase. Clear differences are observed for the intermediate range order. The present phase is analogous to the "anti-glass" phases reported by Trömel in other tellurium-based mixed oxides. However, whereas Trömel defines anti-glass as having long range order but no short range order, it is shown here that this phase is best described as an intermediate state between the amorphous and crystalline states, i.e. having short and medium range order similar to that of tellurite glasses and a premise of long range order with the cations only.

  18. Fractional-order difference equations for physical lattices and some applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2015-10-15

    Fractional-order operators for physical lattice models based on the Grünwald-Letnikov fractional differences are suggested. We use an approach based on the models of lattices with long-range particle interactions. The fractional-order operators of differentiation and integration on physical lattices are represented by kernels of lattice long-range interactions. In continuum limit, these discrete operators of non-integer orders give the fractional-order derivatives and integrals with respect to coordinates of the Grünwald-Letnikov types. As examples of the fractional-order difference equations for physical lattices, we give difference analogs of the fractional nonlocal Navier-Stokes equations and the fractional nonlocal Maxwell equations for lattices with long-range interactions.more » Continuum limits of these fractional-order difference equations are also suggested.« less

  19. Short- and long-range magnetic order in LaMnAsO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Michael A.; Garlea, Vasile Ovidiu

    2016-02-02

    The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the Néel temperature T N = 360(1) K. Below T N the critical exponent describing the magnetic order parameter is β=0.33–0.35 , consistent with a three-dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to T SRO = 650(10) K. Morevoer, the magnetic susceptibility shows a weak anomaly at T SRO and no anomaly at T N. Analysis of the diffuse scattering data using a reverse Montemore » Carlo algorithm indicates that above T N nearly two-dimensional, short-range magnetic order is present with a correlation length of 9.3(3) Å within the Mn layers at 400 K. The inelastic scattering data reveal a spin gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasielastic) magnetic excitations emerging in the short-range ordered state. When we compared it with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above T N is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.« less

  20. Short-range order of undercooled melts of PdZr2 intermetallic compound studied by X-ray and neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Klein, S.; Holland-Moritz, D.; Herlach, D. M.; Mauro, N. A.; Kelton, K. F.

    2013-05-01

    The short-range order in undercooled melts of the intermetallic Zr2Pd glass-forming alloy is investigated by combining electrostatic levitation (ESL) with high-energy X-ray diffraction and neutron diffraction. Experimentally determined structure factors are measured and analyzed with respect to various structures of short-range order. The comparative X-ray and neutron scattering experiments allow for investigations of topological and chemical short-range order. Based on these studies, no preference of a specific short-range order is found for the liquid Zr2Pd glass-forming alloy, even in the metastable state of the deeply undercooled melt. This is in agreement with an earlier report from X-ray diffraction and molecular-dynamics studies of a Zr75.5Pd24.5 liquid, which showed a broad distribution of cluster types. The results for the Zr2Pd liquid are discussed with respect to the glass-forming ability of this melt.

  1. Short and Medium-Range Order in Liquid Ternary Al80Co10Ni10, Al72.5Co14.5Ni13, and Al65Co17.5Ni17.5 Alloys

    NASA Astrophysics Data System (ADS)

    Roik, Oleksandr S.; Samsonnikov, Oleksiy; Kazimirov, Volodymyr; Sokolskii, Volodymyr

    2010-01-01

    A local short-to-intermediate range order of liquid Al80Co10Ni10, Al72.5Co14.5Ni13, and Al65Co17.5Ni17.5 alloys was examined by X-ray diffraction and the reverse Monte Carlo modelling. The comprehensive analysis of three-dimensional models of the liquid ternary alloys was performed by means of the Voronoi-Delaunay method. The existence of a prepeak on the S(Q) function of the liquid alloys is caused by medium range ordering of 3d-transition metal atoms in dense-packed polytetrahedral clusters at temperatures close to the liquidus. The non-crystalline clusters, represented by aggregates of pentagons that consist of good tetrahedra, and chemical short-range order lead to the formation of the medium range order in the liquid binary Al-Ni, Al-Co and ternary Al-Ni-Co alloys.

  2. Spin and orbital ordering in Y 1-xLa xVO₃

    DOE PAGES

    Yan, J.-Q.; Zhou, J.-S.; Cheng, J. G.; ...

    2011-12-02

    The spin and orbital ordering in Y 1-xLa xVO₃ (0.30 ≤ x ≤ 1.0) has been studied to map out the phase diagram over the whole doping range 0 ≤ x ≤ 1. The phase diagram is compared with that for RVO₃ (R = rare earth or Y) perovskites without A-site variance. For x > 0.20, no long-range orbital ordering was observed above the magnetic ordering temperature T N; the magnetic order is accompanied by a lattice anomaly at a Tt ≤ T N as in LaVO₃. The magnetic ordering below Tt ≤ T N is G type in themore » compositional range 0.20 ≤ x ≤ 0.40 and C type in the range 0.738 ≤ x ≤ 1.0. Magnetization and neutron powder diffraction measurements point to the coexistence below T N of the two magnetic phases in the compositional range 0.4 < x < 0.738. Samples in the compositional range 0.20 < x ≤ 1.0 are characterized by an additional suppression of a glasslike thermal conductivity in the temperature interval T N < T < T* and a change in the slope of 1/χ(T). We argue that T* represents a temperature below which spin and orbital fluctuations couple together via λL∙S.« less

  3. Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Christopher B.; Herbrych, Jacek W.; Dagotto, Elbio R.

    2017-07-15

    Here, iron telluride (FeTe) is known to display bicollinear magnetic order at low temperatures together with a monoclinic lattice distortion. Because the bicollinear order can involve two different wave vectors (π/2,π/2) and (π/2,–π/2), symmetry considerations allow for the possible stabilization of a nematic state with short-range bicollinear order coupled to monoclinic lattice distortions at a T S higher than the temperature T N where long-range bicollinear order fully develops. As a concrete example, the three-orbital spin-fermion model for iron telluride is studied with an additional coupling ˜λ 12 between the monoclinic lattice strain and an orbital-nematic order parameter with Bmore » 2g symmetry. Monte Carlo simulations show that with increasing ˜λ 12 the first-order transition characteristic of FeTe splits and bicollinear nematicity is stabilized in a (narrow) temperature range. In this new regime, the lattice is monoclinically distorted and short-range spin and orbital order breaks rotational invariance. A discussion of possible realizations of this exotic state is provided.« less

  4. Experimental investigation of the ordering pathway in a Ni-33 at.%Cr alloy

    DOE PAGES

    Gwalani, B.; Alam, T.; Miller, C.; ...

    2016-06-17

    The present study involves a detailed experimental investigation of the concurrent compositional clustering and long-range ordering tendencies in a Ni-33 at.%Cr alloy, carried out by coupling synchrotron-based X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). Synchrotron-based XRD results clearly exhibited progressively increasing lattice contraction in the matrix with increasing isothermal aging time, at 475 degrees C, eventually leading to the development of long-range ordering (LRO) of the Pt2Mo-type. Detailed TEM and APT investigations revealed that this LRO in the matrix is manifested in the form of nanometer-scale ordered domains, and the spatial distribution, size, morphology andmore » compositional evolution of these domains have been carefully investigated. Here, the APT results also revealed the early stages of compositional clustering prior to the onset of long-range ordering in this alloy and such compositional clustering can potentially be correlated to the lattice contraction and previously proposed short-range ordering tendencies.« less

  5. Order-disorder effects in structure and color relation of photonic-crystal-type nanostructures in butterfly wing scales.

    PubMed

    Márk, Géza I; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P

    2009-11-01

    In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.

  6. Order-disorder effects in structure and color relation of photonic-crystal-type nanostructures in butterfly wing scales

    NASA Astrophysics Data System (ADS)

    Márk, Géza I.; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P.

    2009-11-01

    In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.

  7. Field dependence of the magnetic correlations of the frustrated magnet SrDy 2 O 4

    DOE PAGES

    Gauthier, N.; Fennell, A.; Prévost, B.; ...

    2017-05-30

    Tmore » he frustrated magnet SrDy 2 O 4 exhibits a field-induced phase with a magnetization plateau at 1 / 3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below ≈ 0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. he long-range ordered structure in field contrasts with the short-range order found at zero field, and is most likely reached through enhanced quantum fluctuations with increasing fields.« less

  8. Field dependence of the magnetic correlations of the frustrated magnet SrDy2O4

    NASA Astrophysics Data System (ADS)

    Gauthier, N.; Fennell, A.; Prévost, B.; Désilets-Benoit, A.; Dabkowska, H. A.; Zaharko, O.; Frontzek, M.; Sibille, R.; Bianchi, A. D.; Kenzelmann, M.

    2017-05-01

    The frustrated magnet SrDy2O4 exhibits a field-induced phase with a magnetization plateau at 1 /3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below T ≈0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. The long-range ordered structure in field contrasts with the short-range order found at zero field, and is probably reached through enhanced quantum fluctuations with increasing fields.

  9. Absence of long-range order in the frustrated magnet SrDy2O4 due to trapped defects from a dimensionality crossover

    NASA Astrophysics Data System (ADS)

    Gauthier, N.; Fennell, A.; Prévost, B.; Uldry, A.-C.; Delley, B.; Sibille, R.; Désilets-Benoit, A.; Dabkowska, H. A.; Nilsen, G. J.; Regnault, L.-P.; White, J. S.; Niedermayer, C.; Pomjakushin, V.; Bianchi, A. D.; Kenzelmann, M.

    2017-04-01

    Magnetic frustration and low dimensionality can prevent long-range magnetic order and lead to exotic correlated ground states. SrDy2O4 consists of magnetic Dy3 + ions forming magnetically frustrated zigzag chains along the c axis and shows no long-range order to temperatures as low as T =60 mK. We carried out neutron scattering and ac magnetic susceptibility measurements using powder and single crystals of SrDy2O4 . Diffuse neutron scattering indicates strong one-dimensional (1D) magnetic correlations along the chain direction that can be qualitatively accounted for by the axial next-nearest-neighbor Ising model with nearest-neighbor and next-nearest-neighbor exchange J1=0.3 meV and J2=0.2 meV, respectively. Three-dimensional (3D) correlations become important below T*≈0.7 K. At T =60 mK, the short-range correlations are characterized by a putative propagation vector k1 /2=(0 ,1/2 ,1/2 ) . We argue that the absence of long-range order arises from the presence of slowly decaying 1D domain walls that are trapped due to 3D correlations. This stabilizes a low-temperature phase without long-range magnetic order, but with well-ordered chain segments separated by slowly moving domain walls.

  10. Preparation and characterization of ultrafine nanoparticles of Cu doped lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Khalilzadeh, Nasrin; Saion, Elias Bin; Mirabolghasemi, Hamed; Crouse, Karen A.; Shaari, Abdul Halim Bin; Hashim, Mansor Bin

    This study details an innovative single-step thermal synthesis of nano-sized lithium tetraborate doped with 0.1 %wt copper and its characterization. The heating temperature for the synthesis of the nanoparticle material was optimized by variation between 200 and 850 °C. The optimum amount of polyvinyl pyrrolidone (PVP) the capping agent was determined to be 0.027 mol per 1 g LTB-Cu. The calcination time was 2 h. Characterization of the samples was carried out using Thermogravimetry Analysis (TGA), Derivative Thermogravimetry (DTG), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) Spectroscopy, X-ray diffractometer (XRD), transmission electron microscopy (TEM) and Ultraviolet-Visible (UV-Vis) spectroscopy. The product was thermally stable above 450 °C. FTIR, XRD and TEM results confirmed the formation of pure nano-crystalline copper doped lithium tetraborate between 450 and 750 °C. The optical bandgap was estimated to be 5.02-6.05 eV in the presence of different amounts of PVP at various calcination temperatures.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.

    BL-6A has been operational since 2011 as a small angle X-ray scattering (SAXS) beamline at the Photon Factory (PF), and beginning in 2013 its old components and systems, which were mainly inside the experimental hutch, have been extensively updated. Both the vacuum-passes located between the sample stage and the detector and the fixed surface plate have been replaced by a new semi-automatic diffractometer. These upgrades allow simultaneous SAXS/WAXS experiments and grazing-incidence small angle X-ray scattering (GISAXS) measurements to be conducted. The hybrid pixel detector PILATUS3 1M is installed for SAXS, and PILATUS 100K is available as a WAXS detector. Additionally,more » a pinhole equipped with a micro-ion chamber is available to realize a lower-background and higher-resolution of low angles. Moreover, in a simultaneous SAXS/WAXS experiment, we developed a new beam stop with an embedded photodiode. Thus, BL-6A has evolved into a multipurpose beamline capable of dealing with various types of samples and experimental techniques.« less

  12. Study on the surface sulfidization behavior of smithsonite at high temperature

    NASA Astrophysics Data System (ADS)

    Lv, Jin-fang; Tong, Xiong; Zheng, Yong-xing; Xie, Xian; Wang, Cong-bing

    2018-04-01

    Surface sulfidization behavior of smithsonite at high temperature was investigated by X-ray powder diffractometer (XRD) along with thermodynamic calculation, X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). The XRD and thermodynamic analyses indicated that the smithsonite was decomposed into zincite at high temperatures. After introducing a small amount of pyrite, artificial sulfides were formed at surface of the obtained zincite. The XPS analyses revealed that the sulfide species including zinc sulfide and zinc disulfide were generated at the zincite surface. The EPMA analyses demonstrated that the film of sulfides was unevenly distributed at the zincite surface. The average concentration of elemental sulfur at the sample surface increased with increasing of pyrite dosage. A suitable mole ratio of FeS2 to ZnCO3 for the surface thermal modification was determined to be about 0.3. These findings can provide theoretical support for improving the process during which the zinc recovery from refractory zinc oxide ores is achieved by xanthate flotation.

  13. Investigations of interatomic interaction in InAs-InAs1-xSbx heterostructures on a base of x-ray diffractometry

    NASA Astrophysics Data System (ADS)

    Babjuck, T. I.; Buntar, A. G.; Shevtchuk, L. S.

    2001-06-01

    Hetero-transitions on a base of InAs and AnSb compounds permitted to obtain cheap light diodes and detectors with the atmosphere maximal transparency region sensibility. There is assumed simultaneously, that the phon radiation in InAs-InAs1-xSbx is not large, which positively effects on receiver parameters. Changing the composition of InAs-InAs1- xSbx solution, one may obtain the structure with the width of forbidden zone of the want of 0.35 to 0,1 eV. There is developed the heterostructures crystalline lattice parameters determining method (for substrate and film) with the DRON-3M x-ray diffractometer. There was found the nonlinear dependence of the heterostructures lattice parameter on the composition. Investigations of interatomic interaction in dependence on composition and also on the forbidden zone width Eg(x) have show, that solid solutions InAs-InAs1- xSbx may be used for the obtaining of infra-red receiver.

  14. Optical, Fluorescence with quantum analysis of hydrazine (1, 3- Dinitro Phenyl) by DFT and Ab initio approach

    NASA Astrophysics Data System (ADS)

    Cecily Mary Glory, D.; Sambathkumar, K.; Madivanane, R.; Velmurugan, G.; Gayathri, R.; Nithiyanantham, S.; Venkatachalapathy, M.; Rajkamal, N.

    2018-07-01

    Experimental and computational study of molecular structure, vibrational and UV-spectral analysis of Hydrazine (1, 3- Dinitrophenyl) (HDP) derivatives. The crystal was grown by slow cooling method and the crystalline perfection of single crystals was evaluated by high resolution X-ray diffractometry (HRXRD) using a multicrystal X-ray diffractometer. Fluorescence, FT-IR and FT-Raman spectra of HDP crystal were recorded. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) followed by scaled quantum force field methodology (SQMFF). NMR studies have confirmed respectively the crystal structure and functional groups of the grown crystal. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) result complements the experimental findings. The calculated MESP, UV, HOMO-LUMO energies show that charge transfer done within the molecule. And various thermodynamic parameters are studied. Fukui determines the local reactive site of electrophilic, nucleophilic, descriptor.

  15. Effects of Cu and Ag as ternary and quaternary additions on some physical properties of SnSb7 bearing alloy

    NASA Astrophysics Data System (ADS)

    El-Bediwi, A. B.

    2004-02-01

    The structure, electrical resistivity, and elastic modulus of SnSb7 and SnSb7X (X = Cu , Ag, or Cu and Ag) rapidly solidified alloys have been investigated using X-ray diffractometer, double bridge, and dynamic resonance techniques. Copper and silver additions to SnSb result in the formation of a eutectic matrix containing embedded crystals (intermetallic phases) of SnCu, SnAg, and SnSb. The hard crystals SnCu, SnAg, and SnSb increase the overall hardness and wear resistance of SnSb bearing alloys. Addition of copper and silver improves internal friction, electrical conductivity, and elastic modulus values of SnSb rapidly solidified bearing alloys. The internal friction, elastic modulus, and electrical resistivity values are relatively sensitive to the composition of the intermediate phases in the matrix. The SbSb(7)Cu(2)g(2) has better properties (lowest internal friction, cost, adequate elastic modulus, and electrical resistivity) for bearing alloys as compared to cast iron and bronzes.

  16. Natural Rubber/Dendrimer Modified Montmorillonite Nanocomposites: Mechanical and Flame-Retardant Properties

    PubMed Central

    Zhang, Chenyang; Wang, Jincheng

    2017-01-01

    A series of flame-retardant nanocomposites were established based on compounding of natural rubber (NR) and dendrimer modified flame-retardant organic montmorillonite (FR-DOMt). The merits of these nanocomposites were focused on their better mechanical and flame-retardant properties. X-ray diffractometer (XRD) together with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis revealed that exfoliation, intercalation, or aggregation status in the NRmatrix can be achieved by addition of different amounts of FR-DOMt. The sound effects of blend ratio of FR-DOMt on mechanical, thermal stability, and flame-retardant (FR) properties of NR were studied. The NR/FR-DOMt-20 composite possessed the highest tensile strength, and this resulted from complicated interactions between layered silicates and elastomers. In addition, with loading of 20 phr of FR-DOMt, the flammability parameters of NR, such as heat release rate (HRR), smoke evolution area (SEA), and carbon monoxide (CO) concentration, were obviously reduced from cone calorimeter analysis. PMID:29283385

  17. Synthesis of SnO2 and Ag Nanoparticles from Electronic Wastes with the Assistance of Ultrasound and Microwaves

    NASA Astrophysics Data System (ADS)

    Cerchier, Pietrogiovanni; Dabalà, Manuele; Brunelli, Katya

    2017-09-01

    In this work, SnO2 and Ag nanoparticles were produced with a raw material nitric acid solution, which came from the leaching of printed circuit boards. First, a precursor of tin oxide was precipitated from the nitric acid solution by three different techniques: (I) conventional heating, (II) microwave irradiation, and (III) ultrasound treatment. Second, this precursor was transformed into tin oxide nanoparticles by heat treatment in a furnace. Third, hydrochloric acid was added to the nitric acid solution to induce the precipitation of silver chloride. Fourth, silver chloride was reduced to metallic silver nanoparticles in an ammonia solution using glucose syrup as both the reducing agent and the capping agent. The reduction reaction was carried out through (I) conventional heating, (II) microwave irradiation, and (III) ultrasound treatment. The nanoparticles were characterized by scanning electron microscope (SEM), x-ray diffractometer (XRD), infrared (IR)-spectroscopy, transmission electron microscope (TEM), ultraviolet (UV)-spectroscopy, and laser diffraction particle size analyzer.

  18. Crystal Structure of Chabazite K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakubovich, O.V.; Gavrilenko, P.G.; Pekov, I.V.

    2005-07-15

    The crystal structure of the chabazite K with the formula (K{sub 1.33}Na{sub 1.02}Ca{sub 0.84})[Al{sub 4}Si{sub 8}O{sub 24}] {center_dot} 12.17H{sub 2}O from late hydrothermalites in the Khibiny alkaline massif (Kola Peninsula) is established by X-ray diffraction analysis (CAD4 four-circle diffractometer, {lambda}MoK{sub {alpha}} radiation, graphite monochromator, T = 193 K, 2{theta}{sub max} = 70 deg., R{sub 1} = 0.047 for 4745 reflections) on the basis of experimental data (6265 reflections) obtained from a twin (twinning parameter 0.535(1)): a = 13.831(3) A, c = 15.023(5) A, sp. gr. R3-barm, Z = 3, {rho}{sub calcd} = 2.016 g/cm{sup 3} . It is shown thatmore » cations occupy five independent positions in large cavities of the tetrahedral Al,Si,O anionic framework in potassium-rich chabazite. A comparative crystallochemical analysis of chabazites of different composition and origin is performed.« less

  19. The influence of post-deposition annealing on the structure, morphology and luminescence properties of pulsed laser deposited La0.5Gd1.5SiO5 doped Dy3+ thin films

    NASA Astrophysics Data System (ADS)

    Ogugua, Simon N.; Swart, Hendrik C.; Ntwaeaborwa, Odireleng M.

    2018-04-01

    The influence of post-deposition annealing on the structure, particle morphology and photoluminescence properties of dysprosium (Dy3+) doped La0.5Gd1.5SiO5 thin films grown on Si(111) substrates at different substrate temperatures using pulsed laser deposition (PLD) technique were studied. The X-ray diffractometer results showed an improved crystallinity after post-annealing. The topography and morphology of the post-annealed films were studied using atomic force microscopy and field emission scanning electron microscopy respectively. The elemental composition in the surface region of the films were analyzed using energy dispersive X-ray spectroscopy. The photoluminescence studies showed an improved luminescent after post-annealing. The cathodoluminescence properties of the films are also reported. The CIE colour coordinates calculated from the photoluminescence and cathodoluminescence data suggest that the films can have potential application in white light emitting diode (LED) and field emission display (FED) applications.

  20. Organic Field Effect Transistor Using Amorphous Fluoropolymer as Gate Insulating Film

    NASA Astrophysics Data System (ADS)

    Kitajima, Yosuke; Kojima, Kenzo; Mizutani, Teruyoshi; Ochiai, Shizuyasu

    Organic field effect transistors are fabricated by the active layer of Regioregular poly (3-hexylthiophene-2,5-diy)(P3HT) thin film. CYTOP thin film made from Amorphous Fluoropolymer and fabricated by spin-coating is adopted to a gate dielectric layer on Polyethylenenaphthalate (PEN) thin film that is the substrate of an organic field effect transistor. The surface morphology and molecular orientation of P3HT thin films is observed by atomic force microscope (AFM) and X-Ray diffractometer (XRD). Grains are observed on the CYTOP thin film via an AFM image and the P3HT molecule is oriented perpendicularly on the CYTOP thin film. Based on the performance of the organic field effect transistor, the carrier mobility is 0.092 cm2/Vs, the ON/OFF ratio is 7, and the threshold voltage is -12 V. The ON/OFF ratio is relatively low and to improve On/Off ratio, the CYTOP/Polyimide double gate insulating layer is adopted to OFET.

  1. Seminar on "MAGNETISM"

    NASA Astrophysics Data System (ADS)

    Lander, Gerard H.

    1998-12-01

    During the course of this seminar we had 4 presentations by people who had participated in the earlier poster session. The speakers and titles were: (1) U. Gasser (PSI, Switzerland): "Dimer splitting in RxY1-xNi2B2C". High resolution inelastic work done on polycrystalline samples at the IRIS spectrometer at ISIS and determining the exchange interactions in these superconducting materials. (2) B. Roessli (PSI, Switzerland): "Enhancement of magnetic fluctuations in UPd2Al3 below Tc". High resolution work done on single crystals at the cold source IN14 triple axis spectrometer at the ILL and also involving polarisation analysis. (3) P. Wisniewski (Wroclaw, Poland): "Magnetic structures in U3X4-type uranium pnictides - neutron diffraction studies". Elastic scattering experiments done at Saclay on single crystals with both polarised and unpolarised neutrons. (4) A. Schneidewind (TU Dresden): "Investigation of magnetic structures of NdCu2 by synchrotron x-ray scattering". Work done at the ID20 diffractometer at the ESRF and involving resonant and non-resonant scattering, as well as polarisation analysis…

  2. Synthesis of Zinc Oxide Nanoparticles using Anthocyanin as a Capping Agent

    NASA Astrophysics Data System (ADS)

    Septiani, N. L. W.; Yuliarto, B.; Iqbal, M.; Nugraha

    2017-05-01

    Zinc Oxide nanoparticles have been successfully synthesized by utilizing anthocyanin as a capping agent by thermal decomposition of precursor route. The influence of the high and low concentrations of the anthocyanin to the shape and size of ZnO was investigated in this work. The anthocyanin was obtained from Indonesia black rice extract with methanol as a solvent. The crystallinity and morphology properties were characterized by X-Ray Diffractometer (XRD), and Scanning Electron Microscope (SEM), respectively. XRD result showed that ZnO was formed with good crystallinity without any second phase and had a hexagonal wurtzite crystal structure. SEM result revealed that ZnO with a low concentration of anthocyanin has a spherical shape with a uniform size of about 16 nm while ZnO with a high concentration of anthocyanin has a rod-like shape. The size of spherical ZnO in this work is smaller than ZnO from the same method of synthesis without anthocyanin (~30 nm).

  3. Incorporation of indium in TiO2-based photoanodes for enhancing the photovoltaic conversion efficiency of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Beula, R. Jeba; Devadason, Suganthi; Vidhya, B.

    2018-06-01

    Sol-gel-assisted spin-coating method was used to prepare TiO2 photoelectrodes doped with four different concentrations of indium 0.025, 0.05, 0.075 and 0.1 M. The crystalline phase and average crystallite size of the pure- and indium-doped TiO2 films were found using X-ray diffractometer. Raman analysis was performed for the pure- and In-doped TiO2 films to confirm the structure of anatase phase. UV-visible and photoluminescence spectrophotometer were used to analyze the optical properties of the films. A shift towards a lower wavelength in the absorption spectrum and widening of band gap were noted for the doped TiO2 films. Reduction in the peak intensity was observed in the PL spectra to indicate the inhibiting action of electron-hole recombination. A maximum (2.71%) light to current efficiency is noted for the dye-sensitized solar cells (DSSC) fabricated based on 0.025M In-doped TiO2 electrode.

  4. Ultrastructural and elemental analysis of sialoliths and their comparison with nephroliths.

    PubMed

    Rakesh, Nagaraju; Bhoomareddy Kantharaj, Yashoda Devi; Agarwal, Manjushree; Agarwal, Kunal

    2014-02-01

    Sialoliths are common in the submandibular gland and its duct system, although their exact cause of formation is still a matter of debate. The aims of this study were to: (a) analyze sialoliths ultrastructurally, and to determine the role of foreign bodies or organic materials in the formation of sialolith nuclei; and (b) compare nephroliths with sialoliths ultrastructurally. Three sialoliths and two nephroliths were analyzed ultrastructurally by a scanning electron microscope and X-ray diffractometer. The main structures of the sialoliths were found to be hydroxyapatite crystals. No organic cores were observed in the central parts of the sialoliths. In nephroliths, calcium oxalate, calcium phosphate, and struvite crystals were found. The energy-dispersive X-ray microanalysis found that sialoliths and nephroliths were predominantly composed of elements comprising calcium, phosphorous, magnesium, sodium, chloride, silicon, iron, and potassium. Sialoliths in the submandibular salivary glands might form secondary to sialadenitis, but not via a luminal organic nidus. © 2014 Wiley Publishing Asia Pty Ltd.

  5. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    NASA Astrophysics Data System (ADS)

    Fiori, F.; Marcantoni, M.

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (tensile-strength tests) of the welded interface.

  6. The influences of target properties and deposition times on pulsed laser deposited hydroxyapatite films

    NASA Astrophysics Data System (ADS)

    Bao, Quanhe; Chen, Chuanzhong; Wang, Diangang; Liu, Junming

    2008-11-01

    Hydroxyapatite films were produced by pulsed laser deposition from three kinds of hydroxyapatite targets and with different deposition times. A JXA-8800R electron probe microanalyzer (EPMA) with a Link ISIS300 energy spectrum analyzer was used to give the secondary electron image (SE) and determine the element composition of the films. The phases of thin film were analyzed by a D/max-γc X-ray diffractometer (XRD). The Fourier-transform infrared spectroscopy (FT-IR) was used to characterize the hydroxyl, phosphate and other functional groups. The results show that deposited films were amorphous which mainly composed of droplet-like particles and vibration of PO 43- groups. With the target sintering temperature deposition times increasing, the density of droplets is decreased. While with deposition times increasing, the density of droplets is increased. With the target sintering temperature and deposition time increasing, the ratio of Ca/P is increasing and higher than that of theoretical value of HA.

  7. Luminescence properties of Eu 3+ and Sm 3+ coactivated Gd(III) tungstate phosphor for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wei, Qiong; Chen, Donghua

    2009-09-01

    Rare-earth ions coactivated red phosphors Gd 0.2RE 1.8(WO 4) 3 (RE=Eu 3+ and Sm 3+) were synthesized by conventional solid-state reaction using boric acid as a flux agent. The samples were characterized by X-ray diffractometer (XRD), energy-dispersive X-ray spectrometer (EDS) and luminescence spectrometer (LS). The results showed that the Eu-Sm system exhibits higher emission intensity than those of the Eu single-doped system and Sm separate-doped system under ultraviolet (UV) radiation. Samarium(III) ions are effective in broadening and strengthened absorptions around 400 nm. Furthermore, it exhibits enhanced luminescence emission. when the mole ratio of boric acid is about 0.16, the luminescence capability is optimum. Two strongest lines at ultraviolet (394 nm) and blue (465 nm) in excitation spectra of these phosphors match well with the output wavelengths of UV and blue GaN-based light-emitting diodes (LEDs) chips.

  8. Calculation of effective penetration depth in X-ray diffraction for pharmaceutical solids.

    PubMed

    Liu, Jodi; Saw, Robert E; Kiang, Y-H

    2010-09-01

    The use of the glancing incidence X-ray diffraction configuration to depth profile surface phase transformations is of interest to pharmaceutical scientists. The Parratt equation has been used to depth profile phase changes in pharmaceutical compacts. However, it was derived to calculate 1/e penetration at glancing incident angles slightly below the critical angle of condensed matter and is, therefore, applicable to surface studies of materials such as single crystalline nanorods and metal thin films. When the depth of interest is 50-200 microm into the surface, which is typical for pharmaceutical solids, the 1/e penetration depth, or skin depth, can be directly calculated from an exponential absorption law without utilizing the Parratt equation. In this work, we developed a more relevant method to define X-ray penetration depth based on the signal detection limits of the X-ray diffractometer. Our definition of effective penetration depth was empirically verified using bilayer compacts of varying known thicknesses of mannitol and lactose.

  9. A new approach to the analysis of radiopharmaceuticals. Final technical report, January 15, 1987--June 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.G.; Davison, A.; Costello, C.E.

    The objective of this research was to investigate analytical techniques that could be used in the study of both the basic chemistry and the radiopharmaceutical chemistry of {sup 99m}Tc. First funded in 1981, the work focused initially upon the use of high performance liquid chromatography (HPLC) and various forms of mass spectrometry for the identification of technetium species. This funding allowed the authors to combine HPLC and mass spectrometry to identify radiopharmaceuticals which, although in clinical use, had not previously been characterized. Other techniques that have been examined include resonance Raman spectroscopy and, more significantly, {sup 99}Tc nuclear magnetic resonancemore » spectroscopy (NMR), with the latter not only being used in purely chemical experiments but also in biologic studies. In 1985 a grant to the Department of Chemistry at MIT from DOE allowed the purchase of an X-ray diffractometer and access to this instrument has enabled them to broaden the analytical base with routine structural determinations.« less

  10. Advance concepts for the conversion of syngas liquids. Quarterly report {number_sign}5, October 30, 1995--January 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szostak, R.; Ingram, C.

    Research efforts for the report period have been focused on the characterization of catalyst samples, mainly by ion exchange and spectroscopic techniques. Other activities included the preparation of more variants of the MeAPO-36 family containing various types and amounts of metals in their frameworks. Characterization of these samples by X-ray diffraction analysis was delayed due to malfunction of the Diffractometer since October of 1995. The instrument was back in working condition only since the ending of January and XRD analysis has resumed since then. Efforts from the research group were also concentrated on the preparation of manuscripts for publication. Workmore » in progress includes: synthesis of MnAPO5 and MgAPO5; synthesis of CoAPO5; chemical analysis; preliminary investigation of ion exchange capacities of zeolites; uptake kinetics on the Na-exchanged MnAPO5 and MgAPO5 with alkali and alkali earth metals.« less

  11. Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid

    NASA Astrophysics Data System (ADS)

    Lin, Haitao; Ding, Liyun; Zhang, Bingyu; Huang, Jun

    2018-05-01

    A fluorescent carbon dots probe for the detection of aqueous nitrite was fabricated by a one-pot hydrothermal method, and the transmission electron microscope, X-ray diffractometer, UV-Vis absorption spectrometer and fluorescence spectrophotometer were used to study the property of carbon dots. The fluorescent property of carbon dots influenced by the concentration of aqueous nitrite was studied. The interaction between the electron-donating functional groups and the electron-accepting nitrous acid could account for the quenching effect on carbon dots by adding aqueous nitrite. The products of the hydrolysis of aqueous nitrite performed a stronger quenching effect at lower pH. The relationship between the relative fluorescence intensity of carbon dots and the concentration of nitrite was described by the Stern-Volmer equation (I0/I - 1 = 0.046[Q]) with a fine linearity (R2 = 0.99). The carbon dots-based probe provides a convenient method for the detection of nitrite concentration.

  12. Choice and maintenance of equipment for electron crystallography.

    PubMed

    Mills, Deryck J; Vonck, Janet

    2013-01-01

    The choice of equipment for an electron crystallography laboratory will ultimately be determined by the available budget; nevertheless, the ideal lab will have two electron microscopes: a dedicated 300 kV cryo-EM with a field emission gun and a smaller LaB(6) machine for screening. The high-end machine should be equipped with photographic film or a very large CCD or CMOS camera for 2D crystal data collection; the screening microscope needs a mid-size CCD for rapid evaluation of crystal samples. The microscope room installations should provide adequate space and a special environment that puts no restrictions on the collection of high-resolution data. Equipment for specimen preparation includes a carbon coater, glow discharge unit, light microscope, plunge freezer, and liquid nitrogen containers and storage dewars. When photographic film is to be used, additional requirements are a film desiccator, dark room, optical diffractometer, and a film scanner. Having the electron microscopes and ancillary equipment well maintained and always in optimum condition facilitates the production of high-quality data.

  13. Microwave Absorption Properties of La0.8Ca0.2-xAgxMnO3 (x=0.05; x=0.15) Synthesized by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Kurniawan, B.; Laksmi, W.; Sahara, N. A.

    2018-04-01

    Microwave absorption properties of La0.8Ca0.2-xAgxMnO3 (x= 0.05; 0.15) is reported in this paper. Lanthanum manganite materials was reported as a potential absorber material [1][2][3]. In this paper, the material was synthesized by sol-gel method, calcined at 550°C, and sintered at 900°C. The material was characterized by X-Ray Diffractometer (XRD), and we found that the materials were single phased. Through SEM-EDS characterization it is found that the materials have compositional purity. The resistivity of the materials is obtained by four point probe method, and it is shown that Ag doped decreases the resistivity of the materials. Reflection loss of La0.8Ca0.15Ag0.05MnO3 reaches -4.470 dB and La0.8Ca0.05Ag0.15MnO3 reaches - 7.953 dB.

  14. Portable X-ray powder diffractometer for the analysis of art and archaeological materials

    NASA Astrophysics Data System (ADS)

    Nakai, Izumi; Abe, Yoshinari

    2012-02-01

    Phase identification based on nondestructive analytical techniques using portable equipment is ideal for the analysis of art and archaeological objects. Portable(p)-XRF and p-Raman are very widely used for this purpose, yet p-XRD is relatively rare despite its importance for the analysis of crystalline materials. This paper overviews 6 types of p-XRD systems developed for analysis of art and archaeological materials. The characteristics of each system are compared. One of the p-XRD systems developed by the authors was brought to many museums as well as many archeological sites in Egypt and Syria to characterize the cultural heritage artifacts, e.g., amulet made of Egyptian blue, blue painted pottery, and Islamic pottery from Egypt, jade from China, variscite from Syria, a Japanese classic painting drawn by Korin Ogata, and oil paintings drawn by Taro Okamoto. Practical application data are shown to demonstrate the potential ability of the method for analysis of various art and archaeological materials.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dave, V., E-mail: vdaditya1000@gmail.com; Rao, G. P., E-mail: ragrao38@gmail.com; Tiwari, G. S., E-mail: tiwarigsin@yahoo.com

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. Themore » gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.« less

  16. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: probing atomic structure in situ.

    PubMed

    Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  17. Crystal growth, structural, optical, dielectric and thermal studies of an amino acid based organic NLO material: L-Phenylalanine L-phenylalaninium malonate

    NASA Astrophysics Data System (ADS)

    Prakash, M.; Geetha, D.; Lydia Caroline, M.; Ramesh, P. S.

    2011-12-01

    Good transparent single crystals of L-phenylalanine L-phenylalaninium malonate (LPPMA) have been grown successfully by slow evaporation technique from aqueous solution. Single crystal X-ray diffractometer was utilized to measure unit cell parameter and to confirm the crystal structure. The chemical structure of compound was established by FT-NMR technique. The vibrational modes of the molecules of elucidated from FTIR spectra. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance in the visible region. Thermal properties of the LPPMA crystal were carried out by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques, which indicate that the material does not decompose before melting. The melting point of grown crystal was observed as 180 °C by melting point apparatus. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time.

  18. Phase constitution characteristics of the Fe-Al alloy layer in the HAZ of calorized steel pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yajiang; Zou Zengda; Wei Xing

    1997-09-01

    Mechanical properties of the welding region and phase constitution characteristics in the iron-aluminum (Fe-Al) alloy layer of calorized steel pipes were researched by means of metallography, which included the use of scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron probe microanalysis (EPMA) and an X-ray diffractometer. Experimental results indicated that the Fe-Al alloy layer of calorized steel pipe was mainly composed of an FeAl phase, an Fe{sub 3}Al phase and an {alpha}-Fe(Al) solid solution, and the microhardness in the Fe-Al coating was 600--310 HM from the surface layer to the inside. There were no higher aluminum content phases, suchmore » as brittle FeAl{sub 2}, Fe{sub 2}Al{sub 5} and FeAl{sub 3}. By controlling the aluminizing process parameters, the ability to bear deformation and weld-ability of the calorized steel pipe were remarkably improved.« less

  19. Neutron diffraction studies of a four-coordinated hydride in near square-planar geometry

    DOE PAGES

    Liao, Jian -Hong; Dhayal, Rajendra Singh; Wang, Xiaoping; ...

    2014-10-07

    The structure of a nanospheric polyhydrido copper cluster, [Cu 20(H) 11{S 2P(O iPr) 2} 9], was determined by single-crystal neutron diffraction. Cu 20 cluster consists of an elongated triangular orthobicupola constructed from 18 Cu atoms that encapsulate a [Cu 2H 5} 3- ion in the center with an exceptionally short Cu-Cu distance. The eleven hydrides in the cluster display three different coordination modes to the Cu atoms: Six μ 3-hydrides in pyramidal geometry, two μ 4-hydrides in tetrahedral cavity, and three μ 4-hydrides in an unprecedented near square-planar geometry. The neutron data set was collected on a small crystal ofmore » the size 0.20 mm x 0.50 mm x 0.65 mm for seven days using the Spallation Neutron Source TOPAZ single-crystal time-of-flight Laue diffractometer at the Oak Ridge National Laboratory. Furthermore, the final R-factor is 8.64% for 16014 reflections.« less

  20. The effects of hydrogen proportion on the synthesis of carbon nanomaterials with gaseous detonation (deflagration) method

    NASA Astrophysics Data System (ADS)

    Zhao, Tiejun; Li, Xiaojie; Lee, John H. S.; Yan, Honghao

    2018-02-01

    Using ferrocene, H2 and O2, Carbon nanomaterials were prepared with gaseous detonation (deflagration) method. The effects of H2 on the phase and morphology of carbon nanomaterials were studied by various proportions of H2 in the reaction. The prepared samples were characterized by x-ray diffractometer, transmission electron microscope and Raman spectrometer. The results show that hydrogen proportion has a great influence on the phase and morphology of carbon nanomaterials. The high hydrogen proportion leads to much unreacted hydrogen, which could protect the iron atom from oxidation of carbon and dilute the reactants contributing to uniform particle size. In addition, the graphitization degree of multi-walled carbon nanotubes, observed in samples with high H2 proportion, is high enough to see the lattice fringes, but the degree of graphitization of whole sample is lower than which fabricated with low H2 proportion, and it may result from the low energy generation.

Top