Emerging Communication Technologies (ECT) Phase 4 Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Marin, Jose A.; Nelson, Richard A.
2005-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Crew Exploration Vehicle (CEV), Advanced Range Technology Working Group (ARTWG), and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures on a 24/7 basis. ECT is a continuation of the Range Information System Management (RISM) task started in 2002. This is the fourth year of the project.
Range Information Systems Management (RISM) Phase 1 Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Nelson, Richard A.
2002-01-01
RISM investigated alternative approaches, technologies, and communication network architectures to facilitate building the Spaceports and Ranges of the future. RISM started by document most existing US ranges and their capabilities. In parallel, RISM obtained inputs from the following: 1) NASA and NASA-contractor engineers and managers, and; 2) Aerospace leaders from Government, Academia, and Industry, participating through the Space Based Range Distributed System Working Group (SBRDSWG), many of whom are also; 3) Members of the Advanced Range Technology Working Group (ARTWG) subgroups, and; 4) Members of the Advanced Spaceport Technology Working Group (ASTWG). These diverse inputs helped to envision advanced technologies for implementing future Ranges and Range systems that builds on today s cabled and wireless legacy infrastructures while seamlessly integrating both today s emerging and tomorrow s building-block communication techniques. The fundamental key is to envision a transition to a Space Based Range Distributed Subsystem. The enabling concept is to identify the specific needs of Range users that can be solved through applying emerging communication tech
Emerging Communication Technologies (ECT) Phase 3 Final Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Bates, Lakesha D.; Nelson, Richard A.
2004-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.
Emerging Communication Technologies (ECT) Phase 2 Report. Volume 3; Ultra Wideband (UWB) Technology
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.
2003-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB
Emerging Communication Technologies (ECT) Phase 2 Report. Volume 2; Appendices
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.
2003-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB
Emerging Communication Technologies (ECT) Phase 2 Report. Volume 1; Main Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.
2003-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.
Kushniruk, Andre; Borycki, Elizabeth; Armstrong, Brian; Kuo, Mu-Hsing
2012-01-01
The paper describes the authors' work in the area of health informatics (HI) education involving emerging health information technologies. A range of information technologies promise to modernize health care. Foremost among these are electronic health records (EHRs), which are expected to significantly improve and streamline health care practice. Major national and international efforts are currently underway to increase EHR adoption. However, there have been numerous issues affecting the widespread use of such information technology, ranging from a complex array of technical problems to social issues. This paper describes work in the integration of information technologies directly into the education and training of HI students at both the undergraduate and graduate level. This has included work in (a) the development of Web-based computer tools and platforms to allow students to have hands-on access to the latest technologies and (b) development of interdisciplinary educational models that can be used to guide integrating information technologies into HI education. The paper describes approaches that allow for remote hands-on access by HI students to a range of EHRs and related technology. To date, this work has been applied in HI education in a variety of ways. Several approaches for integration of this essential technology into HI education and training are discussed, along with future directions for the integration of EHR technology into improving and informing the education of future health and HI professionals.
Traditional Tales and Imaginary Contexts in Primary Design and Technology: A Case Study
ERIC Educational Resources Information Center
McLain, Matt; McLain, Mel; Tsai, Jess; Martin, Mike; Bell, Dawne; Wooff, David
2017-01-01
Working with contexts is a key component to design and technology activity and education. The most recent iteration of the national curriculum programme of study for design and technology, in England, sets out that children between the ages of 5 and 7 "should work in a range of relevant contexts" (DfE, 2013, p.193); suggested contexts…
Bridging the Skills Gap. Working Paper Part II: High Technology and Related Occupations.
ERIC Educational Resources Information Center
Kaplan, Christine E.
This part of a 2-part working paper identifies and describes major occupational groups that are characteristic of high technology manufacturing and service industries as well as employment sectors that use high technology products in their provision of goods and services. The paper is based on a review of a wide range of employment projections…
MSFC Technology Year in Review 2015
NASA Technical Reports Server (NTRS)
Reynolds, David; Tinker, Mike
2015-01-01
MSFC has a strong diverse portfolio of technology development projects, ranging from flight projects to very low Technology Readiness Level (TRL) laboratory projects. The 2015 Year in Review highlights the Center's technology projects and celebrates their accomplishments to raise awareness of technology development work that is integral to the success of future Agency flight programs.
Development of a Long-Range Gliding Underwater Vehicle Utilizing Java Sun SPOT Technology
2008-09-01
release; distribution is unlimited DEVELOPMENT OF A LONG-RANGE GLIDING UNMANNED UNDERWATER VEHICLE UTILIZING JAVA SUN SPOT TECHNOLOGY by...TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: Development of a Long-Range Gliding Underwater Vehicle Utilizing Java Sun SPOT...vehicle. Further work is needed to demonstrate the efficiency and effectiveness of this design. 15. NUMBER OF PAGES 117 14. SUBJECT TERMS Java
Interplanetary laser ranging - an emerging technology for planetary science missions
NASA Astrophysics Data System (ADS)
Dirkx, D.; Vermeersen, L. L. A.
2012-09-01
Interplanetary laser ranging (ILR) is an emerging technology for very high accuracy distance determination between Earth-based stations and spacecraft or landers at interplanetary distances. It has evolved from laser ranging to Earth-orbiting satellites, modified with active laser transceiver systems at both ends of the link instead of the passive space-based retroreflectors. It has been estimated that this technology can be used for mm- to cm-level accuracy range determination at interplanetary distances [2, 7]. Work is being performed in the ESPaCE project [6] to evaluate in detail the potential and limitations of this technology by means of bottom-up laser link simulation, allowing for a reliable performance estimate from mission architecture and hardware characteristics.
ERIC Educational Resources Information Center
Harris, Philip R.
1985-01-01
Looks at changes in the manager's role due to technological advancement in the workplace. Discusses wider range of uses for computers (analysis, decision making, communications, planning, tracking trends), importance of supervisor training, cyberphobia (fear of new technology), cyberphrenia (addiction to new technology), and the effect of a work…
Technology Transfer Network and Affiliations
NASA Technical Reports Server (NTRS)
2003-01-01
The NASA Technology Transfer Partnership program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.
Relationship between the Full Range Leadership Model and Information Technology Tools Usage
ERIC Educational Resources Information Center
Landell, Antonio White
2013-01-01
Due to major technological and social changes, world dynamics have undergone tremendous leadership style and technology transitions. The transformation of information technology tools usage (ITTU) created a new paradigm confronting leaders that can provide the right change of vision to effectively motivate, inspire, and transform others to work at…
The Diffusion of IT in the Historical Context of Innovations from Developed Countries
ERIC Educational Resources Information Center
James, Jeffrey
2013-01-01
The well-known s-shaped diffusion of technology curve generally works well in developed countries. But how does it perform in the very different context of developing countries? Across a wide range of new technologies imported from the developed countries it works poorly. In most cases the penetration rate fails to reach 25% of the population. The…
Representations for Semantic Learning Webs: Semantic Web Technology in Learning Support
ERIC Educational Resources Information Center
Dzbor, M.; Stutt, A.; Motta, E.; Collins, T.
2007-01-01
Recent work on applying semantic technologies to learning has concentrated on providing novel means of accessing and making use of learning objects. However, this is unnecessarily limiting: semantic technologies will make it possible to develop a range of educational Semantic Web services, such as interpretation, structure-visualization, support…
FY 2004 Technology Transfer Network and Affiliations
NASA Technical Reports Server (NTRS)
2004-01-01
The NASA Innovative Partnerships Program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.
The Role of Technology for the Dallas Public Library in Long Range Planning.
ERIC Educational Resources Information Center
Borgman, Christine L.
Major trends in library technology and technology in general, as indicated by information gathered through internal development work at the Dallas Public Library, professional readings, and interviews with experts, are discussed. Trends covered are: (1) internal library services focusing on a total systems approach to library automation; (2)…
The solid state detector technology for picosecond laser ranging
NASA Technical Reports Server (NTRS)
Prochazka, Ivan
1993-01-01
We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.
Army AL&T, July-September 2008
2008-09-01
Technology , and Logistics (AT&L) Workforce and will summarize best practices , specific initiatives, and relevant accomplishments of DOD and the...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Army Acquisition, Logistics & Technology (AT&L...logistics, and technology (AL&T) community. We have a vast number of programs that range from developing transformational technologies for our
ERIC Educational Resources Information Center
Folkes, Clare; Carmichael, Patrick
2006-01-01
A key role in the development and deployment of Assistive Technology solutions is that of the "assessor-consultant". Assessor-consultants for the UK-based charity Abilitynet work with clients to develop customized computer-based assistive technology systems and draw on a range of shared knowledge from the assessor-consultant community.…
ERIC Educational Resources Information Center
The Bookmark, 1988
1988-01-01
The 15 papers in this issue report on important aspects of work done by the Statewide Automation Committee (SAC) in preparing the current strategic plan for the use of new technologies by the libraries of New York State, and on some of the innovative uses of technology that the plan seeks to foster and facilitate. The range of the papers reflects…
OAST space technology accomplishments FY 1991
NASA Technical Reports Server (NTRS)
1992-01-01
The program consists of a continuum of space research and technology activities ranging from initial research to the full scale test of prototype equipment in space. Activities include work that is performed by in-house staff at the NASA Centers, university researchers supported by NASA funded grants and contracts, and industrial aerospace organizations under contract to NASA. These diverse activities provide advances in technology breakthroughs that may revolutionalize a technical discipline or mission concept. The work is managed and coordinated by OAST through a process that integrates the best available talent and capability in NASA, industry, and universities into a National civil space research and technology program.
Beacon communities' public health initiatives: a case study analysis.
Massoudi, Barbara L; Marcial, Laura H; Haque, Saira; Bailey, Robert; Chester, Kelley; Cunningham, Shellery; Riley, Amanda; Soper, Paula
2014-01-01
The Beacon Communities for Public Health (BCPH) project was launched in 2011 to gain a better understanding of the range of activities currently being conducted in population- and public health by the Beacon Communities. The project highlighted the successes and challenges of these efforts with the aim of sharing this information broadly among the public health community. The Beacon Community Program, designed to showcase technology-enabled, community-based initiatives to improve outcomes, focused on: building and strengthening health information technology (IT) infrastructure and exchange capabilities; translating investments in health IT to measureable improvements in cost, quality, and population health; and, developing innovative approaches to performance measurement, technology, and care delivery. Four multimethod case studies were conducted based on a modified sociotechnical framework to learn more about public health initiative implementation and use in the Beacon Communities. Our methodological approach included using document review and semistructured key informant interviews. NACCHO Model Practice Program criteria were used to select the public health initiatives included in the case studies. Despite differences among the case studies, common barriers and facilitators were found to be present in all areas of the sociotechnical framework application including structure, people, technology, tasks, overarching considerations, and sustainability. Overall, there were many more facilitators (range = 7-14) present for each Beacon compared to barriers (range = 4-6). Four influential promising practices were identified through the work: forging strong and sustainable partnerships; ensuring a good task-technology fit and a flexible and iterative design; fostering technology acceptance; and, providing education and demonstrating value. A common weakness was the lack of a framework or model for the Beacon Communities evaluation work. Sharing a framework or approach to evaluation at the beginning of implementation made the work more effective. Supporting evaluation to inform future implementations is important.
Interventions using high-technology communication devices: a state of the art review.
Baxter, Susan; Enderby, Pam; Evans, Philippa; Judge, Simon
2012-01-01
In the last 20 years the range of high-technology augmentative and alternative communication (AAC) aids has rapidly expanded. This review aimed to provide a 'state of the art' synthesis, to provide evidence-based information for researchers, potential users and service providers. Electronic databases were searched from 2000 to 2010, together with reference lists of included papers and review papers. The review considered work of any design which reported an intervention using high-tech AAC with people who have communication difficulties (excluding those with solely hearing or visual loss) published in peer-reviewed journals. Sixty-five papers reporting interventions using high-tech AAC were identified. There was evidence that high-technology AAC may be beneficial across a range of diagnoses and ages. The evidence, however, is currently drawn from studies using designs considered to be at high risk of bias. The review suggests that the high level of individual variation in outcome requires a greater understanding of characteristics of clients who may or may not benefit from this technology. Also, the wide range of outcomes measured requires further work in the field to establish what a 'good outcome' from intervention may be. Copyright © 2012 S. Karger AG, Basel.
ERIC Educational Resources Information Center
Pennsylvania Coll. of Technology, Williamsport.
Intended to enhance strategic planning and enable staff to work as a team toward a shared vision and common goals, this report presents the 1992-95 long-range plan of the Pennsylvania College of Technology (PCT). Part I defines long-range planning; describes the structure and use of the plan at PCT; presents PCT's philosophy, mission, and vision…
Semantic-Web Technology: Applications at NASA
NASA Technical Reports Server (NTRS)
Ashish, Naveen
2004-01-01
We provide a description of work at the National Aeronautics and Space Administration (NASA) on building system based on semantic-web concepts and technologies. NASA has been one of the early adopters of semantic-web technologies for practical applications. Indeed there are several ongoing 0 endeavors on building semantics based systems for use in diverse NASA domains ranging from collaborative scientific activity to accident and mishap investigation to enterprise search to scientific information gathering and integration to aviation safety decision support We provide a brief overview of many applications and ongoing work with the goal of informing the external community of these NASA endeavors.
NASA Technical Reports Server (NTRS)
Skelly, Darin M.
2005-01-01
Viewgraphs on the National Research Council's diaglog to assess progress on NASA's transformational spaceport and range technologies capability roadmap development is presented. The topics include: 1) Agency Goals and Objectives; 2) Strategic Planning Transformation; 3) Advanced Planning Organizational Roles; 4) Public Involvement in Strategic Planning; 5) Strategic Roadmaps; 6) Strategic Roadmaps Schedule; 7) Capability Roadmaps; 8) Capability Charter; 9) Process for Team Selection; 10) Capability Roadmap Development Schedule Overview; 11) Purpose of NRC Review; 12) Technology Readiness Levels; 13) Capability Readiness Levels; 14) Crosswalk Matrix Trans Spaceport & Range; 15) Example linkage to other roadmaps; 16) Capability Readiness Levels Defined; and 17) Crosswalk Matrix Ratings Work In-progress.
This work will provide the production framework for next-generation treatment technologies capable of targeting diverse chemical pollutants over a range of water chemistries and application scales. Tangible outcomes include a wealth of demonstration data and standard operat...
Using Technology to Build Solar-Powered Drag Racers
ERIC Educational Resources Information Center
Fireman, Jerry
2012-01-01
The Colfax High School (Colfax, California) Design Tech program incorporates both academic instruction and practical use of advanced technology to prepare students for the wide range of occupations that involve working with metal, wood, computers, and electronics. In this article, the author describes how Colfax students applied academic learning,…
Play, Creativity and Digital Cultures. Routledge Research in Education
ERIC Educational Resources Information Center
Willett, Rebekah, Ed.; Robinson, Muriel, Ed.; Marsh, Jackie, Ed.
2011-01-01
Recent work on children's digital cultures has identified a range of literacies emerging through children's engagement with new media technologies. This edited collection focuses on children's digital cultures, specifically examining the role of play and creativity in learning with these new technologies. The chapters in this book were contributed…
Advancing the State of the Art in Applying Network Science to C2
2014-06-01
technological networks to include information , cognitive and social networks, they have yet to apply the full range of theoretical instruments now...robustness, and processes. While NEC researchers extended their coverage from technological networks to include information , cognitive and social networks...can be found in a wide variety of domains. For example, Newman (2003) surveys work on biological, technological , information , and social networks
A K-Band Low-Power Phase Shifter Based on Injection Locked Oscillator in 0.13 μm CMOS Technology
NASA Astrophysics Data System (ADS)
Qiu, Qi-Lin; Yu, Xiao-Peng; Sui, Wen-Quan
2017-11-01
In this paper, the design challenges of the injection-locked oscillator (ILO)-based phase shifter are reviewed and analyzed. The key design considerations such as the operating frequency, locking range, and linearity of the phase shifters are analysed in detail. It is possible to optimize the phase shifter in certain parameters such as ultra-low power while meeting the requirements of a certain system. As a design example, a K-band phase shifter is implemented using a commercial 0.13 μm CMOS technology, where a conventional LC tank based topology is implemented but optimised with a good balance among power consumption, working range, sensitivity, and silicon area, etc. Measurement results show that the proposed phase shift is able to work at 22-23.4 GHz with a range of 180∘ while consuming 3.14 mW from a 1.2 V supply voltage.
Innovation leadership: new perspectives for new work.
Malloch, Kathy
2010-03-01
The industrial age command and control leadership style and supporting infrastructure are ineffective in meeting the challenges of the increased availability and sharing of information, the media used for knowledge transfer, the changing range and types of relationships between individuals, and the time required to transfer and share information. What has not changed is the need for effective personal relationships in the evaluation and selection of new technologies; human to human sensitivity, acknowledgment, and respect for the patient care experience. As individuals embrace these new technologies, the essence of the innovation leader emerges to purposefully guide, assess, integrate, and synthesize technology into the human work of patient care. Building organizational infrastructures with openness for technology and innovations to enhance effective patient care relationships now requires an innovation skill set that understands and integrates human needs with the best of technology. In this article a brief description of innovation leadership is presented as the backdrop for change along with 4 significant changes in work processes that have irreversibly altered health care work, the trimodal organizational structure to accommodate operations, innovation, and transition between the 2, and finally, individual and team behaviors that emphasize the work of innovation. Copyright 2010 Elsevier Inc. All rights reserved.
Research on the laser angle deception jamming technology of laser countermeasure
NASA Astrophysics Data System (ADS)
Ma, Shi-wei; Chen, Wen-jian; Gao, Wei; Duan, Yuan-yuan
2015-10-01
In recent years , laser guided weapons behave very well at destroying the military goals in the local wars, the single-shot probability, effective range and hitting precision getting better. And the semi-active laser guided weapons are the most widely used laser guided weapons. In order to improve the viability and protect important military goals, it's necessary to study the technology to against the semi-active guided weapons. This paper studies the working principle, the advantages and disadvantages of the semi-active guided weapons at first, and analyze the possibility of laser angle deception jamming system working. Then it analyzes the working principle and process of laser angle deception jamming technology. Finally it designs a half-real simulation system of laser angle deception jamming, which consists of semi-active laser guided weapons simulation system and laser angle deception jamming system. The simulation system demonstrates the working process of the laser angle deception jamming system. This paper provides fundamental base for the research on the countermeasure technology of semi-active laser guided weapons.
Future World of Work. Long Range Planning Assistance for Local United Ways.
ERIC Educational Resources Information Center
Wilkinson, George
A review of technological, political, social, and economic forces affecting the world of work indicates that in the eighties significant changes can be expected in the following areas: the nature of organizations, the relationship between individuals and organizations, the nature of the work force, the nature of the workplace, and the nature of…
NASA Astrophysics Data System (ADS)
Jiang, Lin; Song, Lixin; Yan, Li; Becht, Gregory; Zhang, Yi; Hoerteis, Matthias
2017-08-01
Passivated contacts can be used to reduce metal-induced recombination for higher energy conversion efficiency for silicon solar cells, and are obtained increasing attentions by PV industries in recent years. The reported thicknesses of passivated contact layers are mostly within tens of nanometer range, and the corresponding metallization methods are realized mainly by plating/evaporation technology. This high cost metallization cannot compete with the screen printing technology, and may affect its market potential comparing with the presently dominant solar cell technology. Very few works have been reported on screen printing metallization on passivated contact solar cells. Hence, there is a rising demand to realize screen printing metallization technology on this topic. In this work, we investigate applying screen printing metallization pastes on poly-silicon passivated contacts. The critical challenge for us is to build low contact resistance that can be competitive to standard technology while restricting the paste penetrations within the thin nano-scale passivated contact layers. The contact resistivity of 1.1mohm-cm2 and the open circuit voltages > 660mV are achieved, and the most appropriate thickness range is estimated to be around 80 150nm.
Technology adoption and prediction tools for everyday technologies aimed at people with dementia.
Chaurasia, Priyanka; McClean, Sally I; Nugent, Chris D; Cleland, Ian; Shuai Zhang; Donnelly, Mark P; Scotney, Bryan W; Sanders, Chelsea; Smith, Ken; Norton, Maria C; Tschanz, JoAnn
2016-08-01
A wide range of assistive technologies have been developed to support the elderly population with the goal of promoting independent living. The adoption of these technology based solutions is, however, critical to their overarching success. In our previous research we addressed the significance of modelling user adoption to reminding technologies based on a range of physical, environmental and social factors. In our current work we build upon our initial modeling through considering a wider range of computational approaches and identify a reduced set of relevant features that can aid the medical professionals to make an informed choice of whether to recommend the technology or not. The adoption models produced were evaluated on a multi-criterion basis: in terms of prediction performance, robustness and bias in relation to two types of errors. The effects of data imbalance on prediction performance was also considered. With handling the imbalance in the dataset, a 16 feature-subset was evaluated consisting of 173 instances, resulting in the ability to differentiate between adopters and non-adopters with an overall accuracy of 99.42 %.
The Promise of NLP and Speech Processing Technologies in Language Assessment
ERIC Educational Resources Information Center
Chapelle, Carol A.; Chung, Yoo-Ree
2010-01-01
Advances in natural language processing (NLP) and automatic speech recognition and processing technologies offer new opportunities for language testing. Despite their potential uses on a range of language test item types, relatively little work has been done in this area, and it is therefore not well understood by test developers, researchers or…
ERIC Educational Resources Information Center
Dobson, Elizabeth; Littleton, Karen
2016-01-01
Music education is supported by an increasing range of digital technologies that afford a remarkable divergence of opportunities for learning within the classroom. Musical creativities are not, however, limited to classroom situations; all musicians are engaged in work that traverses multiple social and physical settings. Guided by sociocultural…
Technology for Building Systems Integration and Optimization – Landscape Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Bargach, Youssef
BTO's Commercial Building Integration (CBI) program helps advance a range of innovative building integration and optimization technologies and solutions, paving the way for high-performing buildings that could use 50-70% less energy than typical buildings. CBI’s work focuses on early stage technology innovation, with an emphasis on how components and systems work together and how whole buildings are integrated and optimized. This landscape study outlines the current body of knowledge, capabilities, and the broader array of solutions supporting integration and optimization in commercial buildings. CBI seeks to support solutions for both existing buildings and new construction, which often present very differentmore » challenges.« less
Skid steer fuel cell powered unmanned ground vehicle (Burro)
NASA Astrophysics Data System (ADS)
Meldrum, Jay S.; Green, Christopher A.
2008-04-01
The use of alternative energy technology for vehicle propulsion and auxiliary power is becoming more important. Work is being performed at Michigan Technological University's Keweenaw Research Center on an Army Research Laboratory cooperative agreement to develop two unmanned ground vehicles for military applications. A wide range of alternative energy technologies were investigated. Hydrogen-powered proton exchange membrane fuel cells were identified as the most appropriate alternative energy source. This is due to some development and commercialization which makes the technology "drop-in plug-in" for immediate use. We have previously presented research work on a small unmanned ground vehicle demonstration platform where the fuel cell is the only power source. We now present research work on the integration of a fuel cell onto a larger skid steer platform. The dual-power capability of this vehicle can provide a modest level of propulsion in "engine-off mode" and may also be used to power directed energy devices which have applications in countermine and similar threat technologies.
Fuel-cell powered unmanned ground vehicle
NASA Astrophysics Data System (ADS)
Meldrum, Jay S.; Green, Christopher A.; Gwaltney, Geoffrey D.; Bradley, Scott A.; Keith, Jason M.; Podlesak, Thomas F.
2007-04-01
The use of alternative energy technology for vehicle propulsion and auxiliary power is becoming more important. Work is being performed at Michigan Technological University's Keweenaw Research Center on an Army Research Laboratory cooperative agreement to develop two unmanned ground vehicles for military applications. A wide range of alternative energy technologies were investigated, and hydrogen-powered proton exchange membrane fuel cells were identified as the most appropriate alternative energy source. This is due to some development and commercialization which makes the technology "drop-in plug-in" for immediate use. We present research work on a small unmanned ground vehicle demonstration platform where the fuel cell is the only power source. We also present research work on the integration of a fuel cell onto a large existing platform. The dual-power capability of this vehicle can provide a modest level of propulsion in "engine-off mode" and may also be used to power directed energy devices which have applications in countermine and similar threat technologies.
A new application for food customization with additive manufacturing technologies
NASA Astrophysics Data System (ADS)
Serenó, L.; Vallicrosa, G.; Delgado, J.; Ciurana, J.
2012-04-01
Additive Manufacturing (AM) technologies have emerged as a freeform approach capable of producing almost any complete three dimensional (3D) objects from computer-aided design (CAD) data by successively adding material layer by layer. Despite the broad range of possibilities, commercial AM technologies remain complex and expensive, making them suitable only for niche applications. The developments of the Fab@Home system as an open AM technology discovered a new range of possibilities of processing different materials such as edible products. The main objective of this work is to analyze and optimize the manufacturing capacity of this system when producing 3D edible objects. A new heated syringe deposition tool was developed and several process parameters were optimized to adapt this technology to consumers' needs. The results revealed in this study show the potential of this system to produce customized edible objects without qualified personnel knowledge, therefore saving manufacturing costs compared to traditional technologies.
Beacon Communities’ Public Health Initiatives: A Case Study Analysis
Massoudi, Barbara L.; Marcial, Laura H.; Haque, Saira; Bailey, Robert; Chester, Kelley; Cunningham, Shellery; Riley, Amanda; Soper, Paula
2014-01-01
Introduction: The Beacon Communities for Public Health (BCPH) project was launched in 2011 to gain a better understanding of the range of activities currently being conducted in population- and public health by the Beacon Communities. The project highlighted the successes and challenges of these efforts with the aim of sharing this information broadly among the public health community. Background: The Beacon Community Program, designed to showcase technology-enabled, community-based initiatives to improve outcomes, focused on: building and strengthening health information technology (IT) infrastructure and exchange capabilities; translating investments in health IT to measureable improvements in cost, quality, and population health; and, developing innovative approaches to performance measurement, technology, and care delivery. Methods: Four multimethod case studies were conducted based on a modified sociotechnical framework to learn more about public health initiative implementation and use in the Beacon Communities. Our methodological approach included using document review and semistructured key informant interviews. NACCHO Model Practice Program criteria were used to select the public health initiatives included in the case studies. Findings: Despite differences among the case studies, common barriers and facilitators were found to be present in all areas of the sociotechnical framework application including structure, people, technology, tasks, overarching considerations, and sustainability. Overall, there were many more facilitators (range = 7–14) present for each Beacon compared to barriers (range = 4–6). Discussion: Four influential promising practices were identified through the work: forging strong and sustainable partnerships; ensuring a good task-technology fit and a flexible and iterative design; fostering technology acceptance; and, providing education and demonstrating value. Conclusions: A common weakness was the lack of a framework or model for the Beacon Communities evaluation work. Sharing a framework or approach to evaluation at the beginning of implementation made the work more effective. Supporting evaluation to inform future implementations is important. PMID:25848620
Critical Thinking and ICT Integration in a Western Australian Secondary School
ERIC Educational Resources Information Center
McMahon, Graham
2009-01-01
This study examined the relationship between students working in a technology-rich environment and their development of higher order thinking skills. Based on a PhD thesis, which examined a greater range of relationships than can be reported here, this article focuses on developing critical thinking skills within a technology-rich environment.…
A Team Approach to Managing Technology: Despite Our Differences--We Had To Make IT Work!
ERIC Educational Resources Information Center
Giuliani, Peter R.
Franklin University, a private urban university with 4500 students located in Columbus, Ohio, completed the initial phase of a long-range, campus-wide technology plan. The plan creates a well supported and managed computing and communications infrastructure focusing on: user support systems; classrooms and laboratories; offices; outside access;…
Deaf People Communicating via SMS, TTY, Relay Service, Fax, and Computers in Australia
ERIC Educational Resources Information Center
Power, Mary R.; Power, Des; Horstmanshof, Louise
2007-01-01
Despite the expansion of Deaf people's use of communication technology little is published about how they use electronic communication in their social and working lives and the implications for their concepts of identity and community. Australia is an ideal research base because the use of a range of technologies is widespread there. To gain…
Fu, Xiao-Ning; Wang, Jie; Yang, Lin
2013-01-01
It is a typical passive ranging technology that estimation of distance of an object is based on transmission characteristic of infrared radiation, it is also a hotspot in electro-optic countermeasures. Because of avoiding transmitting energy in the detection, this ranging technology will significantly enhance the penetration capability and infrared conceal capability of the missiles or unmanned aerial vehicles. With the current situation in existing passive ranging system, for overcoming the shortage in ranging an oncoming target object with small temperature difference from background, an improved distance estimation scheme was proposed. This article begins with introducing the concept of signal transfer function, makes clear the working curve of current algorithm, and points out that the estimated distance is not unique due to inherent nonlinearity of the working curve. A new distance calculation algorithm was obtained through nonlinear correction technique. It is a ranging formula by using sensing information at 3-5 and 8-12 microm combined with background temperature and field meteorological conditions. The authors' study has shown that the ranging error could be mainly kept around the level of 10% under the condition of the target and background apparent temperature difference equal to +/- 5 K, and the error in estimating background temperature is no more than +/- 15 K.
NASA Technical Reports Server (NTRS)
1986-01-01
The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by: performing innovative research relevant to national needs and Agency goals; transferring technology to users in a timely manner; and providing development support to other United States Government agencies, industry, and the NASA centers. This report contains highlights of the major accomplishments and applications made during the past year. The highlights illustrate both the broad range of the research and technology activities at the NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.
NASA Technical Reports Server (NTRS)
1988-01-01
The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. The mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other U.S. Government agencies, industry, and other NASA Centers. This report contains highlights of the major accomplishments and applications made during the past year. The highlights illustrate both the broad range of the research and technology activities at NASA Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research.
Research and technology, 1989: Langley Research Center
NASA Technical Reports Server (NTRS)
1990-01-01
The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights of the major accomplishments and applications that were made during the past year are presented. The highlights illustrate both the broad range of the research and technology activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.
Research and Technology 1990, Langley Research Center
NASA Technical Reports Server (NTRS)
1991-01-01
The mission of NASA-Langley is to increase the knowledge and capability of the U.S. in a full range of aeronautics disciplines and in selected space disciplines. This mission will be executed by performing innovative research relevant to national needs and agency goals, transferring technology to users in a timely manner, and providing development support to other U.S. government agencies, industry, and other NASA centers. Highlights are presented of the major accomplishments and applications that were made during the past year. The highlights illustrate both the broad range of the research and technology activitives at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research.
NASA Technical Reports Server (NTRS)
1987-01-01
The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by: performing innovative research relevant to national needs and Agency goals; transferring technology to users in a timely manner; and providing development support to other United States Government agencies, industry, and other NASA centers. Contained are highlights of the major accomplishments and applications that were made during the past year. The highlights illustrate both the broad range of the research and technology activities at the NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.
Long-range eye tracking: A feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaweera, S.K.; Lu, Shin-yee
1994-08-24
The design considerations for a long-range Purkinje effects based video tracking system using current technology is presented. Past work, current experiments, and future directions are thoroughly discussed, with an emphasis on digital signal processing techniques and obstacles. It has been determined that while a robust, efficient, long-range, and non-invasive eye tracking system will be difficult to develop, such as a project is indeed feasible.
Digital Broadband Content: Public Sector Information. OECD Digital Economy Papers, No. 112
ERIC Educational Resources Information Center
OECD Publishing (NJ1), 2006
2006-01-01
Public bodies hold a range of information and content ranging from demographic, economic and meteorological data to art works, historical documents and books. Given the availability of information and communication technologies (ICTs) public sector information can play an important role in producing innovative value-added services and goods.…
Application of multimedia image technology in engineering report demonstration system
NASA Astrophysics Data System (ADS)
Lili, Jiang
2018-03-01
With the rapid development of global economic integration, people’s strong desire for a wide range of global exchanges and interactions has been promoted, and there are more unprecedented convenient means for people to know the world and even to transform the world. At this stage, we realize that the traditional mode of work has become difficult to adapt to the changing trends of the world and informatization, multimedia, science and technology have become the mainstream of the times. Therefore, this paper will mainly analyze the present situation of the project report demonstration system and the key points of the work and put forward with pertinence specific application strategy of the integration with multimedia image technology.
NASA Technical Reports Server (NTRS)
1982-01-01
Significant aircraft tests which were performed are highlighted. The broad range of the research and technology activities. The conributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2007-01-01
The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A range of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption; and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity, However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This presentation gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology.
NASA Technical Reports Server (NTRS)
Adair, Jerry R.
1994-01-01
This paper is a consolidated report on ten major planning and scheduling systems that have been developed by the National Aeronautics and Space Administration (NASA). A description of each system, its components, and how it could be potentially used in private industry is provided in this paper. The planning and scheduling technology represented by the systems ranges from activity based scheduling employing artificial intelligence (AI) techniques to constraint based, iterative repair scheduling. The space related application domains in which the systems have been deployed vary from Space Shuttle monitoring during launch countdown to long term Hubble Space Telescope (HST) scheduling. This paper also describes any correlation that may exist between the work done on different planning and scheduling systems. Finally, this paper documents the lessons learned from the work and research performed in planning and scheduling technology and describes the areas where future work will be conducted.
2007-07-31
nanoscale materials for cancer diagnostics, imaging agents, and therapeutics. Recently NCL has extended its work to in vivo models and testing by...THE NATIONAL NANOTECHNOLOGY INITIATIVE Research and Development Leading to a Revolution in Technology and Industry Supplement to the President’s FY...clear national goals for Federal science and technology investments in areas ranging from nanotechnology and health research to improving
Modelling assistive technology adoption for people with dementia.
Chaurasia, Priyanka; McClean, Sally I; Nugent, Chris D; Cleland, Ian; Zhang, Shuai; Donnelly, Mark P; Scotney, Bryan W; Sanders, Chelsea; Smith, Ken; Norton, Maria C; Tschanz, JoAnn
2016-10-01
Assistive technologies have been identified as a potential solution for the provision of elderly care. Such technologies have in general the capacity to enhance the quality of life and increase the level of independence among their users. Nevertheless, the acceptance of these technologies is crucial to their success. Generally speaking, the elderly are not well-disposed to technologies and have limited experience; these factors contribute towards limiting the widespread acceptance of technology. It is therefore important to evaluate the potential success of technologies prior to their deployment. The research described in this paper builds upon our previous work on modelling adoption of assistive technology, in the form of cognitive prosthetics such as reminder apps and aims at identifying a refined sub-set of features which offer improved accuracy in predicting technology adoption. Consequently, in this paper, an adoption model is built using a set of features extracted from a user's background to minimise the likelihood of non-adoption. The work is based on analysis of data from the Cache County Study on Memory and Aging (CCSMA) with 31 features covering a range of age, gender, education and details of health condition. In the process of modelling adoption, feature selection and feature reduction is carried out followed by identifying the best classification models. With the reduced set of labelled features the technology adoption model built achieved an average prediction accuracy of 92.48% when tested on 173 participants. We conclude that modelling user adoption from a range of parameters such as physical, environmental and social perspectives is beneficial in recommending a technology to a particular user based on their profile. Copyright © 2016 Elsevier Inc. All rights reserved.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.
Introducing a Public Stereoscopic 3D High Dynamic Range (SHDR) Video Database
NASA Astrophysics Data System (ADS)
Banitalebi-Dehkordi, Amin
2017-03-01
High dynamic range (HDR) displays and cameras are paving their ways through the consumer market at a rapid growth rate. Thanks to TV and camera manufacturers, HDR systems are now becoming available commercially to end users. This is taking place only a few years after the blooming of 3D video technologies. MPEG/ITU are also actively working towards the standardization of these technologies. However, preliminary research efforts in these video technologies are hammered by the lack of sufficient experimental data. In this paper, we introduce a Stereoscopic 3D HDR database of videos that is made publicly available to the research community. We explain the procedure taken to capture, calibrate, and post-process the videos. In addition, we provide insights on potential use-cases, challenges, and research opportunities, implied by the combination of higher dynamic range of the HDR aspect, and depth impression of the 3D aspect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickerson, Jonathan W; Younkin, James R
Radio-frequency identification (RFID) technology has revolutionized the concept of asset tracking. By affixing an RFID tag to a valued asset, one can track the item throughout any facility where RIFD readers are in place, thereby alerting inspectors to theft, misuse, and misplacement of the tracked item. While not yet implemented for tracking very high value assets, RFID technology is already widely used in many industries as the standard for asset tracking. A subset of RFID technology exists called Ultra-Wide-Band (UWB) RFID. While traditional (sometimes called narrow-band) RFID technology transmits a continuous sine-wave signal of a narrow frequency range, UWB technologymore » works by transmitting signals as short pulses of a broad frequency range. This improves performance in several areas, namely, range, precision, and accuracy of motion detection. Because of the nature of the technology, it also performs well in close proximity to metal, which sets it apart from traditional RFID. The purpose of this paper is to investigate the current state of UWB RFID technology and research the areas where it already is being used. This is accomplished through study of publicly known uses of the technology as well as personal exploration of RFID hardware and software. This paper presents the findings in a general manner to facilitate their usefulness for diverse applications.« less
Research and technology, 1991. Langley Research Center
NASA Technical Reports Server (NTRS)
1992-01-01
The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights are given of the major accomplishments and applications that have been made during the past year. The highlights illustrate both the broad range of the research and technology (R&T) activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.
Tuneable powerful UV laser system with UV noise eater
NASA Astrophysics Data System (ADS)
Kobtsev, Sergey; Radnatarov, Daba; Khripunov, Sergey; Zarudnev, Yurii
2018-02-01
The present work for the first time presents the study of a laser system delivering into the fibre up to 250 mW of CW radiation tuneable across the 275-310-nm range with the output line width less than 5 GHz and stability of UV output power within 1%. This system can automatically set the output radiation wavelength within the range of 275-310 nm to the precision of 2 pm. UV output power stabilisation is provided by a newly proposed by the authors noise eating technology. This paper discusses details of the developed technology and the results of its application.
How E-Gov in Greece Affects Life-Long Learning for Public Servants, Working on Technical Field
ERIC Educational Resources Information Center
Goulas, Dimitrios; Valkanos, Efthymios; Droulia, Kassiani
2016-01-01
Engineers that work as civil servants cover a wide range of competences, administrative and scientific, which implies that they deal with many difficulties in the exercise of their duties as executives. Electronic government (e-gov), through the use of new Technologies of Information and Communications (ICT) at public technical services, has…
Working at the microscope: analysis of the activities involved in diagnostic pathology.
Randell, Rebecca; Ruddle, Roy A; Quirke, Phil; Thomas, Rhys G; Treanor, Darren
2012-02-01
To study the current work practice of histopathologists to inform the design of digital microscopy systems. Four gastrointestinal histopathologists were video-recorded as they undertook their routine work. Analysis of the video data shows a range of activities beyond viewing slides involved in reporting a case. There is much overlapping of activities, supported by the 'eyes free' nature of the pathologists' interaction with the microscope. The order and timing of activities varies according to consultant. In order to support the work of pathologists adequately, digital microscopy systems need to provide support for a range of activities beyond viewing slides. Digital microscopy systems should support multitasking, while also providing flexibility so that pathologists can adapt their use of the technology to their own working patterns. © 2011 Blackwell Publishing Ltd.
Atmospheric turbulence and sensor system effects on biometric algorithm performance
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Leonard, Kevin R.; Byrd, Kenneth A.; Potvin, Guy
2015-05-01
Biometric technologies composed of electro-optical/infrared (EO/IR) sensor systems and advanced matching algorithms are being used in various force protection/security and tactical surveillance applications. To date, most of these sensor systems have been widely used in controlled conditions with varying success (e.g., short range, uniform illumination, cooperative subjects). However the limiting conditions of such systems have yet to be fully studied for long range applications and degraded imaging environments. Biometric technologies used for long range applications will invariably suffer from the effects of atmospheric turbulence degradation. Atmospheric turbulence causes blur, distortion and intensity fluctuations that can severely degrade image quality of electro-optic and thermal imaging systems and, for the case of biometrics technology, translate to poor matching algorithm performance. In this paper, we evaluate the effects of atmospheric turbulence and sensor resolution on biometric matching algorithm performance. We use a subset of the Facial Recognition Technology (FERET) database and a commercial algorithm to analyze facial recognition performance on turbulence degraded facial images. The goal of this work is to understand the feasibility of long-range facial recognition in degraded imaging conditions, and the utility of camera parameter trade studies to enable the design of the next generation biometrics sensor systems.
Working Group 5: Measurements technology and active experiments
NASA Technical Reports Server (NTRS)
Whipple, E.; Barfield, J. N.; Faelthammar, C.-G.; Feynman, J.; Quinn, J. N.; Roberts, W.; Stone, N.; Taylor, W. L.
1986-01-01
Technology issues identified by working groups 5 are listed. (1) New instruments are needed to upgrade the ability to measure plasma properties in space. (2) Facilities should be developed for conducting a broad range of plasma experiments in space. (3) The ability to predict plasma weather within magnetospheres should be improved and a capability to modify plasma weather developed. (4) Methods of control of plasma spacecraft and spacecraft plasma interference should be upgraded. (5) The space station laboratory facilities should be designed with attention to problems of flexibility to allow for future growth. These issues are discussed.
ERIC Educational Resources Information Center
Koh, Elizabeth; Hong, Helen; Tan, Jennifer Pei-Ling
2018-01-01
Teamwork, one of the core competencies for the twenty-first century learner, is a critical skill for work and learning. However, assessing teamwork is complex, in particular, developing a measure of teamwork that is domain-generic and applicable across a wide range of learners. This paper documents one such study that leverages technology to help…
Technologies for the marketplace from the Centers for Disease Control
NASA Technical Reports Server (NTRS)
Reid-Sanden, Frances L.; Greene, R. Eric; Malvitz, Dolores M.
1991-01-01
The Centers for Disease Control, a Public Health Service agency, is responsible for the prevention and control of disease and injury. Programs range from surveillance and prevention of chronic and infectious diseases to occupational health and injury control. These programs have produced technologies in a variety of fields, including vaccine development, new methods of disease diagnosis, and new tools to ensure a safer work environment.
Consumer-identified barriers and strategies for optimizing technology use in the workplace.
De Jonge, Desleigh M; Rodger, Sylvia A
2006-01-01
This article explores the experiences of 26 assistive technology (AT) users having a range of physical impairments as they optimized their use of technology in the workplace. A qualitative research design was employed using in-depth, open-ended interviews and observations of AT users in the workplace. Participants identified many factors that limited their use of technology such as discomfort and pain, limited knowledge of the technology's features, and the complexity of the technology. The amount of time required for training, limited work time available for mastery, cost of training and limitations of the training provided, resulted in an over-reliance on trial and error and informal support networks and a sense of isolation. AT users enhanced their use of technology by addressing the ergonomics of the workstation and customizing the technology to address individual needs and strategies. Other key strategies included tailored training and learning support as well as opportunities to practice using the technology and explore its features away from work demands. This research identified structures important for effective AT use in the workplace which need to be put in place to ensure that AT users are able to master and optimize their use of technology.
Unsynchronized scanning with a low-cost laser range finder for real-time range imaging
NASA Astrophysics Data System (ADS)
Hatipoglu, Isa; Nakhmani, Arie
2017-06-01
Range imaging plays an essential role in many fields: 3D modeling, robotics, heritage, agriculture, forestry, reverse engineering. One of the most popular range-measuring technologies is laser scanner due to its several advantages: long range, high precision, real-time measurement capabilities, and no dependence on lighting conditions. However, laser scanners are very costly. Their high cost prevents widespread use in applications. Due to the latest developments in technology, now, low-cost, reliable, faster, and light-weight 1D laser range finders (LRFs) are available. A low-cost 1D LRF with a scanning mechanism, providing the ability of laser beam steering for additional dimensions, enables to capture a depth map. In this work, we present an unsynchronized scanning with a low-cost LRF to decrease scanning period and reduce vibrations caused by stop-scan in synchronized scanning. Moreover, we developed an algorithm for alignment of unsynchronized raw data and proposed range image post-processing framework. The proposed technique enables to have a range imaging system for a fraction of the price of its counterparts. The results prove that the proposed method can fulfill the need for a low-cost laser scanning for range imaging for static environments because the most significant limitation of the method is the scanning period which is about 2 minutes for 55,000 range points (resolution of 250x220 image). In contrast, scanning the same image takes around 4 minutes in synchronized scanning. Once faster, longer range, and narrow beam LRFs are available, the methods proposed in this work can produce better results.
NASA Technical Reports Server (NTRS)
Roberts, Barry C.
2017-01-01
The following is a summary of the major meteorological/atmospheric projects and research that have been or currently are being accomplished at Marshall Space Flight Center (MSFC). Listed below are highlights of work done during the past 6 months in the Engineering Directorate (ED) and in the Science and Technology Office (ST).
Advancing electric-vehicle development with pure-lead-tin battery technology
NASA Astrophysics Data System (ADS)
O'Brien, W. A.; Stickel, R. B.; May, G. J.
Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.
D Capturing Performances of Low-Cost Range Sensors for Mass-Market Applications
NASA Astrophysics Data System (ADS)
Guidi, G.; Gonizzi, S.; Micoli, L.
2016-06-01
Since the advent of the first Kinect as motion controller device for the Microsoft XBOX platform (November 2010), several similar active and low-cost range sensing devices have been introduced on the mass-market for several purposes, including gesture based interfaces, 3D multimedia interaction, robot navigation, finger tracking, 3D body scanning for garment design and proximity sensors for automotive. However, given their capability to generate a real time stream of range images, these has been used in some projects also as general purpose range devices, with performances that for some applications might be satisfying. This paper shows the working principle of the various devices, analyzing them in terms of systematic errors and random errors for exploring the applicability of them in standard 3D capturing problems. Five actual devices have been tested featuring three different technologies: i) Kinect V1 by Microsoft, Structure Sensor by Occipital, and Xtion PRO by ASUS, all based on different implementations of the Primesense sensor; ii) F200 by Intel/Creative, implementing the Realsense pattern projection technology; Kinect V2 by Microsoft, equipped with the Canesta TOF Camera. A critical analysis of the results tries first of all to compare them, and secondarily to focus the range of applications for which such devices could actually work as a viable solution.
Research and Technology: 2003 Annual Report of the John F Kennedy Space Center
NASA Technical Reports Server (NTRS)
2003-01-01
The John F. Kennedy Space Center (KSC) is America's Spaceport Technology Center. The KSC technology development program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. KSC's assigned mission areas are space launch operations and spaceport and range technologies. KSC's technology development customers include current space transportation programs, future space transportation programs / initiatives, and enabling technical programs. The KSC Research and Technology 2003 Annual Report encompasses the efforts of contributors to the KSC advanced technology development program and KSC technology transfer activities. Dr. Dave Bartine, KSC Chief Technologist, (321) 867-7069, is responsible for publication of this report and should be contacted for any desired information regarding KSC's research and technology development activities.
Advancing translational research with the Semantic Web.
Ruttenberg, Alan; Clark, Tim; Bug, William; Samwald, Matthias; Bodenreider, Olivier; Chen, Helen; Doherty, Donald; Forsberg, Kerstin; Gao, Yong; Kashyap, Vipul; Kinoshita, June; Luciano, Joanne; Marshall, M Scott; Ogbuji, Chimezie; Rees, Jonathan; Stephens, Susie; Wong, Gwendolyn T; Wu, Elizabeth; Zaccagnini, Davide; Hongsermeier, Tonya; Neumann, Eric; Herman, Ivan; Cheung, Kei-Hoi
2007-05-09
A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen Translational Research, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature. We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine. Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of practitioners and installed base, and growing pains as the technology is scaled up. Still, the potential of interoperable knowledge sources for biomedicine, at the scale of the World Wide Web, merits continued work.
Advancing translational research with the Semantic Web
Ruttenberg, Alan; Clark, Tim; Bug, William; Samwald, Matthias; Bodenreider, Olivier; Chen, Helen; Doherty, Donald; Forsberg, Kerstin; Gao, Yong; Kashyap, Vipul; Kinoshita, June; Luciano, Joanne; Marshall, M Scott; Ogbuji, Chimezie; Rees, Jonathan; Stephens, Susie; Wong, Gwendolyn T; Wu, Elizabeth; Zaccagnini, Davide; Hongsermeier, Tonya; Neumann, Eric; Herman, Ivan; Cheung, Kei-Hoi
2007-01-01
Background A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen Translational Research, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature. Results We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine. Conclusion Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of practitioners and installed base, and growing pains as the technology is scaled up. Still, the potential of interoperable knowledge sources for biomedicine, at the scale of the World Wide Web, merits continued work. PMID:17493285
ERIC Educational Resources Information Center
Pacific Telecommunications Council, Honolulu, HI.
This proceedings includes the papers presented at the 2002 conference of the Pacific Telecommunications Council (PTC), with its theme "Next Generation Communications: Making IT Work." The PTC2002 annual conference seeks to focus on harnessing the complexities of the broadest range of communications technologies and services for the user.…
A catalog of NASA special publications
NASA Technical Reports Server (NTRS)
1981-01-01
A list of all of the special publications released by NASA are presented. The list includes scientific and technical books covering a wide variety of topics, including much of the agencies research and development work, its full range of space exploration programs, its work in advancing aeronautics technology, and many associated historical and managerial efforts. A total of 1200 titles are presented.
The Survey on Near Field Communication.
Coskun, Vedat; Ozdenizci, Busra; Ok, Kerem
2015-06-05
Near Field Communication (NFC) is an emerging short-range wireless communication technology that offers great and varied promise in services such as payment, ticketing, gaming, crowd sourcing, voting, navigation, and many others. NFC technology enables the integration of services from a wide range of applications into one single smartphone. NFC technology has emerged recently, and consequently not much academic data are available yet, although the number of academic research studies carried out in the past two years has already surpassed the total number of the prior works combined. This paper presents the concept of NFC technology in a holistic approach from different perspectives, including hardware improvement and optimization, communication essentials and standards, applications, secure elements, privacy and security, usability analysis, and ecosystem and business issues. Further research opportunities in terms of the academic and business points of view are also explored and discussed at the end of each section. This comprehensive survey will be a valuable guide for researchers and academicians, as well as for business in the NFC technology and ecosystem.
The Survey on Near Field Communication
Coskun, Vedat; Ozdenizci, Busra; Ok, Kerem
2015-01-01
Near Field Communication (NFC) is an emerging short-range wireless communication technology that offers great and varied promise in services such as payment, ticketing, gaming, crowd sourcing, voting, navigation, and many others. NFC technology enables the integration of services from a wide range of applications into one single smartphone. NFC technology has emerged recently, and consequently not much academic data are available yet, although the number of academic research studies carried out in the past two years has already surpassed the total number of the prior works combined. This paper presents the concept of NFC technology in a holistic approach from different perspectives, including hardware improvement and optimization, communication essentials and standards, applications, secure elements, privacy and security, usability analysis, and ecosystem and business issues. Further research opportunities in terms of the academic and business points of view are also explored and discussed at the end of each section. This comprehensive survey will be a valuable guide for researchers and academicians, as well as for business in the NFC technology and ecosystem. PMID:26057043
2006 NASA Range Safety Annual Report
NASA Technical Reports Server (NTRS)
TenHaken, Ron; Daniels, B.; Becker, M.; Barnes, Zack; Donovan, Shawn; Manley, Brenda
2007-01-01
Throughout 2006, Range Safety was involved in a number of exciting and challenging activities and events, from developing, implementing, and supporting Range Safety policies and procedures-such as the Space Shuttle Launch and Landing Plans, the Range Safety Variance Process, and the Expendable Launch Vehicle Safety Program procedures-to evaluating new technologies. Range Safety training development is almost complete with the last course scheduled to go on line in mid-2007. Range Safety representatives took part in a number of panels and councils, including the newly formed Launch Constellation Range Safety Panel, the Range Commanders Council and its subgroups, the Space Shuttle Range Safety Panel, and the unmanned aircraft systems working group. Space based range safety demonstration and certification (formerly STARS) and the autonomous flight safety system were successfully tested. The enhanced flight termination system will be tested in early 2007 and the joint advanced range safety system mission analysis software tool is nearing operational status. New technologies being evaluated included a processor for real-time compensation in long range imaging, automated range surveillance using radio interferometry, and a space based range command and telemetry processor. Next year holds great promise as we continue ensuring safety while pursuing our quest beyond the Moon to Mars.
Recent Progress in Engine Noise Reduction Technologies
NASA Technical Reports Server (NTRS)
Huff, Dennis; Gliebe, Philip
2003-01-01
Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.
Recent advances in active noise and vibration control at NASA Langley Research Center
NASA Astrophysics Data System (ADS)
Gibbs, Gary P.; Cabell, Randolph H.; Palumbo, Daniel L.; Silcox, Richard J.; Turner, Travis L.
2002-11-01
Over the past 15 years NASA has investigated the use of active control technology for aircraft interior noise. More recently this work has been supported through the Advanced Subsonic Technology Noise Reduction Program (1994-2001), High Speed Research Program (1994-1999), and through the Quiet Aircraft Technology Program (2000-present). The interior environment is recognized as an important element in flight safety, crew communications and fatigue, as well as passenger comfort. This presentation will overview research in active noise and vibration control relating to interior noise being investigated by NASA. The research to be presented includes: active control of aircraft fuselage sidewall transmission due to turbulent boundary layer or jet noise excitation, active control of interior tones due to propeller excitation of aircraft structures, and adaptive stiffening of structures for noise, vibration, and fatigue control. Work on actuator technology ranging from piezoelectrics, shape memory actuators, and fluidic actuators will be described including applications. Control system technology will be included that is experimentally based, real-time, and adaptive.
A novel Laser Ion Mobility Spectrometer
NASA Astrophysics Data System (ADS)
Göbel, J.; Kessler, M.; Langmeier, A.
2009-05-01
IMS is a well know technology within the range of security based applications. Its main advantages lie in the simplicity of measurement, along with a fast and sensitive detection method. Contemporary technology often fails due to interference substances, in conjunction with saturation effects and a low dynamic detection range. High throughput facilities, such as airports, require the analysis of many samples at low detection limits within a very short timeframe. High detection reliability is a requirement for safe and secure operation. In our present work we developed a laser based ion-mobility-sensor which shows several advantages over known IMS sensor technology. The goal of our research was to increase the sensitivity compared to the range of 63Ni based instruments. This was achieved with an optimised geometric drift tube design and a pulsed UV laser system at an efficient intensity. In this intensity range multi-photon ionisation is possible, which leads to higher selectivity in the ion-formation process itself. After high speed capturing of detection samples, a custom designed pattern recognition software toolbox provides reliable auto-detection capability with a learning algorithm and a graphical user interface.
Orlowski, Simone; Lawn, Sharon; Matthews, Ben; Venning, Anthony; Jones, Gabrielle; Winsall, Megan; Antezana, Gaston; Bidargaddi, Niranjan; Musiat, Peter
2017-06-01
The merits of technology-based mental health service reform have been widely debated among academics, practitioners, and policy makers. The design of new technologies must first be predicated on a detailed appreciation of how the mental health system works before it can be improved or changed through the introduction of new products and services. Further work is required to better understand the nature of face-to-face mental health work and to translate this knowledge to computer scientists and system designers responsible for creating technology-based solutions. Intensive observation of day-to-day work within two rural youth mental health services in South Australia, Australia, was undertaken to understand how technology could be designed and implemented to enhance young people's engagement with services and improve their experience of help seeking. Data were analysed through a lens of complexity theory. Results highlight the variety of professional roles and services that can comprise the mental health system. The level of interconnectedness evident in the system contrasted with high levels of service self-organization and disjointed information flow. A mental health professional's work was guided by two main constructs: risk and engagement. Most clients presented with a profile of disability, disadvantage, and isolation, so complex client presentations and decision-making were core practices. Clients (and frequently, their families) engaged with services in a crisis-dependent manner, characterized by multiple disengagements and re-engagements over time. While significant opportunities exist to integrate technology into existing youth mental health services, technologies for this space must be usable for a broad range of medical, psychological and cognitive disability, social disadvantage, and accommodate repeat cycles of engagement/disengagement over time. © 2016 Australian College of Mental Health Nurses Inc.
Income and Technology as Drivers of Australian Healthcare Expenditures.
You, Xiaohui; Okunade, Albert A
2017-07-01
The roles of income and technology as the major determinants of aggregate healthcare expenditure (HEXP) continue to interest economists and health policy researchers. Concepts and measures of medical technologies remain complex; however, income (on the demand side) and technology (on the supply side) are important drivers of HEXP. This paper presents analysis of Australia's HEXP, using time-series econometrics modeling techniques applied to 1971-2011 annual aggregate data. Our work fills two important gaps in the literature. First, we model the determinants of Australia's HEXP using the latest and longest available data series. Second, this novel study investigates several alternative technology proxies (input and output measures), including economy-wide research and development expenditures, hospital research expenditures, mortality rate, and two technology indexes based on medical devices. We then apply the residual component method and the technology proxy approach to quantify the technology effects on HEXP. Our empirical results suggest that Australian aggregate healthcare is a normal good and a technical necessity with the income elasticity estimates ranging from 0.51 to 0.97, depending on the model. The estimated technology effects on HEXP falling in the 0.30-0.35 range and mimicking those in the literature using the US data, reinforce the global spread of healthcare technology. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Biomonitoring with Wireless Communications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budinger, Thomas F.
2003-03-01
This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein ormore » specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.« less
NASA Technical Reports Server (NTRS)
1976-01-01
All themes require some form of advanced propulsion capabilities to achieve their stated objectives. Requirements cover a broad spectrum ranging from a new generation of heavy lift launch vehicles to low thrust, long lift system for on-orbit operations. The commonality extant between propulsive technologies was established and group technologies were grouped into vehicle classes by functional capability. The five classes of launch vehicles identified by the space transportation theme were augmented with a sixth class, encompassing planetary and on-orbit operations. Propulsion technologies in each class were then ranked, and assigned priority numbers. Prioritized technologies were matched to theme requirements.
Absolute optical metrology : nanometers to kilometers
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.
2005-01-01
We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.
Technological inductive power transfer systems
NASA Astrophysics Data System (ADS)
Madzharov, Nikolay D.; Nemkov, Valentin S.
2017-05-01
Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs
Research and technology highlights, 1993
NASA Technical Reports Server (NTRS)
1994-01-01
This report contains highlights of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate both the broad range of the research and technology activities supported by NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research. This report also describes some of the Center's most important research and testing facilities.
Anechoic chamber qualification at ultrasonic frequencies
NASA Astrophysics Data System (ADS)
Jenny, Trevor; Anderson, Brian
2010-10-01
Qualifying an anechoic chamber for frequencies that extend into the ultrasonic range is necessary for research work involving airborne ultrasonic sound. For example, an anechoic chamber allows for measurements of the direct sound radiated by an object without reflections from walls. The ANSI S12.55/ISO 3745 standard which covers anechoic chamber qualification does not extend into the ultrasonic frequency range, nor have others discussed this frequency range in the literature. An increasing number of technologies are employing ultrasound; hence the need to develop facilities to conduct basic research studies on airborne ultrasound. This presentation will discuss the challenges associated with chamber qualification and present the results for qualification of a chamber at Brigham Young University. [This work has been funded by the Los Alamos National Laboratory
Research and technology highlights, 1992
NASA Technical Reports Server (NTRS)
1993-01-01
The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year are presented. The highlights illustrate both the broad range of research and technology (R&T) activities supported by NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research. Some of the Center's most important research and testing facilities are also described.
Undergraduate nurses' preferred use of mobile devices in healthcare settings.
Mather, Carey; Cummings, Elizabeth; Allen, Penny
2015-01-01
The growth of digital technology has created challenges for appropriate and safe use of mobile or portable devices in healthcare environments. There is perceived risk that the use of mobile technology for learning may distract from provision of patient care if used by undergraduate students during work-integrated learning. This paper reports on a study that aimed to identify differences in preferred behavior of student nurses in their use of mobile technology during and away from the clinical practice environment. A previously validated online survey was administered to students during a period of work integrated learning in a range of healthcare settings in two Australian states. Respondents agreed that mobile devices could be beneficial to patient care. Overall, students proposed they would use mobile devices for accessing information, during work integrated learning, less than when away from the workplace. The development of policy to guide the use of mobile devices, in situ, is important to the provision of safe and competent care and improved health outcomes for patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Max; Smith, Sarah J.; Sohn, Michael D.
2015-07-16
A key challenge for policy-makers and technology market forecasters is to estimate future technology costs and in particular the rate of cost reduction versus production volume. A related, critical question is what role should state and federal governments have in advancing energy efficient and renewable energy technologies? This work provides retrospective experience curves and learning rates for several energy-related technologies, each of which have a known history of federal and state deployment programs. We derive learning rates for eight technologies including energy efficient lighting technologies, stationary fuel cell systems, and residential solar photovoltaics, and provide an overview and timeline ofmore » historical deployment programs such as state and federal standards and state and national incentive programs for each technology. Piecewise linear regimes are observed in a range of technology experience curves, and public investments or deployment programs are found to be strongly correlated to an increase in learning rate across multiple technologies. A downward bend in the experience curve is found in 5 out of the 8 energy-related technologies presented here (electronic ballasts, magnetic ballasts, compact fluorescent lighting, general service fluorescent lighting, and the installed cost of solar PV). In each of the five downward-bending experience curves, we believe that an increase in the learning rate can be linked to deployment programs to some degree. This work sheds light on the endogenous versus exogenous contributions to technological innovation and highlights the impact of exogenous government sponsored deployment programs. This work can inform future policy investment direction and can shed light on market transformation and technology learning behavior.« less
Quicksilver: Middleware for Scalable Self-Regenerative Systems
2006-04-01
Applications can be coded in any of about 25 programming languages ranging from the obvious ones to some very obscure languages , such as OCaml ...technology. Like Tempest, Quicksilver can support applications written in any of a wide range of programming languages supported by .NET. However, whereas...so that developers can work in standard languages and with standard tools and still exploit those solutions. Vendors need to see some success
Aarts, Sil; Cornelis, Forra; Zevenboom, Yke; Brokken, Patrick; van de Griend, Nicole; Spoorenberg, Miriam; Ten Bokum, Wendy; Wouters, Eveline
2017-03-01
New technology is continuously introduced in health care. The aim of this study was (1) to collect the opinions and experiences of radiographers, nuclear medicine technologists and radiation therapists regarding the technology they use in their profession and (2) to acquire their views regarding the role of technology in their future practice. Participants were recruited from five departments in five hospitals in The Netherlands. All radiographers, nuclear medicine therapists and radiation therapists who were working in these departments were invited to participate (n = 252). The following topics were discussed: technology in daily work, training in using technology and the role of technology in future practice. The recorded interviews were transcribed verbatim and analysed using open and axial coding. A total of 52 participants (57.7% radiographer) were included, 19 men and 33 women (age range: 20-63). Four major themes emerged: (1) technology as an indispensable factor, (2) engagement, support and training in using technology, (3) transitions in work and (4) the radiographer of the future. All participants not only value technological developments to perform their occupations, but also aspects such as documentation and physical support. When asked about the future of their profession, contradictory answers were provided; while some expect less autonomy, others belief they will get more autonomy in their work. Technology plays a major role in all three occupations. All participants believe that technology should be in the best interests of patients. Being involved in the implementation of new technology is of utmost importance; courses and training, facilitated by the managers of the departments, should play a major role. Only when a constant dialogue exists between health care professionals and their managers, in which they discuss their experiences, needs and expectations, technology can be implemented in a safe and effective manner. This, in turn, might positively influence quality of care. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.
Physics of Spin-Polarized Media
2011-03-06
below, and we will provide citations where more details can be found from papers we have published. Most of the work supported by this AFOSR grant has...important for imaging of space objects, and much of the early work on this important technology was done at the Starfire Optical Range at Kirtland Air... space , together with modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. Sections
2003-08-18
KENNEDY SPACE CENTER, FLA. - Research team members work with acoustic cable during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Residence Hall Seating That Works.
ERIC Educational Resources Information Center
Wiens, Janet
2003-01-01
Describes the seating chosen for residence halls at the Massachusetts Institute of Technology and the University of New England. The seating required depends on ergonomics, aesthetics, durability, cost, and code requirements. In addition, residence halls must have a range of seating types to accommodate various uses. (SLD)
ERIC Educational Resources Information Center
Ramaswami, Rama
2008-01-01
As technology grows more pervasive in education, the data recovery issues that school systems encounter are becoming increasingly problematic, as districts work to accommodate a range of concerns that do not encumber commercial businesses. State and federal laws often require schools to report on student populations and educational progress…
Visualizing Practice with Children and Families.
ERIC Educational Resources Information Center
Mattaini, Mark A.
1995-01-01
Argues that graphic images and technologies can be of substantial help to social work practitioners for assessment and intervention with children and families. Suggests a range of graphic tools and techniques, including profiles, ecomaps, sequential ecomaps, contingency diagrams, concurrent graphing, and computerized Visual EcoScan. (DR)
NASA Technical Reports Server (NTRS)
1984-01-01
The role of the Langley Research Center is to engage in the basic and applied research necessary for the advancement of aeronautics and space flight, to enerate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Highlights of the major accomplishments and applications made during the past year are described. The highlights illustrate both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.
Space Tracking and Surveillance System (STSS) Cryogenic Technology Efforts and Needs
NASA Astrophysics Data System (ADS)
Kolb, I. L.; Curran, D. G. T.; Lee, C. S.
2004-06-01
The Missile Defense Agency's (MDA) STSS program, the former Space Based Infrared Systems (SBIRS) Low, has been actively supporting and working to advance space-borne cryocooler technology through efforts with the Air Force Research Lab (AFRL) and Small Business Innovation Research (SBIR) program. The envisioned infrared satellite system requires high efficiency, low power, and low weight cooling in a range of temperature and cooling loads below 120K for reliable 10-year operation to meet mission needs. This paper describes cryocooler efforts previously and currently supported by STSS and the possible future cryogenic requirements for later technology insertion.
Advanced Gas Turbine (AGT) powertrain system development for automotive applications report
NASA Technical Reports Server (NTRS)
1984-01-01
This report describes progress and work performed during January through June 1984 to develop technology for an Advanced Gas Turbine (AGT) engine for automotive applications. Work performed during the first eight periods initiated design and analysis, ceramic development, component testing, and test bed evaluation. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System Program. This program is oriented at providing the United States automotive industry the high-risk long-range techology necessary to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. Technology resulting from this program is intended to reach the marketplace by the early 1990s.
Kushniruk, Andre; Borycki, Elizabeth; Kuo, Mu-Hsing; Parapini, Eric; Wang, Shu Lin; Ho, Kendall
2014-01-01
Electronic health records and related technologies are being increasingly deployed throughout the world. It is expected that upon graduation health professionals will be able to use these technologies in effective and efficient ways. However, educating health professional students about such technologies has lagged behind. There is a need for software that will allow medical, nursing and health informatics students access to this important software to learn how it works and how to use it effectively. Furthermore, electronic health record educational software that is accessed should provide a range of functions including allowing instructors to build patient cases. Such software should also allow for simulation of a course of a patient's stay and the ability to allow instructors to monitor student use of electronic health records. In this paper we describe our work in developing the requirements for an educational electronic health record to support education about this important technology. We also describe a prototype system being developed based on the requirements gathered.
Sub-millimetre-wave and far infrared ESA missions with a focus on antenna technologies
NASA Astrophysics Data System (ADS)
de Maagt, Peter; Polegre, Arturo; Crone, Gerry
2017-11-01
The are of (sub)millimetre wave and far-infrared antenna technology is a very dynamic sector in electromagnetics. Several future ESA missions have been planned and their requirements are pushing the limits of existing technologies. Feasibility studies have provided baseline concepts, which have helped to grasp the main features of these instruments and to identify their critical aspects. A number of scientific and technical activities have then followed, dedicated to specific topics. The paper discusses (sub)millimetre wave and far-infrared Earth observation and astronomical instruments. Furthermore, generic technology work carried out in the frame of ESA contracts, applicable to this frequency range, is reported on.
Mupparapu, Muralidhar
2007-06-01
Although it sounds like a nonvital tooth, Bluetooth is actually one of technology's hottest trends. It is an industrial specification for wireless personal area networks, but for a busy orthodontic practice, it translates to freedom from cables and cords. Despite its enigmatic name, Bluetooth-based devices and the wireless technology that these gadgets work with are here to stay. They promise to make life easier for the electronic-device users of all stripes, and orthodontists are no exception. The purpose of this article is to orient orthodontists, office staff, and auxiliary personnel to this universal wireless technology that is slowly becoming an integral part of every office.
Delivery of Training Programs: Changing Design.
ERIC Educational Resources Information Center
Dhanarajan, Gajaraj
This paper explains how worldwide economic, social, and technological changes are necessitating changes in the way vocational education is delivered. Vocational programs are encountering a whole new range of clients, including the following: people who are functionally illiterate, physically challenged, or long-term unemployed; out-of-work youth;…
Vocational Education and Productivity.
ERIC Educational Resources Information Center
Watson, Robert, Jr.
Vocational education can contribute to an improved United States productivity by producing an effective work force. People together with technology are two major factors in improving productivity, and they must be integrated. Industry is in the forefront of the efforts to improve productivity. It has encouraged management in long-range strategic…
Dashboard for Analyzing Ubiquitous Learning Log
ERIC Educational Resources Information Center
Lkhagvasuren, Erdenesaikhan; Matsuura, Kenji; Mouri, Kousuke; Ogata, Hiroaki
2016-01-01
Mobile and ubiquitous technologies have been applied to a wide range of learning fields such as science, social science, history and language learning. Many researchers have been investigating the development of ubiquitous learning environments; nevertheless, to date, there have not been enough research works related to the reflection, analysis…
NASA Astrophysics Data System (ADS)
Leahy, M. B., Jr.; Cassiday, B. K.
1993-02-01
Maintaining and supporting an aircraft fleet, in a climate of reduced manpower and financial resources, dictates effective utilization of robotics and automation technologies. To help develop a winning robotics and automation program the Air Force Logistics Command created the Robotics and Automation Center of Excellence (RACE). RACE is a command wide focal point. Race is an organic source of expertise to assist the Air Logistic Center (ALC) product directorates in improving process productivity through the judicious insertion of robotics and automation technologies. RACE is a champion for pulling emerging technologies into the aircraft logistic centers. One of those technology pulls is shared control. Small batch sizes, feature uncertainty, and varying work load conspire to make classic industrial robotic solutions impractical. One can view ALC process problems in the context of space robotics without the time delay. The ALC's will benefit greatly from the implementation of a common architecture that supports a range of control actions from fully autonomous to teleoperated. Working with national laboratories and private industry, we hope to transition shared control technology to the depot floor. This paper provides an overview of the RACE internal initiatives and customer support, with particular emphasis on production processes that will benefit from shared control technology.
NASA Astrophysics Data System (ADS)
Leahy, Michael B., Jr.; Cassiday, Brian K.
1992-11-01
Maintaining and supporting an aircraft fleet, in a climate of reduced manpower and financial resources, dictates effective utilization of robotics and automation technologies. To help develop a winning robotics and automation program the Air Force Logistics Command created the Robotics and Automation Center of Excellence (RACE). RACE is a command wide focal point. An organic source of expertise to assist the Air Logistic Center (ALC) product directorates in improving process productivity through the judicious insertion of robotics and automation technologies. RACE is a champion for pulling emerging technologies into the aircraft logistic centers. One of those technology pulls is shared control. The small batch sizes, feature uncertainty, and varying work load conspire to make classic industrial robotic solutions impractical. One can view ALC process problems in the context of space robotics without the time delay. The ALCs will benefit greatly from the implementation of a common architecture that supports a range of control actions from fully autonomous to teleoperated. Working with national laboratories and private industry we hope to transition shared control technology to the depot floor. This paper provides an overview of the RACE internal initiatives and customer support, with particular emphasis on production processes that will benefit from shared control technology.
NASA Technical Reports Server (NTRS)
Leahy, M. B., Jr.; Cassiday, B. K.
1993-01-01
Maintaining and supporting an aircraft fleet, in a climate of reduced manpower and financial resources, dictates effective utilization of robotics and automation technologies. To help develop a winning robotics and automation program the Air Force Logistics Command created the Robotics and Automation Center of Excellence (RACE). RACE is a command wide focal point. Race is an organic source of expertise to assist the Air Logistic Center (ALC) product directorates in improving process productivity through the judicious insertion of robotics and automation technologies. RACE is a champion for pulling emerging technologies into the aircraft logistic centers. One of those technology pulls is shared control. Small batch sizes, feature uncertainty, and varying work load conspire to make classic industrial robotic solutions impractical. One can view ALC process problems in the context of space robotics without the time delay. The ALC's will benefit greatly from the implementation of a common architecture that supports a range of control actions from fully autonomous to teleoperated. Working with national laboratories and private industry, we hope to transition shared control technology to the depot floor. This paper provides an overview of the RACE internal initiatives and customer support, with particular emphasis on production processes that will benefit from shared control technology.
The Twenty-four Hour Workday: Proceedings of a Symposium on Variations in Work-Sleep Schedules
1980-10-01
medical care, transportation facilities, and security); (2) technological (continuous process operations, e.g., steel production, petrochemical refineries...able, has stL-nulated measurement of variations across time series. In the 2 process , it has identified a wide and important range of behavioral and phy...dimensions. However, this is a complex and interdependent process and a comprehensive understanding of work/rest schedules will be ulti- mately dependent
Bhagwat, Milind
2012-01-01
Training in anaesthesia relies on the duration and quality of clinical experience. It involves exposure to a range of interventions. This works well in routine cases, but when an uncommon and life-threatening event occurs, the anaesthetist needs to carry out multiple tasks simultaneously. Aviation has remarkable similarities with the practice of anaesthesia. Over the years, the aviation industry has used simulation to train and assess individuals very effectively. Anaesthetists face rapidly evolving clinical situations. This needs appropriate decision-making and communication with others in the theatre team. Simulation, using current technology, offers innovative and reproducible training experience. It enables standardised scenario building and reflective learning. Various non-technical aspects of an anaesthetist's day-to-day work could also be addressed to during such training. The technology could be used very effectively for the assessment of competence too. Simulation has been used for technology development and appraisal over the years. PMID:22529414
Design of a wearable bio-patch for monitoring patient's temperature.
Vicente, Jose M; Avila-Navarro, Ernesto; Juan, Carlos G; Garcia, Nicolas; Sabater-Navarro, Jose M
2016-08-01
New communication technologies allow us developing useful and more practical medical applications, in particular for ambulatory monitoring. NFC communication has the advantages of low powering and low influence range area, what makes this technology suitable for health applications. This work presents an explanation of the design process of planar NFC antennas in a wearable biopatch. The problem of optimizing the communication distance is addressed. Design of a biopatch for continuous temperature monitoring and experimental results obtained wearing this biopatch during daily activities are presented.
Reed, Kate; Kochetkova, Inna; Molyneux-Hodgson, Susan
2016-06-01
Magnetic resonance imaging (MRI) was first introduced into clinical practice during the 1980s. Originally used as a diagnostic tool to take pictures of the brain, spine, and joints, it is now used to visualise a range of organs and soft tissue around the body. Developments in clinical applications of the technology are rapid and it is often viewed as the 'gold standard' in many areas of medicine. However, most existing sociological work on MRI tends to focus on the profession of radiology, little is known about the impact of MRI on a broader range of clinical practice. This article focuses on MRI use in pregnancy, a relatively new application of the technology. Drawing on empirical research with a range of health professionals (from radiologists to pathologists) in the North of England, this article asks: how do different types of health professionals engage with the technology and to what end? It will argue that MRI use in pregnancy offers an increasingly important piece of the diagnostic jigsaw, often acting as a bridging technology between medical specialties. The implications of this will be explored in the context of broader sociological debates on the 'visualisation' of medicine and its impact on professionals. © 2016 The Authors. Sociology of Health & Illness published by John Wiley & Sons Ltd on behalf of Foundation for SHIL.
Defense Experimentation and Stockpile Stewardship
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-10-28
A primary mission of the site is to help ensure that the nation's nuclear weapon stockpile remains safe, secure and reliable. The stockpile stewardship program, working with the national weapons laboratories conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed right here at the NNSS.
Naval Medical R and D News, January 2018, Volume X, Issue 1
2018-01-01
high school science, technology, engineering, and math (STEM) teachers toured the Naval Health Research Center (NHRC), Jan. 12, to see a working...lab into the classroom to promote hands-on science education. The teachers, whose subjects ranged from math and chemistry to biomedical sciences, came
ERIC Educational Resources Information Center
Butler, Kevin
2009-01-01
The federal stimulus package provides badly needed aid to school districts, allowing them to avoid massive staff and teacher layoffs and injecting them with a healthy dose of funds for many programs ranging from technology to renovation work. The American Recovery and Reinvestment Act (ARRA), which President Barack Obama signed on Feb.17, provides…
Defense Experimentation and Stockpile Stewardship
None
2018-01-16
A primary mission of the site is to help ensure that the nation's nuclear weapon stockpile remains safe, secure and reliable. The stockpile stewardship program, working with the national weapons laboratories conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed right here at the NNSS.
Student Perceptions of a Wireless Audience Response System
ERIC Educational Resources Information Center
Walton, Abram; Homan, Scott; Naimi, Linda; Tomovic, Cynthia
2008-01-01
Purpose: The purpose of this paper is to identify and measure the perceptions and attitudes of students regarding the classroom performance system (CPS). Design/methodology/approach: The paper reviews a range of recently published (1993-2006) works on pedagogy and educational technology. A survey methodology was utilized to measure students'…
Teaching and Learning in the Global Village: Connect, Create, Collaborate, and Communicate
ERIC Educational Resources Information Center
Dwyer, Bernadette
2016-01-01
The world is increasingly interconnected through technology. In order to live and work in a global village our students need to develop global literacy. Global literacy incorporates a range of overlapping concepts including an advocacy dimension, global citizenship responsibility, and cultural and linguistic awareness. Further, global literacy…
ERIC Educational Resources Information Center
Jokela, Paivi; Karlsudd, Peter
2007-01-01
The current higher education, both distance education and traditional campus courses, relies more and more on modern information and communication technologies (ICT). The use of computer systems and networks results in a wide range of security issues that must be dealt with in order to create a safe learning environment. In this work, we study the…
System Study: Technology Assessment and Prioritizing
NASA Technical Reports Server (NTRS)
2005-01-01
The objective of this NASA funded project is to assess and prioritize advanced technologies required to achieve the goals for an "Intelligent Propulsion System" through collaboration among GEAE, NASA, and Georgia Tech. Key GEAE deliverables are parametric response surface equations (RSE's) relating technology features to system benefits (sfc, weight, fuel burn, design range, acoustics, emission, etc...) and listings of Technology Impact Matrix (TIM) with benefits, debits, and approximate readiness status. TIM has been completed for GEAE and NASA proposed technologies. The combined GEAE and NASA TIM input requirement is shown in Table.1. In the course of building the RSE's and TIM, significant parametric technology modeling and RSE accuracy improvements were accomplished. GEAE has also done preliminary ranking of the technologies using Georgia Tech/GEAE USA developed technology evaluation tools. System level impact was performed by combining beneficial technologies with minimum conflict among various system figures of merits to assess their overall benefits to the system. The shortfalls and issues with modeling the proposed technologies are identified, and recommendations for future work are also proposed.
Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.
The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signaturesmore » in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.« less
First benchmark of the Unstructured Grid Adaptation Working Group
NASA Technical Reports Server (NTRS)
Ibanez, Daniel; Barral, Nicolas; Krakos, Joshua; Loseille, Adrien; Michal, Todd; Park, Mike
2017-01-01
Unstructured grid adaptation is a technology that holds the potential to improve the automation and accuracy of computational fluid dynamics and other computational disciplines. Difficulty producing the highly anisotropic elements necessary for simulation on complex curved geometries that satisfies a resolution request has limited this technology's widespread adoption. The Unstructured Grid Adaptation Working Group is an open gathering of researchers working on adapting simplicial meshes to conform to a metric field. Current members span a wide range of institutions including academia, industry, and national laboratories. The purpose of this group is to create a common basis for understanding and improving mesh adaptation. We present our first major contribution: a common set of benchmark cases, including input meshes and analytic metric specifications, that are publicly available to be used for evaluating any mesh adaptation code. We also present the results of several existing codes on these benchmark cases, to illustrate their utility in identifying key challenges common to all codes and important differences between available codes. Future directions are defined to expand this benchmark to mature the technology necessary to impact practical simulation workflows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggiero, A.; Orgren, A.
This project was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and LGS Innovations, LLC (formerly Lucent Technologies, Inc.), to develop long-range and mobile operational free-space optical (FSO) laser communication systems for specialized government applications. LLNL and LGS Innovations formerly Lucent Bell Laboratories Government Communications Systems performed this work for a United States Government (USG) Intelligence Work for Others (I-WFO) customer, also referred to as "Government Customer", or "Customer" and "Government Sponsor." The CRADA was a critical and required part of the LLNL technology transfer plan formore » the customer.« less
Aeropropulsion 1987. Session 6: High-Speed Propulsion Technology
NASA Technical Reports Server (NTRS)
1987-01-01
NASA is conducting aeronautical research over a broad range of Mach numbers. In addition to the advanced CTOL propulsion research described in a separate session, the Lewis Research Center has intensified its efforts towards propulsion technology for selected high-speed flight applications. In a companion program, the Langley Research Center has also accomplished excellent research in Supersonic Combustion Ramjet (SCRAM) propulsion. What is presented in this session is an unclassified review of some of the propulsion research results that are applicable for supersonic to hypersonic vehicles. Not only is a review provided for several key work areas, it also presents a viewpoint on future research directions by calling attention to cycles, components, and facilities involved in this rapidly expanding field of work.
Development and Testing of Propulsion Health Management
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Lekki, John D.; Simon, Donald L.
2012-01-01
An Integrated Vehicle Health Management system aims to maintain vehicle health through detection, diagnostics, state awareness, prognostics, and lastly, mitigation of detrimental situations for each of the vehicle subsystems and throughout the vehicle as a whole. This paper discusses efforts to advance Propulsion Health Management technology for in-flight applications to provide improved propulsion sensors measuring a range of parameters, improve ease of propulsion sensor implementation, and to assess and manage the health of gas turbine engine flow-path components. This combined work is intended to enable real-time propulsion state assessments to accurately determine the vehicle health, reduce loss of control, and to improve operator situational awareness. A unique aspect of this work is demonstration of these maturing technologies on an operational engine.
Laser Technology in Interplanetary Exploration: The Past and the Future
NASA Technical Reports Server (NTRS)
Smith, David E.
2000-01-01
Laser technology has been used in planetary exploration for many years but it has only been in the last decade that laser altimeters and ranging systems have been selected as flight instruments alongside cameras, spectrometers, magnetometers, etc. Today we have an active laser system operating at Mars and another destined for the asteroid Eros. A few years ago a laser ranging system on the Clementine mission changed much of our thinking about the moon and in a few years laser altimeters will be on their way to Mercury, and also to Europa. Along with the increased capabilities and reliability of laser systems has came the realization that precision ranging to the surface of planetary bodies from orbiting spacecraft enables more scientific problems to be addressed, including many associated with planetary rotation, librations, and tides. In addition, new Earth-based laser ranging systems working with similar systems on other planetary bodies in an asynchronous transponder mode will be able to make interplanetary ranging measurements at the few cm level and will advance our understanding of solar system dynamics and relativistic physics.
The Science and Technology of the US National Missile Defense System
NASA Astrophysics Data System (ADS)
Postol, Theodore A.
2010-03-01
The National Missile Defense System utilizes UHF and X-band radars for search, track and discrimination, and interceptors that use long-wave infrared sensors to identify and home on attacking warheads. The radars and infrared sensors in the missile defense system perform at near the theoretical limits predicted by physics. However, in spite of the fantastic technical advances in sensor technology, signal processing, and computational support functions, the National Missile Defense System cannot be expected to ever work in realistic combat environments. This talk will describe why these impressive technologies can never deliver on the promise of a credible defense against long-range ballistic missiles.
1 × 4 MMI visible light wavelength demultiplexer based on a GaN slot-waveguide structure
NASA Astrophysics Data System (ADS)
Shoresh, Tamir; Katanov, Nadav; Malka, Dror
2018-07-01
High transmission losses are the key problem that limits the performance of visible light communication systems, which work on wavelength division multiplexing (WDM) technology. To overcome this problem, we propose a novel design for a 1 × 4 optical demultiplexer based on the multimode interference in a slot-waveguide structure that operates at 547 nm, 559 nm, 566 nm, and 584 nm. Gallium nitride and silicon oxide were found to be excellent materials for the slot-waveguide structure. Simulation results showed that the proposed device can transmit four channels that work in the visible light range with a low transmission loss of 0.983-1.423 dB, crosstalk of 13.8-18.3 dB, and bandwidth of 1.8-3.2 nm. Thus, this device can be very useful in visible light networking systems, which work on the WDM technology.
Walton, Graham; Childs, Susan; Blenkinsopp, Elizabeth
2005-12-01
This article describes a project which explored the potential for mobile technologies to give health students in the community access to learning resources. The purpose included the need to identify possible barriers students could face in using mobile technologies. Another focus was to assess the students perceptions of the importance of being able to access learning resources in the community. This 1-year project used two main approaches for data collection. A review of the literature on mobile technologies in the health context was conducted. This was used in a systematic way to identify key issues and trends. The literature review was used to inform the design and production of a questionnaire. This was distributed to and completed by a group of community health students at Northumbria University, UK. The questionnaire was piloted and there was a 100% completion rate with 49 returned forms. The literature review indicated that most mobile technology applications were occurring in the US. At the time of the review the most prevalent mobile technologies were PDAs, laptops, WAP phones and portable radios with use being concentrated around doctors in the acute sector. A range of advantages and disadvantages to the technology were discovered. Mobile technologies were mainly being used for clinical rather than learning applications. The students showed a low level of awareness of the technology but placed great importance to accessing learning resources from the community. Significant development and changes are taking place in mobile technologies. Since the data collection for this work was completed in 2004 podcasting and videocasting have become significant in mobile learning for health professionals. Librarians will need to address the relevance and implications of m-learning for their practice. Care and consideration needs to be given on the time and resources librarians allocate for the necessary development work around mobile technologies. Collaboration and partnership working will be most effective approach for librarians wishing to integrate their services with m-learning technologies.
Examples of Information Technology in Field-based Educational Settings
NASA Astrophysics Data System (ADS)
Knoop, P.; van der Pluijm, B.; Dey, E.; Burn, H.
2007-12-01
Over the last five years we have utilized ruggedized Tablet PCs and Pocket PCs in a variety of summer field courses at our Camp Davis Rocky Mountain Field Station, near Jackson, WY, as well as during departmental field trips. The courses involved range from upper-level field geology to lower-level introductory geology, as well as a mid-level environmental science course. During this period we gained a lot of experience with how to integrate information technology in field courses and field trips, as we experimented with a range of hardware and software combinations as well as different teaching approaches, some more successful than others. During much of this time we have also collaborated with external educational researchers to help us assess and understand the impact of this evolving approach to field-based instruction. Presented here are some example cases of how information technology can be used in the field for educational purposes, such as mapping projects in field courses, as a digital field notebook and reference library on field trips, and to support a mobile classroom while students are dispersed among vehicles or across a field area. We also present results from the educational evaluation of this work, which indicate that students see information technology as an important tool for their work, rather than as a novelty, and that it provides them with important visualization capabilities to enhance their understand that are not available with traditional paper mapping techniques.
Langley aerospace test highlights, 1985
NASA Technical Reports Server (NTRS)
1986-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Significant tests which were performed during calendar year 1985 in Langley test facilities, are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research, are illustrated. Other highlights of Langley research and technology for 1985 are described in Research and Technology-1985 Annual Report of the Langley Research Center.
Langley aerospace test highlights, 1989
NASA Technical Reports Server (NTRS)
1990-01-01
The role of the NASA Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests that were performed during calendar year 1989 in the NASA Langley Research Center test facilities are highlighted. Both the broad range of the research and technology activities at the NASA Langley Research Center are illustrated along with the contributions of this work toward maintaining United States leadership in aeronautics and space research. Other highlights of Langley research and technology for 1989 are described in Research and Technology 1989 - Langley Research Center.
Langley aerospace test highlights, 1990
NASA Technical Reports Server (NTRS)
1991-01-01
The role of NASA-Langley is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests are highlighted which were performed during 1990 in the NASA-Langley test facilities, a number of which are unique in the world. Both the broad range of the research and technology activities at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research are illustrated. Other highlights of Langley research and technology for 1990 are described in Research and Technology 1990 Langley Research Center.
An Overview of Aerospace Propulsion Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Reddy, D. R.
2007-01-01
NASA Glenn Research center is the recognized leader in aerospace propulsion research, advanced technology development and revolutionary system concepts committed to meeting the increasing demand for low noise, low emission, high performance, and light weight propulsion systems for affordable and safe aviation and space transportation needs. The technologies span a broad range of areas including air breathing, as well as rocket propulsion systems, for commercial and military aerospace applications and for space launch, as well as in-space propulsion applications. The scope of work includes fundamentals, components, processes, and system interactions. Technologies developed use both experimental and analytical approaches. The presentation provides an overview of the current research and technology development activities at NASA Glenn Research Center .
A 60 GOPS/W, -1.8 V to 0.9 V body bias ULP cluster in 28 nm UTBB FD-SOI technology
NASA Astrophysics Data System (ADS)
Rossi, Davide; Pullini, Antonio; Loi, Igor; Gautschi, Michael; Gürkaynak, Frank K.; Bartolini, Andrea; Flatresse, Philippe; Benini, Luca
2016-03-01
Ultra-low power operation and extreme energy efficiency are strong requirements for a number of high-growth application areas, such as E-health, Internet of Things, and wearable Human-Computer Interfaces. A promising approach to achieve up to one order of magnitude of improvement in energy efficiency over current generation of integrated circuits is near-threshold computing. However, frequency degradation due to aggressive voltage scaling may not be acceptable across all performance-constrained applications. Thread-level parallelism over multiple cores can be used to overcome the performance degradation at low voltage. Moreover, enabling the processors to operate on-demand and over a wide supply voltage and body bias ranges allows to achieve the best possible energy efficiency while satisfying a large spectrum of computational demands. In this work we present the first ever implementation of a 4-core cluster fabricated using conventional-well 28 nm UTBB FD-SOI technology. The multi-core architecture we present in this work is able to operate on a wide range of supply voltages starting from 0.44 V to 1.2 V. In addition, the architecture allows a wide range of body bias to be applied from -1.8 V to 0.9 V. The peak energy efficiency 60 GOPS/W is achieved at 0.5 V supply voltage and 0.5 V forward body bias. Thanks to the extended body bias range of conventional-well FD-SOI technology, high energy efficiency can be guaranteed for a wide range of process and environmental conditions. We demonstrate the ability to compensate for up to 99.7% of chips for process variation with only ±0.2 V of body biasing, and compensate temperature variation in the range -40 °C to 120 °C exploiting -1.1 V to 0.8 V body biasing. When compared to leading-edge near-threshold RISC processors optimized for extremely low power applications, the multi-core architecture we propose has 144× more performance at comparable energy efficiency levels. Even when compared to other low-power processors with comparable performance, including those implemented in 28 nm technology, our platform provides 1.4× to 3.7× better energy efficiency.
The Advanced Technology Development Center (ATDC)
NASA Technical Reports Server (NTRS)
Clements, G. R.; Willcoxon, R. (Technical Monitor)
2001-01-01
NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.
Evaluation of Student Outcomes in Materials Science and Technology
NASA Technical Reports Server (NTRS)
Piippo, Steven
1996-01-01
This paper specifies 14 benchmarks and exit standards for the introduction of Materials Science and Technology in a secondary school education. Included is the standard that students should be able to name an example of each category of technological materials including metals, glass/ceramics, polymers (plastics) and composites. Students should know that each type of solid material has specific properties that can be measured. Students will learn that all solid materials have either a long range crystalline structure or a short range amorphous structure (i.e., glassy). They should learn the choice of materials for a particular application depends on the properties of the material, and the properties of the material depends on its crystal structure and microstructure. The microstructure may be modified by the methods by which the material is processed; students should explain this by the example of sintering a ceramic body to reduce its porosity and increase its densification and strength. Students will receive exposure to the world of work, post secondary educational opportunities, and in general a learning that will lead to a technologically literate intelligent citizen.
Architecture of a Service-Enabled Sensing Platform for the Environment
Kotsev, Alexander; Pantisano, Francesco; Schade, Sven; Jirka, Simon
2015-01-01
Recent technological advancements have led to the production of arrays of miniaturized sensors, often embedded in existing multitasking devices (e.g., smartphones, tablets) and using a wide range of radio standards (e.g., Bluetooth, Wi-Fi, 4G cellular networks). Altogether, these technological evolutions coupled with the diffusion of ubiquitous Internet connectivity provide the base-line technology for the Internet of Things (IoT). The rapid increase of IoT devices is enabling the definition of new paradigms of data collection and introduces the concept of mobile crowd-sensing. In this respect, new sensing methodologies promise to extend the current understanding of the environment and social behaviors by leveraging citizen-contributed data for a wide range of applications. Environmental sensing can however only be successful if all the heterogeneous technologies and infrastructures work smoothly together. As a result, the interconnection and orchestration of devices is one of the central issues of the IoT paradigm. With this in mind, we propose an approach for improving the accessibility of observation data, based on interoperable standards and on-device web services. PMID:25688593
Architecture of a service-enabled sensing platform for the environment.
Kotsev, Alexander; Pantisano, Francesco; Schade, Sven; Jirka, Simon
2015-02-13
Recent technological advancements have led to the production of arrays of miniaturized sensors, often embedded in existing multitasking devices (e.g., smartphones, tablets) and using a wide range of radio standards (e.g., Bluetooth, Wi-Fi, 4G cellular networks). Altogether, these technological evolutions coupled with the diffusion of ubiquitous Internet connectivity provide the base-line technology for the Internet of Things (IoT). The rapid increase of IoT devices is enabling the definition of new paradigms of data collection and introduces the concept of mobile crowd-sensing. In this respect, new sensing methodologies promise to extend the current understanding of the environment and social behaviors by leveraging citizen-contributed data for a wide range of applications. Environmental sensing can however only be successful if all the heterogeneous technologies and infrastructures work smoothly together. As a result, the interconnection and orchestration of devices is one of the central issues of the IoT paradigm. With this in mind, we propose an approach for improving the accessibility of observation data, based on interoperable standards and on-device web services.
Technology, normalisation and male sex work.
MacPhail, Catherine; Scott, John; Minichiello, Victor
2015-01-01
Technological change, particularly the growth of the Internet and smart phones, has increased the visibility of male escorts, expanded their client base and diversified the range of venues in which male sex work can take place. Specifically, the Internet has relocated some forms of male sex work away from the street and thereby increased market reach, visibility and access and the scope of sex work advertising. Using the online profiles of 257 male sex workers drawn from six of the largest websites advertising male sexual services in Australia, the role of the Internet in facilitating the normalisation of male sex work is discussed. Specifically we examine how engagement with the sex industry has been reconstituted in term of better informed consumer-seller decisions for both clients and sex workers. Rather than being seen as a 'deviant' activity, understood in terms of pathology or criminal activity, male sex work is increasingly presented as an everyday commodity in the market place. In this context, the management of risks associated with sex work has shifted from formalised social control to more informal practices conducted among online communities of clients and sex workers. We discuss the implications for health, legal and welfare responses within an empowerment paradigm.
Ergonomic implementation and work station design for quilt manufacturing unit.
Vinay, Deepa; Kwatra, Seema; Sharma, Suneeta; Kaur, Nirmal
2012-05-01
Awkward, extreme and repetitive postures have been associated with work related musculoskeletal disorders and injury to the lowerback of workers engaged in quilting manufacturing unit. Basically quilt are made manually by hand stitch and embroidery on the quilts which was done in squatting posture on the floor. Mending, stain removal, washing and packaging were some other associated work performed on wooden table. their work demands to maintain a continuous squatting posture which leads to various injuries related to low back and to calf muscles. The present study was undertaken in Tarai Agroclimatic Zone of Udham Singh Nagar District of Uttarakhand State with the objective to study the physical and physiological parameters as well as the work station layout of the respondent engaged on quilt manufacturing unit. A total of 30 subjects were selected to study the drudgery involved in quilt making enterprise and to make the provision of technology option to reduce the drudgery as well as musculoskeletal disorders, thus enhancing the productivity and comfortability. Findings of the investigation show that majority of workers (93.33 per cent) were female and very few (6.66 per cent) were the male with the mean age of 24.53±6.43. The body mass index and aerobic capacity (lit/min) values were found as 21.40±4.13 and 26.02±6.44 respectively. Forty per cent of the respondents were having the physical fitness index of high average whereas 33.33 per cent of the respondents had low average physical fitness. All the assessed activities involved to make the quilt included a number of the steps which were executed using two types of work station i.e squatting posture on floor and standing posture using wooden table. A comparative study of physiological parameters was also done in the existing conditions as well as in improved conditions by introducing low height chair and wooden spreader to hold the load of quilt while working, to improve the work posture of the worker. The average working heart rate values were found to reduced by performing the activity using improved technology followed by energy expenditure (6.99 kj/min), total cardiac cost of work (1037.95 beats), physiological cost of work (103.79 beats) and rate of perceived rate of exertion to the score of 2.6 Results of postural analysis that is change in motion at cervical region reveal that range of motion in case of extension was found beyond the normal range in existing setup where as it reduced to normal range in improved work station. The finding of the study concludes that to ensure safety and to reduce occupational health hazards while performing the activity, an ergonomically designed work station by introduction of improved technology option will be a right choice which also enhances the productivity.
Microencapsulation of Bacterial Cells by Emulsion Technique for Probiotic Application.
Mandal, Surajit; Hati, Subrota
2017-01-01
Probiotics are dietary concepts to improve the dynamics of intestinal microbial balance favorably. Careful screening of probiotic strains for their technological suitability can also allow selection of strains with the best manufacturing and food technology characteristics. However, even the most robust probiotic bacteria are currently in the range of food applications to which they can be applied. Additionally, bacteria with exceptional functional heath properties are ruled out due to technological limitations. New process and formulation technologies will enable both expansion of the range of products in to which probiotics can be applied and the use of efficacious stains that currently cannot be manufactured or stored with existing technologies. Viability of probiotics has been both a marketing and technological concern for many industrial produces. Probiotics are difficult to work with, the bacteria often die during processing, and shelf life is unpredictable. Probiotics are extremely susceptible environmental conditions such as oxygen, processing and preservation treatments, acidity, and salt concentration, which collectively affect the overall viability of probiotics. Manufacturers have long been fortifying products with probiotics; they have faced significant processing challenges regarding the stability and survivability of probiotics during processing and preservation treatments, storage as well during their passage through GIT. Application of microencapsulation significantly improves the stability of probiotics during food processing and gastrointestinal transit.
NASA Technical Reports Server (NTRS)
Kung, Ernest C.
1994-01-01
The contract research has been conducted in the following three major areas: analysis of numerical simulations and parallel observations of atmospheric blocking, diagnosis of the lower boundary heating and the response of the atmospheric circulation, and comprehensive assessment of long-range forecasting with numerical and regression methods. The essential scientific and developmental purpose of this contract research is to extend our capability of numerical weather forecasting by the comprehensive general circulation model. The systematic work as listed above is thus geared to developing a technological basis for future NASA long-range forecasting.
An integrated approach to Smart House technology for people with disabilities.
Allen, B
1996-04-01
It is now commonly accepted that 'Smart House' technology can play a significant part in helping both elderly and disabled people enjoy a greater degree of independence in the near future. In order to realize this aspiration, it is necessary to examine a number of factors: the development of the appropriate Home Bus technologies and supported devices; the development of the appropriate user interfaces that will allow people with a range of special needs use the system; the incorporation of the requirements of the 'Smart House' controller with the other technological needs of the user; and the development of mainstream technologies that will affect the cost and availability of devices to the user. This paper will examine the above points and suggest appropriate actions and trends. It will draw upon the work of a four-member consortium currently finalizing a technical development project under the EC TIDE program, the experience of research and commercial organizations engaged in development work in associated areas and the experiences of the Dublin-based, Central Remedial Clinic and in particular, its Client Technical Services Unit. The CTSU have been actively engaged in the development of systems for clients and direct clinical assessments for the last 12 years.
ERIC Educational Resources Information Center
Walsh, Elaine; Hargreaves, Caroline; Hillemann-Delaney, Ulrike; Li, Jizhen
2015-01-01
Policy changes prompt many universities to become more entrepreneurial and doctoral researchers, especially those working in science and technology, are expected to play important roles, contributing to the growth of knowledge economies through entrepreneurial activity. Informal evidence of differing views on entrepreneurship between Chinese and…
Framing Work-Integrated E-Learning with Techno-Pedagogical Genres
ERIC Educational Resources Information Center
Svensson, Lars; Ostlund, Christian
2007-01-01
Distance Educational Practice is today supported by a range of information systems (IS) design theories. Still, there are surprisingly few strong pedagogical ideas and constructs that are communicated across distance educational institutions. Instead it is often the technology, the software and the medium that is at the centre of attention as we…
Outsourcing Cataloging, Authority Work, and Physical Processing: A Checklist of Considerations.
ERIC Educational Resources Information Center
Kascus, Marie A., Ed.; Hale, Dawn, Ed.
Due to automation technology, financial restrictions, and resultant downsizing, library managers have increasingly relied on the services of contractors, rather than in-house staff, to accomplish different technical services operations. Contracted services may range from a small project for a selected group of materials to a large project for…
Exploring Speech Recognition Technology: Children with Learning and Emotional/Behavioral Disorders.
ERIC Educational Resources Information Center
Faris-Cole, Debra; Lewis, Rena
2001-01-01
Intermediate grade students with disabilities in written expression and emotional/behavioral disorders were trained to use discrete or continuous speech input devices for written work. The study found extreme variability in the fidelity of the devices, PowerSecretary and Dragon NaturallySpeaking ranging from 49 percent to 87 percent. Both devices…
Network and Information Sciences (NIS) International Technology Alliance (ITA)
2016-05-01
unpredictable, insights often unexpected, and innovation paths are diverse. On the one hand a laissez - faire and unconstrained management approach would...138 References . ..... ...... . . ... . . .. .. . . ..... . ....... . ... .. . 139 A NIS ITA Leadership ........... . . .. .. . . . . ..... . .. 141...ten-year programme, covering a range of perspectives of the work and the results achieved by the integrated technical leadership and wide research
Urban forestry: The final frontier?
E.G. McPherson
2003-01-01
Forestry and urban forestry have more in common than practitioners in either field may think. The two disciplines could each take better advantage of the otherâs expertise, such as foresters' impressive range of scientific theory and technological sophistication, and urban foresters' experience in working with diverse stakeholders in the public arena. The...
Relationship Building One Step at a Time: Case Studies of Successful Faculty-Librarian Partnerships
ERIC Educational Resources Information Center
Díaz, José O.; Mandernach, Meris A.
2017-01-01
Building strong relationships between academic librarians and teaching faculty is paramount for promoting services and resources. While librarians face challenges ranging from new technologies to heightened expectations and fiscal difficulties, the key work remains in solid relationship building. Drawing on the experience of a group of subject…
Leveraging gigawatt potentials by smart heat-pump technologies using ionic liquids.
Wasserscheid, Peter; Seiler, Matthias
2011-04-18
One of the greatest challenges to science in the 21 st century is the development of efficient energy production, storage, and transformation systems with minimal ecological footprints. Due to the lack of efficient heat-transformation technologies, industries around the world currently waste energy in the gigawatt range at low temperatures (40-80 °C). These energy potentials can be unlocked or used more efficiently through a new generation of smart heat pumps operating with novel ionic liquid (IL)-based working pairs. The new technology is expected to allow revolutionary technical progress in heat-transformation devices, for example, significantly higher potential efficiencies, lower specific investments, and broader possibilities to incorporate waste energy from renewable sources. Furthermore, due to drastically reduced corrosion rates and excellent thermal stabilities of the new, IL-based working pairs, the high driving temperatures necessary for multi-effect cycles such as double- or triple-effect absorption chillers, can also be realized. The details of this novel and innovative heat-transformation technology are described. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Medium- and high-pressure gauges and transducers produced by laser welding technology
NASA Astrophysics Data System (ADS)
Daurelio, Giuseppe; Nenci, Fabio; Cinquepalmi, Massimo; Chita, Giuseppe
1998-07-01
Industrial manufacturers produce many types of pressure gauges and transducers according to the applications, for gas or liquid, for high-medium and low pressure ranges. Nowadays the current production technology generally prefers to weld by micro TIG source the metallic corrugated membranes to the gauge or transducer bodies for the products, operating on the low pressure or medium pressure ranges. For the other ones, operating to high pressure range, generally the two components of the transducers are both threaded only and threaded and then circularly welded by micro TIG for the other higher range, till to 1000 bar. In this work the products, operating on the approximately equals 30 divided by 200 bar, are considered. These, when assembled on industrial plants, as an outcome of a non-correct operating sequence, give a 'shifted' electrical signal. This is due to a shift of the 'zero electrical signal' that unbalances the electrical bridge - thin layer sensor - that is the sensitive part of the product. Moreover, for the same problem, often some mechanical settlings of the transducer happen during the first pressure semi-components, with an increasing of the product manufacturing costs. In light of all this, the above referred, in this work the whole transducer has been re-designed according to the specific laser welding technology requirements. On the new product no threaded parts exist but only a circular laser welding with a full penetration depth about 2.5 divided by 3 mm high. Three different alloys have been tested according to the applications and the mechanical properties requested to the transducer. By using a 1.5 KW CO2 laser system many different working parameters have been evaluated for correlating laser parameters to the penetration depths, crown wides, interaction laser-materia times, mechanical and metallurgical properties. Moreover during the laser welding process the measurements of the maximum temperature, reached by the transducer top, has been read and recorded. At least some transducers, before the usual destructive testings, have been undertaken to many pressure test cycles to verify any pressure drops, the transducer sealing and the total quality of the new product.
Overview of RFID technology and its applications in the food industry.
Kumar, P; Reinitz, H W; Simunovic, J; Sandeep, K P; Franzon, P D
2009-10-01
Radio frequency identification (RFID) is an alternative technology with a potential to replace traditional universal product code (UPC) barcodes. RFID enables identification of an object from a distance without requiring a line of sight. RFID tags can also incorporate additional data such as details of product and manufacturer and can transmit measured environmental factors such as temperature and relative humidity. This article presents key concepts and terminology related to RFID technology and its applications in the food industry. Components and working principles of an RFID system are described. Numerous applications of RFID technology in the food industry (supply chain management, temperature monitoring of foods, and ensuring food safety) are discussed. Challenges in implementation of RFID technology are also discussed in terms of read range, read accuracy, nonuniform standards, cost, recycling issues, privacy, and security concerns.
Conceptual definition of a technology development mission for advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, R. P.
1986-01-01
An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.
Identification of the condition of crops based on geospatial data embedded in graph databases
NASA Astrophysics Data System (ADS)
Idziaszek, P.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Koszela, K.; Fojud, A.
2017-07-01
The Web application presented here supports plant production and works with the graph database Neo4j shell to support the assessment of the condition of crops on the basis of geospatial data, including raster and vector data. The adoption of a graph database as a tool to store and manage the data, including geospatial data, is completely justified in the case of those agricultural holdings that have a wide range of types and sizes of crops. In addition, the authors tested the option of using the technology of Microsoft Cognitive Services at the level of produced application that enables an image analysis using the services provided. The presented application was designed using ASP.NET MVC technology and a wide range of leading IT tools.
Subelectron readout noise focal plane arrays for space imaging
NASA Astrophysics Data System (ADS)
Atlas, Gene; Wadsworth, Mark
2004-01-01
Readout noise levels of under 1 electron have long been a goal for the FPA community. In the quest to enhance the FPA sensitivity, various approaches have been attempted ranging from the exotic Photo-multiplier tubes, Image Intensifier tubes, Avalanche photo diodes, and now the on-chip avalanche charge amplification technologies from the CCD manufacturers. While these techniques reduce the readout noise, each offers a set of compromises that negatively affect the overall performance of the sensor in parameters such as power dissipation, dynamic range, uniformity or system complexity. In this work, we overview the benefits and tradeoffs of each approach, and introduce a new technique based on ImagerLabs" exclusive HIT technology which promises sub-electron read noise and other benefits without the tradeoffs of the other noise reduction techniques.
Intelligent Mobile Technologies
NASA Technical Reports Server (NTRS)
Alena, Rick; Gilbaugh, Bruce; Glass, Brian; Swanson, Keith (Technical Monitor)
2000-01-01
Testing involves commercial radio equipment approved for export and use in Canada. Testing was conducted in the Canadian High Arctic, where hilly terrain provided the worst-case testing. SFU and Canadian governmental agencies made significant technical contributions. The only technical data related to radio testing was exchanged with SFU. Test protocols are standard radio tests performed by communication technicians worldwide. The Joint Fields Operations objectives included the following: (1) to provide Internet communications services for field science work and mobile exploration systems; (2) to evaluate the range and throughput of three different medium-range radio link technologies for providing coverage of the crater area; and (3) to demonstrate collaborative software such as NetMeeting with multi-point video for exchange of scientific information between remote node and base-base camp and science centers as part of communications testing.
Reducing the stair step effect of layer manufactured surfaces by ball burnishing
NASA Astrophysics Data System (ADS)
Hiegemann, Lars; Agarwal, Chiranshu; Weddeling, Christian; Tekkaya, A. Erman
2016-10-01
The layer technology enables fast and flexible additive manufacturing of forming tools. The disadvantages of this system is the formation of stair steps in the range of tool radii. Within this work a new method to smooth this stair steps by ball burnishing is introduced. This includes studies on the general feasibility of the process and the determination of the influence of the rolling parameters. The investigations are carried out experimentally and numerically. Ultimately, the gained knowledge is applied to finish a deep drawing tool which is manufactured by layer technology.
Cresswell, Kathrin; Sheikh, Aziz
2013-05-01
Implementations of health information technologies are notoriously difficult, which is due to a range of inter-related technical, social and organizational factors that need to be considered. In the light of an apparent lack of empirically based integrated accounts surrounding these issues, this interpretative review aims to provide an overview and extract potentially generalizable findings across settings. We conducted a systematic search and critique of the empirical literature published between 1997 and 2010. In doing so, we searched a range of medical databases to identify review papers that related to the implementation and adoption of eHealth applications in organizational settings. We qualitatively synthesized this literature extracting data relating to technologies, contexts, stakeholders, and their inter-relationships. From a total body of 121 systematic reviews, we identified 13 systematic reviews encompassing organizational issues surrounding health information technology implementations. By and large, the evidence indicates that there are a range of technical, social and organizational considerations that need to be deliberated when attempting to ensure that technological innovations are useful for both individuals and organizational processes. However, these dimensions are inter-related, requiring a careful balancing act of strategic implementation decisions in order to ensure that unintended consequences resulting from technology introduction do not pose a threat to patients. Organizational issues surrounding technology implementations in healthcare settings are crucially important, but have as yet not received adequate research attention. This may in part be due to the subjective nature of factors, but also due to a lack of coordinated efforts toward more theoretically-informed work. Our findings may be used as the basis for the development of best practice guidelines in this area. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Fiber optic shape sensing for monitoring of flexible structures
NASA Astrophysics Data System (ADS)
Lally, Evan M.; Reaves, Matt; Horrell, Emily; Klute, Sandra; Froggatt, Mark E.
2012-04-01
Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows
The 20th anniversary of EMBnet: 20 years of bioinformatics for the Life Sciences community
D'Elia, Domenica; Gisel, Andreas; Eriksson, Nils-Einar; Kossida, Sophia; Mattila, Kimmo; Klucar, Lubos; Bongcam-Rudloff, Erik
2009-01-01
The EMBnet Conference 2008, focusing on 'Leading Applications and Technologies in Bioinformatics', was organized by the European Molecular Biology network (EMBnet) to celebrate its 20th anniversary. Since its foundation in 1988, EMBnet has been working to promote collaborative development of bioinformatics services and tools to serve the European community of molecular biology laboratories. This conference was the first meeting organized by the network that was open to the international scientific community outside EMBnet. The conference covered a broad range of research topics in bioinformatics with a main focus on new achievements and trends in emerging technologies supporting genomics, transcriptomics and proteomics analyses such as high-throughput sequencing and data managing, text and data-mining, ontologies and Grid technologies. Papers selected for publication, in this supplement to BMC Bioinformatics, cover a broad range of the topics treated, providing also an overview of the main bioinformatics research fields that the EMBnet community is involved in. PMID:19534734
Lee, John D
2007-01-01
The rapid evolution of computing, communication, and sensor technology is likely to affect young drivers more than others. The distraction potential of infotainment technology stresses the same vulnerabilities that already lead young drivers to crash more frequently than other drivers. Cell phones, text messaging, MP3 players, and other nomadic devices all present a threat because young drivers may lack the spare attentional capacity for vehicle control and the ability to anticipate and manage hazards. Moreover, young drivers are likely to be the first and most aggressive users of new technology. Fortunately, emerging technology can also support safe driving. Electronic stability control, collision avoidance systems, intelligent speed adaptation, and vehicle tracking systems can all help mitigate the threats to young drivers. However, technology alone is unlikely to make young drivers safer. One promising approach to tailoring technology to teen drivers is to extend proven methods for enhancing young driver safety. The success of graduated drivers license programs (GDL) and the impressive safety benefit of supervised driving suggest ways of tailoring technology to the needs of young drivers. To anticipate the effects of technology on teen driving it may be useful to draw an analogy between the effects of passengers and the effects of technology. Technology can act as a teen passenger and undermine safety or it can act as an adult passenger and enhance safety. Rapidly developing technology may have particularly large effects on teen drivers. To maximize the positive effects and minimize the negative effects will require a broad range of industries to work together. Ideally, vehicle manufacturers would work with infotainment providers, insurance companies, and policy makers to craft new technologies so that they accommodate the needs of young drivers. Without such collaboration young drivers will face even greater challenges to their safety as new technologies emerge.
The Energy Forum of Sri Lanka: Working toward appropriate expertise
NASA Astrophysics Data System (ADS)
Nieusma, Dean
Taking my cue from the knowledge base and practices comprising appropriate technology development, and building on politics of expertise scholarship, this dissertation develops the concept of appropriate expertise: the combination of social and technical competences required to address marginalization through technological interventions. The dissertation asks what appropriate expertise looks like "on the ground" in the context of development as practiced by an exceptional group of technology designers from the Energy Forum of Sri Lanka: What design goals did they strive toward? What challenges did they face? What strategies did they employ? In an effort to answer these questions, the dissertation looks at how these designers interacted across a range of contexts with a broad spectrum of people and institutions, each with its own expertise to draw upon. In particular, it looks at how they situated their work in a highly contoured field of social power, where different types of expertise were used as resources for reinforcing or resisting existing power relations. I use the concept relations of expertise to denote the structure of expert interactions across multiple contexts of activity. Although this concept links to broad political-economic conditions that order varied expert practices, my analytic focus is at a different level: the situated experiences of expert practitioners. By starting with ground-level practices and understandings, I argue that creating new relations of expertise---that is, changing the nature of the interactions among experts and between experts and those they work with---is the key way my informants worked to legitimate marginalized perspectives and thereby empower marginalized social groups around technology-development practices. Appropriate expertise enables the creation of appropriate technologies, but it does more. It enables the creation of new relations of expertise, both through inspiring new forms of interpersonal interaction surrounding technology development and through incremental modification of existing decision-making structures to allow a more diverse group stakeholders to come together around technology decision making in the context of development.
Manojlovich, Milisa; Adler-Milstein, Julia; Harrod, Molly; Sales, Anne; Hofer, Timothy P; Saint, Sanjay; Krein, Sarah L
2015-06-11
Communication failures between physicians and nurses are one of the most common causes of adverse events for hospitalized patients, as well as a major root cause of all sentinel events. Communication technology (ie, the electronic medical record, computerized provider order entry, email, and pagers), which is a component of health information technology (HIT), may help reduce some communication failures but increase others because of an inadequate understanding of how communication technology is used. Increasing use of health information and communication technologies is likely to affect communication between nurses and physicians. The purpose of this study is to describe, in detail, how health information and communication technologies facilitate or hinder communication between nurses and physicians with the ultimate goal of identifying how we can optimize the use of these technologies to support effective communication. Effective communication is the process of developing shared understanding between communicators by establishing, testing, and maintaining relationships. Our theoretical model, based in communication and sociology theories, describes how health information and communication technologies affect communication through communication practices (ie, use of rich media; the location and availability of computers) and work relationships (ie, hierarchies and team stability). Therefore we seek to (1) identify the range of health information and communication technologies used in a national sample of medical-surgical acute care units, (2) describe communication practices and work relationships that may be influenced by health information and communication technologies in these same settings, and (3) explore how differences in health information and communication technologies, communication practices, and work relationships between physicians and nurses influence communication. This 4-year study uses a sequential mixed-methods design, beginning with a quantitative survey followed by a two-part qualitative phase. Survey results from aim 1 will provide a detailed assessment of health information and communication technologies in use and help identify sites with variation in health information and communication technologies for the qualitative phase of the study. In aim 2, we will conduct telephone interviews with hospital personnel in up to 8 hospitals to gather in-depth information about communication practices and work relationships on medical-surgical units. In aim 3, we will collect data in 4 hospitals (selected from telephone interview results) via observation, shadowing, focus groups, and artifacts to learn how health information and communication technologies, communication practices, and work relationships affect communication. Results from aim 1 will be published in 2016. Results from aims 2 and 3 will be published in subsequent years. As the majority of US hospitals do not yet have HIT fully implemented, results from our study will inform future development and implementation of health information and communication technologies to support effective communication between nurses and physicians.
Adler-Milstein, Julia; Harrod, Molly; Sales, Anne; Hofer, Timothy P; Saint, Sanjay; Krein, Sarah L
2015-01-01
Background Communication failures between physicians and nurses are one of the most common causes of adverse events for hospitalized patients, as well as a major root cause of all sentinel events. Communication technology (ie, the electronic medical record, computerized provider order entry, email, and pagers), which is a component of health information technology (HIT), may help reduce some communication failures but increase others because of an inadequate understanding of how communication technology is used. Increasing use of health information and communication technologies is likely to affect communication between nurses and physicians. Objective The purpose of this study is to describe, in detail, how health information and communication technologies facilitate or hinder communication between nurses and physicians with the ultimate goal of identifying how we can optimize the use of these technologies to support effective communication. Effective communication is the process of developing shared understanding between communicators by establishing, testing, and maintaining relationships. Our theoretical model, based in communication and sociology theories, describes how health information and communication technologies affect communication through communication practices (ie, use of rich media; the location and availability of computers) and work relationships (ie, hierarchies and team stability). Therefore we seek to (1) identify the range of health information and communication technologies used in a national sample of medical-surgical acute care units, (2) describe communication practices and work relationships that may be influenced by health information and communication technologies in these same settings, and (3) explore how differences in health information and communication technologies, communication practices, and work relationships between physicians and nurses influence communication. Methods This 4-year study uses a sequential mixed-methods design, beginning with a quantitative survey followed by a two-part qualitative phase. Survey results from aim 1 will provide a detailed assessment of health information and communication technologies in use and help identify sites with variation in health information and communication technologies for the qualitative phase of the study. In aim 2, we will conduct telephone interviews with hospital personnel in up to 8 hospitals to gather in-depth information about communication practices and work relationships on medical-surgical units. In aim 3, we will collect data in 4 hospitals (selected from telephone interview results) via observation, shadowing, focus groups, and artifacts to learn how health information and communication technologies, communication practices, and work relationships affect communication. Results Results from aim 1 will be published in 2016. Results from aims 2 and 3 will be published in subsequent years. Conclusions As the majority of US hospitals do not yet have HIT fully implemented, results from our study will inform future development and implementation of health information and communication technologies to support effective communication between nurses and physicians. PMID:26068442
US DOE Regional Test Centers Program - 2016 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Joshua
The US Department of Energy’s Regional Test Center (RTC) program provides outdoor validation and bankability data for innovative solar technologies at five sites across the US representing a range of climate conditions. Data helps get new technologies to market faster and improves US industry competitiveness. Managed by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), the RTC program partners with US manufacturers of photovoltaic (PV) technologies, including modules, inverters, and balance-of-system equipment. The study is collaborative, with manufacturers (also known as RTC industry partners) and the national labs working together on a system design and validation strategy thatmore » meets a clearly defined set of performance and reliability objectives.« less
Report from the Gravitational Observatory Advisory Team
NASA Astrophysics Data System (ADS)
Mueller, Guido; Gravitational Observatory Advisory Team
2016-03-01
As a response to the selection of the Gravitational Universe as the science theme for ESA's L3 mission, ESA formed the Gravitational-Wave Observatory Advisory Team (GOAT) to advise ESA on the scientific and technological approach for a gravitational wave observatory. NASA is participating with three US scientists and one NASA observer; JAXA was also invited and participates with one observer. The GOAT looked at a range of mission technologies and designs, discussed their technical readiness with respect to the ESA schedule, recommended technology development activities for selected technologies, and worked with the wider gravitational-wave community to analyze the impact on the science of the various mission designs. The final report is expected to be submitted to ESA early March and I plan to summarize its content.
Tearle, Paul
2004-09-01
Employees may be found working alone in a wide range of occupations. Technological advance, rationalisation and automation mean that more and more frequently. one single person is in charge of several machines, pieces of equipment or different work activities. Employees will be found working alone during work carried out as 'overtime', as part of flexible working hours, on Saturdays, Sundays, Bank Holidays and other statutory leave days, or in situations where their work takes them away from a fixed base (mobile workers). A person may be considered to be 'working alone' whenever it is not possible to offer immediate assistance following an accident or in another critical situation. This article looks at the legal background to lone working and what an employer must do to ensure lone workers are at no greater risk to their health and safety than any other members of the workforce.
Modular Manufacturing Simulator Users Manual
NASA Technical Reports Server (NTRS)
1997-01-01
Since the agency was established in 1958, a key part of the National Aeronautics and Space Administration's mission has been to make technologies available to American industry so it can be more widely used by the citizens who paid for it. While many people might think that 'rocket science' has no application to earthly problems, rocket science in fact employs earthly materials, processes, and designs adapted for space, and which can be adapted for other purposes on Earth. Marshall Space Flight Center's Technology Transfer Office has outreach programs designed to connect American business, industries, educational institutions, and individuals who have needs, with NASA people and laboratories who may have the solutions. MSFC's national goal is to enhance America's competitiveness in the world marketplace and ensure that the technological breakthroughs by American laboratories benefit taxpayers and the many industries making up our Nation's industrial base. Activities may range from simple exchanges of technical data to Space Act Agreements which lead to NASA and industry working closely together to solve a problem. The goal is to ensure that America gains and maintains its proper place of leadership among the world's technologically developed nations. Some of the many technologies transferred from NASA to commercial customers include those associated with: Welding and fabrication; Medical and pharmaceutical uses; Fuels and coatings; Structural composites and Robotics. These activities are aimed to achieve the same goal: slowing, halting, and gradually reversing the erosion of American technological leadership. Legislation such as the National Technology Initiative starts at the top and works down through the national corporate structure, while MSFC's activities start at the grassroots level and work up through the small and medium-sized business which form the bulk of our industrial community.
Practical Demonstration of a Low Cost - Long Range - Packet Radio over 700 MHz Spectral Region
2012-10-01
for overall guidance and for revising this work, and Dr. Alex Vukovic − CRC/VPTWS vice-president for supporting this research. DRDC CSS CR 2012...www.crc.gc.ca/en/html/crc/home/info_crc/publications/technology_showcase/covlab, retrieved on Jan. 2012. [6] Jun J ., Peddabachagari P., Sichitiu M
ERIC Educational Resources Information Center
Hodges, Linda C.
2018-01-01
As the use of collaborative-learning methods such as group work in science, technology, engineering, and mathematics classes has grown, so has the research into factors impacting effectiveness, the kinds of learning engendered, and demographic differences in student response. Generalizing across the range of this research is complicated by the…
Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.
Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K
2014-06-01
This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors.
NASA Technical Reports Server (NTRS)
Jeracki, Robert J. (Technical Monitor); Topol, David A.; Ingram, Clint L.; Larkin, Michael J.; Roche, Charles H.; Thulin, Robert D.
2004-01-01
This report presents results of the work completed on the preliminary design of Fan 3 of NASA s 22-inch Fan Low Noise Research project. Fan 3 was intended to build on the experience gained from Fans 1 and 2 by demonstrating noise reduction technology that surpasses 1992 levels by 6 dB. The work was performed as part of NASA s Advanced Subsonic Technology (AST) program. Work on this task was conducted in the areas of CFD code validation, acoustic prediction and validation, rotor parametric studies, and fan exit guide vane (FEGV) studies up to the time when a NASA decision was made to cancel the design, fabrication and testing phases of the work. The scope of the program changed accordingly to concentrate on two subtasks: (1) Rig data analysis and CFD code validation and (2) Fan and FEGV optimization studies. The results of the CFD code validation work showed that this tool predicts 3D flowfield features well from the blade trailing edge to about a chord downstream. The CFD tool loses accuracy as the distance from the trailing edge increases beyond a blade chord. The comparisons of noise predictions to rig test data showed that both the tone noise tool and the broadband noise tool demonstrated reasonable agreement with the data to the degree that these tools can reliably be used for design work. The section on rig airflow and inlet separation analysis describes the method used to determine total fan airflow, shows the good agreement of predicted boundary layer profiles to measured profiles, and shows separation angles of attack ranging from 29.5 to 27deg for the range of airflows tested. The results of the rotor parametric studies were significant in leading to the decision not to pursue a new rotor design for Fan 3 and resulted in recommendations to concentrate efforts on FEGV stator designs. The ensuing parametric study on FEGV designs showed the potential for 8 to 10 EPNdB noise reduction relative to the baseline.
NASA Astrophysics Data System (ADS)
Coughlan, Carolyn A.; Chou, Li-Dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.
2016-03-01
Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx.
A review of MEMS micropropulsion technologies for CubeSats and PocketQubes
NASA Astrophysics Data System (ADS)
Silva, Marsil A. C.; Guerrieri, Daduí C.; Cervone, Angelo; Gill, Eberhard
2018-02-01
CubeSats have been extensively used in the past decade as scientific tools, technology demonstrators and for education. Recently, PocketQubes have emerged as an interesting and even smaller alternative to CubeSats. However, both satellite types often lack some key capabilities, such as micropropulsion, in order to further extend the range of applications of these small satellites. This paper reviews the current development status of micropropulsion systems fabricated with MEMS (micro electro-mechanical systems) and silicon technology intended to be used in CubeSat or PocketQube missions and compares different technologies with respect to performance parameters such as thrust, specific impulse, and power as well as in terms of operational complexity. More than 30 different devices are analyzed and divided into 7 main categories according to the working principle. A specific outcome of the research is the identification of the current status of MEMS technologies for micropropulsion including key opportunities and challenges.
A vortex-shedding flowmeter based on IPMCs
NASA Astrophysics Data System (ADS)
Di Pasquale, Giovanna; Graziani, Salvatore; Pollicino, Antonino; Strazzeri, Salvatore
2016-01-01
Ionic polymer-metal composites (IPMCs) are electroactive polymers that can be used both as sensors and actuators. They have been demonstrated for many potential applications, in wet and underwater environments. Applications in fields such as biomimetics, robotics, and aerospace, just to mention a few, have been proposed. In this paper, the sensing nature of IPMCs is used to develop a flowmeter based on the vortex shedding phenomenon. The system is described, and a model is proposed and verified. A setup has been realized, and data have been acquired for many working conditions. The performance of the sensing system has been investigated by using acquired experimental data. Water flux velocities in the range [0.38, 2.83] m s-1 have been investigated. This working range is comparable with ranges claimed for established technologies. Results show the suitability of the proposed system to work as a flowmeter. The proposed transducer is suitable for envisaged post-silicon applications, where the use of IPMCs gives the opportunity to realize a new generating polymeric flowmeter. This has potential applications in fields where properties of IPMCs such as low cost, usability, and disposability are relevant.
Jenny, Trevor; Anderson, Brian E
2011-08-01
Qualifying an anechoic chamber for frequencies that extend into the ultrasonic range is necessary for research work involving airborne ultrasonic sound. The ANSI S12.55/ISO 3745 standard which covers anechoic chamber qualification does not extend into the ultrasonic frequency range, nor have issues pertinent to this frequency range been fully discussed in the literature. An increasing number of technologies employ ultrasound; hence the need for an ultrasonic anechoic chamber. This paper will specifically discuss the need to account for atmospheric absorption and issues pertaining to source transducer directivity by presenting some results for qualification of a chamber at Brigham Young University.
Entanglement and asymmetric steering over two octaves of frequency difference
NASA Astrophysics Data System (ADS)
Olsen, M. K.
2017-12-01
The development of quantum technologies which use quantum states of the light field interacting with other systems creates a demand for entangled states spanning wide frequency ranges. In this work we analyze a parametric scheme of cascaded harmonic generation which promises to deliver bipartite entangled states in which the two modes are separated by two octaves in frequency. This scheme is potentially very useful for applications in quantum communication and computation networks as well as providing for quantum interfaces between a wider range of light and atomic ensembles than is presently practicable. It doubles the frequency range over which entanglement is presently available.
Haux, Reinhold
2006-12-01
This paper discusses aspects of information technologies for health care, in particular on transinstitutional health information systems (HIS) and on health-enabling technologies, with some consequences for the aim of medical informatics. It is argued that with the extended range of health information systems and the perspective of having adequate transinstitutional HIS architectures, a substantial contribution can be made to better patient-centered care, with possibilities ranging from regional, national to even global care. It is also argued that in applying health-enabling technologies, using ubiquitous, pervasive computing environments and ambient intelligence approaches, we can expect that in addition care will become more specific and tailored for the individual, and that we can achieve better personalized care. In developing health care systems towards transinstitutional HIS and health-enabling technologies, the aim of medical informatics, to contribute to the progress of the sciences and to high-quality, efficient, and affordable health care that does justice to the individual and to society, may be extended to also contributing to self-determined and self-sufficient (autonomous) life. Reference is made and examples are given from the Yearbook of Medical Informatics of the International Medical Informatics Association (IMIA) and from the work of Professor Jochen Moehr.
NASA Astrophysics Data System (ADS)
Bolcar, Matthew R.
2017-09-01
The Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor is one of four large mission concept studies being developed by NASA for consideration in the 2020 Astrophysics Decadal Survey. LUVOIR will support a broad range of science objectives, including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. The LUVOIR Science and Technology Definition Team (STDT) has tasked a Technology Working Group (TWG), with more than 60 members from NASA centers, academia, industry, and international partners, with identifying technologies that enable or enhance the LUVOIR science mission. The TWG has identified such technologies in the areas of Coronagraphy, Ultra-Stable Opto-mechanical Systems, Detectors, Coatings, Starshades, and Instrument Components, and has completed a detailed assessment of the state-of-the-art. We present here a summary of this technology assessment effort, as well as the current progress in defining a technology development plan to mature these technologies to the required technology readiness level (TRL).
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.
2017-01-01
The Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor is one of four large mission concept studies being developed by NASA for consideration in the 2020 Astrophysics Decadal Survey. LUVOIR will support a broad range of science objectives, including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. The LUVOIR Science and Technology Definition Team (STDT) has tasked a Technology Working Group (TWG), with more than 60 members from NASA centers, academia, industry, and international partners, with identifying technologies that enable or enhance the LUVOIR science mission. The TWG has identified such technologies in the areas of Coronagraphy, Ultra-Stable Opto-mechanical Systems, Detectors, Coatings, Starshades, and Instrument Components, and has completed a detailed assessment of the state-of-the-art. We present here a summary of this technology assessment effort, as well as the current progress in defining a technology development plan to mature these technologies to the required technology readiness level (TRL).
Application of Smart Solid State Sensor Technology in Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Xu, Jennifer C.; Dungan, L.K.; Makel, D.; Ward, B.; Androjna, D.
2008-01-01
Aerospace applications require a range of chemical sensing technologies to monitor conditions in both space vehicles and aircraft operations. One example is the monitoring of oxygen. For example, monitoring of ambient oxygen (O2) levels is critical to ensuring the health, safety, and performance of humans living and working in space. Oxygen sensors can also be incorporated in detection systems to determine if hazardous leaks are occurring in space propulsion systems and storage facilities. In aeronautic applications, O2 detection has been investigated for fuel tank monitoring. However, as noted elsewhere, O2 is not the only species of interest in aerospace applications with a wide range of species of interest being relevant to understand an environmental or vehicle condition. These include combustion products such as CO, HF, HCN, and HCl, which are related to both the presence of a fire and monitoring of post-fire clean-up operations. This paper discusses the development of an electrochemical cell platform based on a polymer electrolyte, NAFION, and a three-electrode configuration. The approach has been to mature this basic platform for a range of applications and to test this system, combined with "Lick and Stick" electronics, for its viability to monitor an environment related to astronaut crew health and safety applications with an understanding that a broad range of applications can be addressed with a core technology.
Overview of the Microgravity Science Glovebox (MSG)
NASA Technical Reports Server (NTRS)
Wright, Mary Etta
1999-01-01
MSG is a third generation glovebox for Microgravity Science investigations: SpaceLab Glovebox (GBX); Middeck/MIR Gloveboxes (M/MGBX); and GBX and M/MGBX developed by Bradford Engineering (NL). Previous flights have demonstrated utility of glovebox facilities: Contained environment enables broader range of science experiments; Affords better control of video and photographic imaging (a prime data source); Provides better environmental control than cabin atmosphere; and Useful for contingency operations. MSG developed in response to demands for increased work volume, increased capabilities and additional resources. MSG is multi-user facility to support a wide range of small science and technology investigations: Fluid physics; Combustion science; Material science; Biotechnology (cell culturing and protein crystal growth); Space processing; Fundamental physics; and Technology demonstrations. Topics included in this viewgraph are: MSG capabilities; MSG hardware items; MSG, GSE, and OSE items; MSG development approach; and Science utilization.
New liquid crystal devices for adaptive optics
NASA Astrophysics Data System (ADS)
Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.
2002-02-01
The idea of using liquid crystal as adaptive optics components has been proposed by several authors. In recent years a vigorous research effort has been carried out, and it is still flourishing, in several countries. Mainly the research and experimental work has been concentrated in US, U.K. and Russia. There are several reasons why liquid crystal may represent a valid alternative to the traditional deformable mirror technology that has been used for the past two decades or so. The main attractiveness of LC is resides in the cost. Current deformable mirror technology has a range of price going from $2K to $15K per channel. LC technology promises to be at least a couple of orders of magnitude cheaper. Other reasons are connected with reliability, low power consumption and with a huge technological momentum based on a wide variety of industrial applications. In this paper I present some of the experimental results of a 5 years, on going, research effort at the Air Force Research Lab. Most of the work has been on the development of suitable devices with extremely high optical quality, individually addressable pixels, fast switching time. The bulk of the work has been concentrated in the arena of the untwisted nematic material. However new devices are now under development using dual-frequency nematic material and high tilt angle ferroelectric material.
Outside the Research Lab; Volume 1: Physics in the arts, architecture and design
NASA Astrophysics Data System (ADS)
Holgate, Sharon Ann
2017-02-01
This book is written for students and other interested readers as a look inside the diverse range of applications for physics outside of the scientific research environment. This first volume covers several different areas of the arts and design ranging from stage lighting to sculpting. The author has interviewed experts in each area to explain how physics and technology impact their work. These are all useful examples of how physics encountered in taught courses relates to the real world. Audio files and videos are available within Book information
Ultra-compact MEMS FTIR spectrometer
NASA Astrophysics Data System (ADS)
Sabry, Yasser M.; Hassan, Khaled; Anwar, Momen; Alharon, Mohamed H.; Medhat, Mostafa; Adib, George A.; Dumont, Rich; Saadany, Bassam; Khalil, Diaa
2017-05-01
Portable and handheld spectrometers are being developed and commercialized in the late few years leveraging the rapidly-progressing technology and triggering new markets in the field of on-site spectroscopic analysis. Although handheld devices were commercialized for the near-infrared spectroscopy (NIRS), their size and cost stand as an obstacle against the deployment of the spectrometer as spectral sensing components needed for the smart phone industry and the IoT applications. In this work we report a chip-sized microelectromechanical system (MEMS)-based FTIR spectrometer. The core optical engine of the solution is built using a passive-alignment integration technique for a selfaligned MEMS chip; self-aligned microoptics and a single detector in a tiny package sized about 1 cm3. The MEMS chip is a monolithic, high-throughput scanning Michelson interferometer fabricated using deep reactive ion etching technology of silicon-on-insulator substrate. The micro-optical part is used for conditioning the input/output light to/from the MEMS and for further light direction to the detector. Thanks to the all-reflective design of the conditioning microoptics, the performance is free of chromatic aberration. Complemented by the excellent transmission properties of the silicon in the infrared region, the integrated solution allows very wide spectral range of operation. The reported sensor's spectral resolution is about 33 cm-1 and working in the range of 1270 nm to 2700 nm; upper limited by the extended InGaAs detector. The presented solution provides a low cost, low power, tiny size, wide wavelength range NIR spectral sensor that can be manufactured with extremely high volumes. All these features promise the compatibility of this technology with the forthcoming demand of smart portable and IoT devices.
An improved triangulation laser rangefinder using a custom CMOS HDR linear image sensor
NASA Astrophysics Data System (ADS)
Liscombe, Michael
3-D triangulation laser rangefinders are used in many modern applications, from terrain mapping to biometric identification. Although a wide variety of designs have been proposed, laser speckle noise still provides a fundamental limitation on range accuracy. These works propose a new triangulation laser rangefinder designed specifically to mitigate the effects of laser speckle noise. The proposed rangefinder uses a precision linear translator to laterally reposition the imaging system (e.g., image sensor and imaging lens). For a given spatial location of the laser spot, capturing N spatially uncorrelated laser spot profiles is shown to improve range accuracy by a factor of N . This technique has many advantages over past speckle-reduction technologies, such as a fixed system cost and form factor, and the ability to virtually eliminate laser speckle noise. These advantages are made possible through spatial diversity and come at the cost of increased acquisition time. The rangefinder makes use of the ICFYKWG1 linear image sensor, a custom CMOS sensor developed at the Vision Sensor Laboratory (York University). Tests are performed on the image sensor's innovative high dynamic range technology to determine its effects on range accuracy. As expected, experimental results have shown that the sensor provides a trade-off between dynamic range and range accuracy.
Bembridge, Elizabeth; Levett-Jones, Tracy; Jeong, Sarah Yeun-Sim
2011-04-01
This paper presents the findings from a study that explored whether the information and communication technology (ICT) skills nurses acquired at university are relevant and transferable to contemporary practice environments. Whilst universities have attempted to integrate information and communication technology into nursing curricula it is not known whether the skills developed for educational purposes are relevant or transferable to clinical contexts. A qualitative descriptive study was used to explore the perspectives of a small group of new graduate nurses working in a regional/semi-metropolitan healthcare facility in New South Wales, Australia. Semi-structured interviews were used and the data thematically analysed. The themes that emerged from the study are presented in accordance with the conceptual framework and structured under the three headings of pre-transfer, transition and post-transfer. The transferability of information and communication technology skills from university to the workplace is impacted by a range of educational, individual, organisational and contextual factors. Access to adequate ICT and the necessary training opportunities influences new graduates' work satisfaction and their future employment decisions. The ability to effectively use information and communication technology was viewed as essential to the provision of quality patient care. Copyright © 2010 Elsevier Ltd. All rights reserved.
Self-aligned photolithography for the fabrication of fully transparent high-voltage devices
NASA Astrophysics Data System (ADS)
Zhang, Yonghui; Mei, Zengxia; Huo, Wenxing; Wang, Tao; Liang, Huili; Du, Xiaolong
2018-05-01
High-voltage devices, working in the range of hundreds of volts, are indispensable elements in the driving or readout circuits for various kinds of displays, integrated microelectromechanical systems and x-ray imaging sensors. However, the device performances are found hardly uniform or repeatable due to the misalignment issue, which are extremely common for offset drain high-voltage devices. To resolve this issue, this article reports a set of self-aligned photolithography technology for the fabrication of high-voltage devices. High-performance fully-transparent high-voltage thin film transistors, diodes and logic inverters are successfully fabricated with this technology. Unlike other self-aligned routes, opaque masks are introduced on the backside of the transparent substrate to facilitate proximity exposure method. The photolithography process is simulated and analyzed with technology computer aided design simulation to explain the working principle of the proximity exposure method. The substrate thickness is found to be vital for the implementation of this technology based on both simulation and experimental results. The electrical performance of high-voltage devices is dependent on the offset length, which can be delicately modulated by changing the exposure dose. The presented self-aligned photolithography technology is proved to be feasible in high-voltage circuits, demonstrating its huge potential in practical industrial applications.
2016-01-01
The invasion and range expansion of Aedes albopictus (Skuse) in North America represents an outstanding opportunity to study processes of invasion, range expansion, and climatic adaptation. Furthermore, knowledge obtained from such research is relevant to developing novel strategies to control this important vector species. Substantial evidence indicates that the photoperiodic diapause response is an important adaptation to climatic variation across the range of Ae. albopictus in North America. Photoperiodic diapause is a key determinant of abundance in both space and time, and the timing of entry into and exit out of diapause strongly affects seasonal population dynamics and thus the potential for arbovirus transmission. Emerging genomic technologies are making it possible to develop high-resolution, genome-wide genetic markers that can be used for genetic mapping of traits relevant to disease transmission and phylogeographic studies to elucidate invasion history. Recent work using next-generation sequencing technologies (e.g., RNA-seq), combined with physiological experiments, has provided extensive insight into the transcriptional basis of the diapause response in Ae. albopictus. Applying this knowledge to identify novel targets for vector control represents an important future challenge. Finally, recent studies have begun to identify traits other than diapause that are affected by photoperiodism. Extending this work to identify additional traits influenced by photoperiod should produce important insights into the seasonal biology of Ae. albopictus. PMID:27354438
ASERNIP-S: international trend setting.
Maddern, Guy; Boult, Margaret; Ahern, Eleanor; Babidge, Wendy
2008-10-01
The Australian Safety and Efficacy Register of New Interventional Procedures--Surgical (ASERNIP-S) came into being 10 years ago to provide health technology assessments specifically tailored towards new surgical techniques and technologies. It was and remains the only organisation in the world to focus on this area of research. Most funding has been provided by the Australian Government Department of Health, and assessments have helped inform the introduction of new surgical techniques into Australia. ASERNIP-S is a project of the Royal Australasian College of Surgeons. The ASERNIP-S program employs a diverse range of methods including systematic reviews, technology overviews, assessments of new and emerging surgical technologies identified by horizon scanning, and audit. Support and guidance for the program is provided by Fellows of the Royal Australasian College of Surgeons. ASERNIP-S works closely with consumers to produce health technology assessments and audits, as well as consumer information to keep patients fully informed of research. Since its inception, the ASERNIP-S program has developed a strong international profile through the production of over 60 reports on evidence-based surgery, surgical technologies and audit. The work undertaken by ASERNIP-S has evolved from assessments of the safety and efficacy of procedures to include guidance on policies and surgical training programs. ASERNIP-S needs to secure funding so that it can continue to play an integral role in the improvement of quality of care both in Australia and internationally.
Mobilizing Science, Evidence and Technology for the Sendai Framework
NASA Astrophysics Data System (ADS)
Calkins, J. A.
2015-12-01
In March 2015, UN member states adopted the Sendai Framework for Disaster Risk Reduction: 2015-2030. The Sendai Framework recognises the cross-cutting nature of DRR policy and calls on a range of stakeholders to help governments. The Sendai Framework sets the aim of achieving "the substantial reduction of disaster risk and losses in lives, livelihoods and health and in the economic, physical, social, cultural and environmental assets of persons, businesses, communities and countries" (para 16). The international science community is acknowledged as a key stakeholder in supporting countries to implement the Sendai Framework. With this call to action and the gravity of disaster risk escalating around the globe, it is now vital that scientific knowledge and research resources are shared and become accessible in a form that can directly support coordinated application. Recent work is presented on the DRR gaps voiced by governments and scientists across a range of science and technology related needs, including through the drafting process for the Sendai Framework. Across regions and development levels, countries are seeking to address specific gaps they face in scientific capacities and information. Considering the many existing programmes, research initiatives and resources already seeking to generate evidence on DRR at all scales, how can science and technology improve delivery? Models and case studies prompt a useful discussion on what does and does not work. We provide an example of recent work in the UK disasters research community to assess scientific and technical capacity and collaborative effort to fulfil the commitment of the Sendai Framework. While there is no one-size-fits-all, any implementation approach needs to take into account the extraordinary, dynamic and localised nature of disasters and needs to be able to deliver relevant information to decision-makers at national and local levels, in a timely manner.
Directionally Hiding Objects and Creating Illusions at Visible Wavelengths by Holography
Cheng, Qiluan; Wu, Kedi; Shi, Yile; Wang, Hui; Wang, Guo Ping
2013-01-01
Invisibility devices have attracted considerable attentions in the last decade. In addition to invisibility cloaks, unidirectional invisibility systems such as carpet-like cloaks and parity-time symmetric structures are also inspiring some specific researching interests due to their relatively simplifying design. However, unidirectional invisibility systems worked generally in just one certain illumination direction. Here, based on time-reversal principle, we present the design and fabrication of a kind of all-dielectric device that could directionally cancel objects and create illusions as the illuminating light was from different directions. Our devices were experimentally realized through holographic technology and could work for macroscopic objects with any reasonable size at visible wavelengths, and hence may take directional invisibility technology a big step towards interesting applications ranging from magic camouflaging, directional detection to super-resolution biomedical imaging. PMID:23756877
From healing to witchcraft: on ritual speech and roboticization in the hospital.
Pine, Adrienne
2011-06-01
Healthcare Information Technology (HIT), touted as a panacea by U.S. political actors ranging from Newt Gingrich to Barack Obama, is central to emerging forms of healthcare governance which Holmes et al.-in their critique of the institutionalization of magical thinking brought about by Orwellian techno-Newspeak-have provocatively labeled fascistic. Drawing from data collected over 3 years of working with and teaching continuing education (CE) courses for thousands of registered nurses as lead political educator for the California Nurses Association/National Nurses Organizing Committee (CNA/NNOC), I argue that HIT is an integral component of a broader technological restructuring of healthcare and thus society, both of which are part of a social discourse that is tied to a transformative system of ritual speech, with profound implications for healthcare work, patient health, and democracy.
People and work: some contemporary issues.
Shimmin, S
1975-05-01
In advanced industrial societies social, economic, and technological changes are accompanied by changing values and attitudes to work, symptomatic of what some see as the transition to a post-industrial era. As a result existing job definitions and traditional forms of organization are being challenged and attempts made to restructure work so that it becomes meaningful and rewarding in the fullest sense, to the individual, to the enterprise, and to society. These range from programmes of job enlargement and job enrichment, within the framework of existing technologies, to experiments in the design of organizations as a whole in which fewer constraints are accepted as given. They entail and require a multidisciplinary approach as well as awareness of and commitment to the underlying values. The possibilities and benefits of restructuring work in these various ways have been demonstrated sufficiently to encourage interest at governmental level as well as by employers and trade unions. There are, however, no simple prescriptions or principles of universal application. Knowledge is still tentative and partial but there is consensus that the search for new ways of dealing with the organization of work and the allocation of resources is of fundamental importance.
People and work: some contemporary issues.
Shimmin, S
1975-01-01
In advanced industrial societies social, economic, and technological changes are accompanied by changing values and attitudes to work, symptomatic of what some see as the transition to a post-industrial era. As a result existing job definitions and traditional forms of organization are being challenged and attempts made to restructure work so that it becomes meaningful and rewarding in the fullest sense, to the individual, to the enterprise, and to society. These range from programmes of job enlargement and job enrichment, within the framework of existing technologies, to experiments in the design of organizations as a whole in which fewer constraints are accepted as given. They entail and require a multidisciplinary approach as well as awareness of and commitment to the underlying values. The possibilities and benefits of restructuring work in these various ways have been demonstrated sufficiently to encourage interest at governmental level as well as by employers and trade unions. There are, however, no simple prescriptions or principles of universal application. Knowledge is still tentative and partial but there is consensus that the search for new ways of dealing with the organization of work and the allocation of resources is of fundamental importance. PMID:1093565
Electrical System Technology Working Group (WG) Report
NASA Technical Reports Server (NTRS)
Silverman, S.; Ford, F. E.
1984-01-01
The technology needs for space power systems (military, public, commercial) were assessed for the period 1995 to 2005 in the area of power management and distribution, components, circuits, subsystems, controls and autonomy, modeling and simulation. There was general agreement that the military requirements for pulse power would be the dominant factor in the growth of power systems. However, the growth of conventional power to the 100 to 250kw range would be in the public sector, with low Earth orbit needs being the driver toward large 100kw systems. An overall philosophy for large power system development is also described.
Langley aerospace test highlights, 1987
NASA Technical Reports Server (NTRS)
1988-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during the calender year 1987 in Langley test facilites are illustrated. Both the broad range of the research and technology activities at Langley and the contributions of this work toward maintaining the U.S. leadership in aeronautic and space research are illustrated.
Langley aeronautics and space test highlights, 1984
NASA Technical Reports Server (NTRS)
1984-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.
NASA Astrophysics Data System (ADS)
Soykal, Oney O.; Reinecke, Thomas L.
We develop coherent control via Stark effect over the optical transition energies of silicon monovacancy deep center in hexagonal silicon carbide. We show that this defect's unique asymmetry properties of its piezoelectric tensor and Kramer's degenerate high-spin ground/excited state configurations can be used to create new possibilities in quantum information technology ranging from photonic networks to quantum key distribution. We also give examples of its qubit implementations via precise electric field control. This work was supported in part by ONR and by the Office of Secretary of Defense, Quantum Science and Engineering Program.
Mann, Alfred E
2006-01-01
In this wide-ranging interview, Alfred Mann describes the activities of several medical technology enterprises with which he is engaged. Several of them are companies that he formed; one is a nonprofit foundation, the Alfred E. Mann Foundation for Biomedical Engineering, founded to establish research-oriented institutes on a dozen university campuses and support their work in developing marketable innovations. Mann discusses the need to consider the cost implications of technology, in the context of U.S. health system reform, and describes several important innovations that have emerged from his companies over the years.
NASA Technical Reports Server (NTRS)
1980-01-01
Ball Aerospace developed entirely new space lubrication technologies. A new family of dry lubricants emerged from Apollo, specifically designed for long life in space, together with processes for applying them to spacecraft components in microscopically thin coatings. Lubricants worked successfully on seven Orbiting Solar Observatory flights over the span of a decade and attracted attention to other contractors which became Ball customers. The company has developed several hundred variations of the original OSO technology generally designed to improve the quality and useful life of a wide range of products or improve efficiency of the industrial processes by which such products are manufactured.
Academic-industrial partnerships in drug discovery in the age of genomics.
Harris, Tim; Papadopoulos, Stelios; Goldstein, David B
2015-06-01
Many US FDA-approved drugs have been developed through productive interactions between the biotechnology industry and academia. Technological breakthroughs in genomics, in particular large-scale sequencing of human genomes, is creating new opportunities to understand the biology of disease and to identify high-value targets relevant to a broad range of disorders. However, the scale of the work required to appropriately analyze large genomic and clinical data sets is challenging industry to develop a broader view of what areas of work constitute precompetitive research. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lucas, J.
1979-01-01
Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver Technology is the goal of this project. The energy thus produced must be technically, as well as economically, competitive with other energy sources. This project is to support the industrial development of the required technology to achieve the above stated goal. Solar energy is concentrated by either a reflecting surface or a lense to a receiver where it is transferred to a working liquid or gas. Receiver temperatures are in the 1000 - 2000 F range. Conceptual design studies are expected to identify power conversion units with a viable place in the solar energy future. Rankine and Brayton cycle engines are under investigation. This report details the Jet Propulsion Laboratory's accomplishments with point-focusing technology in Fy 1978.
NASA Astrophysics Data System (ADS)
Venter, Petrus J.; Bogalecki, Alfons W.; du Plessis, Monuko; Goosen, Marius E.; Nell, Ilse J.; Rademeyer, P.
2011-03-01
Display technologies always seem to find a wide range of interesting applications. As devices develop towards miniaturization, niche applications for small displays may emerge. While OLEDs and LCDs dominate the market for small displays, they have some shortcomings as relatively expensive technologies. Although CMOS is certainly not the dominating semiconductor for photonics, its widespread use, favourable cost and robustness present an attractive potential if it could find application in the microdisplay environment. Advances in improving the quantum efficiency of avalanche electroluminescence and the favourable spectral characteristics of light generated through the said mechanism may afford CMOS the possibility to be used as a display technology. This work shows that it is possible to integrate a fully functional display in a completely standard CMOS technology mainly geared towards digital design while using light sources completely compatible with the process and without any post processing required.
NASA Astrophysics Data System (ADS)
Sokoloski, Martin M.
1988-09-01
The objective of the Communications Technology Program is to enable data transmission to and from low Earth orbit, geostationary orbit, and solar and deep space missions. This can be achieved by maintaining an effective, balances effort in basic, applied, and demonstration prototype communications technology through work in theory, experimentation, and components. The program consists of three major research and development discipline areas which are: microwave and millimeter wave tube components; solid state monolithic integrated circuit; and free space laser communications components and devices. The research ranges from basic research in surface physics (to study the mechanisms of surface degradation from under high temperature and voltage operating conditions which impacts cathode tube reliability and lifetime) to generic research on the dynamics of electron beams and circuits (for exploitation in various micro- and millimeter wave tube devices). Work is also performed on advanced III-V semiconductor materials and devices for use in monolithic integrated analog circuits (used in adaptive, programmable phased arrays for microwave antenna feeds and receivers) - on the use of electromagnetic theory in antennas and on technology necessary for eventual employment of lasers for free space communications for future low earth, geostationary, and deep space missions requiring high data rates with corresponding directivity and reliability.
Aerospace Sensor Systems: From Sensor Development To Vehicle Application
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2008-01-01
This paper presents an overview of years of sensor system development and application for aerospace systems. The emphasis of this work is on developing advanced capabilities for measurement and control of aeropropulsion and crew vehicle systems as well as monitoring the safety of those systems. Specific areas of work include chemical species sensors, thin film thermocouples and strain gages, heat flux gages, fuel gages, SiC based electronic devices and sensors, space qualified electronics, and MicroElectroMechanical Systems (MEMS) as well as integrated and multifunctional sensor systems. Each sensor type has its own technical challenges related to integration and reliability in a given application. The general approach has been to develop base sensor technology using microfabrication techniques, integrate sensors with "smart" hardware and software, and demonstrate those systems in a range of aerospace applications. Descriptions of the sensor elements, their integration into sensors systems, and examples of sensor system applications will be discussed. Finally, suggestions related to the future of sensor technology will be given. It is concluded that smart micro/nano sensor technology can revolutionize aerospace applications, but significant challenges exist in maturing the technology and demonstrating its value in real-life applications.
NASA Technical Reports Server (NTRS)
Sokoloski, Martin M.
1988-01-01
The objective of the Communications Technology Program is to enable data transmission to and from low Earth orbit, geostationary orbit, and solar and deep space missions. This can be achieved by maintaining an effective, balances effort in basic, applied, and demonstration prototype communications technology through work in theory, experimentation, and components. The program consists of three major research and development discipline areas which are: microwave and millimeter wave tube components; solid state monolithic integrated circuit; and free space laser communications components and devices. The research ranges from basic research in surface physics (to study the mechanisms of surface degradation from under high temperature and voltage operating conditions which impacts cathode tube reliability and lifetime) to generic research on the dynamics of electron beams and circuits (for exploitation in various micro- and millimeter wave tube devices). Work is also performed on advanced III-V semiconductor materials and devices for use in monolithic integrated analog circuits (used in adaptive, programmable phased arrays for microwave antenna feeds and receivers) - on the use of electromagnetic theory in antennas and on technology necessary for eventual employment of lasers for free space communications for future low earth, geostationary, and deep space missions requiring high data rates with corresponding directivity and reliability.
Brahnam, Sheryl; Brooks, Anthony L
2014-01-01
Using game technologies and digital media for improving physical and mental health and for the therapeutic benefit and well-being of a wide range of people is an area of study that is rapidly expanding. Much research in this emerging field is centered at the intersection of serious games, alternative realities, and play therapy. In this paper the authors describe their transdisciplinary work at this intersection: i) an integrative system of psychotherapy technologies called MyPsySpace currently being prototyped in Second Life with the aim of offering new and virtual translations of traditional expressive therapies (virtual sandplay, virtual drama therapy, digital expressive therapy, and virtual safe spaces) and ii) a mature body of research entitled SoundScapes that is exploring the use of interactive video games and abstract creative expression (making music, digital painting, and robotic device control) as a supplement to traditional physical rehabilitation intervention. Aside from introducing our work to a broader audience, our goal is to encourage peers to investigate ideas that reach across disciplines-to both risk and reap the benefits of combining technologies, theories, and methods stemming from multiple disciplines.
Improved Range Estimation Model for Three-Dimensional (3D) Range Gated Reconstruction
Chua, Sing Yee; Guo, Ningqun; Tan, Ching Seong; Wang, Xin
2017-01-01
Accuracy is an important measure of system performance and remains a challenge in 3D range gated reconstruction despite the advancement in laser and sensor technology. The weighted average model that is commonly used for range estimation is heavily influenced by the intensity variation due to various factors. Accuracy improvement in term of range estimation is therefore important to fully optimise the system performance. In this paper, a 3D range gated reconstruction model is derived based on the operating principles of range gated imaging and time slicing reconstruction, fundamental of radiant energy, Laser Detection And Ranging (LADAR), and Bidirectional Reflection Distribution Function (BRDF). Accordingly, a new range estimation model is proposed to alleviate the effects induced by distance, target reflection, and range distortion. From the experimental results, the proposed model outperforms the conventional weighted average model to improve the range estimation for better 3D reconstruction. The outcome demonstrated is of interest to various laser ranging applications and can be a reference for future works. PMID:28872589
Prospects for applications of electron beams in processing of gas and oil hydrocarbons
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.; Pershukov, V. A.; Smirnov, V. P.
2015-12-01
Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.
A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology.
Ferri, Josue; Lidón-Roger, Jose Vicente; Moreno, Jorge; Martinez, Gabriel; Garcia-Breijo, Eduardo
2017-12-20
Among many of the designs used in the detection of 2D gestures for portable technology, the touchpad is one of the most complex and with more functions to implement. Its development has undergone a great push due to its use in displays, but it is not widely used with other technologies. Its application on textiles could allow a wide range of applications in the field of medicine, sports, etc. Obtaining a flexible, robust touchpad with good response and low cost is one of the objectives of this work. A textile touchpad based on a diamond pattern design using screen printing technology has been developed. This technology is widely used in the textile industry and therefore does not require heavy investments. The developed prototypes were analyzed using a particular controller for projected capacitive technologies (pro-cap), which is the most used in gesture detection. Two different designs were used to obtain the best configuration, obtaining a good result in both cases.
A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology
Ferri, Josue; Moreno, Jorge; Martinez, Gabriel
2017-01-01
Among many of the designs used in the detection of 2D gestures for portable technology, the touchpad is one of the most complex and with more functions to implement. Its development has undergone a great push due to its use in displays, but it is not widely used with other technologies. Its application on textiles could allow a wide range of applications in the field of medicine, sports, etc. Obtaining a flexible, robust touchpad with good response and low cost is one of the objectives of this work. A textile touchpad based on a diamond pattern design using screen printing technology has been developed. This technology is widely used in the textile industry and therefore does not require heavy investments. The developed prototypes were analyzed using a particular controller for projected capacitive technologies (pro-cap), which is the most used in gesture detection. Two different designs were used to obtain the best configuration, obtaining a good result in both cases. PMID:29261167
ERIC Educational Resources Information Center
Cooper, Rory A.; Ding, Dan; Simpson, Richard; Fitzgerald, Shirley G.; Spaeth, Donald M.; Guo, Songfeng; Koontz, Alicia M.; Cooper, Rosemarie; Kim, Jongbae; Boninger, Michael L.
2005-01-01
Some aspects of assistive technology can be enhanced by the application of virtual reality. Although virtual simulation offers a range of new possibilities, learning to navigate in a virtual environment is not equivalent to learning to navigate in the real world. Therefore, virtual reality simulation is advocated as a useful preparation for…
Australian Defence Risk Management Framework: A Comparative Study
2005-02-01
disadvantage or gain. There may be a range of possible outcomes associated with an event. Definition 1.3.3 Event An incident or situation, which occurs in a...prohibitive insurance costs. Sometimes, advantages may far outweigh disadvantages making risk more justifiable. The unacceptable risks are...objectives, work culture and risk management approaches. Globalisation and introduction of new technologies have significantly complicated the situation
2003-08-18
KENNEDY SPACE CENTER, FLA. - Researchers conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Modeling job sites in real time to improve safety during equipment operation
NASA Astrophysics Data System (ADS)
Caldas, Carlos H.; Haas, Carl T.; Liapi, Katherine A.; Teizer, Jochen
2006-03-01
Real-time three-dimensional (3D) modeling of work zones has received an increasing interest to perform equipment operation faster, safer and more precisely. In addition, hazardous job site environment like they exist on construction sites ask for new devices which can rapidly and actively model static and dynamic objects. Flash LADAR (Laser Detection and Ranging) cameras are one of the recent technology developments which allow rapid spatial data acquisition of scenes. Algorithms that can process and interpret the output of such enabling technologies into threedimensional models have the potential to significantly improve work processes. One particular important application is modeling the location and path of objects in the trajectory of heavy construction equipment navigation. Detecting and mapping people, materials and equipment into a three-dimensional computer model allows analyzing the location, path, and can limit or restrict access to hazardous areas. This paper presents experiments and results of a real-time three-dimensional modeling technique to detect static and moving objects within the field of view of a high-frame update rate laser range scanning device. Applications related to heavy equipment operations on transportation and construction job sites are specified.
A general framework for characterizing studies of brain interface technology.
Mason, S G; Jackson, M M Moore; Birch, G E
2005-11-01
The development of brain interface (BI) technology continues to attract researchers with a wide range of backgrounds and expertise. Though the BI community is committed to accurate and objective evaluation of methods, systems, and technology, the very diversity of the methods and terminology used in the field hinders understanding and impairs technology cross-fertilization and cross-group validation of findings. Underlying this dilemma is a lack of common perspective and language. As seen in our previous works in this area, our approach to remedy this problem is to propose language in the form of taxonomy and functional models. Our intent is to document and validate our best thinking in this area and publish a perspective that will stimulate discussion. We encourage others to do the same with the belief that focused discussion on language issues will accelerate the inherently slow natural evolution of language selection and thus alleviate related problems. In this work, we propose a theoretical framework for describing BI-technology-related studies. The proposed framework is based on the theoretical concepts and terminology from classical science, assistive technology development, human-computer interaction, and previous BI-related works. Using a representative set of studies from the literature, the proposed BI study framework was shown to be complete and appropriate perspective for thoroughly characterizing a BI study. We have also demonstrated that this BI study framework is useful for (1) objectively reviewing existing BI study designs and results, (2) comparing designs and results of multiple BI studies, (3) designing new studies or objectively reporting BI study results, and (4) facilitating intra- and inter-group communication and the education of new researchers. As such, it forms a sound and appropriate basis for community discussion.
Compressed-air work is entering the field of high pressures.
Le Péchon, J Cl; Gourdon, G
2010-01-01
Since 1850, compressed-air work has been used to prevent shafts or tunnels under construction from flooding. Until the 1980s, workers were digging in compressed-air environments. Since the introduction of tunnel boring machines (TBMs), very little digging under pressure is needed. However, the wearing out of cutter-head tools requires inspection and repair. Compressed-air workers enter the pressurized working chamber only occasionally to perform such repairs. Pressures between 3.5 and 4.5 bar, that stand outside a reasonable range for air breathing, were reached by 2002. Offshore deep diving technology had to be adapted to TBM work. Several sites have used mixed gases: in Japan for deep shaft sinking (4.8 bar), in The Netherlands at Western Scheldt Tunnels (6.9 bar), in Russia for St. Petersburg Metro (5.8 bar) and in the United States at Seattle (5.8 bar). Several tunnel projects are in progress that may involve higher pressures: Hallandsås (Sweden) interventions in heliox saturation up to 13 bar, and Lake Mead (U.S.) interventions to about 12 bar (2010). Research on TBMs and grouting technologies tries to reduce the requirements for hyperbaric works. Adapted international rules, expertise and services for saturation work, shuttles and trained personnel matching industrial requirements are the challenges.
Research and Technology Highlights 1995
NASA Technical Reports Server (NTRS)
1996-01-01
The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate both the broad range of research and technology (R&T) activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research. An electronic version of the report is available at URL http://techreports.larc.nasa.gov/RandT95. This color version allows viewing, retrieving, and printing of the highlights, searching and browsing through the sections, and access to an on-line directory of Langley researchers.
An Overview of the Antenna Measurement Facilities at the NASA Glenn Research Center
NASA Astrophysics Data System (ADS)
Lambert, Kevin M.; Anzic, Godfrey; Zakrajsek, Robert J.; Zaman, Afroz J.
2002-10-01
For the past twenty years, the NASA Glenn Research Center (formerly Lewis Research Center) in Cleveland, Ohio, has developed and maintained facilities for the evaluation of antennas. This effort has been in support of the work being done at the center in the research and development of space communication systems. The wide variety of antennas that have been considered for these systems resulted in a need for several types of antenna ranges at the Glenn Research Center. Four ranges, which are part of the Microwave Systems Laboratory, are the responsibility of the staff of the Applied RF Technology Branch. A general description of these ranges is provided in this paper.
An Overview of the Antenna Measurement Facilities at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Anzic, Godfrey; Zakrajsek, Robert J.; Zaman, Afroz J.
2002-01-01
For the past twenty years, the NASA Glenn Research Center (formerly Lewis Research Center) in Cleveland, Ohio, has developed and maintained facilities for the evaluation of antennas. This effort has been in support of the work being done at the center in the research and development of space communication systems. The wide variety of antennas that have been considered for these systems resulted in a need for several types of antenna ranges at the Glenn Research Center. Four ranges, which are part of the Microwave Systems Laboratory, are the responsibility of the staff of the Applied RF Technology Branch. A general description of these ranges is provided in this paper.
Face recognition based on matching of local features on 3D dynamic range sequences
NASA Astrophysics Data System (ADS)
Echeagaray-Patrón, B. A.; Kober, Vitaly
2016-09-01
3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.
Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design
NASA Technical Reports Server (NTRS)
Alvarez, Erika; Forbes, John C.; Thornton, Randall J.
2010-01-01
The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform multiple burns including the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine technology testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.
Study on super-resolution three-dimensional range-gated imaging technology
NASA Astrophysics Data System (ADS)
Guo, Huichao; Sun, Huayan; Wang, Shuai; Fan, Youchen; Li, Yuanmiao
2018-04-01
Range-gated three dimensional imaging technology is a hotspot in recent years, because of the advantages of high spatial resolution, high range accuracy, long range, and simultaneous reflection of target reflectivity information. Based on the study of the principle of intensity-related method, this paper has carried out theoretical analysis and experimental research. The experimental system adopts the high power pulsed semiconductor laser as light source, gated ICCD as the imaging device, can realize the imaging depth and distance flexible adjustment to achieve different work mode. The imaging experiment of small imaging depth is carried out aiming at building 500m away, and 26 group images were obtained with distance step 1.5m. In this paper, the calculation method of 3D point cloud based on triangle method is analyzed, and 15m depth slice of the target 3D point cloud are obtained by using two frame images, the distance precision is better than 0.5m. The influence of signal to noise ratio, illumination uniformity and image brightness on distance accuracy are analyzed. Based on the comparison with the time-slicing method, a method for improving the linearity of point cloud is proposed.
NASA Astrophysics Data System (ADS)
McCarthy, Ann
2006-01-01
The ICC Workflow WG serves as the bridge between ICC color management technologies and use of those technologies in real world color production applications. ICC color management is applicable to and is used in a wide range of color systems, from highly specialized digital cinema color special effects to high volume publications printing to home photography. The ICC Workflow WG works to align ICC technologies so that the color management needs of these diverse use case systems are addressed in an open, platform independent manner. This report provides a high level summary of the ICC Workflow WG objectives and work to date, focusing on the ways in which workflow can impact image quality and color systems performance. The 'ICC Workflow Primitives' and 'ICC Workflow Patterns and Dimensions' workflow models are covered in some detail. Consider the questions, "How much of dissatisfaction with color management today is the result of 'the wrong color transformation at the wrong time' and 'I can't get to the right conversion at the right point in my work process'?" Put another way, consider how image quality through a workflow can be negatively affected when the coordination and control level of the color management system is not sufficient.
Kim, Sunwook; Nussbaum, Maury A; Mokhlespour Esfahani, Mohammad Iman; Alemi, Mohammad Mehdi; Jia, Bochen; Rashedi, Ehsan
2018-03-07
Adopting a new technology (exoskeletal vest designed to support overhead work) in the workplace can be challenging since the technology may pose unexpected safety and health consequences. A prototype exoskeletal vest was evaluated for potential unexpected consequences with a set of evaluation tests for: usability (especially, donning & doffing), shoulder range of motion (ROM), postural control, slip & trip risks, and spine loading during overhead work simulations. Donning/doffing the vest was easily done by a wearer alone. The vest reduced the max. shoulder abduction ROM by ∼10%, and increased the mean center of pressure velocity in the anteroposterior direction by ∼12%. However, vest use had minimal influences on trip-/slip-related fall risks during level walking, and significantly reduced spine loadings (up to ∼30%) especially during the drilling task. Use of an exoskeletal vest can be beneficial, yet the current evaluation tests should be expanded for more comprehensiveness, to enable the safe adoption of the technology. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, Theodore E.
2013-05-06
The technical paper summarizes the project work conducted in the development of Kerf-Free silicon wafering equipment for silicon solar wafering. This new PolyMax technology uses a two step process of implantation and cleaving to exfoliate 50um to 120um wafers with thicknesses ranging from 50um to 120um from a 125mm or 156mm pseudo-squared silicon ingot. No kerf is generated using this method of wafering. This method of wafering contrasts with the current method of making silicon solar wafers using the industry standard wire saw equipment. The report summarizes the activity conducted by Silicon Genesis Corporation in working to develop this technologymore » further and to define the roadmap specifications for the first commercial proto-type equipment for high volume solar wafer manufacturing using the PolyMax technology.« less
Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.
Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan
2012-01-01
Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.
Here the catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions.
Finding the Effective Mass and Spring Constant of a Force Probe from Simple Harmonic Motion
ERIC Educational Resources Information Center
Greene, Nathaniel R.; Gill, Tom; Eyerly, Stephen
2016-01-01
Force probes are versatile tools in the physics lab, but their internal workings can introduce artifacts when measuring rapidly changing forces. The Dual-Range Force Sensor by Vernier uses strain gage technology to measure force, based on the bending of a beam. Strain gages along the length of the beam change resistance as the beam bends. The…
MIT Lincoln Laboratory Annual Report 2012
2012-01-01
5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...ES) Massachusetts Institute of Technology,Lincoln Laboratory,244 Wood Street,Lexington,MA,02420-9108 8. PERFORMING ORGANIZATION REPORT NUMBER 9...spans a wide range of research areas, including high- performance detectors and focal planes, 3D integrated circuits, microelectromechanical devices
ERIC Educational Resources Information Center
St. John, Kelvin Wesley
2013-01-01
Today's Millennials, the first generation to reach their majority in this millennium, often compartmentalize their faith lives from their social and work lives. MidAmerica Nazarene University (MNU) offers a course in Spiritual Formation once each spring. The enrollment for this elective course ranges from twelve to eighteen students per class.…
Evaluating Opportunities to Improve Material and Energy Impacts in Commodity Supply Chains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanes, Rebecca J.; Carpenter, Alberta
When evaluated at the process level, next-generation technologies may be more energy and emissions intensive than current technology. However, many advanced technologies have the potential to reduce material and energy consumption in upstream or downstream processing stages. In order to fully understand the benefits and consequences of technology deployment, next-generation technologies should be evaluated in context, as part of a supply chain. This work presents the Material Flows through Industry (MFI) scenario modeling tool. The MFI tool is a cradle-to-gate linear network model of the U.S. industrial sector that can model a wide range of manufacturing scenarios, including changes inmore » production technology, increases in industrial energy efficiency, and substitution between functionally equivalent materials. The MFI tool was developed to perform supply chain scale analyses in order to quantify the impacts and benefits of next-generation technologies and materials at that scale. For the analysis presented in this paper, the MFI tool is utilized to explore a case study comparing a steel supply chain to the supply chains of several functionally equivalent materials. Several of the alternatives to the baseline steel supply chain include next-generation production technologies and materials. Results of the case study show that aluminum production scenarios can out-perform the steel supply chain by using either an advanced smelting technology or an increased aluminum recycling rate. The next-generation material supply chains do not perform as well as either aluminum or steel, but may offer additional use phase reductions in energy and emissions that are outside the scope of the MFI tool. Future work will combine results from the MFI tool with a use phase analysis.« less
A variable-collimation display system
NASA Astrophysics Data System (ADS)
Batchko, Robert; Robinson, Sam; Schmidt, Jack; Graniela, Benito
2014-03-01
Two important human depth cues are accommodation and vergence. Normally, the eyes accommodate and converge or diverge in tandem; changes in viewing distance cause the eyes to simultaneously adjust both focus and orientation. However, ambiguity between accommodation and vergence cues is a well-known limitation in many stereoscopic display technologies. This limitation also arises in state-of-the-art full-flight simulator displays. In current full-flight simulators, the out-the-window (OTW) display (i.e., the front cockpit window display) employs a fixed collimated display technology which allows the pilot and copilot to perceive the OTW training scene without angular errors or distortions; however, accommodation and vergence cues are limited to fixed ranges (e.g., ~ 20 m). While this approach works well for long-range, the ambiguity of depth cues at shorter range hinders the pilot's ability to gauge distances in critical maneuvers such as vertical take-off and landing (VTOL). This is the first in a series of papers on a novel, variable-collimation display (VCD) technology that is being developed under NAVY SBIR Topic N121-041 funding. The proposed VCD will integrate with rotary-wing and vertical take-off and landing simulators and provide accurate accommodation and vergence cues for distances ranging from approximately 3 m outside the chin window to ~ 20 m. A display that offers dynamic accommodation and vergence could improve pilot safety and training, and impact other applications presently limited by lack of these depth cues.
Microminiature thermionic converters
King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.
2001-09-25
Microminiature thermionic converts (MTCs) having high energy-conversion efficiencies and variable operating temperatures. Methods of manufacturing those converters using semiconductor integrated circuit fabrication and micromachine manufacturing techniques are also disclosed. The MTCs of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. Existing prior art thermionic converter technology has energy conversion efficiencies ranging from 5-15%. The MTCs of the present invention have maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.
Remote sensing in agriculture. [using Earth Resources Technology Satellite photography
NASA Technical Reports Server (NTRS)
Downs, S. W., Jr.
1974-01-01
Some examples are presented of the use of remote sensing in cultivated crops, forestry, and range management. Areas of concern include: the determination of crop areas and types, prediction of yield, and detection of disease; the determination of forest areas and types, timber volume estimation, detection of insect and disease attack, and forest fires; and the determination of range conditions and inventory, and livestock inventory. Articles in the literature are summarized and specific examples of work being performed at the Marshall Space Flight Center are given. Primarily, aerial photographs and photo-like ERTS images are considered.
Thermal and dynamic range characterization of a photonics-based RF amplifier
NASA Astrophysics Data System (ADS)
Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.
2018-05-01
This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.
Small Spacecraft for Planetary Science
NASA Astrophysics Data System (ADS)
Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew
2016-07-01
As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (< 100 kg) can be used in a variety of architectures consisting of orbiters, landers, rovers, atmospheric probes, and penetrators. A few such vehicles have been flown in the past as technology demonstrations. However, technologies such as new miniaturized science-grade sensors and electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.
NASA Astrophysics Data System (ADS)
1990-01-01
The Rayovac TANDEM is an advanced technology combination work light and general purpose flashlight that incorporates several NASA technologies. The TANDEM functions as two lights in one. It features a long range spotlight and wide angle floodlight; simple one-hand electrical switching changes the beam from spot to flood. TANDEM developers made particular use of NASA's extensive research in ergonomics in the TANDEM's angled handle, convenient shape and different orientations. The shatterproof, water resistant plastic casing also draws on NASA technology, as does the shape and beam distance of the square diffused flood. TANDEM's heavy duty magnet that permits the light to be affixed to any metal object borrows from NASA research on rare earth magnets that combine strong magnetic capability with low cost. Developers used a NASA-developed ultrasonic welding technique in the light's interior.
Advanced ground station architecture
NASA Technical Reports Server (NTRS)
Zillig, David; Benjamin, Ted
1994-01-01
This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.
On Location Estimation Technique Based of the Time of Flight in Low-power Wireless Systems
NASA Astrophysics Data System (ADS)
Botta, Miroslav; Simek, Milan; Krajsa, Ondrej; Cervenka, Vladimir; Pal, Tamas
2015-04-01
This study deals with the distance estimation issue in low-power wireless systems being usually used for sensor networking and interconnecting the Internet of Things. There is an effort to locate or track these sensor entities for different needs the radio signal time of flight principle from the theoretical and practical side of application research is evaluated. Since these sensor devices are mainly targeted for low power consumption appliances, there is always need for optimization of any aspects needed for regular sensor operation. For the distance estimation we benefit from IEEE 802.15.4a technology, which offers the precise ranging capabilities. There is no need for additional hardware to be used for the ranging task and all fundamental measurements are acquired within the 15.4a standard compliant hardware in the real environment. The proposed work examines the problems and the solutions for implementation of distance estimation algorithms for WSN devices. The main contribution of the article is seen in this real testbed evaluation of the ranging technology.
Slush Hydrogen (SLH2) technology development for application to the National Aerospace Plane (NASP)
NASA Technical Reports Server (NTRS)
Dewitt, Richard L.; Hardy, Terry L.; Whalen, Margaret V.; Richter, G. Paul
1989-01-01
The National Aerospace Plane (NASP) program is giving us the opportunity to reach new unique answers in a number of engineering categories. The answers are considered enhancing technology or enabling technology. Airframe materials and densified propellants are examples of enabling technology. The National Aeronautics and Space Administration's Lewis Research Center has the task of providing the technology data which will be used as the basis to decide if slush hydrogen (SLH2) will be the fuel of choice for the NASP. The objectives of this NASA Lewis program are: (1) to provide, where possible, verified numerical models of fluid production, storage, transfer, and feed systems, and (2) to provide verified design criteria for other engineered aspects of SLH2 systems germane to a NASP. This program is a multiyear multimillion dollar effort. The present pursuit of the above listed objectives is multidimensional, covers a range of problem areas, works these to different levels of depth, and takes advantage of the resources available in private industry, academia, and the U.S. Government. The NASA Lewis overall program plan is summarized. The initial implementation of the plan will be unfolded and the present level of efforts in each of the resource areas will be discussed. Results already in hand will be pointed out. A description of additionally planned near-term experimental and analytical work is described.
NASA Technical Reports Server (NTRS)
1998-01-01
Langley's mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government Agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of some of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States' leadership in aeronautics and space research.
Review of sonic fatigue technology
NASA Technical Reports Server (NTRS)
Clarkson, B. L.
1994-01-01
From the early-1960s until the mid-1980s, there was very little theoretical development for sonic fatigue prediction. Design nomographs based on simple theoretical models and results of specially designed tests were developed for most common aircraft structures. The use of advanced composites in the 1980s, however, generated an increased interest in development of more sophisticated theoretical models because of the possibilities for a much wider range of structural designs. The purpose of this report is to review sonic fatigue technology and, in particular, to assess recent developments. It also suggests a plan for a coordinated program of theoretical and experimental work to meet the anticipated needs of future aerospace vehicles.
Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems
NASA Technical Reports Server (NTRS)
Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey
2015-01-01
Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Langley aerospace test highlights, 1988
NASA Technical Reports Server (NTRS)
1989-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1988 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.
NASA Technical Reports Server (NTRS)
1997-01-01
This report highlights the challenging work accomplished during fiscal year 1996 by Ames research scientists, engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments span the range of goals of NASA's four Strategic Enterprises: (1) Aeronautics and Space Transportation Technology, (2) Space Science, (3) Human Exploration and Development of Space, and (4) Mission to Planet Earth. The primary purpose of this report is to communicate knowledge--to inform our stakeholders, customers, and partners, and the people of the United States about the scope and diversity of Ames' mission, the nature of Ames' research and technology activities, and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is making to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.
Monitoring leaf water content with THz and sub-THz waves.
Gente, Ralf; Koch, Martin
2015-01-01
Terahertz technology is still an evolving research field that attracts scientists with very different backgrounds working on a wide range of subjects. In the past two decades, it has been demonstrated that terahertz technology can provide a non-invasive tool for measuring and monitoring the water content of leaves and plants. In this paper we intend to review the different possibilities to perform in-vivo water status measurements on plants with the help of THz and sub-THz waves. The common basis of the different methods is the strong absorption of THz and sub-THz waves by liquid water. In contrast to simpler, yet destructive, methods THz and sub-THz waves allow for the continuous monitoring of plant water status over several days on the same sample. The technologies, which we take into focus, are THz time domain spectroscopy, THz continuous wave setups, THz quasi time domain spectroscopy and sub-THz continuous wave setups. These methods differ with respect to the generation and detection schemes, the covered frequency range, the processing and evaluation of the experimental data, and the mechanical handling of the measurements. Consequently, we explain which method fits best in which situation. Finally, we discuss recent and future technological developments towards more compact and budget-priced measurement systems for use in the field.
NASA Technical Reports Server (NTRS)
Wilkinson, John; Johnson, Earl
1991-01-01
The work flow assistant (WFA) is an advanced technology project under the shuttle processing data management system (SPDMS) at Kennedy Space Center (KSC). It will be utilized for short range scheduling, controlling work flow on the floor, and providing near real-time status for all major space transportation systems (STS) work centers at KSC. It will increase personnel and STS safety and improve productivity through deeper active scheduling that includes tracking and correlation of STS and ground support equipment (GSE) configuration and work. It will also provide greater accessibility to this data. WFA defines a standards concept for scheduling data which permits both commercial off-the-shelf (COTS) scheduling tools and WFA developed applications to be reused. WFA will utilize industry standard languages and workstations to achieve a scalable, adaptable, and portable architecture which may be used at other sites.
NASA Astrophysics Data System (ADS)
Tarrago, Mariona; Gimeno, Domingo; Bazzocchi, Flavia; Garcia-Valles, Maite; Martinez, Salvador
2015-04-01
One of the major and less explored issues in the characterization of historical glasses is the determination of their viscosity as a function of temperature in order to constrain technological aspects of glass production. Until now, assumptions on temperatures have been based on mathematical models based on chemical compositions. Hence, the topic of this work is to explore the technology of stained glass production related to the workability and melting process of the glass by experimental laboratory measurements. This work presents the analysis of viscosity of glasses from different historical sites and chemical compositions: four from Santes Creus (Tarragona, XIII century), two of classical medieval stained glass window from Santa Maria de Pedralbes (Barcelona, mid XIV century), and three of evolved late-medieval type from Santa Maria del Mar (Barcelona first half of XV century), and one sample of soda-lime industrial glass by means of Hot-Stage Microscopy and glass transformation temperature Tg by dilatometry. These data are then compared to the predictions on theoretical viscosity obtained from mathematical models based on chemical composition. These samples are classified according to their major modifier in: Na-rich (12-17% of Na2O, between 65-77% of SiO2 and less than 3 % of K2O); Ca-rich (29% of CaO, 54% of SiO2, 4% of K2O, and 4% of Na2O); K-Ca-rich (17 to 21% of K2O, more than 14% of CaO, 49-55% of SiO2and less than 2% of Na2O); Na-Ca-rich (12-14% of Na2O, 9-15% of CaO, 57-71% of SiO2 and < 6% of K2O). Glass transition temperature (Tg) is correlated to chemical composition: 464-492 °C for Na-rich, 645 °C for Ca-rich, 582-586 °C for K-Ca-rich and 497-542 °C for Na-Ca-rich glasses. Experimental viscosity-temperature curves are traced using Tg and fixed viscosity points measured by Hot-Stage microscopy (according to German standard 51730) in order to provide more accurate insight into the phases of glass production process (melting, working, conditioning and annealing ranges). These results are also compared to mathematical models of glass viscosity based on chemical composition. The annealing range (viscosity between 1013.5 and 1012 Pa-s) is reached at temperatures between 484-633°C (strain point) and 509-664°C (upper limit). The working point (viscosity of 103 Pa-s) has temperature values in the range between 958 and 1097°C.
NASA Technical Reports Server (NTRS)
Howell, Joe; Sanders, Clark W.
2000-01-01
The University of Alabama in Huntsville's (UAH) Propulsion Research Center hosted the Space Solar Power Exploratory Research & Technology (SERT) Technical Interchange Meeting TIM) 2 in Huntsville, Alabama December 7-10. 1999 with 126 people in attendance. The SERT program includes both competitively procured activities. which are being implemented through a portfolio of focused R&D investments--with the maximum leveraging of existing resources inside and outside NASA. and guided by these system studies. Axel Roth. Director of the Flight Projects Directorate NASA MSFC, welcomed the SERT TIM 2 participants and challenged them to develop the necessary technologies and demonstrations that will lead to Space Solar Power (SSP) International implementation. Joe Howell, NASA MSFC, reiterated the SERT TIM 2 objectives: 1) Refining and modeling systems approaches for the utilization of SSP concepts and technologies, ranging, from the near-term e.g. for space science, exploration and commercial space applications to the far-term (e. g. SSP for terrestrial markets), including systems concepts, technology, infrastructure (i.g., transportation), and economics. 2) Conducting technology research, development and demonstration activities to produce "proof- of-concept" validation of critical SSP elements for both the nearer and farther-term applications. 3) Initiating partnerships Nationality and Internationally that could be expanded, as appropriate, to pursue later SSP technology and applications (e.g., space science. colonization, etc.). Day one began with the NASA Centers presenting their SERT activities summary since SERT TIM 1 and wound up with a presentation by Masahiro Mori, NASDA titled "NASDA In-house Study for SSP". Demonstration for the Near-Term. Day two began with the SERT Systems Studies and Analysis reports resulting from NRA 8-23 followed by presentations of SERT Technology Demonstrations reports resulting from NRA 8-23. Day two closed with John Mankins presentation on "Technology Roadmapping" and the delivery of the charge to the Work Breakout Sessions. Day three began with the eleven Work Breakout Session which was the major function of this TIM 2 and day three ended with reports by the Chairs of the eleven Work Breakdown Sessions. Day four began with the six Integrated Product Team OPT) meetings and ended with closing plenary panel sessions.
Ohio Advanced Energy Manufacturing Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimberly Gibson; Mark Norfolk
2012-07-30
The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing andmore » implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI has recently commercialized.« less
Networking Omic Data to Envisage Systems Biological Regulation.
Kalapanulak, Saowalak; Saithong, Treenut; Thammarongtham, Chinae
To understand how biological processes work, it is necessary to explore the systematic regulation governing the behaviour of the processes. Not only driving the normal behavior of organisms, the systematic regulation evidently underlies the temporal responses to surrounding environments (dynamics) and long-term phenotypic adaptation (evolution). The systematic regulation is, in effect, formulated from the regulatory components which collaboratively work together as a network. In the drive to decipher such a code of lives, a spectrum of technologies has continuously been developed in the post-genomic era. With current advances, high-throughput sequencing technologies are tremendously powerful for facilitating genomics and systems biology studies in the attempt to understand system regulation inside the cells. The ability to explore relevant regulatory components which infer transcriptional and signaling regulation, driving core cellular processes, is thus enhanced. This chapter reviews high-throughput sequencing technologies, including second and third generation sequencing technologies, which support the investigation of genomics and transcriptomics data. Utilization of this high-throughput data to form the virtual network of systems regulation is explained, particularly transcriptional regulatory networks. Analysis of the resulting regulatory networks could lead to an understanding of cellular systems regulation at the mechanistic and dynamics levels. The great contribution of the biological networking approach to envisage systems regulation is finally demonstrated by a broad range of examples.
Bryan, Stirling; Williams, Iestyn; McIver, Shirley
2007-02-01
Resource scarcity is the raison d'être for the discipline of economics. Thus, the primary purpose of economic analysis is to help decision-makers when addressing problems arising due to the scarcity problem. The research reported here was concerned with how cost-effectiveness information is used by the National Institute for Health & Clinical Excellence (NICE) in national technology coverage decisions in the UK, and how its impact might be increased. The research followed a qualitative case study methodology with semi-structured interviews, supported by observation and analysis of secondary sources. Our research highlights that the technology appraisal function of NICE represents an important progression for the UK health economics community: new cost-effectiveness work is commissioned for each technology and that work directly informs national health policy. However, accountability in policy decisions necessitates that the information upon which decisions are based (including cost-effectiveness analysis, CEA) is accessible. This was found to be a serious problem and represents one of the main ongoing challenges. Other issues highlighted include perceived weaknesses in analysis methods and the poor alignment between the health maximisation objectives assumed in economic analyses and the range of other objectives facing decision-makers in reality. Copyright (c) 2006 John Wiley & Sons, Ltd.
Hunter, Gary W; Dweik, Raed A
2010-01-01
The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A family of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption, and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity. However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This paper gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology. Clinical applications and the potential impact to the biomedical field of miniaturized smart gas sensor technology are discussed. PMID:20622933
Properties of Gas Mixtures and Their Use in Mixed-Refrigerant Joule-Thomson Refrigerators
NASA Astrophysics Data System (ADS)
Luo, E.; Gong, M.; Wu, J.; Zhou, Y.
2004-06-01
The Joule-Thomson (J-T) effect has been widely used for achieving low temperatures. In the past few years, much progress has been made in better understanding the working mechanism of the refrigeration method and in developing prototypes for different applications. In this talk, there are three aspects of our research work to be discussed. First, some special thermal properties of the mixtures for achieving liquid nitrogen temperature range will be presented. Secondly, some important conclusions from the optimization of various mixed-refrigerant J-T cycles such as a simple J-T cycle and an auto-cascade mixed-refrigerant J-T cycle will be presented. Moreover, an auto-cascade, mixed-refrigerant J-T refrigerator with a special mixture capable of achieving about 50K will be mentioned. Finally, various prototypes based on the mixed-refrigerant refrigeration technology will be described. These applications include miniature J-T cryocoolers for cooling infrared detectors and high-temperature superconducting devices, cryosurgical knife for medical treatment, low-temperature refrigerators for biological storage and so forth. The on-going research work and unanswered questions for this technology will be also discussed.
Biased Target Ion Beam Deposition and Nanoskiving for Fabricating NiTi Alloy Nanowires
NASA Astrophysics Data System (ADS)
Hou, Huilong; Horn, Mark W.; Hamilton, Reginald F.
2016-12-01
Nanoskiving is a novel nanofabrication technique to produce shape memory alloy nanowires. Our previous work was the first to successfully fabricate NiTi alloy nanowires using the top-down approach, which leverages thin film technology and ultramicrotomy for ultra-thin sectioning. For this work, we utilized biased target ion beam deposition technology to fabricate nanoscale (i.e., sub-micrometer) NiTi alloy thin films. In contrast to our previous work, rapid thermal annealing was employed for heat treatment, and the B2 austenite to R-phase martensitic transformation was confirmed using stress-temperature and diffraction measurements. The ultramicrotome was programmable and facilitated sectioning the films to produce nanowires with thickness-to-width ratios ranging from 4:1 to 16:1. Energy dispersive X-ray spectroscopy analysis confirmed the elemental Ni and Ti make-up of the wires. The findings exposed the nanowires exhibited a natural ribbon-like curvature, which depended on the thickness-to-width ratio. The results demonstrate nanoskiving is a potential nanofabrication technique for producing NiTi alloy nanowires that are continuous with an unprecedented length on the order of hundreds of micrometers.
Critical Metals in Strategic Low-carbon Energy Technologies
NASA Astrophysics Data System (ADS)
Moss, R. L.
2012-04-01
Due to the rapid growth in demand for certain materials, compounded by political risks associated with the geographical concentration of the supply of them, shortages of materials could be a potential bottleneck to the deployment of low-carbon energy technologies. Consequently, an assessment has been carried out to ascertain whether such shortages could jeopardise the objectives of the EU's Strategic Energy Technology Plan (SET-Plan), especially in the six low-carbon energy technologies of SET-Plan, namely: nuclear, solar, wind, bioenergy, carbon capture and storage (CCS) and electricity grids. The assessment identified 14 metals for which the deployment of the six technologies will require 1% or more (and in some cases, much more) of current world supply per annum between 2020 and 2030. Following a more critical examination, based on the likelihood of rapid future global demand growth, limitations to expanding supply in the short to medium term, and the concentration of supply and political risks associated with key suppliers, 5 of the 14 metals were pinpointed to be at high risk, namely: the rare earth metals neodymium and dysprosium (for wind technology), and the by-products (from the processing of other metals) indium, tellurium and gallium (for photovoltaic technologies). In addition, the work has explored potential mitigation strategies, ranging from expanding European output, increasing recycling and reuse to reducing waste and finding substitutes for these metals in their main applications. Furthermore, recommendations are provided which include closely working with the EU's Raw Materials Initiative; supporting efforts to ensure reliable supply of ore concentrates at competitive prices; promoting R&D and demonstration projects on new lower cost separation processes; and promoting the further development of recycling technologies and increasing end-of-life collection
Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU)
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Sanders, Gerald B.; Starr, Stanley O.; Eisenman, David J.; Suzuki, Nantel H.; Anderson, Molly S.; O'Malley, Terrence F.; Araghi, Koorosh R.
2017-01-01
In-Situ Resource Utilization (ISRU) encompasses a broad range of systems that enable the production and use of extraterrestrial resources in support of future exploration missions. It has the potential to greatly reduce the dependency on resources transported from Earth (e.g., propellants, life support consumables), thereby significantly improving the ability to conduct future missions. Recognizing the critical importance of ISRU for the future, NASA is currently conducting technology development projects in two of its four mission directorates. The Advanced Exploration Systems Division in the Agency's Human Exploration and Operations Mission Directorate has initiated a new project for ISRU Technology focused on component, subsystem, and system maturation in the areas of water volatiles resource acquisition, and water volatiles and atmospheric processing into propellants and other consumable products. The Space Technology Mission Directorate is supporting development of ISRU component technologies in the areas of Mars atmosphere acquisition, including dust management, and oxygen production from Mars atmosphere for propellant and life support consumables. Together, these two coordinated projects are working towards a common goal of demonstrating ISRU technology and systems in preparation for future flight applications.
Fastener Capture Plate Technology to Contain On-Orbit Debris
NASA Technical Reports Server (NTRS)
Eisenhower, Kevin
2010-01-01
The Fastener Capture Plate technology was developed to solve the problem of capturing loose hardware and small fasteners, items that were not originally intended to be disengaged in microgravity, thus preventing them from becoming space debris. This technology was incorporated into astronaut tools designed and successfully used on NASA s Hubble Space Telescope Servicing Mission #4. The technology s ultimate benefit is that it allows a very time-efficient method for disengaging fasteners and removing hardware while minimizing the chances of losing parts or generating debris. The technology aims to simplify the manual labor required of the operator. It does so by optimizing visibility and access to the work site and minimizing the operator's need to be concerned with debris while performing the operations. It has a range of unique features that were developed to minimize task time, as well as maximize the ease and confidence of the astronaut operator. This paper describes the technology and the astronaut tools developed specifically for a complicated on-orbit repair, and it includes photographs of the hardware being used in outer space.
Ultra-Efficient Engine Technology (UEET) Program
NASA Technical Reports Server (NTRS)
Manthey, Lori A.
2001-01-01
The Ultra-Efficient Engine Technology (UEET) Program includes seven key projects that work with industry to develop and hand off revolutionary propulsion technologies that will enable future-generation vehicles over a wide range of flight speeds. A new program office, the Ultra-Efficient Engine Technology (UEET) Program Office, was formed at the NASA Glenn Research Center to manage an important National propulsion program for NASA. The Glenn-managed UEET Program, which began on October 1, 1999, includes participation from three other NASA centers (Ames, Goddard, and Langley), as well as five engine companies (GE Aircraft Engines, Pratt & Whitney, Honeywell, Allison/Rolls Royce, and Williams International) and two airplane manufacturers (the Boeing Company and Lockheed Martin Corporation). This 6-year, nearly $300 million program will address local air-quality concerns by developing technologies to significantly reduce nitrogen oxide (NOx) emissions. In addition, it will provide critical propulsion technologies to dramatically increase performance as measured in fuel burn reduction that will enable reductions of carbon dioxide (CO2) emissions. This is necessary to address the potential climate impact of long-term aviation growth.
Semiconductor Terahertz Technology
2009-06-15
is found in IJI-V quantum cascade lasers (QCLs). 1.I Brief overview of 5i-based QCL development Various groups have obtained electroluminescence from...sources and detectors of far-IR radiation in the range of 12-30 flm. These devices, especially quantum cascade lasers (QCLs) require efficient ...elements and their alloys that can be developed on Si substrates. The design work focused on the structure of the so-called quantum cascade laser
ERIC Educational Resources Information Center
Schwartzman, Ana
2004-01-01
Teachers in English Language Learning classrooms have long faced the challenge of working with children who have diverse ethnic and cultural backgrounds and wide-ranging linguistic skill sets. A child from El Salvador, for example, will need to practice different pronunciation and stress patterns than a child from Vietnam. Technology can help…
2003-08-18
KENNEDY SPACE CENTER, FLA. - Researchers utilize several types of watercraft to conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
The middle-range theory of nursing intellectual capital.
Covell, Christine L
2008-07-01
This paper is a report of the development of the middle-range theory of nursing intellectual capital. Rising healthcare costs and advances in technology have contributed to the need for better understanding of the influence of nurses' knowledge, skills and experience on patient and organizational outcomes. The middle-range nursing intellectual capital theory was developed using the strategies of concept and theory derivation. The principles of research synthesis were used to provide empirical support for the propositions of the theory. The middle-range nursing intellectual capital theory was derived from intellectual capital theory to make it relevant and applicable to a specific aspect of nursing, continuing professional development. It proposes that the nursing knowledge available in healthcare organizations is influenced by variables within the work environment, and influences patient and organizational outcomes. The middle-range nursing intellectual capital theory should be tested in different healthcare systems and in different settings and countries to determine its effectiveness in guiding research.
Comparing methods for analysis of biomedical hyperspectral image data
NASA Astrophysics Data System (ADS)
Leavesley, Silas J.; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter F.; Annamdevula, Naga S.; Rich, Thomas C.
2017-02-01
Over the past 2 decades, hyperspectral imaging technologies have been adapted to address the need for molecule-specific identification in the biomedical imaging field. Applications have ranged from single-cell microscopy to whole-animal in vivo imaging and from basic research to clinical systems. Enabling this growth has been the availability of faster, more effective hyperspectral filtering technologies and more sensitive detectors. Hence, the potential for growth of biomedical hyperspectral imaging is high, and many hyperspectral imaging options are already commercially available. However, despite the growth in hyperspectral technologies for biomedical imaging, little work has been done to aid users of hyperspectral imaging instruments in selecting appropriate analysis algorithms. Here, we present an approach for comparing the effectiveness of spectral analysis algorithms by combining experimental image data with a theoretical "what if" scenario. This approach allows us to quantify several key outcomes that characterize a hyperspectral imaging study: linearity of sensitivity, positive detection cut-off slope, dynamic range, and false positive events. We present results of using this approach for comparing the effectiveness of several common spectral analysis algorithms for detecting weak fluorescent protein emission in the midst of strong tissue autofluorescence. Results indicate that this approach should be applicable to a very wide range of applications, allowing a quantitative assessment of the effectiveness of the combined biology, hardware, and computational analysis for detecting a specific molecular signature.
NASA Astrophysics Data System (ADS)
Mitka, B.; Szelest, P.
2013-12-01
This paper presents the issues related to the acquisition and processing of terrestrial photogrammetry and laser scanning for building educational portals and virtual museums. Discusses the specific requirements of measurement technology and data processing for all kinds of objects, ranging from architecture through sculpture and architectural detail on the fabric and individual museum exhibits. Educational portals and virtual museums require a modern, high-quality visuals (3D models, virtual tours, animations, etc.) supplemented by descriptive content or audio commentary. Source for obtaining such materials are mostly terrestrial laser scanning and photogrammetry as technologies that provide complete information about the presented geometric objects. However, the performance requirements of web services impose severe restrictions on the presented content. It is necessary to use optimalization geometry process to streamline the way of its presentation. Equally important problem concerns the selection of appropriate technology and process measurement data processing presented for each type of objects. Only skillful selection of measuring equipment and data processing tools effectively ensure the achievement of a satisfactory end result. Both terrestrial laser scanning technology and digital close range photogrammetry has its strengths which should be used but also the limitations that must be taken into account in this kind of work. The key is choosing the right scanner for both the measured object and terrain such as pixel size in the performance of his photos.
Functional Characterization of a Novel Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Collado, M.; Cabás, R.; San Juan, J.; López-Ferreño, I.
2014-07-01
A novel shape memory alloy (SMA) has been developed as an alternative to currently available alloys. This alloy, commercially known by its proprietary brand SMARQ, shows a higher working range of temperatures with respect to the SMA materials used until now in actuators, limited to environment temperatures below 90 °C. SMARQ is a high temperature SMA (HTSMA) based on a fully European material technology and production processes, which allows the manufacture of high quality products, with tuneable transformation temperatures up to 200 °C. Both, material and production processes have been evaluated for its use in space applications. A full characterization test campaign has been completed in order to obtain the material properties and check its suitability to be used as active material in space actuators. In order to perform the functional characterization of the material, it has been considered as the key element of a basic SMA actuator, consisting in the SMA wire and the mechanical and electrical interfaces. The functional tests presented in this work have been focused on the actuator behavior when heated by means of an electrical current. Alloy composition has been adjusted in order to match a transition temperature (As) of +145 °C, which satisfies the application requirements of operating temperatures in the range of -70 and +125 °C. Details of the tests and results of the characterization test campaign, focused in the material unique properties for their use in actuators, will be presented in this work. Some application examples in the field of space mechanisms and actuators, currently under development, will be summarized as part of this work, demonstrating the technology suitability as active material for space actuators.
NASA Astrophysics Data System (ADS)
Wiebe, K.; Lotze-Campen, H.; Bodirsky, B.; Kavallari, A.; Mason-d'Croz, D.; van der Mensbrugghe, D.; Robinson, S.; Sands, R.; Tabeau, A.; Willenbockel, D.; Islam, S.; van Meijl, H.; Mueller, C.; Robertson, R.
2014-12-01
Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. New work extends that analysis to cover a range of plausible socioeconomic scenarios and emission pathways. Results from three general circulation models are combined with one crop model and five global economic models to examine the global and regional impacts of climate change on yields, area, production, prices and trade for coarse grains, rice, wheat, oilseeds and sugar to 2050. Results show that yield impacts vary with changes in population, income and technology as well as emissions, but are reduced in all cases by endogenous changes in prices and other variables.
Miniature Packaging Concept for LNAs in the 200-300 GHz Range
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Fung, Andy; Varonen, Mikko; Lin, Robert; Peralta, Alejandro; Soria, Mary; Lee, Choonsup; Padmanabhan, Sharmila; Sarkozy, Stephen; Lai, Richard
2016-01-01
In this work, we describe new miniaturized low noise amplifier modules which we developed for incorporation in small-scale satellites or Cubesats, and which exhibit similar or better performance compared to previously reported LNAs in the literature. We have targeted the WR4 (170-260 GHz) and WR3 (220-325 GHz) waveguide bands for the module development. The modules include two different methods of E-plane probes which have been developed for low loss, and stability at high frequencies. MMIC LNAs were also developed for these frequency ranges and fabricated in Northrop Grumman Corporation's 35 nm InP HEMT technology, and we have experimentally verified that noise performance is lower than reported in prior work. The best results include a miniature LNA module with 550K noise at 224 GHz, and a wideband LNA module with 15 dB gain from 230-280 GHz.
Improvement of SLR accuracy, a possible new step
NASA Technical Reports Server (NTRS)
Kasser, Michel
1993-01-01
The satellite laser ranging (SLR) technology experienced a large number of technical improvements since the early 1970's, leading now to a millimetric instrumental accuracy. Presently, it appears as useless to increase these instrumental performances as long as the atmospheric propagation delay suffers its actual imprecision. It has been proposed for many years to work in multiwavelength mode, but up to now the considerable technological difficulties of subpicosecond timing have seriously delayed such an approach. Then a new possibility is proposed, using a device which is not optimized now for SLR but has already given good results in the lower troposphere for wind measurement: the association of a radar and a sodar. While waiting for the 2-lambda methodology, this one could provide an atmospheric propagation delay at the millimeter level during a few years with only little technological investment.
Planar Fully-Depleted-Silicon-On-Insulator technologies: Toward the 28 nm node and beyond
NASA Astrophysics Data System (ADS)
Doris, B.; DeSalvo, B.; Cheng, K.; Morin, P.; Vinet, M.
2016-03-01
This paper presents a comprehensive overview of the research done in the last decade on planar Fully-Depleted-Silicon-On-Insulator (FDSOI) technologies in the frame of the joint development program between IBM, ST Microelectronics and CEA-LETI. In particular, we review the technological developments ranging from substrate engineering to process modules that enable functionality and improve FDSOI performance over several generations. Various multi Vt integration schemes to maximize the benefits of the thin BOX FDSOI platform are discussed. Manufacturability as well as scalability concerns are highlighted and addressed. In addition, this work provides understanding of the performance/power trade-offs for FDSOI circuits and device variability. Finally, clear directions for future application-specific products are given, demonstrating that FDSOI is an attractive CMOS option for next generation high performance and low-power applications.
USGS lidar science strategy—Mapping the technology to the science
Stoker, Jason M.; Brock, John C.; Soulard, Christopher E.; Ries, Kernell G.; Sugarbaker, Larry J.; Newton, Wesley E.; Haggerty, Patricia K.; Lee, Kathy E.; Young, John A.
2016-01-11
The U.S. Geological Survey (USGS) utilizes light detection and ranging (lidar) and enabling technologies to support many science research activities. Lidar-derived metrics and products have become a fundamental input to complex hydrologic and hydraulic models, flood inundation models, fault detection and geologic mapping, topographic and land-surface mapping, landslide and volcano hazards mapping and monitoring, forest canopy and habitat characterization, coastal and fluvial erosion mapping, and a host of other research and operational activities. This report documents the types of lidar being used by the USGS, discusses how lidar technology facilitates the achievement of individual mission area goals within the USGS, and offers recommendations and suggested changes in direction in terms of how a mission area could direct work using lidar as it relates to the mission area goals that have already been established.
NASA Technical Reports Server (NTRS)
Swanson, Greg; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Gilles, Brian; Anderson, Paul; Bond, Bruce
2016-01-01
Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. The HIAD projects experience in scaling the technology has reached a critical juncture in development. Growing from a 6m to a 15m class system will introduce many...
Technology transfer program: Perspective
NASA Technical Reports Server (NTRS)
Toyshov, A. J.
1981-01-01
Most of NASA's technology transfer activities are in the area of land use (development, suitability, and planning); forestry (including wildlife and range and vegetation inventories) agriculture related activities; and water resources. The technology dissemination function is exercised through three regional applications centers which are involved in 91 applications projects within 22 states. In addition there are approximately eight application system verification transfer (ASVT) projects, 21 university applications branches, institutionalized liason activities with public interest groups, and user requirements activities. As the result of budget cuts, the ASVT and user requirements and awareness programs are to be phased out at the end of FY81. The university applications programs are to be phased down and terminated by 1985. NASA will continue to work with the user more in an R & D and an applications development capacity, and not in a national scale or administrative way.
Technology, health and the home: eHealth and the community nurse.
Peate, Ian
2013-05-01
Twenty-first century methods of communication are changing. Technology and the way it is used has the potential to revolutionise health care. In the same way information technology (IT) has had a massive impact on commerce and industry, it is also having a substantial impact on the practice of community nurses and the ways in which care is delivered. In order for the impact of IT to be a positive one, community nurses and other health professionals will have to learn and develop a range of new skills. Nurses can and should be directing and becoming involved in the ways in which the IT revolution unfolds. Nurses working with systems development teams also need to make known their needs making clear what information the various IT systems have to contain and how these will fit in with their nursing practice.
A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2012-01-01
Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.
Novel sensing technology in fall risk assessment in older adults: a systematic review.
Sun, Ruopeng; Sosnoff, Jacob J
2018-01-16
Falls are a major health problem for older adults with significant physical and psychological consequences. A first step of successful fall prevention is to identify those at risk of falling. Recent advancement in sensing technology offers the possibility of objective, low-cost and easy-to-implement fall risk assessment. The objective of this systematic review is to assess the current state of sensing technology on providing objective fall risk assessment in older adults. A systematic review was conducted in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement (PRISMA). Twenty-two studies out of 855 articles were systematically identified and included in this review. Pertinent methodological features (sensing technique, assessment activities, outcome variables, and fall discrimination/prediction models) were extracted from each article. Four major sensing technologies (inertial sensors, video/depth camera, pressure sensing platform and laser sensing) were reported to provide accurate fall risk diagnostic in older adults. Steady state walking, static/dynamic balance, and functional mobility were used as the assessment activity. A diverse range of diagnostic accuracy across studies (47.9% - 100%) were reported, due to variation in measured kinematic/kinetic parameters and modelling techniques. A wide range of sensor technologies have been utilized in fall risk assessment in older adults. Overall, these devices have the potential to provide an accurate, inexpensive, and easy-to-implement fall risk assessment. However, the variation in measured parameters, assessment tools, sensor sites, movement tasks, and modelling techniques, precludes a firm conclusion on their ability to predict future falls. Future work is needed to determine a clinical meaningful and easy to interpret fall risk diagnosis utilizing sensing technology. Additionally, the gap between functional evaluation and user experience to technology should be addressed.
NASA Astrophysics Data System (ADS)
DeWames, Roger E.
2016-05-01
In this paper we review the intrinsic and extrinsic technological properties of the incumbent technology, InP/In0.53Ga0.47As/InP, for imaging in the visible- short wavelength spectral band, InSb and HgCdTe for imaging in the mid-wavelength spectral band and HgCdTe for imaging in the long wavelength spectral band. These material systems are in use for a wide range of applications addressing compelling needs in night vision imaging, low light level astronomical applications and defense strategic satellite sensing. These materials systems are direct band gap energy semiconductors hence the internal quantum efficiency η, is near unity over a wide spectral band pass. A key system figure of merit of a shot noise limited detector technology is given by the equation (1+Jdark. /Jphoton), where Jdark is the dark current density and Jphoton ~qηΦ is the photocurrent density; Φ is the photon flux incident on the detector and q is the electronic charge. The capability to maintain this factor for a specific spectral band close to unity for low illumination conditions and low temperature onset of non-ideal dark current components, basically intrinsic diffusion limited performance all the way, is a marker of quality and versatility of a semiconductor detector technology. It also enables the highest temperature of operation for tactical illumination conditions. A purpose of the work reported in this paper is to explore the focal plane array data sets of photodiode detector technologies widely used to bench mark their fundamental and technology properties and identify paths for improvements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fain, D.E.
The conference was an excellent initial forum for coordinating international communication about the rapidly emerging field of inorganic membranes. It was well organized and held in an excellent new conference facility. There were about 300 conferees representing 26 countries, including most of the best known researchers in the field. The quality of the papers was excellent. Many of then presented very new and sophisticated work at the cutting edge of the technology. In Europe and Japan there is a broad awareness of these technologies and techniques for fabricating membranes with a broad range of properties and potential commercial uses. Inmore » his opening plenary paper, J. Charpin, with the Commissariat a L'Energie Atomic (CEA) at Saclay, gave the CEA credit for creating the new generation of inorganic membranes through its technology transfer from their nuclear energy programs. I met and talked with most of the best known people in the field. Our paper was extremely well received. Jacques Gillot hardly spoke to me before the paper. After presenting the paper, he approached me everywhere I went. The visits to the two best known membrane laboratories in Europe were worth the trip alone. Professor Cot's lab in Montpellier is rather modest, but doing some interesting and sophisticated work. Professor Burggraaf's lab in Enschede, Netherlands is extremely well equipped and staffed (63 people), and I believe this lab is doing the most advanced work.« less
UK medicines regulation: responding to current challenges
Richards, Natalie
2016-01-01
The medicines regulatory environment is evolving rapidly in response to the changing environment. Advances in science and technology have led to a vast field of increasingly complicated pharmaceutical and medical device products; increasing globalization of the pharmaceutical industry, advances in digital technology and the internet, changing patient populations, and shifts in society also affect the regulatory environment. In the UK, the Medicines and Healthcare products Regulatory Agency (MHRA) regulates medicines, medical devices and blood products to protect and improve public health, and supports innovation through scientific research and development. It works closely with other bodies in a single medicines network across Europe and takes forward UK health priorities. This paper discusses the range of initiatives in the UK and across Europe to support innovation in medicines regulation. The MHRA leads a number of initiatives, such as the Innovation Office, which helps innovators to navigate the regulatory processes to progress their products or technologies; and simplification of the Clinical Trials Regulations and the Early Access to Medicines Scheme, to bring innovative medicines to patients faster. The Accelerated Access Review will identify reforms to accelerate access for National Health Service patients to innovative medicines and medical technologies. PRIME and Adaptive Pathways initiatives are joint endeavours within the European regulatory community. The MHRA runs spontaneous reporting schemes and works with INTERPOL to tackle counterfeiting and substandard products sold via the internet. The role of the regulator is changing rapidly, with new risk‐proportionate, flexible approaches being introduced. International collaboration is a key element of the work of regulators, and is set to expand. PMID:27580254
UK medicines regulation: responding to current challenges.
Richards, Natalie; Hudson, Ian
2016-12-01
The medicines regulatory environment is evolving rapidly in response to the changing environment. Advances in science and technology have led to a vast field of increasingly complicated pharmaceutical and medical device products; increasing globalization of the pharmaceutical industry, advances in digital technology and the internet, changing patient populations, and shifts in society also affect the regulatory environment. In the UK, the Medicines and Healthcare products Regulatory Agency (MHRA) regulates medicines, medical devices and blood products to protect and improve public health, and supports innovation through scientific research and development. It works closely with other bodies in a single medicines network across Europe and takes forward UK health priorities. This paper discusses the range of initiatives in the UK and across Europe to support innovation in medicines regulation. The MHRA leads a number of initiatives, such as the Innovation Office, which helps innovators to navigate the regulatory processes to progress their products or technologies; and simplification of the Clinical Trials Regulations and the Early Access to Medicines Scheme, to bring innovative medicines to patients faster. The Accelerated Access Review will identify reforms to accelerate access for National Health Service patients to innovative medicines and medical technologies. PRIME and Adaptive Pathways initiatives are joint endeavours within the European regulatory community. The MHRA runs spontaneous reporting schemes and works with INTERPOL to tackle counterfeiting and substandard products sold via the internet. The role of the regulator is changing rapidly, with new risk-proportionate, flexible approaches being introduced. International collaboration is a key element of the work of regulators, and is set to expand. © 2016 The British Pharmacological Society.
NASA Astrophysics Data System (ADS)
Shen, Yannan; Istock, André; Zaman, Anik; Woidt, Carsten; Hillmer, Hartmut
2018-05-01
Miniaturization of optical spectrometers can be achieved by Fabry-Pérot (FP) filter arrays. Each FP filter consists of two parallel highly reflecting mirrors and a resonance cavity in between. Originating from different individual cavity heights, each filter transmits a narrow spectral band (transmission line) with different wavelengths. Considering the fabrication efficiency, plasma enhanced chemical vapor deposition (PECVD) technology is applied to implement the high-optical-quality distributed Bragg reflectors (DBRs), while substrate conformal imprint lithography (one type of nanoimprint technology) is utilized to achieve the multiple cavities in just a single step. The FP filter array fabricated by nanoimprint combined with corresponding detector array builds a so-called "nanospectrometer". However, the silicon nitride and silicon dioxide stacks deposited by PECVD result in a limited stopband width of DBR (i.e., < 100 nm), which then limits the sensing range of filter arrays. However, an extension of the spectral range of filter arrays is desired and the topic of this investigation. In this work, multiple DBRs with different central wavelengths (λ c) are structured, deposited, and combined on a single substrate to enlarge the entire stopband. Cavity arrays are successfully aligned and imprinted over such terrace like surface in a single step. With this method, small chip size of filter arrays can be preserved, and the fabrication procedure of multiple resonance cavities is kept efficient as well. The detecting range of filter arrays is increased from roughly 50 nm with single DBR to 163 nm with three different DBRs.
Sevenler, Derin; Daaboul, George G; Ekiz Kanik, Fulya; Ünlü, Neşe Lortlar; Ünlü, M Selim
2018-05-21
DNA and protein microarrays are a high-throughput technology that allow the simultaneous quantification of tens of thousands of different biomolecular species. The mediocre sensitivity and limited dynamic range of traditional fluorescence microarrays compared to other detection techniques have been the technology's Achilles' heel and prevented their adoption for many biomedical and clinical diagnostic applications. Previous work to enhance the sensitivity of microarray readout to the single-molecule ("digital") regime have either required signal amplifying chemistry or sacrificed throughput, nixing the platform's primary advantages. Here, we report the development of a digital microarray which extends both the sensitivity and dynamic range of microarrays by about 3 orders of magnitude. This technique uses functionalized gold nanorods as single-molecule labels and an interferometric scanner which can rapidly enumerate individual nanorods by imaging them with a 10× objective lens. This approach does not require any chemical signal enhancement such as silver deposition and scans arrays with a throughput similar to commercial fluorescence scanners. By combining single-nanoparticle enumeration and ensemble measurements of spots when the particles are very dense, this system achieves a dynamic range of about 6 orders of magnitude directly from a single scan. As a proof-of-concept digital protein microarray assay, we demonstrated detection of hepatitis B virus surface antigen in buffer with a limit of detection of 3.2 pg/mL. More broadly, the technique's simplicity and high-throughput nature make digital microarrays a flexible platform technology with a wide range of potential applications in biomedical research and clinical diagnostics.
Evolving Frameworks for Different Communities of Scientists and End Users
NASA Astrophysics Data System (ADS)
Graves, S. J.; Keiser, K.
2016-12-01
Two evolving frameworks for interdisciplinary science will be described in the context of the Common Data Framework for Earth-Observation Data and the importance of standards and protocols. The Event Data Driven Delivery (ED3) Framework, funded by NASA Applied Sciences, provides the delivery of data based on predetermined subscriptions and associated workflows to various communities of end users. ED3's capabilities are used by scientists, as well as policy and resource managers, when event alerts are triggered to respond to their needs. The EarthCube Integration and Testing Environment (ECITE) Assessment Framework for Technology Interoperability and Integration is being developed to facilitate the EarthCube community's assessment of NSF funded technologies addressing Earth science problems. ECITE is addressing the translation of geoscience researchers' use cases into technology use case that apply EarthCube-funded building block technologies (and other existing technologies) for solving science problems. EarthCube criteria for technology assessment include the use of data, metadata and service standards to improve interoperability and integration across program components. The long-range benefit will be the growth of a cyberinfrastructure with technology components that have been shown to work together to solve known science objectives.
NASA Lewis Research Center Futuring Workshop
NASA Technical Reports Server (NTRS)
Boroush, Mark; Stover, John; Thomas, Charles
1987-01-01
On October 21 and 22, 1986, the Futures Group ran a two-day Futuring Workshop on the premises of NASA Lewis Research Center. The workshop had four main goals: to acquaint participants with the general history of technology forecasting; to familiarize participants with the range of forecasting methodologies; to acquaint participants with the range of applicability, strengths, and limitations of each method; and to offer participants some hands-on experience by working through both judgmental and quantitative case studies. Among the topics addressed during this workshop were: information sources; judgmental techniques; quantitative techniques; merger of judgment with quantitative measurement; data collection methods; and dealing with uncertainty.
Long Range Technology Planning.
ERIC Educational Resources Information Center
Ambron, Sueann, Ed.
1986-01-01
This summary of a meeting of the Apple Education Advisory Council, on long range technology plans at the state, county, district, and school levels, includes highlights from group discussions on future planning, staff development, and curriculum. Three long range technology plans at the state level are provided: Long Range Educational Technology…
Kushniruk, A; Nohr, C; Borycki, E
2016-11-10
A wide range of human factors approaches have been developed and adapted to healthcare for detecting and mitigating negative unexpected consequences associated with technology in healthcare (i.e. technology-induced errors). However, greater knowledge and wider dissemination of human factors methods is needed to ensure more usable and safer health information technology (IT) systems. This paper reports on work done by the IMIA Human Factors Working Group and discusses some successful approaches that have been applied in using human factors to mitigate negative unintended consequences of health IT. The paper addresses challenges in bringing human factors approaches into mainstream health IT development. A framework for bringing human factors into the improvement of health IT is described that involves a multi-layered systematic approach to detecting technology-induced errors at all stages of a IT system development life cycle (SDLC). Such an approach has been shown to be needed and can lead to reduced risks associated with the release of health IT systems into live use with mitigation of risks of negative unintended consequences. Negative unintended consequences of the introduction of IT into healthcare (i.e. potential for technology-induced errors) continue to be reported. It is concluded that methods and approaches from the human factors and usability engineering literatures need to be more widely applied, both in the vendor community and in local and regional hospital and healthcare settings. This will require greater efforts at dissemination and knowledge translation, as well as greater interaction between the academic and vendor communities.
Beginning to manage drug discovery and development knowledge.
Sumner-Smith, M
2001-05-01
Knowledge management approaches and technologies are beginning to be implemented by the pharmaceutical industry in support of new drug discovery and development processes aimed at greater efficiencies and effectiveness. This trend coincides with moves to reduce paper, coordinate larger teams with more diverse skills that are distributed around the globe, and to comply with regulatory requirements for electronic submissions and the associated maintenance of electronic records. Concurrently, the available technologies have implemented web-based architectures with a greater range of collaborative tools and personalization through portal approaches. However, successful application of knowledge management methods depends on effective cultural change management, as well as proper architectural design to match the organizational and work processes within a company.
Langley aeronautics and space test highlights, 1983
NASA Technical Reports Server (NTRS)
1984-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.
Langley aerospace test highlights - 1986
NASA Technical Reports Server (NTRS)
1987-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. This report highlights some of the significant tests which were performed during calendar year 1986 in Langley test facilities, a number of which are unique in the world. The report illustrates both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.
Evanescent wave fluorescence biosensors: Advances of the last decade
Taitt, Chris Rowe; Anderson, George P.; Ligler, Frances S.
2015-01-01
Biosensor development has been a highly dynamic field of research and has progressed rapidly over the past two decades. The advances have accompanied the breakthroughs in molecular biology, nanomaterial sciences, and most importantly computers and electronics. The subfield of evanescent wave fluorescence biosensors has also matured dramatically during this time. Fundamentally, this review builds on our earlier 2005 review. While a brief mention of seminal early work will be included, this current review will focus on new technological developments as well as technology commercialized in just the last decade. Evanescent wave biosensors have found a wide array applications ranging from clinical diagnostics to biodefense to food testing; advances in those applications and more are described herein. PMID:26232145
NASA Astrophysics Data System (ADS)
Harris, B. J.; Sun, S. S.; Li, W. H.
2017-03-01
With the growing need for effective intercity transport, the need for more advanced rail vehicle technology has never been greater. The conflicting primary longitudinal suspension requirements of high speed stability and curving performance limit the development of rail vehicle technology. This paper presents a novel magnetorheological fluid based joint with variable stiffness characteristics for the purpose of overcoming this parameter conflict. Firstly, the joint design and working principle is developed. Following this, a prototype is tested by MTS to characterize its variable stiffness properties under a range of conditions. Lastly, the performance of the proposed MRF rubber joint with regard to improving train stability and curving performance is numerically evaluated.
Rossi, P. Justin; Gunduz, Aysegul; Judy, Jack; Wilson, Linda; Machado, Andre; Giordano, James J.; Elias, W. Jeff; Rossi, Marvin A.; Butson, Christopher L.; Fox, Michael D.; McIntyre, Cameron C.; Pouratian, Nader; Swann, Nicole C.; de Hemptinne, Coralie; Gross, Robert E.; Chizeck, Howard J.; Tagliati, Michele; Lozano, Andres M.; Goodman, Wayne; Langevin, Jean-Philippe; Alterman, Ron L.; Akbar, Umer; Gerhardt, Greg A.; Grill, Warren M.; Hallett, Mark; Herrington, Todd; Herron, Jeffrey; van Horne, Craig; Kopell, Brian H.; Lang, Anthony E.; Lungu, Codrin; Martinez-Ramirez, Daniel; Mogilner, Alon Y.; Molina, Rene; Opri, Enrico; Otto, Kevin J.; Oweiss, Karim G.; Pathak, Yagna; Shukla, Aparna; Shute, Jonathan; Sheth, Sameer A.; Shih, Ludy C.; Steinke, G. Karl; Tröster, Alexander I.; Vanegas, Nora; Zaghloul, Kareem A.; Cendejas-Zaragoza, Leopoldo; Verhagen, Leonard; Foote, Kelly D.; Okun, Michael S.
2016-01-01
The proceedings of the 3rd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, imaging, and computational work on DBS for the treatment of neurological and neuropsychiatric disease. Significant innovations of the past year are emphasized. The Think Tank's contributors represent a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers, and members of industry. Presentations and discussions covered a broad range of topics, including policy and advocacy considerations for the future of DBS, connectomic approaches to DBS targeting, developments in electrophysiology and related strides toward responsive DBS systems, and recent developments in sensor and device technologies. PMID:27092042
Development of Feedhorn-Coupled Multichroic Polarimeters for the Inflation Probe Mission
NASA Astrophysics Data System (ADS)
McMahon, Jeff
This proposal seeks support for the development of millimeter-wavelength multichroic polarimeters optimized for detecting Cosmic Microwave Background (CMB) polarization signals with a future NASA Inflation Probe Mission. The technologies developed under this proposal would also have applications in future submillimeter astrophysics satellite missions. The proposed technology would increase the overall experimental sensitivity of an Inflation Probe Mission over that achievable by single-frequency pixels, making efficient use of available diffraction-limited focal plane area while maintaining unmatched control over systematics through the use of corrugated feedhorns. The sensitivity, multi-frequency coverage, and control of detector systematics offered by this technology on the Inflation Probe Mission would provide the definitive measurement of CMB polarization and foreground sources. These data would unambiguously detect or rule out all models of Grand Unified Theory (GUT) scale inflation, provide a precise measurement of the sum of the neutrino masses, and enable a wide variety of astrophysical and additional cosmological measurements. Control of systematics and foregrounds are paramount for a successful detection of the faint inflationary signal. Corrugated feedhorns are the gold standard for producing symmetric beams with low cross-polarization. Using ring-loaded slots, they can be designed to exceed one octave in bandwidth, allowing for multiple bands using a single feed. For the optimal characterization and control of foregrounds, approximately 10 bands are needed over a frequency range roughly spanning 40-300 GHz. Our plan is to develop a scalable multichroic architecture with four frequency bands within an octave of bandwidth, which we will then scale to three different frequency ranges, for a total of 12 bands with band centers on a logarithmic scale ranging from 40-288 GHz. At the key frequencies for CMB polarization (100-150 GHz) our proposed detectors achieve a sensitivity equal to 98% of that achieved with 3:1 bandwidth detectors and 85% of the ideal broad-frequency sensitivity, while providing the systematics benefits of using corrugated feedhorns. This work builds on the efforts of the TRUCE collaboration which has successfully developed 150 GHz polarization-sensitive bolometric detectors fabricated at NIST which are now being deployed in multiple CMB polarization experiments, ABS, ACTPol and SPTPol. Work to extend this architecture to realize broad-band multichroic detectors has already begun, using McMahon's startup funds. A prototype detector and ring-loaded corrugated feedhorn operating in both the 90 and 150 GHz bands has been designed, fabricated, and are now being tested. We will build on this work by developing quadruplexers to separate four bands, scaling this design to higher and lower frequencies, and fully optimizing these detectors for space. We will investigate the use of spline- profiled feeds to use at frequencies where corrugated horns are impractical. The broadband planar microwave technology we propose to develop is scalable to both higher and lower frequencies, and can be employed with a number of different detector technologies, including microwave kinetic inductance detectors (MKIDs). The objectives of the proposed work are directly related to the objectives given in the NASA Research Announcement (NRA) Astronomy and Astrophysics Decadal Survey.
Stricklin, Mary Lou; Bierer, S Beth; Struk, Cynthia
2003-01-01
Point-of-care technology for home care use will be the final step in enterprise-wide healthcare electronic communications. Successful implementation of home care point-of-care technology hinges upon nurses' attitudes toward point-of-care technology and its use in clinical practice. This study addresses the factors associated with home care nurses' attitudes using Stronge and Brodt's Nurse Attitudes Toward Computers instrument. In this study, the Nurses Attitudes Toward Computers instrument was administered to a convenience sample of 138 nurses employed by a large midwestern home care agency, with an 88% response rate. Confirmatory factor analysis corroborated the Nurses Attitudes Toward Computers' 3-dimensional factor structure for practicing nurses, which was labeled as nurses' work, security issues, and perceived barriers. Results from the confirmatory factor analysis also suggest that these 3 factors are internally correlated and represent multiple dimensions of a higher order construct labeled as nurses' attitudes toward computers. Additionally, two of these factors, nurses' work and perceived barriers, each appears to explain more variance in nurses' attitudes toward computers than security issues. Instrument reliability was high for the sample (.90), with subscale reliabilities ranging from 86 to 70.
The spatial resolution of silicon-based electron detectors in beta-autoradiography.
Cabello, Jorge; Wells, Kevin
2010-03-21
Thin tissue autoradiography is an imaging modality where ex-vivo tissue sections are placed in direct contact with autoradiographic film. These tissue sections contain a radiolabelled ligand bound to a specific biomolecule under study. This radioligand emits beta - or beta+ particles ionizing silver halide crystals in the film. High spatial resolution autoradiograms are obtained using low energy radioisotopes, such as (3)H where an intrinsic 0.1-1 microm spatial resolution can be achieved. Several digital alternatives have been presented over the past few years to replace conventional film but their spatial resolution has yet to equal film, although silicon-based imaging technologies have demonstrated higher sensitivity compared to conventional film. It will be shown in this work how pixel size is a critical parameter for achieving high spatial resolution for low energy uncollimated beta imaging. In this work we also examine the confounding factors impeding silicon-based technologies with respect to spatial resolution. The study considers charge diffusion in silicon and detector noise, and this is applied to a range of radioisotopes typically used in autoradiography. Finally an optimal detector geometry to obtain the best possible spatial resolution for a specific technology and a specific radioisotope is suggested.
NASA Astrophysics Data System (ADS)
Ribeiro, Allan; Santos, Helen
With the advent of new information and communication technologies (ICTs), the communicative interaction changes the way of being and acting of people, at the same time that changes the way of work activities related to education. In this range of possibilities provided by the advancement of computational resources include virtual reality (VR) and augmented reality (AR), are highlighted as new forms of information visualization in computer applications. While the RV allows user interaction with a virtual environment totally computer generated; in RA the virtual images are inserted in real environment, but both create new opportunities to support teaching and learning in formal and informal contexts. Such technologies are able to express representations of reality or of the imagination, as systems in nanoscale and low dimensionality, being imperative to explore, in the most diverse areas of knowledge, the potential offered by ICT and emerging technologies. In this sense, this work presents computer applications of virtual and augmented reality developed with the use of modeling and simulation in computational approaches to topics related to nanoscience and nanotechnology, and articulated with innovative pedagogical practices.
Chi-Ham, Cecilia L; Boettiger, Sara; Figueroa-Balderas, Rosa; Bird, Sara; Geoola, Josef N; Zamora, Pablo; Alandete-Saez, Monica; Bennett, Alan B
2012-06-01
The Public Intellectual Property Resource for Agriculture (PIPRA) was founded in 2004 by the Rockefeller Foundation in response to concerns that public investments in agricultural biotechnology benefiting developing countries were facing delays, high transaction costs and lack of access to important technologies due to intellectual property right (IPR) issues. From its inception, PIPRA has worked broadly to support a wide range of research in the public sector, in specialty and minor acreage crops as well as crops important to food security in developing countries. In this paper, we review PIPRA's work, discussing the failures, successes, and lessons learned during its years of operation. To address public sector's limited freedom-to-operate, or legal access to third-party rights, in the area of plant transformation, we describe PIPRA's patent 'pool' approach to develop open-access technologies for plant transformation which consolidate patent and tangible property rights in marker-free vector systems. The plant transformation system has been licensed and deployed for both commercial and humanitarian applications in the United States (US) and Africa, respectively. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Tosi, Daniele; Schena, Emiliano; Molardi, Carlo; Korganbayev, Sanzhar
2018-07-01
One of the current frontier of optical fiber sensors, and a unique asset of this sensing technology is the possibility to use a whole optical fiber, or optical fiber device, as a sensor. This solution allows shifting the whole sensing paradigm, from the measurement of a single physical parameter (such as temperature, strain, vibrations, pressure) to the measurement of a spatial distribution, or profiling, of a physical parameter along the fiber length. In the recent years, several technologies are achieving this task with unprecedentedly narrow spatial resolution, ranging from the sub-millimeter to the centimeter-level. In this work, we review the main fiber optic sensing technologies that achieve a narrow spatial resolution: Fiber Bragg Grating (FBG) dense arrays, chirped FBG (CFBG) sensors, optical frequency domain reflectometry (OFDR) based on either Rayleigh scattering or reflective elements, and microwave photonics (MWP). In the second part of the work, we present the impact of spatially dense fiber optic sensors in biomedical applications, where they find the main impact, presenting the key results obtained in thermo-therapies monitoring, high-resolution diagnostic, catheters monitoring, smart textiles, and other emerging applicative fields.
Progressive Damage Modeling of Durable Bonded Joint Technology
NASA Technical Reports Server (NTRS)
Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.
2013-01-01
The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.
A critical review of nanotechnologies for composite aerospace structures
NASA Astrophysics Data System (ADS)
Kostopoulos, Vassilis; Masouras, Athanasios; Baltopoulos, Athanasios; Vavouliotis, Antonios; Sotiriadis, George; Pambaguian, Laurent
2017-03-01
The past decade extensive efforts have been invested in understanding the nano-scale and revealing the capabilities offered by nanotechnology products to structural materials. Integration of nano-particles into fiber composites concludes to multi-scale reinforced composites and has opened a new wide range of multi-functional materials in industry. In this direction, a variety of carbon based nano-fillers has been proposed and employed, individually or in combination in hybrid forms, to approach the desired performance. Nevertheless, a major issue faced lately more seriously due to the interest of industry is on how to incorporate these nano-species into the final composite structure through existing manufacturing processes and infrastructure. This interest originates from several industrial applications needs that request the development of new multi-functional materials which combine enhanced mechanical, electrical and thermal properties. In this work, an attempt is performed to review the most representative processes and related performances reported in literature and the experience obtained on nano-enabling technologies of fiber composite materials. This review focuses on the two main composite manufacturing technologies used by the aerospace industry; Prepreg/Autoclave and Resin Transfer technologies. It addresses several approaches for nano-enabling of composites for these two routes and reports latest achieved results focusing on performance of nano-enabled fiber reinforced composites extracted from literature. Finally, this review work identifies the gap between available nano-technology integration routes and the established industrial composite manufacturing techniques and the challenges to increase the Technology Readiness Level to reach the demands for aerospace industry applications.
2001-03-01
perchlorate bioremediation systems. The objective of this project is to identify the key environmental factors in subsurface environments that inhibit... environment . For the Health and Safety for Innovative Environmental Technologies subthrust, DoD is working to improve the health and safety of workers and...dilution of pollutants. Similarly, other relevant environments range from humid , forested landscapes to high, arid mountainous domains. In addition, DoD
Prospector IX: Human Powered Systems Technologies
1998-04-01
nugget, we too reviewed the current techniques "looking for nuggets", before embarking on a search of new ground . For this we assembled a wide range...area). Chemical to Electrical • Biofuel cells not well developed or characterized • Scaling of composters and digesters and methods of speeding up...Systems" EricTkaczyk (GE) Figure 2 The remainder of the workshop was spent in small working groups centered around: • Potential Applications, Specific
Multifunctional cell therapeutics with plasmonic nanobubbles
NASA Astrophysics Data System (ADS)
Lukianova-Hleb, Ekaterina Y.; Kashinath, Shruti; Lapotko, Dmitri O.
2012-03-01
We report our new discovery of the nanophenomenon called plasmonic nanobubbles to devise faster, safer and more accurate ways of manipulating the components of human tissue grafts. The reported work facilitates future cell and gene therapies by allowing specific cell subsets to be positively or negatively selected for culture, genetic engineering or elimination. The technology will have application for a wide range of human tissues that can be used to treat a multiplicity of human diseases.
Hydrogen Infrastructure Testing and Research Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2017-04-10
Learn about the Hydrogen Infrastructure Testing and Research Facility (HITRF), where NREL researchers are working on vehicle and hydrogen infrastructure projects that aim to enable more rapid inclusion of fuel cell and hydrogen technologies in the market to meet consumer and national goals for emissions reduction, performance, and energy security. As part of NREL’s Energy Systems Integration Facility (ESIF), the HITRF is designed for collaboration with a wide range of hydrogen, fuel cell, and transportation stakeholders.
2007 Pacific Operational Science and Technology Conference
2007-04-04
Hawaiian Village Mid-Pacific Conference Center Coral Ballroom Monday, April 2, 2007 5:00 PM – 6:30 PM Registration and Ice Breaker Reception ...information OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY T2 T3 T120 Data Control Agent Data Agents Movie Producer Agent T1 8 Agents per...disturbing echo reception •Radar heterodyning technique converts continuous echo to narrowband signal with frequency proportional to rangeHow does it work
Programmable differential capacitance-to-voltage converter for MEMS accelerometers
NASA Astrophysics Data System (ADS)
Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.
2017-05-01
Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2018-06-01
This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.
Patel, Shyamal; Chen, Bor-Rong; Buckley, Thomas; Rednic, Ramona; McClure, Doug; Tarsy, Daniel; Shih, Ludy; Dy, Jennifer; Welsh, Matt; Bonato, Paolo
2010-01-01
Objective long-term health monitoring can improve the clinical management of several medical conditions ranging from cardiopulmonary diseases to motor disorders. In this paper, we present our work toward the development of a home-monitoring system. The system is currently used to monitor patients with Parkinson's disease who experience severe motor fluctuations. Monitoring is achieved using wireless wearable sensors whose data are relayed to a remote clinical site via a web-based application. The work herein presented shows that wearable sensors combined with a web-based application provide reliable quantitative information that can be used for clinical decision making.
Deaf people communicating via SMS, TTY, relay service, fax, and computers in Australia.
Power, Mary R; Power, Des; Horstmanshof, Louise
2007-01-01
Despite the expansion of Deaf people's use of communication technology little is published about how they use electronic communication in their social and working lives and the implications for their concepts of identity and community. Australia is an ideal research base because the use of a range of technologies is widespread there. To gain access to a wide age range of people who identify as Deaf, members of the national organization, the Australian Association of the Deaf, were surveyed by mail. Results showed that Short Message Service (SMS), telephone typewriters (TTY), voice/TTY relay services, fax, and e-mail were used regularly. Deaf users are discerning of the purposes for which they use each method: SMS for social and personal interactions, TTY for longer communications and (via the relay service) with people and services without TTYs, fax for business and social contact, and computers for personal and business e-mails as well as Web browsing, accessing chat rooms, word processing, games, and study.
NASA Technical Reports Server (NTRS)
Dhadwal, Harbans Singh
1994-01-01
The research work presented in this report has established a new class of backscatter fiber optics probes for remote dynamic light scattering capability over a range of scattering angles from 94 degrees to 175 degrees. The fiber optic probes provide remote access to scattering systems, and can be utilized in either a noninvasive or invasive configuration. The fiber optics create an interference free data channel to inaccessible and harsh environments. Results from several studies of concentrated suspension, microemulsions, and protein systems are presented. The second part of the report describes the development of a new technology of wavefront processing within the optical fiber, that is, integrated fiber optics. Results have been very encouraging and the technology promises to have significant impact on the development of fiber optic sensors in a variety of fields ranging from environmental monitoring to optical recording, from biomedical sensing to photolithography.
Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.
Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing
2015-04-01
On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering.
On the optimal sizing of batteries for electric vehicles and the influence of fast charge
NASA Astrophysics Data System (ADS)
Verbrugge, Mark W.; Wampler, Charles W.
2018-04-01
We provide a brief summary of advanced battery technologies and a framework (i.e., a simple model) for assessing electric-vehicle (EV) architectures and associated costs to the customer. The end result is a qualitative model that can be used to calculate the optimal EV range (which maps back to the battery size and performance), including the influence of fast charge. We are seeing two technological pathways emerging: fast-charge-capable batteries versus batteries with much higher energy densities (and specific energies) but without the capability to fast charge. How do we compare and contrast the two alternatives? This work seeks to shed light on the question. We consider costs associated with the cells, added mass due to the use of larger batteries, and charging, three factors common in such analyses. In addition, we consider a new cost input, namely, the cost of adaption, corresponding to the days a customer would need an alternative form of transportation, as the EV would not have sufficient range on those days.
A Genetic Algorithm Approach to Motion Sensor Placement in Smart Environments.
Thomas, Brian L; Crandall, Aaron S; Cook, Diane J
2016-04-01
Smart environments and ubiquitous computing technologies hold great promise for a wide range of real world applications. The medical community is particularly interested in high quality measurement of activities of daily living. With accurate computer modeling of older adults, decision support tools may be built to assist care providers. One aspect of effectively deploying these technologies is determining where the sensors should be placed in the home to effectively support these end goals. This work introduces and evaluates a set of approaches for generating sensor layouts in the home. These approaches range from the gold standard of human intuition-based placement to more advanced search algorithms, including Hill Climbing and Genetic Algorithms. The generated layouts are evaluated based on their ability to detect activities while minimizing the number of needed sensors. Sensor-rich environments can provide valuable insights about adults as they go about their lives. These sensors, once in place, provide information on daily behavior that can facilitate an aging-in-place approach to health care.
A Genetic Algorithm Approach to Motion Sensor Placement in Smart Environments
Thomas, Brian L.; Crandall, Aaron S.; Cook, Diane J.
2016-01-01
Smart environments and ubiquitous computing technologies hold great promise for a wide range of real world applications. The medical community is particularly interested in high quality measurement of activities of daily living. With accurate computer modeling of older adults, decision support tools may be built to assist care providers. One aspect of effectively deploying these technologies is determining where the sensors should be placed in the home to effectively support these end goals. This work introduces and evaluates a set of approaches for generating sensor layouts in the home. These approaches range from the gold standard of human intuition-based placement to more advanced search algorithms, including Hill Climbing and Genetic Algorithms. The generated layouts are evaluated based on their ability to detect activities while minimizing the number of needed sensors. Sensor-rich environments can provide valuable insights about adults as they go about their lives. These sensors, once in place, provide information on daily behavior that can facilitate an aging-in-place approach to health care. PMID:27453810
Thin Film Transistor Control Circuitry for MEMS Acoustic Transducers
NASA Astrophysics Data System (ADS)
Daugherty, Robin
This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10-100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.
Avionic architecture requirements for Space Exploration Initiative systems
NASA Technical Reports Server (NTRS)
Herbella, C. G.; Brown, D. C.
1991-01-01
The authors discuss NASA's Strategic Avionics Technology Working Group (SATWG) and the results of the first study commissioned by the SATWG, the Space Avionics Requirements Study (SARS). The goal of the SARS task was to show that an open avionics architecture, using modular, standardized components, could be applied across the wide range of systems that comprise the Space Exploration Initiative. The study addressed systems ranging from expendable launch vehicles and the space station to surface systems such as Mars or lunar rovers and habitats. Top-level avionics requirements were derived from characterizations of each of the systems considered. Then a set of avionics subsystems were identified, along with estimates of the numbers and types of modules needed to meet the requirements. Applicability of these results across the infrastructure was then illustrated. In addition to these tasks, critical technologies were identified, characterized, and assessed in terms of their criticality and impact on the program. Design, development, test, and evaluation methods were addressed to identify potential areas of improvement.
NASA Technical Reports Server (NTRS)
Rabelo, Luis C.
2002-01-01
This is a report of my activities as a NASA Fellow during the summer of 2002 at the NASA Kennedy Space Center (KSC). The core of these activities is the assigned project: the Virtual Test Bed (VTB) from the Spaceport Engineering and Technology Directorate. The VTB Project has its foundations in the NASA Ames Research Center (ARC) Intelligent Launch & Range Operations program. The objective of the VTB project is to develop a new and unique collaborative computing environment where simulation models can be hosted and integrated in a seamless fashion. This collaborative computing environment will be used to build a Virtual Range as well as a Virtual Spaceport. This project will work as a technology pipeline to research, develop, test and validate R&D efforts against real time operations without interfering with the actual operations or consuming the operational personnel s time. This report will also focus on the systems issues required to conceptualize and provide form to a systems architecture capable of handling the different demands.
Process-dependent risk of delayed health effects for welders.
Stern, R M
1981-01-01
In most industrialized countries large numbers of workers are exposed to welding fumes. Although the general pattern of welders' health may not significantly differ from that of workers in other dusty industrial occupations which demonstrate elevated incidence of respiratory tract diseases with long latency periods, the extremely wide range of substances at potentially high concentrations produced by various welding technologies may give rise to undetected process-specific high-risk working conditions: ("hot spots"). The origin, prevalence and range of magnitude of such hot spots, especially for cancer of the respiratory tract, is discussed, with emphasis placed on the assessment of risk resulting from exposure to Cr(VI) and Ni accompanying the use of various technologies for the welding of stainless and high alloy steels. The wide variation of health effects found within the industry, however, indicates the need for a standard protocol for future epidemiological studies, as well as for the development of suitable methodologies for experimental risk assessment. PMID:7333241
[Microfabricated X-ray Optics Technology Development for the Constellation X-Mission
NASA Technical Reports Server (NTRS)
Schattenburg, Mark L.
2005-01-01
MIT has previously developed advanced methods for the application of silicon microstructures (so-called microcombs) in the precision assembly of foil x-ray optics in support of the Constellation-X Spectroscopy X-ray Telescope (SXT) technology development at the NASA Goddard Space Flight Center (GSFC). During the first year of the above Cooperative Agreement, MIT has developed a new, mature, potentially high- yield process for the manufacturing of microcombs that can be applied to a range of substrates independent of thickness. MIT also developed techniques to extract microcomb accuracy from an assembly truss metrology test stand and to extend the dynamic range of its Shack-Hartmann foil metrology tool. The placement repeatability of foil optics with microcombs in the assembly truss has been improved by a factor of two to approximately 0.15 micron. This was achieved by electric contact determination in favor of determining contact through force measurements. Development work on a stress-free thin foil holder was also supported by this agreement and successfully continued under a different grant.
High temperature dynamic engine seal technology development
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.
1992-01-01
Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.
Ageing with telecare: care or coercion in austerity?
Mort, Maggie; Roberts, Celia; Callén, Blanca
2013-07-01
In recent years images of independence, active ageing and staying at home have come to characterise a successful old age in western societies. 'Telecare' technologies are heavily promoted to assist ageing-in-place and a nexus of demographic ageing, shrinking healthcare and social care budgets and technological ambition has come to promote the 'telehome' as the solution to the problem of the 'age dependency ratio'. Through the adoption of a range of monitoring and telecare devices, it seems that the normative vision of independence will also be achieved. But with falling incomes and pressure for economies of scale, what kind of independence is experienced in the telehome? In this article we engage with the concepts of 'technogenarians' and 'shared work' to illuminate our analysis of telecare in use. Drawing on European-funded research we argue that home-monitoring based telecare has the potential to coerce older people unless we are able to recognise and respect a range of responses including non-use and 'misuse' in daily practice. We propose that re-imagining the aims of telecare and redesigning systems to allow for creative engagement with technologies and the co-production of care relations would help to avoid the application of coercive forms of care technology in times of austerity. © 2012 The Authors. Sociology of Health & Illness © 2012 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd.
A Flexible Sensor Technology for the Distributed Measurement of Interaction Pressure
Donati, Marco; Vitiello, Nicola; De Rossi, Stefano Marco Maria; Lenzi, Tommaso; Crea, Simona; Persichetti, Alessandro; Giovacchini, Francesco; Koopman, Bram; Podobnik, Janez; Munih, Marko; Carrozza, Maria Chiara
2013-01-01
We present a sensor technology for the measure of the physical human-robot interaction pressure developed in the last years at Scuola Superiore Sant'Anna. The system is composed of flexible matrices of opto-electronic sensors covered by a soft silicone cover. This sensory system is completely modular and scalable, allowing one to cover areas of any sizes and shapes, and to measure different pressure ranges. In this work we present the main application areas for this technology. A first generation of the system was used to monitor human-robot interaction in upper- (NEUROExos; Scuola Superiore Sant'Anna) and lower-limb (LOPES; University of Twente) exoskeletons for rehabilitation. A second generation, with increased resolution and wireless connection, was used to develop a pressure-sensitive foot insole and an improved human-robot interaction measurement systems. The experimental characterization of the latter system along with its validation on three healthy subjects is presented here for the first time. A perspective on future uses and development of the technology is finally drafted. PMID:23322104
NASA Astrophysics Data System (ADS)
Intes, Xavier; Djeziri, Salim; Ichalalene, Zahia; Mincu, Niculae; Wang, Yong; St.-Jean, Philippe; Lesage, Frédéric; Hall, David; Boas, David A.; Polyzos, Margaret
2004-10-01
Near-infrared (NIR) technology appears promising as a non-invasive clinical technique for breast cancer screening and diagnosis. The technology capitalizes on the relative transparency of human tissue in this spectral range and its sensitivity to the main components of the breast:; water, lipid and hemoglobin. In this work we present initial results obtained using the SoftScan® breast-imaging system developed by ART, Advanced Research Technologies inc., Montreal. This platform consists of a 4-wavelength time-resolved scanning system used to quantify non-invasively the local functional state of breast tissue. The different aspects of the system used to retrieve 3D optical contrast will be presented. Furthermore, preliminary data obtained from a prospective study conducted at The Royal Victoria Hospital of the McGill University Health Center in Montreal will be discussed. Analysis of the data gathered by SoftScan® demonstrated the potential of the technology in discriminating between healthy and diseased tissue.
High-accuracy measurement of low-water-content in liquid using NIR spectral absorption method
NASA Astrophysics Data System (ADS)
Peng, Bao-Jin; Wan, Xu; Jin, Hong-Zhen; Zhao, Yong; Mao, He-Fa
2005-01-01
Water content measurement technologies are very important for quality inspection of food, medicine products, chemical products and many other industry fields. In recent years, requests for accurate low-water-content measurement in liquid are more and more exigent, and great interests have been shown from the research and experimental work. With the development and advancement of modern production and control technologies, more accurate water content technology is needed. In this paper, a novel experimental setup based on near-infrared (NIR) spectral technology and fiber-optic sensor (OFS) is presented. It has a good measurement accuracy about -/+ 0.01%, which is better, to our knowledge, than most other methods published until now. It has a high measurement resolution of 0.001% in the measurement range from zero to 0.05% for water-in-alcohol measurement, and the water-in-oil measurement is carried out as well. In addition, the advantages of this method also include pollution-free to the measured liquid, fast measurement and so on.
With Great Measurements Come Great Results
NASA Astrophysics Data System (ADS)
Williams, Carl
Measurements are the foundation for science and modern life. Technologies we take for granted every day depend on them-cell phones, CAT scans, pharmaceuticals, even sports equipment. Metrology, or measurement science, determines what industry can make reliably and what they cannot. At the National Institute of Standards and Technology (NIST) we specialize in making world class measurements that an incredibly wide range of industries use to continually improve their products - computer chips with nanoscale components, atomic clocks that you can hold in your hand, lasers for both super-strong welds and delicate eye surgeries. Think of all the key technologies developed over the last 100 years and better measurements, standards, or analysis techniques played a role in making them possible. NIST works collaboratively with industry researchers on the advanced metrology for tomorrow's technologies. A new kilogram based on electromagnetic force, cars that weigh half as much but are just as strong, quantum computers, personalized medicine, single atom devices - it's all happening in our labs now. This talk will focus on how metrology creates the future.
NASA Astrophysics Data System (ADS)
Ruzanka, S.
2014-02-01
Virtual reality art at the turn of the millenium saw an explosion of creative exploration around this nascent technoloy. Though VR art has much in common with media art in general, the affordances of the technology gave rise to unique experiences, discourses, and artistic investigations. Women artists were at the forefront of the medium, shaping its aesthetic and technical development, and VR fostered a range of artistic concerns and experimentation that was largely distinct from closely related forms such as digital games. Today, a new wave of consumer technologies including 3D TV's, gestural and motion tracking interfaces, and headmount displays as viable, low-cost gaming peripherals drives a resurgence in interest in VR for interactive art and entertainment. Designers, game developers, and artists working with these technologies are in many cases discovering them anew. This paper explores ways of reconnecting this current moment in VR with its past. Can the artistic investigations begun in previous waves of VR be continued? How do the similarities and differences in contexts, communities, technologies, and discourses affect the development of the medium?
Microgravity fluid management requirements of advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, Robert P.
1987-01-01
The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.
Improving early cycle economic evaluation of diagnostic technologies.
Steuten, Lotte M G; Ramsey, Scott D
2014-08-01
The rapidly increasing range and expense of new diagnostics, compels consideration of a different, more proactive approach to health economic evaluation of diagnostic technologies. Early cycle economic evaluation is a decision analytic approach to evaluate technologies in development so as to increase the return on investment as well as patient and societal impact. This paper describes examples of 'early cycle economic evaluations' as applied to diagnostic technologies and highlights challenges in its real-time application. It shows that especially in the field of diagnostics, with rapid technological developments and a changing regulatory climate, early cycle economic evaluation can have a guiding role to improve the efficiency of the diagnostics innovation process. In the next five years the attention will move beyond the methodological and analytic challenges of early cycle economic evaluation towards the challenge of effectively applying it to improve diagnostic research and development and patient value. Future work in this area should therefore be 'strong on principles and soft on metrics', that is, the metrics that resonate most clearly with the various decision makers in this field.
Early Warning System of Flood Disaster Based on Ultrasonic Sensors and Wireless Technology
NASA Astrophysics Data System (ADS)
Indrasari, W.; Iswanto, B. H.; Andayani, M.
2018-04-01
A flood disaster provides considerable losses to the people who live around the river. To mitigate losses of material due to flood disaster required an early warning system of flood disaster. For that reason, it necessary to design a system that provide alert to the people prior the flood disaster. And this paper describes development of a device for early detection system of flood disasters. This device consists of two ultrasonic sensors as a water level detector, and a water flow sensor as a water flow velocity sensor. The wireless technology and GSM is used as an information medium. The system is designed based on water level conditions in the Katulampa Dam, Bogor. Characterization of water level detector showed that the device effectively works in a range of water level of 14-250 cm, with a maximum relative error of 4.3%. Meanwhile the wireless works properly as far as 75 m, and the SMS transmission time is 8.20 second.
Bauer, S M; Lane, J P; Stone, V I; Unnikrishnan, N
1998-01-01
The Rehabilitation Engineering Research Center on Technology Evaluation and Transfer is exploring how the end users of assistive technology devices define the ideal device. This work is called the Consumer Ideal Product program. In this work, end users identify and establish the importance of a broad range of product design features, along with the related product support and service provided by manufacturers and vendors. This paper describes a method for systematically transforming end-user defined requirements into a form that is useful and accessible to product designers, manufacturers, and vendors. In particular, product requirements, importance weightings, and metrics are developed from the Consumer Ideal Product battery charger outcomes. Six battery charges are benchmarked against these product requirements using the metrics developed. The results suggest improvements for each product's design, service, and support. Overall, the six chargers meet roughly 45-75% of the ideal product's requirements. Many of the suggested improvements are low-cost changes that, if adopted, could provide companies a competitive advantage in the marketplace.
Green Propulsion Advancement and Infusion
NASA Technical Reports Server (NTRS)
Mulkey, Henry W.; Maynard, Andrew P.; Anflo, Kjell
2018-01-01
All space missions benefit from increased propulsion system performance, allowing lower spacecraft launch mass, larger scientific payloads, or extended on-orbit lifetimes. Likewise, long-term storable liquid propellant candidates that offer significant reduction in personnel hazards and shorter payload processing schedules present a more attractive propulsion subsystem solution to spacecraft builders. Aiming to reduce risk to potential infusion missions and fully comprehend the alternative propellant performance, the work presented herein represents many years of development and collaborative efforts to successfully align higher performance, low toxicity green propellants into NASA Goddard Space Flight Center (GSFC) missions. High Performance Green Propulsion (HPGP), and the associated propellant technology, has advanced significantly in maturity with increased familiarity with LMP-103S propellant handling, the proven reduction in loading hazards, successful launches conducted at multiple international Ranges, and HPGP on-orbit flight heritage. As science missions move forward to the potential infusion of HPGP technology, the National Aeronautics and Space Administration (NASA) and its partners are working to address gaps in system performance and operational considerations.
NASA Astrophysics Data System (ADS)
Hilpert, Reinhold; Binder, Florian; Grol, Michael; Hallermayer, Klaus; Josel, Hans-Peter; Klein, Christian; Maier, Josef; Oberpriller, Helmut; Ritter, Josef; Scheller, Frieder W.
1994-10-01
In a joint project of Deutsche Aerospace, Boehringer Mannheim and the University of Potsdam portable devices for the detection of illegal drugs, based on biosensor technology, are being developed. The concept enrichment of the drug from the gas phase and detection by immunological means. This publication covers the description of our objectives, preparatory work and results concerning enrichment of drugs from the gas phase. Vapor pressures of cocaine and cannabinoids have been determined. A test gas generator has been constructed which allows for reproducible preparation of cocaine concentrations between 2 ng/l and 2 pg/l. Coupling of a thermodesorption unit with GC/MS has been established for reference analysis. As another analytical tool, an ELISA with a lower detection limit of about 0,5 pg cocaine/assay has been developed. Applying fleece-type adsorbers, enrichment factors for cocaine in the range of 105 have been realized. No significant interference was found with potentially disturbing substances.
Will Allis Prize Talk: Allis in Wonderland--Physics for Profit as well as Fun
NASA Astrophysics Data System (ADS)
Waymouth, John F.
2000-06-01
Unlike previous recipients of the William P. Allis Prize, I spent my entire working career as a physicist in industry, spanning the entire range from research to development to engineering, from science to technology. Further unlike them, I have been retired for twelve years. My knowledge of current leading-edge research in discharge light sources is consequently entirely second-hand. Rather than speak about it, therefore, I will relate instead the history of a successful physics-to-factory handoff I participated in, to give you some idea of the flavor of physics for profit as well as for fun, in an environment where any piece of work that results only in publications in refereed journals and meeting presentations must be considered a failure. I will conclude with some critical observations about the lack of scientific and technical expertise among the top managements of most of the Fortune-500 list of US firms, even those whose businesses are deeply rooted in science and technology.
Laboratory and Space Plasma Studies
NASA Astrophysics Data System (ADS)
Hyman, Ellis
1996-08-01
The work performed by Science Applications International Corporation (SAIC), encompasses a wide range of topics in experimental, computational, and analytical laboratory and space plasma physics. The accomplishments described in this report have been in support of the programs of the Laser Plasma Branch (Code 6730) and other segments of the Plasma Physics Division at the Naval Research Laboratory (NRL) and cover the period 27 September 1993 to August 1, 1996. SAIC's efforts have been supported by sub-contracts or consulting agreements with Pulse Sciences, Inc., Clark Richardson, and Biskup Consulting Engineers, Pharos Technical Enterprises, Plex Corporation, Cornell University, Stevens Institute of Technology, the University of Connecticut, Plasma Materials and Technologies, Inc., and GaSonics International, Inc. In the following discussions section we will describe each of the topics investigated and the results obtained. Much of the research work has resulted in journal publications and NRL Memorandum Reports in which the investigation is described in detail. These reports are included as Appendices to this Final Report.
2017-01-01
In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include resolution, surface roughness, leakage, transparency, material deformation, and the possibilities for integration of other materials. Next, the autofluorescence, solvent compatibility, and biocompatibility of 12 representative FDM materials were tested and evaluated. Finally, we demonstrate the feasibility of FDM in a number of important applications. In particular, we consider the fabrication of fluidic channels, masters for polymer replication, and tools for the production of paper microfluidic devices. This work thus provides a guideline for (i) the use of FDM technology by addressing its possibilities and current limitations, (ii) material selection for FDM, based on solvent compatibility and biocompatibility, and (iii) application of FDM technology to (bio)analytical research by demonstrating a broad range of illustrative examples. PMID:28628294
NASA's southeast technology transfer alliance: A cooperative technology assistance initiative
NASA Astrophysics Data System (ADS)
Craft, Harry G.; Sheehan, William; Johnson, Anne
1996-03-01
Since 1958, NASA has been charged with actively assisting in the transfer of technologies derived from the United States space program into the industrial sector of the U.S. economy. This has historically been accomplished through technology transfer offices working independently at each NASA field center. NASA recently restructured the program to provide regional coordination, maximize efficiencies, eliminate redundancies, and capitalize on each center's fundamental technology strengths. The nation is divided into six NASA technology transfer geographical regions with each region containing one or more NASA field centers and a regional technology transfer center. The southeast region includes the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. The NASA field centers in this region are: the Marshall Space Flight Center in Huntsville, Alabama; the Kennedy Space Center in Florida; and the Stennis Space Center in Bay St. Louis, Mississippi. The centers have teamed to focus primarily on regional industries and businesses, to provide a wide range of resources for U.S. industries, including access to unique government facilities, regional workshops, and technical problem solving. Hundreds of American businesses have benefited from this new regional initiative, as evidenced by reports of over 10,500 added or saved jobs and over 988 million worth of economic impacts as a result of their technology transfer activities.
NASA Astrophysics Data System (ADS)
Gusev, E. V.; Mukhametzyanov, Z. R.; Razyapov, R. V.
2017-11-01
The problems of the existing methods for the determination of combining and technologically interlinked construction processes and activities are considered under the modern construction conditions of various facilities. The necessity to identify common parameters that characterize the interaction nature of all the technology-related construction and installation processes and activities is shown. The research of the technologies of construction and installation processes for buildings and structures with the goal of determining a common parameter for evaluating the relationship between technologically interconnected processes and construction works are conducted. The result of this research was to identify the quantitative evaluation of interaction construction and installation processes and activities in a minimum technologically necessary volume of the previous process allowing one to plan and organize the execution of a subsequent technologically interconnected process. The quantitative evaluation is used as the basis for the calculation of the optimum range of the combination of processes and activities. The calculation method is based on the use of the graph theory. The authors applied a generic characterization parameter to reveal the technological links between construction and installation processes, and the proposed technique has adaptive properties which are key for wide use in organizational decisions forming. The article provides a written practical significance of the developed technique.
The DuPont Conference: Implications for the Chemical Technology Curriculum
NASA Astrophysics Data System (ADS)
Kenkel, John; Rutledge, Sue; Kelter, Paul B.
1998-05-01
Southeast Community College (SCC) hosted the first DuPont Conference for Chemical Technology Education at its Lincoln, Nebraska campus October 4-6, 1997. The conference brought together fourteen practicing chemists and chemistry technicians and five college and university faculty members for the express purpose of suggesting new laboratory activities that would help relate the real world of work to the education of chemical laboratory technicians in community colleges. Participants included seven men and seven women from DuPont, Procter & Gamble, Eastman Chemical, Eastman Kodak, Dow Chemical, Air Products and Chemicals, Monsanto, Union Carbide, the Nebraska Agriculture Laboratory, and the University of Nebraska Biological Process Development Facility, Department of Food Science. The conference, sponsored by the E. I. DuPont DeNemours & Company through a grant awarded to SCC in June 1997, was intended to help further the goals of the two major projects underway at SCC, funded by the National Science Foundation's Advanced Technological Education Program. These projects, dubbed "Assignment: Chemical Technology I and II", or ACT-I and ACT-II, are curriculum and materials development projects. The invited scientists had between 2 and 32 years of experience that ranged from bench work to management levels. Many are or have been active on the national scene as members and officers of the American Chemical Society's Division of Chemical Technicians and the ACS Committee on Technician Activities.
A Survey of LIDAR Technology and Its Use in Spacecraft Relative Navigation
NASA Technical Reports Server (NTRS)
Christian, John A.; Cryan, Scott P.
2013-01-01
This paper provides a survey of modern LIght Detection And Ranging (LIDAR) sensors from a perspective of how they can be used for spacecraft relative navigation. In addition to LIDAR technology commonly used in space applications today (e.g. scanning, flash), this paper reviews emerging LIDAR technologies gaining traction in other non-aerospace fields. The discussion will include an overview of sensor operating principles and specific pros/cons for each type of LIDAR. This paper provides a comprehensive review of LIDAR technology as applied specifically to spacecraft relative navigation. HE problem of orbital rendezvous and docking has been a consistent challenge for complex space missions since before the Gemini 8 spacecraft performed the first successful on-orbit docking of two spacecraft in 1966. Over the years, a great deal of effort has been devoted to advancing technology associated with all aspects of the rendezvous, proximity operations, and docking (RPOD) flight phase. After years of perfecting the art of crewed rendezvous with the Gemini, Apollo, and Space Shuttle programs, NASA began investigating the problem of autonomous rendezvous and docking (AR&D) to support a host of different mission applications. Some of these applications include autonomous resupply of the International Space Station (ISS), robotic servicing/refueling of existing orbital assets, and on-orbit assembly.1 The push towards a robust AR&D capability has led to an intensified interest in a number of different sensors capable of providing insight into the relative state of two spacecraft. The present work focuses on exploring the state-of-the-art in one of these sensors - LIght Detection And Ranging (LIDAR) sensors. It should be noted that the military community frequently uses the acronym LADAR (LAser Detection And Ranging) to refer to what this paper calls LIDARs. A LIDAR is an active remote sensing device that is typically used in space applications to obtain the range to one or more points on a target spacecraft. As the name suggests, LIDAR sensors use light (typically a laser) to illuminate the target and measure the time it takes for the emitted signal to return to the sensor. Because the light must travel from the source, to
LNA with wide range of gain control and wideband interference rejection
NASA Astrophysics Data System (ADS)
Wang, Jhen-Ji; Chen, Duan-Yu
2016-10-01
This work presents a low-noise amplifier (LNA) design with a wide-range gain control characteristic that integrates adjustable current distribution and output impedance techniques. For a given gain characteristic, the proposed LNA provides better wideband interference rejection performance than conventional LNA. Moreover, the proposed LNA also has a wider gain control range than conventional LNA. Therefore, it is suitable for satellite communications systems. The simulation results demonstrate that the voltage gain control range is between 14.5 and 34.2 dB for such applications (2600 MHz); the input reflection coefficient is less than -18.9 dB; the noise figure (NF) is 1.25 dB; and the third-order intercept point (IIP3) is 4.52 dBm. The proposed LNA consumes 23.85-28.17 mW at a supply voltage of 1.8 V. It is implemented by using TSMC 0.18-um RF CMOS process technology.
Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds
NASA Astrophysics Data System (ADS)
Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.
2014-12-01
Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.
Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations.
Patzke, Greta R; Zhou, Ying; Kontic, Roman; Conrad, Franziska
2011-01-24
Oxide nanomaterials are indispensable for nanotechnological innovations, because they combine an infinite variety of structural motifs and properties with manifold morphological features. Given that new oxide materials are almost reported on a daily basis, considerable synthetic and technological work remains to be done to fully exploit this ever increasing family of compounds for innovative nano-applications. This calls for reliable and scalable preparative approaches to oxide nanomaterials and their development remains a challenge for many complex nanostructured oxides. Oxide nanomaterials with special physicochemical features and unusual morphologies are still difficult to access by classic synthetic pathways. The limitless options for creating nano-oxide building blocks open up new technological perspectives with the potential to revolutionize areas ranging from data processing to biocatalysis. Oxide nanotechnology of the 21st century thus needs a strong interplay of preparative creativity, analytical skills, and new ideas for synergistic implementations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
2000-01-01
This report contains highlights of some of the major accomplishments and applications made by NASA Langley Research Center and its university partners and industry colleagues during 1999. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley and the contributions of this work toward maintaining United States' leadership in aeronautics and space research. The Center's historic national role since 1917 continues in Aerospace Technology research with an additional major role in Earth Science research. Langley also partners closely with other NASA Centers and the Jet Propulsion Laboratory in Space Science and the Human Exploration and Development of Space. A color version is available at http://larcpubs.larc.nasa.gov/randt/1999/. For further information, contact Dennis Bushnell, Senior Scientist, Mail Stop 110, NASA Langley Research Center, Hampton, Virginia 23681-2199, (757)-864-8987, e-mail address: d.m.bushnell@larc.nasa.gov.
Active magnetic radiation shielding system analysis and key technologies.
Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C
2015-01-01
Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.
Imaging live humans through smoke and flames using far-infrared digital holography.
Locatelli, M; Pugliese, E; Paturzo, M; Bianco, V; Finizio, A; Pelagotti, A; Poggi, P; Miccio, L; Meucci, R; Ferraro, P
2013-03-11
The ability to see behind flames is a key challenge for the industrial field and particularly for the safety field. Development of new technologies to detect live people through smoke and flames in fire scenes is an extremely desirable goal since it can save human lives. The latest technologies, including equipment adopted by fire departments, use infrared bolometers for infrared digital cameras that allow users to see through smoke. However, such detectors are blinded by flame-emitted radiation. Here we show a completely different approach that makes use of lensless digital holography technology in the infrared range for successful imaging through smoke and flames. Notably, we demonstrate that digital holography with a cw laser allows the recording of dynamic human-size targets. In this work, easy detection of live, moving people is achieved through both smoke and flames, thus demonstrating the capability of digital holography at 10.6 μm.
Schwartze, Jonas; Prekazi, Arianit; Schrom, Harald; Marschollek, Michael
2017-01-01
Ambient assisted living (AAL) may support ageing in place but is primarily driven by technology. The aim of this work is, to identifying reasons to move into assisted living institutions, their range of service and possible substitutability. We did semi-structured interviews with five experts from assisted living institutions and used results to design and implement assistive technologies in an AAL environment using BASIS, a cross domain bus system for smart buildings. Reasons for moving to assisted living institutions are expected benefits for chronic health problems, safety, social isolation and carefree living. We implemented six application systems for inactivity monitoring, stove shutdown, air quality monitoring, medication and appointment reminders, detection of unwanted situations before leaving and optical ringing of the doorbell. Substitution of selected assisted living services is feasible and has potential to delay necessity to move into assisted living institution if complement social services are installed.
Bousquet, J; Arnavielhe, S; Bedbrook, A; Fonseca, J; Morais Almeida, M; Todo Bom, A; Annesi-Maesano, I; Caimmi, D; Demoly, P; Devillier, P; Siroux, V; Menditto, E; Passalacqua, G; Stellato, C; Ventura, M T; Cruz, A A; Sarquis Serpa, F; da Silva, J; Larenas-Linnemann, D; Rodriguez Gonzalez, M; Burguete Cabañas, M T; Bergmann, K C; Keil, T; Klimek, L; Mösges, R; Shamai, S; Zuberbier, T; Bewick, M; Price, D; Ryan, D; Sheikh, A; Anto, J M; Mullol, J; Valero, A; Haahtela, T; Valovirta, E; Fokkens, W J; Kuna, P; Samolinski, B; Bindslev-Jensen, C; Eller, E; Bosnic-Anticevich, S; O'Hehir, R E; Tomazic, P V; Yorgancioglu, A; Gemicioglu, B; Bachert, C; Hellings, P W; Kull, I; Melén, E; Wickman, M; van Eerd, M; De Vries, G
2018-02-01
Mobile technology has been used to appraise allergic rhinitis control, but more data are needed. To better assess the importance of mobile technologies in rhinitis control, the ARIA (Allergic Rhinitis and its Impact on Asthma) score ranging from 0 to 4 of the Allergy Diary was compared with EQ-5D (EuroQuol) and WPAI-AS (Work Productivity and Activity Impairment in allergy) in 1288 users in 18 countries. This study showed that quality-of-life data (EQ-5D visual analogue scale and WPA-IS Question 9) are similar in users without rhinitis and in those with mild rhinitis (scores 0-2). Users with a score of 3 or 4 had a significant impairment in quality-of-life questionnaires. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
Martínez Pérez, María; Dafonte, Carlos; Gómez, Ángel
2018-05-19
Patient safety is a principal concern for health professionals in the care process and it is, therefore, necessary to provide information management systems to each unit of the hospital, capable of tracking patients and medication to reduce the occurrence of adverse events and therefore increase the quality of care received by patients during their stay in hospital. This work presents a tool for the Intensive Care Unit (ICU), a key service with special characteristics, which computerises and tracks admissions, care plans, vital monitoring, the prescription and medication administration process for patients in this service. To achieve this, it is essential that innovative and cutting-edge technologies are implemented such as Near Field Communication (NFC) technology which is now being implemented in diverse environments bringing a range of benefits to the tasks for which it is employed.
Any Way You Slice It—A Comparison of Confocal Microscopy Techniques
Jonkman, James
2015-01-01
The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research. PMID:25802490
Dispersion-cancelled biological imaging with quantum-inspired interferometry
Mazurek, M. D.; Schreiter, K. M.; Prevedel, R.; Kaltenbaek, R.; Resch, K. J.
2013-01-01
Quantum information science promises transformative impact over a range of key technologies in computing, communication, and sensing. A prominent example uses entangled photons to overcome the resolution-degrading effects of dispersion in the medical-imaging technology, optical coherence tomography. The quantum solution introduces new challenges: inherently low signal and artifacts, additional unwanted signal features. It has recently been shown that entanglement is not a requirement for automatic dispersion cancellation. Such classical techniques could solve the low-signal problem, however they all still suffer from artifacts. Here, we introduce a method of chirped-pulse interferometry based on shaped laser pulses, and use it to produce artifact-free, high-resolution, dispersion-cancelled images of the internal structure of a biological sample. Our work fulfills one of the promises of quantum technologies: automatic-dispersion-cancellation interferometry in biomedical imaging. It also shows how subtle differences between a quantum technique and its classical analogue may have unforeseen, yet beneficial, consequences. PMID:23545597
Low lift-to-drag aero-assisted orbit transfer vehicles
NASA Technical Reports Server (NTRS)
Andrews, D. G.; Savage, R. T.
1984-01-01
The results of systems analysis conducted on low life drag ratio (L/D) aero-assisted orbit transfer vehicle (AOTV's) are presented. The objectives for this class of vehicle and formulate technology development plans and funding levels to bring the required technologies to readiness levels, as well as develop a credible decision data base encompassing the entire range of low L/D concepts for use in future NASA Aeroassist Orbit Transfer Vehicles studies. Each candidate low L/D concept, the aerobrake, the lifting brake, and the aeromaneuvering concept could be made to work with technologies achievable by the early 1990's. All concepts require flexible structure with flexible thermal protection system (TPS) to be successfully integrated into the shuttle orbiter for launch, all required improvements in guidance and control to fly the dispersed atmospheres at high altitude, and all concepts had potential to evolve from ground-based to space-based operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yen, Hung-Ju
These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at National Taipei University of Technology. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materialsmore » for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.« less
Dror, Itiel; Schmidt, Pascal; O'connor, Lanty
2011-01-01
As new technology becomes available and is used for educational purposes, educators often take existing training and simply transcribe it into the new technological medium. However, when technology drives e-learning rather than the learner and the learning, and when it uses designs and approaches that were not originally built for e-learning, then often technology does not enhance the learning (it may even be detrimental to it). The success of e-learning depends on it being 'brain friendly', on engaging the learners from an understanding of how the cognitive system works. This enables educators to optimize learning by achieving correct mental representations that will be remembered and applied in practice. Such technology enhanced learning (TEL) involves developing and using novel approaches grounded in cognitive neuroscience; for example, gaming and simulations that distort realism rather than emphasizing visual fidelity and realism, making videos interactive, training for 'error recovery' rather than for 'error reduction', and a whole range of practical ways that result in effective TEL. These are a result of e-learning that is built to fit and support the cognitive system, and therefore optimize the learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemple, R.P.; Meyer, R.D.; Jacobson, R.D.
This work in partnership with industry is a continuation of cost- effective innovative, directional boring development begun in FY90 and planed to extend into FY94. Several demonstrations of the strategy of building hybrid hardware from utilities installation, geothermal, and soil mechanics technologies have been performed at Sandia National Laboratories (SNL) and at Charles Machine works (CMW) test sites as well as at a commercial refinery site. Additional tests at the SNL Directional Boring Test Range (DBTR) and a lagoon site are planned in calendar 1991. A new companion project to develop and demonstrate a hybrid capability for horizontal logging withmore » penetrometers, specialty instruments and samplers has been taken from concept to early prototype hardware. The project goal of extending the tracking/locating capability of the shallow boring equipment to 80in. is being pursued with encouraging results at 40in. depths. Boring costs, not including tailored well completions dictated by individual site parameters, are estimated at $20 to $50 per foot. Applications continue to emerge for this work and interest continues to be expressed by DoD and EPA researchers and environmental site engineers. 12 figs.« less
Battle on the Bookshelves: History, Desert Storm, and the United States Armed Forces
2004-06-17
impacted on the outcome of the war, ranging from superior American technology to flagging Iraqi morale, each of the armed services is free to claim...though decidedly more subtle, could 5 have an equally large impact at the strategic level. For instance, if a service succeeds in overstating its...official accounts of a campaign. Therefore, as part o this work, it is necessary to determine the impact of organizational culture on the observed
Active-passive bistatic surveillance for long range air defense
NASA Astrophysics Data System (ADS)
Wardrop, B.; Molyneux-Berry, M. R. B.
1992-06-01
A hypothetical mobile support receiver capable of working within existing and future air defense networks as a means to maintain essential surveillance functions is considered. It is shown how multibeam receiver architecture supported by digital signal processing can substantially improve surveillance performance against chaff and jamming threats. A dual-mode support receiver concept is proposed which is based on the state-of-the-art phased-array technology, modular processing in industry standard hardware and existing networks.
Exploitation of Smart Materials and Sensors as Disruptive Technologies
2010-03-01
commercially available SMA, with current work aimed at new NiTi–X (X = Fe, Nb, Cu) alloys to further extend their range of properties and potential...ultra-light and micro-air vehicles. However, in common with alloy systems challenges exist regarding the long-term properties of polymeric-based SM... properties of single crystals of Ni-Mn-Ga magnetic shape memory alloys ", in Proc. SPIE, 186–197 (2004). 41 Gharghouri, M. A., Elsawy, A., & Hyatt
Virtual special issue on catalysis at the U.S. Department of Energy's National Laboratories
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.; ...
2016-04-21
Here the catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Researchers are positioned on one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Thermal Characterization of Fe3O4 Nanoparticles Formed from Poorly Crystalline Siderite
NASA Technical Reports Server (NTRS)
Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.
2005-01-01
Increasing interest in environmental geochemistry has led to the recognition that crystals with sizes in the nanometer range (e.g., colloids and nanoscale precipitates) and poorly crystalline compounds (e.g., ferrihydrites) may comprise the majority of reactive mineral surface area near the Earth s surface. When the diameters of individual particles are in the range of 100 nm or less, the surface energy contribution to the free energy modifies phase stability. This results in stabilization of polymorphs not normally encountered in the macrocrystal domain. These phases potentially have very different surface-site geometries, adsorptive properties, and growth mechanisms, and exhibit size-dependent kinetic behavior. Thus nanophases dramatically modify the physical and chemical properties of soils and sediments. In a more general sense, the characteristics of nanocrystals are of intense technological interest because small particle size confers novel chemical, optical, and electronic properties. Thus, nanocrystalline materials are finding applications as catalytic substrates, gas phase separation materials, and even more importantly in the field of medicine. This is an opportune time for mineral physicists working on nanocrystalline materials to develop collaborative efforts with materials scientists, chemists, and others working on nanophase materials of technological interest (e.g., for magnetic memories). Our objective in this study was to synthesize submicron (<200 nm) magnetite and to study their thermal and particle size properties.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Researchers utilize several types of watercraft to conduct underwater acoustic research in the Launch Complex 39 turn basin near Launch Pad 39A. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Dr. Grant Gilmore (left), Dynamac Corp., talks to another member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Research team members roll out acoustic cable to the water's edge during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Joe Bartoszek, NASA, is a member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin near Launch Pad 39A. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Research team members take their places on one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Dr. Grant Gilmore, Dynamac Corp., utilizes a laptop computer to explain aspects of the underwater acoustic research under way in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
[The Engineering and Technical Services Directorate at the Glenn Research Center
NASA Technical Reports Server (NTRS)
Moon, James
2004-01-01
My name is James Moon and I am a senior at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time s o h a r e applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community. In the 7000 Directorate I work directly in the 7611 organization. This organization is known as the Aviation Environments Technical Branch. My mentor is Vincent Satterwhite who is also the Branch Chief of the Aviation Environments Technical Branch. In this branch, I serve as the Assistant program manager of the Engineering Technology Program. The Engineering Technology Program (ETP) is one of three components of the High School L.E.R.C.I.P. This is an Agency-sponsored, eight-week research-based apprenticeship program designed to attract traditionally underrepresented high school students that demonstrate an aptitude for and interest in mathematics, science, engineering, and technology.
Bittner, James A; Balfe, Susan; Pittendrigh, Barry R; Popovics, John S
2018-05-28
Cowpea provides a significant source of protein for over 200 million people in Sub-Saharan Africa. The cowpea bruchid, Callosobruchus maculatus (F) (Coleoptera: Bruchidae), is a major pest of cowpea as the larval stage attacks stored cowpea grains, causing postharvest loss. Cowpea bruchid larvae spend all their time feeding within the cowpea seed. Past research findings, published over 25 yr ago, have shown that feeding activity of several bruchids within a cowpea seed emit mechanical vibrations within the frequency range 5-75 kHz. This work led to the development of monitoring technologies that are both important for basic research and practical application. Here, we use newer and significantly improved technologies to re-explore the nature of the vibration signals produced by an individual C. maculatus, when it feeds in cowpea seeds. Utilizing broadband frequency sensing, individual fourth-instar bruchid larvae feeding activities (vibration events) were recorded to identify specific key emission frequencies. Verification of recorded events and association to actual feeding activities was achieved through mass measurements over 24 h for a series of replicates. The measurements identified variable peak event emission frequencies across the replicate sample set ranging in frequency from 16.4 to 26.5 kHz. A positive correlation between the number of events recorded and the measured mass loss of the cowpea seed was observed. The procedure and verification reported in this work provide an improved basis for laboratory-based monitoring of single larval feeding. From the rich dataset captured, additional analysis can be carried out to identify new key variables of hidden bruchid larval activity.
Characterisation of diode-connected SiGe BiCMOS HBTs for space applications
NASA Astrophysics Data System (ADS)
Venter, Johan; Sinha, Saurabh; Lambrechts, Wynand
2016-02-01
Silicon-germanium (SiGe) bipolar complementary metal-oxide semiconductor (BiCMOS) transistors have vertical doping profiles reaching deeper into the substrate when compared to lateral CMOS transistors. Apart from benefiting from high-speed, high current gain and low-output resistance due to its vertical profile, BiCMOS technology is increasingly becoming a preferred technology for researchers to realise next-generation space-based optoelectronic applications. BiCMOS transistors have inherent radiation hardening, to an extent predictable cryogenic performance and monolithic integration potential. SiGe BiCMOS transistors and p-n junction diodes have been researched and used as a primary active component for over the last two decades. However, further research can be conducted with diode-connected heterojunction bipolar transistors (HBTs) operating at cryogenic temperatures. This work investigates these characteristics and models devices by adapting standard fabrication technology components. This work focuses on measurements of the current-voltage relationship (I-V curves) and capacitance-voltage relationships (C-V curves) of diode-connected HBTs. One configuration is proposed and measured, which is emitterbase shorted. The I-V curves are measured for various temperature points ranging from room temperature (300 K) to the temperature of liquid nitrogen (77 K). The measured datasets are used to extract a model of the formed diode operating at cryogenic temperatures and used as a standard library component in computer aided software designs. The advantage of having broad-range temperature models of SiGe transistors becomes apparent when considering implementation of application-specific integrated circuits and silicon-based infrared radiation photodetectors on a single wafer, thus shortening interconnects and lowering parasitic interference, decreasing the overall die size and improving on overall cost-effectiveness. Primary applications include space-based geothermal radiation sensing and cryogenic terahertz radiation sensing.
Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review.
Cummins, Cloe; Orr, Rhonda; O'Connor, Helen; West, Cameron
2013-10-01
Use of Global positioning system (GPS) technology in team sport permits measurement of player position, velocity, and movement patterns. GPS provides scope for better understanding of the specific and positional physiological demands of team sport and can be used to design training programs that adequately prepare athletes for competition with the aim of optimizing on-field performance. The objective of this study was to conduct a systematic review of the depth and scope of reported GPS and microtechnology measures used within individual sports in order to present the contemporary and emerging themes of GPS application within team sports. A systematic review of the application of GPS technology in team sports was conducted. We systematically searched electronic databases from earliest record to June 2012. Permutations of key words included GPS; male and female; age 12-50 years; able-bodied; and recreational to elite competitive team sports. The 35 manuscripts meeting the eligibility criteria included 1,276 participants (age 11.2-31.5 years; 95 % males; 53.8 % elite adult athletes). The majority of manuscripts reported on GPS use in various football codes: Australian football league (AFL; n = 8), soccer (n = 7), rugby union (n = 6), and rugby league (n = 6), with limited representation in other team sports: cricket (n = 3), hockey (n = 3), lacrosse (n = 1), and netball (n = 1). Of the included manuscripts, 34 (97 %) detailed work rate patterns such as distance, relative distance, speed, and accelerations, with only five (14.3 %) reporting on impact variables. Activity profiles characterizing positional play and competitive levels were also described. Work rate patterns were typically categorized into six speed zones, ranging from 0 to 36.0 km·h⁻¹, with descriptors ranging from walking to sprinting used to identify the type of activity mainly performed in each zone. With the exception of cricket, no standardized speed zones or definitions were observed within or between sports. Furthermore, speed zone criteria often varied widely within (e.g. zone 3 of AFL ranged from 7 to 16 km·h⁻¹) and between sports (e.g. zone 3 of soccer ranged from 3.0 to <13 km·h⁻¹ code). Activity descriptors for a zone also varied widely between sports (e.g. zone 4 definitions ranged from jog, run, high velocity, to high-intensity run). Most manuscripts focused on the demands of higher intensity efforts (running and sprint) required by players. Body loads and impacts, also summarized into six zones, showed small variations in descriptions, with zone criteria based upon grading systems provided by GPS manufacturers. This systematic review highlights that GPS technology has been used more often across a range of football codes than across other team sports. Work rate pattern activities are most often reported, whilst impact data, which require the use of microtechnology sensors such as accelerometers, are least reported. There is a lack of consistency in the definition of speed zones and activity descriptors, both within and across team sports, thus underscoring the difficulties encountered in meaningful comparisons of the physiological demands both within and between team sports. A consensus on definitions of speed zones and activity descriptors within sports would facilitate direct comparison of the demands within the same sport. Meta-analysis from systematic review would also be supported. Standardization of speed zones between sports may not be feasible due to disparities in work rate pattern activities.
Integrating mHealth at point of care in low- and middle-income settings: the system perspective.
Wallis, Lee; Blessing, Paul; Dalwai, Mohammed; Shin, Sang Do
2017-06-01
While the field represents a wide spectrum of products and services, many aspects of mHealth have great promise within resource-poor settings: there is an extensive range of cheap, widely available tools which can be used at the point of care delivery. However, there are a number of conditions which need to be met if such solutions are to be adequately integrated into existing health systems; we consider these from regulatory, technological and user perspectives. We explore the need for an appropriate legislative and regulatory framework, to avoid 'work around' solutions, which threaten patient confidentiality (such as the extensive use of instant messaging services to deliver sensitive clinical information and seek diagnostic and management advice). In addition, we will look at other confidentiality issues such as the need for applications to remove identifiable information (such as photos) from users' devices. Integration is dependent upon multiple technological factors, and we illustrate these using examples such as products made available specifically for adoption in low- and middle-income countries. Issues such as usability of the application, signal loss, data volume utilization, need to enter passwords, and the availability of automated or in-app context-relevant clinical advice will be discussed. From a user perspective, there are three groups to consider: experts, front-line clinicians, and patients. Each will accept, to different degrees, the use of technology in care - often with cultural or regional variation - and this is central to integration and uptake. For clinicians, ease of integration into daily work flow is critical, as are familiarity and acceptability of other technology in the workplace. Front-line staff tend to work in areas with more challenges around cell phone signal coverage and data availability than 'back-end' experts, and the effect of this is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the organization, activities, and outcomes of Student Pugwash USA`s 1992 International Conference, Visions for a Sustainable World: A Conference on Science, Technology and Social Responsibility. The conference was held June 14--20, 1992 at Emory University, and brought together 94 students and over 65 experts from industry, academe, and government. The conference addressed issues ranging from global environmental cooperation to the social impacts of the Human Genome Project to minority concerns in the sciences. It provided a valuable forum for talented students and professionals to engage in critical dialogue on many interdisciplinary issues at the juncture of science,more » technology and society. The conference challenged students -- the world`s future scientists, engineers, and political leaders -- to think broadly about global problems and to devise policy options that are viable and innovative. The success of the conference in stimulating interest, understanding, and enthusiasm about interdisciplinary global issues is clearly evident from both the participants` feedback and their continued involvement in Student Pugwash USA programs. Six working groups met each morning. The working group themes included: environmental challenges for developing countries; energy options: their social and environmental impact; health care in developing countries; changing dynamics of peace and global security; educating for the socially responsible use of technology; ethics and the use of genetic information. The conference was specifically designed to include mechanisms for ensuring its long-term impact. Participants were encouraged to focus on their individual role in helping resolve global issues. This was achieved through each participant`s development of a Personal Plan of Action, a plan which mapped out activities the student could undertake after the conference to continue the dialogue and work towards the resolution of global and local problems.« less
LIRIS flight database and its use toward noncooperative rendezvous
NASA Astrophysics Data System (ADS)
Mongrard, O.; Ankersen, F.; Casiez, P.; Cavrois, B.; Donnard, A.; Vergnol, A.; Southivong, U.
2018-06-01
ESA's fifth and last Automated Transfer Vehicle, ATV Georges Lemaître, tested new rendezvous technology before docking with the International Space Station (ISS) in August 2014. The technology demonstration called Laser Infrared Imaging Sensors (LIRIS) provides an unseen view of the ISS. During Georges Lemaître's rendezvous, LIRIS sensors, composed of two infrared cameras, one visible camera, and a scanning LIDAR (Light Detection and Ranging), were turned on two and a half hours and 3500 m from the Space Station. All sensors worked as expected and a large amount of data was recorded and stored within ATV-5's cargo hold before being returned to Earth with the Soyuz flight 38S in September 2014. As a part of the LIRIS postflight activities, the information gathered by all sensors is collected inside a flight database together with the reference ATV trajectory and attitude estimated by ATV main navigation sensors. Although decoupled from the ATV main computer, the LIRIS data were carefully synchronized with ATV guidance, navigation, and control (GNC) data. Hence, the LIRIS database can be used to assess the performance of various image processing algorithms to provide range and line-of-sight (LoS) navigation at long/medium range but also 6 degree-of-freedom (DoF) navigation at short range. The database also contains information related to the overall ATV position with respect to Earth and the Sun direction within ATV frame such that the effect of the environment on the sensors can also be investigated. This paper introduces the structure of the LIRIS database and provides some example of applications to increase the technology readiness level of noncooperative rendezvous.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyorke, D.F.; Butcher, T.A.
1995-12-31
To implement the Krakow Clean Fossil Fuels and Energy Efficiency Program, eight U.S. firms were selected by the U.S. Department of Energy to market their technologies to reduce pollution from low emission sources in Krakow. The eight U.S. firms were selected by a competitive solicitation that required the proposing firms to themselves provide funding to match or exceed the funding provided by the Program. These U.S. firms and their Polish partner companies have begun sales and cooperative work efforts in Krakow, and some have already made initial equipment installations with measurable performance improvements. Following their efforts as part of themore » Program, these U.S.-Polish joint ventures will market their technologies and achieve the associated environmental benefits elsewhere in Poland and Eastern and Central Europe. As part of the Krakow Program a spreadsheet model was developed to compare technological options for supplying heat to the city by calculation and comparing the heating costs and associated emissions reduction for each option. Comparison of options is made on the basis of the user cost-per-metric ton of equivalent emissions reduction. For all options considered in the Krakow Program, this cost parameter has ranged from -$1469 (best) to $2650 (worst). The costs for technologies associated with the eight projects in the Krakow Program are at the lower end of this range placing these technologies among the most cost effective solutions to the pollution problems from the low emission sources.« less
NASA Technical Reports Server (NTRS)
Von Puttkamer, J.
1985-01-01
Space exploration goals for NASA in the year 2000 time frame are examined. A lunar base would offer the opportunity for continuous earth viewing, further cosmogeochemical exploration and rudimentary steps at self-sufficiency in space. The latter two factors are also compelling reasons to plan a manned Mars base. Furthermore, competition and cooperation in a Mars mission and further interplanetary exploration is an attractive substitute for war. The hardware requirements for various configurations of Mars missions are briefly addressed, along with other, unmanned missions to the asteroid belt, Mercury, Venus, Jupiter and the moons of Jupiter and Saturn. Finally, long-range technological requirements for providing adequate living/working facilities for larger human populations in Space Station environments are summarized.
Screen printed UHF antennas on flexible substrates
NASA Astrophysics Data System (ADS)
Janeczek, Kamil; Młożniak, Anna; Kozioł, Grażyna; Araźna, Aneta; Jakubowska, Małgorzata; Bajurko, Paweł
2010-09-01
Printed electronics belongs to the most important developing electronics technologies. It provides new possibilities to produce low cost and large area devices. In its range several applications can be distinguished like printed batteries, OLED, biosensors, photovoltaic cells or RFID tags. In the presented investigation, antennas working in UHF frequency range were elaborated. It can be applied in the future for flexible RFID tags. To produce these antennas polymer paste with silver flakes was used. It was deposited on two flexible substrates (foil and photo paper) with screen printing techniques. After printing process surface profile, electrical and microwave parameters of performed antennas were measured using digital multimeter and network analyzer, relatively. Furthermore, a thickness of printed layers was measured.
Building a robust vehicle detection and classification module
NASA Astrophysics Data System (ADS)
Grigoryev, Anton; Khanipov, Timur; Koptelov, Ivan; Bocharov, Dmitry; Postnikov, Vassily; Nikolaev, Dmitry
2015-12-01
The growing adoption of intelligent transportation systems (ITS) and autonomous driving requires robust real-time solutions for various event and object detection problems. Most of real-world systems still cannot rely on computer vision algorithms and employ a wide range of costly additional hardware like LIDARs. In this paper we explore engineering challenges encountered in building a highly robust visual vehicle detection and classification module that works under broad range of environmental and road conditions. The resulting technology is competitive to traditional non-visual means of traffic monitoring. The main focus of the paper is on software and hardware architecture, algorithm selection and domain-specific heuristics that help the computer vision system avoid implausible answers.
Opto-Electronic Oscillator Stabilized By A Hyperfine Atomic Transition
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry; Aveline, David; Matsko, Andrey B.; Thompson, Robert; Yu, Nan
2004-01-01
Opto-electronic oscillator (OEO) is a closed-loop system with part of the loop is implemented by an optical beam, and the rest by RF circuitry. The technological advantage of this approach over traditional all-RF loops in the gigahertz range comes from the that frequency filtering can be done far more efficiently in the optical range with compact, low power, and have superior stability. In this work, we report our preliminary results on using the phenomenon of coherent population trapping in (87) Rb vapor as an optical filter. Such a filter allows us to stabilize the OEO at the hyperfine splitting frequency of rubidium, thus implementing a novel type of frequency standard.
NASA Technical Reports Server (NTRS)
Ray, Charles D.; Carrasquillo, Robyn L.; Minton-Summers, Silvia
1997-01-01
This paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station (ISS). Current activities include ECLSS computer model development, component design and development, subsystem integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.
NASA Technical Reports Server (NTRS)
1999-01-01
Langley's mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government Agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of some of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States' leadership in aeronautics and space research. A color electronic version of this report is available at URL http://larcpubs.larc.nasa.gov/randt/1998/.
Gallo, Ana-Maria
2011-01-01
For the first time in history, there are 4 distinct generations of nurses working side by side at the clinical bedside: Veterans, Baby Boomers, Generation X, and Generation Y. All the generations have their unique personalities, beliefs, values, and learning styles. Approach to learning range from the traditional instructional method preferred by the Veteran's nurses to the more advanced technology (eg, Web-based, webinars, simulations, podcasts, and blogs) approach favored by Generation Y. Nurse educators and clinical nurse specialists must consider each generation's style of learning to best engage, stimulate, and promote transference and assimilations of new knowledge. This article briefly describes the generational learning style differences and explores alternative educational modalities to the traditional classroom instruction.
Innovation Balanced with Community Collaboration, ESIP
NASA Astrophysics Data System (ADS)
White, C. E.
2016-12-01
Representing the Federation of Earth Science Information Partners (ESIP), I'll speak to how the organization supports a diverse community of science, data and information technology practitioners to foster innovation balanced with community collaboration on the why and how. ESIP builds connections among organizations, sectors, disciplines, systems and data so participants can leverage their collective expertise and technical capacity to address common challenges. This work improves Earth science data management practices and makes Earth science data more discoverable, accessible and useful to researchers, policy makers and the public. Greater than ever is the desire for guidelines in software/code development, evaluation of technology and its artifacts, and community validation of products and practices. ESIP's mechanisms for evaluation and assessment range from informal to formal, with opportunities for all.
Metal shell technology based upon hollow jet instability. [for inertial confinement fusion
NASA Technical Reports Server (NTRS)
Kendall, J. M.; Lee, M. C.; Wang, T. G.
1982-01-01
Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. A technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal is described. Shells in the 0.7-2.0 mm size range have been produced using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold-lead-antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise.
Robotics in Colorectal Surgery
Weaver, Allison; Steele, Scott
2016-01-01
Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients. PMID:27746895
Adaptive infrared-reflecting systems inspired by cephalopods
NASA Astrophysics Data System (ADS)
Xu, Chengyi; Stiubianu, George T.; Gorodetsky, Alon A.
2018-03-01
Materials and systems that statically reflect radiation in the infrared region of the electromagnetic spectrum underpin the performance of many entrenched technologies, including building insulation, energy-conserving windows, spacecraft components, electronics shielding, container packaging, protective clothing, and camouflage platforms. The development of their adaptive variants, in which the infrared-reflecting properties dynamically change in response to external stimuli, has emerged as an important unmet scientific challenge. By drawing inspiration from cephalopod skin, we developed adaptive infrared-reflecting platforms that feature a simple actuation mechanism, low working temperature, tunable spectral range, weak angular dependence, fast response, stability to repeated cycling, amenability to patterning and multiplexing, autonomous operation, robust mechanical properties, and straightforward manufacturability. Our findings may open opportunities for infrared camouflage and other technologies that regulate infrared radiation.
Control of gas contaminants in air streams through biofiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, T.; Lackey, L.
1996-11-01
According to the National Institute for Occupational Safety and Health (NIOSH), the maximum styrene concentration allowed in the work place is 50 ppm for up to a 10-hour work day during a 40-hour work week. The US EPA has classified styrene as one of the 189 hazardous air pollutants listed under Title 3 of the Clean Air Act Amendments to be reduced by a factor of 90% by the year 2000. Significant quantities of styrene are emitted to the atmosphere each year by boat manufacturers. A typical fiberglass boat manufacturing facility can emit over 273 metric tons/year of styrene. Themore » concentration of styrene in the industrial exhaust gas ranges from 20 to 100 ppmv. Such dilute, high volume organically tainted air streams can make conventional abatement technologies such as thermal incineration, adsorption, or absorption technically incompetent or prohibitively expensive. An efficient, innovative, and economical means of remediating styrene vapors would be of value to industries and to the environment. Biofilter technology depends on microorganisms that are immobilized on the packing material in a solid phase reactor to remove or degrade environmentally undesirable compounds contaminating gas streams. The technology is especially successful for treating large volumes of air containing low concentrations of contaminants. The objective of this study was to investigate the feasibility of using biofiltration to treat waste gas streams containing styrene and to determine the critical design and operating parameters for such a system.« less
NASA Astrophysics Data System (ADS)
Ginzburg, D.; Knafo, Y.; Manor, A.; Seif, R.; Ghelman, M.; Ellenbogen, M.; Pushkarsky, V.; Ifergan, Y.; Semyonov, N.; Wengrowicz, U.; Mazor, T.; Kadmon, Y.; Cohen, Y.; Osovizky, A.
2015-06-01
There is a need to develop new personal radiation detector (PRD) technologies that can be mass produced. On August 2013, DARPA released a request for information (RFI) seeking innovative radiation detection technologies. In addition, on December 2013, a Broad Agency Announcement (BAA) for the SIGMA program was released. The RFI requirements focused on a sensor that should possess three main properties: low cost, high compactness and radioisotope identification capabilities. The identification performances should facilitate the detection of a hidden threat, ranging from special nuclear materials (SNM) to commonly used radiological sources. Subsequently, the BAA presented the specific requirements at an instrument level and provided a comparison between the current market status (state-of-the-art) and the SIGMA program objectives. This work presents an optional alternative for both the detection technology (sensor with communication output and without user interface) for DARPA's initial RFI and for the PRD required by the SIGMA program. A broad discussion is dedicated to the method proposed to fulfill the program objectives and to the selected alternative that is based on the PDS-GO design and technology. The PDS-GO is the first commercially available PRD that is based on a scintillation crystal optically coupled with a silicon photomultiplier (SiPM), a solid-state light sensor. This work presents the current performance of the instrument and possible future upgrades based on recent technological improvements in the SiPM design. The approach of utilizing the SiPM with a commonly available CsI(Tl) crystal is the key for achieving the program objectives. This approach provides the appropriate performance, low cost, mass production and small dimensions; however, it requires a creative approach to overcome the obstacles of the solid-state detector dark current (noise) and gain stabilization over a wide temperature range. Based on the presented results, we presume that the proposed approach of SiPM, with pixel size of 35 μm, coupled to a scintillation material (for gamma and neutron detection) ensures the availability and low cost of the key components. Furthermore, automated manufacturing process enables mass production, thereby fulfilling the SIGMA program requirements, both as a sensor (assimilated with mobile device) and as a full detection device.
Khalek, Imad A; Bougher, Thomas L; Merritt, Patrick M; Zielinska, Barbara
2011-04-01
As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was similar to that observed in emissions of pre-2007 engines. However, on average, when combining engine operation with and without active regeneration events, particle number emissions with the 2007 engines were 90% lower than the particle number emitted from a 2004-technology engine tested in an earlier program.
NASA Technical Reports Server (NTRS)
Nelson, Emily S.; Chait, Arnon
2010-01-01
The changes in the scope of NASA s mission in the coming decade are profound and demand nimble, yet insightful, responses. On-board clinical and environmental diagnostics must be available for both mid-term lunar and long-term Mars exploration missions in an environment marked by scarce resources. Miniaturization has become an obvious focus. Despite solid achievements in lab-based devices, broad-based, robust tools for application in the field are not yet on the market. The confluence of rapid, wide-ranging technology evolution and internal planning needs are the impetus behind this work. This report presents an analytical tool for the ongoing evaluation of promising technology platforms based on mission- and application-specific attributes. It is not meant to assess specific devices, but rather to provide objective guidelines for a rational down-select of general categories of technology platforms. In this study, we have employed our expertise in the microgravity operation of fluidic devices, laboratory diagnostics for space applications, and terrestrial research in biochip development. A rating of the current state of technology development is presented using the present tool. Two mission scenarios are also investigated: a 30-day lunar mission using proven, tested technology in 5 years; and a 2- to 3-year mission to Mars in 10 to 15 years.
Revealing facts behind spray dried solid dispersion technology used for solubility enhancement
Patel, Bhavesh B.; Patel, Jayvadan K.; Chakraborty, Subhashis; Shukla, Dali
2013-01-01
Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale. PMID:27134535
Revealing facts behind spray dried solid dispersion technology used for solubility enhancement.
Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis; Shukla, Dali
2015-09-01
Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale.
Socio-Technical Considerations for the Use of Blockchain Technology in Healthcare.
Wong, Ming Chao; Yee, Kwang Chien; Nøhr, Christian
2018-01-01
Blockchain technology is often considered as the fourth industrial revolution that will change the world. The enthusiasm of the transformative nature of blockchain technology has infiltrated healthcare. Blockchain is often seen as the much needed and perfect technology for healthcare, addressing the difficult and complex issues of security and inter-operability. More importantly, the "value" and trust-based system can deliver automated action and response via its smart contract mechanism. Healthcare, however, is a complex system. Health information technology (HIT) so far, has not delivered its promise of transforming healthcare due to its complex socio-technical and context sensitive interaction. The introduction of blockchain technology will need to consider a whole range of socio-technical issues in order to improve the quality and safety of patient care. This paper presents a discussion on these socio-technical issues. More importantly, this paper argues that in order to achieve the best outcome from blockchain technology, there is a need to consider a clinical transformation from "information" to "value " and trust. This paper argues that urgent research is needed to address these socio-technical issues in order to facilitate best outcomes for blockchain in healthcare. These socio-technical issues must then be further evaluated by means of working prototypes in the medical domain in coming years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, John M; Rakouth, Heri; Suh, In-Soo
This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University.more » The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared toward a safer, greener and more connected driving. Moreover, it draws from and adds to Dr. Andrew Brown Jr.'s SAE books 'Active Safety and the Mobility Industry', 'Connectivity and Mobility Industry', and 'Green Technologies and the Mobility Industry'. Magnetic resonant coupling is the foundation of modern wireless power transfer. Its efficiency can be controlled through impedance matching and magnetic field shaping. Current implementations use one or both of these control methods and enable both stationary and mobile charging with typical efficiency within the 80% and 90% range for an air gap up to 25 cm.« less
Long-range electrostatic screening in ionic liquids
Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.
2015-01-01
Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001
Work zone intrusion alert technologies : assessment and practical guidance : final report.
DOT National Transportation Integrated Search
2017-06-01
A work zone intrusion alert technology is a type of safety system that is used in a roadway work zone to alert field workers and secure time for them to escape when errant vehicles intrude into the work zone. Although such technologies have potential...
High-Force Dielectric Electroactive Polymer (DEAP) membrane actuator
NASA Astrophysics Data System (ADS)
Hau, Steffen; York, Alexander; Seelecke, Stefan
2016-04-01
Energy efficiency, lightweight and scalability are key features for actuators in applications such as valves, pumps or any portable system. Dielectric electroactive Polymer (DEAP) technology is able to fulfill these requirements1 better than commonly used technology e.g. solenoids, but has limitations concerning force and stroke. However, the circular DEAP membrane actuator shows a potential increase in stroke in the mm range, when combined with an appropriate biasing mechanism2. Although, thus far, their force range is limited to the single-digit Newton range, or less3,4. This work describes how this force limit of DEAP membrane actuators can be pushed to the high double-digit Newton range and beyond. The concept for such an actuator consists of a stack of double-layered DEAPs membrane actuator combined with a biasing mechanism. These two components are combined in a novel way, which allows a compact design by integrating the biasing mechanism into the DEAP membrane actuator stack. Subsequently, the single components are manufactured, tested, and their force-displacement characteristic is documented. Utilizing this data allows assembling them into actuator systems for different applications. Two different actuators are assembled and tested (dimensions: 85x85x30mm3 (LxWxH)). The first one is able to lift 7.5kg. The second one can generate a force of 66N while acting against a spring load.
Supervised autonomous rendezvous and docking system technology evaluation
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.
1991-01-01
Technology for manned space flight is mature and has an extensive history of the use of man-in-the-loop rendezvous and docking, but there is no history of automated rendezvous and docking. Sensors exist that can operate in the space environment. The Shuttle radar can be used for ranges down to 30 meters, Japan and France are developing laser rangers, and considerable work is going on in the U.S. However, there is a need to validate a flight qualified sensor for the range of 30 meters to contact. The number of targets and illumination patterns should be minimized to reduce operation constraints with one or more sensors integrated into a robust system for autonomous operation. To achieve system redundancy, it is worthwhile to follow a parallel development of qualifying and extending the range of the 0-12 meter MSFC sensor and to simultaneously qualify the 0-30(+) meter JPL laser ranging system as an additional sensor with overlapping capabilities. Such an approach offers a redundant sensor suite for autonomous rendezvous and docking. The development should include the optimization of integrated sensory systems, packaging, mission envelopes, and computer image processing to mimic brain perception and real-time response. The benefits of the Global Positioning System in providing real-time positioning data of high accuracy must be incorporated into the design. The use of GPS-derived attitude data should be investigated further and validated.
Puentes-Lagos, David E; García-Acosta, Gabriel
2012-06-01
Is it possible to establish (at short, medium and long term) future work conditions or expected work conditions for Colombian people considering upcoming work technologies? Is it possible to anticipate future work desirable work conditions for Colombian people in order to plan (foresee?) work technologies? These questions guided this research and they point to an action thesis and to a reaction one in this context of work crisis. Even though a work technology establishes where, when, how, who, who with, and using what element work is done, it also establishes certain work conditions. Besides, multiple forms of considering and deconstructing past have been created from many disciplines. However, in order to foresee or construct work technologies requires a different perspective for looking further. This research has been carried out considering other disciplines points of view regarding Future Studies and Future Thinking Studies. This research has the purpose of finding future paths for Future Thinking Studies from ergonomics point of view in this moment of global work crisis we are going through.
Communication Technology: Pros and Cons of Constant Connection to Work
ERIC Educational Resources Information Center
Diaz, Ismael; Chiaburu, Dan S.; Zimmerman, Ryan D.; Boswell, Wendy R.
2012-01-01
We examined the relationship between employees' attitudes related to communication technology (CT) flexibility, communication technology (CT) use, work-to-life conflict and work satisfaction. Based on data obtained from 193 employees, CT flexibility predicted more CT use. Further, CT use was associated not only with increased work satisfaction,…
Future Work. Myths and Realities No. 11.
ERIC Educational Resources Information Center
Kerka, Sandra
In many of the stories foretelling the future of work, technology is assumed to be the irresistible driver of change. Both ends of the spectrum are foreseen: either technology will create new jobs and transform existing work to higher skill levels, or technology, especially information technology, will destroy jobs or degrade them into less…
Polanyi, Michael; Tompa, Emile
2004-01-01
Technology change, rising international trade and investment, and increased competition are changing the organization, distribution and nature of work in industrialized countries. To enhance productivity, employers are striving to increase innovation while minimizing costs. This is leading to an intensification of work demands on core employees and the outsourcing or casualization of more marginal tasks, often to contingent workers. The two prevailing models of work and health - demand-control and effort-reward imbalance - may not capture the full range of experiences of workers in today's increasingly flexible and competitive economies. To explore this proposition, we conducted a secondary qualitative analysis of interviews with 120 American workers [6]. Our analysis identifies aspects of work affecting the quality of workers' experiences that are largely overlooked by popular work-health models: the nature of social interactions with customers and clients; workers' belief in, and perception of, the importance of the product of their work. We suggest that the quality of work experiences is partly determined by the objective characteristics of the work environment, but also by the fit of the work environment with the worker's needs, interests, desires and personality, something not adequately captured in current models.
Shape memory alloy actuation for a variable area fan nozzle
NASA Astrophysics Data System (ADS)
Rey, Nancy; Tillman, Gregory; Miller, Robin M.; Wynosky, Thomas; Larkin, Michael J.; Flamm, Jeffrey D.; Bangert, Linda S.
2001-06-01
The ability to control fan nozzle exit area is an enabling technology for next generation high-bypass-ratio turbofan engines. Performance benefits for such designs are estimated at up to 9% in thrust specific fuel consumption (TSFC) relative to current fixed-geometry engines. Conventionally actuated variable area fan nozzle (VAN) concepts tend to be heavy and complicated, with significant aircraft integration, reliability and packaging issues. The goal of this effort was to eliminate these undesirable features and formulate a design that meets or exceeds leakage, durability, reliability, maintenance and manufacturing cost goals. A Shape Memory Alloy (SMA) bundled cable actuator acting to move an array of flaps around the fan nozzle annulus is a concept that meets these requirements. The SMA bundled cable actuator developed by the United Technologies Corporation (Patents Pending) provides significant work output (greater than 2200 in-lb per flap, through the range of motion) in a compact package and minimizes system complexity. Results of a detailed design study indicate substantial engine performance, weight, and range benefits. The SMA- based actuation system is roughly two times lighter than a conventional mechanical system, with significant aircraft direct operating cost savings (2-3%) and range improvements (5-6%) relative to a fixed-geometry nozzle geared turbofan. A full-scale sector model of this VAN system was built and then tested at the Jet Exit Test Facility at NASA Langley to demonstrate the system's ability to achieve 20% area variation of the nozzle under full scale aerodynamic loads. The actuator exceeded requirements, achieving repeated actuation against full-scale loads representative of typical cruise as well as greater than worst-case (ultimate) aerodynamic conditions. Based on these encouraging results, work is continuing with the goal of a flight test on a C-17 transport aircraft.
Zhang, Y Q; Sanati-Nezhad, A; Hejazi, S H
2018-01-16
A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. This research employs a novel layer-by-layer (LbL) assembly technology to produce rock-forming mineral coatings on microchip surfaces. The outcome of the work is a series of 'surface-mimetic micro-reservoirs (SMMR)' that represent multi-scales and multi-types of natural rocks/soils. For demonstration, the clay pores of sandstones and mudrocks are reconstructed by representatively coating montmorillonite and kaolinite in polydimethylsiloxane (PDMS) microchips in a wide range of channel sizes (width of 10-250 μm, depth of 40-100 μm) and on glass substrates. The morphological and structural properties of mineral coatings are characterized using a scanning electron microscope (SEM), optical microscope and profilometer. The coating stability is tested by dynamic flooding experiments. The surface wettability is characterized by measuring mineral oil-water contact angles. The results demonstrate the formation of nano- to micro-scale, fully-covered and stable mineral surfaces with varying wetting properties. There is an opportunity to use this work in the development of microfluidic technology-based applications for subsurface energy and environmental research.
NASA Technical Reports Server (NTRS)
1990-01-01
Under a NASA grant, Dr. Robert M. Davis and Dr. William M. Portnoy came up with a new type of electrocardiographic electrode that would enable long term use on astronauts. Their invention was an insulated capacitive electrode constructed of a thin dielectric film. NASA subsequently licensed the electrode technology to Richard Charnitski, inventor of the VersaClimber, who founded Heart Rate, Inc., to further develop and manufacture personal heart monitors and to produce exercise machines using the technology for the physical fitness, medical and home markets. Same technology is on both the Home and Institutional Model VersaClimbers. On the Home Model an infrared heart beat transmitter is worn under exercise clothing. Transmitted heart rate is used to control the work intensity on the VersaClimber using the heart rate as the speedometer of the exercise. This offers advantages to a full range of users from the cardiac rehab patient to the high level physical conditioning of elite athletes. The company manufactures and markets five models of the 1*2*3 HEART RATE monitors that are used wherever people exercise to accurately monitor their heart rate. Company is developing a talking heart rate monitor that works with portable headset radios. A version of the heart beat transmitter will be available to the manufacturers of other aerobic exercise machines.
High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.
2012-01-01
Herein we report on our contrast assessment and the development, sensing and control of the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraphy (VNC) for exoplanet detection and characterization. Tbe VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center has an established effort to develop VNC technologies, and an incremental sequence of testbeds to advance this approach and its critical technologies. We discuss the development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(exp 8), 10(exp 9) and ideally 10(exp 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the laboratory results, optical configuration, critical technologies and the null sensing and control approach.
Telerehabilitation, virtual therapists, and acquired neurologic speech and language disorders.
Cherney, Leora R; van Vuuren, Sarel
2012-08-01
Telerehabilitation (telerehab) offers cost-effective services that potentially can improve access to care for those with acquired neurologic communication disorders. However, regulatory issues including licensure, reimbursement, and threats to privacy and confidentiality hinder the routine implementation of telerehab services into the clinical setting. Despite these barriers, rapid technological advances and a growing body of research regarding the use of telerehab applications support its use. This article reviews the evidence related to acquired neurologic speech and language disorders in adults, focusing on studies that have been published since 2000. Research studies have used telerehab systems to assess and treat disorders including dysarthria, apraxia of speech, aphasia, and mild Alzheimer disease. They show that telerehab is a valid and reliable vehicle for delivering speech and language services. The studies represent a progression of technological advances in computing, Internet, and mobile technologies. They range on a continuum from working synchronously (in real-time) with a speech-language pathologist to working asynchronously (offline) with a stand-in virtual therapist. One such system that uses a virtual therapist for the treatment of aphasia, the Web-ORLA™ (Rehabilitation Institute of Chicago, Chicago, IL) system, is described in detail. Future directions for the advancement of telerehab for clinical practice are discussed. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, N.; Wierzbicki, T.
1983-01-01
Behind the quest for safety in all forms of transport lies a complex technology of which structural crashworthiness forms an important part. This volume contains the work of over twenty experts whose interests range from the fundamental principles of structural collapse to the application of those principles to the design of ships, aircraft, road vehicles, and rail vehicles. The text focuses on the application of analytical and experimental techniques to predict energy dissipation characteristics of thin-walled structures and structural members under quasi-static and dynamic loadings.
A molecular dynamics study of polymer/graphene interfacial systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rissanou, Anastassia N.; Harmandaris, Vagelis
2014-05-15
Graphene based polymer nanocomposites are hybrid materials with a very broad range of technological applications. In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of the hybrid systems to the properties of the corresponding bulk ones, as well as to theoretical predictions.
Emergency Department Real Time Location System Patient and Equipment Tracking
2014-10-01
accomplishments/Reportable Outcomes Patient Tagging: Getting staff to embrace the change in their workflow and apply the RFID tag and band as well as getting...goes on if a patient passes the exit with a RFID tag still on. We have received the device however the vendor is researching how best to utilize the...technology to meet the need. The ability to limit the range for reading an RFID tag to prevent false alerts is presently being worked on. Tag
2009-08-11
Competing Interests: One of the contributing authors : Clark Tibbetts, is the Executive Vice President and Chief Technology Officer of Tessarae, LLC...Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...N/A 1021 ng No detection Sin nombre Bunyaviridae III 1021 ng Pulmonary syndrome hantavirus strain Convict Creek 107 1CCHFV = Crimean-Congo hemorrhagic
Mechanisation and automation technologies development in work at construction sites
NASA Astrophysics Data System (ADS)
Sobotka, A.; Pacewicz, K.
2017-10-01
Implementing construction work that creates buildings is a very complicated and laborious task and requires the use of various types of machines and equipment. For years there has been a desire for designers and technologists to introduce devices that replace people’s work on machine construction, automation and even robots. Technologies for building construction are still being developed and implemented to limit people’s hard work and improve work efficiency and quality in innovative architectonical and construction solutions. New opportunities for improving work on the construction site include computerisation of technological processes and construction management for projects and processes. The aim of the paper was to analyse the development of mechanisation, automation and computerisation of construction processes and selected building technologies, with special attention paid to 3D printing technology. The state of mechanisation of construction works in Poland and trends in its development in construction technologies are presented. These studies were conducted on the basis of the available literature and a survey of Polish construction companies.
Sandia National Laboratories: National Security Missions: International
Weapons Safety & Security Weapons Science & Technology Defense Systems & Assessments About Directed Research & Development Technology Deployment Centers Working With Sandia Working With Sandia Licensing & Technology Transfer Browse Technology Portfolios Technology Partnerships Business, Industry
Sandia National Laboratories: Sandia Enabled Communications and
Weapons Safety & Security Weapons Science & Technology Defense Systems & Assessments About Directed Research & Development Technology Deployment Centers Working With Sandia Working With Sandia Licensing & Technology Transfer Browse Technology Portfolios Technology Partnerships Business, Industry
Fantinelli, Stefania; Cortini, Michela
2018-01-01
This study takes place from the idea that the personal usage of mobile technologies can bring positive outcomes to the user and to their society in an indirect way. Technologies studied in this work are defined as persuasive technologies (Fogg, 1997) because they are intentionally designed to modify the users’ attitude or behavior. This research is aimed to evaluate if the intention to use the application can be influenced by positive attitudes toward technology, by the persuasive power of the application and by the perceived fun. Participants (N = 118; M = 55; F = 63; mean age = 27.4; range age = 15–69) filled in an online questionnaire that was partly based on the Media and Technology Usage and Attitude Scale (MTUAS – Rosen et al., 2013). An additional eight items were added to the scale, aimed at evaluating participants’ technophobia, technophilia, perceived technology pervasiveness and perceived persuasive power of technology. By using linear regression analysis, it was found that the application’s informational power and the perceived entertainment positively influenced the usage intention. Another interesting result, obtained through ANOVA, concerns a generational difference: baby boomers tended to trust more the fact that the single individual action through the application can have an effective impact on the environment. These results represent a basis for future in-depth investigations about socially relevant use of the ICT.
Fantinelli, Stefania; Cortini, Michela
2018-01-01
This study takes place from the idea that the personal usage of mobile technologies can bring positive outcomes to the user and to their society in an indirect way. Technologies studied in this work are defined as persuasive technologies (Fogg, 1997) because they are intentionally designed to modify the users' attitude or behavior. This research is aimed to evaluate if the intention to use the application can be influenced by positive attitudes toward technology, by the persuasive power of the application and by the perceived fun. Participants ( N = 118; M = 55; F = 63; mean age = 27.4; range age = 15-69) filled in an online questionnaire that was partly based on the Media and Technology Usage and Attitude Scale (MTUAS - Rosen et al., 2013). An additional eight items were added to the scale, aimed at evaluating participants' technophobia, technophilia, perceived technology pervasiveness and perceived persuasive power of technology. By using linear regression analysis, it was found that the application's informational power and the perceived entertainment positively influenced the usage intention. Another interesting result, obtained through ANOVA, concerns a generational difference: baby boomers tended to trust more the fact that the single individual action through the application can have an effective impact on the environment. These results represent a basis for future in-depth investigations about socially relevant use of the ICT.
FY08 Engineering Research and Technology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minichino, C; McNichols, D
2009-02-24
This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technologymore » development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less
Communication and collaboration technologies.
Cheeseman, Susan E
2012-01-01
This is the third in a series of columns exploring health information technology (HIT) in the neonatal intensive care unit (NICU). The first column provided background information on the implementation of information technology throughout the health care delivery system, as well as the requisite informatics competencies needed for nurses to fully engage in the digital era of health care. The second column focused on information and resources to master basic computer competencies described by the TIGER initiative (Technology Informatics Guiding Education Reform) as learning about computers, computer networks, and the transfer of data.1 This column will provide additional information related to basic computer competencies, focusing on communication and collaboration technologies. Computers and the Internet have transformed the way we communicate and collaborate. Electronic communication is the ability to exchange information through the use of computer equipment and software.2 Broadly defined, any technology that facilitates linking one or more individuals together is a collaborative tool. Collaboration using technology encompasses an extensive range of applications that enable groups of individuals to work together including e-mail, instant messaging (IM ), and several web applications collectively referred to as Web 2.0 technologies. The term Web 2.0 refers to web applications where users interact and collaborate with each other in a collective exchange of ideas generating content in a virtual community. Examples of Web 2.0 technologies include social networking sites, blogs, wikis, video sharing sites, and mashups. Many organizations are developing collaborative strategies and tools for employees to connect and interact using web-based social media technologies.3.
ECUT: Energy Conversion and Utilization Technologies program - Biocatalysis research activity
NASA Technical Reports Server (NTRS)
Wilcox, R.
1984-01-01
The activities of the Biocatalysis Research Activity are organized into the Biocatalysis and Molecular Modeling work elements and a supporting planning and analysis function. In the Biocatalysis work element, progress is made in developing a method for stabilizing genetically engineered traits in microorganisms, refining a technique for monitoring cells that are genetically engineered, and identifying strains of fungi for highly efficient preprocessing of biomass for optimizing the efficiency of bioreactors. In the Molecular Modeling work element, a preliminary model of the behavior of enzymes is developed. A preliminary investigation of the potential for synthesizing enzymes for use in electrochemical processes is completed. Contact with industry and universities is made to define key biocatalysis technical issues and to broaden the range of potential participants in the activity. Analyses are conducted to identify and evaluate potential concepts for future research funding.
Lessons from UK Digitization research
NASA Astrophysics Data System (ADS)
Ross, Eamon T.
2002-08-01
The paper describes the findings and approach of Ex NEAR HORIZONS, which as part of a series of trials, aimed to explore the performance characteristics and potential operational benefits of a number of technology inserts for the UK Digitization Programme. Although the exercise contained 5 discrete options (hypotheses) for improvement in Command, Control, Communications, Computing and Information (C4I) this paper explores only two of these: a web-based approach and the provision of technology to support distributed and co-located collaborative team working. Despite the commercial world moving towards an information exchange model based on publish and subscribe, the trial found that, although the concept was well received, the implications for changes in organsiation and process were substantial. When working collaboratively in a distributed environment, the findings indicate difficulties in gaining an initial shared understanding of the situation and to exercise command. The participants were a wide range of regular British Army Officers, not only to provide broad views on current military benefits but also to move away from the traditional trials, which tend to expose a single HQ, with prescriptive processes and organizations to the technology. The innovative trial was considered to have been very successful, gathering a considerable body of valuable data and identifying clear paths for exploitation of information technologies to support the military decision- maker. The paper extrapolates the findings of the trial to provide comment on the potential difficulties facing the concept of Network Centric Warfare.
Environmentally Friendly Coating Technology for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael;
2016-01-01
This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.
New Approaches in Reusable Booster System Life Cycle Cost Modeling
NASA Technical Reports Server (NTRS)
Zapata, Edgar
2013-01-01
This paper presents the results of a 2012 life cycle cost (LCC) study of hybrid Reusable Booster Systems (RBS) conducted by NASA Kennedy Space Center (KSC) and the Air Force Research Laboratory (AFRL). The work included the creation of a new cost estimating model and an LCC analysis, building on past work where applicable, but emphasizing the integration of new approaches in life cycle cost estimation. Specifically, the inclusion of industry processes/practices and indirect costs were a new and significant part of the analysis. The focus of LCC estimation has traditionally been from the perspective of technology, design characteristics, and related factors such as reliability. Technology has informed the cost related support to decision makers interested in risk and budget insight. This traditional emphasis on technology occurs even though it is well established that complex aerospace systems costs are mostly about indirect costs, with likely only partial influence in these indirect costs being due to the more visible technology products. Organizational considerations, processes/practices, and indirect costs are traditionally derived ("wrapped") only by relationship to tangible product characteristics. This traditional approach works well as long as it is understood that no significant changes, and by relation no significant improvements, are being pursued in the area of either the government acquisition or industry?s indirect costs. In this sense then, most launch systems cost models ignore most costs. The alternative was implemented in this LCC study, whereby the approach considered technology and process/practices in balance, with as much detail for one as the other. This RBS LCC study has avoided point-designs, for now, instead emphasizing exploring the trade-space of potential technology advances joined with potential process/practice advances. Given the range of decisions, and all their combinations, it was necessary to create a model of the original model and use genetic algorithms to explore results. A strong business case occurs when viable paths are identified for an affordable up-front investment, and these paths can credibly achieve affordable, responsive operations, characterized by smaller direct touch labor efforts at the wing level from flight to flight. The results supporting this approach, its potential, and its conclusions are presented here.
New Approaches in Reuseable Booster System Life Cycle Cost Modeling
NASA Technical Reports Server (NTRS)
Zapata, Edgar
2013-01-01
This paper presents the results of a 2012 life cycle cost (LCC) study of hybrid Reusable Booster Systems (RBS) conducted by NASA Kennedy Space Center (KSC) and the Air Force Research Laboratory (AFRL). The work included the creation of a new cost estimating model and an LCC analysis, building on past work where applicable, but emphasizing the integration of new approaches in life cycle cost estimation. Specifically, the inclusion of industry processes/practices and indirect costs were a new and significant part of the analysis. The focus of LCC estimation has traditionally been from the perspective of technology, design characteristics, and related factors such as reliability. Technology has informed the cost related support to decision makers interested in risk and budget insight. This traditional emphasis on technology occurs even though it is well established that complex aerospace systems costs are mostly about indirect costs, with likely only partial influence in these indirect costs being due to the more visible technology products. Organizational considerations, processes/practices, and indirect costs are traditionally derived ("wrapped") only by relationship to tangible product characteristics. This traditional approach works well as long as it is understood that no significant changes, and by relation no significant improvements, are being pursued in the area of either the government acquisition or industry?s indirect costs. In this sense then, most launch systems cost models ignore most costs. The alternative was implemented in this LCC study, whereby the approach considered technology and process/practices in balance, with as much detail for one as the other. This RBS LCC study has avoided point-designs, for now, instead emphasizing exploring the trade-space of potential technology advances joined with potential process/practice advances. Given the range of decisions, and all their combinations, it was necessary to create a model of the original model and use genetic algorithms to explore results. A strong business case occurs when viable paths are identified for an affordable up-front investment, and these paths can credibly achieve affordable, responsive operations, characterized by smaller direct touch labor efforts at the wing level from flight to flight. The results supporting this approach, its potential, and its conclusions are presented here.
NASA Astrophysics Data System (ADS)
Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie
2015-07-01
Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency.
Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie
2015-01-01
Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3–6 mmol/L in temperature range of 30–40 °C, 6–10 mmol/L in temperature range of 15–30 °C and 10–14 mmol/L in temperature range of 5–15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency. PMID:26199053
Compact LWIR sensors using spatial interferometric technology (Conference Presentation)
NASA Astrophysics Data System (ADS)
Bingham, Adam L.; Lucey, Paul G.; Knobbe, Edward T.
2017-05-01
Recent developments in reducing the cost and mass of hyperspectral sensors have enabled more widespread use for short range compositional imaging applications. HSI in the long wave infrared (LWIR) is of interest because it is sensitive to spectral phenomena not accessible to other wavelengths, and because of its inherent thermal imaging capability. At Spectrum Photonics we have pursued compact LWIR hyperspectral sensors both using microbolometer arrays and compact cryogenic detector cameras. Our microbolometer-based systems are principally aimed at short standoff applications, currently weigh 10-15 lbs and feature sizes approximately 20x20x10 cm, with sensitivity in the 1-2 microflick range, and imaging times on the order of 30 seconds. Our systems that employ cryogenic arrays are aimed at medium standoff ranges such as nadir looking missions from UAVs. Recent work with cooled sensors has focused on Strained Layer Superlattice (SLS) technology, as these detector arrays are undergoing rapid improvements, and have some advantages compared to HgCdTe detectors in terms of calibration stability. These sensors include full on-board processing sensor stabilization so are somewhat larger than the microbolometer systems, but could be adapted to much more compact form factors. We will review our recent progress in both these application areas.
History of infrared optronics in France
NASA Astrophysics Data System (ADS)
Fouilloy, J. P.; Siriex, Michel B.
1995-09-01
In France, the real start of work on the applications of infrared radiations occurred around 1947 - 1948. During many years, technological research was performed in the field of detectors, optical material, modulation techniques, and a lot of measurements were made in order to acquire a better knowledge of the propagation medium and radiation of IR sources, namely those of jet engines. The birth of industrial infrared activities in France started with the Franco-German missile guidance programs: Milan, HOT, Roland and the French air to air missile seeker programs: R530, MAGIC. At these early stages of IR technologies development, it was a great technical adventure for both the governmental agencies and industry to develop: detector technology with PbS and InSb, detector cooling for 3 - 5 micrometer wavelength range, optical material transparent in the infrared, opto mechanical design, signal processing and related electronic technologies. Etablissement Jean Turck and SAT were the pioneers associated with Aerospatiale, Matra and under contracts from the French Ministry of Defence (DGA). In the 60s, the need arose to enhance night vision capability of equipment in service with the French Army. TRT was chosen by DGA to develop the first thermal imagers: LUTHER 1, 2, and 3 with an increasing number of detectors and image frequency rate. This period was also the era in which the SAT detector made rapid advance. After basic work done in the CNRS and with the support of DGA, SAT became the world leader of MCT photovoltaic detector working in the 8 to 12 micron waveband. From 1979, TRT and SAT were given the responsibility for the joint development and production of the first generation French thermal imaging modular system so-called SMT. Now, THOMSON TTD Optronique takes over the opto-electronics activities of TRT. Laser based systems were also studied for military application using YAG type laser and CO2 laser: Laboratoire de Marcousis, CILAS, THOMSON CSF and SAT have developed during the 70s prototypes for a laser range finder, lidar, laser weapon, and target designator. The constant need to develop increasingly efficient infrared equipment led to a significant increase in the number of detector elements implying the integration of the detector and multiplexer electronic. After tests on several possible technologies at SAT, THOMSON CSF, and LETI, the work performed by these teams in 1980 was concentrated on the development of an MCT type IRCCD detector. The selection of this detector technology for the TRIGAT program led to the creation in 1986 of SOFRADIR with the pooling of the different existing expertise. Much other equipment of the first generation was created during the 80s and is now in production: IRST for naval and airborne applications; IR line scanner for airborne reconnaissance; light thermal imagers for man-portable weapons; infrared seekers for ground to air and air to air missiles; thermal sights for submarine, tank, and missile launch systems; night vision systems for flying helicopter and aircraft; air to ground attack pods for night and day operations.
Demonstration of an RF front-end based on GaN HEMT technology
NASA Astrophysics Data System (ADS)
Ture, Erdin; Musser, Markus; Hülsmann, Axel; Quay, Rüdiger; Ambacher, Oliver
2017-05-01
The effectiveness of the developed front-end on blocking the communication link of a commercial drone vehicle has been demonstrated in this work. A jamming approach has been taken in a broadband fashion by using GaN HEMT technology. Equipped with a modulated-signal generator, a broadband power amplifier, and an omni-directional antenna, the proposed system is capable of producing jamming signals in a very wide frequency range between 0.1 - 3 GHz. The maximum RF output power of the amplifier module has been software-limited to 27 dBm (500 mW), complying to the legal spectral regulations of the 2.4 GHz ISM band. In order to test the proof of concept, a real-world scenario has been prepared in which a commercially-available quadcopter UAV is flown in a controlled environment while the jammer system has been placed in a distance of about 10 m from the drone. It has been proven that the drone of interest can be neutralized as soon as it falls within the range of coverage (˜3 m) which endorses the promising potential of the broadband jamming approach.
Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin
2017-01-01
Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies. PMID:28256599
Characterization methods of integrated optics for mid-infrared interferometry
NASA Astrophysics Data System (ADS)
Labadie, Lucas; Kern, Pierre Y.; Schanen-Duport, Isabelle; Broquin, Jean-Emmanuel
2004-10-01
his article deals with one of the important instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency: the necessity to have a reliable and performant system for beam combination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferometry in the near infrared. Integrated optics provides also interesting features in terms of filtering, which is a main issue for the deep null to be reached by Darwin. However, Darwin will operate in the mid infrared range from 4 microns to 20 microns where no integrated optics functions are available on-the-shelf. This requires extending the integrated optics concept and the undergoing technology in this spectral range. This work has started with the IODA project (Integrated Optics for Darwin) under ESA contract and aims to provide a first component for interferometry. In this paper are presented the guidelines of the characterization work that is implemented to test and validate the performances of a component at each step of the development phase. We present also an example of characterization experiment used within the frame of this work, is theoretical approach and some results.
NASA Astrophysics Data System (ADS)
Małek, Anna K.; Marszałek, Konstanty W.; Rydosz, Artur M.
2016-12-01
Recently photovoltaics attracts much attention of research and industry. The multidirectional studies are carried out in order to improve solar cells performance, the innovative materials are still searched and existing materials and technology are optimized. In the multilayer structure of CIGS solar cells molybdenum (Mo) layer is used as a back contact. Mo layers meet all requirements for back side electrode: low resistivity, good adhesion to the substrate, high optical reflection in the visible range, columnar structure for Na ions diffusion, formation of an ohmic contact with the ptype CIGS absorber layer, and high stability during the corrosive selenization process. The high adhesion to the substrate and low resistivity in single Mo layer is difficult to be achieved because both properties depend on the deposition parameters, particularly on working gas pressure. Therefore Mo bilayers are applied as a back contact for CIGS solar cells. In this work the Mo layers were deposited by medium frequency sputtering at different process parameters. The effect of substrate temperature within the range of 50°C-200°C and working gas pressure from 0.7 mTorr to 7 mTorr on crystalline structure of Mo layers was studied.
Assessment of a Low-Power 65 nm CMOS Technology for Analog Front-End Design
NASA Astrophysics Data System (ADS)
Manghisoni, Massimo; Gaioni, Luigi; Ratti, Lodovico; Re, Valerio; Traversi, Gianluca
2014-02-01
This work is concerned with the study of the analog properties of MOSFET devices belonging to a 65 nm CMOS technology with emphasis on intrinsic voltage gain and noise performance. This node appears to be a robust and promising solution to cope with the unprecedented requirements set by silicon vertex trackers in experiments upgrades and future colliders as well as by imaging detectors at light sources and free electron lasers. In this scaled-down technology, the impact of new dielectric materials and processing techniques on the analog behavior of MOSFETs has to be carefully evaluated. An inversion level design methodology has been adopted to analyze data obtained from device measurements and provide a powerful tool to establish design criteria for detector front-ends in this nanoscale CMOS process. A comparison with data coming from less scaled technologies, such as 90 nm and 130 nm nodes, is also provided and can be used to evaluate the resolution limits achievable for low-noise charge sensitive amplifiers in the 100 nm minimum feature size range.
Monolithic optical link in silicon-on-insulator CMOS technology.
Dutta, Satadal; Agarwal, Vishal; Hueting, Raymond J E; Schmitz, Jurriaan; Annema, Anne-Johan
2017-03-06
This work presents a monolithic laterally-coupled wide-spectrum (350 nm < λ < 1270 nm) optical link in a silicon-on-insulator CMOS technology. The link consists of a silicon (Si) light-emitting diode (LED) as the optical source and a Si photodiode (PD) as the detector; both realized by vertical abrupt n+p junctions, separated by a shallow trench isolation composed of silicon dioxide. Medium trench isolation around the devices along with the buried oxide layer provides galvanic isolation. Optical coupling in both avalanche-mode and forward-mode operation of the LED are analyzed for various designs and bias conditions. From both DC and pulsed transient measurements, it is further shown that heating in the avalanche-mode LED leads to a slow thermal coupling to the PD with time constants in the ms range. An integrated heat sink in the same technology leads to a ∼ 6 times reduction in the change in PD junction temperature per unit electrical power dissipated in the avalanche-mode LED. The analysis paves way for wide-spectrum optical links integrated in smart power technologies.
Ricor's Nanostar water vapor compact cryopump: applications and model overview
NASA Astrophysics Data System (ADS)
Harris, Rodney S.; Nachman, Ilan; Tauber, Tomer; Kootzenko, Michael; Barak, Boris; Aminov, Eli; Gover, Dan
2017-05-01
Ricor Systems has developed a compact, single stage cryopump that fills the gap where GM and other type cryopumps can't fit in. Stirling cycle technology is highly efficient and is the primary cryogenic technology for use in IR, SWIR, HOT FPA, and other IR detector technology in military, security, and aerospace applications. Current GM based dual stage cryopumps have been the legacy type water vapor pumping system for more than 50 years. However, the typically large cryopanel head, compressor footprint, and power requirements make them not cost and use effective for small, tabletop evaporation / sputtering systems, portable analysis systems, and other systems requiring small volume vacuum creation from medium, high, and UHV levels. This single stage cryopump works well in-line with diffusion and molecular turbopumps. Studies have shown effective cooperation with non-evaporable getter technology as well for UHV levels. Further testing in this area are ongoing. Temperatures created by Stirling cycle cryogenic coolers develop a useful temperature range of 40 to 150K. Temperatures of approximately 100 K are sufficient to condense water and all hydrocarbons oil vapors.
NASA Technical Reports Server (NTRS)
Horsham, Gary A. P.
1992-01-01
This structure and composition of a new, emerging software application, which models and analyzes space exploration scenario options for feasibility based on technology development projections is presented. The software application consists of four main components: a scenario generator for designing and inputting scenario options and constraints; a processor which performs algorithmic coupling and options analyses of mission activity requirements and technology capabilities; a results display which graphically and textually shows coupling and options analysis results; and a data/knowledge base which contains information on a variety of mission activities and (power and propulsion) technology system capabilities. The general long-range study process used by NASA to support recent studies is briefly introduced to provide the primary basis for comparison for discussing the potential advantages to be gained from developing and applying this kind of application. A hypothetical example of a scenario option to facilitate the best conceptual understanding of what the application is, how it works, or the operating methodology, and when it might be applied is presented.
EAGLE: relay mirror technology development
NASA Astrophysics Data System (ADS)
Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.
2002-06-01
EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.
NASA Technical Reports Server (NTRS)
Horsham, Gary A. P.
1991-01-01
The structure and composition of a new, emerging software application, which models and analyzes space exploration scenario options for feasibility based on technology development projections is presented. The software application consists of four main components: a scenario generator for designing and inputting scenario options and constraints; a processor which performs algorithmic coupling and options analyses of mission activity requirements and technology capabilities; a results display which graphically and textually shows coupling and options analysis results; and a data/knowledge base which contains information on a variety of mission activities and (power and propulsion) technology system capabilities. The general long-range study process used by NASA to support recent studies is briefly introduced to provide the primary basis for comparison for discussing the potential advantages to be gained from developing and applying this king of application. A hypothetical example of a scenario option to facilitate the best conceptual understanding of what the application is, how it works, or the operating methodology, and when it might be applied is presented.
Hirose, Katsuhiko
2010-07-28
In the past, material innovation has changed society through new material-induced technologies, adding a new value to society. In the present world, engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector, the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global economy, it is time to accelerate our efforts towards this change. Industries are tackling global energy issues such as oil and CO2, as well as local environmental problems, such as NO(x) and particulate matter. Hydrogen is the most promising candidate to provide carbon-free, emission-free and oil-free mobility. As such, engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies, as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.
Ultra-high Temperature Emittance Measurements for Space and Missile Applications
NASA Technical Reports Server (NTRS)
Rogers, Jan; Crandall, David
2009-01-01
Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.
E-Technology and Work/Life Balance for Academics with Young Children
ERIC Educational Resources Information Center
Currie, Jan; Eveline, Joan
2011-01-01
Since the late 1980s, research on post-industrialized economies shows that the boundary between work and family is increasingly becoming blurred. The continuing evolution of e-technology allows work for some to be done anywhere, anytime. This article examines the degree to which e-technology has transferred work into the home lives of academics…
2013-01-01
Background Information and communication technologies (ICTs) are often proposed as ‘technological fixes’ for problems facing healthcare. They promise to deliver services more quickly and cheaply. Yet research on the implementation of ICTs reveals a litany of delays, compromises and failures. Case studies have established that these technologies are difficult to embed in everyday healthcare. Methods We undertook an ethnographic comparative analysis of a single computer decision support system in three different settings to understand the implementation and everyday use of this technology which is designed to deal with calls to emergency and urgent care services. We examined the deployment of this technology in an established 999 ambulance call-handling service, a new single point of access for urgent care and an established general practice out-of-hours service. We used Normalization Process Theory as a framework to enable systematic cross-case analysis. Results Our data comprise nearly 500 hours of observation, interviews with 64 call-handlers, and stakeholders and documents about the technology and settings. The technology has been implemented and is used distinctively in each setting reflecting important differences between work and contexts. Using Normalisation Process Theory we show how the work (collective action) of implementing the system and maintaining its routine use was enabled by a range of actors who established coherence for the technology, secured buy-in (cognitive participation) and engaged in on-going appraisal and adjustment (reflexive monitoring). Conclusions Huge effort was expended and continues to be required to implement and keep this technology in use. This innovation must be understood both as a computer technology and as a set of practices related to that technology, kept in place by a network of actors in particular contexts. While technologies can be ‘made to work’ in different settings, successful implementation has been achieved, and will only be maintained, through the efforts of those involved in the specific settings and if the wider context continues to support the coherence, cognitive participation, and reflective monitoring processes that surround this collective action. Implementation is more than simply putting technologies in place – it requires new resources and considerable effort, perhaps on an on-going basis. PMID:23522021
Milestone Report:3.2.2.26 Appliances, HVAC & Water Heating R&D-Select Sorption Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ally, Moonis Raza
The purpose of this report is to select a sorption technology based on recent work completed on characterizing working pairs for both absorption and adsorption technologies based on Global Warming Potential (GWP) of less than 100 (relative to carbon dioxide, 100-year atmospheric life span) and zero Ozone Depletion Potential (ODP). From a total of eighty-three potential working pairs (absorption technology), there were only two candidate working pairs for the absorption technology, and 8 potential working pairs for adsorption technology. After screening these ten potential candidates on the basis of sizes of the desorber, absorber/adsorber, evaporator, condenser, and rectifier (where applicable),more » the ORNL-Georgia Tech study concluded that best working pairs are NH3-H2O for the most compact system in terms of heat transfer equipment surface area, and NH3-LiNO3 and MeOH-[mmin][DMP] where efficiency is most important. Based on a single-stage absorption and adsorption modeling using the Engineering Equation Solver (EES), the performance of both sorption systems was evaluated from known heat transfer correlations, and thermos-physical properties. Based on these results, the technology chosen is absorption technology. The selected technology is absorption for the reasons cited in Section 4.« less
Industrial integration of high coherence tunable VECSEL in the NIR and MIR
NASA Astrophysics Data System (ADS)
Denet, Stéphane; Chomet, Baptiste; Lecocq, Vincent; Ferrières, Laurence; Myara, Mikhaël.; Cerutti, Laurent; Sagnes, Isabelle; Garnache, Arnaud
2016-03-01
Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8- 1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency micro-chip, intracavity element free, patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high coherence with a low divergence diffraction limited TEM00 beam, class A dynamics with Relative Intensity Noise as low as -140dB/Hz and at shot noise level above 200MHz RF frequency (up to 160GHz), free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), linear polarization (50dB suppression ratio), and broadband continuous tunability greater than 400GHz (< 30V piezo voltage, 6kHz cut off frequency) with total tunability up to 3THz. Those performances can all be reached thanks to the high finesse cavity of VECSEL technology, associated to ideal homogeneous QW gain behaviour [3]. In addition, the compact design without any movable intracavity elements offers a robust single frequency regime with a long term wavelength stability better than few GHz/h (ambient thermal drift limited). Those devices surpass the state of the art commercial technologies thanks to a combination of power-coherence wavelength tunability performances and integration.
NASA Astrophysics Data System (ADS)
Costard, Eric; Truffer, Jean P.; Huet, Odile; Dua, Lydie; Nedelcu, Alexandre; Robo, J. A.; Marcadet, Xavier; Brèire de l'Isle, Nadia; Bois, Philippe
2006-09-01
Standard GaAs/AlGaAs Quantum Well Infrared Photodetectors (QWIP) are considered as a technological choice for 3 rdgeneration thermal imagers [1], [2]. Since 2001, the THALES Group has been manufacturing sensitive arrays using AsGa based QWIP technology at THALES Research and Technology Laboratory. This QWIP technology allows the realization of large staring arrays for Thermal Imagers (TI) working in the Infrared region of the spectrum. The main advantage of this GaAs detector technology is that it is also used for other commercial devices. The GaAs industry has lead to important improvements over the last ten years and it reaches now an undeniable level of maturity. As a result the key parameters to reach high production yield: large substrate and good uniformity characteristics, have already been achieved. Considering defective pixels, the main usual features are a high operability (> 99.9%) and a low number of clusters having a maximum of 4 dead pixels. Another advantage of this III-V technology is the versatility of the design and processing phases. It allows customizing both the quantum structure and the pixel architecture in order to fulfill the requirements of any specific applications. The spectral response of QWIPs is intrinsically resonant but the quantum structure can be designed for a given detection wavelength window ranging from MWIR, LWIR to VLWIR.
Advancing Partnerships Towards an Integrated Approach to Oil Spill Response
NASA Astrophysics Data System (ADS)
Green, D. S.; Stough, T.; Gallegos, S. C.; Leifer, I.; Murray, J. J.; Streett, D.
2015-12-01
Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, and remote sensing is playing a growing critical role in the detection and monitoring of oil spills, as well as facilitating validation of remote sensing oil spill products. The FOSTERRS (Federal Oil Science Team for Emergency Response Remote Sensing) interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft/instruments) and analysis techniques are quickly, effectively, appropriately, and seamlessly available to oil spills responders. Yet significant challenges remain for addressing oils spanning a vast range of chemical properties that may be spilled from the Tropics to the Arctic, with algorithms and scientific understanding needing advances to keep up with technology. Thus, FOSTERRS promotes enabling scientific discovery to ensure robust utilization of available technology as well as identifying technologies moving up the TRL (Technology Readiness Level). A recent FOSTERRS facilitated support activity involved deployment of the AVIRIS NG (Airborne Visual Infrared Imaging Spectrometer- Next Generation) during the Santa Barbara Oil Spill to validate the potential of airborne hyperspectral imaging to real-time map beach tar coverage including surface validation data. Many developing airborne technologies have potential to transition to space-based platforms providing global readiness.
Bardach, Shoshana H; Real, Kevin; Bardach, David R
2017-05-01
Contemporary state-of-the-art healthcare facilities are incorporating technology into their building design to improve communication and patient care. However, technological innovations may also have unintended consequences. This study seeks to better understand how technology influences interprofessional communication within a hospital setting based in the United States. Nine focus groups were conducted including a range of healthcare professions. The focus groups explored practitioners' experiences working on two floors of a newly designed hospital and included questions about the ways in which technology shaped communication with other healthcare professionals. All focus groups were recorded, transcribed, and coded to identify themes. Participant responses focused on the electronic medical record, and while some benefits of the electronic medical record were discussed, participants indicated use of the electronic medical record has resulted in a reduction of in-person communication. Different charting approaches resulted in barriers to communication between specialties and reduced confidence that other practitioners had received one's notes. Limitations in technology-including limited computer availability, documentation complexity, and sluggish sign-in processes-also were identified as barriers to effective and timely communication between practitioners. Given the ways in which technology shapes interprofessional communication, future research should explore how to create standardised electronic medical record use across professions at the optimal level to support communication and patient care.
Brown, Kristen E; Hottle, Troy Alan; Bandyopadhyay, Rubenka; Babaee, Samaneh; Dodder, Rebecca Susanne; Kaplan, Pervin Ozge; Lenox, Carol; Loughlin, Dan
2018-06-21
The energy system is the primary source of air pollution. Thus, evolution of the energy system into the future will affect society's ability to maintain air quality. Anticipating this evolution is difficult because of inherent uncertainty in predicting future energy demand, fuel use, and technology adoption. We apply Scenario Planning to address this uncertainty, developing four very different visions of the future. Stakeholder engagement suggested technological progress and social attitudes toward the environment are critical and uncertain factors for determining future emissions. Combining transformative and static assumptions about these factors yields a matrix of four scenarios that encompass a wide range of outcomes. We implement these scenarios in the U.S. EPA MARKAL model. Results suggest that both shifting attitudes and technology transformation may lead to emission reductions relative to present, even without additional policies. Emission caps, such as the Cross State Air Pollution Rule, are most effective at protecting against future emission increases. An important outcome of this work is the scenario implementation approach, which uses technology-specific discount rates to encourage scenario-specific technology and fuel choices. End-use energy demands are modified to approximate societal changes. This implementation allows the model to respond to perturbations in manners consistent with each scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searfass, Clifford T.; Malinowski, Owen M.; Van Velsor, Jason K.
2015-03-22
The stated goal of this work was to develop a versatile system which could accurately measure vessel and valve internal vibrations and cavitation formation under in-service conditions in nuclear power plants, ultrasonically. The developed technology will benefit the nuclear power generation industry by allowing plant operators to monitor valve and vessel internals during operation. This will help reduce planned outages and plant component failures. During the course of this work, Structural Integrity Associates, Inc. gathered information from industry experts that target vibration amplitudes to be detected should be in the range of 0.001-in to 0.005-in (0.025-mm to 0.127-mm) and targetmore » vibration frequency ranges which should be detected were found to be between 0-Hz and 300-Hz. During the performed work, an ultrasonic measuring system was developed which utilized ultrasonic pulse-echo time-of-flight measurements to measure vibration frequency and amplitude. The developed system has been shown to be able to measure vibration amplitudes as low as 0.0008-in (0.020-mm) with vibration frequencies in the range of 17-Hz to 1000-Hz. Therefore, the developed system was able to meet the industry needs for vibration measurement. The developed ultrasonic system was also to be able to measure cavitation formation by monitoring the received ultrasonic time- and frequency-domain signals. This work also demonstrated the survivability of commercially available probes at temperatures up to 300-F for several weeks.« less
An IT-enabled supply chain model: a simulation study
NASA Astrophysics Data System (ADS)
Cannella, Salvatore; Framinan, Jose M.; Barbosa-Póvoa, Ana
2014-11-01
During the last decades, supply chain collaboration practices and the underlying enabling technologies have evolved from the classical electronic data interchange (EDI) approach to a web-based and radio frequency identification (RFID)-enabled collaboration. In this field, most of the literature has focused on the study of optimal parameters for reducing the total cost of suppliers, by adopting operational research (OR) techniques. Herein we are interested in showing that the considered information technology (IT)-enabled structure is resilient, that is, it works well across a reasonably broad range of parameter settings. By adopting a methodological approach based on system dynamics, we study a multi-tier collaborative supply chain. Results show that the IT-enabled supply chain improves operational performance and customer service level. Nonetheless, benefits for geographically dispersed networks are of minor entity.
MALDI Imaging Mass Spectrometry—A Mini Review of Methods and Recent Developments
Eriksson, Cecilia; Masaki, Noritaka; Yao, Ikuko; Hayasaka, Takahiro; Setou, Mitsutoshi
2013-01-01
As the only imaging method available, Imaging Mass Spectrometry (IMS) can determine both the identity and the distribution of hundreds of molecules on tissue sections, all in one single run. IMS is becoming an established research technology, and due to recent technical and methodological improvements the interest in this technology is increasing steadily and within a wide range of scientific fields. Of the different IMS methods available, matrix-assisted laser desorption/ionization (MALDI) IMS is the most commonly employed. The course at IMSC 2012 in Kyoto covered the fundamental principles and techniques of MALDI-IMS, assuming no previous experience in IMS. This mini review summarizes the content of the one-day course and describes some of the most recent work performed within this research field. PMID:24349941
Software life cycle methodologies and environments
NASA Technical Reports Server (NTRS)
Fridge, Ernest
1991-01-01
Products of this project will significantly improve the quality and productivity of Space Station Freedom Program software processes by: improving software reliability and safety; and broadening the range of problems that can be solved with computational solutions. Projects brings in Computer Aided Software Engineering (CASE) technology for: Environments such as Engineering Script Language/Parts Composition System (ESL/PCS) application generator, Intelligent User Interface for cost avoidance in setting up operational computer runs, Framework programmable platform for defining process and software development work flow control, Process for bringing CASE technology into an organization's culture, and CLIPS/CLIPS Ada language for developing expert systems; and methodologies such as Method for developing fault tolerant, distributed systems and a method for developing systems for common sense reasoning and for solving expert systems problems when only approximate truths are known.
Geoinformatics 2007: data to knowledge
Brady, Shailaja R.; Sinha, A. Krishna; Gundersen, Linda C.
2007-01-01
Geoinformatics is the term used to describe a variety of efforts to promote collaboration between the computer sciences and the geosciences to solve complex scientific questions. It refers to the distributed, integrated digital information system and working environment that provides innovative means for the study of the Earth systems, as well as other planets, through use of advanced information technologies. Geoinformatics activities range from major research and development efforts creating new technologies to provide high-quality, sustained production-level services for data discovery, integration and analysis, to small, discipline-specific efforts that develop earth science data collections and data analysis tools serving the needs of individual communities. The ultimate vision of Geoinformatics is a highly interconnected data system populated with high quality, freely available data, as well as, a robust set of software for analysis, visualization, and modeling.
Overview of NASA Iodine Hall Thruster Propulsion System Development
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James
2016-01-01
NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.
NASA Technical Reports Server (NTRS)
Smith, Craig K.; Kim, Edward; Leslie, R. Vincent; Lyu, Joseph; McCormick, Lisa M.; Anderson, Kent
2017-01-01
The Advanced Technology Microwave Sounder (ATMS) is a space-based, cross-track radiometer for operational atmospheric temperature and humidity sounding, utilizing 22 channels over a frequency range from 23 to 183 gigahertz. The ATMS for the Joint Polar Satellite System-1 has undergone two rounds of re-work in 2014-2015 and 2016, following performance issues discovered during and following thermal vacuum chamber (TVAC) testing at the instrument and observatory level. Final shelf-level testing, including measurement of pass band characteristics and spectral response functions, was completed in December 2016. Final instrument-level TVAC testing and calibration occurred during February 2017. Here we will describe the instrument-level TVAC calibration process, and illustrate with results from the final TVAC calibration effort.
Empowered citizen 'health hackers' who are not waiting.
Omer, Timothy
2016-08-17
Due to the easier access to information, the availability of low cost technologies and the involvement of well educated, passionate patients, a group of citizen 'Health Hackers', who are building their own medical systems to help them overcome the unmet needs of their conditions, is emerging. This has recently been the case in the type 1 diabetes community, under the movement #WeAreNotWaiting, with innovative use of current medical devices hacked to access data and Open-Source code producing solutions ranging from remote monitoring of diabetic children to producing an Artificial Pancreas System to automate the management and monitoring of a patient's condition. Timothy Omer is working with the community to utilise the technology already in his pocket to build a mobile- and smartwatch-based Artificial Pancreas System.
Design of a portable powered seat lift
NASA Technical Reports Server (NTRS)
Weddendorf, Bruce
1993-01-01
People suffering from degenerative hip or knee joints find sitting and rising from a seated position very difficult. These people can rely on large stationary chairs at home, but must ask others for assistance when rising from any other chair. An orthopedic surgeon identified to the MSFC Technology Utilization Office the need for development of a portable device that could perform a similar function to the stationary lift chairs. The MSFC Structural Development Branch answered the Technology Utilization Office's request for design of a portable powered seat lift. The device is a seat cushion that opens under power, lifting the user to near-standing positions. The largest challenge was developing a mechanism to provide a stable lift over the large range of motion needed, and fold flat enough to be comfortable to sit on. CAD 3-D modeling was used to generate complete drawings for the prototype, and a full-scale working model of the Seat lift was made based on the drawings. The working model is of low strength, but proves the function of the mechanism and the concept.
Rabadan, Jose; Perez-Jimenez, Rafael
2017-01-01
Visible Light Communications (VLC) is a cutting edge technology for data communication that is being considered to be implemented in a wide range of applications such as Inter-vehicle communication or Local Area Network (LAN) communication. As a novel technology, some aspects of the implementation of VLC have not been deeply considered or tested. Among these aspects, security and its implementation may become an obstacle for VLCs broad usage. In this article, we have used the well-known Risk Matrix methodology to determine the relative risk that several common attacks have in a VLC network. Four examples: a War Driving, a Queensland alike Denial of Service, a Preshared Key Cracking, and an Evil Twin attack, illustrate the utilization of the methodology over a VLC implementation. The used attacks also covered the different areas delimited by the attack taxonomy used in this work. By defining and determining which attacks present a greater risk, the results of this work provide a lead into which areas should be invested to increase the safety of VLC networks. PMID:29186184
Auer, Tibor; Churchill, Nathan W.; Flandin, Guillaume; Guntupalli, J. Swaroop; Raffelt, David; Quirion, Pierre-Olivier; Smith, Robert E.; Strother, Stephen C.; Varoquaux, Gaël
2017-01-01
The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). The portability of these applications (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms. PMID:28278228
Marin-Garcia, Ignacio; Chavez-Burbano, Patricia; Guerra, Victor; Rabadan, Jose; Perez-Jimenez, Rafael
2017-01-01
Visible Light Communications (VLC) is a cutting edge technology for data communication that is being considered to be implemented in a wide range of applications such as Inter-vehicle communication or Local Area Network (LAN) communication. As a novel technology, some aspects of the implementation of VLC have not been deeply considered or tested. Among these aspects, security and its implementation may become an obstacle for VLCs broad usage. In this article, we have used the well-known Risk Matrix methodology to determine the relative risk that several common attacks have in a VLC network. Four examples: a War Driving, a Queensland alike Denial of Service, a Preshared Key Cracking, and an Evil Twin attack, illustrate the utilization of the methodology over a VLC implementation. The used attacks also covered the different areas delimited by the attack taxonomy used in this work. By defining and determining which attacks present a greater risk, the results of this work provide a lead into which areas should be invested to increase the safety of VLC networks.
NASA Astrophysics Data System (ADS)
Benedetti, Marcello; Realpe-Gómez, John; Perdomo-Ortiz, Alejandro
2018-07-01
Machine learning has been presented as one of the key applications for near-term quantum technologies, given its high commercial value and wide range of applicability. In this work, we introduce the quantum-assisted Helmholtz machine:a hybrid quantum–classical framework with the potential of tackling high-dimensional real-world machine learning datasets on continuous variables. Instead of using quantum computers only to assist deep learning, as previous approaches have suggested, we use deep learning to extract a low-dimensional binary representation of data, suitable for processing on relatively small quantum computers. Then, the quantum hardware and deep learning architecture work together to train an unsupervised generative model. We demonstrate this concept using 1644 quantum bits of a D-Wave 2000Q quantum device to model a sub-sampled version of the MNIST handwritten digit dataset with 16 × 16 continuous valued pixels. Although we illustrate this concept on a quantum annealer, adaptations to other quantum platforms, such as ion-trap technologies or superconducting gate-model architectures, could be explored within this flexible framework.
Investigating the Effects of the Interaction Intensity in a Weak Measurement.
Piacentini, Fabrizio; Avella, Alessio; Gramegna, Marco; Lussana, Rudi; Villa, Federica; Tosi, Alberto; Brida, Giorgio; Degiovanni, Ivo Pietro; Genovese, Marco
2018-05-03
Measurements are crucial in quantum mechanics, for fundamental research as well as for applicative fields like quantum metrology, quantum-enhanced measurements and other quantum technologies. In the recent years, weak-interaction-based protocols like Weak Measurements and Protective Measurements have been experimentally realized, showing peculiar features leading to surprising advantages in several different applications. In this work we analyze the validity range for such measurement protocols, that is, how the interaction strength affects the weak value extraction, by measuring different polarization weak values on heralded single photons. We show that, even in the weak interaction regime, the coupling intensity limits the range of weak values achievable, setting a threshold on the signal amplification effect exploited in many weak measurement based experiments.
Tuning the physical properties of amorphous In–Zn–Sn–O thin films using combinatorial sputtering
Ndione, Paul F.; Zakutayev, A.; Kumar, M.; ...
2016-12-05
Transparent conductive oxides and amorphous oxide semiconductors are important materials for many modern technologies. Here, we explore the ternary indium zinc tin oxide (IZTO) using combinatorial synthesis and spatially resolved characterization. The electrical conductivity, work function, absorption onset, mechanical hardness, and elastic modulus of the optically transparent (>85%) amorphous IZTO thin films were found to be in the range of 10–2415 S/cm, 4.6–5.3 eV, 3.20–3.34 eV, 9.0–10.8 GPa, and 111–132 GPa, respectively, depending on the cation composition and the deposition conditions. Furthermore, this study enables control of IZTO performance over a broad range of cation compositions.
Idea Technology and Product Technology: Seeing beyond the Text to the Technology That Works
ERIC Educational Resources Information Center
Bednar, Maryanne R.
2004-01-01
Sifting through the myriad "idea" technologies (such as multiple intelligence theories or Piaget's Theory of Cognitive Development) and "product" technologies (such as PowerPoint or digital cameras) can be overwhelming, but Bednar persuades us that it's not about having the most recent technology, it's about using what works for "your" students in…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
... Science Subcommittee; Supporting Research and Technology Working Group; Meeting AGENCY: National... announces a meeting of the Supporting Research and Technology Working Group of the Planetary Science... INFORMATION CONTACT: Dr. Michael New, Planetary Science Division, National Aeronautics and Space...
75 FR 21602 - Online Safety and Technology Working Group Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... OSTWG is tasked with evaluating industry efforts to promote a safe online environment for children. The... and Technology Working Group Meeting AGENCY: National Telecommunications and Information... public meeting of the Online Safety and Technology Working Group (OSTWG). DATES: The meeting will be held...
2003-08-19
KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin monitor some of the project's equipment just released into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Justin Manley, of the National Oceanic and Atmospheric Administration, is a member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin near Launch Pad 39A. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin release some of the project's equipment into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin retrieve some of the project's equipment from the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - A research team member aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin lifts some of the project's equipment from the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - A research team member aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin releases some of the project's equipment into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin prepare to release some of the project's equipment into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin secure some of the project's equipment back into the vessel. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - A research team member aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin prepares some of the project's equipment for placement in the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Research team members roll out acoustic cable to the water's edge as others stand by in a watercraft during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-19
... Expense Team, Working From Various States in the United States, Including On-Site Leased Workers From... Technology Services Business Unit, Integrated Technology Services, Cost and Expense Team working from various... Technology Services Business Unit, Integrated Technology Services, Cost and Expense Team. The Department has...
Lunar Dust: Characterization and Mitigation
NASA Technical Reports Server (NTRS)
Hyatt. Mark J.; Feighery, John
2007-01-01
Lunar dust is a ubiquitous phenomenon which must be explicitly addressed during upcoming human lunar exploration missions. Near term plans to revisit the moon as a stepping stone for further exploration of Mars, and beyond, places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it's potentially harmful effects on exploration systems. The same hold true for assessing the risk it may pose for toxicological health problems if inhaled. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA's Exploration Technology Development Program. This work is presented within the context of the Constellation Program's Integrated Lunar Dust Management Strategy. This work further outlines the scientific basis for lunar dust behavior, it's characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost. The paper also presents a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware.
Liu, Lili; Miguel Cruz, Antonio; Rios Rincon, Adriana; Buttar, Vickie; Ranson, Quentin; Goertzen, Darrell
2015-01-01
The aim of this study was to examine what factors affect the acceptance behavior and use of new technologies for rehabilitation by therapists at a large rehabilitation hospital in Canada. A self-administrated paper-based survey was created by adapting scales with high levels of internal consistency in prior research using the Unified Theory of Acceptance and Use of Technology (UTAUT). Items were scored on a 7-point Likert scale, ranging from "strongly disagree (1)" to "strongly agree (7)". The target population was all occupational therapists (OT) and physical therapists (PT) involved with the provision of therapeutic interventions at the hospital. Our research model was tested using partial least squares (PLS) technique. Performance expectancy was the strongest salient construct for behavioral intention to use new technologies in rehabilitation, whereas neither effort expectancy nor social influence were salient constructs for behavioral intention to use new technologies; (4) facilitating condition and behavioral intention to use new technologies were salient constructs for current use of new technologies in rehabilitation, with facilitating condition the strongest salient for current use of new technologies in rehabilitation. In a large rehabilitation hospital where use of new technologies in rehabilitation is not mandatory, performance expectancy, or how the technology can help in therapists' work, was the most important factor in determining therapists' acceptance and use of technologies. However, effort expectancy and social influence constructs were not important, i.e. therapists were not influenced by the degree of difficulty or social pressures to use technologies. Behavioral intention and facilitating condition, or institutional support, are related to current use of new technologies in rehabilitation.
Hyperspectral remote sensing of plant pigments.
Blackburn, George Alan
2007-01-01
The dynamics of pigment concentrations are diagnostic of a range of plant physiological properties and processes. This paper appraises the developing technologies and analytical methods for quantifying pigments non-destructively and repeatedly across a range of spatial scales using hyperspectral remote sensing. Progress in deriving predictive relationships between various characteristics and transforms of hyperspectral reflectance data are evaluated and the roles of leaf and canopy radiative transfer models are reviewed. Requirements are identified for more extensive intercomparisons of different approaches and for further work on the strategies for interpreting canopy scale data. The paper examines the prospects for extending research to the wider range of pigments in addition to chlorophyll, testing emerging methods of hyperspectral analysis and exploring the fusion of hyperspectral and LIDAR remote sensing. In spite of these opportunities for further development and the refinement of techniques, current evidence of an expanding range of applications in the ecophysiological, environmental, agricultural, and forestry sciences highlights the growing value of hyperspectral remote sensing of plant pigments.
A study of radar cross section measurement techniques
NASA Technical Reports Server (NTRS)
Mcdonald, Malcolm W.
1986-01-01
Past, present, and proposed future technologies for the measurement of radar cross section were studied. The purpose was to determine which method(s) could most advantageously be implemented in the large microwave anechoic chamber facility which is operated at the antenna test range site. The progression toward performing radar cross section measurements of space vehicles with which the Orbital Maneuvering Vehicle will be called upon to rendezvous and dock is a natural outgrowth of previous work conducted in recent years of developing a high accuracy range and velocity sensing radar system. The radar system was designed to support the rendezvous and docking of the Orbital Maneuvering Vehicle with various other space vehicles. The measurement of radar cross sections of space vehicles will be necessary in order to plan properly for Orbital Maneuvering Vehicle rendezvous and docking assignments. The methods which were studied include: standard far-field measurements; reflector-type compact range measurements; lens-type compact range measurement; near field/far field transformations; and computer predictive modeling. The feasibility of each approach is examined.
Micromolding of polymer waveguides
NASA Astrophysics Data System (ADS)
Hanemann, Thomas; Ulrich, Hermann; Ruprecht, Robert; Hausselt, Juergen H.
1999-10-01
In microsystem technology the fabrication of either passive or active micro optical components made from polymers becomes more and more evident with respect to the intense expanding application possibilities e.g. in telecommunication. Actually, the LIGA process developed at the FZK, Germany allows the direct fabrication of microcomponents with lateral dimensions in the micrometer range, structural details in the submicrometer range, high aspect ratios of up to several hundreds and a final average surface roughness of less than 50 nm in small up to large scales. The molding of polymer components for microoptical applications, especially in the singlemode range, is determined by the achievable maximum accuracy of the molding technique itself and of the acceptable tolerances for low damping and coupling losses. Following the LIGA and related technique e.g. mechanical microengineering we want to present in this work the fabrication of polymer singlemode waveguides using a combination of micromolding and light- curing steps.
The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.
2017-02-01
Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.
A new generation of IC based beam steering devices for free-space optical communication
NASA Astrophysics Data System (ADS)
Bedi, Vijit
Free Space Optical (FSO) communication has tremendously advanced within the last decade to meet the ever increasing demand for higher communication bandwidth. Advancement in laser technology since its invention in the 1960's [1] attracted them to be the dominant source in FSO communication modules. The future of FSO systems lay in implementing semiconductor lasers due to their small size, power efficiency and mass fabrication abilities. In the near future, these systems are very likely to be used in space and ground based applications and revolutionary beam steering technologies will be required for distant communications in free-space. The highly directional characteristic inherent to a laser beam challenges and calls for new beam pointing and steering technologies for such type of communication. In this dissertation, research is done on a novel FSO communication device based on semiconductor lasers for high bandwidth communication. The "Fly eye transceiver" is an extremely wide steering bandwidth, completely non-mechanical FSO laser communication device primarily designed to replace traditional mechanical beam steering optical systems. This non-mechanical FSO device possesses a full spherical steering range and a very high tracking bandwidth. Inspired by the evolutionary model of a fly's eye, the full spherical steering range is assured by electronically controlled switching of its sub-eyes. Non mechanical technologies used in the past for beam steering such as acousto-optic Bragg cells, liquid crystal arrays or piezoelectric elements offer the wide steering bandwidth and fast response time, but are limited in their angular steering range. Mechanical gimbals offer a much greater steering range but face a much slower response time or steering bandwidth problem and often require intelligent adaptive controls with bulky driver amplifiers to feed their actuators. As a solution to feed both the fast and full spherical steering, the Fly-eye transceiver is studied as part of my PhD work. The design tool created for the research of the fly eye is then used to study different applications that may be implemented with the concept. Research is done on the mathematical feasibility, modeling, design, application of the technology, and its characterization in a simulation environment. In addition, effects of atmospheric turbulence on beam propagation in free space, and applying data security using optical encryption are also researched.
Application of advanced technologies to future military transports
NASA Technical Reports Server (NTRS)
Clark, Rodney L.; Lange, Roy H.; Wagner, Richard D.
1990-01-01
Long range military transport technologies are addressed with emphasis of defining the potential benefits of the hybrid laminar flow control (HLFC) concept currently being flight tested. Results of a 1990's global range transport study are presented showing the expected payoff from application of advanced technologies. Technology forecast for military transports is also presented.
Domain Specific Language Support for Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mellor-Crummey, John
A multi-institutional project known as D-TEC (short for “Domain- specific Technology for Exascale Computing”) set out to explore technologies to support the construction of Domain Specific Languages (DSLs) to map application programs to exascale architectures. DSLs employ automated code transformation to shift the burden of delivering portable performance from application programmers to compilers. Two chief properties contribute: DSLs permit expression at a high level of abstraction so that a programmer’s intent is clear to a compiler and DSL implementations encapsulate human domain-specific optimization knowledge so that a compiler can be smart enough to achieve good results on specific hardware. Domainmore » specificity is what makes these properties possible in a programming language. If leveraging domain specificity is the key to keep exascale software tractable, a corollary is that many different DSLs will be needed to encompass the full range of exascale computing applications; moreover, a single application may well need to use several different DSLs in conjunction. As a result, developing a general toolkit for building domain-specific languages was a key goal for the D-TEC project. Different aspects of the D-TEC research portfolio were the focus of work at each of the partner institutions in the multi-institutional project. D-TEC research and development work at Rice University focused on on three principal topics: understanding how to automate the tuning of code for complex architectures, research and development of the Rosebud DSL engine, and compiler technology to support complex execution platforms. This report provides a summary of the research and development work on the D-TEC project at Rice University.« less