Sample records for range safety system

  1. NASA Range Safety Annual Report 2007

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2007-01-01

    As always, Range Safety has been involved in a number of exciting and challenging activities and events. Throughout the year, we have strived to meet our goal of protecting the public, the workforce, and property during range operations. During the past year, Range Safety was involved in the development, implementation, and support of range safety policy. Range Safety training curriculum development was completed this year and several courses were presented. Tailoring exercises concerning the Constellation Program were undertaken with representatives from the Constellation Program, the 45th Space Wing, and the Launch Constellation Range Safety Panel. Range Safety actively supported the Range Commanders Council and it subgroups and remained involved in updating policy related to flight safety systems and flight safety analysis. In addition, Range Safety supported the Space Shuttle Range Safety Panel and addressed policy concerning unmanned aircraft systems. Launch operations at Kennedy Space Center, the Eastern and Western ranges, Dryden Flight Research Center, and Wallops Flight Facility were addressed. Range Safety was also involved in the evaluation of a number of research and development efforts, including the space-based range (formerly STARS), the autonomous flight safety system, the enhanced flight termination system, and the joint advanced range safety system. Flight safety system challenges were evaluated. Range Safety's role in the Space Florida Customer Assistance Service Program for the Eastern Range was covered along with our support for the Space Florida Educational Balloon Release Program. We hope you have found the web-based format both accessible and easy to use. Anyone having questions or wishing to have an article included in the 2008 Range Safety Annual Report should contact Alan Dumont, the NASA Range Safety Program Manager located at the Kennedy Space Center, or Michael Dook at NASA Headquarters.

  2. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Space-Based Telemetry and Range Safety (STARS) study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety [global positioning system (GPS) metric tracking data, flight termination command and range safety data relay] and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California, USA) using the NASA Tracking and Data Relay Satellite System (TDRSS) as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit (RSU) provided real-time video for three days during the historic Global Flyer (Scaled Composites, Mojave, California, USA) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This paper discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  3. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety (global positioning system metric tracking data, flight termination command and range safety data relay) and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California) using the NASA Tracking and Data Relay Satellite System as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit provided real-time video for three days during the historic GlobalFlyer (Scaled Composites, Mojave, California) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This report discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  4. 2006 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    TenHaken, Ron; Daniels, B.; Becker, M.; Barnes, Zack; Donovan, Shawn; Manley, Brenda

    2007-01-01

    Throughout 2006, Range Safety was involved in a number of exciting and challenging activities and events, from developing, implementing, and supporting Range Safety policies and procedures-such as the Space Shuttle Launch and Landing Plans, the Range Safety Variance Process, and the Expendable Launch Vehicle Safety Program procedures-to evaluating new technologies. Range Safety training development is almost complete with the last course scheduled to go on line in mid-2007. Range Safety representatives took part in a number of panels and councils, including the newly formed Launch Constellation Range Safety Panel, the Range Commanders Council and its subgroups, the Space Shuttle Range Safety Panel, and the unmanned aircraft systems working group. Space based range safety demonstration and certification (formerly STARS) and the autonomous flight safety system were successfully tested. The enhanced flight termination system will be tested in early 2007 and the joint advanced range safety system mission analysis software tool is nearing operational status. New technologies being evaluated included a processor for real-time compensation in long range imaging, automated range surveillance using radio interferometry, and a space based range command and telemetry processor. Next year holds great promise as we continue ensuring safety while pursuing our quest beyond the Moon to Mars.

  5. Autonomous system for launch vehicle range safety

    NASA Astrophysics Data System (ADS)

    Ferrell, Bob; Haley, Sam

    2001-02-01

    The Autonomous Flight Safety System (AFSS) is a launch vehicle subsystem whose ultimate goal is an autonomous capability to assure range safety (people and valuable resources), flight personnel safety, flight assets safety (recovery of valuable vehicles and cargo), and global coverage with a dramatic simplification of range infrastructure. The AFSS is capable of determining current vehicle position and predicting the impact point with respect to flight restriction zones. Additionally, it is able to discern whether or not the launch vehicle is an immediate threat to public safety, and initiate the appropriate range safety response. These features provide for a dramatic cost reduction in range operations and improved reliability of mission success. .

  6. Loosely Coupled GPS-Aided Inertial Navigation System for Range Safety

    NASA Technical Reports Server (NTRS)

    Heatwole, Scott; Lanzi, Raymond J.

    2010-01-01

    The Autonomous Flight Safety System (AFSS) aims to replace the human element of range safety operations, as well as reduce reliance on expensive, downrange assets for launches of expendable launch vehicles (ELVs). The system consists of multiple navigation sensors and flight computers that provide a highly reliable platform. It is designed to ensure that single-event failures in a flight computer or sensor will not bring down the whole system. The flight computer uses a rules-based structure derived from range safety requirements to make decisions whether or not to destroy the rocket.

  7. An investigation of pre-launch and in-flight STS range safety radio signal degradation and dropout

    NASA Technical Reports Server (NTRS)

    Mcdonald, Malcolm W.

    1991-01-01

    The range safety system (RSS) transmitters operate at a frequency of 416.500 MHz. The transmitting antennas transmit left circularly polarized waves, and the shuttle range safety system (SRSS) receiving antennas onboard the shuttle vehicle receive left circular polarization. Preliminary explanations are proposed for many of the observed fluctuations in signal levels. It is recommended that experiments and further investigation be performed to test the validity of certain of these explanations.

  8. 2013 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2013-01-01

    Welcome to the 2013 edition of the NASA Range Safety Annual Report. Funded by NASA Headquarters, this report provides an Agency overview for current and potential range users. This report contains articles which cover a variety of subject areas, summaries of various activities performed during the past year, links to past reports, and information on several projects that may have a profound impact on the way business will be conducted in the future. Specific topics discussed in the 2013 NASA Range Safety Annual Report include a program overview and 2013 highlights, Range Safety Training, Independent Assessments, support to Program Operations at all ranges conducting NASA launch/flight operations, a continuing overview of emerging range safety-related technologies, and status reports from all of the NASA Centers that have Range Safety responsibilities. Every effort has been made to include the most current information available. We recommend this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. As is the case each year, we had a wide variety of contributors to this report from across our NASA Centers and the national range safety community at large, and I wish to thank them all. On a sad note, we lost one of our close colleagues, Dr. Jim Simpson, due to his sudden passing in December. His work advancing the envelope of autonomous flight safety systems software/hardware development leaves a lasting impression on our community. Such systems are being flight tested today and may one day be considered routine in the range safety business. The NASA family has lost a pioneer in our field, and he will surely be missed. In conclusion, it has been a very busy and productive year, and I look forward to working with all of you in NASA Centers/Programs/Projects and with the national Range Safety community in making Flight/Space activities as safe as they can be in the upcoming year.

  9. High dynamic range CMOS (HDRC) imagers for safety systems

    NASA Astrophysics Data System (ADS)

    Strobel, Markus; Döttling, Dietmar

    2013-04-01

    The first part of this paper describes the high dynamic range CMOS (HDRC®) imager - a special type of CMOS image sensor with logarithmic response. The powerful property of a high dynamic range (HDR) image acquisition is detailed by mathematical definition and measurement of the optoelectronic conversion function (OECF) of two different HDRC imagers. Specific sensor parameters will be discussed including the pixel design for the global shutter readout. The second part will give an outline on the applications and requirements of cameras for industrial safety. Equipped with HDRC global shutter sensors SafetyEYE® is a high-performance stereo camera system for safe three-dimensional zone monitoring enabling new and more flexible solutions compared to existing safety guards.

  10. Manned space flight nuclear system safety. Volume 5: Nuclear System safety guidelines. Part 1: Space base nuclear safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and operations guidelines and requirements developed in the study of space base nuclear system safety are presented. Guidelines and requirements are presented for the space base subsystems, nuclear hardware (reactor, isotope sources, dynamic generator equipment), experiments, interfacing vehicles, ground support systems, range safety and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.

  11. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  12. Automating Range Surveillance Through Radio Interferometry and Field Strength Mapping Techniques

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Space vehicle launches are often delayed because of the challenge of verifying that the range is clear, and such delays are likely to become more prevalent as more and more new spaceports are built. Range surveillance is one of the primary focuses of Range Safety for launches and often drives costs and schedules. As NASA's primary launch operation center, Kennedy Space Center is very interested in new technologies that increase the responsiveness of radio frequency (RF) surveillance systems. These systems help Range Safety personnel clear the range by identifying, pinpointing, and resolving any unknown sources of RF emissions prior to each launch.

  13. The Range Safety Debris Catalog Analysis in Preparation for the Pad Abort One Flight Test

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad M.; Pratt, William D.

    2010-01-01

    The Pad Abort One flight test of the Orion Abort Flight Test Program is currently under development with the goal of demonstrating the capability of the Launch Abort System. In the event of a launch failure, this system will propel the Crew Exploration Vehicle to safety. An essential component of this flight test is range safety, which ensures the security of range assets and personnel. A debris catalog analysis was done as part of a range safety data package delivered to the White Sands Missile Range in New Mexico where the test will be conducted. The analysis discusses the consequences of an overpressurization of the Abort Motor. The resulting structural failure was assumed to create a debris field of vehicle fragments that could potentially pose a hazard to the range. A statistical model was used to assemble the debris catalog of potential propellant fragments. Then, a thermodynamic, energy balance model was applied to the system in order to determine the imparted velocity to these propellant fragments. This analysis was conducted at four points along the flight trajectory to better understand the failure consequences over the entire flight. The methods used to perform this analysis are outlined in detail and the corresponding results are presented and discussed.

  14. Monitoring circuit for reactor safety systems

    DOEpatents

    Keefe, Donald J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned.

  15. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  16. 14 CFR 417.1 - General information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... safety for a launch if written evidence demonstrates that a Federal launch range has, by the effective... provision. Written evidence includes: (1) Range flight plan approval, (2) Missile system pre-launch safety... email to the FAA stating that the MIC was approved, or (6) Operation approval. (d) Waiver. For a...

  17. Range Safety for an Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Lanzi, Raymond J.; Simpson, James C.

    2010-01-01

    The Range Safety Algorithm software encapsulates the various constructs and algorithms required to accomplish Time Space Position Information (TSPI) data management from multiple tracking sources, autonomous mission mode detection and management, and flight-termination mission rule evaluation. The software evaluates various user-configurable rule sets that govern the qualification of TSPI data sources, provides a prelaunch autonomous hold-launch function, performs the flight-monitoring-and-termination functions, and performs end-of-mission safing

  18. Regulatory system reform of occupational health and safety in China.

    PubMed

    Wu, Fenghong; Chi, Yan

    2015-01-01

    With the explosive economic growth and social development, China's regulatory system of occupational health and safety now faces more and more challenges. This article reviews the history of regulatory system of occupational health and safety in China, as well as the current reform of this regulatory system in the country. Comprehensive, a range of laws, regulations and standards that promulgated by Chinese government, duties and responsibilities of the regulatory departments are described. Problems of current regulatory system, the ongoing adjustments and changes for modifying and improving regulatory system are discussed. The aim of reform and the incentives to drive forward more health and safety conditions in workplaces are also outlined.

  19. Regulatory system reform of occupational health and safety in China

    PubMed Central

    WU, Fenghong; CHI, Yan

    2015-01-01

    With the explosive economic growth and social development, China’s regulatory system of occupational health and safety now faces more and more challenges. This article reviews the history of regulatory system of occupational health and safety in China, as well as the current reform of this regulatory system in the country. Comprehensive, a range of laws, regulations and standards that promulgated by Chinese government, duties and responsibilities of the regulatory departments are described. Problems of current regulatory system, the ongoing adjustments and changes for modifying and improving regulatory system are discussed. The aim of reform and the incentives to drive forward more health and safety conditions in workplaces are also outlined. PMID:25843565

  20. Advanced silver zinc battery development for the SRB and ET range safety subsystems

    NASA Technical Reports Server (NTRS)

    Adamedes, Zoe

    1994-01-01

    This document presents in viewgraph format the design and development of silver zinc (AgZn) batteries for the solid rocket booster (SRB) and external tank (ET) range safety subsystems. Various engineering techniques, including composite separator systems, new electrode processing techniques, and new restraint techniques, were used to meet difficult requirements.

  1. Autonomous Flight Safety System - Phase III

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Autonomous Flight Safety System (AFSS) is a joint KSC and Wallops Flight Facility project that uses tracking and attitude data from onboard Global Positioning System (GPS) and inertial measurement unit (IMU) sensors and configurable rule-based algorithms to make flight termination decisions. AFSS objectives are to increase launch capabilities by permitting launches from locations without range safety infrastructure, reduce costs by eliminating some downrange tracking and communication assets, and reduce the reaction time for flight termination decisions.

  2. Identifying behaviour patterns of construction safety using system archetypes.

    PubMed

    Guo, Brian H W; Yiu, Tak Wing; González, Vicente A

    2015-07-01

    Construction safety management involves complex issues (e.g., different trades, multi-organizational project structure, constantly changing work environment, and transient workforce). Systems thinking is widely considered as an effective approach to understanding and managing the complexity. This paper aims to better understand dynamic complexity of construction safety management by exploring archetypes of construction safety. To achieve this, this paper adopted the ground theory method (GTM) and 22 interviews were conducted with participants in various positions (government safety inspector, client, health and safety manager, safety consultant, safety auditor, and safety researcher). Eight archetypes were emerged from the collected data: (1) safety regulations, (2) incentive programs, (3) procurement and safety, (4) safety management in small businesses (5) production and safety, (6) workers' conflicting goals, (7) blame on workers, and (8) reactive and proactive learning. These archetypes capture the interactions between a wide range of factors within various hierarchical levels and subsystems. As a free-standing tool, they advance the understanding of dynamic complexity of construction safety management and provide systemic insights into dealing with the complexity. They also can facilitate system dynamics modelling of construction safety process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Advanced Range Safety System for High Energy Vehicles

    NASA Technical Reports Server (NTRS)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  4. Validation and verification of the laser range safety tool (LRST)

    NASA Astrophysics Data System (ADS)

    Kennedy, Paul K.; Keppler, Kenneth S.; Thomas, Robert J.; Polhamus, Garrett D.; Smith, Peter A.; Trevino, Javier O.; Seaman, Daniel V.; Gallaway, Robert A.; Crockett, Gregg A.

    2003-06-01

    The U.S. Dept. of Defense (DOD) is currently developing and testing a number of High Energy Laser (HEL) weapons systems. DOD range safety officers now face the challenge of designing safe methods of testing HEL's on DOD ranges. In particular, safety officers need to ensure that diffuse and specular reflections from HEL system targets, as well as direct beam paths, are contained within DOD boundaries. If both the laser source and the target are moving, as they are for the Airborne Laser (ABL), a complex series of calculations is required and manual calculations are impractical. Over the past 5 years, the Optical Radiation Branch of the Air Force Research Laboratory (AFRL/HEDO), the ABL System Program Office, Logicon-RDA, and Northrup-Grumman, have worked together to develop a computer model called teh Laser Range Safety Tool (LRST), specifically designed for HEL reflection hazard analyses. The code, which is still under development, is currently tailored to support the ABL program. AFRL/HEDO has led an LRST Validation and Verification (V&V) effort since 1998, in order to determine if code predictions are accurate. This paper summarizes LRST V&V efforts to date including: i) comparison of code results with laboratory measurements of reflected laser energy and with reflection measurements made during actual HEL field tests, and ii) validation of LRST's hazard zone computations.

  5. Rocket propulsion hazard summary: Safety classification, handling experience and application to space shuttle payload

    NASA Technical Reports Server (NTRS)

    Pennington, D. F.; Man, T.; Persons, B.

    1977-01-01

    The DOT classification for transportation, the military classification for quantity distance, and hazard compatibility grouping used to regulate the transportation and storage of explosives are presented along with a discussion of tests used in determining sensitivity of propellants to an impact/shock environment in the absence of a large explosive donor. The safety procedures and requirements of a Scout launch vehicle, Western and Eastern Test Range, and the Minuteman, Delta, and Poseidon programs are reviewed and summarized. Requirements of the space transportation system safety program include safety reviews from the subsystem level to the completed payload. The Scout safety procedures will satisfy a portion of these requirements but additional procedures need to be implemented to comply with the safety requirements for Shuttle operation from the Eastern Test Range.

  6. Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor

    PubMed Central

    Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan

    2016-01-01

    In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety. PMID:27304958

  7. Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor.

    PubMed

    Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan

    2016-06-13

    In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety.

  8. Pedestrian headform testing: inferring performance at impact speeds and for headform masses not tested, and estimating average performance in a range of real-world conditions.

    PubMed

    Hutchinson, T Paul; Anderson, Robert W G; Searson, Daniel J

    2012-01-01

    Tests are routinely conducted where instrumented headforms are projected at the fronts of cars to assess pedestrian safety. Better information would be obtained by accounting for performance over the range of expected impact conditions in the field. Moreover, methods will be required to integrate the assessment of secondary safety performance with primary safety systems that reduce the speeds of impacts. Thus, we discuss how to estimate performance over a range of impact conditions from performance in one test and how this information can be combined with information on the probability of different impact speeds to provide a balanced assessment of pedestrian safety. Theoretical consideration is given to 2 distinct aspects to impact safety performance: the test impact severity (measured by the head injury criterion, HIC) at a speed at which a structure does not bottom out and the speed at which bottoming out occurs. Further considerations are given to an injury risk function, the distribution of impact speeds likely in the field, and the effect of primary safety systems on impact speeds. These are used to calculate curves that estimate injuriousness for combinations of test HIC, bottoming out speed, and alternative distributions of impact speeds. The injuriousness of a structure that may be struck by the head of a pedestrian depends not only on the result of the impact test but also the bottoming out speed and the distribution of impact speeds. Example calculations indicate that the relationship between the test HIC and injuriousness extends over a larger range than is presently used by the European New Car Assessment Programme (Euro NCAP), that bottoming out at speeds only slightly higher than the test speed can significantly increase the injuriousness of an impact location and that effective primary safety systems that reduce impact speeds significantly modify the relationship between the test HIC and injuriousness. Present testing regimes do not take fully into account the relationship between impact severity and variations in impact conditions. Instead, they assess injury risk at a single impact speed. Hence, they may fail to differentiate risks due to the effects of bottoming out under different impact conditions. Because the level of injuriousness changes across a wide range of HIC values, even slight improvements to very stiff structures need to be encouraged through testing. Indications are that the potential of autonomous braking systems is substantial and needs to be weighted highly in vehicle safety assessments.

  9. 14 CFR Appendix A to Part 417 - Flight Safety Analysis Methodologies and Products for a Launch Vehicle Flown With a Flight Safety...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... approach provides an equivalent level of safety. If a Federal launch range performs the launch operator's... FAA will measure any proposed alternative analysis approach. This appendix also identifies the... control systems; (ix) Steering misalignment; and (x) Winds. (2) Each three-sigma trajectory must account...

  10. 14 CFR Appendix A to Part 417 - Flight Safety Analysis Methodologies and Products for a Launch Vehicle Flown With a Flight Safety...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... approach provides an equivalent level of safety. If a Federal launch range performs the launch operator's... FAA will measure any proposed alternative analysis approach. This appendix also identifies the... control systems; (ix) Steering misalignment; and (x) Winds. (2) Each three-sigma trajectory must account...

  11. 14 CFR Appendix A to Part 417 - Flight Safety Analysis Methodologies and Products for a Launch Vehicle Flown With a Flight Safety...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... approach provides an equivalent level of safety. If a Federal launch range performs the launch operator's... FAA will measure any proposed alternative analysis approach. This appendix also identifies the... control systems; (ix) Steering misalignment; and (x) Winds. (2) Each three-sigma trajectory must account...

  12. 14 CFR Appendix A to Part 417 - Flight Safety Analysis Methodologies and Products for a Launch Vehicle Flown With a Flight Safety...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... approach provides an equivalent level of safety. If a Federal launch range performs the launch operator's... FAA will measure any proposed alternative analysis approach. This appendix also identifies the... control systems; (ix) Steering misalignment; and (x) Winds. (2) Each three-sigma trajectory must account...

  13. A Mathematical Basis for the Safety Analysis of Conflict Prevention Algorithms

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Butler, Ricky W.; Munoz, Cesar A.; Dowek, Gilles

    2009-01-01

    In air traffic management systems, a conflict prevention system examines the traffic and provides ranges of guidance maneuvers that avoid conflicts. This guidance takes the form of ranges of track angles, vertical speeds, or ground speeds. These ranges may be assembled into prevention bands: maneuvers that should not be taken. Unlike conflict resolution systems, which presume that the aircraft already has a conflict, conflict prevention systems show conflicts for all maneuvers. Without conflict prevention information, a pilot might perform a maneuver that causes a near-term conflict. Because near-term conflicts can lead to safety concerns, strong verification of correct operation is required. This paper presents a mathematical framework to analyze the correctness of algorithms that produce conflict prevention information. This paper examines multiple mathematical approaches: iterative, vector algebraic, and trigonometric. The correctness theories are structured first to analyze conflict prevention information for all aircraft. Next, these theories are augmented to consider aircraft which will create a conflict within a given lookahead time. Certain key functions for a candidate algorithm, which satisfy this mathematical basis are presented; however, the proof that a full algorithm using these functions completely satisfies the definition of safety is not provided.

  14. Autonomous Flight Safety System September 27, 2005, Aircraft Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.

    2005-01-01

    This report describes the first aircraft test of the Autonomous Flight Safety System (AFSS). The test was conducted on September 27, 2005, near Kennedy Space Center (KSC) using a privately-owned single-engine plane and evaluated the performance of several basic flight safety rules using real-time data onboard a moving aerial vehicle. This test follows the first road test of AFSS conducted in February 2005 at KSC. AFSS is a joint KSC and Wallops Flight Facility (WEF) project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations. The mission rules are configured for each operation by the responsible Range Safety authorities and can be loosely categorized in four major categories: Parameter Threshold Violations, Physical Boundary Violations present position and instantaneous impact point (TIP), Gate Rules static and dynamic, and a Green-Time Rule. Examples of each of these rules were evaluated during this aircraft test.

  15. Comparative health and safety assessment of the SPS and alternative electrical generation systems

    NASA Astrophysics Data System (ADS)

    Habegger, L. J.; Gasper, J. R.; Brown, C. D.

    1980-07-01

    A comparative analysis of health and safety risks is presented for the Satellite Power System and five alternative baseload electrical generation systems: a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle; a light water fission reactor system without fuel reprocessing; a liquid metal fast breeder fission reactor system; a central station terrestrial photovoltaic system; and a first generation fusion system with magnetic confinement. For comparison, risk from a decentralized roof-top photovoltaic system with battery storage is also evaluated. Quantified estimates of public and occupational risks within ranges of uncertainty were developed for each phase of the energy system. The potential significance of related major health and safety issues that remain unquantitied are also discussed.

  16. Comparative health and safety assessment of the SPS and alternative electrical generation systems

    NASA Technical Reports Server (NTRS)

    Habegger, L. J.; Gasper, J. R.; Brown, C. D.

    1980-01-01

    A comparative analysis of health and safety risks is presented for the Satellite Power System and five alternative baseload electrical generation systems: a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle; a light water fission reactor system without fuel reprocessing; a liquid metal fast breeder fission reactor system; a central station terrestrial photovoltaic system; and a first generation fusion system with magnetic confinement. For comparison, risk from a decentralized roof-top photovoltaic system with battery storage is also evaluated. Quantified estimates of public and occupational risks within ranges of uncertainty were developed for each phase of the energy system. The potential significance of related major health and safety issues that remain unquantitied are also discussed.

  17. More than meets the eye: Using cognitive work analysis to identify design requirements for future rail level crossing systems.

    PubMed

    Salmon, Paul M; Lenné, Michael G; Read, Gemma J M; Mulvihill, Christine M; Cornelissen, Miranda; Walker, Guy H; Young, Kristie L; Stevens, Nicholas; Stanton, Neville A

    2016-03-01

    An increasing intensity of operations means that the longstanding safety issue of rail level crossings is likely to become worse in the transport systems of the future. It has been suggested that the failure to prevent collisions may be, in part, due to a lack of systems thinking during design, crash analysis, and countermeasure development. This paper presents a systems analysis of current active rail level crossing systems in Victoria, Australia that was undertaken to identify design requirements to improve safety in future rail level crossing environments. Cognitive work analysis was used to analyse rail level crossing systems using data derived from a range of activities. Overall the analysis identified a range of instances where modification or redesign in line with systems thinking could potentially improve behaviour and safety. A notable finding is that there are opportunities for redesign outside of the physical rail level crossing infrastructure, including improved data systems, in-vehicle warnings and modifications to design processes, standards and guidelines. The implications for future rail level crossing systems are discussed. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Development of a patient safety climate survey for Chinese hospitals: cross-national adaptation and psychometric evaluation.

    PubMed

    Zhu, Junya; Li, Liping; Zhao, Hailei; Han, Guangshu; Wu, Albert W; Weingart, Saul N

    2014-10-01

    Existing patient safety climate instruments, most of which have been developed in the USA, may not accurately reflect the conditions in the healthcare systems of other countries. To develop and evaluate a patient safety climate instrument for healthcare workers in Chinese hospitals. Based on a review of existing instruments, expert panel review, focus groups and cognitive interviews, we developed items relevant to patient safety climate in Chinese hospitals. The draft instrument was distributed to 1700 hospital workers from 54 units in six hospitals in five Chinese cities between July and October 2011, and 1464 completed surveys were received. We performed exploratory and confirmatory factor analyses and estimated internal consistency reliability, within-unit agreement, between-unit variation, unit-mean reliability, correlation between multi-item composites, and association between the composites and two single items of perceived safety. The final instrument included 34 items organised into nine composites: institutional commitment to safety, unit management support for safety, organisational learning, safety system, adequacy of safety arrangements, error reporting, communication and peer support, teamwork and staffing. All composites had acceptable unit-mean reliabilities (≥0.74) and within-unit agreement (Rwg ≥0.71), and exhibited significant between-unit variation with intraclass correlation coefficients ranging from 9% to 21%. Internal consistency reliabilities ranged from 0.59 to 0.88 and were ≥0.70 for eight of the nine composites. Correlations between composites ranged from 0.27 to 0.73. All composites were positively and significantly associated with the two perceived safety items. The Chinese Hospital Survey on Patient Safety Climate demonstrates adequate dimensionality, reliability and validity. The integration of qualitative and quantitative methods is essential to produce an instrument that is culturally appropriate for Chinese hospitals. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Range safety signal propagation through the SRM exhaust plume of the space shuttle

    NASA Technical Reports Server (NTRS)

    Boynton, F. P.; Davies, A. R.; Rajasekhar, P. S.; Thompson, J. A.

    1977-01-01

    Theoretical predictions of plume interference for the space shuttle range safety system by solid rocket booster exhaust plumes are reported. The signal propagation was calculated using a split operator technique based upon the Fresnel-Kirchoff integral, using fast Fourier transforms to evaluate the convolution and treating the plume as a series of absorbing and phase-changing screens. Talanov's lens transformation was applied to reduce aliasing problems caused by ray divergence.

  20. In-vehicle low-cost signing system

    NASA Astrophysics Data System (ADS)

    Greneker, Eugene F.

    1997-02-01

    There are approximately 20 million police radar detectors used on the highways of the United States daily. A highway hazard safety warning system has been developed by the Georgia Tech Research Institute, working under the sponsorship of the radar detector industry, to communicate highway safety alerts to the driver of any vehicle equipped with a police radar detector. In addition, the system causes the new generation of detectors that are already available to display a safety warning message on an alpha-numeric display. The Safety Warning SystemTM consists of a transmitter and a radar detector receiver or stand-alone safety warning receiver/display system. The transmitter can be mounted on police cars, emergency vehicles, utility vehicles, highly repair vehicles, and on stationary structures at fixed locations along the highway. The reception range of the transmitted signal is between 0.5 and 1.0 miles, depending on terrain. The system to be described may be one of the first applications of in-vehicle signing in the Intelligent Transportation System to be implemented, because the required infrastructure of receivers already exists.

  1. X-33 Telemetry Best Source Selection, Processing, Display, and Simulation Model Comparison

    NASA Technical Reports Server (NTRS)

    Burkes, Darryl A.

    1998-01-01

    The X-33 program requires the use of multiple telemetry ground stations to cover the launch, ascent, transition, descent, and approach phases for the flights from Edwards AFB to landings at Dugway Proving Grounds, UT and Malmstrom AFB, MT. This paper will discuss the X-33 telemetry requirements and design, including information on fixed and mobile telemetry systems, best source selection, and support for Range Safety Officers. A best source selection system will be utilized to automatically determine the best source based on the frame synchronization status of the incoming telemetry streams. These systems will be used to select the best source at the landing sites and at NASA Dryden Flight Research Center to determine the overall best source between the launch site, intermediate sites, and landing site sources. The best source at the landing sites will be decommutated to display critical flight safety parameters for the Range Safety Officers. The overall best source will be sent to the Lockheed Martin's Operational Control Center at Edwards AFB for performance monitoring by X-33 program personnel and for monitoring of critical flight safety parameters by the primary Range Safety Officer. The real-time telemetry data (received signal strength, etc.) from each of the primary ground stations will also be compared during each nu'ssion with simulation data generated using the Dynamic Ground Station Analysis software program. An overall assessment of the accuracy of the model will occur after each mission. Acknowledgment: The work described in this paper was NASA supported through cooperative agreement NCC8-115 with Lockheed Martin Skunk Works.

  2. Intelligent Vehicle Highway Systems Projects

    DOT National Transportation Integrated Search

    1993-02-01

    The Intelligent Vehicle Highway Systems (IVHS) program consists of a range of advanced technologies and concepts which, in combination, can improve mobility and transportation productivity, enhance safety, maximize the use of existing transportation ...

  3. An on-line monitoring system for navigation equipment

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  4. FY 1991 safety program status report

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In FY 1991, the NASA Safety Division continued efforts to enhance the quality and productivity of its safety oversight function. Recent initiatives set forth in areas such as training, risk management, safety assurance, operational safety, and safety information systems have matured into viable programs contributing to the safety and success of activities throughout the Agency. Efforts continued to develop a centralized intra-agency safety training program with establishment of the NASA Safety Training Center at the Johnson Space Center (JSC). The objective is to provide quality training for NASA employees and contractors on a broad range of safety-related topics. Courses developed by the Training Center will be presented at various NASA locations to minimize travel and reach the greatest number of people at the least cost. In FY 1991, as part of the ongoing efforts to enhance the total quality of NASA's safety work force, the Safety Training Center initiated development of a Certified Safety Professional review course. This course provides a comprehensive review of the skills and knowledge that well-rounded safety professionals must possess to qualify for professional certification. FY 1992 will see the course presented to NASA and contractor employees at all installations via the NASA Video Teleconference System.

  5. Model-Driven Development of Safety Architectures

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh; Whiteside, Iain

    2017-01-01

    We describe the use of model-driven development for safety assurance of a pioneering NASA flight operation involving a fleet of small unmanned aircraft systems (sUAS) flying beyond visual line of sight. The central idea is to develop a safety architecture that provides the basis for risk assessment and visualization within a safety case, the formal justification of acceptable safety required by the aviation regulatory authority. A safety architecture is composed from a collection of bow tie diagrams (BTDs), a practical approach to manage safety risk by linking the identified hazards to the appropriate mitigation measures. The safety justification for a given unmanned aircraft system (UAS) operation can have many related BTDs. In practice, however, each BTD is independently developed, which poses challenges with respect to incremental development, maintaining consistency across different safety artifacts when changes occur, and in extracting and presenting stakeholder specific information relevant for decision making. We show how a safety architecture reconciles the various BTDs of a system, and, collectively, provide an overarching picture of system safety, by considering them as views of a unified model. We also show how it enables model-driven development of BTDs, replete with validations, transformations, and a range of views. Our approach, which we have implemented in our toolset, AdvoCATE, is illustrated with a running example drawn from a real UAS safety case. The models and some of the innovations described here were instrumental in successfully obtaining regulatory flight approval.

  6. Space-Based Range

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Space-Based Range (SBR), previously known as Space-Based Telemetry and Range Safety (STARS), is a multicenter NASA proof-of-concept project to determine if space-based communications using NASA's Tracking and Data Relay Satellite System (TDRSS) can support the Range Safety functions of acquiring tracking data and generating flight termination signals, while also providing broadband Range User data such as voice, video, and vehicle/payload data. There was a successful test of the Range Safety system at Wallops Flight Facility (WFF) on December 20, 2005, on a two-stage Terrier-Orion spin-stabilized sounding rocket. SBR transmitted GPS tracking data and maintained links with two TDRSS satellites simultaneously during the 10-min flight. The payload section deployed a parachute, landed in the Atlantic Ocean about 90 miles downrange from the launch site, and was successfully recovered. During the Terrier-Orion tests flights, more than 99 percent of all forward commands and more than 95 percent of all return frames were successfully received and processed. The time latency necessary for a command to travel from WFF over landlines to White Sands Complex and then to the vehicle via TDRSS, be processed onboard, and then be sent back to WFF was between 1.0 s and 1.1 s. The forward-link margins for TDRS-10 (TDRS East [TDE]) were 11 dB to 12 dB plus or minus 2 dB, and for TDRS-4 (TDRS Spare [TDS]) were 9 dB to 10 dB plus or minus 1.5 dB. The return-link margins for both TDE and TDS were 6 dB to 8 dB plus or minus 3 dB. There were 11 flights on an F-15B at Dryden Flight Research Center (DFRC) between November 2006 and February 2007. The Range User system tested a 184-element TDRSS Ku-band (15 GHz) phased-array antenna with data rates of 5 Mbps and 10 Mbps. This data was a combination of black-and-white cockpit video, Range Safety tracking and transceiver data, and aircraft and antenna controller data streams. IP data formatting was used.

  7. Autonomous Flight Safety System Road Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.; Zoemer, Roger D.; Forney, Chris S.

    2005-01-01

    On February 3, 2005, Kennedy Space Center (KSC) conducted the first Autonomous Flight Safety System (AFSS) test on a moving vehicle -- a van driven around the KSC industrial area. A subset of the Phase III design was used consisting of a single computer, GPS receiver, and UPS antenna. The description and results of this road test are described in this report.AFSS is a joint KSC and Wallops Flight Facility project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations.

  8. Editorial: emerging issues in sociotechnical systems thinking and workplace safety.

    PubMed

    Noy, Y Ian; Hettinger, Lawrence J; Dainoff, Marvin J; Carayon, Pascale; Leveson, Nancy G; Robertson, Michelle M; Courtney, Theodore K

    2015-01-01

    The burden of on-the-job accidents and fatalities and the harm of associated human suffering continue to present an important challenge for safety researchers and practitioners. While significant improvements have been achieved in recent decades, the workplace accident rate remains unacceptably high. This has spurred interest in the development of novel research approaches, with particular interest in the systemic influences of social/organisational and technological factors. In response, the Hopkinton Conference on Sociotechnical Systems and Safety was organised to assess the current state of knowledge in the area and to identify research priorities. Over the course of several months prior to the conference, leading international experts drafted collaborative, state-of-the-art reviews covering various aspects of sociotechnical systems and safety. These papers, presented in this special issue, cover topics ranging from the identification of key concepts and definitions to sociotechnical characteristics of safe and unsafe organisations. This paper provides an overview of the conference and introduces key themes and topics. Sociotechnical approaches to workplace safety are intended to draw practitioners' attention to the critical influence that systemic social/organisational and technological factors exert on safety-relevant outcomes. This paper introduces major themes addressed in the Hopkinton Conference within the context of current workplace safety research and practice challenges.

  9. Editorial: emerging issues in sociotechnical systems thinking and workplace safety

    PubMed Central

    Noy, Y. Ian; Hettinger, Lawrence J.; Dainoff, Marvin J.; Carayon, Pascale; Leveson, Nancy G.; Robertson, Michelle M.; Courtney, Theodore K.

    2015-01-01

    The burden of on-the-job accidents and fatalities and the harm of associated human suffering continue to present an important challenge for safety researchers and practitioners. While significant improvements have been achieved in recent decades, the workplace accident rate remains unacceptably high. This has spurred interest in the development of novel research approaches, with particular interest in the systemic influences of social/organisational and technological factors. In response, the Hopkinton Conference on Sociotechnical Systems and Safety was organised to assess the current state of knowledge in the area and to identify research priorities. Over the course of several months prior to the conference, leading international experts drafted collaborative, state-of-the-art reviews covering various aspects of sociotechnical systems and safety. These papers, presented in this special issue, cover topics ranging from the identification of key concepts and definitions to sociotechnical characteristics of safe and unsafe organisations. This paper provides an overview of the conference and introduces key themes and topics. Practitioner Summary: Sociotechnical approaches to workplace safety are intended to draw practitioners' attention to the critical influence that systemic social/organisational and technological factors exert on safety-relevant outcomes. This paper introduces major themes addressed in the Hopkinton Conference within the context of current workplace safety research and practice challenges. PMID:25819595

  10. NGSLR Safety Handbook

    NASA Technical Reports Server (NTRS)

    McGarry, Jan

    2015-01-01

    NASA's Next Generation Satellite Laser Ranging (NGSLR) station is the prototype for NASA's Satellite Laser Ranging (SLR) systems which will be deployed around the world in the coming decade. The NGSLR system will be an autonomous, photon-counting SLR station with an expected absolute range accuracy of better than one centimeter and a normal point (time-averaged) range precision better than one millimeter. The system provides continuous (weather permitting), 24 hour tracking coverage to an existing constellation of approximately two dozen artificial satellites equipped with passive retroreflector arrays, using pulsed, 532 nm, class IV laser systems. Current details on the approved laser systems can be found in the Appendix 1 of this document. This safety plan addresses the potential hazards to emitted laser radiation, which can occur both inside and outside the shelter. Hazards within the shelter are mitigated through posted warning signs, activated warning lights, procedural controls, personal protective equipment (PPE), laser curtains, beam blocking systems, interlock controls, pre-configured laser control settings, and other controls discussed in this document. Since the NGSLR is a satellite tracking system, laser hazards exist outside the shelter to personnel on the shelter roof and to passing aircraft. Potential exposure to personnel outside the system is mitigated through the use of posted warning signs, access control, procedural controls, a stairwell interlock, beam attenuation/blocking devices, and a radar based aircraft detection system.

  11. Safety and immunogenicity of a new chromatographically purified rabies vaccine in comparison to the human diploid cell vaccine.

    PubMed

    Arora, Ashoni; Moeller, Larry; Froeschle, James

    2004-01-01

    Although human diploid cell vaccine (HDCV) has been available for over two decades and has a proven record of efficacy, it is very expensive to produce and can only be made in small quantities. In this trial, we compared the safety and immunogenicity of a new, chromatographically purified rabies vaccine (CPRV) with those of HDCV. One hundred and thirty-five healthy veterinary students were randomized in a 2:1 ratio between CPRV and HDCV respectively. Each student subsequently received an intramuscular injection of 0.5 mL of CPRV or 1mL of HDCV on days 0, 7, and 28, according to the standard preexposure regimen. Local safety data were collected for 7 days following each dose and systemic safety data for 42 days following the first dose. Vaccine administration and safety evaluation were performed by different site personnel. Sera for immunogenicity analysis were collected on days 0 (prevaccination), 28 and 42. All subjects achieved an antirabies antibody titer greater than or equal to the World Health Organization (WHO) accepted threshold level of seroconversion of 0.5 IU/mL after only two of three doses of vaccine in both groups. The geometric mean titers (IU/mL) in the CPRV and HDCV groups respectively were 6.54 (range 0.50 to 64.80) and 10.22 (range 0.70 to 51.40) on day 28, and 40.51 (range 5.40 to 278.00) and 37.71 (range 5.40 to 278.00) on day 42. The percentage of subjects experiencing local reactions within 3 days after any dose ranged from 65.2% to 80.9% in the CPRV group and from 77.3% to 84.4% in the HDCV group. The local reaction reported by the greatest percentage of subjects after each dose was pain/tenderness at the injection site, and most reactions were mild. Most of the reported local reactions resolved within 0 to 3 days postvaccination. Systemic reactions decreased from 76.4% after dose 1 to 36.0% after dose 3 in the CPRV group, and similarly from 55.6% to 31.8% in the HDCV group. For all postdose periods, the systemic reaction reported by the highest percentage of subjects was myalgia. No subjects experienced an immediate local or systemic reaction. In healthy adults, vaccination with CPRV using a preexposure schedule resulted in a safety and immunogenicity profile similar to that of HDCV.

  12. Linking Transportation System Improvements To New Business Development In Eastern Washington

    DOT National Transportation Integrated Search

    1994-02-01

    An extensive highway, rail, barge and air system serves the transportation needs of eastern Washington's businesses and industries. Future public investment in this system will be guided by multiple criteria ranging from improved public safety to enh...

  13. Space-Based Telemetry and Range Safety Project Ku-Band and Ka-Band Phased Array Antenna

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  14. Ku- and Ka-Band Phased Array Antenna for the Space-Based Telemetry and Range Safety Project

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  15. Verification Failures: What to Do When Things Go Wrong

    NASA Astrophysics Data System (ADS)

    Bertacco, Valeria

    Every integrated circuit is released with latent bugs. The damage and risk implied by an escaped bug ranges from almost imperceptible to potential tragedy; unfortunately it is impossible to discern within this range before a bug has been exposed and analyzed. While the past few decades have witnessed significant efforts to improve verification methodology for hardware systems, these efforts have been far outstripped by the massive complexity of modern digital designs, leading to product releases for which an always smaller fraction of system's states has been verified. The news of escaped bugs in large market designs and/or safety critical domains is alarming because of safety and cost implications (due to replacements, lawsuits, etc.).

  16. Application of the Digital Image Technology in the Visual Monitoring and Prediction of Shuttering Construction Safety

    NASA Astrophysics Data System (ADS)

    Ummin, Okumura; Tian, Han; Zhu, Haiyu; Liu, Fuqiang

    2018-03-01

    Construction safety has always been the first priority in construction process. The common safety problem is the instability of the template support. In order to solve this problem, the digital image measurement technology has been contrived to support real-time monitoring system which can be triggered if the deformation value exceed the specified range. Thus the economic loss could be reduced to the lowest level.

  17. PILOT-SCALE EVALUATION FOR THE CONTAINMENT, TREATMENT, AND DECONTAMINATION OF SELECTED MATERIALS USED IN THE WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    The safety and security of water supplies has come under reassessment in the past year. Issues ranging from public safety and health, ecological, and national security are under consideration. The terrorist attacks on the United States on September 11, 2001 and the subsequent del...

  18. Safety considerations for wireless delivery of continuous power to implanted medical devices.

    PubMed

    Lucke, Lori; Bluvshtein, Vlad

    2014-01-01

    Wireless power systems for use with implants are referred to as transcutaneous energy transmission systems (TETS) and consist of an implanted secondary coil and an external primary coil along with supporting electronics. A TETS system could be used to power ventricular assist systems and eliminate driveline infections. There are both direct and indirect safety concerns that must be addressed when continuously transferring power through the skin. Direct safety concerns include thermal tissue damage caused by exposure to the electromagnetic fields, coil heating effects, and potential unwanted nerve stimulation. Indirect concerns are those caused by potential interference of the TETS system with other implanted devices. Wireless power systems are trending towards higher frequency operation. Understanding the limits for safe operation of a TETS system across a range of frequencies is important. A low frequency and a high frequency implementation are simulated to demonstrate the impact of this trend for a VAD application.

  19. 2009 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    2010-01-01

    This year, NASA Range Safety transitioned to a condensed annual report to allow for Secretariat support to the Range Safety Group, Risk Committee. Although much shorter than in previous years, this report contains full-length articles concerning various subject areas, as well as links to past reports. Additionally, summaries from various NASA Range Safety Program activities that took place throughout the year are presented, as well as information on several projects that may have a profound impact on the way business will be done in the future. The sections include a program overview and 2009 highlights; Range Safety Training; Range Safety Policy; Independent Assessments Support to Program Operations at all ranges conducting NASA launch operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities.

  20. 2012 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2012-01-01

    This report provides a NASA Range Safety (NRS) overview for current and potential range users. This report contains articles which cover a variety of subject areas, summaries of various NASA Range Safety Program (RSP) activities performed during the past year, links to past reports, and information on several projects that may have a profound impact on the way business will be conducted in the future. Specific topics discussed in the 2012 NASA Range Safety Annual Report include a program overview and 2012 highlights; Range Safety Training; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities.

  1. Safety Hazards During Intrahospital Transport: A Prospective Observational Study.

    PubMed

    Bergman, Lina M; Pettersson, Monica E; Chaboyer, Wendy P; Carlström, Eric D; Ringdal, Mona L

    2017-10-01

    To identify, classify, and describe safety hazards during the process of intrahospital transport of critically ill patients. A prospective observational study. Data from participant observations of the intrahospital transport process were collected over a period of 3 months. The study was undertaken at two ICUs in one university hospital. Critically ill patients transported within the hospital by critical care nurses, unlicensed nurses, and physicians. None. Content analysis was performed using deductive and inductive approaches. We detected a total of 365 safety hazards (median, 7; interquartile range, 4-10) during 51 intrahospital transports of critically ill patients, 80% of whom were mechanically ventilated. The majority of detected safety hazards were assessed as increasing the risk of harm, compromising patient safety (n = 204). Using the System Engineering Initiative for Patient Safety, we identified safety hazards related to the work system, as follows: team (n = 61), tasks (n = 83), tools and technologies (n = 124), environment (n = 48), and organization (n = 49). Inductive analysis provided an in-depth description of those safety hazards, contributing factors, and process-related outcomes. Findings suggest that intrahospital transport is a hazardous process for critically ill patients. We have identified several factors that may contribute to transport-related adverse events, which will provide the opportunity for the redesign of systems to enhance patient safety.

  2. The Perception, Level of Safety Satisfaction and Safety Feedback on Occupational Safety and Health Management among Hospital Staff Nurses in Sabah State Health Department.

    PubMed

    Cheah, Whye Lian; Giloi, Nelbon; Chang, Ching Thon; Lim, Jac Fang

    2012-07-01

    This study aimed to determine the perception and level of safety satisfaction of staff nurses with regards to Occupational Safety and Health (OSH) management practice in the Sabah Health Department, and to associate the OSH management dimensions, to Safety Satisfaction and Safety Feedback. A cross-sectional study using a validated self-administered questionnaire was conducted among randomly respondents. 135 nurses responded the survey. Mean (SD) score for each dimension ranged from 1.70 ± 0.68-4.04 ± 0.65, with Training and Competence dimension (mean [SD], 4.04 ± 0.65) had the highest while Safety Incidence was the least score (mean [SD], 1.70 ± 0.68). Both mean (SD) scores for Safety Satisfaction and Safety Feedback was high, 3.28 ± 0.51 and 3.57 ± 0.73, respectively. Pearson's correlation analysis indicated that all OSH dimensions had significant correlation with Safety Satisfaction and Safety Feedback (r coefficient ranged from 0.176-0.512) except for Safety Incidence. The overall perception of OSH management was rather low. Significant correlation between Safety Satisfaction and Safety Feedback and several dimensions, suggest that each organization to put in place the leaders who have appropriate leadership and supervisory skills and committed in providing staff training to improve staff's competency in OSH practice. In addition, clear goals, rules, and reporting system will help the organization to implement proper OSH management practice.

  3. A strategy for systemic toxicity assessment based on non-animal approaches: The Cosmetics Europe Long Range Science Strategy programme.

    PubMed

    Desprez, Bertrand; Dent, Matt; Keller, Detlef; Klaric, Martina; Ouédraogo, Gladys; Cubberley, Richard; Duplan, Hélène; Eilstein, Joan; Ellison, Corie; Grégoire, Sébastien; Hewitt, Nicola J; Jacques-Jamin, Carine; Lange, Daniela; Roe, Amy; Rothe, Helga; Blaauboer, Bas J; Schepky, Andreas; Mahony, Catherine

    2018-08-01

    When performing safety assessment of chemicals, the evaluation of their systemic toxicity based only on non-animal approaches is a challenging objective. The Safety Evaluation Ultimately Replacing Animal Test programme (SEURAT-1) addressed this question from 2011 to 2015 and showed that further research and development of adequate tools in toxicokinetic and toxicodynamic are required for performing non-animal safety assessments. It also showed how to implement tools like thresholds of toxicological concern (TTCs) and read-across in this context. This paper shows a tiered scientific workflow and how each tier addresses the four steps of the risk assessment paradigm. Cosmetics Europe established its Long Range Science Strategy (LRSS) programme, running from 2016 to 2020, based on the outcomes of SEURAT-1 to implement this workflow. Dedicated specific projects address each step of this workflow, which is introduced here. It tackles the question of evaluating the internal dose when systemic exposure happens. The applicability of the workflow will be shown through a series of case studies, which will be published separately. Even if the LRSS puts the emphasis on safety assessment of cosmetic relevant chemicals, it remains applicable to any type of chemical. Copyright © 2018. Published by Elsevier Ltd.

  4. Range Flight Safety Requirements

    NASA Technical Reports Server (NTRS)

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  5. Overview of the U.S. DOE Hydrogen Safety, Codes and Standards Program. Part 4: Hydrogen Sensors; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William J.; Rivkin, Carl; Burgess, Robert

    Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cellmore » Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.« less

  6. Patient safety: lessons learned.

    PubMed

    Bagian, James P

    2006-04-01

    The traditional approach to patient safety in health care has ranged from reticence to outward denial of serious flaws. This undermines the otherwise remarkable advances in technology and information that have characterized the specialty of medical practice. In addition, lessons learned in industries outside health care, such as in aviation, provide opportunities for improvements that successfully reduce mishaps and errors while maintaining a standard of excellence. This is precisely the call in medicine prompted by the 1999 Institute of Medicine report "To Err Is Human: Building a Safer Health System." However, to effect these changes, key components of a successful safety system must include: (1) communication, (2) a shift from a posture of reliance on human infallibility (hence "shame and blame") to checklists that recognize the contribution of the system and account for human limitations, and (3) a cultivation of non-punitive open and/or de-identified/anonymous reporting of safety concerns, including close calls, in addition to adverse events.

  7. 2010 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2010-01-01

    this report provides a NASA Range Safety overview for current and potential range users. This report contains articles which cover a variety of subject areas, summaries of various NASA Range Safety Program activities conducted during the past year, links to past reports, and information on several projects that may have a profound impact on the way business will be done in the future. Specific topics discussed in the 2010 NASA Range Safety Annual Report include a program overview and 2010 highlights; Range Safety Training; Range Safety Policy revision; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities. Every effort has been made to include the most current information available. We recommend this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. Once again, the web-based format was used to present the annual report.

  8. A cooperative transponder system for improved traffic safety, localizing road users in the 5 GHz band

    NASA Astrophysics Data System (ADS)

    Schaffer, B.; Kalverkamp, G.; Chaabane, M.; Biebl, E. M.

    2012-09-01

    We present a multi-user cooperative mobile transponder system which enables cars to localize pedestrians, bicyclists and other road users in order to improve traffic safety. The system operates at a center frequency of 5.768 GHz, offering the ability to test precision localization technology at frequencies close to the newly designated automotive safety related bands around 5.9 GHz. By carrying out a roundtrip time of flight measurement, the sensor can determine the distance from the onboard localization unit of a car to a road user who is equipped with an active transponder, employing the idea of a secondary radar and pulse compression. The onboard unit sends out a pseudo noise coded interrogation pulse, which is answered by one or more transponders after a short waiting time. Each transponder uses a different waiting time in order to allow for time division multiple access. We present the system setup as well as range measurement results, achieving an accuracy up to centimeters for the distance measurement and a range in the order of hundred meters. We also discuss the effect of clock drift and offset on distance accuracy for different waiting times and show how the system can be improved to further increase precision in a multiuser environment.

  9. An Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  10. Challenges in miniaturized automotive long-range lidar system design

    NASA Astrophysics Data System (ADS)

    Fersch, Thomas; Weigel, Robert; Koelpin, Alexander

    2017-05-01

    This paper discusses the current technical limitations posed on endeavors to miniaturize lidar systems for use in automotive applications and how to possibly extend those limits. The focus is set on long-range scanning direct time of flight LiDAR systems using APD photodetectors. Miniaturization evokes severe problems in ensuring absolute laser safety while maintaining the systems' performance in terms of maximum range, signal-to-noise ratio, detection probability, pixel density, or frame rate. Based on hypothetical but realistic specifications for an exemplary system the complete lidar signal path is calculated. The maximum range of the system is used as a general performance indicator. It is determined with the minimum signal-to-noise ratio required to detect an object. Various system parameters are varied to find their impact on the system's range. The reduction of the laser's pulse width and the right choice for the transimpedance amplifier's amplification have shown to be practicable measures to double the system's range.

  11. Are automatic systems the future of motorcycle safety? A novel methodology to prioritize potential safety solutions based on their projected effectiveness.

    PubMed

    Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Baldanzini, Niccolò; Happee, Riender; Pierini, Marco

    2017-11-17

    Motorcycle riders are involved in significantly more crashes per kilometer driven than passenger car drivers. Nonetheless, the development and implementation of motorcycle safety systems lags far behind that of passenger cars. This research addresses the identification of the most effective motorcycle safety solutions in the context of different countries. A knowledge-based system of motorcycle safety (KBMS) was developed to assess the potential for various safety solutions to mitigate or avoid motorcycle crashes. First, a set of 26 common crash scenarios was identified from the analysis of multiple crash databases. Second, the relative effectiveness of 10 safety solutions was assessed for the 26 crash scenarios by a panel of experts. Third, relevant information about crashes was used to weigh the importance of each crash scenario in the region studied. The KBMS method was applied with an Italian database, with a total of more than 1 million motorcycle crashes in the period 2000-2012. When applied to the Italian context, the KBMS suggested that automatic systems designed to compensate for riders' or drivers' errors of commission or omission are the potentially most effective safety solution. The KBMS method showed an effective way to compare the potential of various safety solutions, through a scored list with the expected effectiveness of each safety solution for the region to which the crash data belong. A comparison of our results with a previous study that attempted a systematic prioritization of safety systems for motorcycles (PISa project) showed an encouraging agreement. Current results revealed that automatic systems have the greatest potential to improve motorcycle safety. Accumulating and encoding expertise in crash analysis from a range of disciplines into a scalable and reusable analytical tool, as proposed with the use of KBMS, has the potential to guide research and development of effective safety systems. As the expert assessment of the crash scenarios is decoupled from the regional crash database, the expert assessment may be reutilized, thereby allowing rapid reanalysis when new crash data become available. In addition, the KBMS methodology has potential application to injury forecasting, driver/rider training strategies, and redesign of existing road infrastructure.

  12. Reflectance calibration of focal plane array hyperspectral imaging system for agricultural and food safety applications

    NASA Astrophysics Data System (ADS)

    Lawrence, Kurt C.; Park, Bosoon; Windham, William R.; Mao, Chengye; Poole, Gavin H.

    2003-03-01

    A method to calibrate a pushbroom hyperspectral imaging system for "near-field" applications in agricultural and food safety has been demonstrated. The method consists of a modified geometric control point correction applied to a focal plane array to remove smile and keystone distortion from the system. Once a FPA correction was applied, single wavelength and distance calibrations were used to describe all points on the FPA. Finally, a percent reflectance calibration, applied on a pixel-by-pixel basis, was used for accurate measurements for the hyperspectral imaging system. The method was demonstrated with a stationary prism-grating-prism, pushbroom hyperspectral imaging system. For the system described, wavelength and distance calibrations were used to reduce the wavelength errors to <0.5 nm and distance errors to <0.01mm (across the entrance slit width). The pixel-by-pixel percent reflectance calibration, which was performed at all wavelengths with dark current and 99% reflectance calibration-panel measurements, was verified with measurements on a certified gradient Spectralon panel with values ranging from about 14% reflectance to 99% reflectance with errors generally less than 5% at the mid-wavelength measurements. Results from the calibration method, indicate the hyperspectral imaging system has a usable range between 420 nm and 840 nm. Outside this range, errors increase significantly.

  13. Proposed system safety design and test requirements for the microlaser ordnance system

    NASA Technical Reports Server (NTRS)

    Stoltz, Barb A.; Waldo, Dale F.

    1993-01-01

    Safety for pyrotechnic ignition systems is becoming a major concern for the military. In the past twenty years, stray electromagnetic fields have steadily increased during peacetime training missions and have dramatically increased during battlefield missions. Almost all of the ordnance systems in use today depend on an electrical bridgewire for ignition. Unfortunately, the bridgewire is the cause of the majority of failure modes. The common failure modes include the following: broken bridgewires; transient RF power, which induces bridgewire heating; and cold temperatures, which contracts the explosive mix away from the bridgewire. Finding solutions for these failure modes is driving the costs of pyrotechnic systems up. For example, analyses are performed to verify that the system in the environment will not see more energy than 20 dB below the 'No-fire' level. Range surveys are performed to determine the operational, storage, and transportation RF environments. Cryogenic tests are performed to verify the bridgewire to mix interface. System requirements call for 'last minute installation,' 'continuity checks after installation,' and rotating safety devices to 'interrupt the explosive train.' As an alternative, MDESC has developed a new approach based upon our enabling laser diode technology. We believe that Microlaser initiated ordnance offers a unique solution to the bridgewire safety concerns. For this presentation, we will address, from a system safety viewpoint, the safety design and the test requirements for a Microlaser ordnance system. We will also review how this system could be compliant to MIL-STD-1576 and DOD-83578A and the additional necessary requirements.

  14. The Perception, Level of Safety Satisfaction and Safety Feedback on Occupational Safety and Health Management among Hospital Staff Nurses in Sabah State Health Department

    PubMed Central

    Cheah, Whye Lian; Giloi, Nelbon; Chang, Ching Thon; Lim, Jac Fang

    2012-01-01

    Background: This study aimed to determine the perception and level of safety satisfaction of staff nurses with regards to Occupational Safety and Health (OSH) management practice in the Sabah Health Department, and to associate the OSH management dimensions, to Safety Satisfaction and Safety Feedback. Methods: A cross-sectional study using a validated self-administered questionnaire was conducted among randomly respondents. Results: 135 nurses responded the survey. Mean (SD) score for each dimension ranged from 1.70 ± 0.68–4.04 ± 0.65, with Training and Competence dimension (mean [SD], 4.04 ± 0.65) had the highest while Safety Incidence was the least score (mean [SD], 1.70 ± 0.68). Both mean (SD) scores for Safety Satisfaction and Safety Feedback was high, 3.28 ± 0.51 and 3.57 ± 0.73, respectively. Pearson’s correlation analysis indicated that all OSH dimensions had significant correlation with Safety Satisfaction and Safety Feedback (r coefficient ranged from 0.176–0.512) except for Safety Incidence. Conclusion: The overall perception of OSH management was rather low. Significant correlation between Safety Satisfaction and Safety Feedback and several dimensions, suggest that each organization to put in place the leaders who have appropriate leadership and supervisory skills and committed in providing staff training to improve staff’s competency in OSH practice. In addition, clear goals, rules, and reporting system will help the organization to implement proper OSH management practice. PMID:23610550

  15. Usability Methods for Ensuring Health Information Technology Safety: Evidence-Based Approaches. Contribution of the IMIA Working Group Health Informatics for Patient Safety.

    PubMed

    Borycki, E; Kushniruk, A; Nohr, C; Takeda, H; Kuwata, S; Carvalho, C; Bainbridge, M; Kannry, J

    2013-01-01

    Issues related to lack of system usability and potential safety hazards continue to be reported in the health information technology (HIT) literature. Usability engineering methods are increasingly used to ensure improved system usability and they are also beginning to be applied more widely for ensuring the safety of HIT applications. These methods are being used in the design and implementation of many HIT systems. In this paper we describe evidence-based approaches to applying usability engineering methods. A multi-phased approach to ensuring system usability and safety in healthcare is described. Usability inspection methods are first described including the development of evidence-based safety heuristics for HIT. Laboratory-based usability testing is then conducted under artificial conditions to test if a system has any base level usability problems that need to be corrected. Usability problems that are detected are corrected and then a new phase is initiated where the system is tested under more realistic conditions using clinical simulations. This phase may involve testing the system with simulated patients. Finally, an additional phase may be conducted, involving a naturalistic study of system use under real-world clinical conditions. The methods described have been employed in the analysis of the usability and safety of a wide range of HIT applications, including electronic health record systems, decision support systems and consumer health applications. It has been found that at least usability inspection and usability testing should be applied prior to the widespread release of HIT. However, wherever possible, additional layers of testing involving clinical simulations and a naturalistic evaluation will likely detect usability and safety issues that may not otherwise be detected prior to widespread system release. The framework presented in the paper can be applied in order to develop more usable and safer HIT, based on multiple layers of evidence.

  16. A Hazardous Gas Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. - Y.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Knight, D.

    1998-01-01

    The detection of explosive conditions in aerospace propulsion applications is important for safety and economic reasons. Microfabricated hydrogen, oxygen, and hydrocarbon sensors as well as the accompanying hardware and software are being developed for a range of aerospace safety applications. The development of these sensors is being done using MEMS (Micro ElectroMechanical Systems) based technology and SiC-based semiconductor technology. The hardware and software allows control and interrogation of each sensor head and reduces accompanying cabling through multiplexing. These systems are being applied on the X-33 and on an upcoming STS-95 Shuttle mission. A number of commercial applications are also being pursued. It is concluded that this MEMS-based technology has significant potential to reduce costs and increase safety in a variety of aerospace applications.

  17. A Hazardous Gas Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Knight, D.

    1998-01-01

    The detection of explosive conditions in aerospace propulsion applications is important for safety and economic reasons. Microfabricated hydrogen, oxygen, and hydrocarbon sensors as well as the accompanying hardware and software are being, developed for a range of aerospace safety applications. The development of these sensors is being done using MEMS (Micro ElectroMechanical Systems) based technology and SiC-based semiconductor technology. The hardware and software allows control and interrocation of each sensor head and reduces accompanying cabling through multiplexing. These systems are being, applied on the X-33 and on an upcoming STS-95 Shuttle mission. A number of commercial applications are also being pursued. It is concluded that this MEMS-based technology has significant potential to reduce costs and increase safety in a variety of aerospace applications.

  18. Final Environmental Assessment for the Installation of a Range Safety Lighting System at Avon Park Air Force Range, Florida

    DTIC Science & Technology

    2010-08-01

    considered with other activities that require additional artificial night lighting. For instance, the development of the new town of Destiny planned...Mobarkey, M. Barak, A. Hoyzman, and O. Halevy, 2004. Monochromatic Light Stimuli During Embryogenesis Enhances Embryo Development and Posthatch

  19. Impact of Pilot Delay and Non-Responsiveness on the Safety Performance of Airborne Separation

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria; Hoadley, Sherwood; Wing, David; Baxley, Brian; Allen, Bonnie Danette

    2008-01-01

    Assessing the safety effects of prediction errors and uncertainty on automationsupported functions in the Next Generation Air Transportation System concept of operations is of foremost importance, particularly safety critical functions such as separation that involve human decision-making. Both ground-based and airborne, the automation of separation functions must be designed to account for, and mitigate the impact of, information uncertainty and varying human response. This paper describes an experiment that addresses the potential impact of operator delay when interacting with separation support systems. In this study, we evaluated an airborne separation capability operated by a simulated pilot. The experimental runs are part of the Safety Performance of Airborne Separation (SPAS) experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assistance systems. Pilot actions required by the airborne separation automation to resolve traffic conflicts were delayed within a wide range, varying from five to 240 seconds while a percentage of randomly selected pilots were programmed to completely miss the conflict alerts and therefore take no action. Results indicate that the strategicAirborne Separation Assistance System (ASAS) functions exercised in the experiment can sustain pilot response delays of up to 90 seconds and more, depending on the traffic density. However, when pilots or operators fail to respond to conflict alerts the safety effects are substantial, particularly at higher traffic densities.

  20. Cyber Security Threats to Safety-Critical, Space-Based Infrastructures

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Atencia Yepez, A.

    2012-01-01

    Space-based systems play an important role within national critical infrastructures. They are being integrated into advanced air-traffic management applications, rail signalling systems, energy distribution software etc. Unfortunately, the end users of communications, location sensing and timing applications often fail to understand that these infrastructures are vulnerable to a wide range of security threats. The following pages focus on concerns associated with potential cyber-attacks. These are important because future attacks may invalidate many of the safety assumptions that support the provision of critical space-based services. These safety assumptions are based on standard forms of hazard analysis that ignore cyber-security considerations This is a significant limitation when, for instance, security attacks can simultaneously exploit multiple vulnerabilities in a manner that would never occur without a deliberate enemy seeking to damage space based systems and ground infrastructures. We address this concern through the development of a combined safety and security risk assessment methodology. The aim is to identify attack scenarios that justify the allocation of additional design resources so that safety barriers can be strengthened to increase our resilience against security threats.

  1. Safety on Earth From MARSS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    ENSCO, Inc., developed the Meteorological and Atmospheric Real-time Safety Support (MARSS) system for real-time assessment of meteorological data displays and toxic material spills. MARSS also provides mock scenarios to guide preparations for emergencies involving meteorological hazards and toxic substances. Developed under a Small Business Innovation Research (SBIR) contract with Kennedy Space Center, MARSS was designed to measure how safe NASA and Air Force range safety personnel are while performing weather sensitive operations around launch pads. The system augments a ground operations safety plan that limits certain work operations to very specific weather conditions. It also provides toxic hazard prediction models to assist safety managers in planning for and reacting to releases of hazardous materials. MARSS can be used in agricultural, industrial, and scientific applications that require weather forecasts and predictions of toxic smoke movement. MARSS is also designed to protect urban areas, seaports, rail facilities, and airports from airborne releases of hazardous chemical substances. The system can integrate with local facility protection units and provide instant threat detection and assessment data that is reportable for local and national distribution.

  2. Laser safety research and modeling for high-energy laser systems

    NASA Astrophysics Data System (ADS)

    Smith, Peter A.; Montes de Oca, Cecilia I.; Kennedy, Paul K.; Keppler, Kenneth S.

    2002-06-01

    The Department of Defense has an increasing number of high-energy laser weapons programs with the potential to mature in the not too distant future. However, as laser systems with increasingly higher energies are developed, the difficulty of the laser safety problem increases proportionally, and presents unique safety challenges. The hazard distance for the direct beam can be in the order of thousands of miles, and radiation reflected from the target may also be hazardous over long distances. This paper details the Air Force Research Laboratory/Optical Radiation Branch (AFRL/HEDO) High-Energy Laser (HEL) safety program, which has been developed to support DOD HEL programs by providing critical capability and knowledge with respect to laser safety. The overall aim of the program is to develop and demonstrate technologies that permit safe testing, deployment and use of high-energy laser weapons. The program spans the range of applicable technologies, including evaluation of the biological effects of high-energy laser systems, development and validation of laser hazard assessment tools, and development of appropriate eye protection for those at risk.

  3. Overnight glucose control with an automated, unified safety system in children and adolescents with type 1 diabetes at diabetes camp.

    PubMed

    Ly, Trang T; Breton, Marc D; Keith-Hynes, Patrick; De Salvo, Daniel; Clinton, Paula; Benassi, Kari; Mize, Benton; Chernavvsky, Daniel; Place, Jéróme; Wilson, Darrell M; Kovatchev, Boris P; Buckingham, Bruce A

    2014-08-01

    To determine the safety and efficacy of an automated unified safety system (USS) in providing overnight closed-loop (OCL) control in children and adolescents with type 1 diabetes attending diabetes summer camps. The Diabetes Assistant (DIAS) USS used the Dexcom G4 Platinum glucose sensor (Dexcom) and t:slim insulin pump (Tandem Diabetes Care). An initial inpatient study was completed for 12 participants to evaluate safety. For the main camp study, 20 participants with type 1 diabetes were randomized to either OCL or sensor-augmented therapy (control conditions) per night over the course of a 5- to 6-day diabetes camp. Subjects completed 54 OCL nights and 52 control nights. On an intention-to-treat basis, with glucose data analyzed regardless of system status, the median percent time in range, from 70-150 mg/dL, was 62% (29, 87) for OCL nights versus 55% (25, 80) for sensor-augmented pump therapy (P = 0.233). A per-protocol analysis allowed for assessment of algorithm performance. The median percent time in range, from 70-150 mg/dL, was 73% (50, 89) for OCL nights (n = 41) versus 52% (24, 83) for control conditions (n = 39) (P = 0.037). There was less time spent in the hypoglycemic range <50, <60, and <70 mg/dL during OCL compared with the control period (P = 0.019, P = 0.009, and P = 0.023, respectively). The DIAS USS algorithm is effective in improving time spent in range as well as reducing nocturnal hypoglycemia during the overnight period in children and adolescents with type 1 diabetes in a diabetes camp setting. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  4. Modeling of the Mode S tracking system in support of aircraft safety research

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1982-01-01

    This report collects, documents, and models data relating the expected accuracies of tracking variables to be obtained from the FAA's Mode S Secondary Surveillance Radar system. The data include measured range and azimuth to the tracked aircraft plus the encoded altitude transmitted via the Mode S data link. A brief summary is made of the Mode S system status and its potential applications for aircraft safety improvement including accident analysis. FAA flight test results are presented demonstrating Mode S range and azimuth accuracy and error characteristics and comparing Mode S to the current ATCRBS radar tracking system. Data are also presented that describe the expected accuracy and error characteristics of encoded altitude. These data are used to formulate mathematical error models of the Mode S variables and encoded altitude. A brief analytical assessment is made of the real-time tracking accuracy available from using Mode S and how it could be improved with down-linked velocity.

  5. Sensor Selection and Optimization for Health Assessment of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Kopasakis, George; Santi, Louis M.; Sowers, Thomas S.; Chicatelli, Amy

    2007-01-01

    Aerospace systems are developed similarly to other large-scale systems through a series of reviews, where designs are modified as system requirements are refined. For space-based systems few are built and placed into service. These research vehicles have limited historical experience to draw from and formidable reliability and safety requirements, due to the remote and severe environment of space. Aeronautical systems have similar reliability and safety requirements, and while these systems may have historical information to access, commercial and military systems require longevity under a range of operational conditions and applied loads. Historically, the design of aerospace systems, particularly the selection of sensors, is based on the requirements for control and performance rather than on health assessment needs. Furthermore, the safety and reliability requirements are met through sensor suite augmentation in an ad hoc, heuristic manner, rather than any systematic approach. A review of the current sensor selection practice within and outside of the aerospace community was conducted and a sensor selection architecture is proposed that will provide a justifiable, dependable sensor suite to address system health assessment requirements.

  6. Sensor Selection and Optimization for Health Assessment of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Kopasakis, George; Santi, Louis M.; Sowers, Thomas S.; Chicatelli, Amy

    2008-01-01

    Aerospace systems are developed similarly to other large-scale systems through a series of reviews, where designs are modified as system requirements are refined. For space-based systems few are built and placed into service these research vehicles have limited historical experience to draw from and formidable reliability and safety requirements, due to the remote and severe environment of space. Aeronautical systems have similar reliability and safety requirements, and while these systems may have historical information to access, commercial and military systems require longevity under a range of operational conditions and applied loads. Historically, the design of aerospace systems, particularly the selection of sensors, is based on the requirements for control and performance rather than on health assessment needs. Furthermore, the safety and reliability requirements are met through sensor suite augmentation in an ad hoc, heuristic manner, rather than any systematic approach. A review of the current sensor selection practice within and outside of the aerospace community was conducted and a sensor selection architecture is proposed that will provide a justifiable, defendable sensor suite to address system health assessment requirements.

  7. Loss of Coolant Accident (LOCA) / Emergency Core Coolant System (ECCS Evaluation of Risk-Informed Margins Management Strategies for a Representative Pressurized Water Reactor (PWR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szilard, Ronaldo Henriques

    A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.

  8. Space Shuttle Range Safety Command Destruct System Analysis and Verification. Phase 1. Destruct System Analysis and Verification

    DTIC Science & Technology

    1981-03-01

    overcome the shortcomings of this system. A phase III study develops the breakup model of the Space Shuttle clus’ter at various times into flight. The...2-1 ROCKET MODEL ..................................................... 2-5 COMBUSTION CHAMBER OPERATION ................................... 2-5...2-19 RESULTS .......................................................... 2-22 ROCKET MODEL

  9. Handling and safety enhancement of race cars using active aerodynamic systems

    NASA Astrophysics Data System (ADS)

    Diba, Fereydoon; Barari, Ahmad; Esmailzadeh, Ebrahim

    2014-09-01

    A methodology is presented in this work that employs the active inverted wings to enhance the road holding by increasing the downward force on the tyres. In the proposed active system, the angles of attack of the vehicle's wings are adjusted by using a real-time controller to increase the road holding and hence improve the vehicle handling. The handling of the race car and safety of the driver are two important concerns in the design of race cars. The handling of a vehicle depends on the dynamic capabilities of the vehicle and also the pneumatic tyres' limitations. The vehicle side-slip angle, as a measure of the vehicle dynamic safety, should be narrowed into an acceptable range. This paper demonstrates that active inverted wings can provide noteworthy dynamic capabilities and enhance the safety features of race cars. Detailed analytical study and formulations of the race car nonlinear model with the airfoils are presented. Computer simulations are carried out to evaluate the performance of the proposed active aerodynamic system.

  10. Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles

    NASA Technical Reports Server (NTRS)

    Buchholz, R.; Mathur, A. K.

    1979-01-01

    Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected.

  11. Industrial Hygiene Issues

    NASA Technical Reports Server (NTRS)

    Brisbin, Steven G.

    1999-01-01

    This breakout session is a traditional conference instrument used by the NASA industrial hygiene personnel as a method to convene personnel across the Agency with common interests. This particular session focused on two key topics, training systems and automation of industrial hygiene data. During the FY 98 NASA Occupational Health Benchmarking study, the training system under development by the U.S. Environmental Protection Agency (EPA) was deemed to represent a "best business practice." The EPA has invested extensively in the development of computer based training covering a broad range of safety, health and environmental topics. Currently, five compact disks have been developed covering the topics listed: Safety, Health and Environmental Management Training for Field Inspection Activities; EPA Basic Radiation Training Safety Course; The OSHA 600 Collateral Duty Safety and Health Course; and Key program topics in environmental compliance, health and safety. Mr. Chris Johnson presented an overview of the EPA compact disk-based training system and answered questions on its deployment and use across the EPA. This training system has also recently been broadly distributed across other Federal Agencies. The EPA training system is considered "public domain" and, as such, is available to NASA at no cost in its current form. Copies of the five CD set of training programs were distributed to each NASA Center represented in the breakout session. Mr. Brisbin requested that each NASA Center review the training materials and determine whether there is interest in using the materials as it is or requesting that EPA tailor the training modules to suit NASA's training program needs. The Safety, Health and Medical Services organization at Ames Research Center has completed automation of several key program areas. Mr. Patrick Hogan, Safety Program Manager for Ames Research Center, presented a demonstration of the automated systems, which are described by the following: (1) Safety, Health and Environmental Training. This system includes an assessment of training needs for every NASA Center organization, course descriptions, schedules and automated course scheduling, and presentation of training program metrics; (2) Safety and Health Inspection Information. This system documents the findings from each facility inspection, tracks abatement status on those findings and presents metrics on each department for senior management review; (3) Safety Performance Evaluation Profile. The survey system used by NASA to evaluate employee and supervisory perceptions of safety programs is automated in this system; and (4) Documentation Tracking System. Electronic archive and retrieval of all correspondence and technical reports generated by the Safety, Health and Medical Services Office are provided by this system.

  12. Good Enough for the X-38, but Made for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Aircraft Belts, Inc. (ABI), of Kemah, Texas, was looking for a way to ensure the safety of its customers by developing a thorough test system for aviation restraint systems. Previous safety restraint test methods did not properly measure the load distribution placed on the restraints, leaving an unknown factor in meeting safety standards. ABI needed to improve its testing methods and update its test equipment. Through a partnership with NASA's Johnson Space Center Technical Outreach Program, the need was met. With the assistance of NASA engineers, ABI developed a hydraulic test system that provides the consumer with in-depth data about the load placed on the restraint system throughout the duration of the test. The old systems were only able to detect if the belts could sustain the applied force and could not target the problem of providing load data. In comparison, the new system modeled after the one used by NASA, can collect data that tells exactly what went wrong with belts that break and why. Depending on the test requirements of various restraint components, the system can exert a subjected force ranging from merely a few pounds to thousands. The test force can be applied to an entire safety restraint system or to its individual parts, including, stitching, webbing, and hardware.

  13. Post-Challenger evaluation of space shuttle risk assessment and management

    NASA Technical Reports Server (NTRS)

    1988-01-01

    As the shock of the Space Shuttle Challenger accident began to subside, NASA initiated a wide range of actions designed to ensure greater safety in various aspects of the Shuttle system and an improved focus on safety throughout the National Space Transportation System (NSTS) Program. Certain specific features of the NASA safety process are examined: the Critical Items List (CIL) and the NASA review of the Shuttle primary and backup units whose failure might result in the loss of life, the Shuttle vehicle, or the mission; the failure modes and effects analyses (FMEA); and the hazard analysis and their review. The conception of modern risk management, including the essential element of objective risk assessment is described and it is contrasted with NASA's safety process in general terms. The discussion, findings, and recommendations regarding particular aspects of the NASA STS safety assurance process are reported. The 11 subsections each deal with a different aspect of the process. The main lessons learned by SCRHAAC in the course of the audit are summarized.

  14. The Long Range Reconnaissance and Observation System (LORROS) with the Kollsman, Inc. Model LH-40, Infrared (Erbium) Laser Rangefinder hazard analysis and safety assessment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustoni, Arnold L.

    A laser hazard analysis and safety assessment was performed for the LH-40 IR Laser Rangefinder based on the 2000 version of the American National Standard Institute's Standard Z136.1, for the Safe Use of Lasers and Z136.6, for the Safe Use of Lasers Outdoors. The LH-40 IR Laser is central to the Long Range Reconnaissance and Observation System (LORROS). The LORROS is being evaluated by the Department 4149 Group to determine its capability as a long-range assessment tool. The manufacture lists the laser rangefinder as 'eye safe' (Class 1 laser classified under the CDRH Compliance Guide for Laser Products and 21more » CFR 1040 Laser Product Performance Standard). It was necessary that SNL validate this prior to its use involving the general public. A formal laser hazard analysis is presented for the typical mode of operation.« less

  15. Commercial objectives, technology transfer, and systems analysis for fusion power development

    NASA Astrophysics Data System (ADS)

    Dean, Stephen O.

    1988-09-01

    Fusion is an inexhaustible source of energy that has the potential for economic commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion energy development program is the generation of central station electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high energy neutrons suggests potentially unique applications. In addition, fusion R and D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other, are the two primary criteria for setting long range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R and D program toward practical applications. The transfer of fusion technology and skills from the national labs and universities to industry is the key to achieving the long range objective of commercial fusion applications.

  16. Commercial objectives, technology transfer, and systems analysis for fusion power development

    NASA Technical Reports Server (NTRS)

    Dean, Stephen O.

    1988-01-01

    Fusion is an inexhaustible source of energy that has the potential for economic commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion energy development program is the generation of central station electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high energy neutrons suggests potentially unique applications. In addition, fusion R and D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other, are the two primary criteria for setting long range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R and D program toward practical applications. The transfer of fusion technology and skills from the national labs and universities to industry is the key to achieving the long range objective of commercial fusion applications.

  17. 14 CFR 417.1 - General information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... package, (3) Preliminary and final flight data packages, (4) A tailored version of EWR 127-1, (5) Range...) Missile system pre-launch safety package, (3) Preliminary and final flight data packages, (4) A tailored...

  18. 14 CFR 417.1 - General information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... package, (3) Preliminary and final flight data packages, (4) A tailored version of EWR 127-1, (5) Range...) Missile system pre-launch safety package, (3) Preliminary and final flight data packages, (4) A tailored...

  19. 14 CFR 417.1 - General information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... package, (3) Preliminary and final flight data packages, (4) A tailored version of EWR 127-1, (5) Range...) Missile system pre-launch safety package, (3) Preliminary and final flight data packages, (4) A tailored...

  20. 14 CFR 417.1 - General information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... package, (3) Preliminary and final flight data packages, (4) A tailored version of EWR 127-1, (5) Range...) Missile system pre-launch safety package, (3) Preliminary and final flight data packages, (4) A tailored...

  1. Systems Engineering of Electric and Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  2. The Advanced Technology Development Center (ATDC)

    NASA Technical Reports Server (NTRS)

    Clements, G. R.; Willcoxon, R. (Technical Monitor)

    2001-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.

  3. Key factors contributing to accident severity rate in construction industry in Iran: a regression modelling approach.

    PubMed

    Soltanzadeh, Ahmad; Mohammadfam, Iraj; Moghimbeigi, Abbas; Ghiasvand, Reza

    2016-03-01

    Construction industry involves the highest risk of occupational accidents and bodily injuries, which range from mild to very severe. The aim of this cross-sectional study was to identify the factors associated with accident severity rate (ASR) in the largest Iranian construction companies based on data about 500 occupational accidents recorded from 2009 to 2013. We also gathered data on safety and health risk management and training systems. Data were analysed using Pearson's chi-squared coefficient and multiple regression analysis. Median ASR (and the interquartile range) was 107.50 (57.24- 381.25). Fourteen of the 24 studied factors stood out as most affecting construction accident severity (p<0.05). These findings can be applied in the design and implementation of a comprehensive safety and health risk management system to reduce ASR.

  4. 33 CFR 169.235 - What exemptions are there from reporting?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification and Tracking Information § 169.235 What exemptions are there from reporting? A ship is exempt from this subpart if it is— (a) Fitted with an operating automatic identification system (AIS), under 33 CFR...

  5. 33 CFR 169.235 - What exemptions are there from reporting?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification and Tracking Information § 169.235 What exemptions are there from reporting? A ship is exempt from this subpart if it is— (a) Fitted with an operating automatic identification system (AIS), under 33 CFR...

  6. 33 CFR 169.235 - What exemptions are there from reporting?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification and Tracking Information § 169.235 What exemptions are there from reporting? A ship is exempt from this subpart if it is— (a) Fitted with an operating automatic identification system (AIS), under 33 CFR...

  7. 33 CFR 169.235 - What exemptions are there from reporting?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification and Tracking Information § 169.235 What exemptions are there from reporting? A ship is exempt from this subpart if it is— (a) Fitted with an operating automatic identification system (AIS), under 33 CFR...

  8. 33 CFR 169.235 - What exemptions are there from reporting?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range... this subpart if it is— (a) Fitted with an operating automatic identification system (AIS), under 33 CFR 164.46, and operates only within 20 nautical miles of the United States baseline, (b) A warship, naval...

  9. Evaluation of a Broad-Spectrum Partially Automated Adverse Event Surveillance System: A Potential Tool for Patient Safety Improvement in Hospitals With Limited Resources.

    PubMed

    Saikali, Melody; Tanios, Alain; Saab, Antoine

    2017-11-21

    The aim of the study was to evaluate the sensitivity and resource efficiency of a partially automated adverse event (AE) surveillance system for routine patient safety efforts in hospitals with limited resources. Twenty-eight automated triggers from the hospital information system's clinical and administrative databases identified cases that were then filtered by exclusion criteria per trigger and then reviewed by an interdisciplinary team. The system, developed and implemented using in-house resources, was applied for 45 days of surveillance, for all hospital inpatient admissions (N = 1107). Each trigger was evaluated for its positive predictive value (PPV). Furthermore, the sensitivity of the surveillance system (overall and by AE category) was estimated relative to incidence ranges in the literature. The surveillance system identified a total of 123 AEs among 283 reviewed medical records, yielding an overall PPV of 52%. The tool showed variable levels of sensitivity across and within AE categories when compared with the literature, with a relatively low overall sensitivity estimated between 21% and 44%. Adverse events were detected in 23 of the 36 AE categories defined by an established harm classification system. Furthermore, none of the detected AEs were voluntarily reported. The surveillance system showed variable sensitivity levels across a broad range of AE categories with an acceptable PPV, overcoming certain limitations associated with other harm detection methods. The number of cases captured was substantial, and none had been previously detected or voluntarily reported. For hospitals with limited resources, this methodology provides valuable safety information from which interventions for quality improvement can be formulated.

  10. MATILDA: A Military Laser Range Safety Tool Based on Probabilistic Risk Assessment (PRA) Techniques

    DTIC Science & Technology

    2014-08-01

    Figure 6: MATILDA Coordinate Transformations ....................................................... 22  Figure 7: Geocentric and MICS Coordinates...Target – Range Boundary Undershoot Geometry .............. 34  Figure 19: Geocentric Overshoot Geometry and Parameters...transformed into Geocentric coordinates, a Cartesian (x,y,z) coordinate system with origin at the center of the Earth and z-axis oriented towards the

  11. Observation of IPL spectra using detector system incorporating broadband optical filters

    NASA Astrophysics Data System (ADS)

    Clarkson, D. McG.

    2007-07-01

    Systems using intense pulsed light are being increasingly used in therapy applications where issues related to safety of devices and also of performance are becoming more urgent to address. Mechanisms to address this include a suitable standards framework and also the development and application of appropriate measurement techniques. An approach of using conventional bandpass optical filters and silicon photodetectors has been implemented using an analogue USB data capture interfaces linked to a laptop PC. An initial system with 8 concurrent channels has been upgraded to a separate system sampling up to 16 analogue channels. Sampling takes place at the maximum hardware conversion rate of the USB device. Observations have been made of a range of intense pulsed light systems, including a Lumenis One unit with a range of discrete filters. The system has been of value in determining the basic parameters of output pulse profile and spectral composition. This has in turn been related to aspects of standards development for both device manufacture and allocation of appropriate safety eyewear. Initial assessments of a subset of intense pulsed light systems indicate significant complexities in terms, for example, of variation in spectral content as a function of device output setting.

  12. State of science: human factors and ergonomics in healthcare.

    PubMed

    Hignett, Sue; Carayon, Pascale; Buckle, Peter; Catchpole, Ken

    2013-01-01

    The past decade has seen an increase in the application of human factors and ergonomics (HFE) techniques to healthcare delivery in a broad range of contexts (domains, locations and environments). This paper provides a state of science commentary using four examples of HFE in healthcare to review and discuss analytical and implementation challenges and to identify future issues for HFE. The examples include two domain areas (occupational ergonomics and surgical safety) to illustrate a traditional application of HFE and the area that has probably received the most research attention. The other two examples show how systems and design have been addressed in healthcare with theoretical approaches for organisational and socio-technical systems and design for patient safety. Future opportunities are identified to develop and embed HFE systems thinking in healthcare including new theoretical models and long-term collaborative partnerships. HFE can contribute to systems and design initiatives for both patients and clinicians to improve everyday performance and safety, and help to reduce and control spiralling healthcare costs. There has been an increase in the application of HFE techniques to healthcare delivery in the past 10 years. This paper provides a state of science commentary using four illustrative examples (occupational ergonomics, design for patient safety, surgical safety and organisational and socio-technical systems) to review and discuss analytical and implementation challenges and identify future issues for HFE.

  13. Standards for material handling and facilities equipment proofload testing

    NASA Technical Reports Server (NTRS)

    Bonn, S. P.

    1970-01-01

    Document provides information on verifying the safety of material handling and facilities equipment /MH/FE/, ranging from monorail systems to ladders and non-powered mobile equipment. Seven catagories of MH/FE equipment are defined.

  14. 2011 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2012-01-01

    Welcome to the 2011 edition of the NASA Range Safety Annual Report. Funded by NASA Headquarters, this report provides a NASA Range Safety overview for current and potential range users. As is typical with odd year editions, this is an abbreviated Range Safety Annual Report providing updates and links to full articles from the previous year's report. It also provides more complete articles covering new subject areas, summaries of various NASA Range Safety Program activities conducted during the past year, and information on several projects that may have a profound impact on the way business will be done in the future. Specific topics discussed and updated in the 2011 NASA Range Safety Annual Report include a program overview and 2011 highlights; Range Safety Training; Range Safety Policy revision; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities. Every effort has been made to include the most current information available. We recommend this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. Once again the web-based format was used to present the annual report. We continually receive positive feedback on the web-based edition and hope you enjoy this year's product as well. As is the case each year, contributors to this report are too numerous to mention, but we thank individuals from the NASA Centers, the Department of Defense, and civilian organizations for their contributions. In conclusion, it has been a busy and productive year. I'd like to extend a personal Thank You to everyone who contributed to make this year a successful one, and I look forward to working with all of you in the upcoming year.

  15. Annual Report to Congress - Fiscal Year 2000, from the Strategic Environmental Research and Development Program

    DTIC Science & Technology

    2001-03-01

    perchlorate bioremediation systems. The objective of this project is to identify the key environmental factors in subsurface environments that inhibit... environment . For the Health and Safety for Innovative Environmental Technologies subthrust, DoD is working to improve the health and safety of workers and...dilution of pollutants. Similarly, other relevant environments range from humid , forested landscapes to high, arid mountainous domains. In addition, DoD

  16. Achieving the Proper Balance Between Crew and Public Safety

    NASA Technical Reports Server (NTRS)

    Gowan, John; Silvestri, Ray; Stahl, Ben; Rosati, Paul; Wilde, Paul

    2011-01-01

    A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard, and the design engineers must give these requirements the same consideration as crew safety requirements. For human spaceflight, the primary purpose and operational concept for any flight safety system is to protect the public while maximizing the likelihood of crew survival. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. An overview of existing range and crew safety policy requirements will be presented. Application of these requirements and lessons learned from both the Space Shuttle and Constellation Programs will also be discussed. Using these past programs as examples, the paper will detail operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Manned vehicle perspectives from the Federal Aviation Administration (FAA) and Air Force organizations that oversee public safety will be summarized as well. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.

  17. Achieving the Proper Balance between Crew & Public Safety

    NASA Astrophysics Data System (ADS)

    Wilde, P.; Gowan, J.; Silvestri, R.; Stahl, B.; Rosati, P.

    2012-01-01

    A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard, and the design engineers must give these requirements the same consideration as crew safety requirements. For human spaceflight, the primary purpose and operational concept for any flight safety system is to protect the public while maximizing the likelihood of crew survival. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. An overview of existing range and crew safety policy requirements will be presented. Application of these requirements and lessons learned from both the Space Shuttle and Constellation Programs will also be discussed. Using these past programs as examples, the paper will detail operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Crewed vehicle perspectives from the Federal Aviation Administration and Air Force organizations that oversee public safety will be summarized as well. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.

  18. Full-scale Transport Controlled Impact Demonstration Program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Federal Aviation Administration (FAA) and NASA conducted a full-scale air-to-surface impact-survivable impact demonstration with a remotely piloted transport aircraft on 1 December 1984, at Edwards Air Force Base, California. The test article consisted of experiments, special equipment, and supporting systems, such as antimisting kerosene (AMK), crashworthiness structural/restraint, analytical modeling, cabin fire safety, flight data recorders, post-impact investigation, instrumentation/data acquisition systems, remotely piloted vehicle/flight control systems, range and flight safety provisions, etc. This report describes the aircraft, experiments, systems, activities, and events which lead up to the Controlled Impact Demonstration (CID). An overview of the final unmanned remote control flight and sequence of impact events are delineated. Preliminary post CID observations are presented.

  19. Influence of different safety shoes on gait and plantar pressure: a standardized examination of workers in the automotive industry

    PubMed Central

    Ochsmann, Elke; Noll, Ulrike; Ellegast, Rolf; Hermanns, Ingo; Kraus, Thomas

    2016-01-01

    Objective: Working conditions, such as walking and standing on hard surfaces, can increase the development of musculoskeletal complaints. At the interface between flooring and musculoskeletal system, safety shoes may play an important role in the well-being of employees. The aim of this study was to evaluate the effects of different safety shoes on gait and plantar pressure distributions on industrial flooring. Methods: Twenty automotive workers were individually fitted out with three different pairs of safety shoes ( "normal" shoes, cushioned shoes, and midfoot bearing shoes). They walked at a given speed of 1.5 m/s. The CUELA measuring system and shoe insoles were used for gait analysis and plantar pressure measurements, respectively. Statistical analysis was conducted by ANOVA analysis for repeated measures. Results: Walking with cushioned safety shoes or a midfoot bearing safety shoe led to a significant decrease of the average trunk inclination (p<0.005). Furthermore, the average hip flexion angle decreased for cushioned shoes as well as midfoot bearing shoes (p<0.002). The range of motion of the knee joint increased for cushioned shoes. As expected, plantar pressure distributions varied significantly between cushioned or midfoot bearing shoes and shoes without ergonomic components. Conclusion: The overall function of safety shoes is the avoidance of injury in case of an industrial accident, but in addition, safety shoes could be a long-term preventive instrument for maintaining health of the employees' musculoskeletal system, as they are able to affect gait parameters. Further research needs to focus on safety shoes in working situations. PMID:27488038

  20. Influence of different safety shoes on gait and plantar pressure: a standardized examination of workers in the automotive industry.

    PubMed

    Ochsmann, Elke; Noll, Ulrike; Ellegast, Rolf; Hermanns, Ingo; Kraus, Thomas

    2016-09-30

    Working conditions, such as walking and standing on hard surfaces, can increase the development of musculoskeletal complaints. At the interface between flooring and musculoskeletal system, safety shoes may play an important role in the well-being of employees. The aim of this study was to evaluate the effects of different safety shoes on gait and plantar pressure distributions on industrial flooring. Twenty automotive workers were individually fitted out with three different pairs of safety shoes ( "normal" shoes, cushioned shoes, and midfoot bearing shoes). They walked at a given speed of 1.5 m/s. The CUELA measuring system and shoe insoles were used for gait analysis and plantar pressure measurements, respectively. Statistical analysis was conducted by ANOVA analysis for repeated measures. Walking with cushioned safety shoes or a midfoot bearing safety shoe led to a significant decrease of the average trunk inclination (p<0.005). Furthermore, the average hip flexion angle decreased for cushioned shoes as well as midfoot bearing shoes (p<0.002). The range of motion of the knee joint increased for cushioned shoes. As expected, plantar pressure distributions varied significantly between cushioned or midfoot bearing shoes and shoes without ergonomic components. The overall function of safety shoes is the avoidance of injury in case of an industrial accident, but in addition, safety shoes could be a long-term preventive instrument for maintaining health of the employees' musculoskeletal system, as they are able to affect gait parameters. Further research needs to focus on safety shoes in working situations.

  1. Margins of safety provided by COSHH Essentials and the ILO Chemical Control Toolkit.

    PubMed

    Jones, Rachael M; Nicas, Mark

    2006-03-01

    COSHH Essentials, developed by the UK Health and Safety Executive, and the Chemical Control Toolkit (Toolkit) proposed by the International Labor Organization, are 'control banding' approaches to workplace risk management intended for use by proprietors of small and medium-sized businesses. Both systems group chemical substances into hazard bands based on toxicological endpoint and potency. COSSH Essentials uses the European Union's Risk-phrases (R-phrases), whereas the Toolkit uses R-phrases and the Globally Harmonized System (GHS) of Classification and Labeling of Chemicals. Each hazard band is associated with a range of airborne concentrations, termed exposure bands, which are to be attained by the implementation of recommended control technologies. Here we analyze the margin of safety afforded by the systems and, for each hazard band, define the minimal margin as the ratio of the minimum airborne concentration that produced the toxicological endpoint of interest in experimental animals to the maximum concentration in workplace air permitted by the exposure band. We found that the minimal margins were always <100, with some ranging to <1, and inversely related to molecular weight. The Toolkit-GHS system generally produced margins equal to or larger than COSHH Essentials, suggesting that the Toolkit-GHS system is more protective of worker health. Although, these systems predict exposures comparable with current occupational exposure limits, we argue that the minimal margins are better indicators of health protection. Further, given the small margins observed, we feel it is important that revisions of these systems provide the exposure bands to users, so as to permit evaluation of control technology capture efficiency.

  2. AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research

    NASA Technical Reports Server (NTRS)

    Laughter, Sean; Cox, David

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.

  3. DARPA/USAF/USN J-UCAS X-45A System Demonstration Program: A Review of Flight Test Site Processes and Personnel

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2008-01-01

    The Joint Unmanned Combat Air Systems (J-UCAS) program is a collaborative effort between the Defense Advanced Research Project Agency (DARPA), the US Air Force (USAF) and the US Navy (USN). Together they have reviewed X-45A flight test site processes and personnel as part of a system demonstration program for the UCAV-ATD Flight Test Program. The goal was to provide a disciplined controlled process for system integration and testing and demonstration flight tests. NASA's Dryden Flight Research Center (DFRC) acted as the project manager during this effort and was tasked with the responsibilities of range and ground safety, the provision of flight test support and infrastructure and the monitoring of technical and engineering tasks. DFRC also contributed their engineering knowledge through their contributions in the areas of autonomous ground taxi control development, structural dynamics testing and analysis and the provision of other flight test support including telemetry data, tracking radars, and communications and control support equipment. The Air Force Flight Test Center acted at the Deputy Project Manager in this effort and was responsible for the provision of system safety support and airfield management and air traffic control services, among other supporting roles. The T-33 served as a J-UCAS surrogate aircraft and demonstrated flight characteristics similar to that of the the X-45A. The surrogate served as a significant risk reduction resource providing mission planning verification, range safety mission assessment and team training, among other contributions.

  4. Evaluation of features to support safety and quality in general practice clinical software

    PubMed Central

    2011-01-01

    Background Electronic prescribing is now the norm in many countries. We wished to find out if clinical software systems used by general practitioners in Australia include features (functional capabilities and other characteristics) that facilitate improved patient safety and care, with a focus on quality use of medicines. Methods Seven clinical software systems used in general practice were evaluated. Fifty software features that were previously rated as likely to have a high impact on safety and/or quality of care in general practice were tested and are reported here. Results The range of results for the implementation of 50 features across the 7 clinical software systems was as follows: 17-31 features (34-62%) were fully implemented, 9-13 (18-26%) partially implemented, and 9-20 (18-40%) not implemented. Key findings included: Access to evidence based drug and therapeutic information was limited. Decision support for prescribing was available but varied markedly between systems. During prescribing there was potential for medicine mis-selection in some systems, and linking a medicine with its indication was optional. The definition of 'current medicines' versus 'past medicines' was not always clear. There were limited resources for patients, and some medicines lists for patients were suboptimal. Results were provided to the software vendors, who were keen to improve their systems. Conclusions The clinical systems tested lack some of the features expected to support patient safety and quality of care. Standards and certification for clinical software would ensure that safety features are present and that there is a minimum level of clinical functionality that clinicians could expect to find in any system.

  5. Advanced uncertainty modelling for container port risk analysis.

    PubMed

    Alyami, Hani; Yang, Zaili; Riahi, Ramin; Bonsall, Stephen; Wang, Jin

    2016-08-13

    Globalization has led to a rapid increase of container movements in seaports. Risks in seaports need to be appropriately addressed to ensure economic wealth, operational efficiency, and personnel safety. As a result, the safety performance of a Container Terminal Operational System (CTOS) plays a growing role in improving the efficiency of international trade. This paper proposes a novel method to facilitate the application of Failure Mode and Effects Analysis (FMEA) in assessing the safety performance of CTOS. The new approach is developed through incorporating a Fuzzy Rule-Based Bayesian Network (FRBN) with Evidential Reasoning (ER) in a complementary manner. The former provides a realistic and flexible method to describe input failure information for risk estimates of individual hazardous events (HEs) at the bottom level of a risk analysis hierarchy. The latter is used to aggregate HEs safety estimates collectively, allowing dynamic risk-based decision support in CTOS from a systematic perspective. The novel feature of the proposed method, compared to those in traditional port risk analysis lies in a dynamic model capable of dealing with continually changing operational conditions in ports. More importantly, a new sensitivity analysis method is developed and carried out to rank the HEs by taking into account their specific risk estimations (locally) and their Risk Influence (RI) to a port's safety system (globally). Due to its generality, the new approach can be tailored for a wide range of applications in different safety and reliability engineering and management systems, particularly when real time risk ranking is required to measure, predict, and improve the associated system safety performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Anaerobic Digestion II. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    This lesson is the second of a two-part series on anaerobic digestion. Topics discussed include classification of digester by function, roof design, and temperature range, mixing systems, gas system components, operational control basics, and general safety considerations. The lesson includes an instructor's guide and student workbook. The…

  7. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Knowles, G. R.; Mathur, A. K.; Budimir, J.

    1979-01-01

    Active heat exchange concepts for use with thermal energy storage systems in the temperature range of 250 C to 350 C, using the heat of fusion of molten salts for storing thermal energy are described. Salt mixtures that freeze and melt in appropriate ranges are identified and are evaluated for physico-chemical, economic, corrosive and safety characteristics. Eight active heat exchange concepts for heat transfer during solidification are conceived and conceptually designed for use with selected storage media. The concepts are analyzed for their scalability, maintenance, safety, technological development and costs. A model for estimating and scaling storage system costs is developed and is used for economic evaluation of salt mixtures and heat exchange concepts for a large scale application. The importance of comparing salts and heat exchange concepts on a total system cost basis, rather than the component cost basis alone, is pointed out. The heat exchange concepts were sized and compared for 6.5 MPa/281 C steam conditions and a 1000 MW(t) heat rate for six hours. A cost sensitivity analysis for other design conditions is also carried out.

  8. Defining the methodological challenges and opportunities for an effective science of sociotechnical systems and safety.

    PubMed

    Waterson, Patrick; Robertson, Michelle M; Cooke, Nancy J; Militello, Laura; Roth, Emilie; Stanton, Neville A

    2015-01-01

    An important part of the application of sociotechnical systems theory (STS) is the development of methods, tools and techniques to assess human factors and ergonomics workplace requirements. We focus in this paper on describing and evaluating current STS methods for workplace safety, as well as outlining a set of six case studies covering the application of these methods to a range of safety contexts. We also describe an evaluation of the methods in terms of ratings of their ability to address a set of theoretical and practical questions (e.g. the degree to which methods capture static/dynamic aspects of tasks and interactions between system levels). The outcomes from the evaluation highlight a set of gaps relating to the coverage and applicability of current methods for STS and safety (e.g. coverage of external influences on system functioning; method usability). The final sections of the paper describe a set of future challenges, as well as some practical suggestions for tackling these. We provide an up-to-date review of STS methods, a set of case studies illustrating their use and an evaluation of their strengths and weaknesses. The paper concludes with a 'roadmap' for future work.

  9. Tennessee long-range transportation plan : goals, objectives, and policies

    DOT National Transportation Integrated Search

    2005-12-01

    The mission of the Tennessee Department of Transportation (TDOT) is to plan, implement, maintain, and manage an integrated transportation system for the movement of people and products, with emphasis on quality, safety, efficiency, and the environmen...

  10. Vehicle trust management for connected vehicles : final research report.

    DOT National Transportation Integrated Search

    2016-01-01

    The goal of this project is to research a wide range of transportation-related issues : including: improving health and safety for all users of the transportation system, including : bicycles, pedestrians and transit modes; reducing carbon emissions ...

  11. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the Atmospheric Environment Safety Technology Project

    NASA Technical Reports Server (NTRS)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This study analyzed aircraft incidents in the NASA Aviation Safety Reporting System (ASRS) that apply to two of the three technical challenges (TCs) in NASA's Aviation Safety Program's Atmospheric Environment Safety Technology Project. The aircraft incidents are related to airframe icing and atmospheric hazards TCs. The study reviewed incidents that listed their primary problem as weather or environment-nonweather between 1994 and 2011 for aircraft defined by Federal Aviation Regulations (FAR) Parts 121, 135, and 91. The study investigated the phases of flight, a variety of anomalies, flight conditions, and incidents by FAR part, along with other categories. The first part of the analysis focused on airframe-icing-related incidents and found 275 incidents out of 3526 weather-related incidents over the 18-yr period. The second portion of the study focused on atmospheric hazards and found 4647 incidents over the same time period. Atmospheric hazards-related incidents included a range of conditions from clear air turbulence and wake vortex, to controlled flight toward terrain, ground encounters, and incursions.

  12. Space Based Communications

    NASA Technical Reports Server (NTRS)

    Simpson, James; Denson, Erik; Valencia, Lisa; Birr, Richard

    2003-01-01

    Current space lift launches on the Eastern and Western Range require extensive ground-based real-time tracking, communications and command/control systems. These are expensive to maintain and operate and cover only limited geographical areas. Future spaceports will require new technologies to provide greater launch and landing opportunities, support simultaneous missions, and offer enhanced decision support models and simulation capabilities. These ranges must also have lower costs and reduced complexity while continuing to provide unsurpassed safety to the public, flight crew, personnel, vehicles and facilities. Commercial and government space-based assets for tracking and communications offer many attractive possibilities to help achieve these goals. This paper describes two NASA proof-of-concept projects that seek-to exploit the advantages of a space-based range: Iridium Flight Modem and Space-Based Telemetry and Range Safety (STARS). Iridium Flight Modem uses the commercial satellite system Iridium for extremely low cost, low rate two-way communications and has been successfully tested on four aircraft flights. A sister project at Goddard Space Flight Center's (GSFC) Wallops Flight Facility (WFF) using the Globalstar system has been tested on one rocket. The basic Iridium Flight Modem system consists of a L1 carrier Coarse/Acquisition (C/A)-Code Global Positioning System (GPS) receiver, an on-board computer, and a standard commercial satellite modem and antennas. STARS uses the much higher data rate NASA owned Tracking and Data Relay Satellite System (TDRSS), a C/A-Code GPS receiver, an experimental low-power transceiver, custom built command and data handler processor, and digitized flight termination system (FTS) commands. STARS is scheduled to fly on an F-15 at Dryden Flight Research Center in the spring of 2003, with follow-on tests over the next several years.

  13. A Short Range, High Accuracy Radar Ranging System,

    DTIC Science & Technology

    1984-12-01

    may be of any type and can perform the same functions as any other type of radar (pulsed or continuous wave (CW), coherent or noncoherent , etc.). The...use of an optical carrier frequency 4 enables laser radars to take advantage of the benefits inherent in higher frequencies: higher bandwidths allow...results that are inaccurate or incorrect. Also, directing a laser beam at an aircraft cockpit from a range of 25 feet would pose a serious safety

  14. Educating future leaders in patient safety

    PubMed Central

    Leotsakos, Agnès; Ardolino, Antonella; Cheung, Ronny; Zheng, Hao; Barraclough, Bruce; Walton, Merrilyn

    2014-01-01

    Education of health care professionals has given little attention to patient safety, resulting in limited understanding of the nature of risk in health care and the importance of strengthening systems. The World Health Organization developed the Patient Safety Curriculum Guide: Multiprofessional Edition to accelerate the incorporation of patient safety teaching into higher educational curricula. The World Health Organization Curriculum Guide uses a health system-focused, team-dependent approach, which impacts all health care professionals and students learning in an integrated way about how to operate within a culture of safety. The guide is pertinent in the context of global educational reforms and growing recognition of the need to introduce patient safety into health care professionals’ curricula. The guide helps to advance patient safety education worldwide in five ways. First, it addresses the variety of opportunities and contexts in which health care educators teach, and provides practical recommendations to learning. Second, it recommends shared learning by students of different professions, thus enhancing student capacity to work together effectively in multidisciplinary teams. Third, it provides guidance on a range of teaching methods and pedagogical activities to ensure that students understand that patient safety is a practical science teaching them to act in evidence-based ways to reduce patient risk. Fourth, it encourages supportive teaching and learning, emphasizing the need to establishing teaching environments in which students feel comfortable to learn and practice patient safety. Finally, it helps educators incorporate patient safety topics across all areas of clinical practice. PMID:25285012

  15. Adherence to recommended electronic health record safety practices across eight health care organizations.

    PubMed

    Sittig, Dean F; Salimi, Mandana; Aiyagari, Ranjit; Banas, Colin; Clay, Brian; Gibson, Kathryn A; Goel, Ashutosh; Hines, Robert; Longhurst, Christopher A; Mishra, Vimal; Sirajuddin, Anwar M; Satterly, Tyler; Singh, Hardeep

    2018-04-26

    The Safety Assurance Factors for EHR Resilience (SAFER) guides were released in 2014 to help health systems conduct proactive risk assessment of electronic health record (EHR)- safety related policies, processes, procedures, and configurations. The extent to which SAFER recommendations are followed is unknown. We conducted risk assessments of 8 organizations of varying size, complexity, EHR, and EHR adoption maturity. Each organization self-assessed adherence to all 140 unique SAFER recommendations contained within 9 guides (range 10-29 recommendations per guide). In each guide, recommendations were organized into 3 broad domains: "safe health IT" (total 45 recommendations); "using health IT safely" (total 80 recommendations); and "monitoring health IT" (total 15 recommendations). The 8 sites fully implemented 25 of 140 (18%) SAFER recommendations. Mean number of "fully implemented" recommendations per guide ranged from 94% (System Interfaces-18 recommendations) to 63% (Clinical Communication-12 recommendations). Adherence was higher for "safe health IT" domain (82.1%) vs "using health IT safely" (72.5%) and "monitoring health IT" (67.3%). Despite availability of recommendations on how to improve use of EHRs, most recommendations were not fully implemented. New national policy initiatives are needed to stimulate implementation of these best practices.

  16. Applying the lessons of high risk industries to health care.

    PubMed

    Hudson, P

    2003-12-01

    High risk industries such as commercial aviation and the oil and gas industry have achieved exemplary safety performance. This paper reviews how they have managed to do that. The primary reasons are the positive attitudes towards safety and the operation of effective formal safety management systems. The safety culture provides an important explanation of why such organisations perform well. An evolutionary model of safety culture is provided in which there is a range of cultures from the pathological through the reactive to the calculative. Later, the proactive culture can evolve towards the generative organisation, an alternative description of the high reliability organisation. The current status of health care is reviewed, arguing that it has a much higher level of accidents and has a reactive culture, lagging behind both high risk industries studied in both attitude and systematic management of patient risks.

  17. Application of Smart Solid State Sensor Technology in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Dungan, L.K.; Makel, D.; Ward, B.; Androjna, D.

    2008-01-01

    Aerospace applications require a range of chemical sensing technologies to monitor conditions in both space vehicles and aircraft operations. One example is the monitoring of oxygen. For example, monitoring of ambient oxygen (O2) levels is critical to ensuring the health, safety, and performance of humans living and working in space. Oxygen sensors can also be incorporated in detection systems to determine if hazardous leaks are occurring in space propulsion systems and storage facilities. In aeronautic applications, O2 detection has been investigated for fuel tank monitoring. However, as noted elsewhere, O2 is not the only species of interest in aerospace applications with a wide range of species of interest being relevant to understand an environmental or vehicle condition. These include combustion products such as CO, HF, HCN, and HCl, which are related to both the presence of a fire and monitoring of post-fire clean-up operations. This paper discusses the development of an electrochemical cell platform based on a polymer electrolyte, NAFION, and a three-electrode configuration. The approach has been to mature this basic platform for a range of applications and to test this system, combined with "Lick and Stick" electronics, for its viability to monitor an environment related to astronaut crew health and safety applications with an understanding that a broad range of applications can be addressed with a core technology.

  18. Feedback from incident reporting: information and action to improve patient safety.

    PubMed

    Benn, J; Koutantji, M; Wallace, L; Spurgeon, P; Rejman, M; Healey, A; Vincent, C

    2009-02-01

    Effective feedback from incident reporting systems in healthcare is essential if organisations are to learn from failures in the delivery of care. Despite the wide-scale development and implementation of incident reporting in healthcare, studies in the UK suggest that information concerning system vulnerabilities could be better applied to improve operational safety within organisations. In this article, the findings and implications of research to identify forms of effective feedback from incident reporting are discussed, to promote best practices in this area. The research comprised a mixed methods review to investigate mechanisms of effective feedback for healthcare, drawing upon experience within established reporting programmes in high-risk industry and transport domains. Systematic searches of published literature were undertaken, and 23 case studies describing incident reporting programmes with feedback were identified for analysis from the international healthcare literature. Semistructured interviews were undertaken with 19 subject matter experts across a range of domains, including: civil aviation, maritime, energy, rail, offshore production and healthcare. In analysis, qualitative information from several sources was synthesised into practical requirements for developing effective feedback in healthcare. Both action and information feedback mechanisms were identified, serving safety awareness, improvement and motivational functions. The provision of actionable feedback that visibly improved systems was highlighted as important in promoting future reporting. Fifteen requirements for the design of effective feedback systems were identified, concerning: the role of leadership, the credibility and content of information, effective dissemination channels, the capacity for rapid action and the need for feedback at all levels of the organisation, among others. Above all, the safety-feedback cycle must be closed by ensuring that reporting, analysis and investigation result in timely corrective actions that effectively address vulnerabilities in existing work systems. Limited research evidence exists concerning the issue of effective forms of safety feedback within healthcare. Much valuable operational knowledge resides in safety management communities within high-risk industries. Multiple means of feeding back recommended actions and safety information may be usefully employed to promote safety awareness, improve clinical processes and promote future reporting. Further work is needed to establish best practices for feedback systems in healthcare that effectively close the safety loop.

  19. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the development of such requirements, useful guidelines are provided for test and evaluation of airborne laser systems including laboratory, ground and flight test activities.

  20. Naval Biodynamics Laboratory 1993 Command History

    DTIC Science & Technology

    1993-01-01

    position and alignment, camera optical calibration, photo target position, and standard anatomical coordinate systems based upon X-rays of each HRV...safety range. Before, during, and after each sled run, a physiological data acquisition system is used to collect and analyze physiological measurements ...experimental devices. It is also responsible for the configuring of field data measuring and acquisition systems for use aboard ships or at other field

  1. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  2. Design considerations for eye-safe single-aperture laser radars

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Volfson, L.

    2015-05-01

    The design considerations for low cost, shock resistant, compact and efficient laser radars and ranging systems are discussed. The reviewed approach with single optical aperture allows reducing the size, weight and power of the system. Additional design benefits include improved stability, reliability and rigidity of the overall system. The proposed modular architecture provides simplified way of varying the performance parameters of the range finder product family by selecting the sets of specific illumination and detection modules. The performance operation challenges are presented. The implementation of non-reciprocal optical elements is considered. The cross talk between illumination and detection channels for single aperture design is reviewed. 3D imaging capability for the ranging applications is considered. The simplified assembly and testing process for single aperture range finders that allows to mass produce the design are discussed. The eye safety of the range finder operation is summarized.

  3. Sample Return Primer and Handbook

    NASA Technical Reports Server (NTRS)

    Barrow, Kirk; Cheuvront, Allan; Faris, Grant; Hirst, Edward; Mainland, Nora; McGee, Michael; Szalai, Christine; Vellinga, Joseph; Wahl, Thomas; Williams, Kenneth; hide

    2007-01-01

    This three-part Sample Return Primer and Handbook provides a road map for conducting the terminal phase of a sample return mission. The main chapters describe element-by-element analyses and trade studies, as well as required operations plans, procedures, contingencies, interfaces, and corresponding documentation. Based on the experiences of the lead Stardust engineers, the topics include systems engineering (in particular range safety compliance), mission design and navigation, spacecraft hardware and entry, descent, and landing certification, flight and recovery operations, mission assurance and system safety, test and training, and the very important interactions with external support organizations (non-NASA tracking assets, landing site support, and science curation).

  4. Detection of errant laser beams

    NASA Astrophysics Data System (ADS)

    Taylor, Arthur F. D. S.; Edwards, Stanley A.; Barrett, J. A.; Bandle, Anthony M.

    1990-10-01

    The new generation of automated laser machine tools poses problems for those responsible for setting safety standards. While traditional safeguarding will frustrate full exploitation of this hybrid technology, wholesale abandonment of effective containment in favour of safety monitoring and control systems is unlikely to be acceptable. Long term, quantitative risk assessment will resolve this dilemma. Short term, guide lines will have to be derived from practical considerations of the laser facility design, materials, primary safety devices and procedures. Earlier risk assessments are reviewed relative to the emerging perspective of high average power laser installations. Aspects of extended beam delivery systems and equipment utilization and maintenance are examined to assess possible interaction with operational safety and in particular the potential to adversely influence errant laser beam occurrances (ELBO). To satisfy international safety standards for a laser enclosure which offers flexibility and is cost effective a detection system is described which continuously surveys the inside of the enclosure. Extensive trials have been carried out with high average power lasers (up to 10kW) where a range of engineering materials has been exposed to a laser beam. It is shown that the ratio of detection and shut down time to the burn through time can be an acceptable risk and thus indicate which materials will prove adequate.

  5. Interpreting MSHA citations through the lens of occupational health and safety management systems: investigating their impact on mine injuries and illnesses 2003-2010.

    PubMed

    Yorio, Patrick L; Willmer, Dana R; Haight, Joel M

    2014-08-01

    Since the late 1980s, the U.S. Department of Labor has considered regulating a systems approach to occupational health and safety management. Recently, a health and safety management systems (HSMS) standard has returned to the regulatory agenda of both the Occupational Safety and Health Administration (OSHA) and the Mine Safety and Health Administration (MSHA). Because a mandated standard has implications for both industry and regulating bodies alike, it is imperative to gain a greater understanding of the potential effects that an HSMS regulatory approach can have on establishment-level injuries and illnesses. Through the lens of MSHA's regulatory framework, we first explore how current enforcement activities align with HSMS elements. Using MSHA data for the years 2003-2010, we then analyze the relationship between various types of enforcement activities (e.g., total number of citations, total penalty amount, and HSMS-aligned citations) and mine reportable injuries. Our findings show that the reduction in mine reportable injuries predicted by increases in MSHA enforcement ranges from negligible to 18%. The results suggest that the type and focus of the enforcement activity may be more important for accident reduction than the total number of citations issued and the associated penalty amount. © 2014 Society for Risk Analysis.

  6. Survey of Collision Avoidance and Ranging Sensors for Mobile Robots.

    DTIC Science & Technology

    1988-03-01

    systems represent a potential safety problem in that the intense and often invisible beam can be an eye hazard. Furthermore, gas lasers require high ...sensor, or out of range. Conventional diffuse proximity detectors based on return signal intensity display high repeatability only when target...because the low transmission intensity of this infrared wavelength results in minimal return radiation. (The extremely cold detector produces a high

  7. The role of informal dimensions of safety in high-volume organisational routines: an ethnographic study of test results handling in UK general practice.

    PubMed

    Grant, Suzanne; Checkland, Katherine; Bowie, Paul; Guthrie, Bruce

    2017-04-27

    The handling of laboratory, imaging and other test results in UK general practice is a high-volume organisational routine that is both complex and high risk. Previous research in this area has focused on errors and harm, but a complementary approach is to better understand how safety is achieved in everyday practice. This paper ethnographically examines the role of informal dimensions of test results handling routines in the achievement of safety in UK general practice and how these findings can best be developed for wider application by policymakers and practitioners. Non-participant observation was conducted of high-volume organisational routines across eight UK general practices with diverse organisational characteristics. Sixty-two semi-structured interviews were also conducted with the key practice staff alongside the analysis of relevant documents. While formal results handling routines were described similarly across the eight study practices, the everyday structure of how the routine should be enacted in practice was informally understood. Results handling safety took a range of local forms depending on how different aspects of safety were prioritised, with practices varying in terms of how they balanced thoroughness (i.e. ensuring the high-quality management of results by the most appropriate clinician) and efficiency (i.e. timely management of results) depending on a range of factors (e.g. practice history, team composition). Each approach adopted created its own potential risks, with demands for thoroughness reducing productivity and demands for efficiency reducing handling quality. Irrespective of the practice-level approach adopted, staff also regularly varied what they did for individual patients depending on the specific context (e.g. type of result, patient circumstances). General practices variably prioritised a legitimate range of results handling safety processes and outcomes, each with differing strengths and trade-offs. Future safety improvement interventions should focus on how to maximise practice-level knowledge and understanding of the range of context-specific approaches available and the safeties and risks inherent in each within the context of wider complex system conditions and interactions. This in turn has the potential to inform new kinds of proactive, contextually appropriate approaches to intervention development and implementation focusing on the enhanced deliberation of the safety of existing high-volume routines.

  8. Liquid Hydrogen Target Experience at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisend, J.G.; Boyce, R.; Candia, A.

    2005-08-29

    Liquid hydrogen targets have played a vital role in the physics program at SLAC for the past 40 years. These targets have ranged from small ''beer can'' targets to the 1.5 m long E158 target that was capable of absorbing up to 800 W without any significant density changes. Successful use of these targets has required the development of thin wall designs, liquid hydrogen pumps, remote positioning and alignment systems, safety systems, control and data acquisition systems, cryogenic cooling circuits and heat exchangers. Detailed operating procedures have been created to ensure safety and operational reliability. This paper surveys the evolutionmore » of liquid hydrogen targets at SLAC and discusses advances in several of the enabling technologies that made these targets possible.« less

  9. Surveying Florida MPO readiness to incorporate innovative technologies into long range transportation plans : draft final report.

    DOT National Transportation Integrated Search

    2016-08-01

    There is optimism that Automated Vehicles (AVs) can improve the safety of the transportation system, : reduce congestion, increase reliability, offer improved mobility solutions to all segments of the population : including the transportation-disadva...

  10. Vehicle infrastructure integration (VII) based road-condition warning system for highway collision prevention.

    DOT National Transportation Integrated Search

    2009-05-01

    As a major ITS initiative, the Vehicle Infrastructure Integration (VII) program is to revolutionize : transportation by creating an enabling communication infrastructure that will open up a wide range of : safety applications. The road-condition warn...

  11. Functionality of hospital information systems: results from a survey of quality directors at Turkish hospitals.

    PubMed

    Saluvan, Mehmet; Ozonoff, Al

    2018-01-12

    We aimed to determine availability of core Hospital Information Systems (HIS) functions implemented in Turkish hospitals and the perceived importance of these functions on quality and patient safety. We surveyed quality directors (QDs) at civilian hospitals in the nation of Turkey. Data were collected via web survey using an instrument with 50 items describing core functionality of HIS. We calculated mean availability of each function, mean and median values of perceived impact on quality, and we investigated the relationship between availability and perceived importance. We received responses from 31% of eligible institutions, representing all major geographic regions of Turkey. Mean availability of 50 HIS functions was 65.6%, ranging from 19.6% to 97.4%. Mean importance score was 7.87 (on a 9-point scale) ranging from 7.13 to 8.41. Functions related to result management (89.3%) and decision support systems (52.2%) had the highest and lowest reported availability respectively. Availability and perceived importance were moderately correlated (r = 0.52). QDs report high importance of the HIS functions surveyed as they relate to quality and patient safety. Availability and perceived importance of HIS functions are generally correlated, with some interesting exceptions. These findings may inform future investments and guide policy changes within the Turkish healthcare system. Financial incentives, regulations around certified HIS, revisions to accreditation manuals, and training interventions are all policies which will help integrate HIS functions to support quality and patient safety in Turkish hospitals.

  12. Phenomenological Studies on Sodium for CSP Applications: A Safety Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armijo, Kenneth Miguel; Andraka, Charles E.

    Sodium as a heat transfer fluid (HTF) can achieve temperatures above 700°C to improve power cycle performance for reducing large infrastructure costs of high-temperature systems. Current concentrating solar power (CSP) sensible HTF’s (e.g. air, salts) have poor thermal conductivity, and thus low heat transfer capabilities, requiring a large receiver. The high thermal conductivity of sodium has demonstrated high heat transfer rates on dish and towers systems, which allow a reduction in receiver area by a factor of two to four, reducing re-radiation and convection losses and cost by a similar factor. Sodium produces saturated vapor at pressures suitable for transportmore » starting at 600°C and reaches one atmosphere at 870°C, providing a wide range of suitable latent operating conditions that match proposed high temperature, isothermal input power cycles. This advantage could increase the receiver and system efficiency while lowering the cost of CSP tower systems. Although there are a number of desirable thermal performance advantages associated with sodium, its propensity to rapidly oxidize presents safety challenges. This investigation presents a literature review that captures historical operations/handling lessons for advanced sodium systems, and the current state-of-knowledge related to sodium combustion behavior. Technical and operational solutions addressing sodium safety and applications in CSP will be discussed, including unique safety hazards and advantages using latent sodium. Operation and maintenance experience from the nuclear industry with sensible and latent systems will also be discussed in the context of safety challenges and risk mitigation solutions.« less

  13. Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor

    NASA Astrophysics Data System (ADS)

    Jing, Joseph C.; Chou, Lidek; Su, Erica; Wong, Brian J. F.; Chen, Zhongping

    2016-12-01

    The upper airway is a complex tissue structure that is prone to collapse. Current methods for studying airway obstruction are inadequate in safety, cost, or availability, such as CT or MRI, or only provide localized qualitative information such as flexible endoscopy. Long range optical coherence tomography (OCT) has been used to visualize the human airway in vivo, however the limited imaging range has prevented full delineation of the various shapes and sizes of the lumen. We present a new long range OCT system that integrates high speed imaging with a real-time position tracker to allow for the acquisition of an accurate 3D anatomical structure in vivo. The new system can achieve an imaging range of 30 mm at a frame rate of 200 Hz. The system is capable of generating a rapid and complete visualization and quantification of the airway, which can then be used in computational simulations to determine obstruction sites.

  14. Individual differences in BEV drivers' range stress during first encounter of a critical range situation.

    PubMed

    Franke, Thomas; Rauh, Nadine; Krems, Josef F

    2016-11-01

    It is commonly held that range anxiety, in the form of experienced range stress, constitutes a usage barrier, particularly during the early period of battery electric vehicle (BEV) usage. To better understand factors that play a role in range stress during this critical period of adaptation to limited-range mobility, we examined individual differences in experienced range stress in the context of a critical range situation. In a field experiment, 74 participants drove a BEV on a 94-km round trip, which was tailored to lead to a critical range situation (i.e., small available range safety buffer). Higher route familiarity, trust in the range estimation system, system knowledge, subjective range competence, and internal control beliefs in dealing with technology were clearly related to lower experienced range stress; emotional stability (i.e., low neuroticism) was partly related to lower range stress. These results can inform strategies aimed at reducing range stress during early BEV usage, as well as contribute to a better understanding of factors that drive user experience in low-resource systems, which is a key topic in the field of green ergonomics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Using tablet technology in operational radiation safety applications.

    PubMed

    Phillips, Andrew; Linsley, Mark; Houser, Mike

    2013-11-01

    Tablet computers have become a mainstream product in today's personal, educational, and business worlds. These tablets offer computing power, storage, and a wide range of available products to meet nearly every user need. To take advantage of this new computing technology, a system was developed for the Apple iPad (Apple Inc. 1 Infinite Loop Cupertino, CA 95014) to perform health and safety inspections in the field using editable PDFs and saving them to a database while keeping the process easy and paperless.

  16. Green Propellant Landing Demonstration at U.S. Range

    NASA Technical Reports Server (NTRS)

    Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.

    2016-01-01

    The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation in order to investigate the handling and process safety variances in project resources between LMP-103S and typical in-space propellants. The GPLD risk reduction operation proved successful for many reasons including handling the green propellant at a U.S. Range, loading and pressurizing a flight-like tank, expelling the propellant, measuring the tank expulsion efficiency, and most significantly, GSFC propulsion personnel's new insight into the LMP-103S propellant handling details.

  17. Green Propellant Loading Demonstration at U.S. Range

    NASA Technical Reports Server (NTRS)

    Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.

    2016-01-01

    The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation in order to investigate the handling and process safety variances in project resources between LMP-103S and typical in-space propellants. The GPLD risk reduction operation proved successful for many reasons including handling the green propellant at a U.S. Range, loading and pressurizing a flight-like tank, expelling the propellant, measuring the tank expulsion efficiency, and most significantly, GSFC propulsion personnel's new insight into the LMP-103S propellant handling details.

  18. Polar bear attacks on humans: Implications of a changing climate

    USGS Publications Warehouse

    Wilder, James; Vongraven, Dag; Atwood, Todd C.; Hansen, Bob; Jessen, Amalie; Kochnev, Anatoly A.; York, Geoff; Vallender, Rachel; Hedman, Daryll; Gibbons, Melissa

    2017-01-01

    Understanding causes of polar bear (Ursus maritimus) attacks on humans is critical to ensuring both human safety and polar bear conservation. Although considerable attention has been focused on understanding black (U. americanus) and grizzly (U. arctos) bear conflicts with humans, there have been few attempts to systematically collect, analyze, and interpret available information on human-polar bear conflicts across their range. To help fill this knowledge gap, a database was developed (Polar Bear-Human Information Management System [PBHIMS]) to facilitate the range-wide collection and analysis of human-polar bear conflict data. We populated the PBHIMS with data collected throughout the polar bear range, analyzed polar bear attacks on people, and found that reported attacks have been extremely rare. From 1870–2014, we documented 73 attacks by wild polar bears, distributed among the 5 polar bear Range States (Canada, Greenland, Norway, Russia, and United States), which resulted in 20 human fatalities and 63 human injuries. We found that nutritionally stressed adult male polar bears were the most likely to pose threats to human safety. Attacks by adult females were rare, and most were attributed to defense of cubs. We judged that bears acted as a predator in most attacks, and that nearly all attacks involved ≤2 people. Increased concern for both human and bear safety is warranted in light of predictions of increased numbers of nutritionally stressed bears spending longer amounts of time on land near people because of the loss of their sea ice habitat. Improved conflict investigation is needed to collect accurate and relevant data and communicate accurate bear safety messages and mitigation strategies to the public. With better information, people can take proactive measures in polar bear habitat to ensure their safety and prevent conflicts with polar bears. This work represents an important first step towards improving our understanding of factors influencing human-polar bear conflicts. Continued collection and analysis of range-wide data on interactions and conflicts will help increase human safety and ensure the conservation of polar bears for future generations.

  19. Quantitative evolutionary design

    PubMed Central

    Diamond, Jared

    2002-01-01

    The field of quantitative evolutionary design uses evolutionary reasoning (in terms of natural selection and ultimate causation) to understand the magnitudes of biological reserve capacities, i.e. excesses of capacities over natural loads. Ratios of capacities to loads, defined as safety factors, fall in the range 1.2-10 for most engineered and biological components, even though engineered safety factors are specified intentionally by humans while biological safety factors arise through natural selection. Familiar examples of engineered safety factors include those of buildings, bridges and elevators (lifts), while biological examples include factors of bones and other structural elements, of enzymes and transporters, and of organ metabolic performances. Safety factors serve to minimize the overlap zone (resulting in performance failure) between the low tail of capacity distributions and the high tail of load distributions. Safety factors increase with coefficients of variation of load and capacity, with capacity deterioration with time, and with cost of failure, and decrease with costs of initial construction, maintenance, operation, and opportunity. Adaptive regulation of many biological systems involves capacity increases with increasing load; several quantitative examples suggest sublinear increases, such that safety factors decrease towards 1.0. Unsolved questions include safety factors of series systems, parallel or branched pathways, elements with multiple functions, enzyme reaction chains, and equilibrium enzymes. The modest sizes of safety factors imply the existence of costs that penalize excess capacities. Those costs are likely to involve wasted energy or space for large or expensive components, but opportunity costs of wasted space at the molecular level for minor components. PMID:12122135

  20. 2008 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Lamoreaux, Richard W.

    2008-01-01

    Welcome to the 2008 edition of the NASA Range Safety Annual Report. Funded by NASA Headquarters, this report provides a NASA Range Safety overview for current and potential range users. This year, along with full length articles concerning various subject areas, we have provided updates to standard subjects with links back to the 2007 original article. Additionally, we present summaries from the various NASA Range Safety Program activities that took place throughout the year, as well as information on several special projects that may have a profound impact on the way we will do business in the future. The sections include a program overview and 2008 highlights of Range Safety Training; Range Safety Policy; Independent Assessments and Common Risk Analysis Tools Development; Support to Program Operations at all ranges conducting NASA launch operations; a continuing overview of emerging Range Safety-related technologies; Special Interests Items that include recent changes in the ELV Payload Safety Program and the VAS explosive siting study; and status reports from all of the NASA Centers that have Range Safety responsibilities. As is the case each year, contributors to this report are too numerous to mention, but we thank individuals from the NASA Centers, the Department of Defense, and civilian organizations for their contributions. We have made a great effort to include the most current information available. We recommend that this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. This is the third year we have utilized this web-based format for the annual report. We continually receive positive feedback on the web-based edition, and we hope you enjoy this year's product as well. It has been a very busy and productive year on many fronts as you will note as you review this report. Thank you to everyone who contributed to make this year a successful one, and I look forward to working with all of you in the years to come.

  1. Aligning Food Systems Policies to Advance Public Health

    PubMed Central

    Muller, Mark; Tagtow, Angie; Roberts, Susan L.; MacDougall, Erin

    2009-01-01

    The involvement of public health professionals in food and agricultural policy provides tremendous opportunities for advancing the public's health. It is particularly challenging, however, for professionals to understand and consider the numerous policy drivers that impact the food system, which range from agricultural commodity policies to local food safety ordinances. Confronted with this complexity in the food system, policy advocates often focus on narrow objectives with disregard for the larger system. This commentary contends that, in order to be most effective, public health professionals need to consider the full range of interdependent policies that affect the system. Food policy councils have proven to be an effective tool, particularly at the local and state level, for developing comprehensive food systems policies that can improve public health. PMID:23144671

  2. Exploring the roots of unintended safety threats associated with the introduction of hospital ePrescribing systems and candidate avoidance and/or mitigation strategies: a qualitative study.

    PubMed

    Mozaffar, Hajar; Cresswell, Kathrin M; Williams, Robin; Bates, David W; Sheikh, Aziz

    2017-09-01

    Hospital electronic prescribing (ePrescribing) systems offer a wide range of patient safety benefits. Like other hospital health information technology interventions, however, they may also introduce new areas of risk. Despite recent advances in identifying these risks, the development and use of ePrescribing systems is still leading to numerous unintended consequences, which may undermine improvement and threaten patient safety. These negative consequences need to be analysed in the design, implementation and use of these systems. We therefore aimed to understand the roots of these reported threats and identify candidate avoidance/mitigation strategies. We analysed a longitudinal, qualitative study of the implementation and adoption of ePrescribing systems in six English hospitals, each being conceptualised as a case study. Data included semistructured interviews, observations of implementation meetings and system use, and a collection of relevant documents. We analysed data first within and then across the case studies. Our dataset included 214 interviews, 24 observations and 18 documents. We developed a taxonomy of factors underlying unintended safety threats in: (1) suboptimal system design, including lack of support for complex medication administration regimens, lack of effective integration between different systems, and lack of effective automated decision support tools; (2) inappropriate use of systems-in particular, too much reliance on the system and introduction of workarounds; and (3) suboptimal implementation strategies resulting from partial roll-outs/dual systems and lack of appropriate training. We have identified a number of system and organisational strategies that could potentially avoid or reduce these risks. Imperfections in the design, implementation and use of ePrescribing systems can give rise to unintended consequences, including safety threats. Hospitals and suppliers need to implement short- and long-term strategies in terms of the technology and organisation to minimise the unintended safety risks. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Satellite-aided coastal zone monitoring and vessel traffic system

    NASA Technical Reports Server (NTRS)

    Baker, J. L.

    1981-01-01

    The development and demonstration of a coastal zone monitoring and vessel traffic system is described. This technique uses a LORAN-C navigational system and relays signals via the ATS-3 satellite to a computer driven color video display for real time control. Multi-use applications of the system to search and rescue operations, coastal zone management and marine safety are described. It is emphasized that among the advantages of the system are: its unlimited range; compatibility with existing navigation systems; and relatively inexpensive cost.

  4. Thulium heat source IR D Project 91-031

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, C.E.; Kammeraad, J.E.; Newman, J.G.

    1991-01-01

    The goal of the Thulium Heat Source study is to determine the performance capability and evaluate the safety and environmental aspects of a thulium-170 heat source. Thulium-170 has several attractive features, including the fact that it decays to a stable, chemically innocuous isotope in a relatively short time. A longer-range goal is to attract government funding for the development, fabrication, and demonstration testing in an Autonomous Underwater Vehicle (AUV) of one or more thulium isotope power (TIP) prototype systems. The approach is to study parametrically the performance of thulium-170 heat source designs in the power range of 5-50 kW{sub th}.more » At least three heat source designs will be characterized in this power range to assess their performance, mass, and volume. The authors will determine shielding requirements, and consider the safety and environmental aspects of their use.« less

  5. Safety improvements through Intelligent Transport Systems: a South African case study based on microscopic simulation modelling.

    PubMed

    Vanderschuren, Marianne

    2008-03-01

    Intelligent Transport Systems (ITS) can facilitate the delivery of a wide range of policy objectives. There are six main objectives/benefits identified in the international literature: Safety (reduction of (potential) crashes), mobility (reduction of delays and travel times), efficiency (optimise the use of existing infrastructure), productivity (cost saving), energy/environment and customer satisfaction [Mitretek Systems, 2001. Intelligent Transport System Benefits: 2001 update, Under Contract to the Federal Highway Administration, US Department of Transportation, Washington, DC, US]. In the South African context, there is an interest for measures that can reduce (potential) crashes. In South Africa the number of year on year traffic related fatalities is still increasing. In 2005 the number of fatalities was 15393 (from 14135 in 2004) while the estimated costs for the same period increased from R8.89-billion to R9.99-billion [RTMC, 2007. Interim Road Traffic and Fatal Crash Report 2006, Road Traffic Management Corporation, Pretoria, SA]. Given the extent of the road safety problem and the potential benefits of ITS, the need for further research is apparent. A study with regards to the potential of different types of models (macroscopic, mesoscopic and miscroscopic simulation models) led to the use of Paramics. Two corridors and three types of ITS measures were investigated and safety benefits were estimated.

  6. Defining the methodological challenges and opportunities for an effective science of sociotechnical systems and safety

    PubMed Central

    Waterson, Patrick; Robertson, Michelle M.; Cooke, Nancy J.; Militello, Laura; Roth, Emilie; Stanton, Neville A.

    2015-01-01

    An important part of the application of sociotechnical systems theory (STS) is the development of methods, tools and techniques to assess human factors and ergonomics workplace requirements. We focus in this paper on describing and evaluating current STS methods for workplace safety, as well as outlining a set of six case studies covering the application of these methods to a range of safety contexts. We also describe an evaluation of the methods in terms of ratings of their ability to address a set of theoretical and practical questions (e.g. the degree to which methods capture static/dynamic aspects of tasks and interactions between system levels). The outcomes from the evaluation highlight a set of gaps relating to the coverage and applicability of current methods for STS and safety (e.g. coverage of external influences on system functioning; method usability). The final sections of the paper describe a set of future challenges, as well as some practical suggestions for tackling these. Practitioner Summary: We provide an up-to-date review of STS methods, a set of case studies illustrating their use and an evaluation of their strengths and weaknesses. The paper concludes with a ‘roadmap’ for future work. PMID:25832121

  7. Applying the lessons of high risk industries to health care

    PubMed Central

    Hudson, P

    2003-01-01

    High risk industries such as commercial aviation and the oil and gas industry have achieved exemplary safety performance. This paper reviews how they have managed to do that. The primary reasons are the positive attitudes towards safety and the operation of effective formal safety management systems. The safety culture provides an important explanation of why such organisations perform well. An evolutionary model of safety culture is provided in which there is a range of cultures from the pathological through the reactive to the calculative. Later, the proactive culture can evolve towards the generative organisation, an alternative description of the high reliability organisation. The current status of health care is reviewed, arguing that it has a much higher level of accidents and has a reactive culture, lagging behind both high risk industries studied in both attitude and systematic management of patient risks. PMID:14645741

  8. Safety and health in biomass production, transportation, and storage: a commentary based on the biomass and biofuels session at the 2013 North American Agricultural Safety Summit.

    PubMed

    Yoder, Aaron M; Schwab, Charles; Gunderson, Paul; Murphy, Dennis

    2014-01-01

    There is significant interest in biomass production ranging from government agencies to the private sector, both inside and outside of the traditional production agricultural setting. This interest has led to an increase in the development and production of biomass crops. Much of this effort has focused on specific segments of the process, and more specifically on the mechanics of these individual segments. From a review of scientific literature, it is seen that little effort has been put into identifying, classifying and preventing safety hazards in on-farm biomass production systems. This commentary describes the current status of the knowledge pertaining to health and safety factors of biomass production and storage in the US and identifies areas of standards development that the biomass industry needs from the agricultural safety and health community.

  9. Taking up national safety alerts to improve patient safety in hospitals: The perspective of healthcare quality and risk managers.

    PubMed

    Pfeiffer, Yvonne; Schwappach, David

    2016-01-01

    National safety alert systems publish relevant information to improve patient safety in hospitals. However, the information has to be transformed into local action to have an effect on patient safety. We studied three research questions: How do Swiss healthcare quality and risk managers (qm/rm(1)) see their own role in learning from safety alerts issued by the Swiss national voluntary reporting and analysis system? What are their attitudes towards and evaluations of the alerts, and which types of improvement actions were fostered by the safety alerts? A survey was developed and applied to Swiss healthcare risk and quality managers, with a response rate of 39 % (n=116). Descriptive statistics are presented. The qm/rm disseminate and communicate with a broad variety of professional groups about the alerts. While most respondents felt that they should know the alerts and their contents, only a part of them felt responsible for driving organizational change based on the recommendations. However, most respondents used safety alerts to back up their own patient safety goals. The alerts were evaluated positively on various dimensions such as usefulness and were considered as standards of good practice by the majority of the respondents. A range of organizational responses was applied, with disseminating information being the most common. An active role is related to using safety alerts for backing up own patient safety goals. To support an active role of qm/rm in their hospital's learning from safety alerts, appropriate organizational structures should be developed. Furthermore, they could be given special information or training to act as an information hub on the issues discussed in the alerts. Copyright © 2016. Published by Elsevier GmbH.

  10. The Need to Apply Medical Device Informatics in Developing Standards for Safe Interoperable Medical Systems.

    PubMed

    Weininger, Sandy; Jaffe, Michael B; Goldman, Julian M

    2017-01-01

    Medical device and health information technology systems are increasingly interdependent with users demanding increased interoperability. Related safety standards must be developed taking into account these systems' perspective. In this article, we describe the current development of medical device standards and the need for these standards to address medical device informatics. Medical device information should be gathered from a broad range of clinical scenarios to lay the foundation for safe medical device interoperability. Five clinical examples show how medical device informatics principles, if applied in the development of medical device standards, could help facilitate the development of safe interoperable medical device systems. These examples illustrate the clinical implications of the failure to capture important signals and device attributes. We provide recommendations relating to the coordination between historically separate standards development groups, some of which focus on safety and effectiveness and others focus on health informatics. We identify the need for a shared understanding among stakeholders and describe organizational structures to promote cooperation such that device-to-device interactions and related safety information are considered during standards development.

  11. The Need to Apply Medical Device Informatics in Developing Standards for Safe Interoperable Medical Systems

    PubMed Central

    Weininger, Sandy; Jaffe, Michael B.; Goldman, Julian M

    2016-01-01

    Medical device and health information technology systems are increasingly interdependent with users demanding increased interoperability. Related safety standards must be developed taking into account this systems perspective. In this article we describe the current development of medical device standards and the need for these standards to address medical device informatics. Medical device information should be gathered from a broad range of clinical scenarios to lay the foundation for safe medical device interoperability. Five clinical examples show how medical device informatics principles, if applied in the development of medical device standards, could help facilitate the development of safe interoperable medical device systems. These examples illustrate the clinical implications of the failure to capture important signals and device attributes. We provide recommendations relating to the coordination between historically separate standards development groups; some which focus on safety and effectiveness, and others that focus on health informatics. We identify the need for a shared understanding among stakeholders and describe organizational structures to promote cooperation such that device-to-device interactions and related safety information are considered during standards development. PMID:27584685

  12. Electronic nicotine delivery systems: a research agenda.

    PubMed

    Etter, Jean-François; Bullen, Chris; Flouris, Andreas D; Laugesen, Murray; Eissenberg, Thomas

    2011-05-01

    Electronic nicotine delivery systems (ENDS, also called electronic cigarettes or e-cigarettes) are marketed to deliver nicotine and sometimes other substances by inhalation. Some tobacco smokers report that they used ENDS as a smoking cessation aid. Whether sold as tobacco products or drug delivery devices, these products need to be regulated, and thus far, across countries and states, there has been a wide range of regulatory responses ranging from no regulation to complete bans. The empirical basis for these regulatory decisions is uncertain, and more research on ENDS must be conducted in order to ensure that the decisions of regulators, health care providers and consumers are based on science. However, there is a dearth of scientific research on these products, including safety, abuse liability and efficacy for smoking cessation. The authors, who cover a broad range of scientific expertise, from basic science to public health, suggest research priorities for non-clinical, clinical and public health studies. They conclude that the first priority is to characterize the safety profile of these products, including in long-term users. If these products are demonstrated to be safe, their efficacy as smoking cessation aids should then be tested in appropriately designed trials. Until these studies are conducted, continued marketing constitutes an uncontrolled experiment and the primary outcome measure, poorly assessed, is user health. Potentially, this research effort, contributing to the safety and efficacy of new smoking cessation devices and to the withdrawal of dangerous products, could save many lives.

  13. Electronic nicotine delivery systems: a research agenda

    PubMed Central

    Etter, Jean-François; Bullen, Chris; Flouris, Andreas D; Laugesen, Murray; Eissenberg, Thomas

    2011-01-01

    Electronic nicotine delivery systems (ENDS, also called electronic cigarettes or e-cigarettes) are marketed to deliver nicotine and sometimes other substances by inhalation. Some tobacco smokers report that they used ENDS as a smoking cessation aid. Whether sold as tobacco products or drug delivery devices, these products need to be regulated, and thus far, across countries and states, there has been a wide range of regulatory responses ranging from no regulation to complete bans. The empirical basis for these regulatory decisions is uncertain, and more research on ENDS must be conducted in order to ensure that the decisions of regulators, health care providers and consumers are based on science. However, there is a dearth of scientific research on these products, including safety, abuse liability and efficacy for smoking cessation. The authors, who cover a broad range of scientific expertise, from basic science to public health, suggest research priorities for non-clinical, clinical and public health studies. They conclude that the first priority is to characterize the safety profile of these products, including in long-term users. If these products are demonstrated to be safe, their efficacy as smoking cessation aids should then be tested in appropriately designed trials. Until these studies are conducted, continued marketing constitutes an uncontrolled experiment and the primary outcome measure, poorly assessed, is user health. Potentially, this research effort, contributing to the safety and efficacy of new smoking cessation devices and to the withdrawal of dangerous products, could save many lives. PMID:21415064

  14. A cooperative positioning algorithm for DSRC enabled vehicular networks

    NASA Astrophysics Data System (ADS)

    Efatmaneshnik, M.; Kealy, A.; Alam, N.; Dempster, A. G.

    2011-12-01

    Many of the safety related applications that can be facilitated by Dedicated Short Range Communications (DSRC), such as vehicle proximity warnings, automated braking (e.g. at level crossings), speed advisories, pedestrian alerts etc., rely on a robust vehicle positioning capability such as that provided by a Global Navigation Satellite System (GNSS). Vehicles in remote areas, entering tunnels, high rise areas or any high multipath/ weak signal environment will challenge the integrity of GNSS position solutions, and ultimately the safety application it underpins. To address this challenge, this paper presents an innovative application of Cooperative Positioning techniques within vehicular networks. CP refers to any method of integrating measurements from different positioning systems and sensors in order to improve the overall quality (accuracy and reliability) of the final position solution. This paper investigates the potential of the DSRC infrastructure itself to provide an inter-vehicular ranging signal that can be used as a measurement within the CP algorithm. In this paper, time-based techniques of ranging are introduced and bandwidth requirements are investigated and presented. The robustness of the CP algorithm to inter-vehicle connection failure as well as GNSS dropouts is also demonstrated using simulation studies. Finally, the performance of the Constrained Kalman Filter used to integrate GNSS measurements with DSRC derived range estimates within a typical VANET is described and evaluated.

  15. Evaluation of the safety and durability of low-cost nonprogrammable electric powered wheelchairs.

    PubMed

    Pearlman, Jonathan L; Cooper, Rory A; Karnawat, Jaideep; Cooper, Rosemarie; Boninger, Michael L

    2005-12-01

    To evaluate whether a selection of low-cost, nonprogrammable electric-powered wheelchairs (EPWs) meets the American National Standards Institute (ANSI)/Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Wheelchair Standards requirements. Objective comparison tests of various aspects of power wheelchair design and performance of 4 EPW types. Three of each of the following EPWs: Pride Mobility Jet 10 (Pride), Invacare Pronto M50 (Invacare), Electric Mobility Rascal 250PC (Electric Mobility), and the Golden Technologies Alanté GP-201-F (Golden). Rehabilitation engineering research center. Not applicable. Static tipping angle; dynamic tipping score; braking distance; energy consumption; climatic conditioning; power and control systems integrity and safety; and static, impact, and fatigue life (equivalent cycles). Static tipping angle and dynamic tipping score were significantly different across manufacturers for each tipping direction (range, 6.6 degrees-35.6 degrees). Braking distances were significantly different across manufacturers (range, 7.4-117.3 cm). Significant differences among groups were found with analysis of variance (ANOVA). Energy consumption results show that all EPWs can travel over 17 km before the battery is expected to be exhausted under idealized conditions (range, 18.2-32.0 km). Significant differences among groups were found with ANOVA. All EPWs passed the climatic conditioning tests. Several adverse responses were found during the power and control systems testing, including motors smoking during the stalling condition (Electric Mobility), charger safety issues (Electric Mobility, Invacare), and controller failures (Golden). All EPWs passed static and impact testing; 9 of 12 failed fatigue testing (3 Invacare, 3 Golden, 1 Electric Mobility, 2 Pride). Equivalent cycles did not differ statistically across manufacturers (range, 9759-824,628 cycles). Large variability in the results, especially with respect to static tipping, power and control system failures, and fatigue life suggest design improvements must be made to make these low-cost, nonprogrammable EPWs safe and reliable for the consumer. Based on our results, these EPWs do not, in general, meet the ANSI/RESNA Wheelchair Standards requirements.

  16. Overview of the NASA Wallops Flight Facility Mobile Range Control System

    NASA Technical Reports Server (NTRS)

    Davis, Rodney A.; Semancik, Susan K.; Smith, Donna C.; Stancil, Robert K.

    1999-01-01

    The NASA GSFC's Wallops Flight Facility (WFF) Mobile Range Control System (MRCS) is based on the functionality of the WFF Range Control Center at Wallops Island, Virginia. The MRCS provides real time instantaneous impact predictions, real time flight performance data, and other critical information needed by mission and range safety personnel in support of range operations at remote launch sites. The MRCS integrates a PC telemetry processing system (TELPro), a PC radar processing system (PCDQS), multiple Silicon Graphics display workstations (IRIS), and communication links within a mobile van for worldwide support of orbital, suborbital, and aircraft missions. This paper describes the MRCS configuration; the TELPro's capability to provide single/dual telemetry tracking and vehicle state data processing; the PCDQS' capability to provide real time positional data and instantaneous impact prediction for up to 8 data sources; and the IRIS' user interface for setup/display options. With portability, PC-based data processing, high resolution graphics, and flexible multiple source support, the MRCS system is proving to be responsive to the ever-changing needs of a variety of increasingly complex missions.

  17. Calculation of the state of safety (SOS) for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Cabrera-Castillo, Eliud; Niedermeier, Florian; Jossen, Andreas

    2016-08-01

    As lithium ion batteries are adopted in electric vehicles and stationary storage applications, the higher number of cells and greater energy densities increases the risks of possible catastrophic events. This paper shows a definition and method to calculate the state of safety of an energy storage system based on the concept that safety is inversely proportional to the concept of abuse. As the latter increases, the former decreases to zero. Previous descriptions in the literature are qualitative in nature but don't provide a numerical quantification of the safety of a storage system. In the case of battery testing standards, they only define pass or fail criteria. The proposed state uses the same range as other commonly used state quantities like the SOC, SOH, and SOF, taking values between 0, completely unsafe, and 1, completely safe. The developed function combines the effects of an arbitrary number of subfunctions, each of which describes a particular case of abuse, in one or more variables such as voltage, temperature, or mechanical deformation, which can be detected by sensors or estimated by other techniques. The state of safety definition can be made more general by adding new subfunctions, or by refining the existing ones.

  18. Patient-reported experiences of patient safety incidents need to be utilized more systematically in promoting safe care.

    PubMed

    Sahlström, Merja; Partanen, Pirjo; Turunen, Hannele

    2018-04-16

    To analyze patient safety incidents (PSIs) reported by patients and their use in Finnish healthcare organizations. Cross-sectional study. About 15 Finnish healthcare organizations ranging from specialized hospital care to home care, outpatient and inpatient clinics, and geographically diverse areas of Finland. The study population included all Finnish patients who had voluntarily reported PSI via web-based system in 2009-15. Quantitative analysis of patients' safety reports, inductive content analysis of patients' suggestions to prevent the reoccurrence incidents and how those suggestions were used in healthcare organizations. Patients reported 656 PSIs, most of which were classified by the healthcare organizations' analysts as problems associated with information flow (32.6%) and medications (18%). Most of the incidents (65%) did not cause any harm to patients. About 76% of the reports suggested ways to prevent reoccurrence of PSIs, most of which were feasible, system-based amendments of processes for reviewing or administering treatment, anticipating risks or improving diligence in patient care. However, only 6% had led to practical implementation of corrective actions in the healthcare organizations. The results indicate that patients report diverse PSIs and suggest practical systems-based solutions to prevent their reoccurrence. However, patients' reports rarely lead to corrective actions documented in the registering system, indicating that there is substantial scope to improve utilization of patients' reports. There is also a need for strong patient safety management, including willingness and commitment of HCPs and leaders to learn from safety incidents.

  19. Phenomenological studies on sodium for CSP applications: A safety review

    NASA Astrophysics Data System (ADS)

    Armijo, Kenneth M.; Andraka, Charles E.

    2016-05-01

    Sodium Heat transfer fluids (HTF) such as sodium, can achieve temperatures above 700°C to obtain power cycle performance improvements for reducing large infrastructure costs of high-temperature systems. Current concentrating solar power (CSP) sensible HTF's (e.g. air, salts) have poor thermal conductivity, and thus low heat transfer capabilities, requiring a large receiver. The high thermal conductivity of sodium has demonstrated high heat transfer rates on dish and towers systems, which allow a reduction in receiver area by a factor of two to four, reducing re-radiation and convection losses and cost by a similar factor. Sodium produces saturated vapor at pressures suitable for transport starting at 600°C and reaches one atmosphere at 870°C, providing a wide range of suitable operating conditions that match proposed high temperature, isothermal power cycles. This advantage could increase the efficiency while lowering the cost of CSP tower systems. Although there are a number of desirable thermal performance advantages associated with sensible sodium, its propensity to rapidly oxidize presents safety challenges. This investigation presents a literature review that captures historical operations/handling lessons for advanced sodium receiver designs, and the current state-of-knowledge related to sodium combustion behavior. Technical and operational solutions addressing sodium safety and applications in CSP will be discussed, including unique safety hazards and advantages using latent sodium. Lessons obtained from the nuclear industry with sensible and latent systems will also be discussed in the context of safety challenges and risk mitigation solutions.

  20. What is system control?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirst, E.; Kirby, B.

    1999-11-01

    Just as the aviation industry needs air-traffic controllers to manage the movement of airplanes for safety and commerce, so too, the electricity industry requires system operators. The electrical-system-control functions encompass a range of activities that support commercial transactions and maintain bulk-power reliability. As part of a project for the Edison Electric Institute, the authors examined the functions and costs of system control and the issues that need to be resolved in a restructured electricity industry (Hirst and Kirby 1998).

  1. Significance of Waterway Navigation Positioning Systems On Ship's Manoeuvring Safety

    NASA Astrophysics Data System (ADS)

    Galor, W.

    The main goal of navigation is to lead the ship to the point of destination safety and efficiently. Various factors may affect ship realisating this process. The ship movement on waterway are mainly limited by water area dimensions (surface and depth). These limitations cause the requirement to realise the proper of ship movement trajectory. In case when this re requirement cant't fulfil then marine accident may happend. This fact is unwanted event caused losses of human health and life, damage or loss of cargo and ship, pollution of natural environment, damage of port structures or blocking the port of its ports and lost of salvage operation. These losses in same cases can be catas- trophical especially while e.i. crude oil spilling could be place. To realise of safety navigation process is needed to embrace the ship's movement trajectory by waterways area. The ship's trajectory is described by manoeuvring lane as a surface of water area which is require to realise of safety ship movement. Many conditions affect to ship manoeuvring line. The main are following: positioning accuracy, ship's manoeuvring features and phenomena's of shore and ship's bulk common affecting. The accuracy of positioning system is most important. This system depends on coast navigation mark- ing which can range many kinds of technical realisation. Mainly used systems based on lights (line), radionavigation (local system or GPS, DGPS), or radars. If accuracy of positiong is higer, then safety of navigation is growing. This article presents these problems exemplifying with approaching channel to ports situated on West Pomera- nian water region.

  2. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and... Areas Fourteenth Coast Guard District § 165.1406 Safety Zone: Pacific Missile Range Facility (PMRF...

  3. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and... Areas Fourteenth Coast Guard District § 165.1406 Safety Zone: Pacific Missile Range Facility (PMRF...

  4. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and... Areas Fourteenth Coast Guard District § 165.1406 Safety Zone: Pacific Missile Range Facility (PMRF...

  5. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and... Areas Fourteenth Coast Guard District § 165.1406 Safety Zone: Pacific Missile Range Facility (PMRF...

  6. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and... Areas Fourteenth Coast Guard District § 165.1406 Safety Zone: Pacific Missile Range Facility (PMRF...

  7. Space Shuttle Range Safety Command Destruct System Analysis and Verification. Phase 3. Breakup of Space Shuttle Cluster Via Range Safety Command Destruct System

    DTIC Science & Technology

    1981-03-01

    1210 59188E.03 1.661E.08 l.b60E.ol 5o344E*11 1.070 .1801 BEGIN SONIC FLOW . 1307 5.2301.03 l.612E.08 1.724E.01 5.2271.11 1.066 .1912 ,1387 b.218E.03...1.625E+11 .607 90201 * 0428 6.582E+03 3*928E*07 8,905E+01 1.603E11 9600 *0400 .0646 6.608E+03 3.858E+07 9.103E+01 1581E+1l .593 *0600 .0870 6.635E+03 3.787E...03 39998E+07 8.715E+01 1.625E+11 .607 90201 * 0428 6.582E+03 3*928E*07 8,905E+01 1.603E11 9600 *0400 .0646 6.608E+03 3.858E+07 9.103E+01 1581E+1l .593

  8. Safety and tolerability of intrathecal liposomal cytarabine as central nervous system prophylaxis in patients with acute lymphoblastic leukemia.

    PubMed

    Valentin, Angelika; Troppan, Katharina; Pfeilstöcker, Michael; Nösslinger, Thomas; Linkesch, Werner; Neumeister, Peter

    2014-08-01

    Central nervous system recurrence in acute lymphoblastic leukemia (ALL) occurs in up to 15% of patients and is frequently associated with poor outcome. The purpose of our study was to evaluate the efficacy and safety of a slow-release liposomal formulation of cytarabine for intrathecal (IT) meningeal prophylaxis in patients suffering from ALL. Forty patients aged 20-77 years (median 36) were preventively treated with a total of 96 (range 1-6) single doses containing 50 mg of liposomal cytarabine on a compassionate use basis. After a median observation period of 23 months (range 2-118) only two patients experienced a combined medullary-leptomeningeal disease recurrence after primary diagnosis. Except for headache grade 2 in two patients, no specific toxicity attributable to IT liposomal cytarabine application was noted. Long-term neurological side effects were not observed. IT liposomal cytarabine therapy with concomitant dexamethasone appears to be feasible and well tolerated.

  9. Study report recommendations for the next generation Range Safety System (RSS) Integrated Receiver/Decoder (IRD)

    NASA Technical Reports Server (NTRS)

    Crosby, Robert H.

    1992-01-01

    The Integrated Receiver/Decoder (IRD) currently used on the Space Shuttle was designed in the 1980 and prior time frame. Over the past 12 years, several parts have become obsolete or difficult to obtain. As directed by the Marshall Space Flight Center, a primary objective is to investigate updating the IRD design using the latest technology subsystems. To take advantage of experience with the current designs, an analysis of failures and a review of discrepancy reports, material review board actions, scrap, etc. are given. A recommended new design designated as the Advanced Receiver/Decoder (ARD) is presented. This design uses the latest technology components to simplify circuits, improve performance, reduce size and cost, and improve reliability. A self-test command is recommended that can improve and simplify operational procedures. Here, the new design is contrasted with the old. Possible simplification of the total Range Safety System is discussed, as is a single-step crypto technique that can improve and simplify operational procedures.

  10. A User's Guide for the Spacecraft Fire Safety Facility

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.

    2000-01-01

    The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.

  11. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less

  12. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    DOE PAGES

    Hu, Rui

    2016-11-19

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less

  13. NASA Lewis 8- by 6-foot supersonic wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    The 8- by 6-Foot Supersonic Wind Tunnel (SWT) at Lewis Research Center is available for use by qualified researchers. This manual contains tunnel performance maps which show the range of total temperature, total pressure, static pressure, dynamic pressure, altitude, Reynolds number, and mass flow as a function of test section Mach number. These maps are applicable for both the aerodynamic and propulsion cycle. The 8- by 6-Foot Supersonic Wind Tunnel is an atmospheric facility with a test section Mach number range from 0.36 to 2.0. General support systems (air systems, hydraulic system, hydrogen system, infrared system, laser system, laser sheet system, and schlieren system are also described as are instrumentation and data processing and acquisition systems. Pretest meeting formats are outlined. Tunnel user responsibility and personal safety requirements are also stated.

  14. Computerized provider order entry systems.

    PubMed

    2001-01-01

    Computerized provider order entry (CPOE) systems are designed to replace a hospital's paper-based ordering system. They allow users to electronically write the full range of orders, maintain an online medication administration record, and review changes made to an order by successive personnel. They also offer safety alerts that are triggered when an unsafe order (such as for a duplicate drug therapy) is entered, as well as clinical decision support to guide caregivers to less expensive alternatives or to choices that better fit established hospital protocols. CPOE systems can, when correctly configured, markedly increase efficiency and improve patient safety and patient care. However, facilities need to recognize that currently available CPOE systems require a tremendous amount of time and effort to be spent in customization before their safety and clinical support features can be effectively implemented. What's more, even after they've been customized, the systems may still allow certain unsafe orders to be entered. Thus, CPOE systems are not currently a quick or easy remedy for medical errors. ECRI's Evaluation of CPOE systems--conducted in collaboration with the Institute for Safe Medication Practices (ISMP)--discusses these and other related issues. It also examines and compares CPOE systems from three suppliers: Eclipsys Corp., IDX Systems Corp., and Siemens Medical Solutions Health Services Corp. Our testing focuses primarily on the systems' interfacing capabilities, patient safeguards, and ease of use.

  15. SPES-2, AP600 intergral system test S01007 2 inch CL to core make-up tank pressure balance line break

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchiani, M.; Medich, C.; Rigamonti, M.

    1995-09-01

    The SPES-2 is a full height, full pressure experimental test facility reproducing the Westinghouse AP600 reactor with a scaling factor of 1/395. The experimental plant, designed and operated by SIET in Piacenza, consists of a full simulation of the AP600 primary core cooling system including all the passive and active safety systems. In 1992, Westinghouse, in cooperation with ENEL (Ente Nazionale per l` Energia Elettrica), ENEA (Enter per le numove Technlogie, l` Energia e l` Ambient), Siet (Societa Informazioni Esperienze Termoidraulich) and ANSALDO developed an experimental program to test the integrated behaviour of the AP600 passive safety systems. The SPES-2more » test matrix, concluded in November 1994, has examined the AP600 passive safety system response for a range of small break LOCAs at different locations on the primary system and on the passive system lines; single steam generator tube ruptures with passive and active safety systems and a main steam line break transient to demonstrate the boration capability of passive safety systems for rapid cooldown. Each of the tests has provided detailed experimental results for verification of the capability of the analysis methods to predict the integrated passive safety system behaviour. Cold and hot shakedown tests have been performed on the facility to check the characteristics of the plant before starting the experimental campaign. The paper first presents a description of the SPES-2 test facility then the main results of S01007 test {open_quotes}2{close_quotes} Cold Leg (CL) to Core Make-up Tank (CMT) pressure balance line break{close_quotes} are reported and compared with predictions performed using RELAP5/mod3/80 obtained by ANSALDO through agreement with U.S.N.R.C. (U.S. Nuclear Regulatory Commission). The SPES-2 nodalization and all the calculations here presented were performed by ANSALDO and sponsored by ENEL as a part of pre-test predictions for SPES-2.« less

  16. Agent Architecture for Aviation Data Integration System

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Wang, Yao; Windrem, May; Patel, Hemil; Wei, Mei

    2004-01-01

    This paper describes the proposed agent-based architecture of the Aviation Data Integration System (ADIS). ADIS is a software system that provides integrated heterogeneous data to support aviation problem-solving activities. Examples of aviation problem-solving activities include engineering troubleshooting, incident and accident investigation, routine flight operations monitoring, safety assessment, maintenance procedure debugging, and training assessment. A wide variety of information is typically referenced when engaging in these activities. Some of this information includes flight recorder data, Automatic Terminal Information Service (ATIS) reports, Jeppesen charts, weather data, air traffic control information, safety reports, and runway visual range data. Such wide-ranging information cannot be found in any single unified information source. Therefore, this information must be actively collected, assembled, and presented in a manner that supports the users problem-solving activities. This information integration task is non-trivial and presents a variety of technical challenges. ADIS has been developed to do this task and it permits integration of weather, RVR, radar data, and Jeppesen charts with flight data. ADIS has been implemented and used by several airlines FOQA teams. The initial feedback from airlines is that such a system is very useful in FOQA analysis. Based on the feedback from the initial deployment, we are developing a new version of the system that would make further progress in achieving following goals of our project.

  17. Relative Navigation Light Detection and Ranging (LIDAR) Sensor Development Test Objective (DTO) Performance Verification

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2013-01-01

    The NASA Engineering and Safety Center (NESC) received a request from the NASA Associate Administrator (AA) for Human Exploration and Operations Mission Directorate (HEOMD), to quantitatively evaluate the individual performance of three light detection and ranging (LIDAR) rendezvous sensors flown as orbiter's development test objective on Space Transportation System (STS)-127, STS-133, STS-134, and STS-135. This document contains the outcome of the NESC assessment.

  18. MATILDA Version 2: Rough Earth TIALD Model for Laser Probabilistic Risk Assessment in Hilly Terrain - Part I

    DTIC Science & Technology

    2017-03-13

    support of airborne laser designator use during test and training exercises on military ranges. The initial MATILDA tool, MATILDA PRO Version-1.6.1...was based on the 2007 PRA model developed to perform range safety clearances for the UK Thermal Imaging Airborne Laser Designator (TIALD) system...AFRL Technical Reports. This Technical Report, designated Part I, con- tains documentation of the computational procedures for probabilistic fault

  19. Space-Based Telemetry and Range Safety (STARS) Study

    NASA Technical Reports Server (NTRS)

    Hogie, Keith; Crisuolo, Ed; Parise, Ron

    2004-01-01

    This presentation will describe the design, development, and testing of a system to collect telemetry, format it into UDP/IP packets, and deliver it to a ground test range using standard IP technologies over a TDRSS link. This presentation will discuss the goal of the STARS IP Formatter along with the overall design. It will also present performance results of the current version of the IP formatter. Finally, it will discuss key issues for supporting constant rate telemetry data delivery when using standard components such as PCI/104 processors, the Linux operating system, Internet Protocols, and synchronous serial interfaces.

  20. Safety and Sex Practices among Nebraska Adolescents. Technical Report 24.

    ERIC Educational Resources Information Center

    Newman, Ian M.; Perry-Hunnicutt, Christina

    This report describes a range of adolescent behaviors related to their safety and the safety of others. The behaviors reported here range from ordinary safety precautions such as only swimming in supervised areas and wearing helmets when riding a motorcycle to less talked about behaviors such as using condoms during sexual intercourse and carrying…

  1. Blade tip clearance measurement of the turbine engines based on a multi-mode fiber coupled laser ranging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haotian; Duan, Fajie; Wu, Guoxiu

    2014-11-15

    The blade tip clearance is a parameter of great importance to guarantee the efficiency and safety of the turbine engines. In this article, a laser ranging system designed for blade tip clearance measurement is presented. Multi-mode fiber is utilized for optical transmission to guarantee that enough optical power is received by the sensor probe. The model of the tiny sensor probe is presented. The error brought by the optical path difference of different modes of the fiber is estimated and the length of the fiber is limited to reduce this error. The measurement range in which the optical power receivedmore » by the probe remains essentially unchanged is analyzed. Calibration experiments and dynamic experiments are conducted. The results of the calibration experiments indicate that the resolution of the system is about 0.02 mm and the range of the system is about 9 mm.« less

  2. Developing a short range vehicle to infrastructure communication system to enhance the safety at STOP sign intersections : final report.

    DOT National Transportation Integrated Search

    2016-05-01

    Stop sign controlled unsignalized intersections raise a public safe concern. Even though various strategies, such as engineering, education, and policy, have been applied in practice, there are a number of fatal crashes occurred at unsignalized inter...

  3. 69. DETAIL OF OPERATIONS AND CHECKOUT (POWER CONTROL AND MONITOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. DETAIL OF OPERATIONS AND CHECKOUT (POWER CONTROL AND MONITOR PANEL) AND RANGE SAFETY (DESTRUCT SYSTEM CONTROL MONITOR PANEL) PANELS IN SLC-3E CONTROL ROOM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. Heavy truck pre-crash scenarios for safety applications based on vehicle-to-vehicle communications

    DOT National Transportation Integrated Search

    2014-06-01

    This report describes pre-crash scenarios involving at least one heavy truck (gross vehicle weight rating greater than 10,000 pounds), which might be addressed with crash-imminent warning systems based on short range vehicle-to-vehicle (V2V) communic...

  5. The Federal Aviation Administration Plan for Research, Engineering and Development, 1994

    DTIC Science & Technology

    1994-05-01

    Aeronautical Data Link Communications and (COTS) runway incursion system software will Applications, and 051-130 Airport Safety be demonstrated as a... airport departure and ar- efforts rival scheduling plans that optimize daily traffic flows for long-range flights between major city- * OTFP System to...Expanded HARS planning capabilities to in- aviation dispatchers to develop optimized high clude enhanced communications software for altitude flight

  6. A Low Cost TDRSS Compatible Transmitter Option

    NASA Technical Reports Server (NTRS)

    Whiteman, Don

    2005-01-01

    The NASA Space-based Telemetry and Range Safety (STARS) program has developed and tested a low cost Ku-Band transmitter alternative for TDRSS applications based on an existing IRIG shaped offset quaternary phase shift keying (SOQPSK) transmitter. This paper presents information related to the implementation of this low cost system, as well as performance measurements of the alternative TDRSS transmitter system compared with an existing QPSK TDRSS transmitter.

  7. Next-Generation Telemetry Workstation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A next-generation telemetry workstation has been developed to replace the one currently used to test and control Range Safety systems. Improving upon the performance of the original system, the new telemetry workstation uses dual-channel telemetry boards for better synchronization of the two uplink telemetry streams. The new workstation also includes an Interrange Instrumentation Group/Global Positioning System (IRIG/GPS) time code receiver board for independent, local time stamping of return-link data. The next-generation system will also record and play back return-link data for postlaunch analysis.

  8. Technology Innovations from NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  9. The X-33 range Operations Control Center

    NASA Technical Reports Server (NTRS)

    Shy, Karla S.; Norman, Cynthia L.

    1998-01-01

    This paper describes the capabilities and features of the X-33 Range Operations Center at NASA Dryden Flight Research Center. All the unprocessed data will be collected and transmitted over fiber optic lines to the Lockheed Operations Control Center for real-time flight monitoring of the X-33 vehicle. By using the existing capabilities of the Western Aeronautical Test Range, the Range Operations Center will provide the ability to monitor all down-range tracking sites for the Extended Test Range systems. In addition to radar tracking and aircraft telemetry data, the Telemetry and Radar Acquisition and Processing System is being enhanced to acquire vehicle command data, differential Global Positioning System corrections and telemetry receiver signal level status. The Telemetry and Radar Acquisition Processing System provides the flexibility to satisfy all X-33 data processing requirements quickly and efficiently. Additionally, the Telemetry and Radar Acquisition Processing System will run a real-time link margin analysis program. The results of this model will be compared in real-time with actual flight data. The hardware and software concepts presented in this paper describe a method of merging all types of data into a common database for real-time display in the Range Operations Center in support of the X-33 program. All types of data will be processed for real-time analysis and display of the range system status to ensure public safety.

  10. Seniors managing multiple medications: using mixed methods to view the home care safety lens.

    PubMed

    Lang, Ariella; Macdonald, Marilyn; Marck, Patricia; Toon, Lynn; Griffin, Melissa; Easty, Tony; Fraser, Kimberly; MacKinnon, Neil; Mitchell, Jonathan; Lang, Eddy; Goodwin, Sharon

    2015-12-12

    Patient safety is a national and international priority with medication safety earmarked as both a prevalent and high-risk area of concern. To date, medication safety research has focused overwhelmingly on institutional based care provided by paid healthcare professionals, which often has little applicability to the home care setting. This critical gap in our current understanding of medication safety in the home care sector is particularly evident with the elderly who often manage more than one chronic illness and a complex palette of medications, along with other care needs. This study addresses the medication management issues faced by seniors with chronic illnesses, their family, caregivers, and paid providers within Canadian publicly funded home care programs in Alberta (AB), Ontario (ON), Quebec (QC) and Nova Scotia (NS). Informed by a socio-ecological perspective, this study utilized Interpretive Description (ID) methodology and participatory photographic methods to capture and analyze a range of visual and textual data. Three successive phases of data collection and analysis were conducted in a concurrent, iterative fashion in eight urban and/or rural households in each province. A total of 94 participants (i.e., seniors receiving home care services, their family/caregivers, and paid providers) were interviewed individually. In addition, 69 providers took part in focus groups. Analysis was iterative and concurrent with data collection in that each interview was compared with subsequent interviews for converging as well as diverging patterns. Six patterns were identified that provide a rich portrayal of the complexity of medication management safety in home care: vulnerabilities that impact the safe management and storage of medication, sustaining adequate supports, degrees of shared accountability for care, systems of variable effectiveness, poly-literacy required to navigate the system, and systemic challenges to maintaining medication safety in the home. There is a need for policy makers, health system leaders, care providers, researchers, and educators to work with home care clients and caregivers on three key messages for improvement: adapt care delivery models to the home care landscape; develop a palette of user-centered tools to support medication safety in the home; and strengthen health systems integration.

  11. Assessing medical students' perceptions of patient safety: the medical student safety attitudes and professionalism survey.

    PubMed

    Liao, Joshua M; Etchegaray, Jason M; Williams, S Tyler; Berger, David H; Bell, Sigall K; Thomas, Eric J

    2014-02-01

    To develop and test the psychometric properties of a survey to measure students' perceptions about patient safety as observed on clinical rotations. In 2012, the authors surveyed 367 graduating fourth-year medical students at three U.S. MD-granting medical schools. They assessed the survey's reliability and construct and concurrent validity. They examined correlations between students' perceptions of organizational cultural factors, organizational patient safety measures, and students' intended safety behaviors. They also calculated percent positive scores for cultural factors. Two hundred twenty-eight students (62%) responded. Analyses identified five cultural factors (teamwork culture, safety culture, error disclosure culture, experiences with professionalism, and comfort expressing professional concerns) that had construct validity, concurrent validity, and good reliability (Cronbach alphas > 0.70). Across schools, percent positive scores for safety culture ranged from 28% (95% confidence interval [CI], 13%-43%) to 64% (30%-98%), while those for teamwork culture ranged from 47% (32%-62%) to 74% (66%-81%). They were low for error disclosure culture (range: 10% [0%-20%] to 27% [20%-35%]), experiences with professionalism (range: 7% [0%-15%] to 23% [16%-30%]), and comfort expressing professional concerns (range: 17% [5%-29%] to 38% [8%-69%]). Each cultural factor correlated positively with perceptions of overall patient safety as observed in clinical rotations (r = 0.37-0.69, P < .05) and at least one safety behavioral intent item. This study provided initial evidence for the survey's reliability and validity and illustrated its applicability for determining whether students' clinical experiences exemplify positive patient safety environments.

  12. Titan 3E/Centaur D-1T Systems Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A systems and operational summary of the Titan 3E/Centaur D-1T program is presented which describes vehicle assembly facilities, launch facilities, and management responsibilities, and also provides detailed information on the following separate systems: (1) mechanical systems, including structural components, insulation, propulsion units, reaction control, thrust vector control, hydraulic systems, and pneumatic equipment; (2) astrionics systems, such as instrumentation and telemetry, navigation and guidance, C-Band tracking system, and range safety command system; (3) digital computer unit software; (4) flight control systems; (5) electrical/electronic systems; and (6) ground support equipment, including checkout equipment.

  13. Researchers' Roles in Patient Safety Improvement.

    PubMed

    Pietikäinen, Elina; Reiman, Teemu; Heikkilä, Jouko; Macchi, Luigi

    2016-03-01

    In this article, we explore how researchers can contribute to patient safety improvement. We aim to expand the instrumental role researchers have often occupied in relation to patient safety improvement. We reflect on our own improvement model and experiences as patient safety researchers in an ongoing Finnish multi-actor innovation project through self-reflective narration. Our own patient safety improvement model can be described as systemic. Based on the purpose of the innovation project, our improvement model, and the improvement models of the other actors in the project, we have carried out a wide range of activities. Our activities can be summarized in 8 overlapping patient safety improvement roles: modeler, influencer, supplier, producer, ideator, reflector, facilitator, and negotiator. When working side by side with "practice," researchers are offered and engage in several different activities. The way researchers contribute to patient safety improvement and balance between different roles depends on the purpose of the study, as well as on the underlying patient safety improvement models. Different patient safety research paradigms seem to emphasize different improvement roles, and thus, they also face different challenges. Open reflection on the underlying improvement models and roles can help researchers with different backgrounds-as well as other actors involved in patient safety improvement-in structuring their work and collaborating productively.

  14. Vacuum System Upgrade for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) at SNS

    DOE PAGES

    Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.

    2016-09-23

    The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.

  15. Vacuum System Upgrade for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.

    The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.

  16. Periprocedural safety of aneurysm embolization with the Medina Coil System: the early human experience.

    PubMed

    Turk, Aquilla S; Maia, Orlando; Ferreira, Christian Candido; Freitas, Diogo; Mocco, J; Hanel, Ricardo

    2016-02-01

    Intracranial saccular aneurysms, if untreated, carry a high risk of morbidity and mortality from intracranial bleeding. Embolization coils are the most common treatment. We describe the periprocedural safety and performance of the initial human experience with the next generation Medina Coil System. The Medina Coil System is a layered three-dimensional coil made from a radiopaque, shape set core wire, and shape memory alloy outer coil filaments. Nine aneurysms in five patients were selected for treatment with the Medina Coil System. Nine aneurysms in five patients, ranging from 5 to 17 mm in size in various locations, were treated with the Medina Coil System. No procedural or periprocedural complications were encountered. Procedure times, number of coils used to treat the aneurysm, and use of adjunctive devices were much less than anticipated if conventional coil technology had been used. The Medina Coil System is a next generation coil that combines all of the familiar and expected procedural safety and technique concepts associated with conventional coils. We found improved circumferential aneurysm filling, which may lead to improved long term outcomes, with fewer devices and faster operating times. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Safety of High Speed Guided Ground Transportation Systems - EMF Exposure Environments Summary Reports

    DOT National Transportation Integrated Search

    1993-08-01

    This paper presents an overview of American exposure assessments for electric and magnetic fields (EMF) in the frequency : range from 0 to 3 kHz. The exposure information available is very limited for all but a few occupations and sources of : EMF. M...

  18. 40 CFR 86.1721-01 - Application for certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-3750 lbs LVW, LDT 3751-5750 lbs LVW (state test weight range), and the curb weight and gross vehicle.... (4) Identification and description of the climate control system used on the vehicle. (5) Projected... affect the safety of the vehicle operator or laboratory personnel, method for determining battery state...

  19. 40 CFR 86.1721-01 - Application for certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-3750 lbs LVW, LDT 3751-5750 lbs LVW (state test weight range), and the curb weight and gross vehicle.... (4) Identification and description of the climate control system used on the vehicle. (5) Projected... affect the safety of the vehicle operator or laboratory personnel, method for determining battery state...

  20. 40 CFR 86.1721-01 - Application for certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-3750 lbs LVW, LDT 3751-5750 lbs LVW (state test weight range), and the curb weight and gross vehicle.... (4) Identification and description of the climate control system used on the vehicle. (5) Projected... affect the safety of the vehicle operator or laboratory personnel, method for determining battery state...

  1. Microbiological Difference of Eggs From Traditional Cage and Free Range Production

    USDA-ARS?s Scientific Manuscript database

    Eggs from alternative production systems are a growing market share in the US. Meeting consumer requests for greater diversity in retail egg options has resulted in some unique challenges such as understanding the food safety implications of eggs from alternative housing practices. A study was con...

  2. Environmental assessment overview

    NASA Technical Reports Server (NTRS)

    Valentino, A. R.

    1980-01-01

    The assessment program has as its objectives: to identify the environmental issues associated with the SPS Reference System; to prepare a preliminary assessment based on existing data; to suggest mitigating strategies and provide environmental data and guidance to other components of the program as required; and to plan long-range research to reduce the uncertainty in the preliminary assessment. The key environmental issues associated with the satellite power system are discussed and include human health and safety, ecosystems, climate, and interaction with electromagnetic systems.

  3. Advanced Video Data-Acquisition System For Flight Research

    NASA Technical Reports Server (NTRS)

    Miller, Geoffrey; Richwine, David M.; Hass, Neal E.

    1996-01-01

    Advanced video data-acquisition system (AVDAS) developed to satisfy variety of requirements for in-flight video documentation. Requirements range from providing images for visualization of airflows around fighter airplanes at high angles of attack to obtaining safety-of-flight documentation. F/A-18 AVDAS takes advantage of very capable systems like NITE Hawk forward-looking infrared (FLIR) pod and recent video developments like miniature charge-couple-device (CCD) color video cameras and other flight-qualified video hardware.

  4. Good practice statements on safe laboratory testing: A mixed methods study by the LINNEAUS collaboration on patient safety in primary care.

    PubMed

    Bowie, Paul; Forrest, Eleanor; Price, Julie; Verstappen, Wim; Cunningham, David; Halley, Lyn; Grant, Suzanne; Kelly, Moya; Mckay, John

    2015-09-01

    The systems-based management of laboratory test ordering and results handling is a known source of error in primary care settings worldwide. The consequences are wide-ranging for patients (e.g. avoidable harm or poor care experience), general practitioners (e.g. delayed clinical decision making and potential medico-legal implications) and the primary care organization (e.g. increased allocation of resources to problem-solve and dealing with complaints). Guidance is required to assist care teams to minimize associated risks and improve patient safety. To identify, develop and build expert consensus on 'good practice' guidance statements to inform the implementation of safe systems for ordering laboratory tests and managing results in European primary care settings. Mixed methods studies were undertaken in the UK and Ireland, and the findings were triangulated to develop 'good practice' statements. Expert consensus was then sought on the findings at the wider European level via a Delphi group meeting during 2013. We based consensus on 10 safety domains and developed 77 related 'good practice' statements (≥ 80% agreement levels) judged to be essential to creating safety and minimizing risks in laboratory test ordering and subsequent results handling systems in international primary care. Guidance was developed for improving patient safety in this important area of primary care practice. We need to consider how this guidance can be made accessible to frontline care teams, utilized by clinical educators and improvement advisers, implemented by decision makers and evaluated to determine acceptability, feasibility and impacts on patient safety.

  5. Simulation of Range Safety for the NASA Space Shuttle

    NASA Technical Reports Server (NTRS)

    Rabelo, Luis; Sepulveda, Jose; Compton, Jeppie; Turner, Robert

    2005-01-01

    This paper describes a simulation environment that seamlessly combines a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this simulation environment represent the different systems that must interact in order to determine the Expectation of casualties (E(sub c)) resulting from the toxic effects of the gas dispersion that occurs after a disaster affecting a Space Shuttle within 120 seconds of lift-off. The utilization of the Space Shuttle reliability models, trajectory models, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system are all integrated to create this environment. This simulation environment can help safety managers estimate the population at risk in order to plan evacuation, make sheltering decisions, determine the resources required to provide aid and comfort, and mitigate damages in case of a disaster. This simulation environment may also be modified and used for the landing phase of a space vehicle but will not be discussed in this paper.

  6. Concept of Operations for Commercial and Business Aircraft Synthetic Vision Systems. 1.0

    NASA Technical Reports Server (NTRS)

    Williams Daniel M.; Waller, Marvin C.; Koelling, John H.; Burdette, Daniel W.; Capron, William R.; Barry, John S.; Gifford, Richard B.; Doyle, Thomas M.

    2001-01-01

    A concept of operations (CONOPS) for the Commercial and Business (CaB) aircraft synthetic vision systems (SVS) is described. The CaB SVS is expected to provide increased safety and operational benefits in normal and low visibility conditions. Providing operational benefits will promote SVS implementation in the Net, improve aviation safety, and assist in meeting the national aviation safety goal. SVS will enhance safety and enable consistent gate-to-gate aircraft operations in normal and low visibility conditions. The goal for developing SVS is to support operational minima as low as Category 3b in a variety of environments. For departure and ground operations, the SVS goal is to enable operations with a runway visual range of 300 feet. The system is an integrated display concept that provides a virtual visual environment. The SVS virtual visual environment is composed of three components: an enhanced intuitive view of the flight environment, hazard and obstacle defection and display, and precision navigation guidance. The virtual visual environment will support enhanced operations procedures during all phases of flight - ground operations, departure, en route, and arrival. The applications selected for emphasis in this document include low visibility departures and arrivals including parallel runway operations, and low visibility airport surface operations. These particular applications were selected because of significant potential benefits afforded by SVS.

  7. The Mediterranean Decision Support System for Marine Safety dedicated to oil slicks predictions

    NASA Astrophysics Data System (ADS)

    Zodiatis, G.; De Dominicis, M.; Perivoliotis, L.; Radhakrishnan, H.; Georgoudis, E.; Sotillo, M.; Lardner, R. W.; Krokos, G.; Bruciaferri, D.; Clementi, E.; Guarnieri, A.; Ribotti, A.; Drago, A.; Bourma, E.; Padorno, E.; Daniel, P.; Gonzalez, G.; Chazot, C.; Gouriou, V.; Kremer, X.; Sofianos, S.; Tintore, J.; Garreau, P.; Pinardi, N.; Coppini, G.; Lecci, R.; Pisano, A.; Sorgente, R.; Fazioli, L.; Soloviev, D.; Stylianou, S.; Nikolaidis, A.; Panayidou, X.; Karaolia, A.; Gauci, A.; Marcati, A.; Caiazzo, L.; Mancini, M.

    2016-11-01

    In the Mediterranean sea the risk from oil spill pollution is high due to the heavy traffic of merchant vessels for transporting oil and gas, especially after the recent enlargement of the Suez canal and to the increasing coastal and offshore installations related to the oil industry in general. The basic response to major oil spills includes different measures and equipment. However, in order to strengthen the maritime safety related to oil spill pollution in the Mediterranean and to assist the response agencies, a multi-model oil spill prediction service has been set up, known as MEDESS-4MS (Mediterranean Decision Support System for Marine Safety). The concept behind the MEDESS-4MS service is the integration of the existing national ocean forecasting systems in the region with the Copernicus Marine Environmental Monitoring Service (CMEMS) and their interconnection, through a dedicated network data repository, facilitating access to all these data and to the data from the oil spill monitoring platforms, including the satellite data ones, with the well established oil spill models in the region. The MEDESS-4MS offer a range of service scenarios, multi-model data access and interactive capabilities to suite the needs of REMPEC (Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea) and EMSA-CSN (European Maritime Safety Agency-CleanseaNet).

  8. Characterization of the protective capacity of flooring systems using force-deflection profiling.

    PubMed

    Glinka, Michal N; Karakolis, Thomas; Callaghan, Jack P; Laing, Andrew C

    2013-01-01

    'Safety floors' aim to decrease the risk of fall-related injuries by absorbing impact energy during falls. Ironically, excessive floor deflection during walking or standing may increase fall risk. In this study we used a materials testing system to characterize the ability of a range of floors to absorb energy during simulated head and hip impacts while resisting deflection during simulated single-leg stance. We found that energy absorption for all safety floors (mean (SD)=14.8 (4.9)J) and bedside mats (25.1 (9.3)J) was 3.2- to 5.4-fold greater than the control condition (commercial carpet). While footfall deflections were not significantly different between safety floors (1.8 (0.7)mm) and the control carpet (3.7 (0.6)mm), they were significantly higher for two bedside mats. Finally, all of the safety floors, and two bedside mats, displayed 3-10 times the energy-absorption-to-deflection ratios observed for the baseline carpet. Overall, these results suggest that the safety floors we tested effectively addressed two competing demands required to reduce fall-related injury risk; namely the ability to absorb substantial impact energy without increasing footfall deflections. This study contributes to the literature suggesting that safety floors are a promising intervention for reducing fall-related injury risk in older adults. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. The electromagnetic environment of Magnetic Resonance Imaging systems. Occupational exposure assessment reveals RF harmonics

    NASA Astrophysics Data System (ADS)

    Gourzoulidis, G.; Karabetsos, E.; Skamnakis, N.; Kappas, C.; Theodorou, K.; Tsougos, I.; Maris, T. G.

    2015-09-01

    Magnetic Resonance Imaging (MRI) systems played a crucial role in the postponement of the former occupational electromagnetic fields (EMF) European Directive (2004/40/EC) and in the formation of the latest exposure limits adopted in the new one (2013/35/EU). Moreover, the complex MRI environment will be finally excluded from the implementation of the new occupational limits, leading to an increased demand for Occupational Health and Safety (OHS) surveillance. The gradient function of MRI systems and the application of the RF excitation frequency result in low and high frequency exposures, respectively. This electromagnetic field exposure, in combination with the increased static magnetic field exposure, makes the MRI environment a unique case of combined EMF exposure. The electromagnetic field levels in close proximity of different MRI systems have been assessed at various frequencies. Quality Assurance (QA) & safety issues were also faced. Preliminary results show initial compliance with the forthcoming limits in each different frequency band, but also revealed peculiar RF harmonic components, of no safety concern, to the whole range detected (20-1000MHz). Further work is needed in order to clarify their origin and characteristics.

  10. Performance analysis of an IMU-augmented GNSS tracking system on board the MAIUS-1 sounding rocket

    NASA Astrophysics Data System (ADS)

    Braun, Benjamin; Grillenberger, Andreas; Markgraf, Markus

    2018-05-01

    Satellite navigation receivers are adequate tracking sensors for range safety of both orbital launch vehicles and suborbital sounding rockets. Due to high accuracy and its low system complexity, satellite navigation is seen as well-suited supplement or replacement of conventional tracking systems like radar. Having the well-known shortcomings of satellite navigation like deliberate or unintentional interferences in mind, it is proposed to augment the satellite navigation receiver by an inertial measurement unit (IMU) to enhance continuity and availability of localization. The augmented receiver is thus enabled to output at least an inertial position solution in case of signal outages. In a previous study, it was shown by means of simulation using the example of Ariane 5 that the performance of a low-grade microelectromechanical IMU is sufficient to bridge expected outages of some ten seconds, and still meeting the range safety requirements in effect. In this publication, these theoretical findings shall be substantiated by real flight data that were recorded on MAIUS-1, a sounding rocket launched from Esrange, Sweden, in early 2017. The analysis reveals that the chosen representative of a microelectromechanical IMU is suitable to bridge outages of up to thirty seconds.

  11. Aluminum Data Measurements and Evaluation for Criticality Safety Applications

    NASA Astrophysics Data System (ADS)

    Leal, L. C.; Guber, K. H.; Spencer, R. R.; Derrien, H.; Wright, R. Q.

    2002-12-01

    The Defense Nuclear Facility Safety Board (DNFSB) Recommendation 93-2 motivated the US Department of Energy (DOE) to develop a comprehensive criticality safety program to maintain and to predict the criticality of systems throughout the DOE complex. To implement the response to the DNFSB Recommendation 93-2, a Nuclear Criticality Safety Program (NCSP) was created including the following tasks: Critical Experiments, Criticality Benchmarks, Training, Analytical Methods, and Nuclear Data. The Nuclear Data portion of the NCSP consists of a variety of differential measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) at the Oak Ridge National Laboratory (ORNL), data analysis and evaluation using the generalized least-squares fitting code SAMMY in the resolved, unresolved, and high energy ranges, and the development and benchmark testing of complete evaluations for a nuclide for inclusion into the Evaluated Nuclear Data File (ENDF/B). This paper outlines the work performed at ORNL to measure, evaluate, and test the nuclear data for aluminum for applications in criticality safety problems.

  12. Operational safety assessment of turbo generators with wavelet Rényi entropy from sensor-dependent vibration signals.

    PubMed

    Zhang, Xiaoli; Wang, Baojian; Chen, Xuefeng

    2015-04-16

    With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals' wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance.

  13. Effect of two glycyrrhizinic acid nanoparticle carriers on MARC-145 cells actin filaments

    NASA Astrophysics Data System (ADS)

    Jardon, Samantha; García, Carlos G.; Quintanar, David; Nieto, José L.; Juárez, María de Lourdes; Mendoza, Susana E.

    2018-04-01

    The development of technologies that combine the advantages of nanomedicine with natural medicine represents a versatile approach to improve the safety and efficacy of drugs. Glycyrrhizinic acid (GA) is a natural compound that has a wide range of biological activities for the treatment of diseases. To establish a safe nanotransport system for this drug, two different nanoparticles with glycyrrhizinic acid, solid lipid nanoparticles (SLN-GA) and polymeric nanoparticles (PNPS-GA) were elaborated to obtain nanostructure sizes between 200 and 300 nm. The nanoparticles were evaluated at concentrations of 1.25-100 μl/ml using the MARC-145 cell line to determine the effects on cell morphology, cellular structure (actin filaments) and cell viability (mitochondrial and lysosomal) at 24 and 72 h post-exposure. The safety range of the nanoparticles was 50 µl/ml, to determine that PNPs-GA had an optimal safety profile and no cytotoxic effects, as there was no evidence of changes in morphology, internal cellular structures (stress fibers and the cell cortex formed by actin filaments) or viability under the experimental concentrations and conditions employed.

  14. Contributions of microgravity test results to the design of spacecraft fire-safety systems

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  15. Solid-State Ultracapacitor for Improved Energy Storage

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA's Marshall Space Flight Center has developed a solid-state ultracapacitor using a novel nanocomposite, dielectric material. The material's design is based on the internal barrier layer capacitance (IBLC) concept, and it uses novel dielectric and metallic conductive ink formulations. Novel processing methods developed by NASA provide for unique dielectric properties at the grain level. Nanoscale raw material powders are tailored using a variety of techniques and then formulated into a special ink. This dielectric ink is used with novel metallic conductive ink to print a capacitor layer structure into any design necessary to meet a range of technical requirements. The innovation is intended to replace current range safety batteries that NASA uses to power the systems that destroy off-course space vehicles. A solid-state design provides the needed robustness and safety for this demanding application.

  16. A customized vision system for tracking humans wearing reflective safety clothing from industrial vehicles and machinery.

    PubMed

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J

    2014-09-26

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions.

  17. A Customized Vision System for Tracking Humans Wearing Reflective Safety Clothing from Industrial Vehicles and Machinery

    PubMed Central

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J.

    2014-01-01

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions. PMID:25264956

  18. Commercial objectives, technology transfer, and systems analysis for fusion power development

    NASA Astrophysics Data System (ADS)

    Dean, Stephen O.

    1988-03-01

    Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.

  19. Situation analysis for automotive pre-crash systems

    NASA Astrophysics Data System (ADS)

    Böhning, Marcus A.; Ritter, Henning; Rohling, Herrman

    2008-01-01

    According to the "World Report on Road Traffic Injury Prevention" jointly issued by the World Health Organization and the World Bank about 1.2 million people are killed and up to 50 million people are injured in road traffic accidents worldwide each year. While passive safety systems like the airbag are already deployed successfully to reduce fatalities and injuries, active safety systems assist the driver by issuing a warning or by taking corrective actions to either avoid a collision completely or, if impossible, to mitigate collision consequences. Today's radar sensors have the ability to detect and track objects with a high accuracy in range and velocity, therefore a collision warning system may consist of a radar sensor, a data processing unit and a model to describe possible evasion maneuvers. This allows to analyze the probability of a collision and to calculate the danger potential of the current situation. In this paper, such a system is proposed and it is verified with synthetic as well as real sensor data.

  20. Nonsteroidal anti-inflammatory drug gastropathy: new avenues for safety.

    PubMed

    Roth, Sanford H

    2011-01-01

    Chronic oral or systemic nonselective nonsteroidal anti-inflammatory drug (NSAID) therapy, ubiquitously used by physicians to treat osteoarthritis-associated pain, is associated with a wide range of symptomatic adverse events, the most frequent and serious of which is gastropathy. Although cardiovascular and renal problems are a very real concern, they are significantly less frequent. These complications can be life-threatening in at-risk populations such as older adults, who are common users of long-term oral systemic NSAID therapy. Topical NSAID formulations deliver effective doses of analgesics directly to the affected joints, thereby limiting systemic exposure and potentially the risk of systemic adverse events, such as gastropathy and serious cardiovascular events. There are currently two topical NSAIDs approved by the US Food and Drug Administration for osteoarthritis-associated pain, as well as for the signs and symptoms of osteoarthritis. This review discusses the relative safety, and the gastrointestinal, cardiovascular, and renal risks of chronic oral or systemic NSAID therapy and topical NSAID formulations in patients with osteoarthritis.

  1. Nonsteroidal anti-inflammatory drug gastropathy: new avenues for safety

    PubMed Central

    Roth, Sanford H

    2011-01-01

    Chronic oral or systemic nonselective nonsteroidal anti-inflammatory drug (NSAID) therapy, ubiquitously used by physicians to treat osteoarthritis-associated pain, is associated with a wide range of symptomatic adverse events, the most frequent and serious of which is gastropathy. Although cardiovascular and renal problems are a very real concern, they are significantly less frequent. These complications can be life-threatening in at-risk populations such as older adults, who are common users of long-term oral systemic NSAID therapy. Topical NSAID formulations deliver effective doses of analgesics directly to the affected joints, thereby limiting systemic exposure and potentially the risk of systemic adverse events, such as gastropathy and serious cardiovascular events. There are currently two topical NSAIDs approved by the US Food and Drug Administration for osteoarthritis-associated pain, as well as for the signs and symptoms of osteoarthritis. This review discusses the relative safety, and the gastrointestinal, cardiovascular, and renal risks of chronic oral or systemic NSAID therapy and topical NSAID formulations in patients with osteoarthritis. PMID:21753867

  2. Range Systems Simulation for the NASA Shuttle: Emphasis on Disaster and Prevention Management During Lift-Off

    NASA Technical Reports Server (NTRS)

    Rabelo, Lisa; Sepulveda, Jose; Moraga, Reinaldo; Compton, Jeppie; Turner, Robert

    2005-01-01

    This article describes a decision-making system composed of a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this distributed simulation environment represent the different systems that must collaborate to establish the Expectation of Casualties (E(sub c)) caused by a failed Space Shuttle launch and subsequent explosion (accidental or instructed) of the spacecraft shortly after liftoff. This decision-making tool employs Space Shuttle reliability models, trajectory models, a blast model, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system. Since one of the important features of this proposed simulation environment is to measure blast, toxic, and debris effects, the clear benefits is that it can help safety managers not only estimate the population at risk, but also to help plan evacuations, make sheltering decisions, establish the resources required to provide aid and comfort, and mitigate damages in case of a disaster.

  3. Oak Ridge National Laboratory Health and Safety Long-Range Plan: Fiscal years 1989--1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-06-01

    The health and safety of its personnel is the first concern of ORNL and its management. The ORNL Health and Safety Program has the responsibility for ensuring the health and safety of all individuals assigned to ORNL activities. This document outlines the principal aspects of the ORNL Health and Safety Long-Range Plan and provides a framework for management use in the future development of the health and safety program. Each section of this document is dedicated to one of the health and safety functions (i.e., health physics, industrial hygiene, occupational medicine, industrial safety, nuclear criticality safety, nuclear facility safety, transportationmore » safety, fire protection, and emergency preparedness). Each section includes functional mission and objectives, program requirements and status, a summary of program needs, and program data and funding summary. Highlights of FY 1988 are included.« less

  4. 33 CFR 169.215 - How must a ship transmit position reports?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false How must a ship transmit position... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification and Tracking Information § 169.215 How must a ship transmit position reports? A ship must transmit...

  5. 33 CFR 169.215 - How must a ship transmit position reports?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false How must a ship transmit position... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification and Tracking Information § 169.215 How must a ship transmit position reports? A ship must transmit...

  6. 33 CFR 169.215 - How must a ship transmit position reports?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false How must a ship transmit position... SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification and Tracking Information § 169.215 How must a ship transmit position reports? A ship must transmit...

  7. 75 FR 998 - Terminate Long Range Aids to Navigation (Loran-C) Signal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... to Navigation (Loran-C) Signal AGENCY: U.S. Coast Guard, DHS. ACTION: Notice. SUMMARY: On October 28... Act allows for the termination of the Loran-C system subject to the Coast Guard certifying that termination of the Loran-C signal will not adversely impact the safety of maritime navigation and the...

  8. Inspection Score and Grading System for Food Services in Brazil: The Results of a Food Safety Strategy to Reduce the Risk of Foodborne Diseases during the 2014 FIFA World Cup.

    PubMed

    da Cunha, Diogo T; Saccol, Ana L de Freitas; Tondo, Eduardo C; de Oliveira, Ana B A; Ginani, Veronica C; Araújo, Carolina V; Lima, Thalita A S; de Castro, Angela K F; Stedefeldt, Elke

    2016-01-01

    In 2014, Brazil hosted one of the most popular sport competitions in the world, the FIFA World Cup. Concerned about the intense migration of tourists, the Brazilian government decided to deploy a food safety strategy based on inspection scores and a grading system applied to food services. The present study aimed to evaluate the results of the food safety strategy deployed during the 2014 FIFA World Cup in Brazil. To assess food safety, an evaluation instrument was applied twice in 1927 food service establishments from 26 cities before the start of the competition. This instrument generated a food safety score for each establishment that ranged from 0.0 (no flaws observed) to 2565.95, with four possible grades: A (0.0-13.2); B (13.3-502.6); C (502.7-1152.2); and pending (more than 1152.3). Each food service received a stamp with the grade of the second evaluation. After the end of the World Cup, a study was conducted with different groups of the public to evaluate the acceptance of the strategy. To this end, 221 consumers, 998 food service owners or managers, 150 health surveillance auditors, and 27 health surveillance coordinators were enrolled. These participants completed a survey with positive and negative responses about the inspection score system through a 5-point Likert scale. A reduction in violation scores from 393.1 to 224.4 (p < 0.001) was observed between the first and second evaluation cycles. Of the food services evaluated, 38.7% received the A stamp, 41.4% the B stamp, and 13.9% the C stamp. All positive responses on "system reliability" presented a mean of 4.0 or more, indicating that the public believed this strategy is reliable for communicating risks and promoting food safety. The strategy showed positive results regarding food safety and public acceptance. The deployed strategy promoted improvements in the food safety of food services. The implementation of a permanent policy may be well accepted by the public and may greatly contribute to a reduction in foodborne diseases (FBDs).

  9. Ares I-X Range Safety Flight Envelope Analysis

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Olds, Aaron D.; Craig, Anthony S.

    2011-01-01

    Ares I-X was the first test flight of NASA's Constellation Program's Ares I Crew Launch Vehicle designed to provide manned access to low Earth orbit. As a one-time test flight, the Air Force's 45th Space Wing required a series of Range Safety analysis data products to be developed for the specified launch date and mission trajectory prior to granting flight approval on the Eastern Range. The range safety data package is required to ensure that the public, launch area, and launch complex personnel and resources are provided with an acceptable level of safety and that all aspects of prelaunch and launch operations adhere to applicable public laws. The analysis data products, defined in the Air Force Space Command Manual 91-710, Volume 2, consisted of a nominal trajectory, three sigma trajectory envelopes, stage impact footprints, acoustic intensity contours, trajectory turn angles resulting from potential vehicle malfunctions (including flight software failures), characterization of potential debris, and debris impact footprints. These data products were developed under the auspices of the Constellation's Program Launch Constellation Range Safety Panel and its Range Safety Trajectory Working Group with the intent of beginning the framework for the operational vehicle data products and providing programmatic review and oversight. A multi-center NASA team in conjunction with the 45th Space Wing, collaborated within the Trajectory Working Group forum to define the data product development processes, performed the analyses necessary to generate the data products, and performed independent verification and validation of the data products. This paper outlines the Range Safety data requirements and provides an overview of the processes established to develop both the data products and the individual analyses used to develop the data products, and it summarizes the results of the analyses required for the Ares I-X launch.

  10. Ares I-X Range Safety Analyses Overview

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Gowan, John W., Jr.; Thompson, Brian G.; Tarpley, Ashley W.

    2011-01-01

    Ares I-X was the first test flight of NASA's Constellation Program's Ares I Crew Launch Vehicle designed to provide manned access to low Earth orbit. As a one-time test flight, the Air Force's 45th Space Wing required a series of Range Safety analysis data products to be developed for the specified launch date and mission trajectory prior to granting flight approval on the Eastern Range. The range safety data package is required to ensure that the public, launch area, and launch complex personnel and resources are provided with an acceptable level of safety and that all aspects of prelaunch and launch operations adhere to applicable public laws. The analysis data products, defined in the Air Force Space Command Manual 91-710, Volume 2, consisted of a nominal trajectory, three sigma trajectory envelopes, stage impact footprints, acoustic intensity contours, trajectory turn angles resulting from potential vehicle malfunctions (including flight software failures), characterization of potential debris, and debris impact footprints. These data products were developed under the auspices of the Constellation's Program Launch Constellation Range Safety Panel and its Range Safety Trajectory Working Group with the intent of beginning the framework for the operational vehicle data products and providing programmatic review and oversight. A multi-center NASA team in conjunction with the 45th Space Wing, collaborated within the Trajectory Working Group forum to define the data product development processes, performed the analyses necessary to generate the data products, and performed independent verification and validation of the data products. This paper outlines the Range Safety data requirements and provides an overview of the processes established to develop both the data products and the individual analyses used to develop the data products, and it summarizes the results of the analyses required for the Ares I-X launch.

  11. Modular closed-loop control of diabetes.

    PubMed

    Patek, S D; Magni, L; Dassau, E; Karvetski, C; Toffanin, C; De Nicolao, G; Del Favero, S; Breton, M; Man, C Dalla; Renard, E; Zisser, H; Doyle, F J; Cobelli, C; Kovatchev, B P

    2012-11-01

    Modularity plays a key role in many engineering systems, allowing for plug-and-play integration of components, enhancing flexibility and adaptability, and facilitating standardization. In the control of diabetes, i.e., the so-called "artificial pancreas," modularity allows for the step-wise introduction of (and regulatory approval for) algorithmic components, starting with subsystems for assured patient safety and followed by higher layer components that serve to modify the patient's basal rate in real time. In this paper, we introduce a three-layer modular architecture for the control of diabetes, consisting in a sensor/pump interface module (IM), a continuous safety module (CSM), and a real-time control module (RTCM), which separates the functions of insulin recommendation (postmeal insulin for mitigating hyperglycemia) and safety (prevention of hypoglycemia). In addition, we provide details of instances of all three layers of the architecture: the APS© serving as the IM, the safety supervision module (SSM) serving as the CSM, and the range correction module (RCM) serving as the RTCM. We evaluate the performance of the integrated system via in silico preclinical trials, demonstrating 1) the ability of the SSM to reduce the incidence of hypoglycemia under nonideal operating conditions and 2) the ability of the RCM to reduce glycemic variability.

  12. Support from Afar: Using Chemical Safety Information on the Internet.

    ERIC Educational Resources Information Center

    Stuart, Ralph

    One of the major challenges facing people committed to Teaching Safety in High Schools, Colleges, and Universities is keeping up with both the wide range of relevant technical information about potential hazards (ranging from fire protection to chemical hazards to biological issues) and the ever-changing world of safety regulations and standards.…

  13. Pressure Safety Program Implementation at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lower, Mark; Etheridge, Tom; Oland, C. Barry

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According tomore » 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply with pressure safety requirements in 10 CFR 851. It also describes actions taken to develop and implement ORNL’s Pressure Safety Program.« less

  14. Earfold Implantable Clip System for Correction of Prominent Ears: Analysis of Safety in 403 Patients

    PubMed Central

    Sojitra, Nilesh; Glumicic, Sinisa; Vlok, Jacobus A.; O’Toole, Greg; Hannan, S. Alam; Sabbagh, Walid

    2018-01-01

    Background: The Earfold system, a new treatment for the correction of prominent ears, consists of 3 components: the Earfold implant, the Earfold introducer, and the Prefold positioner. Methods: This is an interim report based on an ongoing analysis of safety in a series of patients treated for prominent ears with the Earfold implant between February 2013 and September 2014. Safety was assessed based on adverse event reports and the need for implant revision; follow-up is ongoing. Results: Seven surgeons used 1,200 Earfold implants to treat 403 patients (ages, 7–70 years; 63% male); the time since the initial implant procedure now ranges from 30 to 48 months. To date, 145 patients (36%) have returned for a follow-up visit (mean, 7.7 months [range, 1–34 months]). Adverse events requiring intervention have affected 39 of 403 (9.7%) patients; these include implant revisions (n = 17 [4.2%], most often due to implant visibility), skin erosion over the implant (n = 15 [3.7%]), and infection (n = 7 [1.7%]). Bleeding, recurrence of prominence, hematoma, deformity, or adverse scarring did not occur. Conclusions: This interim analysis has shown that Earfold prominent ear correction system is associated with relatively few adverse events that require intervention; a small number of patients experienced infection, implant extrusion, or implant visibility that required revision. Most adverse events were related to either patient selection or technical errors at implantation. It is expected that with continued use of Earfold by surgeons experienced in otoplasty, the adverse event incidence will decrease. PMID:29464160

  15. Spectrum for UAS Control and Non-Payload Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2013-01-01

    There is an increasing need to fly UAS in the NAS to perform missions of vital importance to National Security and Defense, Emergency Management, and Science as well as commercial applications (e.g. cargo transport). To enable integration of UAS into the National Airspace System, several critical technical barriers must be eliminated, including: Separation Assurance/Sense and Avoid - the uncertainty surrounding the ability to interoperate in ATC environments and maintain safe separation from other aircraft in the absence of an on-board pilot. Human Systems Integration - lack of standards and guidelines with respect to UAS display information as well as lack of Ground Control Station (GCS) design requirements to operate in the NAS. Certification - lack of airworthiness requirements and safety-related data specific to the full range of UAS, or for their avionics systems or other components. Communications - lack of standard, certifiable data links and aviation safety spectrum to operate such links for civil UAS control communications.

  16. Leadership and management in quality radiology

    PubMed Central

    2007-01-01

    The practice of medical imaging and interventional radiology are undergoing rapid change in recent years due to technological advances, workload escalation, workforce shortage, globalisation, corporatisation, commercialisation and commoditisation of healthcare. These professional and economical changes are challenging the established norm but may bring new opportunities. There is an increasing awareness of and interest in the quality of care and patient safety in medical imaging and interventional radiology. Among the professional organisations, a range of quality systems are available to address individual, facility and system needs. To manage the limited resources successfully, radiologists and professional organisations must be leaders and champion for the cause of quality care and patient safety. Close collaboration with other stakeholders towards the development and management of proactive, long-term, system-based strategies and infrastructures will underpin a sustainable future in quality radiology. The International Radiology Quality Network can play a useful facilitating role in this worthwhile but challenging endeavour. PMID:21614284

  17. Study of flight data recorder, underwater locator beacon, data logger and flarm collision avoidance system

    NASA Astrophysics Data System (ADS)

    Timi, Purnota Hannan; Shermin, Saima; Rahman, Asifur

    2017-06-01

    Flight data recorder is one of the most important sources of flight data in event of aviation disaster which records a wide range of flight parameters including altitude, airspeed, heading etc. and also helps monitoring and analyzing aircraft performance. Cockpit voice recorder records radio microphone transmissions and sounds in the cockpit. These devices help to find out and understand the root causes of aircraft crashes and help building better aircraft systems and technical solutions to prevent similar type of crashes in future, which lead to improvement in safety of aircrafts and passengers. There are other devices also which enhance the aircraft safety and assists in emergency or catastrophic situations. This paper discusses the concept of Flight Data Recorder (FDR), Cockpit Voice Recorder (CVR), Underwater Locator Beacon (ULB), Data logger and flarm-collision avoidance system for aircraft and their applications in aviation.

  18. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The modelmore » development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.« less

  19. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    DOE PAGES

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth; ...

    2015-08-19

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The modelmore » development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.« less

  20. Laser development for optimal helicopter obstacle warning system LADAR performance

    NASA Astrophysics Data System (ADS)

    Yaniv, A.; Krupkin, V.; Abitbol, A.; Stern, J.; Lurie, E.; German, A.; Solomonovich, S.; Lubashitz, B.; Harel, Y.; Engart, S.; Shimoni, Y.; Hezy, S.; Biltz, S.; Kaminetsky, E.; Goldberg, A.; Chocron, J.; Zuntz, N.; Zajdman, A.

    2005-04-01

    Low lying obstacles present immediate danger to both military and civilian helicopters performing low-altitude flight missions. A LADAR obstacle detection system is the natural solution for enhancing helicopter safety and improving the pilot situation awareness. Elop is currently developing an advanced Surveillance and Warning Obstacle Ranging and Display (SWORD) system for the Israeli Air Force. Several key factors and new concepts have contributed to system optimization. These include an adaptive FOV, data memorization, autonomous obstacle detection and warning algorithms and the use of an agile laser transmitter. In the present work we describe the laser design and performance and discuss some of the experimental results. Our eye-safe laser is characterized by its pulse energy, repetition rate and pulse length agility. By dynamically controlling these parameters, we are able to locally optimize the system"s obstacle detection range and scan density in accordance with the helicopter instantaneous maneuver.

  1. The Wettzell System Monitoring Concept and First Realizations

    NASA Technical Reports Server (NTRS)

    Ettl, Martin; Neidhardt, Alexander; Muehlbauer, Matthias; Ploetz, Christian; Beaudoin, Christopher

    2010-01-01

    Automated monitoring of operational system parameters for the geodetic space techniques is becoming more important in order to improve the geodetic data and to ensure the safety and stability of automatic and remote-controlled observations. Therefore, the Wettzell group has developed the system monitoring software, SysMon, which is based on a reliable, remotely-controllable hardware/software realization. A multi-layered data logging system based on a fanless, robust industrial PC with an internal database system is used to collect data from several external, serial, bus, or PCI-based sensors. The internal communication is realized with Remote Procedure Calls (RPC) and uses generative programming with the interface software generator idl2rpc.pl developed at Wettzell. Each data monitoring stream can be configured individually via configuration files to define the logging rates or analog-digital-conversion parameters. First realizations are currently installed at the new laser ranging system at Wettzell to address safety issues and at the VLBI station O Higgins as a meteorological data logger. The system monitoring concept should be realized for the Wettzell radio telescope in the near future.

  2. Application of food safety management systems (ISO 22000/HACCP) in the Turkish poultry industry: a comparison based on enterprise size.

    PubMed

    Kök, M Samil

    2009-10-01

    The objectives of this study were to determine the extent of food safety management systems (ISO 22000/HACCP) implementation in the Turkish poultry industry. A survey was conducted with 25 major poultry meat producers, which account for close to 90% of national production, and a comparison was made between the procedures of small-to-medium enterprises (SMEs) and large firms (LFs). The survey revealed that there is a high level of application of ISO 22000 (72%), which is seen to aid the export market. LFs were shown to adopt more stringent schemes and make better use of governmental support services than SMEs. LFs were also more aware of, and able to deal with, risks from a greater range of contaminants.

  3. Enhancing swimming pool safety by the use of range-imaging cameras

    NASA Astrophysics Data System (ADS)

    Geerardyn, D.; Boulanger, S.; Kuijk, M.

    2015-05-01

    Drowning is the cause of death of 372.000 people, each year worldwide, according to the report of November 2014 of the World Health Organization.1 Currently, most swimming pools only use lifeguards to detect drowning people. In some modern swimming pools, camera-based detection systems are nowadays being integrated. However, these systems have to be mounted underwater, mostly as a replacement of the underwater lighting. In contrast, we are interested in range imaging cameras mounted on the ceiling of the swimming pool, allowing to distinguish swimmers at the surface from drowning people underwater, while keeping the large field-of-view and minimizing occlusions. However, we have to take into account that the water surface of a swimming pool is not a flat, but mostly rippled surface, and that the water is transparent for visible light, but less transparent for infrared or ultraviolet light. We investigated the use of different types of 3D cameras to detect objects underwater at different depths and with different amplitudes of surface perturbations. Specifically, we performed measurements with a commercial Time-of-Flight camera, a commercial structured-light depth camera and our own Time-of-Flight system. Our own system uses pulsed Time-of-Flight and emits light of 785 nm. The measured distances between the camera and the object are influenced through the perturbations on the water surface. Due to the timing of our Time-of-Flight camera, our system is theoretically able to minimize the influence of the reflections of a partially-reflecting surface. The combination of a post image-acquisition filter compensating for the perturbations and the use of a light source with shorter wavelengths to enlarge the depth range can improve the current commercial cameras. As a result, we can conclude that low-cost range imagers can increase swimming pool safety, by inserting a post-processing filter and the use of another light source.

  4. Can sterile and pyrogen-free on-line substitution fluid be routinely delivered? A multicentric study on the microbiological safety of on-line haemodiafiltration.

    PubMed

    Vaslaki, L; Karátson, A; Vörös, P; Major, L; Pethö, F; Ladányi, E; Weber, C; Mitteregger, R; Falkenhagen, D

    2000-01-01

    Microbial contamination is characterized not only by the presence of bacteria, but also by high concentrations of biologically active by-products. They are potentially able to cross ultrafiltration and dialysis membranes and stimulate immunocompetent blood cells to synthesize cytokines. In turn, cytokine induction causes acute symptoms and has been incriminated in the long-term complications of haemodialysis patients. Infusion of large volumes of substitution fluids following ultrafiltration of microbially contaminated dialysis fluids may place patients on on-line therapies at particular risk. In this study we evaluated 30 machines with a two-stage ultrafiltration system in routine clinical haemodiafiltration settings in six centres for 6 months. Microbiological safety was assessed monthly and at the last use of the filters by determining microbial counts, endotoxin concentration and cytokine-inducing activity. No pyrogenic episodes were observed during the study period. Double-filtration of standard dialysis fluid (range, <1-895 cfu/ml, 0.0028-4.6822 IU/ml) resulted in sterile substitution fluids with endotoxin concentrations well below the Ph.Eur. standard for haemofiltration solutions (range, 0.0014-0.0281 vs 0.25 IU/ml). Moreover, they did not differ from commercial haemofiltration solutions and depyrogenated saline. Likewise, there was no difference in the cytokine-inducing activity between the solutions tested. The high microbiological quality of the ultrafiltered dialysis fluid, which was in the same range as substitution fluid, translates into both the absence of cytokine induction by dialyser back-transport and a redundant safety mode of the on-line system by a second filtration step. On-line HDF treatment can routinely be provided with ultra-pure dialysis fluids and sterile substitution fluids at pyrogen-free levels. The online preparation of substitution fluids thus can be considered microbiologically safe.

  5. [Safe Use of Recent New Drugs-Current Status and Challenges].

    PubMed

    Ohashi, Yoshiaki

    2018-01-01

     In Japan and overseas, Chugai Pharmaceutical Company handles numerous biopharmaceuticals, molecular targeted therapies and other pharmaceuticals with innovative modes of action. Expert safety evaluation is essential for promoting the appropriate use of these pharmaceuticals around the world and in gaining acceptance from patients and healthcare professionals (HCPs), while speedy decision-making is crucial for the timely collection and provision of safety information and thus ensuring safety. In 2015, we collected safety information on more than 180000 cases and evaluated it from a medical standpoint. We have established a system for recording the collected information in a global database, and are conducting signal detection of adverse drug reactions using this database. With this system, we promptly disclose information to regulatory authorities in Japan, the US, Europe and Asia. We have in-house medical doctors with abundant clinical experience who conduct expert safety evaluations. Many innovative drugs, such as anticancer drugs or biopharmaceuticals, require wider-ranging, more rigorous management, including the provision of appropriate safety information to HCPs, management of distribution through wholesalers and dispensing pharmacies, and confirmation of conditions of use, in addition to all-case registration surveillance. With progress in the development of individualized medicine and drugs with new modes of action, in order for HCPs to understand the characteristics of these new drugs and use them appropriately, pharmacists and pharmaceutical companies should cooperate in promoting their appropriate use in the spirit of 'All Pharmacists for Patients'.

  6. Sasquatch Footprint Tool

    NASA Technical Reports Server (NTRS)

    Bledsoe, Kristin

    2013-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is the parachute system for NASA s Orion spacecraft. The test program consists of numerous drop tests, wherein a test article rigged with parachutes is extracted or released from an aircraft. During such tests, range safety is paramount, as is the recoverability of the parachutes and test article. It is crucial to establish an aircraft release point that will ensure that the article and all items released from it will land in safe locations. A new footprint predictor tool, called Sasquatch, was created in MATLAB. This tool takes in a simulated trajectory for the test article, information about all released objects, and atmospheric wind data (simulated or actual) to calculate the trajectories of the released objects. Dispersions are applied to the landing locations of those objects, taking into account the variability of winds, aircraft release point, and object descent rate. Sasquatch establishes a payload release point (e.g., where the payload will be extracted from the carrier aircraft) that will ensure that the payload and all objects released from it will land in a specified cleared area. The landing locations (the final points in the trajectories) are plotted on a map of the test range. Sasquatch was originally designed for CPAS drop tests and includes extensive information about both the CPAS hardware and the primary test range used for CPAS testing. However, it can easily be adapted for more complex CPAS drop tests, other NASA projects, and commercial partners. CPAS has developed the Sasquatch footprint tool to ensure range safety during parachute drop tests. Sasquatch is well correlated to test data and continues to ensure the safety of test personnel as well as the safe recovery of all equipment. The tool will continue to be modified based on new test data, improving predictions and providing added capability to meet the requirements of more complex testing.

  7. Contributions of Microgravity Test Results to the Design of Spacecraft Fire Safety Systems

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) as compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  8. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  9. Identifying Facilitators and Barriers for Patient Safety in a Medicine Label Design System Using Patient Simulation and Interviews.

    PubMed

    Dieckmann, Peter; Clemmensen, Marianne Hald; Sørensen, Trine Kart; Kunstek, Pina; Hellebek, Annemarie

    2016-12-01

    Medicine label design plays an important role in improving patient safety. This study aimed at identifying facilitators and barriers in a medicine label system to prevent medication errors in clinical use by health care professionals. The study design is qualitative and exploratory, with a convenience sample of 10 nurses and 10 physicians from different acute care specialties working in hospitals in the Capital Region of Denmark. In 2 patient simulation scenarios and a sorting task, the participants selected the medicines from a range of ampules, vials, and infusion bags. After each scenario and in the end of the study, the participants were interviewed. Notes were validated with the participants, and content was analyzed. The label design benefited from the standardized construction of the labels, the clear layout and font, and some warning signs. The complexity of the system and some inconsistencies (different meaning of colors) posed challenges, when considered with the actual application context, in which there is little time to get familiar with the design features. For optimizing medicine labels and obtaining the full benefit of label design features on patient safety, it is necessary to consider the context in which they are used.

  10. The value of Doppler LiDAR systems to monitor turbulence intensity during storm events in order to enhance aviation safety in Iceland

    NASA Astrophysics Data System (ADS)

    Yang, Shu; Nína Petersen, Guðrún; Finger, David C.

    2017-04-01

    Turbulence and wind shear are a major natural hazards for aviation safety in Iceland. The temporal and spatial scale of atmospheric turbulence is very dynamic, requiring an adequate method to detect and monitor turbulence with high resolution. The Doppler Light Detection and Ranging (LiDAR) system can provide continuous information about the wind field using the Doppler effect form emitted light signals. In this study, we use a Leosphere Windcube 200s LiDAR systems stationed near Reykjavik city Airport and at Keflavik International Airport, Iceland, to evaluate turbulence intensity by estimating eddy dissipation rate (EDR). For this purpose, we retrieved radial wind velocity observations from Velocity Azimuth Display (VAD) scans (360°scans at 15° and 75° elevation angle) to compute EDR. The method was used to monitor and characterize storm events in fall 2016 and the following winter. The preliminary result reveal that the LiDAR observations can detect and quantify atmospheric turbulence with high spatial and temporal resolution. This finding is an important step towards enhanced aviation safety in subpolar climate characterized by sever wind turbulence.

  11. Systemic safety project selection tool.

    DOT National Transportation Integrated Search

    2013-07-01

    "The Systemic Safety Project Selection Tool presents a process for incorporating systemic safety planning into traditional safety management processes. The Systemic Tool provides a step-by-step process for conducting systemic safety analysis; conside...

  12. Bacterial contamination of eggs and behaviour of poultry flocks in the free range environment.

    PubMed

    Moyle, Talia; Drake, Kelly; Gole, Vaibhav; Chousalkar, Kapil; Hazel, Susan

    2016-12-01

    The free range production system is becoming more common in Australia and is expected to increase. Free range hens are exposed to more stressors in comparison to hens from barn and cage systems and it is suggested that stress can increase bacterial shedding on eggs. The aims of this study were to examine the level of total bacteria and Enterobacteriaceae populations, as well as the presence of Salmonella and Campylobacter, in eggs collected from two free range flocks on two different farms and to conduct longitudinal observations of the behaviour and welfare of hens in the free range production system. Hen age (weeks) was shown to have a significant effect (increase) on the level of total bacteria on the egg shell surface and in shell pores, as well as having an effect on feather condition score. As the hens aged, the frequency of external visual egg characteristics increased, as did feather condition score (where feather condition was poorer). These observations indicate areas which should be investigated further to improve the food safety of eggs and optimise the welfare of free range hens. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. A Novel Multi-Sensor Environmental Perception Method Using Low-Rank Representation and a Particle Filter for Vehicle Reversing Safety

    PubMed Central

    Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang

    2016-01-01

    Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. PMID:27294931

  14. A Novel Multi-Sensor Environmental Perception Method Using Low-Rank Representation and a Particle Filter for Vehicle Reversing Safety.

    PubMed

    Zhang, Zutao; Li, Yanjun; Wang, Fubing; Meng, Guanjun; Salman, Waleed; Saleem, Layth; Zhang, Xiaoliang; Wang, Chunbai; Hu, Guangdi; Liu, Yugang

    2016-06-09

    Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety.

  15. 33 CFR 169.215 - How must a ship transmit position reports?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false How must a ship transmit position reports? 169.215 Section 169.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification and Tracking Information § 169.215...

  16. 33 CFR 169.210 - Where during its international voyage must a ship transmit position reports?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Where during its international voyage must a ship transmit position reports? 169.210 Section 169.210 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range Identification...

  17. Unmanned Aerial Vehicle Mishap Taxonomy for Range Safety Reviews

    DTIC Science & Technology

    2016-02-01

    Wind /Turbulence ................................................................................................. 5-3 5.1.3 Rain...majority of ignition system failures was traced to the magneto and were primarily attributed to exposure to high engine temperature or loose wiring ...intervals were mentioned in reports as corrective actions for these scenarios. One instance of fuel nozzle failure in a turbine -powered UAV resulted in

  18. A Safety and Environmental Assessment of the Biological Simulants Bacillus subtilis and Newcastle Disease Virus. Volume 1: Discussion

    DTIC Science & Technology

    1993-01-01

    1988) Bacillus keratitis associated with contaminated contact lens care systems. Am J Ophthalmol105:195-197 * Doyle RJ, Keller KF, Ezzell JW (1985...cities lie within 250 miles and could easily be reached by a viral aerosol generated on the Suffield range. The distances could be covered in a

  19. Chasing Salmonella Typhimurium in free range egg production system.

    PubMed

    Chousalkar, Kapil; Gole, Vaibhav; Caraguel, Charles; Rault, Jean-Loup

    2016-08-30

    Free range production systems are becoming a major source of egg production in Australia and worldwide. This study investigated shedding and ecology of Salmonella Typhimurium and Salmonella species in a free range layer flock, wild birds and foxes in the vicinity of the free range farm in different seasons. Shedding of Salmonella was significantly higher in summer. Within the shed, overall, Salmonella prevalence was highest in dust. Corticosterone level in faeces was highest in spring and lowest in winter. There was no direct association between the Salmonella shedding (MPN/gm) and corticosterone levels in faeces. Salmonella Typhimurium MLVA types isolated from fox and wild birds were similar to MLVA types isolated from layer flock and reported during human food borne illness. Wild birds and foxes appear to play an important role in S. Typhimurium ecology and food safety. Environmental factors could play a role in evolution of S. Typhimurium in free range environment. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  20. Constraints to microbial food safety policy: opinions from stakeholder groups along the farm to fork continuum.

    PubMed

    Sargeant, J M; Ramsingh, B; Wilkins, A; Travis, R G; Gavrus, D; Snelgrove, J W

    2007-01-01

    This exploratory qualitative study was conducted to identify constraints to microbial food safety policy in Canada and the USA from the perspective of stakeholder groups along the farm to fork continuum. Thirty-seven stakeholders participated in interviews or a focus group where semi-structured questions were used to facilitate discussion about constraints to policy development and implementation. An emergent grounded theory approach was used to determine themes and concepts that arose from the data (versus fitting the data to a hypothesis or a priori classification). Despite the plurality of stakeholders and the range of content expertise, participant perceptions emerged into five common themes, although, there were often disagreements as to the positive or negative attributes of specific concepts. The five themes included challenges related to measurement and objectives of microbial food safety policy goals, challenges arising from lack of knowledge, or problems with communication of knowledge coupled with current practices, beliefs and traditions; the complexity of the food system and the plurality of stakeholders; the economics of producing safe food and the limited resources to address the problem; and, issues related to decision-making and policy, including ownership of the problem and inappropriate inputs to the decision-making process. Responsibilities for food safety and for food policy failure were attributed to all stakeholders along the farm to fork continuum. While challenges regarding the biology of food safety were identified as constraints, a broader range of policy inputs encompassing social, economic and political considerations were also highlighted as critical to the development and implementation of effective food safety policy. Strategies to address these other inputs may require new, transdisciplinary approaches as an adjunct to the traditional science-based risk assessment model.

  1. Validating the Danish adaptation of the World Health Organization's International Classification for Patient Safety classification of patient safety incident types

    PubMed Central

    Mikkelsen, Kim Lyngby; Thommesen, Jacob; Andersen, Henning Boje

    2013-01-01

    Objectives Validation of a Danish patient safety incident classification adapted from the World Health Organizaton's International Classification for Patient Safety (ICPS-WHO). Design Thirty-three hospital safety management experts classified 58 safety incident cases selected to represent all types and subtypes of the Danish adaptation of the ICPS (ICPS-DK). Outcome Measures Two measures of inter-rater agreement: kappa and intra-class correlation (ICC). Results An average number of incident types used per case per rater was 2.5. The mean ICC was 0.521 (range: 0.199–0.809) and the mean kappa was 0.513 (range: 0.193–0.804). Kappa and ICC showed high correlation (r = 0.99). An inverse correlation was found between the prevalence of type and inter-rater reliability. Results are discussed according to four factors known to determine the inter-rater agreement: skill and motivation of raters; clarity of case descriptions; clarity of the operational definitions of the types and the instructions guiding the coding process; adequacy of the underlying classification scheme. Conclusions The incident types of the ICPS-DK are adequate, exhaustive and well suited for classifying and structuring incident reports. With a mean kappa a little above 0.5 the inter-rater agreement of the classification system is considered ‘fair’ to ‘good’. The wide variation in the inter-rater reliability and low reliability and poor discrimination among the highly prevalent incident types suggest that for these types, precisely defined incident sub-types may be preferred. This evaluation of the reliability and usability of WHO's ICPS should be useful for healthcare administrations that consider or are in the process of adapting the ICPS. PMID:23287641

  2. Exploring the use of situation awareness in behaviors and practices of health and safety leaders.

    PubMed

    Willmer, D R

    2017-01-01

    An understanding of how health and safety management systems (HSMS) reduce worksite injuries, illnesses and fatalities may be gained in studying the behaviors of health and safety leaders. These leaders bear the accountability for identifying, understanding and managing the risks of a mining operation. More importantly, they have to transfer this knowledge of perception, recognition and response to risks in the mining environment to their workers. The leaders' efforts to build and maintain a mining operation's workforce that consistently executes safe work practices may be captured through more than just lagging indicators of health and safety performance. This exploratory study interviewed six leaders in occupations such as site-level safety supervisors, mine superintendents and/or general managers at surface and underground stone, sand and gravel and metal/nonmetal mine sites throughout the United States, with employee populations ranging from 40 to 175. In exploring leaders' perspectives on how they systematically manage health and safety, examples such as approaches to task training, handling near-miss incidents, identifying future leaders and providing workers with feedback offer insights into how leaders translate their knowledge and management of site-level risks to others.

  3. Exploring the use of situation awareness in behaviors and practices of health and safety leaders

    PubMed Central

    Willmer, D.R.

    2018-01-01

    An understanding of how health and safety management systems (HSMS) reduce worksite injuries, illnesses and fatalities may be gained in studying the behaviors of health and safety leaders. These leaders bear the accountability for identifying, understanding and managing the risks of a mining operation. More importantly, they have to transfer this knowledge of perception, recognition and response to risks in the mining environment to their workers. The leaders’ efforts to build and maintain a mining operation’s workforce that consistently executes safe work practices may be captured through more than just lagging indicators of health and safety performance. This exploratory study interviewed six leaders in occupations such as site-level safety supervisors, mine superintendents and/or general managers at surface and underground stone, sand and gravel and metal/nonmetal mine sites throughout the United States, with employee populations ranging from 40 to 175. In exploring leaders’ perspectives on how they systematically manage health and safety, examples such as approaches to task training, handling near-miss incidents, identifying future leaders and providing workers with feedback offer insights into how leaders translate their knowledge and management of site-level risks to others. PMID:29593373

  4. 33 CFR 96.220 - What makes up a safety management system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.220 What makes up a safety management system? (a) The safety management system must document the responsible person's— (1) Safety and pollution prevention...

  5. Comparing two safety culture surveys: safety attitudes questionnaire and hospital survey on patient safety.

    PubMed

    Etchegaray, Jason M; Thomas, Eric J

    2012-06-01

    To examine the reliability and predictive validity of two patient safety culture surveys-Safety Attitudes Questionnaire (SAQ) and Hospital Survey on Patient Safety Culture (HSOPS)-when administered to the same participants. Also to determine the ability to convert HSOPS scores to SAQ scores. Employees working in intensive care units in 12 hospitals within a large hospital system in the southern United States were invited to anonymously complete both safety culture surveys electronically. All safety culture dimensions from both surveys (with the exception of HSOPS's Staffing) had adequate levels of reliability. Three of HSOPS's outcomes-frequency of event reporting, overall perceptions of patient safety, and overall patient safety grade-were significantly correlated with SAQ and HSOPS dimensions of culture at the individual level, with correlations ranging from r=0.41 to 0.65 for the SAQ dimensions and from r=0.22 to 0.72 for the HSOPS dimensions. Neither the SAQ dimensions nor the HSOPS dimensions predicted the fourth HSOPS outcome-number of events reported within the last 12 months. Regression analyses indicated that HSOPS safety culture dimensions were the best predictors of frequency of event reporting and overall perceptions of patient safety while SAQ and HSOPS dimensions both predicted patient safety grade. Unit-level analyses were not conducted because indices did not indicate that aggregation was appropriate. Scores were converted between the surveys, although much variance remained unexplained. Given that the SAQ and HSOPS had similar reliability and predictive validity, investigators and quality and safety leaders should consider survey length, content, sensitivity to change and the ability to benchmark when selecting a patient safety culture survey.

  6. Repeat prescribing of medications: A system‐centred risk management model for primary care organisations

    PubMed Central

    Price, Julie; Man, Shu Ling; Bartlett, Stephen; Taylor, Kate; Dinwoodie, Mark

    2017-01-01

    Abstract Rationale, aims and objectives Reducing preventable harm from repeat medication prescriptions is a patient safety priority worldwide. In the United Kingdom, repeat prescriptions items issued has doubled in the last 20 years from 5.8 to 13.3 items per patient per annum. This has significant resource implications and consequences for avoidable patient harms. Consequently, we aimed to test a risk management model to identify, measure, and reduce repeat prescribing system risks in primary care. Methods All 48 general medical practices in National Health Service (NHS) Lambeth Clinical Commissioning Group (an inner city area of south London in England) were recruited. Multiple interventions were implemented, including educational workshops, a web‐based risk monitoring system, and external reviews of repeat prescribing system risks by clinicians. Data were collected via documentation reviews and interviews and subject to basic thematic and descriptive statistical analyses. Results Across the 48 participating general practices, 62 unique repeat prescribing risks were identified on 505 occasions (eg, practices frequently experiencing difficulty interpreting medication changes on hospital discharge summaries), equating to a mean of 8.1 risks per practice (range: 1‐33; SD = 7.13). Seven hundred sixty‐seven system improvement actions were recommended across 96 categories (eg, alerting hospitals to illegible writing and delays with discharge summaries) with a mean of 15.6 actions per practice (range: 0‐34; SD = 8.0). Conclusions The risk management model tested uncovered important safety concerns and facilitated the development and communication of related improvement recommendations. System‐wide information on hazardous repeat prescribing and how this could be mitigated is very limited. The approach reported may have potential to close this gap and improve the reliability of general practice systems and patient safety, which should be of high interest to primary care organisations internationally. PMID:28370904

  7. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Baggs, Rhoda

    2007-01-01

    Safety-critical computer systems must be engineered to meet system and software safety requirements. For legacy safety-critical computer systems, software safety requirements may not have been formally specified during development. When process-oriented software safety requirements are levied on a legacy system after the fact, where software development artifacts don't exist or are incomplete, the question becomes 'how can this be done?' The risks associated with only meeting certain software safety requirements in a legacy safety-critical computer system must be addressed should such systems be selected as candidates for reuse. This paper proposes a method for ascertaining formally, a software safety risk assessment, that provides measurements for software safety for legacy systems which may or may not have a suite of software engineering documentation that is now normally required. It relies upon the NASA Software Safety Standard, risk assessment methods based upon the Taxonomy-Based Questionnaire, and the application of reverse engineering CASE tools to produce original design documents for legacy systems.

  8. Evolution and advanced technology. [of Flight Telerobotic Servicer

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford; Pennington, Jack E.; Hansen, Bert, III

    1990-01-01

    The NASREM architecture with its standard interfaces permits development and evolution of the Flight Telerobotic Servicer to greater autonomy. Technologies in control strategies for an arm with seven DOF, including a safety system containing skin sensors for obstacle avoidance, are being developed. Planning and robotic execution software includes symbolic task planning, world model data bases, and path planning algorithms. Research over the last five years has led to the development of laser scanning and ranging systems, which use coherent semiconductor laser diodes for short range sensing. The possibility of using a robot to autonomously assemble space structures is being investigated. A control framework compatible with NASREM is being developed that allows direct global control of the manipulator. Researchers are developing systems that permit an operator to quickly reconfigure the telerobot to do new tasks safely.

  9. Adverse Events Associated with Hospitalization or Detected through the RAI-HC Assessment among Canadian Home Care Clients

    PubMed Central

    Doran, Diane; Hirdes, John P.; Blais, Régis; Baker, G. Ross; Poss, Jeff W.; Li, Xiaoqiang; Dill, Donna; Gruneir, Andrea; Heckman, George; Lacroix, Hélène; Mitchell, Lori; O'Beirne, Maeve; Foebel, Andrea; White, Nancy; Qian, Gan; Nahm, Sang-Myong; Yim, Odilia; Droppo, Lisa; McIsaac, Corrine

    2013-01-01

    Background: The occurrence of adverse events (AEs) in care settings is a patient safety concern that has significant consequences across healthcare systems. Patient safety problems have been well documented in acute care settings; however, similar data for clients in home care (HC) settings in Canada are limited. The purpose of this Canadian study was to investigate AEs in HC, specifically those associated with hospitalization or detected through the Resident Assessment Instrument for Home Care (RAI-HC). Method: A retrospective cohort design was used. The cohort consisted of HC clients from the provinces of Nova Scotia, Ontario, British Columbia and the Winnipeg Regional Health Authority. Results: The overall incidence rate of AEs associated with hospitalization ranged from 6% to 9%. The incidence rate of AEs determined from the RAI-HC was 4%. Injurious falls, injuries from other than fall and medication-related events were the most frequent AEs associated with hospitalization, whereas new caregiver distress was the most frequent AE identified through the RAI-HC. Conclusion: The incidence of AEs from all sources of data ranged from 4% to 9%. More resources are needed to target strategies for addressing safety risks in HC in a broader context. Tools such as the RAI-HC and its Clinical Assessment Protocols, already available in Canada, could be very useful in the assessment and management of HC clients who are at safety risk. PMID:23968676

  10. Hybrid optical security system using photonic crystals and MEMS devices

    NASA Astrophysics Data System (ADS)

    Ciosek, Jerzy; Ostrowski, Roman

    2017-10-01

    An important issue in security systems is that of selection of the appropriate detectors or sensors, whose sensitivity guarantees functional reliability whilst avoiding false alarms. Modern technology enables the optimization of sensor systems, tailored to specific risk factors. In optical security systems, one of the safety parameters considered is the spectral range in which the excitation signal is associated with a risk factor. Advanced safety systems should be designed taking into consideration the possible occurrence of, often multiple, complex risk factors, which can be identified individually. The hazards of concern in this work are chemical warfare agents and toxic industrial compounds present in the forms of gases and aerosols. The proposed sensor solution is a hybrid optical system consisting of a multi-spectral structure of photonic crystals associated with a MEMS (Micro Electro-Mechanical System) resonator. The crystallographic structures of carbon present in graphene rings and graphenecarbon nanotube nanocomposites have properties which make them desirable for use in detectors. The advantage of this system is a multi-spectral sensitivity at the same time as narrow-band selectivity for the identification of risk factors. It is possible to design a system optimized for detecting specified types of risk factor from very complex signals.

  11. Safer Systems: A NextGen Aviation Safety Strategic Goal

    NASA Technical Reports Server (NTRS)

    Darr, Stephen T.; Ricks, Wendell R.; Lemos, Katherine A.

    2008-01-01

    The Joint Planning and Development Office (JPDO), is charged by Congress with developing the concepts and plans for the Next Generation Air Transportation System (NextGen). The National Aviation Safety Strategic Plan (NASSP), developed by the Safety Working Group of the JPDO, focuses on establishing the goals, objectives, and strategies needed to realize the safety objectives of the NextGen Integrated Plan. The three goal areas of the NASSP are Safer Practices, Safer Systems, and Safer Worldwide. Safer Practices emphasizes an integrated, systematic approach to safety risk management through implementation of formalized Safety Management Systems (SMS) that incorporate safety data analysis processes, and the enhancement of methods for ensuring safety is an inherent characteristic of NextGen. Safer Systems emphasizes implementation of safety-enhancing technologies, which will improve safety for human-centered interfaces and enhance the safety of airborne and ground-based systems. Safer Worldwide encourages coordinating the adoption of the safer practices and safer systems technologies, policies and procedures worldwide, such that the maximum level of safety is achieved across air transportation system boundaries. This paper introduces the NASSP and its development, and focuses on the Safer Systems elements of the NASSP, which incorporates three objectives for NextGen systems: 1) provide risk reducing system interfaces, 2) provide safety enhancements for airborne systems, and 3) provide safety enhancements for ground-based systems. The goal of this paper is to expose avionics and air traffic management system developers to NASSP objectives and Safer Systems strategies.

  12. Atmospheric, Magnetospheric and plasmas in Space (AMPS) spacelab payload definition study; Volume 4: Part 3, Labcraft instrument systems general specification

    NASA Technical Reports Server (NTRS)

    Keeley, J. T.

    1976-01-01

    Guidelines and general requirements applicable to the development of instrument flight hardware intended for use on the GSFC Shuttle Scientific Payloads Program are given. Criteria, guidelines, and an organized approach to specifying the appropriate level of requirements for each instrument in order to permit its development at minimum cost while still assuring crew safety, are included. It is recognized that the instruments for these payloads will encompass wide ranges of complexity, cost, development risk, and safety hazards. The flexibility required to adapt the controls, documentation, and verification requirements in accord with the specific instrument is provided.

  13. Microfabricated Chemical Sensors for Safety and Emission Control Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Knight, D.; Liu, C. C.; Wu, Q. H.

    1998-01-01

    Chemical sensor technology is being developed for leak detection, emission monitoring, and fire safety applications. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication (MicroElectroMechanical Systems (MEMS)-based) technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Using these technologies, sensors to measure hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  14. Measurement tools and process indicators of patient safety culture in primary care. A mixed methods study by the LINNEAUS collaboration on patient safety in primary care.

    PubMed

    Parker, Dianne; Wensing, Michel; Esmail, Aneez; Valderas, Jose M

    2015-09-01

    There is little guidance available to healthcare practitioners about what tools they might use to assess the patient safety culture. To identify useful tools for assessing patient safety culture in primary care organizations in Europe; to identify those aspects of performance that should be assessed when investigating the relationship between safety culture and performance in primary care. Two consensus-based studies were carried out, in which subject matter experts and primary healthcare professionals from several EU states rated (a) the applicability to their healthcare system of several existing safety culture assessment tools and (b) the appropriateness and usefulness of a range of potential indicators of a positive patient safety culture to primary care settings. The safety culture tools were field-tested in four countries to ascertain any challenges and issues arising when used in primary care. The two existing tools that received the most favourable ratings were the Manchester patient safety framework (MaPsAF primary care version) and the Agency for healthcare research and quality survey (medical office version). Several potential safety culture process indicators were identified. The one that emerged as offering the best combination of appropriateness and usefulness related to the collection of data on adverse patient events. Two tools, one quantitative and one qualitative, were identified as applicable and useful in assessing patient safety culture in primary care settings in Europe. Safety culture indicators in primary care should focus on the processes rather than the outcomes of care.

  15. Measurement tools and process indicators of patient safety culture in primary care. A mixed methods study by the LINNEAUS collaboration on patient safety in primary care

    PubMed Central

    Parker, Dianne; Wensing, Michel; Esmail, Aneez; Valderas, Jose M

    2015-01-01

    ABSTRACT Background: There is little guidance available to healthcare practitioners about what tools they might use to assess the patient safety culture. Objective: To identify useful tools for assessing patient safety culture in primary care organizations in Europe; to identify those aspects of performance that should be assessed when investigating the relationship between safety culture and performance in primary care. Methods: Two consensus-based studies were carried out, in which subject matter experts and primary healthcare professionals from several EU states rated (a) the applicability to their healthcare system of several existing safety culture assessment tools and (b) the appropriateness and usefulness of a range of potential indicators of a positive patient safety culture to primary care settings. The safety culture tools were field-tested in four countries to ascertain any challenges and issues arising when used in primary care. Results: The two existing tools that received the most favourable ratings were the Manchester patient safety framework (MaPsAF primary care version) and the Agency for healthcare research and quality survey (medical office version). Several potential safety culture process indicators were identified. The one that emerged as offering the best combination of appropriateness and usefulness related to the collection of data on adverse patient events. Conclusion: Two tools, one quantitative and one qualitative, were identified as applicable and useful in assessing patient safety culture in primary care settings in Europe. Safety culture indicators in primary care should focus on the processes rather than the outcomes of care. PMID:26339832

  16. Latent effects decision analysis

    DOEpatents

    Cooper, J Arlin [Albuquerque, NM; Werner, Paul W [Albuquerque, NM

    2004-08-24

    Latent effects on a system are broken down into components ranging from those far removed in time from the system under study (latent) to those which closely effect changes in the system. Each component is provided with weighted inputs either by a user or from outputs of other components. A non-linear mathematical process known as `soft aggregation` is performed on the inputs to each component to provide information relating to the component. This information is combined in decreasing order of latency to the system to provide a quantifiable measure of an attribute of a system (e.g., safety) or to test hypotheses (e.g., for forensic deduction or decisions about various system design options).

  17. Modelling safety of multistate systems with ageing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics ofmore » the consecutive “m out of n: F” is presented as well.« less

  18. Operational Safety Assessment of Turbo Generators with Wavelet Rényi Entropy from Sensor-Dependent Vibration Signals

    PubMed Central

    Zhang, Xiaoli; Wang, Baojian; Chen, Xuefeng

    2015-01-01

    With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals’ wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance. PMID:25894934

  19. The Impact of System Factors on Quality and Safety in Arterial Surgery: A Systematic Review.

    PubMed

    Lear, R; Godfrey, A D; Riga, C; Norton, C; Vincent, C; Bicknell, C D

    2017-07-01

    A systems approach to patient safety proposes that a wide range of factors contribute to surgical outcome, yet the impact of team, work environment, and organisational factors, is not fully understood in arterial surgery. The aim of this systematic review is to summarize and discuss what is already known about the impact of system factors on quality and safety in arterial surgery. A systematic review of original research papers in English using MEDLINE, Embase, PsycINFO, and Cochrane databases, was performed according to PRISMA guidelines. Independent reviewers selected papers according to strict inclusion and exclusion criteria, and using predefined data fields, extracted relevant data on team, work environment, and organisational factors, and measures of quality and/or safety, in arterial procedures. Twelve papers met the selection criteria. Study endpoints were not consistent between papers, and most failed to report their clinical significance. A variety of tools were used to measure team skills in five papers; only one paper measured the relationship between team factors and patient outcomes. Two papers reported that equipment failures were common and had a significant impact on operating room efficiency. The influence of hospital characteristics on failure-to-rescue rates was tested in one large study, although their conclusions were limited to the American Medicare population. Five papers implemented changes in the patient pathway, but most studies failed to account for potential confounding variables. A small number of heterogenous studies have evaluated the relationship between system factors and quality or safety in arterial surgery. There is some evidence of an association between system factors and patient outcomes, but there is more work to be done to fully understand this relationship. Future research would benefit from consistency in definitions, the use of validated assessment tools, measurement of clinically relevant endpoints, and adherence to national reporting guidelines. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. Evaluation and review of the safety management system implementation in the Royal Thai Air Force

    NASA Astrophysics Data System (ADS)

    Chaiwan, Sakkarin

    This study was designed to determine situation and effectiveness of the safety management system currently implemented in the Royal Thai Air Force. Reviewing the ICAO's SMS and the RTAF's SMS was conducted to identify similarities and differences between the two safety management systems. Later, the researcher acquired safety statistics from the RTAF Safety Center to investigate effectiveness of its safety system. The researcher also collected data to identify other factors affecting effectiveness of the safety system during conducting in-depth interviews. Findings and Conclusions: The study shows that the Royal Thai Air Force has never applied the International Civil Aviation Organization's Safety management System to its safety system. However, the RTAF's SMS and the ICAO's SMS have been developed based on the same concepts. These concepts are from Richard H. Woods's book, Aviation safety programs: A management handbook. However, the effectiveness of the Royal Thai Air Force's safety system is in good stance. An accident rate has been decreasing regularly but there are no known factors to describe the increasing rate, according to the participants' opinion. The participants have informed that there are many issues to be resolved to improve the RTAF's safety system. Those issues are cooperation among safety center's staffs, attitude toward safety of the RTAF senior commanders, and safety standards.

  1. SU-E-T-402: Y-90 Microspheres (SIR Spheres) for Treatment of Liver Metastasis : Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, M

    2014-06-01

    Purpose: The purpose of this presentation is to discuss the radiation safety and dosimetric technique used for the therapeutic procedure using Y-90 microspheres through intra -arterial administration on patients with liver metastasis Methods: The radiation dosimetry, technique and safety aspects of 14 patients with primary and metastatic liver cancer, treated with Y-90 microsphere (SIR spheres) are discussed. The liver and tumor volumes were determined using the CT and MR scans . The images were imported into the treatment planning system and the liver and tumor volumes and the volume of the liver affected were outlined and the volume calculation wasmore » performed using the software. The lung shunt fraction (LSF) and tumor to liver uptake ratio (TLR) were determined using the nuclear medicine SPECT imaging with Tc-99m MAA. The absorbed dose to the target volume in liver was calculated using the following equation:Dose ? (Gy) = C x E? x 5.92 x 10-6 (Gy/s) x T(1/2)(days) x 1.44 x 8.64 x 104 (s) The distribution of activity in the tumor bed was confirmed by post Y-90 administration imaging using the Bremsstrahlung peak at 30% window. The patient and the procedure room were surveyed and radiation safety instructions were given to the patient Results: The tumor volume ranged from 77 cc to 700 cc, tumor to liver uptake ranged from 3 to 12. The lung shunt fraction varied from 1.08% to 9.0%. The activity administered ranged from 1.0GBq to 2.5 GBq, . The radiation survey in contact with the patient ranged from 1.8 mR/hr to 2.5 mR/hr and reading at 1 meter was less than 0.2 mR/hr Conclusion: The technique for radiation dosimetry and radiation safety for Y-90 microsphere therapy is established. The post treatment imaging helped to confirm the distribution of Y-90 microspheres inside the tumor bed.« less

  2. Development of a theoretical framework of factors affecting patient safety incident reporting: a theoretical review of the literature

    PubMed Central

    Hull, Louise; Soukup, Tayana; Mayer, Erik; Athanasiou, Thanos; Sevdalis, Nick; Darzi, Ara

    2017-01-01

    Objectives The development and implementation of incident reporting systems within healthcare continues to be a fundamental strategy to reduce preventable patient harm and improve the quality and safety of healthcare. We sought to identify factors contributing to patient safety incident reporting. Design To facilitate improvements in incident reporting, a theoretical framework, encompassing factors that act as barriers and enablers ofreporting, was developed. Embase, Ovid MEDLINE(R) and PsycINFO were searched to identify relevant articles published between January 1980 and May 2014. A comprehensive search strategy including MeSH terms and keywords was developed to identify relevant articles. Data were extracted by three independent researchers; to ensure the accuracy of data extraction, all studies eligible for inclusion were rescreened by two reviewers. Results The literature search identified 3049 potentially eligible articles; of these, 110 articles, including >29 726 participants, met the inclusion criteria. In total, 748 barriers were identified (frequency count) across the 110 articles. In comparison, 372 facilitators to incident reporting and 118 negative cases were identified. The top two barriers cited were fear of adverse consequences (161, representing 21.52% of barriers) and process and systems of reporting (110, representing 14.71% of barriers). In comparison, the top two facilitators were organisational (97, representing 26.08% of facilitators) and process and systems of reporting (75, representing 20.16% of facilitators). Conclusion A wide range of factors contributing to engagement in incident reporting exist. Efforts that address the current tendency to under-report must consider the full range of factors in order to develop interventions as well as a strategic policy approach for improvement. PMID:29284714

  3. Development of a theoretical framework of factors affecting patient safety incident reporting: a theoretical review of the literature.

    PubMed

    Archer, Stephanie; Hull, Louise; Soukup, Tayana; Mayer, Erik; Athanasiou, Thanos; Sevdalis, Nick; Darzi, Ara

    2017-12-27

    The development and implementation of incident reporting systems within healthcare continues to be a fundamental strategy to reduce preventable patient harm and improve the quality and safety of healthcare. We sought to identify factors contributing to patient safety incident reporting. To facilitate improvements in incident reporting, a theoretical framework, encompassing factors that act as barriers and enablers ofreporting, was developed. Embase, Ovid MEDLINE(R) and PsycINFO were searched to identify relevant articles published between January 1980 and May 2014. A comprehensive search strategy including MeSH terms and keywords was developed to identify relevant articles. Data were extracted by three independent researchers; to ensure the accuracy of data extraction, all studies eligible for inclusion were rescreened by two reviewers. The literature search identified 3049 potentially eligible articles; of these, 110 articles, including >29 726 participants, met the inclusion criteria. In total, 748 barriers were identified (frequency count) across the 110 articles. In comparison, 372 facilitators to incident reporting and 118 negative cases were identified. The top two barriers cited were fear of adverse consequences (161, representing 21.52% of barriers) and process and systems of reporting (110, representing 14.71% of barriers). In comparison, the top two facilitators were organisational (97, representing 26.08% of facilitators) and process and systems of reporting (75, representing 20.16% of facilitators). A wide range of factors contributing to engagement in incident reporting exist. Efforts that address the current tendency to under-report must consider the full range of factors in order to develop interventions as well as a strategic policy approach for improvement. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Safety of human papillomavirus vaccines: a review.

    PubMed

    Macartney, Kristine K; Chiu, Clayton; Georgousakis, Melina; Brotherton, Julia M L

    2013-06-01

    Vaccination to prevent human papillomavirus (HPV)-related infection leading to cancer, particularly cervical cancer, is a major public health breakthrough. There are currently two licensed HPV vaccines, both of which contain recombinant virus-like particles of HPV types 16 and 18 (which account for approximately 70 % of cervical cancer). One vaccine also protects against HPV types 6 and 11, which cause genital warts. The safety profile of both vaccines was assessed extensively in randomised controlled clinical trials conducted prior to licensure and has been further elucidated following licensure from surveillance and specific studies in large populations. This review aims to examine current evidence regarding the safety of HPV vaccines. In summary, both vaccines are associated with relatively high rates of injection site reactions, particularly pain, but this is usually of short duration and resolves spontaneously. Systemic reactions have generally been mild and self-limited. Post vaccination syncope has occurred, but can be avoided with appropriate care. Serious vaccine-attributable adverse events, such as anaphylaxis, are rare, and although not recommended for use in pregnancy, abnormal pregnancy outcomes following inadvertent administration do not appear to be associated with vaccination. HPV vaccines are used in a three-dose schedule predominantly in adolescent females: as such case reports linking vaccination with a range of new onset chronic conditions, including autoimmune diseases, have been made. However, well-conducted population-based studies show no association between HPV vaccine and a range of such conditions. Whilst this reassuring safety profile affirms the positive risk benefit of vaccination, as HPV vaccine use expands into more diverse populations, including males, ongoing safety assessment using well-conducted studies is appropriate.

  5. Global Precipitation Measurement (GPM) Safety Inhibit Timeline Tool

    NASA Technical Reports Server (NTRS)

    Dion, Shirley

    2012-01-01

    The Global Precipitation Measurement (GPM) Observatory is a joint mission under the partnership by National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA), Japan. The NASA Goddard Space Flight Center (GSFC) has the lead management responsibility for NASA on GPM. The GPM program will measure precipitation on a global basis with sufficient quality, Earth coverage, and sampling to improve prediction of the Earth's climate, weather, and specific components of the global water cycle. As part of the development process, NASA built the spacecraft (built in-house at GSFC) and provided one instrument (GPM Microwave Imager (GMI) developed by Ball Aerospace) JAXA provided the launch vehicle (H2-A by MHI) and provided one instrument (Dual-Frequency Precipitation Radar (DPR) developed by NTSpace). Each instrument developer provided a safety assessment which was incorporated into the NASA GPM Safety Hazard Assessment. Inhibit design was reviewed for hazardous subsystems which included the High Gain Antenna System (HGAS) deployment, solar array deployment, transmitter turn on, propulsion system release, GMI deployment, and DPR radar turn on. The safety inhibits for these listed hazards are controlled by software. GPM developed a "pathfinder" approach for reviewing software that controls the electrical inhibits. This is one of the first GSFC in-house programs that extensively used software controls. The GPM safety team developed a methodology to document software safety as part of the standard hazard report. As part of this process a new tool "safety inhibit time line" was created for management of inhibits and their controls during spacecraft buildup and testing during 1& Tat GSFC and at the Range in Japan. In addition to understanding inhibits and controls during 1& T the tool allows the safety analyst to better communicate with others the changes in inhibit states with each phase of hardware and software testing. The tool was very useful for communicating compliance with safety requirements especially when working with a foreign partner.

  6. Autonomous rehabilitation at stroke patients home for balance and gait: safety, usability and compliance of a virtual reality system.

    PubMed

    Held, Jeremia P; Ferrer, Begoña; Mainetti, Renato; Steblin, Alexander; Hertler, Benjamin; Moreno-Conde, Alberto; Dueñas, Alvaro; Pajaro, Marta; L-Parra-Calderón, Carlos; Vargiu, Eloisa; Zarco, Maria J; Barrera, Maria; Echevarria, Carmen; Jódar-Sánchez, Francisco; Luft, Andreas R; Borghese, Nunzio A

    2017-09-25

    New technologies, such as telerehabilitation and gaming devices offer the possibility for patients to train at home. This opens the challenge of safety for the patient as he is called to exercise neither with a therapist on the patients' side nor with a therapist linked remotely to supervise the sessions. To study the safety, usability and patient acceptance of an autonomous telerehabilitation system for balance and gait (the REWIRE platform) in the patients home. Cohort study. Community, in the stroke patients' home. 15 participants with first-ever stroke, with a mild to moderate residual deficit of the lower extremities. Autonomous rehabilitation based on virtual rehabilitation was provided at the participants' home for twelve weeks. The primary outcome was compliance (the ratio between days of actual and scheduled training), analysed with the two-tailed Wilcoxon Mann- Whitney test. Furthermore safety is defined by adverse events. The secondary endpoint was the acceptance of the system measured with the Technology Acceptance Model. Additionally, the cumulative duration of weekly training was analysed. During the study there were no adverse events related to the therapy. Patients performed on average 71% (range 39 to 92%) of the scheduled sessions. The Technology Acceptance Model Questionnaire showed excellent values for stroke patients after the training. The average training duration per week was 99 ±53min. Autonomous telerehabilitation for balance and gait training with the REWIRE-system is safe, feasible and can help to intensive rehabilitative therapy at home. Telerehabilitation enables safe training in home environment and supports of the standard rehabilitation therapy.

  7. Modular Closed-Loop Control of Diabetes

    PubMed Central

    Magni, L.; Dassau, E.; Hughes-Karvetski, C.; Toffanin, C.; De Nicolao, G.; Del Favero, S.; Breton, M.; Man, C. Dalla; Renard, E.; Zisser, H.; Doyle, F. J.; Cobelli, C.; Kovatchev, B. P.

    2015-01-01

    Modularity plays a key role in many engineering systems, allowing for plug-and-play integration of components, enhancing flexibility and adaptability, and facilitating standardization. In the control of diabetes, i.e., the so-called “artificial pancreas,” modularity allows for the step-wise introduction of (and regulatory approval for) algorithmic components, starting with subsystems for assured patient safety and followed by higher layer components that serve to modify the patient’s basal rate in real time. In this paper, we introduce a three-layer modular architecture for the control of diabetes, consisting in a sensor/pump interface module (IM), a continuous safety module (CSM), and a real-time control module (RTCM), which separates the functions of insulin recommendation (postmeal insulin for mitigating hyperglycemia) and safety (prevention of hypoglycemia). In addition, we provide details of instances of all three layers of the architecture: the APS© serving as the IM, the safety supervision module (SSM) serving as the CSM, and the range correction module (RCM) serving as the RTCM. We evaluate the performance of the integrated system via in silico preclinical trials, demonstrating 1) the ability of the SSM to reduce the incidence of hypoglycemia under nonideal operating conditions and 2) the ability of the RCM to reduce glycemic variability. PMID:22481809

  8. Dynamics of safety performance and culture: a group model building approach.

    PubMed

    Goh, Yang Miang; Love, Peter E D; Stagbouer, Greg; Annesley, Chris

    2012-09-01

    The management of occupational health and safety (OHS) including safety culture interventions is comprised of complex problems that are often hard to scope and define. Due to the dynamic nature and complexity of OHS management, the concept of system dynamics (SD) is used to analyze accident prevention. In this paper, a system dynamics group model building (GMB) approach is used to create a causal loop diagram of the underlying factors influencing the OHS performance of a major drilling and mining contractor in Australia. While the organization has invested considerable resources into OHS their disabling injury frequency rate (DIFR) has not been decreasing. With this in mind, rich individualistic knowledge about the dynamics influencing the DIFR was acquired from experienced employees with operations, health and safety and training background using a GMB workshop. Findings derived from the workshop were used to develop a series of causal loop diagrams that includes a wide range of dynamics that can assist in better understanding the causal influences OHS performance. The causal loop diagram provides a tool for organizations to hypothesize the dynamics influencing effectiveness of OHS management, particularly the impact on DIFR. In addition the paper demonstrates that the SD GMB approach has significant potential in understanding and improving OHS management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Evaluation of Four Bedside Test Systems for Card Performance, Handling and Safety.

    PubMed

    Giebel, Felix; Picker, Susanne M; Gathof, Birgit S

    2008-01-01

    SUMMARY: OBJECTIVE: Pretransfusion ABO compatibility testing is a simple and required precaution against ABO-incompatible transfusion, which is one of the greatest threats in transfusion medicine. While distinct agglutination is most important for correct test interpretation, protection against infectious diseases and ease of handling are crucial for accurate test performance. Therefore, the aim of this study was to evaluate differences in test card design, handling, and user safety. DESIGN: Four different bedside test cards with pre-applied antibodies were evaluated by 100 medical students using packed red blood cells of different ABO blood groups. Criteria of evaluation were: agglutination, labelling, handling, and safety regarding possible user injuries. Criteria were rated subjectively according to German school notes ranging from 1 = very good to 6 = very bad/insufficient. RESULTS: Overall, all cards received very good/good marks. The ABO blood group was identified correctly in all cases. Three cards (no. 1, no. 3, no. 4) received statistically significant (p < 0.008) prominence (mean values shown) concerning clearness of agglutination (1.7-1.9 vs. 2.4 for no. 2). Systems with dried antibodies (no. 2, no. 4) outmatched the other systems with respect to overall test system performance (2.0 vs. 2.8-2.9), labelling (1.5 vs. 2.2-2.4), handling (1.9-2.0 vs. 2.5), and user safety (2.5 vs. 3.4). Analysis of card self-explanation revealed no remarkable differences. CONCLUSION: Despite good performance of all card systems tested, the best results when including all criteria evaluated were obtained with card no. 4 (particularly concerning clear agglutination), followed by cards no. 2, no. 1, and no. 3.

  10. An Alignment Analysis of the U.S. Navy Supply Corps Officer’s Career Guidance With Naval Supply Systems Command’s Strategic Publications

    DTIC Science & Technology

    2014-06-03

    relationship to business outcomes such as customer satisfaction , turnover, safety, and productivity” (Shuck, 2011, p. 312). Follow-on studies using...during the analysis efforts of this research. The 339 Level 1 codes span a wide range of ideas from strategy execution to customer satisfaction and...not reflect the radical shift in corporate culture needed by Naval Supply Systems Command (NAVSUP) to better serve U.S. Navy customers . This research

  11. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  12. 33 CFR 169.205 - What types of ships are required to transmit LRIT information (position reports)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What types of ships are required to transmit LRIT information (position reports)? 169.205 Section 169.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY SHIP REPORTING SYSTEMS Transmission of Long Range...

  13. 78 FR 34554 - Establishment of Class E Airspace; Blue Mesa, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ...This action establishes Class E airspace at Blue Mesa VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME), Blue Mesa, CO, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Denver and Albuquerque Air Route Traffic Control Centers (ARTCCs). This improves the safety and management of IFR operations within the National Airspace System.

  14. Ultrasonic propulsion of kidney stones.

    PubMed

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  15. Ultrasonic propulsion of kidney stones

    PubMed Central

    May, Philip C.; Bailey, Michael R.; Harper, Jonathan D.

    2016-01-01

    Purpose of review Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Recent findings Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the UPJ with relief of pain, and differentiating large stones from a collection of small fragments. Summary Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing UPJ stones into the kidney to alleviate acute renal colic. PMID:26845428

  16. Priming patient safety: A middle-range theory of safety goal priming via safety culture communication.

    PubMed

    Groves, Patricia S; Bunch, Jacinda L

    2018-05-18

    The aim of this paper is discussion of a new middle-range theory of patient safety goal priming via safety culture communication. Bedside nurses are key to safe care, but there is little theory about how organizations can influence nursing behavior through safety culture to improve patient safety outcomes. We theorize patient safety goal priming via safety culture communication may support organizations in this endeavor. According to this theory, hospital safety culture communication activates a previously held patient safety goal and increases the perceived value of actions nurses can take to achieve that goal. Nurses subsequently prioritize and are motivated to perform tasks and risk assessment related to achieving patient safety. These efforts continue until nurses mitigate or ameliorate identified risks and hazards during the patient care encounter. Critically, this process requires nurses to have a previously held safety goal associated with a repertoire of appropriate actions. This theory suggests undergraduate educators should foster an outcomes focus emphasizing the connections between nursing interventions and safety outcomes, hospitals should strategically structure patient safety primes into communicative activities, and organizations should support professional development including new skills and the latest evidence supporting nursing practice for patient safety. © 2018 John Wiley & Sons Ltd.

  17. Using a safety forecast model to calculate future safety metrics.

    DOT National Transportation Integrated Search

    2017-05-01

    This research sought to identify a process to improve long-range planning prioritization by using forecasted : safety metrics in place of the existing Utah Department of Transportation Safety Indexa metric based on historical : crash data. The res...

  18. 14 CFR 415.33 - Safety organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Safety organization. 415.33 Section 415.33... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch From a Federal Launch Range § 415.33 Safety organization. (a) An applicant shall maintain a safety organization and document it by...

  19. Design and implementation of distributed multimedia surveillance system based on object-oriented middleware

    NASA Astrophysics Data System (ADS)

    Cao, Xuesong; Jiang, Ling; Hu, Ruimin

    2006-10-01

    Currently, the applications of surveillance system have been increasingly widespread. But there are few surveillance platforms that can meet the requirement of large-scale, cross-regional, and flexible surveillance business. In the paper, we present a distributed surveillance system platform to improve safety and security of the society. The system is constructed by an object-oriented middleware called as Internet Communications Engine (ICE). This middleware helps our platform to integrate a lot of surveillance resource of the society and accommodate diverse range of surveillance industry requirements. In the follow sections, we will describe in detail the design concepts of system and introduce traits of ICE.

  20. Predictive Hyperglycemia and Hypoglycemia Minimization: In-Home Evaluation of Safety, Feasibility, and Efficacy in Overnight Glucose Control in Type 1 Diabetes.

    PubMed

    Spaic, Tamara; Driscoll, Marsha; Raghinaru, Dan; Buckingham, Bruce A; Wilson, Darrell M; Clinton, Paula; Chase, H Peter; Maahs, David M; Forlenza, Gregory P; Jost, Emily; Hramiak, Irene; Paul, Terri; Bequette, B Wayne; Cameron, Faye; Beck, Roy W; Kollman, Craig; Lum, John W; Ly, Trang T

    2017-03-01

    The objective of this study was to determine the safety, feasibility, and efficacy of a predictive hyperglycemia and hypoglycemia minimization (PHHM) system compared with predictive low-glucose insulin suspension (PLGS) alone in overnight glucose control. A 42-night trial was conducted in 30 individuals with type 1 diabetes in the age range 15-45 years. Participants were randomly assigned each night to either PHHM or PLGS and were blinded to the assignment. The system suspended the insulin pump on both the PHHM and PLGS nights for predicted hypoglycemia but delivered correction boluses for predicted hyperglycemia on PHHM nights only. The primary outcome was the percentage of time spent in a sensor glucose range of 70-180 mg/dL during the overnight period. The addition of automated insulin delivery with PHHM increased the time spent in the target range (70-180 mg/dL) from 71 ± 10% during PLGS nights to 78 ± 10% during PHHM nights ( P < 0.001). The average morning blood glucose concentration improved from 163 ± 23 mg/dL after PLGS nights to 142 ± 18 mg/dL after PHHM nights ( P < 0.001). Various sensor-measured hypoglycemic outcomes were similar on PLGS and PHHM nights. All participants completed 42 nights with no episodes of severe hypoglycemia, diabetic ketoacidosis, or other study- or device-related adverse events. The addition of a predictive hyperglycemia minimization component to our existing PLGS system was shown to be safe, feasible, and effective in overnight glucose control. © 2017 by the American Diabetes Association.

  1. Safety Communication Tools and Healthcare Professionals' Awareness of Specific Drug Safety Issues in Europe: A Survey Study.

    PubMed

    de Vries, Sieta T; van der Sar, Maartje J M; Coleman, Anna Marie; Escudero, Yvette; Rodríguez Pascual, Alfonso; Maciá Martínez, Miguel-Ángel; Cupelli, Amelia; Baldelli, Ilaria; Šipić, Ivana; Andrić, Adriana; Michan, Line; Denig, Petra; Mol, Peter G M

    2018-07-01

    National competent authorities (NCAs) use Direct Healthcare Professional Communications (DHPCs) to communicate new drug safety issues to healthcare professionals (HCPs). More knowledge is needed about the effectiveness of DHPCs and the extent to which they raise awareness of new safety issues among HCPs. The objective was to assess and compare general practitioners' (GPs'), cardiologists', and pharmacists' familiarity with DHPCs as communication tools, their awareness of specific drug safety issues, and the sources through which they had become aware of the specific issues. GPs, cardiologists, and pharmacists from nine European countries (Croatia, Denmark, Ireland, Italy, the Netherlands, Norway, Spain, Sweden, and the UK) completed a web-based survey. The survey was conducted in the context of the Strengthening Collaboration for Operating Pharmacovigilance in Europe (SCOPE) Joint Action. Respondents were asked about their familiarity with DHPCs in general and their awareness of safety issues that had recently been communicated and involved the following drugs: combined hormonal contraceptives, diclofenac, valproate, and ivabradine. Those HCPs who were aware of the specific safety issues were subsequently asked to indicate the source through which they had become aware of them. Differences between professions in familiarity with DHPCs and awareness were tested using a Pearson χ 2  test per country and post hoc Pearson χ 2  tests in the case of statistically significant differences. Of the 3288 included respondents, 54% were GPs, 40% were pharmacists, and 7% were cardiologists. The number of respondents ranged from 67 in Denmark to 916 in Spain. Most respondents (92%) were familiar with DHPCs, with one significant difference between the professions: pharmacists were more familiar than GPs in Italy (99 vs 90%, P = 0.004). GPs' awareness ranged from 96% for the diclofenac issue to 70% for the ivabradine issue. A similar pattern was shown for pharmacists (91% aware of the diclofenac issue to 66% of the ivabradine issue). Cardiologists' awareness ranged from 91% for the ivabradine issue to 34% for the valproate issue. Overall, DHPCs were a common source through which GPs (range: 45% of those aware of the contraceptives issue to 60% of those aware of the valproate issue), cardiologists (range: 33% for the contraceptives issue to 61% for the valproate issue), and pharmacists (range: 41% for the contraceptives issue to 51% for the ivabradine issue) had become aware of the specific safety issues, followed by information on websites or in newsletters. GPs, cardiologists, and pharmacists were to a similar extent (highly) familiar with DHPCs, but they differed in awareness levels of specific safety issues. Cardiologists were less aware of safety issues associated with non-cardiology drugs even if these had cardiovascular safety concerns. This implies that additional strategies may be needed to reach specialists when communicating safety issues regarding drugs outside their therapeutic area but with risks related to their field of specialisation. DHPCs were an important source for the different professions to become aware of specific safety issues, but other sources were also often used. NCAs should consider the use of a range of sources when communicating important safety issues to HCPs.

  2. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  3. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  4. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  5. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  6. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  7. NASA System Safety Handbook. Volume 2: System Safety Concepts, Guidelines, and Implementation Examples

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Feather, Martin; Rutledge, Peter; Sen, Dev; Youngblood, Robert

    2015-01-01

    This is the second of two volumes that collectively comprise the NASA System Safety Handbook. Volume 1 (NASASP-210-580) was prepared for the purpose of presenting the overall framework for System Safety and for providing the general concepts needed to implement the framework. Volume 2 provides guidance for implementing these concepts as an integral part of systems engineering and risk management. This guidance addresses the following functional areas: 1.The development of objectives that collectively define adequate safety for a system, and the safety requirements derived from these objectives that are levied on the system. 2.The conduct of system safety activities, performed to meet the safety requirements, with specific emphasis on the conduct of integrated safety analysis (ISA) as a fundamental means by which systems engineering and risk management decisions are risk-informed. 3.The development of a risk-informed safety case (RISC) at major milestone reviews to argue that the systems safety objectives are satisfied (and therefore that the system is adequately safe). 4.The evaluation of the RISC (including supporting evidence) using a defined set of evaluation criteria, to assess the veracity of the claims made therein in order to support risk acceptance decisions.

  8. System safety education focused on flight safety

    NASA Technical Reports Server (NTRS)

    Holt, E.

    1971-01-01

    The measures necessary for achieving higher levels of system safety are analyzed with an eye toward maintaining the combat capability of the Air Force. Several education courses were provided for personnel involved in safety management. Data include: (1) Flight Safety Officer Course, (2) Advanced Safety Program Management, (3) Fundamentals of System Safety, and (4) Quantitative Methods of Safety Analysis.

  9. The Fresenius Medical Care home hemodialysis system.

    PubMed

    Schlaeper, Christian; Diaz-Buxo, Jose A

    2004-01-01

    The Fresenius Medical Care home dialysis system consists of a newly designed machine, a central monitoring system, a state-of-the-art reverse osmosis module, ultrapure water, and all the services associated with a successful implementation. The 2008K@home hemodialysis machine has the flexibility to accommodate the changing needs of the home hemodialysis patient and is well suited to deliver short daily or prolonged nocturnal dialysis using a broad range of dialysate flows and concentrates. The intuitive design, large graphic illustrations, and step-by-step tutorial make this equipment very user friendly. Patient safety is assured by the use of hydraulic systems with a long history of reliability, smart alarm algorithms, and advanced electronic monitoring. To further patient comfort with their safety at home, the 2008K@home is enabled to communicate with the newly designed iCare remote monitoring system. The Aquaboss Smart reverse osmosis (RO) system is compact, quiet, highly efficient, and offers an improved hygienic design. The RO module reduces water consumption by monitoring the water flow of the dialysis system and adjusting water production accordingly. The Diasafe Plus filter provides ultrapure water, known for its long-term benefits. This comprehensive approach includes planning, installation, technical and clinical support, and customer service.

  10. A system of safety management practices and worker engagement for reducing and preventing accidents: an empirical and theoretical investigation.

    PubMed

    Wachter, Jan K; Yorio, Patrick L

    2014-07-01

    The overall research objective was to theoretically and empirically develop the ideas around a system of safety management practices (ten practices were elaborated), to test their relationship with objective safety statistics (such as accident rates), and to explore how these practices work to achieve positive safety results (accident prevention) through worker engagement. Data were collected using safety manager, supervisor and employee surveys designed to assess and link safety management system practices, employee perceptions resulting from existing practices, and safety performance outcomes. Results indicate the following: there is a significant negative relationship between the presence of ten individual safety management practices, as well as the composite of these practices, with accident rates; there is a significant negative relationship between the level of safety-focused worker emotional and cognitive engagement with accident rates; safety management systems and worker engagement levels can be used individually to predict accident rates; safety management systems can be used to predict worker engagement levels; and worker engagement levels act as mediators between the safety management system and safety performance outcomes (such as accident rates). Even though the presence of safety management system practices is linked with incident reduction and may represent a necessary first-step in accident prevention, safety performance may also depend on mediation by safety-focused cognitive and emotional engagement by workers. Thus, when organizations invest in a safety management system approach to reducing/preventing accidents and improving safety performance, they should also be concerned about winning over the minds and hearts of their workers through human performance-based safety management systems designed to promote and enhance worker engagement. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Racial/ethnic differences in obesity and comorbidities between safety-net- and non safety-net integrated health systems

    PubMed Central

    Balasubramanian, Bijal A.; Garcia, Michael P.; Corley, Douglas A.; Doubeni, Chyke A.; Haas, Jennifer S.; Kamineni, Aruna; Quinn, Virginia P.; Wernli, Karen; Zheng, Yingye; Skinner, Celette Sugg

    2017-01-01

    Abstract Previous research shows that patients in integrated health systems experience fewer racial disparities compared with more traditional healthcare systems. Little is known about patterns of racial/ethnic disparities between safety-net and non safety-net integrated health systems. We evaluated racial/ethnic differences in body mass index (BMI) and the Charlson comorbidity index from 3 non safety-net- and 1 safety-net integrated health systems in a cross-sectional study. Multinomial logistic regression modeled comorbidity and BMI on race/ethnicity and health care system type adjusting for age, sex, insurance, and zip-code-level income The study included 1.38 million patients. Higher proportions of safety-net versus non safety-net patients had comorbidity score of 3+ (11.1% vs. 5.0%) and BMI ≥35 (27.7% vs. 15.8%). In both types of systems, blacks and Hispanics were more likely than whites to have higher BMIs. Whites were more likely than blacks or Hispanics to have higher comorbidity scores in a safety net system, but less likely to have higher scores in the non safety-nets. The odds of comorbidity score 3+ and BMI 35+ in blacks relative to whites were significantly lower in safety-net than in non safety-net settings. Racial/ethnic differences were present within both safety-net and non safety-net integrated health systems, but patterns differed. Understanding patterns of racial/ethnic differences in health outcomes in safety-net and non safety-net integrated health systems is important to tailor interventions to eliminate racial/ethnic disparities in health and health care. PMID:28296752

  12. Systemic levels of local anaesthetic after intra-peritoneal application--a systematic review.

    PubMed

    Kahokehr, A; Sammour, T; Vather, R; Taylor, M; Stapelberg, F; Hill, A G

    2010-07-01

    There is a lack of cohesive reports on the systemic levels of local anaesthetic after intraperitoneal application. A comprehensive systematic review with no language restriction was conducted. Eighteen suitable articles were identified. Data were compiled and presented according to local anaesthetic agent. Intraperitoneal local anaesthetic has been studied in many different procedures, including open and laparoscopic surgery. A total of 415 patients were included for analysis. There were no cases of clinical toxicity. There were 11 (2.7%) cases with a systemic level above or close to a safe threshold (as determined by the report authors) in three trials utilising intraperitoneal local anaesthetic after laparoscopic cholecystectomy. Intraperitoneal lignocaine doses varied from 100 to 1000 mg, mean Cmax ranged from 1.01 to 4.32 microg/ml and mean Tmax ranged from 15 to 40 minutes. Intraperitoneal bupivacaine doses varied from 50 to 150 mg (weight based doses also reported), mean Cmax ranged from 0.29 to 1.14 microg/ml and mean Tmax ranged from 15 to 60 minutes. Intraperitoneal ropivacaine doses varied from 100 to 300 mg, mean Cmax ranged from 0.66 to 3.76 microg/ml and mean Tmax ranged from 15 to 35 minutes. The addition of adrenaline to intraperitoneal local anaesthetic almost halves systemic levels and prolongs Tmax. Intraperitoneal local anaesthetic results in detectable systemic levels in the perioperative setting. Despite a lack of clinical toxicity, careful attention to dose is still required to prevent potential systemic toxic levels. Clinicians should also consider the addition of adrenaline to intraperitoneal local anaesthetic solutions to further add to the systemic safety profile.

  13. Qualitative evaluation of the Safety and Improvement in Primary Care (SIPC) pilot collaborative in Scotland: perceptions and experiences of participating care teams.

    PubMed

    Bowie, Paul; Halley, Lyn; Blamey, Avril; Gillies, Jill; Houston, Neil

    2016-01-29

    To explore general practitioner (GP) team perceptions and experiences of participating in a large-scale safety and improvement pilot programme to develop and test a range of interventions that were largely new to this setting. Qualitative study using semistructured interviews. Data were analysed thematically. Purposive sample of multiprofessional study participants from 11 GP teams based in 3 Scottish National Health Service (NHS) Boards. 27 participants were interviewed. 3 themes were generated: (1) programme experiences and benefits, for example, a majority of participants referred to gaining new theoretical and experiential safety knowledge (such as how unreliable evidence-based care can be) and skills (such as how to search electronic records for undetected risks) related to the programme interventions; (2) improvements to patient care systems, for example, improvements in care systems reliability using care bundles were reported by many, but this was an evolving process strongly dependent on closer working arrangements between clinical and administrative staff; (3) the utility of the programme improvement interventions, for example, mixed views and experiences of participating in the safety climate survey and meeting to reflect on the feedback report provided were apparent. Initial theories on the utilisation and potential impact of some interventions were refined based on evidence. The pilot was positively received with many practices reporting improvements in safety systems, team working and communications with colleagues and patients. Barriers and facilitators were identified related to how interventions were used as the programme evolved, while other challenges around spreading implementation beyond this pilot were highlighted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Qualitative evaluation of the Safety and Improvement in Primary Care (SIPC) pilot collaborative in Scotland: perceptions and experiences of participating care teams

    PubMed Central

    Bowie, Paul; Halley, Lyn; Blamey, Avril; Gillies, Jill; Houston, Neil

    2016-01-01

    Objectives To explore general practitioner (GP) team perceptions and experiences of participating in a large-scale safety and improvement pilot programme to develop and test a range of interventions that were largely new to this setting. Design Qualitative study using semistructured interviews. Data were analysed thematically. Subjects and setting Purposive sample of multiprofessional study participants from 11 GP teams based in 3 Scottish National Health Service (NHS) Boards. Results 27 participants were interviewed. 3 themes were generated: (1) programme experiences and benefits, for example, a majority of participants referred to gaining new theoretical and experiential safety knowledge (such as how unreliable evidence-based care can be) and skills (such as how to search electronic records for undetected risks) related to the programme interventions; (2) improvements to patient care systems, for example, improvements in care systems reliability using care bundles were reported by many, but this was an evolving process strongly dependent on closer working arrangements between clinical and administrative staff; (3) the utility of the programme improvement interventions, for example, mixed views and experiences of participating in the safety climate survey and meeting to reflect on the feedback report provided were apparent. Initial theories on the utilisation and potential impact of some interventions were refined based on evidence. Conclusions The pilot was positively received with many practices reporting improvements in safety systems, team working and communications with colleagues and patients. Barriers and facilitators were identified related to how interventions were used as the programme evolved, while other challenges around spreading implementation beyond this pilot were highlighted. PMID:26826149

  15. Model-Based Safety Analysis

    NASA Technical Reports Server (NTRS)

    Joshi, Anjali; Heimdahl, Mats P. E.; Miller, Steven P.; Whalen, Mike W.

    2006-01-01

    System safety analysis techniques are well established and are used extensively during the design of safety-critical systems. Despite this, most of the techniques are highly subjective and dependent on the skill of the practitioner. Since these analyses are usually based on an informal system model, it is unlikely that they will be complete, consistent, and error free. In fact, the lack of precise models of the system architecture and its failure modes often forces the safety analysts to devote much of their effort to gathering architectural details about the system behavior from several sources and embedding this information in the safety artifacts such as the fault trees. This report describes Model-Based Safety Analysis, an approach in which the system and safety engineers share a common system model created using a model-based development process. By extending the system model with a fault model as well as relevant portions of the physical system to be controlled, automated support can be provided for much of the safety analysis. We believe that by using a common model for both system and safety engineering and automating parts of the safety analysis, we can both reduce the cost and improve the quality of the safety analysis. Here we present our vision of model-based safety analysis and discuss the advantages and challenges in making this approach practical.

  16. Hybrid Decompositional Verification for Discovering Failures in Adaptive Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Thompson, Sarah; Davies, Misty D.; Gundy-Burlet, Karen

    2010-01-01

    Adaptive flight control systems hold tremendous promise for maintaining the safety of a damaged aircraft and its passengers. However, most currently proposed adaptive control methodologies rely on online learning neural networks (OLNNs), which necessarily have the property that the controller is changing during the flight. These changes tend to be highly nonlinear, and difficult or impossible to analyze using standard techniques. In this paper, we approach the problem with a variant of compositional verification. The overall system is broken into components. Undesirable behavior is fed backwards through the system. Components which can be solved using formal methods techniques explicitly for the ranges of safe and unsafe input bounds are treated as white box components. The remaining black box components are analyzed with heuristic techniques that try to predict a range of component inputs that may lead to unsafe behavior. The composition of these component inputs throughout the system leads to overall system test vectors that may elucidate the undesirable behavior

  17. Biomedical sensing and imaging for the anterior segment of the eye

    NASA Astrophysics Data System (ADS)

    Eom, Tae Joong; Yoo, Young-Sik; Lee, Yong-Eun; Kim, Beop-Min; Joo, Choun-Ki

    2015-07-01

    Eye is an optical system composed briefly of cornea, lens, and retina. Ophthalmologists can diagnose status of patient's eye from information provided by optical sensors or images as well as from history taking or physical examinations. Recently, we developed a prototype of optical coherence tomography (OCT) image guided femtosecond laser cataract surgery system. The system combined a swept-source OCT and a femtosecond (fs) laser and afford the 2D and 3D structure information to increase the efficiency and safety of the cataract procedure. The OCT imaging range was extended to achieve the 3D image from the cornea to lens posterior. A prototype of OCT image guided fs laser cataract surgery system. The surgeons can plan the laser illumination range for the nuclear division and segmentation, and monitor the whole cataract surgery procedure using the real time OCT. The surgery system was demonstrated with an extracted pig eye and in vivo rabbit eye to verify the system performance and stability.

  18. Formulary Selection Criteria for Biosimilars: Considerations for US Health-System Pharmacists.

    PubMed

    Griffith, Niesha; McBride, Ali; Stevenson, James G; Green, Larry

    2014-10-01

    Pharmacists will play a key role in evaluating biosimilars for formulary inclusion in the United States. As defined by US law, a biosimilar is a biologic that is highly similar to its reference product, notwithstanding minor differences in clinically inactive components, and should not have clinically meaningful differences from its reference product in safety, purity, and potency. We review biosimilars and the current European Union and US regulatory pathways for biosimilars. Furthermore, we propose a checklist of considerations to ensure that US pharmacists thoroughly evaluate future biosimilars for formulary inclusion. Included in the checklist are considerations related to the availability of preapproval and postapproval safety and efficacy data; differences in product characteristics and immunogenicity between the biosimilar and reference product; manufacturer-related parameters that can affect a reliable supply of quality products; health-system and patient perspectives on product packaging, labeling, storage, and administration; costs and insurance coverage; patient education; interchangeability and differences in the range of indications; and evaluation of institutions' information technology systems.

  19. Technical Reference Suite Addressing Challenges of Providing Assurance for Fault Management Architectural Design

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda; Whitman, Gerek

    2016-01-01

    Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IVV) Program, with Software Assurance Research Program support, extracted FM architectures across the IVV portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IVV projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management.

  20. Development of Structural Health Management Technology for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    2003-01-01

    As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.

  1. Formulary Selection Criteria for Biosimilars: Considerations for US Health-System Pharmacists

    PubMed Central

    McBride, Ali; Stevenson, James G.; Green, Larry

    2014-01-01

    Abstract Pharmacists will play a key role in evaluating biosimilars for formulary inclusion in the United States. As defined by US law, a biosimilar is a biologic that is highly similar to its reference product, notwithstanding minor differences in clinically inactive components, and should not have clinically meaningful differences from its reference product in safety, purity, and potency. We review biosimilars and the current European Union and US regulatory pathways for biosimilars. Furthermore, we propose a checklist of considerations to ensure that US pharmacists thoroughly evaluate future biosimilars for formulary inclusion. Included in the checklist are considerations related to the availability of preapproval and postapproval safety and efficacy data; differences in product characteristics and immunogenicity between the biosimilar and reference product; manufacturer-related parameters that can affect a reliable supply of quality products; health-system and patient perspectives on product packaging, labeling, storage, and administration; costs and insurance coverage; patient education; interchangeability and differences in the range of indications; and evaluation of institutions’ information technology systems. PMID:25477613

  2. Close-Range Tracking of Underwater Vehicles Using Light Beacons

    PubMed Central

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Istenič, Klemen; Ribas, David

    2016-01-01

    This paper presents a new tracking system for autonomous underwater vehicles (AUVs) navigating in a close formation, based on computer vision and the use of active light markers. While acoustic localization can be very effective from medium to long distances, it is not so advantageous in short distances when the safety of the vehicles requires higher accuracy and update rates. The proposed system allows the estimation of the pose of a target vehicle at short ranges, with high accuracy and execution speed. To extend the field of view, an omnidirectional camera is used. This camera provides a full coverage of the lower hemisphere and enables the concurrent tracking of multiple vehicles in different positions. The system was evaluated in real sea conditions by tracking vehicles in mapping missions, where it demonstrated robust operation during extended periods of time. PMID:27023547

  3. Close-Range Tracking of Underwater Vehicles Using Light Beacons.

    PubMed

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Istenič, Klemen; Ribas, David

    2016-03-25

    This paper presents a new tracking system for autonomous underwater vehicles (AUVs) navigating in a close formation, based on computer vision and the use of active light markers. While acoustic localization can be very effective from medium to long distances, it is not so advantageous in short distances when the safety of the vehicles requires higher accuracy and update rates. The proposed system allows the estimation of the pose of a target vehicle at short ranges, with high accuracy and execution speed. To extend the field of view, an omnidirectional camera is used. This camera provides a full coverage of the lower hemisphere and enables the concurrent tracking of multiple vehicles in different positions. The system was evaluated in real sea conditions by tracking vehicles in mapping missions, where it demonstrated robust operation during extended periods of time.

  4. 49 CFR 385.703 - Safety monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Safety monitoring system. 385.703 Section 385.703... Safety Monitoring System for Non-North American Carriers § 385.703 Safety monitoring system. (a) General... Vehicle Safety Standards (FMVSSs), and Hazardous Materials Regulations (HMRs). (b) Roadside monitoring...

  5. 49 CFR 385.103 - Safety monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Safety monitoring system. 385.103 Section 385.103... Safety Monitoring System for Mexico-Domiciled Carriers § 385.103 Safety monitoring system. (a) General... Vehicle Safety Standards (FMVSSs), and Hazardous Materials Regulations (HMRs). (b) Roadside monitoring...

  6. 49 CFR 385.703 - Safety monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Safety monitoring system. 385.703 Section 385.703... Safety Monitoring System for Non-North American Carriers § 385.703 Safety monitoring system. (a) General... Vehicle Safety Standards (FMVSSs), and Hazardous Materials Regulations (HMRs). (b) Roadside monitoring...

  7. 49 CFR 385.103 - Safety monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Safety monitoring system. 385.103 Section 385.103... Safety Monitoring System for Mexico-Domiciled Carriers § 385.103 Safety monitoring system. (a) General... Vehicle Safety Standards (FMVSSs), and Hazardous Materials Regulations (HMRs). (b) Roadside monitoring...

  8. Does the concept of safety culture help or hinder systems thinking in safety?

    PubMed

    Reiman, Teemu; Rollenhagen, Carl

    2014-07-01

    The concept of safety culture has become established in safety management applications in all major safety-critical domains. The idea that safety culture somehow represents a "systemic view" on safety is seldom explicitly spoken out, but nevertheless seem to linger behind many safety culture discourses. However, in this paper we argue that the "new" contribution to safety management from safety culture never really became integrated with classical engineering principles and concepts. This integration would have been necessary for the development of a more genuine systems-oriented view on safety; e.g. a conception of safety in which human, technological, organisational and cultural factors are understood as mutually interacting elements. Without of this integration, researchers and the users of the various tools and methods associated with safety culture have sometimes fostered a belief that "safety culture" in fact represents such a systemic view about safety. This belief is, however, not backed up by theoretical or empirical evidence. It is true that safety culture, at least in some sense, represents a holistic term-a totality of factors that include human, organisational and technological aspects. However, the departure for such safety culture models is still human and organisational factors rather than technology (or safety) itself. The aim of this paper is to critically review the various uses of the concept of safety culture as representing a systemic view on safety. The article will take a look at the concepts of culture and safety culture based on previous studies, and outlines in more detail the theoretical challenges in safety culture as a systems concept. The paper also presents recommendations on how to make safety culture more systemic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines

    PubMed Central

    Presas, Alexandre; Valero, Carme; Egusquiza, Eduard

    2018-01-01

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin. PMID:29601512

  10. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines.

    PubMed

    Presas, Alexandre; Valentin, David; Egusquiza, Mònica; Valero, Carme; Egusquiza, Eduard

    2018-03-30

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin.

  11. GPM Timeline Inhibits For IT Processing

    NASA Technical Reports Server (NTRS)

    Dion, Shirley K.

    2014-01-01

    The Safety Inhibit Timeline Tool was created as one approach to capturing and understanding inhibits and controls from IT through launch. Global Precipitation Measurement (GPM) Mission, which launched from Japan in March 2014, was a joint mission under a partnership between the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM was one of the first NASA Goddard in-house programs that extensively used software controls. Using this tool during the GPM buildup allowed a thorough review of inhibit and safety critical software design for hazardous subsystems such as the high gain antenna boom, solar array, and instrument deployments, transmitter turn-on, propulsion system release, and instrument radar turn-on. The GPM safety team developed a methodology to document software safety as part of the standard hazard report. As a result of this process, a new tool safety inhibit timeline was created for management of inhibits and their controls during spacecraft buildup and testing during IT at GSFC and at the launch range in Japan. The Safety Inhibit Timeline Tool was a pathfinder approach for reviewing software that controls the electrical inhibits. The Safety Inhibit Timeline Tool strengthens the Safety Analysts understanding of the removal of inhibits during the IT process with safety critical software. With this tool, the Safety Analyst can confirm proper safe configuration of a spacecraft during each IT test, track inhibit and software configuration changes, and assess software criticality. In addition to understanding inhibits and controls during IT, the tool allows the Safety Analyst to better communicate to engineers and management the changes in inhibit states with each phase of hardware and software testing and the impact of safety risks. Lessons learned from participating in the GPM campaign at NASA and JAXA will be discussed during this session.

  12. NASA's Spaceliner Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), avionics, power, operations, and range. The ASTP program will mature these technologies through both ground and flight system testing. The Spaceliner Investment Area plans to mature vehicle technologies to reduce the implementation risks for future commercially developed reusable launch vehicles (RLV). The plan is to substantially increase the design and operating margins of the third generation RLV (the Space Shuttle is the first generation) by incorporating advanced technologies in propulsion, materials, structures, thermal protection systems, avionics, and power. Advancements in design tools and better characterization of the operational environment will allow improvements in design margins. Improvements in operational efficiencies will be provided through use of advanced integrated health management, operations, and range technologies. The increase in margins will allow components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. These technologies have the potential of enabling horizontal takeoff by reducing the takeoff weight and achieving the goal of airline-like operation. These factors in conjunction with increased flight rates from an expanding market will result in significant improvements in safety and reductions in operational costs of future vehicles. The paper describes current status, future plans and technologies that are being matured by the Spaceliner Investment Area under the Advanced Space Transportation Program Office.

  13. Space engine safety system

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Meyer, Claudia M.

    1991-01-01

    A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.

  14. Safety climate and culture: Integrating psychological and systems perspectives.

    PubMed

    Casey, Tristan; Griffin, Mark A; Flatau Harrison, Huw; Neal, Andrew

    2017-07-01

    Safety climate research has reached a mature stage of development, with a number of meta-analyses demonstrating the link between safety climate and safety outcomes. More recently, there has been interest from systems theorists in integrating the concept of safety culture and to a lesser extent, safety climate into systems-based models of organizational safety. Such models represent a theoretical and practical development of the safety climate concept by positioning climate as part of a dynamic work system in which perceptions of safety act to constrain and shape employee behavior. We propose safety climate and safety culture constitute part of the enabling capitals through which organizations build safety capability. We discuss how organizations can deploy different configurations of enabling capital to exert control over work systems and maintain safe and productive performance. We outline 4 key strategies through which organizations to reconcile the system control problems of promotion versus prevention, and stability versus flexibility. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Providing oceanographic data and information for Pacific Island communities

    NASA Astrophysics Data System (ADS)

    Potemra, James; Maurer, John; Burns, Echelle

    2016-04-01

    The Pacific Islands Ocean Observing System (PacIOOS; http://pacioos.org) is a data-serving group that relies on and promotes data interoperability. The PacIOOS "enterprise" is part of a large, US National effort aimed at providing information about the ocean environment to a wide range of users. These users range from casual beach-goers interested in the latest weather forecast or wave conditions to federal agencies responsible for public safety. In an effort to bridge the gap between the scientific community, who are responsible for making measurements and running forecast models, and the wide-ranging end-users, the data management group in PacIOOS has developed the infrastructure to host and distribute ocean-related data. The efficiency of this system has also allowed the group to build web-based tools to further help users. In this presentation we describe these efforts in more detail.

  16. A guide to structural factors for advanced composites used on spacecraft

    NASA Technical Reports Server (NTRS)

    Vanwagenen, Robert

    1989-01-01

    The use of composite materials in spacecraft systems is constantly increasing. Although the areas of composite design and fabrication are maturing, they remain distinct from the same activities performed using conventional materials and processes. This has led to some confusion regarding the precise meaning of the term 'factor of safety' as it applies to these structures. In addition, composite engineering introduces terms such as 'knock-down factors' to further modify material properties for design purposes. This guide is intended to clarify these terms as well as their use in the design of composite structures for spacecraft. It is particularly intended to be used by the engineering community not involved in the day-to-day composites design process. An attempt is also made to explain the wide range of factors of safety encountered in composite designs as well as their relationship to the 1.4 factor of safety conventionally applied to metallic structures.

  17. Safety and Efficacy of Neonatal Vaccination

    PubMed Central

    Demirjian, Alicia; Levy, Ofer

    2009-01-01

    Newborns have an immature immune system that renders them at high risk for infection while simultaneously reducing responses to most vaccines, thereby posing challenges in protecting this vulnerable population. Nevertheless, certain vaccines, such as Bacillus Calmette Guérin (BCG) and Hepatitis B vaccine (HBV), do demonstrate safety and some efficacy at birth, providing proof of principal that certain antigen-adjuvant combinations are able to elicit protective neonatal responses. Moreover, birth is a major point of healthcare contact globally meaning that effective neonatal vaccines achieve high population penetration. Given the potentially significant benefit of vaccinating at birth, availability of a broader range of more effective neonatal vaccines is an unmet medical need and a public health priority. This review focuses on safety and efficacy of neonatal vaccination in humans as well as recent research employing novel approaches to enhance the efficacy of neonatal vaccination. PMID:19089811

  18. The natural selection of organizational and safety culture within a small to medium sized enterprise (SME).

    PubMed

    Brooks, Benjamin

    2008-01-01

    Small to Medium Sized Enterprises (SMEs) form the majority of Australian businesses. This study uses ethnographic research methods to describe the organizational culture of a small furniture-manufacturing business in southern Australia. Results show a range of cultural assumptions variously 'embedded' within the enterprise. In line with memetics - Richard Dawkin's cultural application of Charles Darwin's theory of Evolution by Natural Selection, the author suggests that these assumptions compete to be replicated and retained within the organization. The author suggests that dominant assumptions are naturally selected, and that the selection can be better understood by considering the cultural assumptions in reference to Darwin's original principles and Frederik Barth's anthropological framework of knowledge. The results are discussed with reference to safety systems, negative cultural elements called Cultural Safety Viruses, and how our understanding of this particular organizational culture might be used to build resistance to these viruses.

  19. An Interoperability Platform Enabling Reuse of Electronic Health Records for Signal Verification Studies

    PubMed Central

    Yuksel, Mustafa; Gonul, Suat; Laleci Erturkmen, Gokce Banu; Sinaci, Ali Anil; Invernizzi, Paolo; Facchinetti, Sara; Migliavacca, Andrea; Bergvall, Tomas; Depraetere, Kristof; De Roo, Jos

    2016-01-01

    Depending mostly on voluntarily sent spontaneous reports, pharmacovigilance studies are hampered by low quantity and quality of patient data. Our objective is to improve postmarket safety studies by enabling safety analysts to seamlessly access a wide range of EHR sources for collecting deidentified medical data sets of selected patient populations and tracing the reported incidents back to original EHRs. We have developed an ontological framework where EHR sources and target clinical research systems can continue using their own local data models, interfaces, and terminology systems, while structural interoperability and Semantic Interoperability are handled through rule-based reasoning on formal representations of different models and terminology systems maintained in the SALUS Semantic Resource Set. SALUS Common Information Model at the core of this set acts as the common mediator. We demonstrate the capabilities of our framework through one of the SALUS safety analysis tools, namely, the Case Series Characterization Tool, which have been deployed on top of regional EHR Data Warehouse of the Lombardy Region containing about 1 billion records from 16 million patients and validated by several pharmacovigilance researchers with real-life cases. The results confirm significant improvements in signal detection and evaluation compared to traditional methods with the missing background information. PMID:27123451

  20. National Safety Council

    MedlinePlus

    ... Safety Management Systems Workplace Safety Consulting Employee Perception Surveys Research Journey to Safety Excellence Join the Journey What ... Safety Management Systems Workplace Safety Consulting Employee Perception Surveys Research Journey to Safety Excellence Join the Journey What ...

  1. International perspectives on food safety and regulations - a need for harmonized regulations: perspectives in China.

    PubMed

    Liu, Xiumei

    2014-08-01

    Food safety is a major livelihood issue and a priority concern in China. Since the Food Safety Law of the People's Republic of China was issued in 2009, the food safety control system has been strengthened through, inter alia, the Food Safety Risk Surveillance System, the Food Safety Risk Assessment System and the Food Safety Standards System. In accordance with the Food Safety Law and regulations for implementation, the Ministry of Health released the 'Twelfth Five-year Plan' of Food Safety Standards. The existing 5000 food-related standards will be integrated. Notwithstanding, the supervision system in China needs to be further improved and strengthened. © 2014 Society of Chemical Industry.

  2. Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: proposed revisions to MPES.

    PubMed

    Zuclich, Joseph A; Lund, David J; Stuck, Bruce E

    2007-01-01

    This report summarizes the results of a series of infrared (IR) laser-induced ocular damage studies conducted over the past decade. The studies examined retinal, lens, and corneal effects of laser exposures in the near-IR to far-IR transition region (wavelengths from 1.3-1.4 mum with exposure durations ranging from Q-switched to continuous wave). The corneal and retinal damage thresholds are tabulated for all pulsewidth regimes, and the wavelength dependence of the IR thresholds is discussed and contrasted to laser safety standard maximum permissible exposure limits. The analysis suggests that the current maximum permissible exposure limits could be beneficially revised to (1) relax the IR limits over wavelength ranges where unusually high safety margins may unintentionally hinder applications of recently developed military and telecommunications laser systems; (2) replace step-function discontinuities in the IR limits by continuously varying analytical functions of wavelength and pulsewidth which more closely follow the trends of the experimental retinal (for point-source laser exposures) and corneal ED50 threshold data; and (3) result in an overall simplification of the permissible exposure limits over the wavelength range from 1.2-2.6 mum. A specific proposal for amending the IR maximum permissible exposure limits over this wavelength range is presented.

  3. 75 FR 43092 - Airworthiness Directives; Viking Air Limited (Type Certificate Previously Held by Bombardier, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... completed a system safety review of the aircraft fuel system against fuel tank safety standards introduced... Limited has completed a system safety review of the aircraft fuel system against fuel tank safety... describes the unsafe condition as: Viking Air Limited has completed a system safety review of the aircraft...

  4. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1991-01-01

    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  5. Prevention of microbial hazard on fresh-cut lettuce through adoption of food safety and hygienic practices by lettuce farmers.

    PubMed

    Oyinlola, Lateefah A; Obadina, Adewale O; Omemu, Adebukunola M; Oyewole, Olusola B

    2017-01-01

    Lettuce is consumed raw in salads and is susceptible to microbial contamination through environment, agricultural practices, and its morphology, thus, a potential vehicle for food-borne illness. This study investigated the effect of adoption of food safety and hygienic practices by lettuce farmers on the microbial safety of field sourced lettuce in Lagos State, Nigeria. Ten structured questionnaires were administered randomly to 10 lettuce farmers to assess food safety and hygienic practices (FSH). Two farmers who practice FSH and two farmers who do not practice NFSH were finally used for this study. Samples of ready-to-harvest lettuce, manure applied, and irrigation water were obtained for a period of five months (August - December 2013) and analyzed for total plate count (TPC), total coliform count (TCC), Escherichia coli, Listeria spp., Salmonella spp., and Shigella spp . counts. Result of microbial analyses of lettuce samples was compared with international microbiological specification for ready-to-eat foods. Results showed that the range of TPC on lettuce was 6.00 to 8.11 LogCFU/g from FSH farms and TPC of lettuce samples from NFSH farms ranged from 6.66 to 13.64 LogCFU/g. 1.49 to 4.85LogCFU/g were TCC ranges from lettuce samples obtained from FSH farms while NFSH farms had TCC ranging between 3.95 and 10.86 LogCFU/g, respectively. The range of isolated pathogen count on lettuce from FSH and NFSH farms exceeded the international safety standard; there was a significant difference in the microbial count of lettuce from FSH farms and NFSH farms. This study concludes that the lettuce samples obtained did not pass the international microbial safety standards. FSH compliance is a major determinant of the microbial safety of lettuce. Hence, the institution of FSH on farm to improve microbial safety of lettuce produced for public consumption is emphasized.

  6. A Taxonomy of Fallacies in System Safety Arguments

    NASA Technical Reports Server (NTRS)

    Greenwell, William S.; Knight, John C.; Holloway, C. Michael; Pease, Jacob J.

    2006-01-01

    Safety cases are gaining acceptance as assurance vehicles for safety-related systems. A safety case documents the evidence and argument that a system is safe to operate; however, logical fallacies in the underlying argument may undermine a system s safety claims. Removing these fallacies is essential to reduce the risk of safety-related system failure. We present a taxonomy of common fallacies in safety arguments that is intended to assist safety professionals in avoiding and detecting fallacious reasoning in the arguments they develop and review. The taxonomy derives from a survey of general argument fallacies and a separate survey of fallacies in real-world safety arguments. Our taxonomy is specific to safety argumentation, and it is targeted at professionals who work with safety arguments but may lack formal training in logic or argumentation. We discuss the rationale for the selection and categorization of fallacies in the taxonomy. In addition to its applications to the development and review of safety cases, our taxonomy could also support the analysis of system failures and promote the development of more robust safety case patterns.

  7. 46 CFR 62.25-15 - Safety control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....35-50. Note: Safety control systems include automatic and manual safety trip controls and automatic... engines. (e) Automatic safety trip control systems must— (1) Be provided where there is an immediate... 46 Shipping 2 2011-10-01 2011-10-01 false Safety control systems. 62.25-15 Section 62.25-15...

  8. 49 CFR 385.715 - Duration of safety monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Duration of safety monitoring system. 385.715... SAFETY FITNESS PROCEDURES Safety Monitoring System for Non-North American Carriers § 385.715 Duration of safety monitoring system. (a) Each non-North America-domiciled carrier subject to this subpart will...

  9. 49 CFR 385.117 - Duration of safety monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Duration of safety monitoring system. 385.117... SAFETY FITNESS PROCEDURES Safety Monitoring System for Mexico-Domiciled Carriers § 385.117 Duration of safety monitoring system. (a) Each Mexico-domiciled carrier subject to this subpart will remain in the...

  10. 49 CFR 385.117 - Duration of safety monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Duration of safety monitoring system. 385.117... SAFETY FITNESS PROCEDURES Safety Monitoring System for Mexico-Domiciled Carriers § 385.117 Duration of safety monitoring system. (a) Each Mexico-domiciled carrier subject to this subpart will remain in the...

  11. 49 CFR 385.715 - Duration of safety monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Duration of safety monitoring system. 385.715... SAFETY FITNESS PROCEDURES Safety Monitoring System for Non-North American Carriers § 385.715 Duration of safety monitoring system. (a) Each non-North America-domiciled carrier subject to this subpart will...

  12. Far-infrared and 3D imaging for doneness assessment in chicken breast

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Ibarra, Juan G.

    2001-03-01

    Sensor fusion of infrared imaging and range imaging was proposed to estimate internal temperature on just cooked chicken breasts. An infrared camera operating at 8-12 microns registered surface temperature of cooked meat samples, while a single line structured light system located the thickest region of the meat target. In this region of interest, a combined time series/neural network method is applied to correlate the internal and external temperatures during the cool-down process. Experimental verification in a pilot plant oven is presented. To ensure food safety, a mandatory regulation requires all poultry processors in the U.S.A to verify that all ready-to-eat products reach a minimum endpoint temperature (71¦C for chicken breast), but no current assay can do a non-invasively inspection of all the samples. The proposed system has the potential for on-line inspection of ready-to-eat meat for food quality and safety.

  13. Facility effluent monitoring plan for the plutonium uranium extraction facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegand, D.L.

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of themore » effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.« less

  14. Proceedings of a Workshop on Navy Long-Range Deep Ocean Technology: An Assessment of Current Development, Forecasts, and Research Thrusts Held at Washington, DC on September 23-24, 1982,

    DTIC Science & Technology

    1983-01-01

    the Navy. These technologies ini- tially were reviewed in five groups; the technologies were assessed later during the workshop in four sets, two of...sulfur dioxide (LiSO2 ). The latter two systems present safety hazards after discharge.1- 7 Also these systems are already being developed exten- sively...Control The K02 life support system will supply oxygen and, at the same time, remove CO2. One chemical performs the two essential functions of the

  15. Advancing a sociotechnical systems approach to workplace safety – developing the conceptual framework

    PubMed Central

    Carayon, Pascale; Hancock, Peter; Leveson, Nancy; Noy, Ian; Sznelwar, Laerte; van Hootegem, Geert

    2015-01-01

    Traditional efforts to deal with the enormous problem of workplace safety have proved insufficient, as they have tended to neglect the broader sociotechnical environment that surrounds workers. Here, we advocate a sociotechnical systems approach that describes the complex multi-level system factors that contribute to workplace safety. From the literature on sociotechnical systems, complex systems and safety, we develop a sociotechnical model of workplace safety with concentric layers of the work system, socio-organisational context and the external environment. The future challenges that are identified through the model are highlighted. Practitioner Summary: Understanding the environmental, organisational and work system factors that contribute to workplace safety will help to develop more effective and integrated solutions to deal with persistent workplace safety problems. Solutions to improve workplace safety need to recognise the broad sociotechnical system and the respective interactions between the system elements and levels. PMID:25831959

  16. Advancing a sociotechnical systems approach to workplace safety--developing the conceptual framework.

    PubMed

    Carayon, Pascale; Hancock, Peter; Leveson, Nancy; Noy, Ian; Sznelwar, Laerte; van Hootegem, Geert

    2015-01-01

    Traditional efforts to deal with the enormous problem of workplace safety have proved insufficient, as they have tended to neglect the broader sociotechnical environment that surrounds workers. Here, we advocate a sociotechnical systems approach that describes the complex multi-level system factors that contribute to workplace safety. From the literature on sociotechnical systems, complex systems and safety, we develop a sociotechnical model of workplace safety with concentric layers of the work system, socio-organisational context and the external environment. The future challenges that are identified through the model are highlighted. Understanding the environmental, organisational and work system factors that contribute to workplace safety will help to develop more effective and integrated solutions to deal with persistent workplace safety problems. Solutions to improve workplace safety need to recognise the broad sociotechnical system and the respective interactions between the system elements and levels.

  17. The safety experience of New Zealand adventure tourism operators.

    PubMed

    Bentley, Tim A; Page, Stephen; Walker, Linda

    2004-01-01

    This survey examined parameters of the New Zealand adventure tourism industry client injury risk. The research also sought to establish priorities for intervention to reduce adventure tourism risk, and identify client injury control measures currently in place (or absent) in the New Zealand adventure tourism industry, with a view to establishing guidelines for the development of effective adventure tourism safety management systems. This 2003 survey builds upon an exploratory study of New Zealand adventure tourism safety conducted by us during 1999. A postal questionnaire was used to survey all identifiable New Zealand adventure tourism operators. The questionnaire asked respondents about their recorded client injury experience, perceptions of client injury risk factors, safety management practices, and barriers to safety. Some 27 adventure tourism activities were represented among the responding sample (n=96). The highest client injury risk was reported in the snow sports, bungee jumping and horse riding sectors, although serious underreporting of minor injuries was evident across the industry. Slips, trips and falls (STF) were the major client injury mechanisms, and a range of risk factors for client injuries were identified. Safety management measures were inconsistently applied across the industry. The industry should consider the implications of poor injury reporting standards and safety management practices generally. Specifically, the industry should consider risk management that focuses on minor (e.g., STF) as well as catastrophic events.

  18. Biodiversity of important toxigenic fungi that threaten food safety

    USDA-ARS?s Scientific Manuscript database

    Phenotypic and metabolic plasticity of toxigenic fungi that threaten food safety allows these microorganisms to colonize a broad range of agriculturally important crops and to adapt to a range of environmental conditions. In addition, trans-global transportation and trade of plant products significa...

  19. Implementing Cooperative Behavior & Control Using Open Source Technology Across Heterogeneous Vehicles

    DTIC Science & Technology

    2015-03-26

    8 January 2015]. [34] M. Pursifull, " DIY Drones," 1 August 2012. [Online]. Available: http://diydrones.com/group/arducopterusergroup/forum/topics...Camp Atterbury Range Safety course and has his range control safety card . 2. GENERAL MINIMIZING CONDITIONS The following general minimizing

  20. Evaluating driver reactions to new vehicle technologies intended to increase safety and mobility across the lifespan.

    DOT National Transportation Integrated Search

    2013-05-01

    Personal vehicle manufactures are introducing a wide range of new technologies that are : intended to increase the safety, comfort, and mobility of drivers of all ages. Examples range from : semi-autonomous technologies such as adaptive cruise contro...

  1. Development of a Reduced-Order Three-Dimensional Flow Model for Thermal Mixing and Stratification Simulation during Reactor Transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    2017-09-03

    Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less

  2. NASA Flight Operations of Ikhana and Global Hawk

    NASA Technical Reports Server (NTRS)

    Posada, Herman D.

    2009-01-01

    This viewgraph presentation reviews the flight operations of Ikhana and Global Hawk Fire missions. The Ikhana fire missions modifications, ground systems, flight operations, range safety zones, primary and secondary emergency landing sites, and the Ikhana western states fire missions of 2007 are described, along with The Global Hawk specs, a description of the Global Hawk Pacific Science Campaign (GloPac '09) and GloPac payloads.

  3. Institutionalizing fire safety in making land use and development decisions

    Treesearch

    Marie-Annette Johnson; Marc Mullenix

    1995-01-01

    Because of three major wildland fires in the past 5 years along the Front Range of the Boulder County area in Colorado, current and potential residents should be told of steps that can reduce the risks of these fire hazards. The Wildfire Hazard Identification and Mitigation System (WHIMS) is used by the county and city to assist in the identification and mitigation of...

  4. 78 FR 78794 - Proposed Establishment of Class E Airspace; Flagstaff, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ...This action proposes to establish Class E airspace at the Flagstaff VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Flagstaff, AZ, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Albuquerque Air Route Traffic Control Center (ARTCC). The FAA is proposing this action to enhance the safety and management of aircraft operations within the National Airspace System.

  5. Application and validation of the TTI based chill chain management system SMAS (Safety Monitoring and Assurance System) on shelf life optimization of vacuum packed chilled tuna.

    PubMed

    Tsironi, Theofania; Gogou, Eleni; Velliou, Eirini; Taoukis, Petros S

    2008-11-30

    The objective of the study was to establish a validated kinetic model for growth of spoilage bacteria on vacuum packed tuna slices in the temperature range of 0 to 15 degrees C and to evaluate the applicability of the TTI (Time Temperature Integrators) based SMAS (Safety Monitoring and Assurance System) system to improve tuna product quality at the time of consumption in comparison to the conventional First In First Out (FIFO) approach. The overall measurements of total flora and lactic acid bacteria (LAB) on the tuna samples used in a laboratory simulated field test were in close agreement with the predictions of the developed kinetic model. The spoilage profile of the TTI bearing products, handled with SMAS, was improved. Three out of the thirty products that were handled randomly, according to the FIFO approach, were already spoiled at the time of consumption (logN(LAB)>6.5) compared to no spoiled products when handled with the SMAS approach.

  6. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  7. Safety Practices Followed in ISRO Launch Complex- An Overview

    NASA Astrophysics Data System (ADS)

    Krishnamurty, V.; Srivastava, V. K.; Ramesh, M.

    2005-12-01

    The spaceport of India, Satish Dhawan Space Centre (SDSC) SHAR of Indian Space Research Organisation (ISRO), is located at Sriharikota, a spindle shaped island on the east coast of southern India.SDSC SHAR has a unique combination of facilities, such as a solid propellant production plant, a rocket motor static test facility, launch complexes for different types of rockets, telemetry, telecommand, tracking, data acquisition and processing facilities and other support services.The Solid Propellant Space Booster Plant (SPROB) located at SDSC SHAR produces composite solid propellant for rocket motors of ISRO. The main ingredients of the propellant produced here are ammonium perchlorate (oxidizer), fine aluminium powder (fuel) and hydroxyl terminated polybutadiene (binder).SDSC SHAR has facilities for testing solid rocket motors, both at ambient conditions and at simulated high altitude conditions. Other test facilities for the environmental testing of rocket motors and their subsystems include Vibration, Shock, Constant Acceleration and Thermal / Humidity.SDSC SHAR has the necessary infrastructure for launching satellites into low earth orbit, polar orbit and geo-stationary transfer orbit. The launch complexes provide complete support for vehicle assembly, fuelling with both earth storable and cryogenic propellants, checkout and launch operations. Apart from these, it has facilities for launching sounding rockets for studying the Earth's upper atmosphere and for controlled reentry and recovery of ISRO's space capsule reentry missions.Safety plays a major role at SDSC SHAR right from the mission / facility design phase to post launch operations. This paper presents briefly the infrastructure available at SDSC SHAR of ISRO for launching sounding rockets, satellite launch vehicles, controlled reentry missions and the built in safety systems. The range safety methodology followed as a part of the real time mission monitoring is presented. The built in safety systems provided onboard the launch vehicle are automatic shut off the propulsion system based on real time mission performance and a passivation system incorporated in the orbit insertion stage are highlighted.

  8. Improving Quality and Safety of Care Using “Technovigilance”: An Ethnographic Case Study of Secondary Use of Data from an Electronic Prescribing and Decision Support System

    PubMed Central

    Dixon-Woods, Mary; Redwood, Sabi; Leslie, Myles; Minion, Joel; Martin, Graham P; Coleman, Jamie J

    2013-01-01

    Context “Meaningful use” of electronic health records to improve quality of care has remained understudied. We evaluated an approach to improving patients’ safety and quality of care involving the secondary use of data from a hospital electronic prescribing and decision support system (ePDSS). Methods We conducted a case study of a large English acute care hospital with a well-established ePDSS. Our study was based on ethnographic observations of clinical settings (162 hours) and meetings (28 hours), informal conversations with clinical staff, semistructured interviews with ten senior executives, and the collection of relevant documents. Our data analysis was based on the constant comparative method. Findings This hospital's approach to quality and safety could be characterized as “technovigilance.” It involved treating the ePDSS as a warehouse of data on clinical activity and performance. The hospital converted the secondary data into intelligence about the performance of individuals, teams, and clinical services and used this as the basis of action for improvement. Through a combination of rapid audit, feedback to clinical teams, detailed and critical review of apparent omissions in executive-led meetings, a focus on personal professional responsibility for patients’ safety and quality care, and the correction of organizational or systems defects, technovigilance was—based on the hospital's own evidence—highly effective in improving specific indicators. Measures such as the rate of omitted doses of medication showed marked improvement. As do most interventions, however, technovigilance also had unintended consequences. These included the risk of focusing attention on aspects of patient safety made visible by the system at the expense of other, less measurable but nonetheless important, concerns. Conclusions The secondary use of electronic data can be effective for improving specific indicators of care if accompanied by a range of interventions to ensure proper interpretation and appropriate action. But care is needed to avoid unintended consequences. PMID:24028694

  9. Why the Eurocontrol Safety Regulation Commission Policy on Safety Nets and Risk Assessment is Wrong

    NASA Astrophysics Data System (ADS)

    Brooker, Peter

    2004-05-01

    Current Eurocontrol Safety Regulation Commission (SRC) policy says that the Air Traffic Management (ATM) system (including safety minima) must be demonstrated through risk assessments to meet the Target Level of Safety (TLS) without needing to take safety nets (such as Short Term Conflict Alert) into account. This policy is wrong. The policy is invalid because it does not build rationally and consistently from ATM's firm foundations of TLS and hazard analysis. The policy is bad because it would tend to retard safety improvements. Safety net policy must rest on a clear and rational treatment of integrated ATM system safety defences. A new safety net policy, appropriate to safe ATM system improvements, is needed, which recognizes that safety nets are an integrated part of ATM system defences. The effects of safety nets in reducing deaths from mid-air collisions should be fully included in hazard analysis and safety audits in the context of the TLS for total system design.

  10. Regulatory Underpinnings of Global Health Security: FDA's Roles in Preventing, Detecting, and Responding to Global Health Threats

    PubMed Central

    Bond, Katherine C.; Maher, Carmen

    2014-01-01

    In February 2014, health officials from around the world announced the Global Health Security Agenda, a critical effort to strengthen national and global systems to prevent, detect, and respond to infectious disease threats and to foster stronger collaboration across borders. With its increasing global roles and broad range of regulatory responsibilities in ensuring the availability, safety, and security of medical and food products, the US Food and Drug Administration (FDA) is engaged in a range of efforts in support of global health security. This article provides an overview of FDA's global health security roles, focusing on its responsibilities related to the development and use of medical countermeasures (MCMs) for preventing, detecting, and responding to global infectious disease and other public health emergency threats. The article also discusses several areas—antimicrobial resistance, food safety, and supply chain integrity—in which FDA's global health security roles continue to evolve and extend beyond MCMs and, in some cases, beyond traditional infectious disease threats. PMID:25254912

  11. Regulatory underpinnings of Global Health security: FDA's roles in preventing, detecting, and responding to global health threats.

    PubMed

    Courtney, Brooke; Bond, Katherine C; Maher, Carmen

    2014-01-01

    In February 2014, health officials from around the world announced the Global Health Security Agenda, a critical effort to strengthen national and global systems to prevent, detect, and respond to infectious disease threats and to foster stronger collaboration across borders. With its increasing global roles and broad range of regulatory responsibilities in ensuring the availability, safety, and security of medical and food products, the US Food and Drug Administration (FDA) is engaged in a range of efforts in support of global health security. This article provides an overview of FDA's global health security roles, focusing on its responsibilities related to the development and use of medical countermeasures (MCMs) for preventing, detecting, and responding to global infectious disease and other public health emergency threats. The article also discusses several areas-antimicrobial resistance, food safety, and supply chain integrity-in which FDA's global health security roles continue to evolve and extend beyond MCMs and, in some cases, beyond traditional infectious disease threats.

  12. Circumferential targeted renal sympathetic nerve denervation with preservation of the renal arterial wall using intra-luminal ultrasound

    NASA Astrophysics Data System (ADS)

    Roth, Austin; Coleman, Leslie; Sakakura, Kenichi; Ladich, Elena; Virmani, Renu

    2015-03-01

    An intra-luminal ultrasound catheter system (ReCor Medical's Paradise System) has been developed to provide circumferential denervation of the renal sympathetic nerves, while preserving the renal arterial intimal and medial layers, in order to treat hypertension. The Paradise System features a cylindrical non-focused ultrasound transducer centered within a balloon that circulates cooling fluid and that outputs a uniform circumferential energy pattern designed to ablate tissues located 1-6 mm from the arterial wall and protect tissues within 1 mm. RF power and cooling flow rate are controlled by the Paradise Generator which can energize transducers in the 8.5-9.5 MHz frequency range. Computer simulations and tissue-mimicking phantom models were used to develop the proper power, cooling flow rate and sonication duration settings to provide consistent tissue ablation for renal arteries ranging from 5-8 mm in diameter. The modulation of these three parameters allows for control over the near-field (border of lesion closest to arterial wall) and far-field (border of lesion farthest from arterial wall, consisting of the adventitial and peri-adventitial spaces) depths of the tissue lesion formed by the absorption of ultrasonic energy and conduction of heat. Porcine studies have confirmed the safety (protected intimal and medial layers) and effectiveness (ablation of 1-6 mm region) of the system and provided near-field and far-field depth data to correlate with bench and computer simulation models. The safety and effectiveness of the Paradise System, developed through computer model, bench and in vivo studies, has been demonstrated in human clinical studies.

  13. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight safety system crew data. 415.131... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant's safety review document must identify each flight safety system crew position and the role of that...

  14. 33 CFR 96.220 - What makes up a safety management system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false What makes up a safety management... SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.220 What makes up a safety management system? (a) The...

  15. Control of Industrial Safety Based on Dynamic Characteristics of a Safety Budget-Industrial Accident Rate Model in Republic of Korea.

    PubMed

    Choi, Gi Heung; Loh, Byoung Gook

    2017-06-01

    Despite the recent efforts to prevent industrial accidents in the Republic of Korea, the industrial accident rate has not improved much. Industrial safety policies and safety management are also known to be inefficient. This study focused on dynamic characteristics of industrial safety systems and their effects on safety performance in the Republic of Korea. Such dynamic characteristics are particularly important for restructuring of the industrial safety system. The effects of damping and elastic characteristics of the industrial safety system model on safety performance were examined and feedback control performance was explained in view of cost and benefit. The implications on safety policies of restructuring the industrial safety system were also explored. A strong correlation between the safety budget and the industrial accident rate enabled modeling of an industrial safety system with these variables as the input and the output, respectively. A more effective and efficient industrial safety system could be realized by having weaker elastic characteristics and stronger damping characteristics in it. A substantial decrease in total social cost is expected as the industrial safety system is restructured accordingly. A simple feedback control with proportional-integral action is effective in prevention of industrial accidents. Securing a lower level of elastic industrial accident-driving energy appears to have dominant effects on the control performance compared with the damping effort to dissipate such energy. More attention needs to be directed towards physical and social feedbacks that have prolonged cumulative effects. Suggestions for further improvement of the safety system including physical and social feedbacks are also made.

  16. The status of blood safety in ECO member states

    PubMed Central

    Seighali, Fariba; Hosseini Divkolaye, Nasim S.; Koohi, Ebrahim; Pourfathollah, Ali A.; Rahmani, Ahmad M.

    2015-01-01

    Background Access to the information concerning blood safety is essential for managing problems and overcoming the challenges that are faced in any given region. Information on the availability and safety of blood in countries of the Economic Cooperation Organisation (ECO) is largely lacking. To address this problem, the Iranian Blood Transfusion Organisation, in collaboration with other ECO member states, initiated a research project in 2009 to collect, analyse and compare statistics on blood safety in the region. Materials and methods A modified and summarised version of the Global Database on Blood Safety (GDBS) questionnaire was used to collect data. The questionnaire was sent to all ten countries in the ECO region. The heads of the national transfusion services or focal points were requested to complete the form. Related literature and websites were also reviewed. Results Only three countries (Afghanistan, Iran and Turkey) completed the questionnaire, while other countries provided their available data on some parts of the questionnaire. The number of donations per year varied from 5 to 27/1,000 population. The rate of donors positive for human immunodeficiency virus ranged from 0.003% to 0.2%. The rate of donors positive for hepatitis C virus antibody varied from 0.05% to 3.9% while that of hepatitis B virus surface antigen ranged from 0.15% to 3.91% respectively. Discussion There is very clear diversity in blood transfusion services among ECO member states. Most countries in the region do not have a data-recording system. It is generally estimated that the need for blood is much higher than the supply in this region. Deficiencies in donor screening and a high prevalence of transfusion-transmitted infections are other important challenges. PMID:26192779

  17. Derivation of an occupational exposure limit (OEL) for methylene chloride based on acute CNS effects and relative potency analysis.

    PubMed

    Storm, J E; Rozman, K K

    1998-06-01

    The Occupational Safety and Health Administration (OSHA) methylene chloride Permissible Exposure Level (PEL) or 25 ppm is quantitatively derived from mouse tumor results observed in a high-exposure National Toxicology Program bioassay. Because this approach depends on controversial interspecies and low-dose extrapolations, the PEL itself has stimulated heated debate. Here, an alternative safety assessment for methylene chloride is presented. It is based on an acute human lowest-observed-adverse-effect level (LOAEL) of 200 ppm for subtle central nervous system (CNS) depression. Steep, parallel exposure-response curves for anesthetic and subanesthetic CNS effects associated with compounds mechanistically and structurally related to methylene chloride are shown to support a safety factor of two to account for inter-individual variability in response. LOAEL/no-observed-adverse-effect ratios for subtle CNS effects associated with structurally related solvents are shown to support a safety factor range of two to four to account for uncertainty in identifying a subthreshold exposure level. Anesthetic relative potencies and anesthetic/subanesthetic effect level ratios are shown to be constant for the compounds evaluated, demonstrating that subanesthetic relative potencies are also constant. Relative potencies among similarly derived occupational exposure limits (OELs) for solvents structurally related to methylene chloride are therefore used to validate the derived methylene chloride OEL range of 25-50 ppm. Because this safety assessment is based on human (rather than rodent) data and empirical (rather than theoretical) exposure-response relationships and is supported by relative potency analysis, it is a defensible alternative to to the OSHA risk assessment and should positively contribute to the debate regarding the appropriate basis and value for a methylene chloride PEL.

  18. Optical ranging and communication method based on all-phase FFT

    NASA Astrophysics Data System (ADS)

    Li, Zening; Chen, Gang

    2014-10-01

    This paper describes an optical ranging and communication method based on all-phase fast fourier transform (FFT). This kind of system is mainly designed for vehicle safety application. Particularly, the phase shift of the reflecting orthogonal frequency division multiplexing (OFDM) symbol is measured to determine the signal time of flight. Then the distance is calculated according to the time of flight. Several key factors affecting the phase measurement accuracy are studied. The all-phase FFT, which can reduce the effects of frequency offset, phase noise and the inter-carrier interference (ICI), is applied to measure the OFDM symbol phase shift.

  19. 14 CFR 415.33 - Safety organization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety organization. 415.33 Section 415.33....33 Safety organization. (a) An applicant shall maintain a safety organization and document it by... communication, both within the applicant's organization and between the applicant and any federal launch range...

  20. Safety and immunogenicity of yellow fever 17D vaccine in adults receiving systemic corticosteroid therapy: an observational cohort study.

    PubMed

    Kernéis, Solen; Launay, Odile; Ancelle, Thierry; Iordache, Laura; Naneix-Laroche, Véronique; Méchaï, Frédéric; Fehr, Thierry; Leroy, Jean-Philippe; Issartel, Bertrand; Dunand, Jean; van der Vliet, Diane; Wyplosz, Benjamin; Consigny, Paul-Henri; Hanslik, Thomas

    2013-09-01

    To assess the safety and immunogenicity of live attenuated yellow fever (YF) 17D vaccine in adults receiving systemic corticosteroid therapy. All adult travelers on systemic corticosteroid therapy who had received the YF17D vaccine in 24 French vaccination centers were prospectively enrolled and matched with healthy controls (1:2) on age and history of YF17D immunization. Safety was assessed in a self-administered standardized questionnaire within 10 days after immunization. YF-specific neutralizing antibody titers were measured 6 months after vaccination in patients receiving corticosteroids. Between July 2008 and February 2011, 102 vaccine recipients completed the safety study (34 receiving corticosteroids and 68 controls). The median age was 54.9 years (interquartile range [IQR] 45.1-60.3 years) and 45 participants had a history of previous YF17D immunization. The median time receiving corticosteroid therapy was 10 months (IQR 1-67 months) and the prednisone or equivalent dosage was 7 mg/day (IQR 5-20). Main indications were autoimmune diseases (n = 14), rheumatoid arthritis (n = 9), and upper respiratory tract infections (n = 8). No serious adverse event was reported; however, patients receiving corticosteroids reported more frequent moderate/severe local reactions than controls (12% and 2%, respectively; relative risk 8.0, 95% confidence interval 1.4-45.9). All subjects receiving corticosteroids who were tested (n = 20) had neutralizing antibody titers >10 after vaccination. After YF17D immunization, moderate/severe local reactions may be more frequent in patients receiving systemic corticosteroid therapy. Immunogenicity seems satisfactory. Large-scale studies are needed to confirm these results. Copyright © 2013 by the American College of Rheumatology.

  1. Safety approaches for high power modular laser operation

    NASA Astrophysics Data System (ADS)

    Handren, R. T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest was the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program progressed to the point where a plant-scale facility to demonstrate commercial feasibility was built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a greater than 90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities (approximately 3000 gal) of ethanol dye solutions. The Laboratory's safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  2. Topical administration of regorafenib eye drops: phase I dose‐escalation study in healthy volunteers

    PubMed Central

    Höchel, Joachim; Becka, Michael; Boettger, Michael K.; Rohde, Beate; Schug, Barbara; Kunert, Kathleen S.; Donath, Frank

    2018-01-01

    Aim Regorafenib is a multikinase inhibitor under investigation for use in neovascular age‐related macular degeneration. In this phase I study, regorafenib eye drops were administered to healthy volunteers to provide information on safety, tolerability and systemic exposure. Methods This was a single‐centre, randomized, double‐masked, parallel‐group, dose‐escalation, placebo‐controlled study. Subjects received regorafenib eye drops (30 mg ml−1, 25 μl) as a 0.75 mg single dose (Cohort 1), 0.75 mg twice daily (bid) or thrice daily (tid) over 14 days (Cohorts 2 and 3, respectively), 1.5 mg tid unilaterally for 3 days, then bilaterally for up to 14 days (Cohort 4), or placebo. Plasma samples were taken to estimate systemic exposure. Safety and functional assessments were performed throughout the study. Results Thirty‐six subjects received regorafenib and 12 received placebo. Regorafenib was safe and well tolerated over the dose range. No pathological changes occurred in the anterior, vitreous or posterior eye compartments. Mild eyelid redness, oedema and conjunctival hyperaemia were observed across all regorafenib cohorts; these were comparable with the effects seen with placebo. Predominant symptoms were blurred vision in the active and placebo groups. Systemic safety evaluations showed no clinically relevant findings. Absolute systemic exposure after multiple administrations of regorafenib eye drops at a dose of 0.75 mg was 600–700‐fold lower than after multiple oral administration of 160 mg day−1, the dose approved in cancer indications. Conclusion These results indicate a favourable safety and tolerability profile of regorafenib eye drops up to 30 mg ml−1 tid for use in clinical studies. PMID:29315699

  3. A Mathematical Model for Railway Control Systems

    NASA Technical Reports Server (NTRS)

    Hoover, D. N.

    1996-01-01

    We present a general method for modeling safety aspects of railway control systems. Using our modeling method, one can progressively refine an abstract railway safety model, sucessively adding layers of detail about how a real system actually operates, while maintaining a safety property that refines the original abstract safety property. This method supports a top-down approach to specification of railway control systems and to proof of a variety of safety-related properties. We demonstrate our method by proving safety of the classical block control system.

  4. Prevention and control of food safety risks: the role of governments, food producers, marketers, and academia.

    PubMed

    Lupien, John R

    2007-01-01

    Food systems are rapidly changing as world population grows, increasing urbanization occurs, consumer tastes and preferences change and differ in various countries and cultures, large scale food production increases, and food imports and exports grow in volume and value. Consumers in all countries have become more insistent that foods available in the marketplace are of good quality and safe, and do not pose risks to them and their families. Publicity about food risk problems and related risks, including chemical and microbiological contamination of foods, mad-cow disease, avian flu, industrial chemical contamination all have made consumers and policy makers more aware of the need of the control of food safety risk factors in all countries. To discuss changes in food systems, and in consumer expectations, that have placed additional stress on the need for better control of food safety risks. Food producers, processors, and marketers have additional food law and regulations to meet; government agencies must increase monitoring and enforcement of adequate food quality and safety legislation and coordinate efforts between agriculture, health, trade, justice and customs agencies; and academia must take action to strengthen the education of competent food legislation administrators, inspectorate, and laboratory personnel for work in government and industry, including related food and food safety research . Both Government and the food industry must assure that adequate control programs are in place to control the quality and safety of all foods, raw or processed, throughout the food chain from production to final consumption. This includes appropriate laboratory facilities to perform necessary analysis of foods for risk and quality factors, and to carry out a wide range of food science, toxicological and related research.

  5. Laser rangefinders for autonomous intelligent cruise control systems

    NASA Astrophysics Data System (ADS)

    Journet, Bernard A.; Bazin, Gaelle

    1998-01-01

    THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.

  6. Laser beam alignment and profilometry using diagnostic fluorescent safety mirrors

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-03-01

    There are a wide range of laser beam delivery systems in use for various purposes; including industrial and medical applications. Virtually all such beam delivery systems for practical purposes employ optical systems comprised of mirrors and lenses to shape, focus and guide the laser beam down to the material being processed. The goal of the laser beam delivery is to set the optimum parameters and to "fold" the beam path to reduce the mechanical length of the optical system, thereby allowing a physically compact system. In many cases, even a compact system can incorporate upwards of six mirrors and a comparable number of lenses all needing alignment so they are collinear. One of the major requirements for use of such systems in industry is a method of safe alignment. The alignment process requires that the aligner determine where the beam strikes each element. The aligner should also preferably be able to determine the shape or pattern of the laser beam at that point and its relative power. These alignments are further compounded in that the laser beams generated are not visible to the unaided human eye. Such beams are also often of relatively high power levels, and are thereby a significant hazard to the eyes of the aligner. Obvious an invisible beam makes it nearly impossible to align laser system without some form of optical assistance. The predominant method of visually aligning the laser beam delivery is the use of thermal paper, paper cards or fluorescing card material. The use of paper products which have limited power handling capability or coated plastics can produce significant debris and contaminants within the beam line that ultimately damage the optics. The use of the cards can also create significant laser light scatter jeopardizing the safety of the person aligning the system. This paper covers a new safety mirror design for use with at various UV and Near IR wavelengths (193 nm to 1064 nm) within laser beam delivery systems and how its use can provide benefits covering eye safety, precise alignment and beam diagnostics.

  7. Approaches to the safety assessment of engineered nanomaterials (ENM) in food.

    PubMed

    Cockburn, Andrew; Bradford, Roberta; Buck, Neil; Constable, Anne; Edwards, Gareth; Haber, Bernd; Hepburn, Paul; Howlett, John; Kampers, Frans; Klein, Christoph; Radomski, Marek; Stamm, Hermann; Wijnhoven, Susan; Wildemann, Tanja

    2012-06-01

    A systematic, tiered approach to assess the safety of engineered nanomaterials (ENMs) in foods is presented. The ENM is first compared to its non-nano form counterpart to determine if ENM-specific assessment is required. Of highest concern from a toxicological perspective are ENMs which have potential for systemic translocation, are insoluble or only partially soluble over time or are particulate and bio-persistent. Where ENM-specific assessment is triggered, Tier 1 screening considers the potential for translocation across biological barriers, cytotoxicity, generation of reactive oxygen species, inflammatory response, genotoxicity and general toxicity. In silico and in vitro studies, together with a sub-acute repeat-dose rodent study, could be considered for this phase. Tier 2 hazard characterisation is based on a sentinel 90-day rodent study with an extended range of endpoints, additional parameters being investigated case-by-case. Physicochemical characterisation should be performed in a range of food and biological matrices. A default assumption of 100% bioavailability of the ENM provides a 'worst case' exposure scenario, which could be refined as additional data become available. The safety testing strategy is considered applicable to variations in ENM size within the nanoscale and to new generations of ENM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. 77 FR 70409 - System Safety Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ...-0060, Notice No. 2] 2130-AC31 System Safety Program AGENCY: Federal Railroad Administration (FRA... passenger railroads to develop and implement a system safety program (SSP) to improve the safety of their... Division, U.S. Department of Transportation, Federal Railroad Administration, Office of Railroad Safety...

  9. Results of the NeuroBlate System first-in-humans Phase I clinical trial for recurrent glioblastoma: clinical article.

    PubMed

    Sloan, Andrew E; Ahluwalia, Manmeet S; Valerio-Pascua, Jose; Manjila, Sunil; Torchia, Mark G; Jones, Stephen E; Sunshine, Jeffrey L; Phillips, Michael; Griswold, Mark A; Clampitt, Mark; Brewer, Cathy; Jochum, Jennifer; McGraw, Mary V; Diorio, Dawn; Ditz, Gail; Barnett, Gene H

    2013-06-01

    Laser interstitial thermal therapy has been used as an ablative treatment for glioma; however, its development was limited due to technical issues. The NeuroBlate System incorporates several technological advances to overcome these drawbacks. The authors report a Phase I, thermal dose-escalation trial assessing the safety and efficacy of NeuroBlate in recurrent glioblastoma multiforme (rGBM). Adults with suspected supratentorial rGBM of 15- to 40-mm dimension and a Karnofsky Performance Status score of ≥ 60 were eligible. After confirmatory biopsy, treatment was delivered using a rigid, gas-cooled, side-firing laser probe. Treatment was monitored using real-time MRI thermometry, and proprietary software providing predictive thermal damage feedback was used by the surgeon, along with control of probe rotation and depth, to tailor tissue coagulation. An external data safety monitoring board determined if toxicity at lower levels justified dose escalation. Ten patients were treated at the Case Comprehensive Cancer Center (Cleveland Clinic and University Hospitals-Case Medical Center). Their average age was 55 years (range 34-69 years) and the median preoperative Karnofsky Performance Status score was 80 (range 70-90). The mean tumor volume was 6.8 ± 5 cm(3) (range 2.6-19 cm(3)), the percentage of tumor treated was 78% ± 12% (range 57%-90%), and the conformality index was 1.21 ± 0.33 (range 1.00-2.04). Treatment-related necrosis was evident on MRI studies at 24 and 48 hours. The median survival was 316 days (range 62-767 days). Three patients improved neurologically, 6 remained stable, and 1 worsened. Steroid-responsive treatment-related edema occurred in all patients but one. Three had Grade 3 adverse events at the highest dose. NeuroBlate represents new technology for delivering laser interstitial thermal therapy, allowing controlled thermal ablation of deep hemispheric rGBM. CLINICAL TRIAL REGISTRATION NO.: NCT00747253 ( ClinicalTrials.gov ).

  10. Crew fatigue safety performance indicators for fatigue risk management systems.

    PubMed

    Gander, Philippa H; Mangie, Jim; Van Den Berg, Margo J; Smith, A Alexander T; Mulrine, Hannah M; Signal, T Leigh

    2014-02-01

    Implementation of Fatigue Risk Management Systems (FRMS) is gaining momentum; however, agreed safety performance indicators (SPIs) are lacking. This paper proposes an initial set of SPIs based on measures of crewmember sleep, performance, and subjective fatigue and sleepiness, together with methods for interpreting them. Data were included from 133 landing crewmembers on 2 long-range and 3 ultra-long-range trips (4-person crews, 3 airlines, 220 flights). Studies had airline, labor, and regulatory support, and underwent independent ethical review. SPIs evaluated preflight and at top of descent (TOD) were: total sleep in the prior 24 h and time awake at duty start and at TOD (actigraphy); subjective sleepiness (Karolinska Sleepiness Scale) and fatigue (Samn-Perelli scale); and psychomotor vigilance task (PVT) performance. Kruskal-Wallis nonparametric ANOVA with post hoc tests was used to identify significant differences between flights for each SPI. Visual and preliminary quantitative comparisons of SPIs between flights were made using box plots and bar graphs. Statistical analyses identified significant differences between flights across a range of SPls. In an FRMS, crew fatigue SPIs are envisaged as a decision aid alongside operational SPIs, which need to reflect the relevant causes of fatigue in different operations. We advocate comparing multiple SPIs between flights rather than defining safe/unsafe thresholds on individual SPIs. More comprehensive data sets are needed to identify the operational and biological factors contributing to the differences between flights reported here. Global sharing of an agreed core set of SPIs would greatly facilitate implementation and improvement of FRMS.

  11. SureTrak Probability of Impact Display

    NASA Technical Reports Server (NTRS)

    Elliott, John

    2012-01-01

    The SureTrak Probability of Impact Display software was developed for use during rocket launch operations. The software displays probability of impact information for each ship near the hazardous area during the time immediately preceding the launch of an unguided vehicle. Wallops range safety officers need to be sure that the risk to humans is below a certain threshold during each use of the Wallops Flight Facility Launch Range. Under the variable conditions that can exist at launch time, the decision to launch must be made in a timely manner to ensure a successful mission while not exceeding those risk criteria. Range safety officers need a tool that can give them the needed probability of impact information quickly, and in a format that is clearly understandable. This application is meant to fill that need. The software is a reuse of part of software developed for an earlier project: Ship Surveillance Software System (S4). The S4 project was written in C++ using Microsoft Visual Studio 6. The data structures and dialog templates from it were copied into a new application that calls the implementation of the algorithms from S4 and displays the results as needed. In the S4 software, the list of ships in the area was received from one local radar interface and from operators who entered the ship information manually. The SureTrak Probability of Impact Display application receives ship data from two local radars as well as the SureTrak system, eliminating the need for manual data entry.

  12. System safety education focused on industrial engineering

    NASA Technical Reports Server (NTRS)

    Johnston, W. L.; Morris, R. S.

    1971-01-01

    An educational program, designed to train students with the specific skills needed to become safety specialists, is described. The discussion concentrates on application, selection, and utilization of various system safety analytical approaches. Emphasis is also placed on the management of a system safety program, its relationship with other disciplines, and new developments and applications of system safety techniques.

  13. Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.

    1993-01-01

    This paper analyzes the root causes of safety-related software errors in safety-critical, embedded systems. The results show that software errors identified as potentially hazardous to the system tend to be produced by different error mechanisms than non- safety-related software errors. Safety-related software errors are shown to arise most commonly from (1) discrepancies between the documented requirements specifications and the requirements needed for correct functioning of the system and (2) misunderstandings of the software's interface with the rest of the system. The paper uses these results to identify methods by which requirements errors can be prevented. The goal is to reduce safety-related software errors and to enhance the safety of complex, embedded systems.

  14. Overall Control on Solid Rocket Motor Hazard Zone: Example of VEGA an Innovative Solution at System Level

    NASA Astrophysics Data System (ADS)

    Vertueux, M.

    2013-09-01

    The arrival of additional Space launch vehicles Soyouz and Vega in Guiana Space Center facilities faced a new ground range safety major question: The technical hazards assessment and management related to the preparation of these three launchers simultaneously with the same high level of safety. The objective of this publication is to highlight the new safety solutions that are applied in CSG to reduce the risk of self-propulsion of the stages of VEGA launcher. During all the preparation campaign of VEGA launch vehicle, the explosive risk due to the use of solid propellant is permanent. Uncontrolled propulsion of a solid rocket motor is capable of destruction of other important installations with catastrophic effects. This event could cause loss of human lives and great damages to the CSG launch site structures. Early in the space program development phases of VEGA, the risk of self- propulsion of solid rocket motors and the solutions to avoid the "domino effects" on neighboring facilities have been issued as one of the major concern in term of safety.

  15. [Development and validation of the Korean patient safety culture scale for nursing homes].

    PubMed

    Yoon, Sook Hee; Kim, Byungsoo; Kim, Se Young

    2013-06-01

    The purpose of this study was to develop a tool to evaluate patient safety culture in nursing homes and to test its validity and reliability. A preliminary tool was developed through interviews with focus group, content validity tests, and a pilot study. A nationwide survey was conducted from February to April, 2011, using self-report questionnaires. Participants were 982 employees in nursing homes. Data were analyzed using Cronbach's alpha, item analysis, factor analysis, and multitrait/multi-Item analysis. From the results of the analysis, 27 final items were selected from 49 items on the preliminary tool. Items with low correlation with total scale were excluded. The 4 factors sorted by factor analysis contributed 63.4% of the variance in the total scale. The factors were labeled as leadership, organizational system, working attitude, management practice. Cronbach's alpha for internal consistency was .95 and the range for the 4 factors was from .86 to .93. The results of this study indicate that the Korean Patient Safety Culture Scale has reliability and validity and is suitable for evaluation of patient safety culture in Korean nursing homes.

  16. An assessment of food hygiene and safety at farmers' markets.

    PubMed

    Worsfold, D; Worsfold, P M; Griffith, C J

    2004-04-01

    Farmers' markets are becoming a more significant part of the food-retailing sector. A survey of farmers' markets was conducted to assess aspects of food hygiene and safety. The views of the public using the markets were also examined. The range of farm products was wide and the methods utilised varied. The markets were usually temporary outdoor events with few facilities. Traders had received elementary food hygiene training and rated their hygiene standards highly. Less than half had risk management procedures in place, most did not perceive their produce as high-risk. They believed consumers to be mainly interested in food quality and to regard food safety issues highly. Consumers shopped at the markets because of the quality of the products sold. Their overall satisfaction with the markets was high and they raised no concerns about food safety. Given the restricted facilities at farmers' markets and the early phase of implementation of hygiene management systems by market traders, it may be precautionary to restrict the sale of farm products at farmers markets to those that are regarded as low-risk.

  17. Understanding procedural violations using Safety-I and Safety-II: The case of community pharmacies.

    PubMed

    Jones, Christian E L; Phipps, Denham L; Ashcroft, Darren M

    2018-06-01

    Procedural violations are known to occur in a range of work settings, and are an important topic of interest with regard to safety management. A Safety-I perspective sees violations as undesirable digressions from standardised procedures, while a Safety-II perspective sees violations as adaptations to a complex work system. This study aimed to apply both perspectives to the examination of violations in community pharmacies. Twenty-four participants (13 pharmacists and 11 pharmacy support staff) were purposively sampled to participate in semi-structured interviews using the critical incident technique. Participants described violations they made during the course of their work. Interviews were digitally recorded, transcribed verbatim and analysed using template analysis. Community pharmacies located in England and Wales. 31 procedural violations were described during the interviews revealing multiple reasons for violations in this setting. Our findings suggest that from a Safety-II perspective, staff violated to adapt to situations and to manage safety. However, participants also violated procedures in order to maintain productivity which was found to increase risk in some, but not all situations. Procedural violations often relied on the context in which staff were working, resulting in the violation being deemed rational to the individual making the violation, yet the behaviour may be difficult to justify from an outside perspective. Combining Safety-I and Safety-II perspectives provided a detailed understanding of the underlying reasons for procedural violations. Our findings identify aspects of practice that could benefit from targeted interventions to help support staff in providing safe patient care.

  18. The Coast Guard Proceedings of the Marine Safety and Security Council: Spring 2016

    DTIC Science & Technology

    2016-04-01

    PROCEEDINGS Spring 2016 Vol. 73, Number 1 Safety Management System Objectives 6 Safety Management Facilitates Safe Vessel Operation Vessel systems...crew, and operations. by LCDR Aaron W. Demo 9 Safety Management Systems to Prevent Pollution from Ships Standard procedures protect the environment...by LCDR Michael Lendvay 11 Dead Reckoning by Safety Management ? Check your course. by LCDR Corydon F. Heard IV Safety Management Systems and the Outer

  19. Automatic and remote controlled ictal SPECT injection for seizure focus localization by use of a commercial contrast agent application pump.

    PubMed

    Feichtinger, Michael; Eder, Hans; Holl, Alexander; Körner, Eva; Zmugg, Gerda; Aigner, Reingard; Fazekas, Franz; Ott, Erwin

    2007-07-01

    In the presurgical evaluation of patients with partial epilepsy, the ictal single photon emission computed tomography (SPECT) is a useful noninvasive diagnostic tool for seizure focus localization. To achieve optimal SPECT scan quality, ictal tracer injection should be carried out as quickly as possible after the seizure onset and under highest safety conditions possible. Compared to the commonly used manual injection, an automatic administration of the radioactive tracer may provide higher quality standards for this procedure. In this study, therefore, we retrospectively analyzed efficiency and safety of an automatic injection system for ictal SPECT tracer application. Over a 31-month period, 26 patients underwent ictal SPECT by use of an automatic remote-controlled injection pump originally designed for CT-contrast agent application. Various factors were reviewed, including latency of ictal injection, radiation safety parameters, and ictal seizure onset localizing value. Times between seizure onset and tracer injection ranged between 3 and 48 s. In 21 of 26 patients ictal SPECT supported the localization of the epileptogenic focus in the course of the presurgical evaluation. In all cases ictal SPECT tracer injection was performed with a high degree of safety to patients and staff. Ictal SPECT by use of a remote-controlled CT-contrast agent injection system provides a high scan quality and is a safe and confirmatory presurgical evaluation technique in the epilepsy-monitoring unit.

  20. PubMed Central

    1988-01-01

    To help reduce the number of deaths and injuries caused by vehicle accidents on Canadian roads, the CMA has for several years made recommendations on a wide range of vehicle safety standards. Since the 1960s the association has urged the provinces to enact mandatory seatbelt legislation, although it was not until 1976 that the first two provinces (Ontario and Quebec) did so. The CMA believes that the nonuse of restraint systems should be considered contributory negligence in the event of an accident producing injury to vehicle occupants. It has urged governments to approve and promote appropriate child restraint systems and to require the legislated provision of suitable and standardized tether anchorage. To increase the conspicuousness of motor vehicles the association has advocated the introduction of daytime running lights in all new vehicles. In 1965 the CMA recommended that motorcyclists wear approved helmets; indeed, it believes that there is no medical reason that would justify exemption from wearing a helmet. The CMA has also made several recommendations on safety standards for mopeds, all-terrain vehicles, minivans and light trucks and has encouraged its provincial divisions to form highway safety committees. As well as recognizing the importance of appropriate and enforced vehicle safety standards in reducing the rates of death and injury, the CMA has recommended and supported legislation aimed at decreasing the incidence of drinking and driving (Can Med Assoc J 1985; 133:806A).

  1. Safety and Efficacy of Transvenous Lead Extraction Utilizing the Evolution Mechanical Lead Extraction System: A Single-Center Experience.

    PubMed

    Sharma, Saumya; Ekeruo, Ijeoma A; Nand, Nikita P; Sundara Raman, Ajay; Zhang, Xu; Reddy, Sunil K; Hariharan, Ramesh

    2018-02-01

    The goal of this study is to assess the safety and efficacy of mechanical lead extraction utilizing the Evolution system. Compared with other techniques commonly used for lead extraction, data regarding the safety and efficacy of mechanical lead extraction using the Evolution system is limited and needs further evaluation. Between June 1, 2009 and September 30, 2016, we retrospectively analyzed 400 consecutive patients who exclusively underwent mechanical lead extraction utilizing the Evolution system. A total of 400 patients underwent mechanical lead extraction of 683 leads. Mean age of extracted leads was 6.77 ± 4.42 years (range 1 to 31 years). The extracted device system was an implantable cardioverter-defibrillator in 274 patients (68.5%) and a pacemaker system in 126 patients (31.5%). Complete lead removal rate was 97% with a clinical success rate of 99.75%. Incomplete lead removal with <4-cm remnant was associated with older leads (lead age >8 years). Failure to achieve clinical success was noted in 1 patient (0.25%). Cardiac papillary avulsion, system-related infection, and cardiac tamponade were the major complications noted in 6 patients (1.5%). Minor complications were encountered in 24 patients (6%), of which hematoma requiring evacuation was the most common minor complication. There were no patient deaths. In our single-center study, lead extractions utilizing the Evolution mechanical lead extraction system were safe and effective and resulted in high clinical and procedural success, with low complication rates and no fatalities. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Shift in performance of food safety management systems in supply chains: case of green bean chain in Kenya versus hot pepper chain in Uganda.

    PubMed

    Nanyunja, Jessica; Jacxsens, Liesbeth; Kirezieva, Klementina; Kaaya, Archileo N; Uyttendaele, Mieke; Luning, Pieternel A

    2016-08-01

    This study investigates the level of design and operation of food safety management systems (FSMS) of farmers and export traders in Kenya and Uganda. FSMS diagnostic tools developed for the fresh produce chain were used to assess the levels of context riskiness, FSMS activities and system output in primary production (n = 60) and trade (n = 60). High-risk context characteristics combined with basic FSMS are expected to increase the risk on unsafe produce. In Uganda both farmers and export traders of hot peppers operate in a high- to moderate-risk context but have basic FSMS and low systems output. In Kenya, both farmers and export traders of green beans operate in a low- to moderate-risk context. The farmers have average performing FSMS, whereas export trade companies showed more advanced FSMS and system output scores ranging from satisfactory to good. Large retailers supplying the EU premium market play a crucial role in demanding compliance with strict voluntary food safety standards, which was reflected in the more advanced FSMS and good system output in Kenya, especially traders. In Kenya, a clear shift in more fit-for-purpose FSMS and higher system output was noticed between farms and trade companies. In the case of Uganda, traders commonly supply to the less demanding EU wholesale markets such as ethnic specialty shops. They only have to comply with the legal phytosanitary and pesticide residue requirements for export activities, which apparently resulted in basic FSMS and low system output present with both farmers and traders. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Immunogenicity and safety of the inactivated Japanese encephalitis vaccine IXIARO® in elderly subjects: Open-label, uncontrolled, multi-center, phase 4 study.

    PubMed

    Cramer, Jakob P; Dubischar, Katrin; Eder, Susanne; Burchard, Gerd D; Jelinek, Tomas; Jilma, Bernd; Kollaritsch, Herwig; Reisinger, Emil; Westritschnig, Kerstin

    2016-08-31

    IXIARO® is a Vero cell-derived, inactivated Japanese encephalitis (JE) vaccine licensed mainly in western countries for children and adults traveling to JE endemic areas. Limited immunogenicity and safety data in elderly travelers have been available. To evaluate safety and immunogenicity of IXIARO in elderly subjects. Open-label, single arm, multi-centered study. Two-hundred subjects with good general health, including adequately controlled chronic conditions, received two doses of IXIARO®, 28days apart. Protective levels of antibodies were tested 42days after the second dose. Systemic and local adverse events (AEs) were solicited for 7days after each dose, unsolicited AEs were collected up to day 70 and in a phone call at month 7. Subjects were aged 64-83years (median 69.0years). Nineteen percent of subjects had serious or medically attended AEs up to Day 70 (primary endpoint), none of them causally linked to IXIARO. Solicited local AEs were reported by 33.5% (most common: local tenderness) and solicited systemic AEs by 27% (most common: headache) of subjects. The seroprotection rate was 65% with a geometric mean titre (GMT) of 37. Subjects with tick borne encephalitis (TBE) vaccinations in the past 5years (N=29) had a SCR of 90% and GMT of 65. IXIARO is generally well tolerated in the elderly, and the safety profile is largely comparable with younger adults. SCR and GMT are lower compared to younger adults, but SCR is in the range reported in elderly for other vaccines e.g. against TBE, hepatitis-A virus (HAV)/hepatitis-B virus (HBV), influenza. The differences in SCR and GMT from younger to elderly adults were in the range of other vaccines. Duration of protection is uncertain in older persons, therefore a booster dose (third dose) should be considered before any further exposure to JE virus. Copyright © 2016. Published by Elsevier Ltd.

  4. Sustainability: Land Management

    DTIC Science & Technology

    2012-05-24

    8217. .’" , .. . . . . Aqula Harbour , , MCB Quantico Notification Area MMF Legend Flight Tracks - FixedW1ng - Rot;wy Wing TBS :::_-, FIXed Wing Alea ...Rot;wy Wing Alea TBS Rotary Wing /Vea lmpuln Noise Buffer SMile APZ~l Range Safety Zone C Range Safety Zone A IZ2Zl Corr4losile Su1ace

  5. Safety System Design for Technology Education. A Safety Guide for Technology Education Courses K-12.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

    This manual is designed to involve both teachers and students in planning and controlling a safety system for technology education classrooms. The safety program involves students in the design and maintenance of the system by including them in the analysis of the classroom environment, job safety analysis, safety inspection, and machine safety…

  6. Managing risks of noncancer health effects at hazardous waste sites: A case study using the Reference Concentration (RfC) of trichloroethylene (TCE).

    PubMed

    Dourson, Michael L; Gadagbui, Bernard K; Thompson, Rod B; Pfau, Edward J; Lowe, John

    2016-10-01

    A method for determining a safety range for non-cancer risks is proposed, similar in concept to the range used for cancer in the management of waste sites. This safety range brings transparency to the chemical specific Reference Dose or Concentration by replacing their "order of magnitude" definitions with a scientifically-based range. EPA's multiple RfCs for trichloroethylene (TCE) were evaluated as a case study. For TCE, a multi-endpoint safety range was judged to be 3 μg/m(3) to 30 μg/m,(3) based on a review of kidney effects found in NTP (1988), thymus effects found in Keil et al. (2009) and cardiac effects found in the Johnson et al. (2003) study. This multi-endpoint safety range is derived from studies for which the appropriate averaging time corresponds to different exposure durations, and, therefore, can be applied to both long- and short-term exposures with appropriate consideration of exposure averaging times. For shorter-term exposures, averaging time should be based on the time of cardiac development in humans during fetal growth, an average of approximately 20-25 days. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. 30 CFR 585.810 - What must I include in my Safety Management System?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., COPs and GAPs Safety Management Systems § 585.810 What must I include in my Safety Management System? You must submit a description of the Safety Management System you will use with your COP (provided...

  8. 30 CFR 585.810 - What must I include in my Safety Management System?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., COPs and GAPs Safety Management Systems § 585.810 What must I include in my Safety Management System? You must submit a description of the Safety Management System you will use with your COP (provided...

  9. 30 CFR 585.810 - What must I include in my Safety Management System?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., COPs and GAPs Safety Management Systems § 585.810 What must I include in my Safety Management System? You must submit a description of the Safety Management System you will use with your COP (provided...

  10. Transportation systems safety hazard analysis tool (SafetyHAT) user guide (version 1.0)

    DOT National Transportation Integrated Search

    2014-03-24

    This is a user guide for the transportation system Safety Hazard Analysis Tool (SafetyHAT) Version 1.0. SafetyHAT is a software tool that facilitates System Theoretic Process Analysis (STPA.) This user guide provides instructions on how to download, ...

  11. Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A miniature gas chromatograph, a system which separates a gaseous mixture into its components and measures the concentration of the individual gases, was designed for the Viking Lander. The technology was further developed under National Institute for Occupational Safety and Health (NIOSH) and funded by Ames Research Center/Stanford as a toxic gas leak detection device. Three researchers on the project later formed Microsensor Technology, Inc. to commercialize the product. It is a battery-powered system consisting of a sensing wand connected to a computerized analyzer. Marketed as the Michromonitor 500, it has a wide range of applications.

  12. Assessing the potential benefits of the motorcycle autonomous emergency braking using detailed crash reconstructions.

    PubMed

    Savino, Giovanni; Giovannini, Federico; Baldanzini, Niccolò; Pierini, Marco; Rizzi, Matteo

    2013-01-01

    The aim of this study was to assess the feasibility and quantitative potential benefits of a motorcycle autonomous emergency braking (MAEB) system in fatal rear-end crashes. A further aim was to identify possible criticalities of this safety system in the field of powered 2-wheelers (PTWs; e.g., any additional risk introduced by the system itself). Seven relevant cases from the Swedish national in-depth fatal crash database were selected. All crashes involved car-following in which a non-anti-lock braking system (ABS)-equipped motorcycle was the bullet vehicle. Those crashes were reconstructed in a virtual environment with Prescan, simulating the road scenario, the vehicles involved, their precrash trajectories, ABS, and, alternatively, MAEB. The MAEB chosen as reference for the investigation was developed within the European Commission-funded Powered Two-Wheeler Integrated Safety (PISa) project and further detailed in later studies, with the addition of the ABS functionality. The boundary conditions of each simulation varied within a range compatible with the uncertainty of the in-depth data and also included a range of possible rider behaviors including the actual one. The benefits of the MAEB were evaluated by comparing the simulated impact speed in each configuration (no ABS/MAEB, ABS only, MAEB). The MAEB proved to be beneficial in a large number of cases. When applicable, the benefits of the system were in line with the expected values. When not applicable, there was no clear evidence of an increased risk for the rider due to the system. MAEB represents an innovative safety device in the field of PTWs, and the feasibility of such a system was investigated with promising results. Nevertheless, this technology is not mature yet for PTW application. Research in the field of passenger cars does not directly apply to PTWs because the activation logic of a braking system is more challenging on PTWs. The deployment of an autonomous deceleration would affect the vehicle dynamics, thus requesting an additional control action of the rider to keep the vehicle stable. In addition, the potential effectiveness of the MAEB should be investigated on a wider set of crash scenarios in order also to avoid false triggering of the autonomous braking.

  13. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the System-Wide Safety and Assurance Technologies Project

    NASA Technical Reports Server (NTRS)

    Withrow, Colleen A.; Reveley, Mary S.

    2015-01-01

    The Aviation Safety Program (AvSP) System-Wide Safety and Assurance Technologies (SSAT) Project asked the AvSP Systems and Portfolio Analysis Team to identify SSAT-related trends. SSAT had four technical challenges: advance safety assurance to enable deployment of NextGen systems; automated discovery of precursors to aviation safety incidents; increasing safety of human-automation interaction by incorporating human performance, and prognostic algorithm design for safety assurance. This report reviews incident data from the NASA Aviation Safety Reporting System (ASRS) for system-component-failure- or-malfunction- (SCFM-) related and human-factor-related incidents for commercial or cargo air carriers (Part 121), commuter airlines (Part 135), and general aviation (Part 91). The data was analyzed by Federal Aviation Regulations (FAR) part, phase of flight, SCFM category, human factor category, and a variety of anomalies and results. There were 38 894 SCFM-related incidents and 83 478 human-factorrelated incidents analyzed between January 1993 and April 2011.

  14. Emission measurement and safety assessment for the production process of silicon nanoparticles in a pilot-scale facility

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Asbach, Christof; Fissan, Heinz; Hülser, Tim; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Pui, David Y. H.

    2012-03-01

    Emission into the workplace was measured for the production process of silicon nanoparticles in a pilot-scale facility at the Institute of Energy and Environmental Technology e.V. (IUTA). The silicon nanoparticles were produced in a hot-wall reactor and consisted of primary particles around 60 nm in diameter. We employed real-time aerosol instruments to measure particle number and lung-deposited surface area concentrations and size distribution; airborne particles were also collected for off-line electron microscopic analysis. Emission of silicon nanoparticles was not detected during the processes of synthesis, collection, and bagging. This was attributed to the completely closed production system and other safety measures against particle release which will be discussed briefly. Emission of silicon nanoparticles significantly above the detection limit was only observed during the cleaning process when the production system was open and manually cleaned. The majority of the detected particles was in the size range of 100-400 nm and were silicon nanoparticle agglomerates first deposited in the tubing then re-suspended during the cleaning process. Appropriate personal protection equipment is recommended for safety protection of the workers during cleaning.

  15. An alternative sensor-based method for glucose monitoring in children and young people with diabetes

    PubMed Central

    Edge, Julie; Acerini, Carlo; Campbell, Fiona; Hamilton-Shield, Julian; Moudiotis, Chris; Rahman, Shakeel; Randell, Tabitha; Smith, Anne; Trevelyan, Nicola

    2017-01-01

    Objective To determine accuracy, safety and acceptability of the FreeStyle Libre Flash Glucose Monitoring System in the paediatric population. Design, setting and patients Eighty-nine study participants, aged 4–17 years, with type 1 diabetes were enrolled across 9 diabetes centres in the UK. A factory calibrated sensor was inserted on the back of the upper arm and used for up to 14 days. Sensor glucose measurements were compared with capillary blood glucose (BG) measurements. Sensor results were masked to participants. Results Clinical accuracy of sensor results versus BG results was demonstrated, with 83.8% of results in zone A and 99.4% of results in zones A and B of the consensus error grid. Overall mean absolute relative difference (MARD) was 13.9%. Sensor accuracy was unaffected by patient factors such as age, body weight, sex, method of insulin administration or time of use (day vs night). Participants were in the target glucose range (3.9–10.0 mmol/L) ∼50% of the time (mean 12.1 hours/day), with an average of 2.2 hours/day and 9.5 hours/day in hypoglycaemia and hyperglycaemia, respectively. Sensor application, wear/use of the device and comparison to self-monitoring of blood glucose were rated favourably by most participants/caregivers (84.3–100%). Five device related adverse events were reported across a range of participant ages. Conclusions Accuracy, safety and user acceptability of the FreeStyle Libre System were demonstrated for the paediatric population. Accuracy of the system was unaffected by subject characteristics, making it suitable for a broad range of children and young people with diabetes. Trial registration number NCT02388815. PMID:28137708

  16. Performance Comparison Between a Head-Worn Display System and a Head-Up Display for Low Visibility Commercial Operations

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Barnes, James R.; Williams, Steven P.; Jones, Denise R.; Harrison, Stephanie J.; Bailey, Randall E.

    2014-01-01

    Research, development, test, and evaluation of flight deck interface technologies is being conducted by NASA to proactively identify, develop, and mature tools, methods, and technologies for improving overall aircraft safety of new and legacy vehicles operating in Next Generation Air Transportation System (NextGen). Under the Vehicle Systems Safety Technologies (VSST) project in the Aviation Safety Program, one specific area of research is the use of small Head-Worn Displays (HWDs) as an equivalent display to a Head-Up Display (HUD). Title 14 of the US Code of Federal Regulations (CFR) 91.175 describes a possible operational credit which can be obtained with airplane equipage of a HUD or an "equivalent" display combined with Enhanced Vision (EV). If successful, a HWD may provide the same safety and operational benefits as current HUD-equipped aircraft but for significantly more aircraft in which HUD installation is neither practical nor possible. A simulation experiment was conducted to evaluate if the HWD, coupled with a head-tracker, can provide an equivalent display to a HUD. Comparative testing was performed in the Research Flight Deck (RFD) Cockpit Motion Facility (CMF) full mission, motion-based simulator at NASA Langley. Twelve airline crews conducted approach and landing, taxi, and departure operations during low visibility operations (1000' Runway Visual Range (RVR), 300' RVR) at Memphis International Airport (Federal Aviation Administration (FAA) identifier: KMEM). The results showed that there were no statistical differences in the crews performance in terms of touchdown and takeoff. Further, there were no statistical differences between the HUD and HWD in pilots' responses to questionnaires.

  17. Self-Activating System and Method for Alerting When an Object or a Person is Left Unattended

    NASA Technical Reports Server (NTRS)

    Edwards, William Christopher (Inventor); Mack, Terry L. (Inventor); Modlin, Edward A. (Inventor)

    2004-01-01

    A system and method uses a wireless tether comprising a transmitter and a receiver to alert a caregiver that an object or person has been left unattended. A detector Senses the presence of the object, usually a child, located in a position such as a safety seat. The detector couples to the transmitter, which is located near the object. The transmitter transmits at least one wireless signal when the object is in the position. The receiver, which is remotely located from the transmitter, senses the at least one signal as long as the receiver is within a prescribed range of transmission. By performing a timing function, the receiver monitors the proximity of the caregiver, who maintains possession of the receiver, to the transmitter. The system communicates an alarm to the caregiver when the caregiver ventures outside the range of transmission without having removed the object/child from the position.

  18. Self-activating System and Method for Alerting When an Object or a Person is Left Unattended

    NASA Technical Reports Server (NTRS)

    Edwards, William C. (Inventor); Mack, Terry L. (Inventor); Modlin, Edward A. (Inventor)

    2006-01-01

    A system and method use a wireless tether comprising a transmitter and a receiver to alert a caregiver that an object has been left unattended. A detector senses the presence of the object, usually a child, located in a position such as a safety seat. The detector is operatively coupled to the transmitter. which is located near the object. The transmitter transmits at least one wireless signal when the object is in the position. The receiver, which is remotely located from the transmitter, senses at least one signal as long as the receiver is within a prescribed range of transmission. By performing a timing function, the receiver monitors the proximity of the caregiver, who maintains possession of the receiver, to the transmitter. The system communicates an alarm to the caregiver when the caregiver ventures outside the range of transmission without having removed the object from the position.

  19. Insulation Progress since the Mid-1950s

    NASA Astrophysics Data System (ADS)

    Timmerhaus, K. D.

    Storage vessel and cryostat design for modern cryogenic systems has become rather routine as the result of the wide use of and application of cryogenic fluids. Such vessels for these fluids range in size from 1 L flasks used in the laboratory for liquid nitrogen to the more than 200,000 m3 double-walled tanks used for temporary storage of liquefied natural gas before being transported overseas to their final destination. These storage vessels for cryogenic fluids range in type from low-performance containers insulated with rigid foam or fibrous insulation to high-performance containers insulated with evacuated multilayer insulations. The overriding factors in the type of container selected normally are of economics and safety. This paper will consider various insulation concepts used in such cryogenic storage systems and will review the progress that has been made over the past 50 years in these insulation systems.

  20. Comprehensive Lifecycle for Assuring System Safety

    NASA Technical Reports Server (NTRS)

    Knight, John C.; Rowanhill, Jonathan C.

    2017-01-01

    CLASS is a novel approach to the enhancement of system safety in which the system safety case becomes the focus of safety engineering throughout the system lifecycle. CLASS also expands the role of the safety case across all phases of the system's lifetime, from concept formation to decommissioning. As CLASS has been developed, the concept has been generalized to a more comprehensive notion of assurance becoming the driving goal, where safety is an important special case. This report summarizes major aspects of CLASS and contains a bibliography of papers that provide additional details.

  1. The Evolution of System Safety at NASA

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Everett, Chris; Groen, Frank

    2014-01-01

    The NASA system safety framework is in the process of change, motivated by the desire to promote an objectives-driven approach to system safety that explicitly focuses system safety efforts on system-level safety performance, and serves to unify, in a purposeful manner, safety-related activities that otherwise might be done in a way that results in gaps, redundancies, or unnecessary work. An objectives-driven approach to system safety affords more flexibility to determine, on a system-specific basis, the means by which adequate safety is achieved and verified. Such flexibility and efficiency is becoming increasingly important in the face of evolving engineering modalities and acquisition models, where, for example, NASA will increasingly rely on commercial providers for transportation services to low-earth orbit. A key element of this objectives-driven approach is the use of the risk-informed safety case (RISC): a structured argument, supported by a body of evidence, that provides a compelling, comprehensible and valid case that a system is or will be adequately safe for a given application in a given environment. The RISC addresses each of the objectives defined for the system, providing a rational basis for making informed risk acceptance decisions at relevant decision points in the system life cycle.

  2. The Use of a Satellite Communications System for Command and Control of the National Aeronautics and Space Administration Surrogate Unmanned Aerial System Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T.; Jones, Frank; Hutchinson, Brian; Joyce, Claude; Nelson, Skip; Melum, Mike

    2017-01-01

    The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into an Unmanned Aerial Systems (UAS) Surrogate research aircraft which has served for several years as a platform for unmanned systems research and development. The aircraft is manned with a Safety Pilot and a Research Systems Operator (RSO) that allows for flight operations almost any-where in the national airspace system (NAS) without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be remotely controlled from a modular, transportable ground control station (GCS) like a true UAS. Ground control of the aircraft is accomplished by the use of data links that allow the two-way passage of the required data to control the aircraft and provide the GCS with situational awareness. The original UAS Surrogate data-link system was composed of redundant very high frequency (VHF) data radio modems with a maximum range of approximately 40 nautical miles. A new requirement was developed to extend this range beyond visual range (BVR). This new requirement led to the development of a satellite communications system that provided the means to command and control the UAS Surrogate at ranges beyond the limits of the VHF data links. The system makes use of the Globalstar low earth orbit (LEO) satellite communications system. This paper will provide details of the development, implementation, and flight testing of the satellite data communications system on the UAS Surrogate research aircraft.

  3. Small reactor power systems for manned planetary surface bases

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  4. Improving Patient Safety in Public Hospitals: Developing Standard Measures to Track Medical Errors and Process Breakdowns.

    PubMed

    Ackerman, Sara L; Gourley, Gato; Le, Gem; Williams, Pamela; Yazdany, Jinoos; Sarkar, Urmimala

    2018-03-14

    The aim of the study was to develop standards for tracking patient safety gaps in ambulatory care in safety net health systems. Leaders from five California safety net health systems were invited to participate in a modified Delphi process sponsored by the Safety Promotion Action Research and Knowledge Network (SPARKNet) and the California Safety Net Institute in 2016. During each of the three Delphi rounds, the feasibility and validity of 13 proposed patient safety measures were discussed and prioritized. Surveys and transcripts from the meetings were analyzed to understand the decision-making process. The Delphi process included eight panelists. Consensus was reached to adopt 9 of 13 proposed measures. All 9 measures were unanimously considered valid, but concern was expressed about the feasibility of implementing several of the measures. Although safety net health systems face high barriers to standardized measurement, our study demonstrates that consensus can be reached on acceptable and feasible methods for tracking patient safety gaps in safety net health systems. If accompanied by the active participation key stakeholder groups, including patients, clinicians, staff, data system professionals, and health system leaders, the consensus measures reported here represent one step toward improving ambulatory patient safety in safety net health systems.

  5. The Art World's Concept of Negative Space Applied to System Safety Management

    NASA Technical Reports Server (NTRS)

    Goodin, James Ronald (Ronnie)

    2005-01-01

    Tools from several different disciplines can improve system safety management. This paper relates the Art World with our system safety world, showing useful art schools of thought applied to system safety management, developing an art theory-system safety bridge. This bridge is then used to demonstrate relations with risk management, the legal system, personnel management and basic management (establishing priorities). One goal of this presentation/paper is simply to be a fun diversion from the many technical topics presented during the conference.

  6. Neonatal Intensive Care Unit Safety Culture Varies Widely

    PubMed Central

    Profit, Jochen; Etchegaray, Jason; Petersen, Laura A; Sexton, J Bryan; Hysong, Sylvia J; Mei, Minghua; Thomas, Eric J

    2013-01-01

    background Variation in health care delivery and outcomes in NICUs may be partly explained by differences in safety culture. objective To describe NICU caregiver assessments of safety culture, explore the variability within and between NICUs on safety culture domains, and test for association with caregiver characteristics. methods We surveyed NICU caregivers in a convenience sample of 12 hospitals from a single health care system, using the Safety Attitudes Questionnaire (SAQ). The six scales of the SAQ include teamwork climate, safety climate, job satisfaction, stress recognition, perception of management, and working conditions. For each NICU we calculated scale means, standard deviations and percent positives (percent agreement). results We found substantial variation in safety culture domains among participating NICUs. A composite mean score across the six safety culture domains ranged from 56.3 to 77.8 on a 100-point scale and NICUs in the top four NICUs were significantly different from the bottom four (p < .001). Across the six domains, respondent assessments varied widely, but were least positive on perceptions of management (3–80% positive; mean 33.3%) and stress recognition (18–61% positive; mean 41.3%). Comparisons of SAQ scale scores between NICUs and a previously published cohort of adult ICUs generally revealed higher scores for NICUs. Physicians composite scores were 8.2 (p = .04) and 9.5 (p =.02) points higher than nurses and ancillary personnel. conclusion Significant variation and scope for improvement in safety culture exists among this sample of NICUs. The NICU variation was similar to variation in adult ICUs, but NICU scores were generally higher than adult ICU scores. Future studies should validate whether safety culture as measured with the SAQ correlates with clinical and operational outcomes in the NICU setting. PMID:21930691

  7. Another Approach to Enhance Airline Safety: Using Management Safety Tools

    NASA Technical Reports Server (NTRS)

    Lu, Chien-tsug; Wetmore, Michael; Przetak, Robert

    2006-01-01

    The ultimate goal of conducting an accident investigation is to prevent similar accidents from happening again and to make operations safer system-wide. Based on the findings extracted from the investigation, the "lesson learned" becomes a genuine part of the safety database making risk management available to safety analysts. The airline industry is no exception. In the US, the FAA has advocated the usage of the System Safety concept in enhancing safety since 2000. Yet, in today s usage of System Safety, the airline industry mainly focuses on risk management, which is a reactive process of the System Safety discipline. In order to extend the merit of System Safety and to prevent accidents beforehand, a specific System Safety tool needs to be applied; so a model of hazard prediction can be formed. To do so, the authors initiated this study by reviewing 189 final accident reports from the National Transportation Safety Board (NTSB) covering FAR Part 121 scheduled operations. The discovered accident causes (direct hazards) were categorized into 10 groups Flight Operations, Ground Crew, Turbulence, Maintenance, Foreign Object Damage (FOD), Flight Attendant, Air Traffic Control, Manufacturer, Passenger, and Federal Aviation Administration. These direct hazards were associated with 36 root factors prepared for an error-elimination model using Fault Tree Analysis (FTA), a leading tool for System Safety experts. An FTA block-diagram model was created, followed by a probability simulation of accidents. Five case studies and reports were provided in order to fully demonstrate the usefulness of System Safety tools in promoting airline safety.

  8. Final Programmatic Environmental Assessment for the Short Range Air Drop Target System

    DTIC Science & Technology

    1998-05-01

    saltwater habitats such as estuaries, they are not typically found in marine environments. Numerous sensitive wildlife areas occur within the biomes and in...96090 Washington, DC 20090-6090 National Oceanic and Atmospheric Administration 1 copy via FedEx National Marine Fisheries Service Washington Science...Center, Building 5 60 10 Executive Boulevard Rockville, MD 20852 Environment and Safety 1 copy via FedEx Marine Environmental Protection Section

  9. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...

  10. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...

  11. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...

  12. Evaluation Of The Vehicle Radar Safety Systems Rashid Radar Safety Brake Collision Warning System, Final Report

    DOT National Transportation Integrated Search

    1988-02-01

    THIS EVALUATION OF THE VEHICLE RADAR SAFETY SYSTEMS? ANTI-COLLISION DEVICE (HEREAFTER VRSS) WAS UNDERTAKEN BY THE OPERATOR PERFORMANCE AND SAFETY ANALYSIS DIVISION OF THE TRANSPORTATION SYSTEMS CENTER AT THE REQUEST OF THE NATIONAL HIGHWAY TRAFFIC SA...

  13. Safety margins in zircaloy oxidation and embrittlement criteria for emergency core cooling system acceptance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williford, R.E.

    1986-09-01

    Current emergency core cooling system acceptance criteria for light water reactors specify that, under loss-of-coolant accident (LOCA) conditions, the Baker-Just (BJ) correlation must be used to calculate Zircaloy-steam oxidation, calculated peak cladding temperatures (PCT) must not exceed 1204/sup 0/C, and calculated oxidation must not exceed 17% equivalent cladding reacted (ECR). An appropriately defined minimum margin of safety was estimated for each of these criteria. The currently required BJ oxidation correlation provides margins only over the 1100 to 1500/sup 0/C temperature range at the 95% confidence level. The PCT margins for thermal shock and handling failures are adequate at oxidation temperaturesmore » above 1204/sup 0/C for up to 210 and 160 s, respectively, at the 95% confidence level. The ECR thermal shock and handling margins at the 50 and 95% confidence levels, respectively, range between 2 and 7% ECR for the BJ correlation, but vanish at temperatures above 1100 to 1160/sup 0/C for the best-estimate Cathcart-Pawel correlation. However, use of the Cathcart Pawel correlation for ''design basis'' LOCA calculations can be justified at the 85 to 88% confidence level if cooling rate effects can be neglected.« less

  14. Mines Systems Safety Improvement Using an Integrated Event Tree and Fault Tree Analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Ranjan; Ghosh, Achyuta Krishna

    2017-04-01

    Mines systems such as ventilation system, strata support system, flame proof safety equipment, are exposed to dynamic operational conditions such as stress, humidity, dust, temperature, etc., and safety improvement of such systems can be done preferably during planning and design stage. However, the existing safety analysis methods do not handle the accident initiation and progression of mine systems explicitly. To bridge this gap, this paper presents an integrated Event Tree (ET) and Fault Tree (FT) approach for safety analysis and improvement of mine systems design. This approach includes ET and FT modeling coupled with redundancy allocation technique. In this method, a concept of top hazard probability is introduced for identifying system failure probability and redundancy is allocated to the system either at component or system level. A case study on mine methane explosion safety with two initiating events is performed. The results demonstrate that the presented method can reveal the accident scenarios and improve the safety of complex mine systems simultaneously.

  15. 76 FR 68192 - Meeting of the Advisory Committee on Blood Safety and Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Meeting of the Advisory Committee on Blood Safety and.... Department of Health and Human Services is hereby giving notice that the Advisory Committee on Blood Safety... Health, on a broad range of issues involving the safety and availability of blood and blood products. The...

  16. European Workshop Industrical Computer Science Systems approach to design for safety

    NASA Technical Reports Server (NTRS)

    Zalewski, Janusz

    1992-01-01

    This paper presents guidelines on designing systems for safety, developed by the Technical Committee 7 on Reliability and Safety of the European Workshop on Industrial Computer Systems. The focus is on complementing the traditional development process by adding the following four steps: (1) overall safety analysis; (2) analysis of the functional specifications; (3) designing for safety; (4) validation of design. Quantitative assessment of safety is possible by means of a modular questionnaire covering various aspects of the major stages of system development.

  17. IMPLEMENTATION OF DEFENSE NUCLEAR FACILITY SAFETY BOARD RECOMMENDATION 2000-2 AT WIPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K.; Wu, C.

    2002-02-26

    The Defense Nuclear Safeties Board (DNFSB) issued Recommendation 2000-2 on March 8, 2000, concerning the degrading conditions of vital safety systems, or systems important to nuclear safety, at DOE sites across the nation. The Board recommended that the DOE take action to assess the condition of its nuclear systems to ensure continued operational readiness of vital safety systems that are important for safely accomplishing the DOE's mission. To verify the readiness of vital safety systems, a two-phased approach was established. Phase I consisted of a qualitative assessment to approved criteria of the defined vital safety systems by operating contractor personnel,more » overseen by Federal field office personnel. Based on Phase I Assessment results, vital safety systems with significant deficiencies would be further assessed in Phase II, a more extensive quantitative assessment, by a contractor and Federal team, using a second set of criteria. In addition, Defense Nuclear Facility Safety Board Recommendation 2000-2 concluded that the degradation of confinement ventilation systems was of major concern, and issued a separate set of criteria to perform a Phase II Assessment on confinement ventilation systems.« less

  18. Evolution of the INMARSAT aeronautical system: Service, system, and business considerations

    NASA Technical Reports Server (NTRS)

    Sengupta, Jay R.

    1995-01-01

    A market-driven approach was adopted to develop enhancements to the Inmarsat-Aeronautical system, to address the requirements of potential new market segments. An evolutionary approach and well differentiated product/service portfolio was required, to minimize system upgrade costs and market penetration, respectively. The evolved system definition serves to minimize equipment cost/size/mass for short/medium range aircraft, by reducing the antenna gain requirement and relaxing the performance requirements for non safety-related communications. A validation program involving simulation, laboratory tests, over-satellite tests and flight trials is being conducted to confirm the system definition. Extensive market research has been conducted to determine user requirements and to quantify market demand for future Inmarsat Aero-1 AES, using sophisticated computer assisted survey techniques.

  19. Infant CPAP for low-income countries: An experimental comparison of standard bubble CPAP and the Pumani system.

    PubMed

    Falk, Markus; Donaldsson, Snorri; Drevhammar, Thomas

    2018-01-01

    Access to inexpensive respiratory support to newborn infants improves survival in low-income countries. Standard bubble continuous positive airway pressure (CPAP) has been extensively used worldwide for more than 30 years. One project aimed at providing affordable CPAP is the Pumani system developed by Rice 360°. Compared to standard bubble CPAP the system has an unconventional design. The aim was to compare the Pumani system with two traditional bubble CPAP systems, focusing on in-vitro performance and safety. The Pumani system was compared to traditional bubble CPAP from Fisher & Paykel (Auckland, New Zealand) and Diamedica (Devon, United Kingdom). The systems were tested using static flow resistance and simulated breathing for a range of fresh gas flows and submersion levels. There were large differences between the Pumani CPAP and the conventional bubble CPAP systems. The Pumani system was not pressure stable, had high resistance and high imposed work of breathing. It was not possible to use submersion depth to adjust CPAP without accounting for fresh gas flow. The Pumani design is novel and not similar to any previously described CPAP system. The main mechanism for CPAP generation was resistance, not submersion depth. The system should therefore not be referred to as bubble CPAP. The clinical consequences of its pressure instability and high imposed work of breathing are not known and trials on outcome and safety are needed.

  20. 49 CFR 659.15 - System safety program standard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false System safety program standard. 659.15 Section 659... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.15 System safety program standard. (a) General requirement. Each state...

  1. Technology applications for traffic safety programs : a primer

    DOT National Transportation Integrated Search

    2008-09-01

    This document explores how emerging digital and communications technology can advance safety on the Nations highways. The range of technology described in this report is available or will be available in the near future to improve traffic safety. ...

  2. Providing feedback following Leadership WalkRounds is associated with better patient safety culture, higher employee engagement and lower burnout

    PubMed Central

    Sexton, J Bryan; Adair, Kathryn C; Leonard, Michael W; Frankel, Terri Christensen; Proulx, Joshua; Watson, Sam R; Magnus, Brooke; Bogan, Brittany; Jamal, Maleek; Schwendimann, Rene; Frankel, Allan S

    2018-01-01

    Background There is a poorly understood relationship between Leadership WalkRounds (WR) and domains such as safety culture, employee engagement, burnout and work-life balance. Methods This cross-sectional survey study evaluated associations between receiving feedback about actions taken as a result of WR and healthcare worker assessments of patient safety culture, employee engagement, burnout and work-life balance, across 829 work settings. Results 16 797 of 23 853 administered surveys were returned (70.4%). 5497 (32.7% of total) reported that they had participated in WR, and 4074 (24.3%) reported that they participated in WR with feedback. Work settings reporting more WR with feedback had substantially higher safety culture domain scores (first vs fourth quartile Cohen’s d range: 0.34–0.84; % increase range: 15–27) and significantly higher engagement scores for four of its six domains (first vs fourth quartile Cohen’s d range: 0.02–0.76; % increase range: 0.48–0.70). Conclusion This WR study of patient safety and organisational outcomes tested relationships with a comprehensive set of safety culture and engagement metrics in the largest sample of hospitals and respondents to date. Beyond measuring simply whether WRs occur, we examine WR with feedback, as WR being done well. We suggest that when WRs are conducted, acted on, and the results are fed back to those involved, the work setting is a better place to deliver and receive care as assessed across a broad range of metrics, including teamwork, safety, leadership, growth opportunities, participation in decision-making and the emotional exhaustion component of burnout. Whether WR with feedback is a manifestation of better norms, or a cause of these norms, is unknown, but the link is demonstrably potent. PMID:28993441

  3. Providing feedback following Leadership WalkRounds is associated with better patient safety culture, higher employee engagement and lower burnout.

    PubMed

    Sexton, J Bryan; Adair, Kathryn C; Leonard, Michael W; Frankel, Terri Christensen; Proulx, Joshua; Watson, Sam R; Magnus, Brooke; Bogan, Brittany; Jamal, Maleek; Schwendimann, Rene; Frankel, Allan S

    2018-04-01

    There is a poorly understood relationship between Leadership WalkRounds (WR) and domains such as safety culture, employee engagement, burnout and work-life balance. This cross-sectional survey study evaluated associations between receiving feedback about actions taken as a result of WR and healthcare worker assessments of patient safety culture, employee engagement, burnout and work-life balance, across 829 work settings. 16 797 of 23 853 administered surveys were returned (70.4%). 5497 (32.7% of total) reported that they had participated in WR, and 4074 (24.3%) reported that they participated in WR with feedback. Work settings reporting more WR with feedback had substantially higher safety culture domain scores (first vs fourth quartile Cohen's d range: 0.34-0.84; % increase range: 15-27) and significantly higher engagement scores for four of its six domains (first vs fourth quartile Cohen's d range: 0.02-0.76; % increase range: 0.48-0.70). This WR study of patient safety and organisational outcomes tested relationships with a comprehensive set of safety culture and engagement metrics in the largest sample of hospitals and respondents to date. Beyond measuring simply whether WRs occur, we examine WR with feedback, as WR being done well . We suggest that when WRs are conducted, acted on, and the results are fed back to those involved, the work setting is a better place to deliver and receive care as assessed across a broad range of metrics, including teamwork, safety, leadership, growth opportunities, participation in decision-making and the emotional exhaustion component of burnout. Whether WR with feedback is a manifestation of better norms, or a cause of these norms, is unknown, but the link is demonstrably potent. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Health hazard evaluation report HETA 90-168-2248, Independence Police Department Indoor Range, Independence, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinehart, R.D.; Almaguer, D.; Klein, M.K.

    1992-08-01

    On February 14, 1990, the National Institute for Occupational Safety and Health (NIOSH) received a request from a management representative of the Independence, Missouri, Police Department Headquarters for a Health Hazard Evaluation. The Police Department requested NIOSH to evaluate the effectiveness of a newly redesigned air handling system installed inside their indoor firing range. On August 6, 1991, NIOSH investigators met with the firing range supervisor and toured the facility. On August 8, ten personal breathing-zone (PBZ) air samples and 3 area air samples were collected on filters inside the range and the filters were subsequently analyzed for lead bymore » atomic absorption spectroscopy (AAS). Surface lead contamination inside the firing range was measured in two locations and hand (dermal) lead contamination was measured on two instructors and two field officers. These samples were also analyzed for lead by AAS.« less

  5. Overview of Risk Mitigation for Safety-Critical Computer-Based Systems

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report presents a high-level overview of a general strategy to mitigate the risks from threats to safety-critical computer-based systems. In this context, a safety threat is a process or phenomenon that can cause operational safety hazards in the form of computational system failures. This report is intended to provide insight into the safety-risk mitigation problem and the characteristics of potential solutions. The limitations of the general risk mitigation strategy are discussed and some options to overcome these limitations are provided. This work is part of an ongoing effort to enable well-founded assurance of safety-related properties of complex safety-critical computer-based aircraft systems by developing an effective capability to model and reason about the safety implications of system requirements and design.

  6. Functional Safety of Hybrid Laser Safety Systems - How can a Combination between Passive and Active Components Prevent Accidents?

    NASA Astrophysics Data System (ADS)

    Lugauer, F. P.; Stiehl, T. H.; Zaeh, M. F.

    Modern laser systems are widely used in industry due to their excellent flexibility and high beam intensities. This leads to an increased hazard potential, because conventional laser safety barriers only offer a short protection time when illuminated with high laser powers. For that reason active systems are used more and more to prevent accidents with laser machines. These systems must fulfil the requirements of functional safety, e.g. according to IEC 61508, which causes high costs. The safety provided by common passive barriers is usually unconsidered in this context. In the presented approach, active and passive systems are evaluated from a holistic perspective. To assess the functional safety of hybrid safety systems, the failure probability of passive barriers is analysed and added to the failure probability of the active system.

  7. Manned space flight nuclear system safety. Volume 6: Space base nuclear system safety plan

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A qualitative identification of the steps required to assure the incorporation of radiological system safety principles and objectives into all phases of a manned space base program are presented. Specific areas of emphasis include: (1) radiological program management, (2) nuclear system safety plan implementation, (3) impact on program, and (4) summary of the key operation and design guidelines and requirements. The plan clearly indicates the necessity of considering and implementing radiological system safety recommendations as early as possible in the development cycle to assure maximum safety and minimize the impact on design and mission plans.

  8. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok

    2002-07-15

    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety andmore » Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified.« less

  9. 75 FR 68224 - Safety Management Systems for Part 121 Certificate Holders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... the general framework for an organization-wide safety management approach to air carrier operations... System? An SMS is an organization-wide approach to managing safety risk and assuring the effectiveness of... under 14 CFR part 121 to develop and implement a safety management system (SMS) to improve the safety of...

  10. 49 CFR 659.15 - System safety program standard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... included in the affected rail transit agency's system safety program plan relating to the hazard management... 49 Transportation 7 2011-10-01 2011-10-01 false System safety program standard. 659.15 Section 659... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the...

  11. 30 CFR 250.804 - Production safety-system testing and records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Production safety-system testing and records... Gas Production Safety Systems § 250.804 Production safety-system testing and records. (a) Inspection... devices operating at temperatures which could ignite a methane-air mixture shall not be used. All...

  12. 30 CFR 250.804 - Production safety-system testing and records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Production safety-system testing and records... Gas Production Safety Systems § 250.804 Production safety-system testing and records. (a) Inspection... devices operating at temperatures which could ignite a methane-air mixture shall not be used. All...

  13. 30 CFR 250.804 - Production safety-system testing and records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Production safety-system testing and records... Gas Production Safety Systems § 250.804 Production safety-system testing and records. (a) Inspection... devices operating at temperatures which could ignite a methane-air mixture shall not be used. All...

  14. 33 CFR 96.250 - What documents and reports must a safety management system have?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Safety management system document and data maintenance (1) Procedures which establish and maintain control of all documents and data relevant to the safety management system. (2) Documents are available at... safety management system have? 96.250 Section 96.250 Navigation and Navigable Waters COAST GUARD...

  15. 33 CFR 96.240 - What functional requirements must a safety management system meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a safety management system meet? 96.240 Section 96.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.240 What functional...

  16. 33 CFR 96.230 - What objectives must a safety management system meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... management system meet? 96.230 Section 96.230 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.230 What objectives must a safety...

  17. 46 CFR 62.25-15 - Safety control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... manual safety trip controls must be provided for all main boilers, turbines, and internal combustion... 46 Shipping 2 2012-10-01 2012-10-01 false Safety control systems. 62.25-15 Section 62.25-15... AUTOMATION General Requirements for All Automated Vital Systems § 62.25-15 Safety control systems. (a...

  18. 46 CFR 62.25-15 - Safety control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... manual safety trip controls must be provided for all main boilers, turbines, and internal combustion... 46 Shipping 2 2013-10-01 2013-10-01 false Safety control systems. 62.25-15 Section 62.25-15... AUTOMATION General Requirements for All Automated Vital Systems § 62.25-15 Safety control systems. (a...

  19. 46 CFR 62.25-15 - Safety control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... manual safety trip controls must be provided for all main boilers, turbines, and internal combustion... 46 Shipping 2 2014-10-01 2014-10-01 false Safety control systems. 62.25-15 Section 62.25-15... AUTOMATION General Requirements for All Automated Vital Systems § 62.25-15 Safety control systems. (a...

  20. Photovoltaic system criteria documents. Volume 5: Safety criteria for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    Methodology is described for determining potential safety hazards involved in the construction and operation of photovoltaic power systems and provides guidelines for the implementation of safety considerations in the specification, design and operation of photovoltaic systems. Safety verification procedures for use in solar photovoltaic systems are established.

  1. 49 CFR 659.27 - Internal safety and security reviews.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the..., indicating that the rail transit agency is in compliance with its system safety program plan and system... security reviews indicate that the rail transit agency is not in compliance with its system safety program...

  2. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1991-01-01

    Procedures for real time evaluation of the inflight health and performance of gas turbine engines and related systems were developed to enhance flight test safety and productivity. These techniques include the monitoring of the engine, the engine control system, thrust vectoring control system health, and the detection of engine stalls. Real time performance techniques were developed for the determination and display of inflight thrust and for aeroperformance drag polars. These new methods were successfully shown on various research aircraft at NASA-Dryden. The capability of NASA's Western Aeronautical Test Range and the advanced data acquisition systems were key factors for implementation and real time display of these methods.

  3. Cognitive Systems Engineering: The Next 30 Years

    NASA Technical Reports Server (NTRS)

    Feary, Michael

    2012-01-01

    This presentation is part of panel discussion on Cognitive Systems Engineering. The purpose of this panel is to discuss the challenges and future directions of Cognitive Systems Engineering for the next 30 years. I intended to present the work we have been doing with the Aviation Safety program and Space Human Factors Engineering project on Work Domain Analysis and some areas of Research Focus. Specifically, I intend to focus on the shift on the need to understand and model attention in mixed-initiative systems, the need for methods which can generate results to be used in trade-off decisions, and the need to account for a range of human behavior in the design.

  4. Systems for hybrid cars

    NASA Astrophysics Data System (ADS)

    Bitsche, Otmar; Gutmann, Guenter

    Not only sharp competition but also legislation are pushing development of hybrid drive trains. Based on conventional internal combustion engine (ICE) vehicles, these drive trains offer a wide range of benefits from reduced fuel consumption and emission to multifaceted performance improvements. Hybrid electric drive trains may also facilitate the introduction of fuel cells (FC). The battery is the key component for all hybrid drive trains, as it dominates cost and performance issues. The selection of the right battery technology for the specific automotive application is an important task with an impact on costs of development and use. Safety, power, and high cycle life are a must for all hybrid applications. The greatest pressure to reduce cost is in soft hybrids, where lead-acid embedded in a considerate management presents the cheapest solution, with a considerable improvement in performance needed. From mild to full hybridization, an improvement in specific power makes higher costs more acceptable, provided that the battery's service life is equivalent to the vehicle's lifetime. Today, this is proven for the nickel-metal hydride system. Lithium ion batteries, which make use of a multiple safety concept, and with some development anticipated, provide even better prospects in terms of performance and costs. Also, their scalability permits their application in battery electric vehicles—the basis for better performance and enhanced user acceptance. Development targets for the batteries are discussed with a focus on system aspects such as electrical and thermal management and safety.

  5. A systematic review of evidence on the links between patient experience and clinical safety and effectiveness

    PubMed Central

    Doyle, Cathal; Lennox, Laura; Bell, Derek

    2013-01-01

    Objective To explore evidence on the links between patient experience and clinical safety and effectiveness outcomes. Design Systematic review. Setting A wide range of settings within primary and secondary care including hospitals and primary care centres. Participants A wide range of demographic groups and age groups. Primary and secondary outcome measures A broad range of patient safety and clinical effectiveness outcomes including mortality, physical symptoms, length of stay and adherence to treatment. Results This study, summarising evidence from 55 studies, indicates consistent positive associations between patient experience, patient safety and clinical effectiveness for a wide range of disease areas, settings, outcome measures and study designs. It demonstrates positive associations between patient experience and self-rated and objectively measured health outcomes; adherence to recommended clinical practice and medication; preventive care (such as health-promoting behaviour, use of screening services and immunisation); and resource use (such as hospitalisation, length of stay and primary-care visits). There is some evidence of positive associations between patient experience and measures of the technical quality of care and adverse events. Overall, it was more common to find positive associations between patient experience and patient safety and clinical effectiveness than no associations. Conclusions The data presented display that patient experience is positively associated with clinical effectiveness and patient safety, and support the case for the inclusion of patient experience as one of the central pillars of quality in healthcare. It supports the argument that the three dimensions of quality should be looked at as a group and not in isolation. Clinicians should resist sidelining patient experience as too subjective or mood-oriented, divorced from the ‘real’ clinical work of measuring safety and effectiveness. PMID:23293244

  6. Integrating system safety into the basic systems engineering process

    NASA Technical Reports Server (NTRS)

    Griswold, J. W.

    1971-01-01

    The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.

  7. Evaluation of the Safety and Tolerability of Conjunctival Ring for Posterior Segment of the Eye.

    PubMed

    Kinoshita, Satoshi; Ohguchi, Takeshi; Noda, Kousuke; Murata, Miyuki; Yasueda, Shin-Ichi; Obata, Haruka; Matsunaga, Toru; Fukushima, Tsutomu; Kanda, Atsuhiro; Ishida, Susumu

    2017-08-01

    To evaluate the safety and tolerability of conjunctival rings (CRs), a novel device for drug delivery to the posterior segment of the eye. In animal studies, CRs containing 5% dexamethasone sodium phosphate (DSP) or vehicle solution were placed on the right and left eyes of C57BL/6J mice, respectively. Contact lenses (CLs) containing vehicle solution were used as a control. Twenty-four hours after placement of the CRs, corneal fluorescein staining was graded based on the McDonald-Shadduck scoring system, ranging from 0 to 4. In humans, CRs containing vehicle solution were placed on the right eye of healthy volunteers for 9 hours. The corneal curvature, corneal thickness, intraocular pressure, visual acuity, tear production (Schirmer I test), tear film break-up time and fluorescein staining scores of the cornea (scores ranging from 0 to 3) and conjunctiva (scores ranging from 0 to 6) were assessed before and after wearing the CRs. The release characteristics of DSP from CRs were also evaluated. In animal experiments, corneal fluorescein staining scores were 1 or less in all the groups, and there was no significant difference between the CR group and the CL group. In the preclinical safety evaluation of CR for humans, ophthalmic examination revealed that CR caused no significant changes in all the parameters investigated including corneal curvature (p = 0.77), corneal thickness (p = 0.96), intraocular pressure (p = 0.59), visual acuity (p = 0.14), Schirmer I test results (p = 0.76), tear film break-up time (p = 0.68), corneal fluorescein staining scores (p = 0.64), and conjunctival fluorescein staining scores (p = 0.52). The DSP release from CRs occurs within a few hours, which is similar to the drug-release property of medicated CL, as reported previously. The current data showed the safety and tolerability of CR as a drug delivery device for the treatment of posterior segment diseases.

  8. Feasibility and Safety of a Powered Exoskeleton for Assisted Walking for Persons With Multiple Sclerosis: A Single-Group Preliminary Study.

    PubMed

    Kozlowski, Allan J; Fabian, Michelle; Lad, Dipan; Delgado, Andrew D

    2017-07-01

    To examine the feasibility, safety, and secondary benefit potential of exoskeleton-assisted walking with one device for persons with multiple sclerosis (MS). Single-group longitudinal preliminary study with 8-week baseline, 8-week intervention, and 4-week follow-up. Outpatient MS clinic, tertiary care hospital. Participants (N=13; age range, 38-62y) were mostly women with Expanded Disability Status Scale scores ranging from 5.5 to 7.0. Exoskeleton-assisted walk training. Primary outcomes were accessibility (enrollment/screen pass), tolerability (completion/dropout), learnability (time to event for standing, walking, and sitting with little or no assistance), acceptability (satisfaction on the device subscale of the Quebec User Evaluation of Satisfaction with Assistive Technology version 2), and safety (event rates standardized to person-time exposure in the powered exoskeleton). Secondary outcomes were walking without the device (timed 25-foot walk test and 6-minute walk test distance), spasticity (Modified Ashworth Scale), and health-related quality of life (Patient-Reported Outcomes Measurement and Information System pain interference and Quality of Life in Neurological Conditions fatigue, sleep disturbance, depression, and positive affect and well-being). The device was accessible to 11 and tolerated by 5 participants. Learnability was moderate, with 5 to 15 sessions required to walk with minimal assistance. Safety was good; the highest adverse event rate was for skin issues at 151 per 1000 hours' exposure. Acceptability ranged from not very satisfied to very satisfied. Participants who walked routinely improved qualitatively on sitting, standing, or walking posture. Two participants improved and 2 worsened on ≥1 quality of life domain. The pattern of spasticity scores may indicate potential benefit. The device appeared feasible and safe for about a third of our sample, for whom routine exoskeleton-assisted walking may offer secondary benefits. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Potential applications of near infrared auto-fluorescence spectral polarized imaging for assessment of food quality

    NASA Astrophysics Data System (ADS)

    Zhou, Kenneth J.; Chen, Jun

    2016-03-01

    The current growing of food industry for low production costs and high efficiency needs for maintenance of high-quality standards and assurance of food safety while avoiding liability issues. Quality and safety of food depend on physical (texture, color, tenderness etc.), chemical (fat content, moisture, protein content, pH, etc.), and biological (total bacterial count etc.) features. There is a need for a rapid (less than a few minutes) and accurate detection system in order to optimize quality and assure safety of food. However, the fluorescence ranges for known fluorophores are limited to ultraviolet emission bands, which are not in the tissue near infrared (NIR) "optical window". Biological tissues excited by far-red or NIR light would exhibit strong emission in spectral range of 650-1,100 nm although no characteristic peaks show the emission from which known fluorophores. The characteristics of the auto-fluorescence emission of different types of tissues were found to be different between different tissue components such as fat, high quality muscle food. In this paper, NIR auto-fluorescence emission from different types of muscle food and fat was measured. The differences of fluorescence intensities of the different types of muscle food and fat emissions were observed. These can be explained by the change of the microscopic structure of physical, chemical, and biological features in meat. The difference of emission intensities of fat and lean meat tissues was applied to monitor food quality and safety using spectral polarized imaging, which can be detect deep depth fat under the muscle food up to several centimeter.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyflot, MJ; Kusano, AS; Zeng, J

    Purpose: Interest in incident learning systems (ILS) for improving safety and quality in radiation oncology is growing, as evidenced by the upcoming release of the national ILS. However, an institution implementing such a system would benefit from quantitative metrics to evaluate performance and impact. We developed metrics to measure volume of reporting, severity of reported incidents, and changes in staff attitudes over time from implementation of our institutional ILS. Methods: We analyzed 2023 incidents from our departmental ILS from 2/2012–2/2014. Incidents were prospectively assigned a near-miss severity index (NMSI) at multidisciplinary review to evaluate the potential for error ranging frommore » 0 to 4 (no harm to critical). Total incidents reported, unique users reporting, and average NMSI were evaluated over time. Additionally, departmental safety attitudes were assessed through a 26 point survey adapted from the AHRQ Hospital Survey on Patient Safety Culture before, 12 months, and 24 months after implementation of the incident learning system. Results: Participation in the ILS increased as demonstrated by total reports (approximately 2.12 additional reports/month) and unique users reporting (0.51 additional users reporting/month). Also, the average NMSI of reports trended lower over time, significantly decreasing after 12 months of reporting (p<0.001) but with no significant change at months 18 or 24. In survey data significant improvements were noted in many dimensions, including perceived barriers to reporting incidents such as concern of embarrassment (37% to 18%; p=0.02) as well as knowledge of what incidents to report, how to report them, and confidence that these reports were used to improve safety processes. Conclusion: Over a two-year period, our departmental ILS was used more frequently, incidents became less severe, and staff confidence in the system improved. The metrics used here may be useful for other institutions seeking to create or evaluate their own incident learning systems.« less

  11. Health and safety management systems: liability or asset?

    PubMed

    Bennett, David

    2002-01-01

    Health and safety management systems have a background in theory and in various interests among employers and workplace health and safety professionals. These have resulted in a number of national systems emanating from national standard-writing centres and from employers' organizations. In some cases these systems have been recognized as national standards. The contenders for an international standard have been the International Organization of Standardization (ISO) and the International Labour Organization (ILO). The quality and environmental management systems of ISO indicate what an ISO health and safety management standard would look like. The ILO Guidelines on Safety and Health Management Systems, by contrast, are stringent, specific and potentially effective in improving health and safety performance in the workplace.

  12. System theory and safety models in Swedish, UK, Dutch and Australian road safety strategies.

    PubMed

    Hughes, B P; Anund, A; Falkmer, T

    2015-01-01

    Road safety strategies represent interventions on a complex social technical system level. An understanding of a theoretical basis and description is required for strategies to be structured and developed. Road safety strategies are described as systems, but have not been related to the theory, principles and basis by which systems have been developed and analysed. Recently, road safety strategies, which have been employed for many years in different countries, have moved to a 'vision zero', or 'safe system' style. The aim of this study was to analyse the successful Swedish, United Kingdom and Dutch road safety strategies against the older, and newer, Australian road safety strategies, with respect to their foundations in system theory and safety models. Analysis of the strategies against these foundations could indicate potential improvements. The content of four modern cases of road safety strategy was compared against each other, reviewed against scientific systems theory and reviewed against types of safety model. The strategies contained substantial similarities, but were different in terms of fundamental constructs and principles, with limited theoretical basis. The results indicate that the modern strategies do not include essential aspects of systems theory that describe relationships and interdependencies between key components. The description of these strategies as systems is therefore not well founded and deserves further development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Human factors systems approach to healthcare quality and patient safety

    PubMed Central

    Carayon, Pascale; Wetterneck, Tosha B.; Rivera-Rodriguez, A. Joy; Hundt, Ann Schoofs; Hoonakker, Peter; Holden, Richard; Gurses, Ayse P.

    2013-01-01

    Human factors systems approaches are critical for improving healthcare quality and patient safety. The SEIPS (Systems Engineering Initiative for Patient Safety) model of work system and patient safety is a human factors systems approach that has been successfully applied in healthcare research and practice. Several research and practical applications of the SEIPS model are described. Important implications of the SEIPS model for healthcare system and process redesign are highlighted. Principles for redesigning healthcare systems using the SEIPS model are described. Balancing the work system and encouraging the active and adaptive role of workers are key principles for improving healthcare quality and patient safety. PMID:23845724

  14. 33 CFR 147.847 - Safety Zone; BW PIONEER Floating Production, Storage, and Offloading System Safety Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone; BW PIONEER Floating... ZONES § 147.847 Safety Zone; BW PIONEER Floating Production, Storage, and Offloading System Safety Zone. (a) Description. The BW PIONEER, a Floating Production, Storage and Offloading (FPSO) system, is in...

  15. Preclinical profile of cabazitaxel

    PubMed Central

    Vrignaud, Patricia; Semiond, Dorothée; Benning, Veronique; Beys, Eric; Bouchard, Hervé; Gupta, Sunil

    2014-01-01

    First-generation taxanes have changed the treatment paradigm for a wide variety of cancers, but innate or acquired resistance frequently limits their use. Cabazitaxel is a novel second-generation taxane developed to overcome such resistance. In vitro, cabazitaxel showed similar antiproliferative activity to docetaxel in taxane-sensitive cell lines and markedly greater activity in cell lines resistant to taxanes. In vivo, cabazitaxel demonstrated excellent antitumor activity in a broad spectrum of docetaxel-sensitive tumor xenografts, including a castration-resistant prostate tumor xenograft, HID28, where cabazitaxel exhibited greater efficacy than docetaxel. Importantly, cabazitaxel was also active against tumors with innate or acquired resistance to docetaxel, suggesting therapeutic potential for patients progressing following taxane treatment and those with docetaxel-refractory tumors. In patients with tumors of the central nervous system (CNS), and in patients with pediatric tumors, therapeutic success with first-generation taxanes has been limited. Cabazitaxel demonstrated greater antitumor activity than docetaxel in xenograft models of CNS disease and pediatric tumors, suggesting potential clinical utility in these special patient populations. Based on therapeutic synergism observed in an in vivo tumor model, cabazitaxel is also being investigated clinically in combination with cisplatin. Nonclinical evaluation of the safety of cabazitaxel in a range of animal species showed largely reversible changes in the bone marrow, lymphoid system, gastrointestinal tract, and male reproductive system. Preclinical safety signals of cabazitaxel were consistent with the previously reported safety profiles of paclitaxel and docetaxel. Clinical observations with cabazitaxel were consistent with preclinical results, and cabazitaxel is indicated, in combination with prednisone, for the treatment of patients with hormone-refractory metastatic prostate cancer previously treated with docetaxel. In conclusion, the demonstrated activity of cabazitaxel in tumors with innate or acquired resistance to docetaxel, CNS tumors, and pediatric tumors made this agent a candidate for further clinical evaluation in a broader range of patient populations compared with first-generation taxanes. PMID:25378905

  16. Systematic biases in group decision-making: implications for patient safety.

    PubMed

    Mannion, Russell; Thompson, Carl

    2014-12-01

    Key decisions in modern health care systems are often made by groups of people rather than lone individuals. However, group decision-making can be imperfect and result in organizational and clinical errors which may harm patients-a fact highlighted graphically in recent (and historical) health scandals and inquiries such as the recent report by Sir Robert Francis into the serious failures in patient care and safety at Mid Staffordshire Hospitals NHS Trust in the English NHS. In this article, we draw on theories from organization studies and decision science to explore the ways in which patient safety may be undermined or threatened in health care contexts as a result of four systematic biases arising from group decision-making: 'groupthink', 'social loafing', 'group polarization' and 'escalation of commitment'. For each group bias, we describe its antecedents, illustrate how it can impair group decisions with regard to patient safety, outline a range of possible remedial organizational strategies that can be used to attenuate the potential for adverse consequences and look forward at the emerging research agenda in this important but hitherto neglected area of patient safety research. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  17. Microbicide safety/efficacy studies in animals: macaques and small animal models.

    PubMed

    Veazey, Ronald S

    2008-09-01

    A number of microbicide candidates have failed to prevent HIV transmission in human clinical trials, and there is uncertainty as to how many additional trials can be supported by the field. Regardless, there are far too many microbicide candidates in development, and a logical and consistent method for screening and selecting candidates for human clinical trials is desperately needed. The unique host and cell specificity of HIV, however, provides challenges for microbicide safety and efficacy screening, that can only be addressed by rigorous testing in relevant laboratory animal models. A number of laboratory animal model systems ranging from rodents to nonhuman primates, and single versus multiple dose challenges have recently been developed to test microbicide candidates. These models have shed light on both the safety and efficacy of candidate microbicides as well as the early mechanisms involved in transmission. This article summarizes the major advantages and disadvantages of the relevant animal models for microbicide safety and efficacy testing. Currently, nonhuman primates are the only relevant and effective laboratory model for screening microbicide candidates. Given the consistent failures of prior strategies, it is now clear that rigorous safety and efficacy testing in nonhuman primates should be a prerequisite for advancing additional microbicide candidates to human clinical trials.

  18. Microbicide Safety/Efficacy studies in animals -macaques and small animal models

    PubMed Central

    Veazey, Ronald S.

    2009-01-01

    Purpose of review A number of microbicide candidates have failed to prevent HIV transmission in human clinical trials, and there is uncertainty as to how many additional trials can be supported by the field. Regardless, there are far too many microbicide candidates in development, and a logical and consistent method for screening and selecting candidates for human clinical trials is desperately needed. However, the unique host and cell specificity of HIV provides challenges for microbicide safety and efficacy screening, that can only be addressed by rigorous testing in relevant laboratory animal models. Recent findings A number of laboratory animal model systems ranging from rodents to nonhuman primates, and single versus multiple dose challenges have recently been developed to test microbicide candidates. These models have shed light on both the safety and efficacy of candidate microbicides as well as the early mechanisms involved in transmission. This article summarizes the major advantages and disadvantages of the relevant animal models for microbicide safety and efficacy testing. Summary Currently, nonhuman primates are the only relevant and effective laboratory model for screening microbicide candidates. Given the consistent failures of prior strategies, it is now clear that rigorous safety and efficacy testing in nonhuman primates should be a pre-requisite for advancing additional microbicide candidates to human clinical trials. PMID:19373023

  19. 76 FR 12300 - Safety Management System for Certificated Airports; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ...-0997; Notice No. 10-14] RIN 2120-AJ38 Safety Management System for Certificated Airports; Extension of...: Background On October 7, 2010, the FAA published Notice No. 10-14, entitled ``Safety Management System for... conclusions from the safety management systems proof of concept. The FAA anticipates making this report...

  20. Reliability analysis in the Office of Safety, Environmental, and Mission Assurance (OSEMA)

    NASA Astrophysics Data System (ADS)

    Kauffmann, Paul J.

    1994-12-01

    The technical personnel in the SEMA office are working to provide the highest degree of value-added activities to their support of the NASA Langley Research Center mission. Management perceives that reliability analysis tools and an understanding of a comprehensive systems approach to reliability will be a foundation of this change process. Since the office is involved in a broad range of activities supporting space mission projects and operating activities (such as wind tunnels and facilities), it was not clear what reliability tools the office should be familiar with and how these tools could serve as a flexible knowledge base for organizational growth. Interviews and discussions with the office personnel (both technicians and engineers) revealed that job responsibilities ranged from incoming inspection to component or system analysis to safety and risk. It was apparent that a broad base in applied probability and reliability along with tools for practical application was required by the office. A series of ten class sessions with a duration of two hours each was organized and scheduled. Hand-out materials were developed and practical examples based on the type of work performed by the office personnel were included. Topics covered were: Reliability Systems - a broad system oriented approach to reliability; Probability Distributions - discrete and continuous distributions; Sampling and Confidence Intervals - random sampling and sampling plans; Data Analysis and Estimation - Model selection and parameter estimates; and Reliability Tools - block diagrams, fault trees, event trees, FMEA. In the future, this information will be used to review and assess existing equipment and processes from a reliability system perspective. An analysis of incoming materials sampling plans was also completed. This study looked at the issues associated with Mil Std 105 and changes for a zero defect acceptance sampling plan.

Top