Science.gov

Sample records for ranque-hilsch vortex tube

  1. Cyclostrophic adjustment in swirling gas flows and the Ranque-Hilsch vortex tube effect

    SciTech Connect

    Kalashnik, M. V. Visheratin, K. N.

    2008-04-15

    A theoretical analysis of cyclostrophic adjustment is presented; i.e., adjustment to balance between pressure gradient and centrifugal force in axisymmetric flow of an inviscid gas is examined. The solution to the problem is represented as the sum of a time-independent (balanced) and time-dependent (wave) components. It is shown that the wave component of the flow in an unbounded domain decays with time, and the corresponding solution reduces to the balanced component. In a bounded domain, the balanced flow component exists against the background of undamped acoustic waves. It is found that the balanced flow is thermally stratified at Mach numbers close to unity, with a substantial decrease in gas temperature (to between -50 and -100 deg. C) in the axial region. This finding, combined with the results of special experiments, is used to explain the Ranque-Hilsch vortex tube effect.

  2. Cyclostrophic adjustment in swirling gas flows and the Ranque-Hilsch vortex tube effect

    NASA Astrophysics Data System (ADS)

    Kalashnik, M. V.; Visheratin, K. N.

    2008-04-01

    A theoretical analysis of cyclostrophic adjustment is presented; i.e., adjustment to balance between pressure gradient and centrifugal force in axisymmetric flow of an inviscid gas is examined. The solution to the problem is represented as the sum of a time-independent (balanced) and time-dependent (wave) components. It is shown that the wave component of the flow in an unbounded domain decays with time, and the corresponding solution reduces to the balanced component. In a bounded domain, the balanced flow component exists against the background of undamped acoustic waves. It is found that the balanced flow is thermally stratified at Mach numbers close to unity, with a substantial decrease in gas temperature (to between -50 and -100°C) in the axial region. This finding, combined with the results of special experiments, is used to explain the Ranque-Hilsch vortex tube effect.

  3. Wavelet Transform Of Acoustic Signal From A Ranque- Hilsch Vortex Tube

    NASA Astrophysics Data System (ADS)

    Istihat, Y.; Wisnoe, W.

    2015-09-01

    This paper presents the frequency analysis of flow in a Ranque-Hilsch Vortex Tube (RHVT) obtained from acoustic signal using microphones in an isolated formation setup. Data Acquisition System (DAS) that incorporates Analog to Digital Converter (ADC) with laptop computer has been used to acquire the wave data. Different inlet pressures (20, 30, 40, 50 and 60 psi) are supplied and temperature differences are recorded. Frequencies produced from a RHVT are experimentally measured and analyzed by means of Wavelet Transform (WT). Morlet Wavelet is used and relation between Pressure variation, Temperature and Frequency are studied. Acoustic data has been analyzed using Matlab® and time-frequency analysis (Scalogram) is presented. Results show that the Pressure is proportional with the Frequency inside the RHVT whereby two distinct working frequencies is pronounced in between 4-8 kHz.

  4. 3D Droplet velocities and sizes in the Ranque-Hilsch vortex tube

    NASA Astrophysics Data System (ADS)

    Liew, R.; Zeegers, J. C. H.; Kuerten, J. G. M.; Michalek, W. R.

    2012-11-01

    The Ranque-Hilsch vortex tube is a known device that is used to generate spot cooling. In this study, we experimentally investigate the behavior of small water droplets in the vortex tube by means of Phase Doppler Particle Analysis. In an experimental vortex tube, droplets were injected together with a carrier gas to form a fast rotating (up to 80.000 rpm) droplet-gas mixture. Droplet sizes, 3D velocity components, and turbulent properties were measured, showing high intensity isotropic turbulence in the core region. To investigate the cause of the high intensity turbulence, a frequency analysis was applied on the measured velocity. The frequency spectrum of the velocity is presented and indicates that wobbling of the vortex axis is the cause of the high turbulence intensity. It was expected that larger droplets have a higher radial velocity because of the larger centrifugal force. Results show, however, that small and lager droplets behave similar. This research is supported by the Dutch Technology Foundation STW, which is the applied science division of NWO, and the Technology Programme of the Ministry of Economic Affairs.

  5. Ranque-Hilsch vortex tube thermocycler for fast DNA amplification and real-time optical detection

    NASA Astrophysics Data System (ADS)

    Ebmeier, Ryan J.; Whitney, Scott E.; Sarkar, Amitabha; Nelson, Michael; Padhye, Nisha V.; Gogos, George; Viljoen, Hendrik J.

    2004-12-01

    An innovative polymerase chain reaction (PCR) thermocycler capable of performing real-time optical detection is described below. This device utilizes the Ranque-Hilsch vortex tube in a system to efficiently and rapidly cycle three 20 μL samples between the denaturation, annealing, and elongation temperatures. The reaction progress is displayed real-time by measuring the size of a fluorescent signal emitted by SYBR green/double-stranded DNA complexes. This device can produce significant reaction yields with very small amounts of initial DNA, for example, it can amplify 0.25 fg (˜5 copies) of a 96 bp bacteriophage λ-DNA fragment 2.7×1011-fold by performing 45 cycles in less than 12 min. The optical threshold (150% of the baseline intensity) was passed 8 min into the reaction at cycle 34. Besides direct applications, the speed and sensitivity of this device enables it to be used as a scientific instrument for basic studies such as PCR assembly and polymerase kinetics.

  6. CFD study on the effects of viscous shear in a hot cascade Ranque-Hilsch vortex tube

    NASA Astrophysics Data System (ADS)

    Bej, Nilotpala; Sinhamahapatra, K. P.

    2015-12-01

    The objective of this paper is to carry out an extensive Computational Fluid Dynamics (CFD) study on work transfer due to viscous shear in a hot cascade Ranque-Hilsch vortex tube. The commercial CFD code ANSYS FLUENT 14.0 has been employed to carry out the numerical analysis using RANS standard k-epsilon turbulence model. A two-dimensional axisymmetric geometrical domain has been generated with structured mesh and air has been taken as the working fluid. The CFD results reveal that work transfer due to the action of viscous shear along the tangential direction increases considerably with hot cascading. However, the work transfer due to viscous shear along the axial direction degrades the performance of the device as the heat transfer takes place from cold zone to the hot zone. The effect of radial shear stress is negligible due to low value of radial velocity gradient.

  7. Optimization of thermal performance of Ranque Hilsch Vortex Tube: MADM techniques

    NASA Astrophysics Data System (ADS)

    Devade, K. D.; Pise, A. T.

    2016-08-01

    Thermal performance of vortex tube is noticeably influenced by its geometrical and operational parameters. In this study effect of various geometrical (L/D ratio: 15, 16, 17, 18; exit valve angle; 300, 450, 600, 750, 900; cold end orifice diameter: 5, 6 and 7mm, tube divergence angle: 00, 20, 30, 40) and operational parameters (inlet pressure: 2 to 6 bars) on the performance of vortex tube have been investigated experimentally. Multiple Attribute Decision Making (MADM) techniques are applied to determine the optimum combination of the vortex tube. Performance of vortex tube was analysed with optimum temperature difference on cold end, COP for cooling. The MADM (Multiple Attribute Decision Making) methods, namely WSM (Weighted Sum Method), WPM (Weighted Power Method), TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP (Analytical Hierarchy Process) are applied. Experimental best performing combinations are obtained for Length to Diameter ratios 15, 16, 17 with exit valve angle as 450,750 and 900 at orifice diameter 5mm for inlet pressure of 5 and 6 bar pressure. Best COP, efficiency and cold end temperature difference are 0.245, 40.6% and 38.3K respectively for the combination of 15 L/D, 450 valve angle, 5mm orifice diameter and 2 bar pressure by MADM techniques.

  8. Effect of Mach number, valve angle and length to diameter ratio on thermal performance in flow of air through Ranque Hilsch vortex tube

    NASA Astrophysics Data System (ADS)

    Devade, Kiran D.; Pise, Ashok T.

    2016-04-01

    Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.

  9. A study on the optimization of the angle of curvature for a Ranque-Hilsch vortex tube, using both experimental and full Reynolds stress turbulence numerical modelling

    NASA Astrophysics Data System (ADS)

    Rafiee, Seyed Ehsan; Ayenehpour, Sabah; Sadeghiazad, M. M.

    2016-02-01

    The working tube is a main part of vortex tube which the compressed fluid is injected into this part tangentially. An appropriate design of working tube geometry leads to better efficiency and performance of vortex tube. In the experimental investigation, the parameters are focused on the working tube angle, inlet pressure and number of nozzles. The effect of the working tube angle is investigated in the range of θ = 0-120°. The experimental tests show that we have an optimum model between θ = 0 and θ = 20°. The most objective of this investigation is the demonstration of the successful use of CFD in order to develop a design tool that can be utilized with confidence over a range of operating conditions and geometries, thereby providing a powerful tool that can be used to optimize vortex tube design as well as assess its utility in the field of new applications and industries. A computational fluid dynamics model was employed to predict the performances of the air flow inside the vortex tube. The numerical investigation was done by full 3D steady state CFD-simulation using FLUENT6.3.26. This model utilizes the Reynolds stress model to solve the flow equations. Experiments were also conducted to validate results obtained for the numerical simulation. First purpose of numerical study in this case was validation with experimental data to confirm these results and the second was the optimization of experimental model to achieve the highest efficiency.

  10. Three-dimensional numerical investigation of the separation process in a vortex tube at different operating conditions

    NASA Astrophysics Data System (ADS)

    Rafiee, Seyed Ehsan; Sadeghiazad, M. M.

    2016-06-01

    Air separators provide safe, clean, and appropriate air flow to engines and are widely used in vehicles with large engines such as ships and submarines. In this operational study, the separation process inside a Ranque-Hilsch vortex tube cleaning (cooling) system is investigated to analyze the impact of the operating gas type on the vortex tube performance; the operating gases used are air, nitrogen, oxygen, carbon dioxide and nitrogen dioxide. The computational fluid dynamic model used is equipped with a three-dimensional structure, and the steady-state condition is applied during computations. The standard k-ɛ turbulence model is employed to resolve nonlinear flow equations, and various key parameters, such as hot and cold exhaust thermal drops, and power separation rates, are described numerically. The results show that nitrogen dioxide creates the greatest separation power out of all gases tested, and the numerical results are validated by good agreement with available experimental data. In addition, a comparison is made between the use of two different boundary conditions, the pressure-far-field and the pressure-outlet, when analyzing complex turbulent flows inside the air separators. Results present a comprehensive and practical solution for use in future numerical studies.

  11. Thermodynamics of Angular Propulsion in Fluids

    NASA Astrophysics Data System (ADS)

    Polihronov, Jeliazko G.; Straatman, Anthony G.

    2012-08-01

    The presented study examines the energetics of confined fluid flow in a rotating reference frame. Parallels are drawn to the corresponding scenario of rectilinear motion, where ejection of fluid results in linear propulsion of the frame. Absorption of flow energy into the frame motion leads to cooling of the ejected fluid. Relevance of the observed energetics to the temperature separation phenomenon in Ranque-Hilsch vortex tubes is discussed.

  12. Laboratory Applications of the Vortex Tube.

    ERIC Educational Resources Information Center

    Bruno, Thomas J.

    1987-01-01

    Discussed are a brief explanation of the function of the vortex tube and some applications for the chemistry laboratory. It is a useful and inexpensive solution to many small-scale laboratory heating and cooling applications. (RH)

  13. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOEpatents

    Sohal, Manohar S.; O'Brien, James E.

    2005-12-20

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  14. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOEpatents

    Sohal, Monohar S.; O'Brien, James E.

    2004-09-14

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  15. On the formation of vortex rings in coaxial tubes

    NASA Astrophysics Data System (ADS)

    Gan, Lian

    2011-11-01

    The formation of vortex rings within coaxial tubes of different diameter is investigated experimentally and numerically. PIV measurements were carried out in a water tank equipped with a piston-cylinder apparatus used to generate vortex rings inside a series of coaxial tubes with tube to piston diameter ratios, DT / D , ranging from 4 to 1.5. In order to distinguish between the effect confinement has on the formation of isolated vortex rings from those formed with a trailing jet flow, non- dimensional stroke ratios below and above the formation number were investigated, L / D = 2 . 5 and 10 respectively. For DT / D > 2 and L / D s below the formation number the kinematics of the vortex rings follow classical inviscid theory in so much as their self-induced velocity decreases linearly with decreasing tube diameter in accordance with the image theorem. For DT / D <= 2 boundary layer separation along the tube wall begins to interfere with the vortex during its roll-up phase. For vortex rings below the formation number, the vortex core is briefly arrested upon completion of the piston stroke. On the other hand, long L / D s give rise to even more complex dynamics. When DT / D = 2 the interaction between boundary layer and the starting jet acts to suppress vortex ring formation altogether. However, as confinement is increased further to DT / D = 1 . 5 the formation of a lead vortex ring re-appears but with a circulation lower than the formation number before rapidly decaying.

  16. Cut-and-connect of two antiparallel vortex tubes

    NASA Technical Reports Server (NTRS)

    Melander, Mogens V.; Hussain, Fazle

    1988-01-01

    Motivated by an early conjecture that vortex cut-and-connect plays a key role in mixing and production of turbulence, helicity and aerodynamic noise, the cross-linking of two antiparallel viscous vortex tubes via direct numerical simulation is studied. The Navier-Stokes equations are solved by a dealiased pseudo-spectral method with 64 cubed grid points in a periodic domain for initial Reynolds numbers Re up to 1000. The vortex tubes are given an initial sinusoidal perturbation to induce a collision and keep the two tubes pressed against each other as annihilation continues. Cross-sectional and wire plots of various properties depict three stages of evolution: (1) Inviscid induction causing vortex cores to first approach and form a contact zone with a dipole cross-section, and then to flatten and stretch; (2) Vorticity annihilation in the contact zone accompanied by bridging between the two vortices at both ends of the contact zone due to a collection of cross-linked vortex lines, now orthogonal to the initial vortex tubes. The direction of dipole advection in the contact zone reverses; and (3) Threading of the remnants of the original vortices in between the bridges as they pull apart. The crucial stage 2 is shown to be a simple consequence of vorticity annihilation in the contact zone, link-up of the un-annihilated parts of vortex lines, and stretching and advection by the vortex tube swirl of the cross-linked lines, which accumulate at stagnation points in front of the annihilating vortex dipole. It is claimed that bridging is the essence of any vorticity cross-linking and that annihilation is sustained by stretching of the dipole by the bridges. Vortex reconnection details are found to be insensitive to asymmetry. Modeling of the reconnection process is briefly examined. The 3D spatial details of scalar transport (at unity Schmidt number), enstrophy production, dissipation and helicity are also examined.

  17. Kinematics and dynamics of vortex rings in a tube

    NASA Technical Reports Server (NTRS)

    Brasseur, J. G.

    1979-01-01

    Kinematic theory and flow visualization experiments were combined to examine the dynamic processes which control the evolution of vortex rings from very low to very high Reynolds numbers, and to assess the effects of the wall as a vortex ring travels up a tube. The kinematic relationships among the size, shape, speed, and strength of vortex rings in a tube were computed from the theory. Relatively simple flow visualization measurements were used to calculate the total circulation of a vortex rings at a given time. Using this method, the strength was computated and plotted as a function of time for experimentally produced vortex rings. Reynolds number relationships are established and quantitative differences among the three Reynolds number groups are discussed.

  18. The experimental investigation and thermodynamic analysis of vortex tubes

    NASA Astrophysics Data System (ADS)

    Celik, Adem; Yilmaz, Mehmet; Kaya, Mehmet; Karagoz, Sendogan

    2016-05-01

    In the present study, it was aimed to produce a fundamental i nformation and to investigate the effects of various design parameters on tube performance characteristics by setting up vortex tube experimental system in order to study the parameters predetermined for the design of vortex tubes and by conducting thermodynamic analysis. According to the findings of experiments, as the mass flow rate of cold flow increases (yc) temperature of cold flow also increases, while the temperature of warm flow increases approximately to yc = 0.6 and then decreases. Increases in inlet pressure, inlet nozzle surface and diameter of the cold outlet orifice increased temperature differences between cold and warm flows. Tube with L/D = 10 showed better performance than with L/D = 20. The finding that irreversibility parameter is very close to critical threshold of irreversibility proved that process in vortex tube is considerably irreversible. Coefficient of performance (COP) values in vortex tube were much lower than other heating and cooling systems. This situation may show that vortex tubes are convenient in the processes where productivity is at the second rate compared to other factors.

  19. Vortex tubes in turbulent flows: Identification, representation, reconstruction

    NASA Technical Reports Server (NTRS)

    Banks, David C.; Singer, Bart A.

    1994-01-01

    In many cases the structure of a fluid flow is well-characterized by its vortices, especially for the purpose of visualization. In this paper we present a new algorithm for identifying vortices in complex flows. The algorithm produces a skeleton line along the center of a vortex by using a two-step predictor-corrector scheme. The vorticity vector field serves as the predictor and the pressure gradient (in the perpendicular plane) serves as the corrector. We describe an economical description of the vortex tube's cross-section: a 5-term truncated Fourier series is generally sufficient, and it compresses the representation of the flow by a factor of 4000 or more. We reconstruct the vortex tubes as generalized cylinders, providing a polygonal mesh suitable for display on a graphics workstation. We show how the reconstructed geometry of vortex tubes can be enhanced to help visualize helical motion in a static image.

  20. DYNAMICS OF MAGNETIZED VORTEX TUBES IN THE SOLAR CHROMOSPHERE

    SciTech Connect

    Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.

    2012-05-20

    We use three-dimensional radiative MHD simulations to investigate the formation and dynamics of small-scale (less than 0.5 Mm in diameter) vortex tubes spontaneously generated by turbulent convection in quiet-Sun regions with an initially weak (10 G) mean magnetic field. The results show that the vortex tubes penetrate into the chromosphere and substantially affect the structure and dynamics of the solar atmosphere. The vortex tubes are mostly concentrated in intergranular lanes and are characterized by strong (near sonic) downflows and swirling motions that capture and twist magnetic field lines, forming magnetic flux tubes that expand with height and attain magnetic field strengths ranging from 200 G in the chromosphere to more than 1 kG in the photosphere. We investigate in detail the physical properties of these vortex tubes, including thermodynamic properties, flow dynamics, and kinetic and current helicities, and conclude that magnetized vortex tubes provide an important path for energy and momentum transfer from the convection zone into the chromosphere.

  1. UBIQUITOUS SOLAR ERUPTIONS DRIVEN BY MAGNETIZED VORTEX TUBES

    SciTech Connect

    Kitiashvili, I. N.; Kosovichev, A. G.; Lele, S. K.; Mansour, N. N.; Wray, A. A.

    2013-06-10

    The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruption events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push the surrounding material up, generating shocks. Our simulations reveal complicated high-speed flow patterns and thermodynamic and magnetic structure in the erupting vortex tubes. The main new results are: (1) the eruptions are initiated in the subsurface layers and are driven by high-pressure gradients in the subphotosphere and photosphere and by the Lorentz force in the higher atmosphere layers; (2) the fluctuations in the vortex tubes penetrating into the chromosphere are quasi-periodic with a characteristic period of 2-5 minutes; and (3) the eruptions are highly non-uniform: the flows are predominantly downward in the vortex tube cores and upward in their surroundings; the plasma density and temperature vary significantly across the eruptions.

  2. Moving magnetic tubes: fragmentation, vortex streets and the limit of the approximation of thin flux tubes

    NASA Astrophysics Data System (ADS)

    Cheung, M. C. M.; Moreno-Insertis, F.; Schüssler, M.

    2006-05-01

    Aims.We study the buoyant rise of magnetic flux tubes in a stratified layer over a range of Reynolds numbers (25 ⪉ Re ⪉ 2600) by means of numerical simulations. Special emphasis is placed on studying the fragmentation of the rising tube, its trailing wake and the formation of a vortex street in the high-Reynolds number regime. Furthermore, we evaluate the relevance of the thin flux tube approximation with regard to describing the evolution of magnetic flux tubes in the simulations. Methods: .We used the FLASH code, which has an adaptive mesh refinement (AMR) algorithm, thus allowing the simulations to be carried out at high Reynolds numbers. Results: .The evolution of the magnetic flux tube and its wake depends on the Reynolds number. At Re up to a few hundred, the wake consists of two counter-rotating vortex rolls. At higher Re, the vortex rolls break up and the shedding of flux into the wake occurs in a more intermittent fashion. The amount of flux retained by the central portion of the tube increases with the field line twist (in agreement with previous literature) and with Re. The time evolution of the twist is compatible with a homologous expansion of the tube. The motion of the central portion of the tube in the simulations is very well described by the thin flux tube model whenever the effects of flux loss or vortex forces can be neglected. If the flux tube has an initial net vorticity, it undergoes asymmetric vortex shedding. In this case, the lift force accelerates the tube in such a way that an oscillatory horizontal motion is super-imposed on the vertical rise of the tube, which leaves behind a vortex street. This last result is in accordance with previous simulations reported in the literature, which were carried out at lower Reynolds number.

  3. Vortex Rings Generated by a Shrouded Hartmann-Sprenger Tube

    NASA Technical Reports Server (NTRS)

    DeLoof, Richard L. (Technical Monitor); Wilson, Jack

    2005-01-01

    The pulsed flow emitted from a shrouded Hartmann-Sprenger tube was sampled with high-frequency pressure transducers and with laser particle imaging velocimetry, and found to consist of a train of vortices. Thrust and mass flow were also monitored using a thrust plate and orifice, respectively. The tube and shroud lengths were altered to give four different operating frequencies. From the data, the radius, velocity, and circulation of the vortex rings was obtained. Each frequency corresponded to a different length to diameter ratio of the pulse of air leaving the driver shroud. Two of the frequencies had length to diameter ratios below the formation number, and two above. The formation number is the value of length to diameter ratio below which the pulse converts to a vortex ring only, and above which the pulse becomes a vortex ring plus a trailing jet. A modified version of the slug model of vortex ring formation was used to compare the observations with calculated values. Because the flow exit area is an annulus, vorticity is shed at both the inner and outer edge of the jet. This results in a reduced circulation compared with the value calculated from slug theory accounting only for the outer edge. If the value of circulation obtained from laser particle imaging velocimetry is used in the slug model calculation of vortex ring velocity, the agreement is quite good. The vortex ring radius, which does not depend on the circulation, agrees well with predictions from the slug model.

  4. CFD analysis of straight and flared vortex tube

    NASA Astrophysics Data System (ADS)

    Dhillon, Aman Kumar; Bandyopadhyay, Syamalendu S.

    2015-12-01

    Vortex tube (VT) is a simple low refrigeration producing device having no moving part. However, the flow inside it is very complex. Recent studies show that the performance of VT improves with the increase in the divergence angle of a flared VT. To explore the temperature separation phenomenon in the VT, a three dimensional computational fluid dynamics (CFD) analysis of VT has been carried out. For the present work, a VT having diameter of 12 mm, length of 120 mm, cold outlet diameter of 7 mm and hot outlet annulus of 0.4 mm with 6 straight rectangular nozzles having area of 0.5 sq. mm each is considered. The turbulence in the flow field of the VT is modeled by standard k-e turbulence model considering Redlich-Kwong real gas model. The effect of variation of divergence angle of hot tube in the VT is studied and compared with the experimental results available in the literature. The temperature separation between the hot outlet and cold outlet, in both straight and 2 degree flared tube is studied. Analysis results indicate that for a hot mass fraction above 0.5, the flared tube shows better cold production capacity compared to the straight tube. Effect of important parameters like temperature gradient, velocities (axial, radial and tangential), velocity gradients, effective thermal conductivity and viscosity of fluid etc., on heat transfer and shear work transfer in the VT have been investigated. To understand the temperature separation mechanism, heat transfer and work transfer along the axial direction have been evaluated in both straight and flared tubes. The isentropic efficiency and COP as a refrigerator as well as a heat pump of straight tube and flared tube have been computed.

  5. Visualization of longitudinal vortex flow in an enhanced heat transfer tube

    SciTech Connect

    Li, Xiao-wei; Yan, Huan; Meng, Ji-an; Li, Zhi-xin

    2007-05-15

    Longitudinal vortex flow was visualized in an enlarged DDIR tube (discrete double inclined ribs on the inner surface). The experiments were conducted in a water tunnel using dye injection. Two kinds of ribs with different widths were investigated. The visualizations showed counter rotating longitudinal vortex pairs formed by the discrete double inclined ribs. The vortex intensity increased with increasing Reynolds numbers while the length over which the vortices were observed along the flow direction decreased with increasing Reynolds numbers for Re = 1000-2000. The vortex intensity and vortex flow length were also strongly affected by the rib dimensions. (author)

  6. The dynamical role of vortex tubes and sheets in wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Pirozzoli, Sergio

    2009-11-01

    Vortex sheets and tubes are extracted from DNS of a canonical compressible boundary layer, and their dynamical contribution analyzed by means of a non-local analysis based on the solution of the Poisson equation for the vector potential. The results show non-negligible contribution of vortex sheets to the wall layer dynamics, especially in the inner layer. The statistical relationship between tubes and sheets is also analyzed by means of conditional average fields extracted from a DNS database. The results support strong association between the two types of coherent structures, and indicate that vortex tubes are mainly produced upon roll-up of vortex sheets (as in the hairpin vortex paradigm), or interact causing the ejection of near-wall vorticity, or generate sheets of streamwise vorticity through a rubbing effect caused by the no-slip condition.

  7. Experimental investigation of pressure fluctuations caused by a vortex rope in a draft tube

    NASA Astrophysics Data System (ADS)

    Kirschner, O.; Ruprecht, A.; Göde, E.; Riedelbauch, S.

    2012-11-01

    In the last years hydro power plants have taken the task of power-frequency control for the electrical grid. Therefore turbines in storage hydro power plants often operate outside their optimum. If Francis-turbines and pump-turbines operate at off-design conditions, a vortex rope in the draft tube can develop. The vortex rope can cause pressure oscillations. In addition to low frequencies caused by the rotation of the vortex rope and the harmonics of these frequencies, pressure fluctuations with higher frequencies can be observed in some operating points too. In this experimental investigation the flow structure and behavior of the vortex rope movement in the draft tube of a model pump-turbine are analyzed. The investigation focuses on the correlation of the pressure fluctuation frequency measured at the draft tube wall with the movement of the vortex rope. The movement of the vortex rope is analyzed by the velocity field in the draft tube which was measured with particle image velocimetry. Additionally, the vortex rope movement has been analyzed with the captures of high-speed-movies from the cavitating vortex rope. Besides the rotation of the vortex rope due to pressure fluctuation with low frequencies the results of the measurement also show a correlation between the rotation of the elliptical or deformed rope cross-section and the higher frequency pressure pulsation. An approximation shows that the frequencies of the pressure fluctuation and the movement of the vortex rope are also connected with the velocity of the flow. Taking into account the size and position of the cavitating vortex core as well as the velocity at the position of the surface of the cavitating vortex core the time-period of the rotation of the vortex core can be approximated. The results show that both, the low frequency pressure fluctuation and the higher frequency pressure fluctuation are correlating with the vortex rope movement. With this estimation, the period of the higher frequency

  8. Rapid and selective brain cooling method using vortex tube: A feasibility study.

    PubMed

    Bakhsheshi, Mohammad Fazel; Keenliside, Lynn; Lee, Ting-Yim

    2016-05-01

    Vortex tubes are simple mechanical devices to produce cold air from a stream of compressed air without any moving parts. The primary focus of the current study is to investigate the feasibility and efficiency of nasopharyngeal brain cooling method using a vortex tube. Experiments were conducted on 5 juvenile pigs. Nasopharygeal brain cooling was achieved by directing cooled air via a catheter in each nostril into the nasal cavities. A vortex tube was used to generate cold air using various sources of compressed air: (I) hospital medical air outlet (n = 1); (II) medical air cylinders (n = 3); and (III) scuba (diving) cylinders (n = 1). By using compressed air from a hospital medical air outlet at fixed inlet pressure of 50 PSI, maximum brain-rectal temperature gradient of -2°C was reached about 45-60 minutes by setting the flow rate of 25 L/min and temperature of -7°C at the cold air outlet. Similarly, by using medical air cylinders at fill-pressure of 2265 PSI and down regulate the inlet pressure to the vortex tube to 50 PSI, brain temperature could be reduced more rapidly by blowing -22°C ± 2°C air at a flow rate of 50 L/min; brain-body temperature gradient of -8°C was obtained about 30 minutes. Furthermore, we examined scuba cylinders as a portable source of compressed gas supply to the vortex tube. Likewise, by setting up the vortex tube to have an inlet pressure of 25 PSI and 50 L/min and -3°C at the cold air outlet, brain temperature decreased 4.5°C within 10-20 min. PMID:26970864

  9. Rapid and selective brain cooling method using vortex tube: A feasibility study.

    PubMed

    Bakhsheshi, Mohammad Fazel; Keenliside, Lynn; Lee, Ting-Yim

    2016-05-01

    Vortex tubes are simple mechanical devices to produce cold air from a stream of compressed air without any moving parts. The primary focus of the current study is to investigate the feasibility and efficiency of nasopharyngeal brain cooling method using a vortex tube. Experiments were conducted on 5 juvenile pigs. Nasopharygeal brain cooling was achieved by directing cooled air via a catheter in each nostril into the nasal cavities. A vortex tube was used to generate cold air using various sources of compressed air: (I) hospital medical air outlet (n = 1); (II) medical air cylinders (n = 3); and (III) scuba (diving) cylinders (n = 1). By using compressed air from a hospital medical air outlet at fixed inlet pressure of 50 PSI, maximum brain-rectal temperature gradient of -2°C was reached about 45-60 minutes by setting the flow rate of 25 L/min and temperature of -7°C at the cold air outlet. Similarly, by using medical air cylinders at fill-pressure of 2265 PSI and down regulate the inlet pressure to the vortex tube to 50 PSI, brain temperature could be reduced more rapidly by blowing -22°C ± 2°C air at a flow rate of 50 L/min; brain-body temperature gradient of -8°C was obtained about 30 minutes. Furthermore, we examined scuba cylinders as a portable source of compressed gas supply to the vortex tube. Likewise, by setting up the vortex tube to have an inlet pressure of 25 PSI and 50 L/min and -3°C at the cold air outlet, brain temperature decreased 4.5°C within 10-20 min.

  10. Numerical study of the vortex tube reconnection using vortex particle method on many graphics cards

    NASA Astrophysics Data System (ADS)

    Kudela, Henryk; Kosior, Andrzej

    2014-08-01

    Vortex Particle Methods are one of the most convenient ways of tracking the vorticity evolution. In the article we presented numerical recreation of the real life experiment concerning head-on collision of two vortex rings. In the experiment the evolution and reconnection of the vortex structures is tracked with passive markers (paint particles) which in viscous fluid does not follow the evolution of vorticity field. In numerical computations we showed the difference between vorticity evolution and movement of passive markers. The agreement with the experiment was very good. Due to problems with very long time of computations on a single processor the Vortex-in-Cell method was implemented on the multicore architecture of the graphics cards (GPUs). Vortex Particle Methods are very well suited for parallel computations. As there are myriads of particles in the flow and for each of them the same equations of motion have to be solved the SIMD architecture used in GPUs seems to be perfect. The main disadvantage in this case is the small amount of the RAM memory. To overcome this problem we created a multiGPU implementation of the VIC method. Some remarks on parallel computing are given in the article.

  11. DETECTION OF VORTEX TUBES IN SOLAR GRANULATION FROM OBSERVATIONS WITH SUNRISE

    SciTech Connect

    Steiner, O.; Franz, M.; Bello Gonzalez, N.; Nutto, Ch.; Rezaei, R.; Schmidt, W.; Martinez Pillet, V.; Bonet Navarro, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Knoelker, M.

    2010-11-10

    We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.

  12. Nonlinear characteristics analysis of vortex-induced vibration for a three-dimensional flexible tube

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Jiang, Naibin; Zang, Fenggang; Zhang, Yixiong; Huang, Xuan; Wu, Wanjun

    2016-05-01

    Vortex-induced vibration of a three-dimensional flexible tube is one of the key problems to be considered in many engineering situations. This paper aims to investigate the nonlinear dynamic behaviors and response characteristics of a three-dimensional tube under turbulent flow. The three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, and the dynamic equilibrium equations are discretized by the finite element theory. A three-dimensional fully coupled numerical model for vortex-induced vibration of flexible tube is proposed. The model realized the fluid-structure interaction with solving the fluid flow and the structure vibration simultaneously. Based on this model, Response regimes, trajectory, phase difference, fluid force coefficient and vortex shedding frequency are obtained. The nonlinear phenomena of lock-in, phase-switch are captured successfully. Meanwhile, the limit cycle, bifurcation of lift coefficient and displacement are analyzed using phase portrait and Poincare section. The results reveal that, a quasi-upper branch occurs in the present fluid-flexible tube coupling system with high mass-damping and low mass ratio. There is no bifurcation of lift coefficient and lateral displacement occurred in the three-dimensional flexible tube submitted to uniform turbulent flow.

  13. Heat transfer enhancement by a multilobe vortex generator in internally finned tubes

    SciTech Connect

    Tsui, Y.Y.; Leu, S.W.

    1999-04-01

    A three-dimensional computational method is employed to study the flow and heat transfer in internally finned tubes with a multilobe vortex generator inserted. Governing equations are discretized using the finite volume method. The irregular lobe geometry is treated using curvilinear nonstaggered grids. The linear interpolation method is adopted to calculate face velocities. The results show that secondary flows induced by the lobes are transformed to become axial vortices downstream of the vortex generator. As a consequence of the transport by the vortex flow, the core flow is moved to the fins and the tube wall, while the wall flow moves to the core. In this way, both heat transfer and flow mixing are enhanced. When the fin height is increased, the axial vortex is more restricted in the centerline region, and the strength of the vortex flow, represented by circulation, is decreased. In turn, the total pressure loss is also decreased. However, the heat transfer increases with fin height. Consequently, efficiency is greatly promoted.

  14. Analytical models for complex swirling flows

    NASA Astrophysics Data System (ADS)

    Borissov, A.; Hussain, V.

    1996-11-01

    We develops a new class of analytical solutions of the Navier-Stokes equations for swirling flows, and suggests ways to predict and control such flows occurring in various technological applications. We view momentum accumulation on the axis as a key feature of swirling flows and consider vortex-sink flows on curved axisymmetric surfaces with an axial flow. We show that these solutions model swirling flows in a cylindrical can, whirlpools, tornadoes, and cosmic swirling jets. The singularity of these solutions on the flow axis is removed by matching them with near-axis Schlichting and Long's swirling jets. The matched solutions model flows with very complex patterns, consisting of up to seven separation regions with recirculatory 'bubbles' and vortex rings. We apply the matched solutions for computing flows in the Ranque-Hilsch tube, in the meniscus of electrosprays, in vortex breakdown, and in an industrial vortex burner. The simple analytical solutions allow a clear understanding of how different control parameters affect the flow and guide selection of optimal parameter values for desired flow features. These solutions permit extension to other problems (such as heat transfer and chemical reaction) and have the potential of being significantly useful for further detailed investigation by direct or large-eddy numerical simulations as well as laboratory experimentation.

  15. The numerical research of runner cavitation effects on spiral vortex rope in draft tube of Francis turbine

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhou, L. J.; Wang, Z. W.

    2015-12-01

    The spiral cavitating vortex rope developed in the draft tube of Francis turbine under part load condition maybe causes serious pressure fluctuations and power swings, which threatens the safety and stability of the power plant operations. Many works have been performed to explore the mechanisms of it. In this paper, the runner cavitation and spiral vortex rope under part load conditions were studied to investigate the relations of runner cavitation and the spiral vortex rope. The results proved the existence of obvious interaction between them. The swirl flow at the runner outlet plays an important role in the formation of vortex rope. And the periodic procession of vortex rope in turn intensifies the uneven pressure distribution near the runner outlet and causes the asymmetric cavitation on the runner blades, which then give rise to the modification of swirl flow at the runner blades and thereby affects the characteristics of vortex rope.

  16. Computer simulation of vortex combustion processes in fire-tube boilers

    NASA Astrophysics Data System (ADS)

    Khaustov, Sergei A.; Zavorin, Alexander S.; Buvakov, Konstantin V.; Kudryashova, Lidiya D.; Tshelkunova, Anastasiya V.

    2015-01-01

    The article describes computer simulation of the turbulent methane-air combustion in a fire-tube boiler furnace. Computer simulations performed for variants of once-through fire-tube furnace and reversive flame furnace. Options with various twist parameters of the fuel-air jet were examined. The flame structure has been determined computationally, contours of average speed, temperature and concentrations have been acquired. The results of calculations are presented in graphical form. Dependence of construction characteristics on vortex aerodynamic parameters was estimated. Turbulent combustion of natural gas in the reverse flame of fire-tube boiler was studied by means of the ANSYS Fluent 12.1.4 engineering simulation software.

  17. The structure and dynamics of coherent vortex tubes in rotating shear turbulence of zero-mean-absolute vorticity.

    NASA Astrophysics Data System (ADS)

    Tanaka, Mitsuru; Yanase, Shinichiro

    2010-05-01

    The effect of the system rotation on shear flow turbulence is one of the central issues of fluid mechanics in relation to geophysical and astrophysical phenomena as well as engineering applications such as turbo machinery, so is still being vigorously investigated. If a turbulent shear flow is rotated as a whole about the axis parallel to the mean-shear vorticity, the flow structure is significantly influenced by the magnitude and direction of vorticity associated with the mean shear relative to those of the system rotation. The flow field is called either cyclonic or anti-cyclonic accordingly as vorticities associated with the mean shear and the system rotation are parallel or anti-parallel. Turbulence has a tendency to keep its two-dimensional structure along the system rotation both for cyclonic and for an anti-cyclonic regions for rapid system rotation, whereas the two-dimensional structure is unstable and easily broken down to three-dimensional in an anti-cyclonic region if the system rotation is relatively slow to the mean-shear vorticity. If the flow field is anti-cyclonic and the mean-shear vorticity cancels out that of the system rotation, the mean absolute vorticity is zero in the flow field, and then it is called the zero-mean-absolute-vorticity state (ZAVS). ZAVS, which is neutral to the above-mentioned instability, is observed in many rotating shear flow turbulence. One of the most remarkable features of ZAVS turbulence is the generation of very coherent quasi-streamwise vortex tubes which are not observed in other cases of rotating or nonrotating turbulence. Though the importance of the role of vortex tubes in shear flow turbulence is generally recognized, it is not easy to study their dynamics due to the interactions between vortex tubes and vortex-shear layers which are generated from the background mean-shear vorticity. In ZAVS, on the other hand, it is rather easy to investigate vortex tubes in turbulence because they are stable and long

  18. Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results

    SciTech Connect

    O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

    2002-08-01

    A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

  19. Investigation of the viscous reconnection phenomenon of two vortex tubes through spectral simulations

    NASA Astrophysics Data System (ADS)

    Beardsell, Guillaume; Dufresne, Louis; Dumas, Guy

    2016-09-01

    This paper aims to shed further light on the viscous reconnection phenomenon. To this end, we propose a robust and efficient method in order to quantify the degree of reconnection of two vortex tubes. This method is used to compare the evolutions of two simple initial vortex configurations: orthogonal and antiparallel. For the antiparallel configuration, the proposed method is compared with alternative estimators and it is found to improve accuracy since it can account properly for the formation of looping structures inside the domain. This observation being new, the physical mechanism for the formation of those looping structures is discussed. For the orthogonal configuration, we report results from simulations that were performed at a much higher vortex Reynolds number (ReΓ ≡ circulation/viscosity = 104) and finer resolution (N3 = 10243) than previously presented in the literature. The incompressible Navier-stokes equations are solved directly (Direct Numerical Simulation or DNS) using a Fourier pseudospectral algorithm with triply periodic boundary conditions. The associated zero-circulation constraint is circumvented by solving the governing equations in a proper rotating frame of reference. Using ideas similar to those behind our method to compute the degree of reconnection, we split the vorticity field into its reconnected and non-reconnected parts, which allows to create insightful visualizations of the evolving vortex topology. It also allows to detect regions in the vorticity field that are neither reconnected nor non-reconnected and thus must be associated to internal looping structures. Finally, the Reynolds number dependence of the reconnection time scale Trec is investigated in the range 500 ≤ ReΓ ≤ 10 000. For both initial configurations, the scaling is generally found to vary continuously as ReΓ is increased from T rec ˜ R eΓ - 1 to T rec ˜ R eΓ - 1 / 2 , thus providing quantitative support for previous claims that the reconnection

  20. Current-driven vortex domain wall motion in wire-tube nanostructures

    SciTech Connect

    Espejo, A. P.; Vidal-Silva, N.; López-López, J. A.; Goerlitz, D.; Nielsch, K.; Escrig, J.

    2015-03-30

    We have investigated the current-driven domain wall motion in nanostructures comprised of a pair of nanotube and nanowire segments. Under certain values of external magnetic fields, it is possible to pin a vortex domain wall in the transition zone between the wire and tube segments. We explored the behavior of this domain wall under the action of an electron flow applied in the opposite direction to the magnetic field. Thus, for a fixed magnetic field, it is possible to release a domain wall pinned simply by increasing the intensity of the current density, or conversely, for a fixed current density, it is possible to release the domain wall simply decreasing the magnetic external field. When the domain wall remains pinned due to the competition between the current density and the magnetic external field, it exhibits a oscillation frequency close to 8 GHz. The amplitude of the oscillations increases with the current density and decreases over time. On the other hand, when the domain wall is released and propagated through the tube segment, this shows the standard separation between a steady and a precessional regime. The ability to pin and release a domain wall by varying the geometric parameters, the current density, or the magnetic field transforms these wire-tube nanostructures in an interesting alternative as an on/off switch nano-transistor.

  1. The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Xuehong; Liu, DanDan; Zhao, Min; Lu, YanLi; Song, Xiaoyong

    2016-09-01

    Delta winglet works better than other vortex generators in improving the performance of fin-tube heat exchangers. In this paper, Response Surface Approximation is used to study the effects of the fin pitch, the ratio of the longitudinal tube pitch to transverse tube pitch, the ratio of both sides V 1 , V h of delta winglets and the attack angle of delta winglets on the performance of fin-tube heat exchanger. Firstly, Twenty-nine numerical group experiments including five times repeated experiments at the central point are conducted. Then, the analyses of variable (ANOVA) and regression are performed to verify the accuracy of the polynomial coefficients. Finally, the optimization of the fin-tube heat exchanger using the Genetic Algorithm is conducted and the best performance of j/f (1/3) is found to be 0.07945, which is consistent with the numerical result.

  2. Study of the vortex-induced pressure excitation source in a Francis turbine draft tube by particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2015-12-01

    Francis turbines operating at part-load experience the development of a precessing cavitation vortex rope at the runner outlet, which acts as an excitation source for the hydraulic system. In case of resonance, the resulting pressure pulsations seriously compromise the stability of the machine and of the electrical grid to which it is connected. As such off-design conditions are increasingly required for the integration of unsteady renewable energy sources into the existing power system, an accurate assessment of the hydropower plant stability is crucial. However, the physical mechanisms driving this excitation source remain largely unclear. It is for instance essential to establish the link between the draft tube flow characteristics and the intensity of the excitation source. In this study, a two-component particle image velocimetry system is used to investigate the flow field at the runner outlet of a reduced-scale physical model of a Francis turbine. The discharge value is varied from 55 to 81 % of the value at the best efficiency point. A particular set-up is designed to guarantee a proper optical access across the complex geometry of the draft tube elbow. Based on phase-averaged velocity fields, the evolution of the vortex parameters with the discharge, such as the trajectory and the circulation, is determined for the first time. It is shown that the rise in the excitation source intensity is induced by an enlargement of the vortex trajectory and a simultaneous increase in the precession frequency, as well as the vortex circulation. Below a certain value of discharge, the structure of the vortex abruptly changes and loses its coherence, leading to a drastic reduction in the intensity of the induced excitation source.

  3. A Hybrid Vortex Method for Two-Dimensional Flow Over Tube Bundles

    SciTech Connect

    Strickland, J.H.; Wolfe, W.P.

    1998-11-13

    A hybrid vortex method is presented for computing flows about objects that accurately resolves the boundary layer details while keeping the number of free vortices at a reasonable level. The method uses a wall layer model close to the body surface and discrete vortex blobs in the free wake. Details of the wall layer implementation are presented, and results of sample calculations are compared with known analytical solutions and with calculations from other vortex codes. These results show that the computed boundary layer details are accurate to approximately 0.3 percent of analytical solutions while using three orders of magnitude fewer vortices than other vortex simulations.

  4. Temperature and pressure measurements at cold exit of counter-flow vortex tube with flow visualization of reversed flow

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Hazwan bin; Katanoda, Hiroshi; Morita, Hiromitsu

    2015-02-01

    In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube (VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.

  5. Tempest in a glass tube: A helical vortex formation in a complex plasma

    NASA Astrophysics Data System (ADS)

    Saitou, Yoshifumi; Ishihara, Osamu; Ishihara

    2014-12-01

    A collective behavior of dust particles in a complex plasma with a magnetic field (up to 4 kG) is investigated. Dust particles form a dust disk which is rotating in a horizontal plane pushed by ions rotating with the E × B drift as a trigger force. The thickness of the disk is determined by controlling the experimental conditions. The disk rotates in a horizontal plane and forms a two-dimensional thin structure when the pressure pAr is relatively high. The dust particles are ejected from near the disk center and form a rotation in the vertical plane and, hence, forms a helical vortex when the disk is thick for relatively low pAr . The reason the dust disk has the different thickness is due to the neutral pressure. Under a higher (lower) neutral gas pressure, the disk becomes two (three) dimensional due to the influence of the neutral drag force.

  6. Experimental investigation of the local wave speed in a draft tube with cavitation vortex rope

    NASA Astrophysics Data System (ADS)

    Landry, C.; Favrel, A.; Müller, A.; Nicolet, C.; Yamamoto, K.; Avellan, F.

    2014-03-01

    Hydraulic machines operating in a wider range are subjected to cavitation developments inducing undesirable pressure pulsations which could lead to potential instability of the power plant. The occurrence of pulsating cavitation volumes in the runner and the draft tube is considered as a mass source of the system and is depending on the cavitation compliance. This dynamic parameter represents the cavitation volume variation with the respect to a variation of pressure and defines implicitly the local wave speed in the draft tube. This parameter is also decisive for an accurate prediction of system eigen frequencies. Therefore, the local wave speed in the draft tube is intrinsically linked to the eigen frequencies of the hydraulic system. Thus, if the natural frequency of a hydraulic system can be determined experimentally, it also becomes possible to estimate a local wave speed in the draft tube with a numerical model. In the present study, the reduced scale model of a Francis turbine (v=0.29) was investigated at off-design conditions. In order to measure the first eigenmode of the hydraulic test rig, an additional discharge was injected at the inlet of the hydraulic turbine at a variable frequency and amplitude to excite the system. Thus, with different pressure sensors installed on the test rig, the first eigenmode was determined. Then, a hydro-acoustic test rig model was developed with the In-house EPFL SIMSEN software and the local wave speed in the draft tube was adjusted to obtain the same first eigen frequency as that measured experimentally. Finally, this method was applied for different Thoma and Froude numbers at part load conditions.

  7. On the combination of kinematics with flow visualization to compute total circulation - Application to vortex rings in a tube

    NASA Technical Reports Server (NTRS)

    Brasseur, J. G.; Chang, I.-D.

    1980-01-01

    To date the computation of the total circulation, or strength of a vortex has required detailed measurements of the velocity field within the vortex. In this paper a method is described in which the kinematics of the vortical flow field is exploited to calculate the strength of a vortex from relatively simple flow visualization measurements. There are several advantages in the technique, the most important being the newly acquired ability to calculate the transient changes in strength of a single vortex as it evolves. The method is applied to the study of vortex rings, although the development can be carried over directly to study vortex pairs, and it is expected that it can be generalized to other flows which contain regions of concentrated vorticity. The accuracy of the method as applied to vortex rings, assessed in part by comparing with the laser Doppler velocimeter (LDV) measurements of Sullivan et al., is shown to be excellent.

  8. Mass flow measurement of gas-liquid bubble flow with the combined use of a Venturi tube and a vortex flowmeter

    NASA Astrophysics Data System (ADS)

    Sun, Zhiqiang

    2010-05-01

    Development of effective techniques for gas-liquid two-phase flow measurement is of interest to both academic research and industrial applications. This paper presents a novel approach to the measurement of the mass flow rate of homogeneous gas-liquid bubble flow with the combined use of a Venturi tube and a vortex flowmeter. The Venturi tube and the vortex flowmeter were mounted in the same pipeline with a spacing interval of ten times the pipe's inner diameter. A measurement correlation was established based on the differential pressure generated across the Venturi tube and the frequency extracted from the vortex flowmeter signal. Experiments were conducted on a vertical upward gas-liquid two-phase flow rig under the bubble flow pattern, with the air mass flow rate from 0.2 × 10-3 to 3.2 × 10-3 kg s-1, the water mass flow rate from 3.3 to 5.2 kg s-1 and the volumetric void fraction from 0.004 to 0.246. The results show that the relative errors of the correlation for the mixture mass flow rate measurement were within ±5%, and the maximum standard deviation of the relative errors was 2.0%. This method provides a simple and practical solution to the mass flow measurement of homogeneous gas-liquid bubble flows.

  9. Conjugate heat transfer of a finned tube. Part B: Heat transfer augmentation and avoidance of heat transfer reversal by longitudinal vortex generators

    SciTech Connect

    Fiebig, M.; Chen, Y.; Grosse-Gorgemann, A.; Mitra, N.K.

    1995-08-01

    Numerical investigations of three-dimensional flow and heat transfer in a finned tube with punched longitudinal vortex generators (LVG`s) are carried out for Reynolds number of 250 and 300. Air with a Prandtl number of 0.7 is used as the fluid. The flow is both thermally and hydrodynamically developing. The LVG is a delta winglet pair (DWP) punched out of the fin and is located directly behind the tube, symmetrically separated by one tube diameter. The DWP generates longitudinal vortices in the wake of the tube, defers flow separation on the tube, deflects the main stream into the tube wake, and strong reduces the ``dead water zone.`` Heat transfer reversal is avoided by the DWP. Comparison of the span-averaged Nusselt numbers for the fin with and without DWP shows significant local heat transfer enhancement of several hundred percent in the tube wake. For Re = 300 and Fi = 200 the global heat transfer augmentation by a DWP, which amounts to only 2.5% of the fin area, is 31%.

  10. Numerical investigation for finding the appropriate design parameters of a fin-and-tube heat exchanger with delta-winglet vortex generators

    NASA Astrophysics Data System (ADS)

    Behfard, M.; Sohankar, A.

    2016-01-01

    A numerical simulation is performed to investigate the heat transfer and pressure drop characteristics of three-row inline tube bundles as a part of a heat exchanger (Re = 1000, Pr = 4.29). To enhance heat transfer, two pairs of delta winglet-type vortex generators (VGs) installed beside the first row and between the first and second rows of the tube bundles. The diameter of the second row of the tubes is chosen smaller than those of the first and third. A comprehensive study on the effects of various geometrical parameters such as transverse and longitudinal positions of VGs, length and height of VGs and angle of attack of the delta winglets is performed to augment heat transfer. Based on this study the best values of these design parameters are determined. The results showed that the best model increases the convective heat transfer ratio and thermal performance factor about 59 and 43 %, respectively, in compare with the geometry without VG.

  11. Simulations of the vortex in the Dellenback abrupt expansion, resembling a hydro turbine draft tube operating at part-load

    NASA Astrophysics Data System (ADS)

    Nilsson, H.

    2012-11-01

    This work presents an OpenFOAM case-study, based on the experimental studies of the swirling flow in the abrupt expansion by Dellenback et al.[1]. The case yields similar flow conditions as those of a helical vortex rope in a hydro turbine draft tube working at part-load. The case-study is set up similar to the ERCOFTAC Conical Diffuser and Centrifugal Pump OpenFOAM case-studies [2,3], making all the files available and the results fully reproducable using OpenSource software. The mesh generation is done using m4 scripting and the OpenFOAM built-in blockMesh mesh generator. The swirling inlet boundary condition is specified as an axi-symmetric profile. The outlet boundary condition uses the zeroGradient condition for all variables except for the pressure, which uses the fixed mean value boundary condition. The wall static pressure is probed at a number of locations during the simulations, and post-processing of the time-averaged solution is done using the OpenFOAM sample utility. Gnuplot scripts are provided for plotting the results. The computational results are compared to one of the operating conditions studied by Dellenback, and measurements for all the experimentally studied operating conditions are available in the case-study. Results from five cases are here presented, based on the kEpsilon model, the kOmegaSST model, and a filtered version of the same kOmegaSST model, named kOmegaSSTF [4,5]. Two different inlet boundary conditions are evaluated. It is shown that kEpsilon and kOmegaSST give steady solutions, while kOmegaSSTF gives a highly unsteady solution. The time-averaged solution of the kOmegaSSTF model is much more accurate than the other models. The kEpsilon and kOmegaSST models are thus unable to accurately model the effect of the large-scale unsteadiness, while kOmegaSSTF resolves those scales and models only the smaller scales. The use of two different boundary conditions shows that the boundary conditions are more important than the choice between

  12. Numerical study of heat transfer enhancement of finned flat tube bank fin with vortex generators mounted on both surfaces of the fin

    NASA Astrophysics Data System (ADS)

    Song, Ke-Wei; Wang, Liang-Bi; Fan, Ju-Fang; Zhang, Yong-Heng; Liu, Song

    2008-06-01

    Tube bank fin heat exchanger is one of the most compact heat exchangers, and it is widely used in industry equipments. The flat tube bank fin heat exchangers with vortex generators (VGs) have significant good heat transfer performance, and are used as radiators of locomotive. Here, we study heat transfer enhancement of a new fin where VGs are mounted on both surfaces of the fin. The heat transfer performance of this pattern is evaluated by a numerical method, and the results are compared with those obtained, under identical mass flow rate, when the VGs are mounted only on one surface of the fin. The results reveal that using this new pattern the height of VGs can be reduced and still obtain satisfactory heat transfer enhancement, while the pressure drop is reduced. The results also reveal that if VGs on one surface of the fin is determined, the locations where VGs are mounted on other surface of the same fin are very important, with configurations studied in this paper, depending on the value of Reynolds number, there exists an optimum location with which best heat transfer performance can be obtained.

  13. Vortex formation and instability in the left ventricle

    NASA Astrophysics Data System (ADS)

    Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel

    2012-09-01

    We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.

  14. Vulcanized vortex

    SciTech Connect

    Cho, Inyong; Lee, Youngone

    2009-01-15

    We investigate vortex configurations with the 'vulcanization' term inspired by the renormalization of {phi}{sub *}{sup 4} theory in the canonical {theta}-deformed noncommutativity. We focus on the classical limit of the theory described by a single parameter which is the ratio of the vulcanization and the noncommutativity parameters. We perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  15. Vulcanized vortex

    NASA Astrophysics Data System (ADS)

    Cho, Inyong; Lee, Youngone

    2009-01-01

    We investigate vortex configurations with the “vulcanization” term inspired by the renormalization of ϕ⋆4 theory in the canonical θ-deformed noncommutativity. We focus on the classical limit of the theory described by a single parameter which is the ratio of the vulcanization and the noncommutativity parameters. We perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  16. Experimental studies on coaxial vortex loops

    NASA Astrophysics Data System (ADS)

    Mariani, R.; Kontis, K.

    2010-12-01

    An experimental study has been conducted on the formation and propagation of coaxial vortex loops using a shock tube facility. The study aimed at evaluating the flow characteristics of pairs of corotating vortex rings that generate the leapfrogging phenomenon. The driver and driven gas of the shock tube were air. Three driver pressures were used (4, 8, and 12 bars) with the driven gas being at ambient conditions. The Mach numbers of the shock wave generated inside the shock tube were 1.34, 1.54, and 1.66, respectively. The sudden expansion present at the diaphragm location effectively decreased the Mach number value of the traveling shock wave. Results showed that a pair of vortex rings staggered with respect to time and with the same direction rotation lead to leapfrogging. Results also indicated that the number of leapfrogging occurrences is related to the Reynolds number of the vortex ring pairs with a decrease in leapfrogs at higher Reynolds numbers.

  17. Vortex dynamics during blade-vortex interactions

    NASA Astrophysics Data System (ADS)

    Peng, Di; Gregory, James W.

    2015-05-01

    Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.

  18. Vortex bursting and tracer transport of a counter-rotating vortex pair

    NASA Astrophysics Data System (ADS)

    Misaka, T.; Holzäpfel, F.; Hennemann, I.; Gerz, T.; Manhart, M.; Schwertfirm, F.

    2012-02-01

    Large-eddy simulations of a coherent counter-rotating vortex pair in different environments are performed. The environmental background is characterized by varying turbulence intensities and stable temperature stratifications. Turbulent exchange processes between the vortices, the vortex oval, and the environment, as well as the material redistribution processes along the vortex tubes are investigated employing passive tracers that are superimposed to the initial vortex flow field. It is revealed that the vortex bursting phenomenon, known from photos of aircraft contrails or smoke visualization, is caused by collisions of secondary vortical structures traveling along the vortex tube which expel material from the vortex but do not result in a sudden decay of circulation or an abrupt change of vortex core structure. In neutrally stratified and weakly turbulent conditions, vortex reconnection triggers traveling helical vorticity structures which is followed by their collision. A long-lived vortex ring links once again establishing stable double rings. Key phenomena observed in the simulations are supported by photographs of contrails. The vertical and lateral extents of the detrained passive tracer strongly depend on environmental conditions where the sensitivity of detrainment rates on initial tracer distributions appears to be low.

  19. Vortex methods

    SciTech Connect

    Chorin, A.J. |

    1993-06-01

    Vortex methods originated from the observation that in incompressible inviscid flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus, if the vorticity is known at time t=0, one can find the flow at a later time by simply following the vorticity. In this narrow context, a vortex method is a numerical method that follows vorticity. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (blobs) and those whose analysis contributes to the understanding of blob methods. Blob methods started in the 1930`s.

  20. Arctic Vortex

    Atmospheric Science Data Center

    2013-06-26

    ... within the cloud layer downwind of the obstacle. These turbulence patterns are known as von Karman vortex streets. In these images ... was the first to derive the conditions under which these turbulence patterns occur. von Karman was a professor of aeronautics at the ...

  1. Confined vortex scrubber

    SciTech Connect

    Not Available

    1990-07-01

    The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards using a cleanup technology appropriate to small scale coal combustors. This to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber (CVS), which consists of a cylindrical vortex chamber with tangential flue gas inlets. The clean gas exit is via vortex finder outlets, one at either end of the tube. Liquid is introduced into the chamber and is confined within the vortex chamber by the centrifugal force generated by the gas flow itself. This confined liquid forms a layer through which the flue gas is then forced to bubble, producing a strong gas/liquid interaction, high inertial separation forces and efficient particulate cleanup. During this quarter a comprehensive series of cleanup experiments have been made for three CVS configurations. The first CVS configuration tested gave very efficient fine particulate removal at the design air mass flow rate (1 MM BUT/hr combustor exhaust flow), but had over 20{double prime}WC pressure drop. The first CVS configuration was then re-designed to produce the same very efficient particulate collection performance at a lower pressure drop. The current CVS configuration produces 99.4 percent cleanup of ultra-fine fly ash at the design air mass flow at a pressure drop of 12 {double prime}WC with a liquid/air flow ratio of 0.31/m{sup 3}. Unlike venturi scrubbers, the collection performance of the CVS is insensitive to dust loading and to liquid/air flow ratio.

  2. Experimental observation of the collision of three vortex rings

    NASA Astrophysics Data System (ADS)

    Hernández, R. H.; Monsalve, E.

    2015-06-01

    We investigate for the first time the motion, interaction and simultaneous collision between three initially stable vortex rings arranged symmetrically, making an angle of 120 degrees between their straight path lines. We report results with laminar vortex rings in air and water obtained through measurements of the ring velocity field with a hot-wire anemometer, both in free flight and during the entire collision. In the air experiment, our flow visualizations allowed us to identify two main collision stages. A first ring-dominated stage where the rings slowdown progressively, increasing their diameter rapidly, followed by secondary vortex structures resulting after the rings make contact. Local portions of the vortex tubes of opposite circulation are coupled together thus creating local arm-like vortex structures moving radially in outward directions, rapidly dissipating kinetic energy. From a similar water experiment, we provide detailed shadowgraph visualizations of both the ring bubble and the full size collision, showing clearly the final expanding vortex structure. It is accurately resolved that the physical contact between vortex ring tubes gives rise to three symmetric expanding vortex arms but also the vortex reconnection of the top and lower vortex tubes. The central collision zone was found to have the lowest kinetic energy during the entire collision and therefore it can be identified as a safe zone. The preserved collision symmetries leading to the weak kinematic activity in the safe zone is the first step into the development of an intermittent hydrodynamic trap for small and lightweight particles.

  3. Numerical simulation of flow in a high head Francis turbine with prediction of efficiency, rotor stator interaction and vortex structures in the draft tube

    NASA Astrophysics Data System (ADS)

    Jošt, D.; Škerlavaj, A.; Morgut, M.; Mežnar, P.; Nobile, E.

    2015-01-01

    The paper presents numerical simulations of flow in a model of a high head Francis turbine and comparison of results to the measurements. Numerical simulations were done by two CFD (Computational Fluid Dynamics) codes, Ansys CFX and OpenFOAM. Steady-state simulations were performed by k-epsilon and SST model, while for transient simulations the SAS SST ZLES model was used. With proper grid refinement in distributor and runner and with taking into account losses in labyrinth seals very accurate prediction of torque on the shaft, head and efficiency was obtained. Calculated axial and circumferential velocity components on two planes in the draft tube matched well with experimental results.

  4. Rotor Wake Vortex Definition Using 3C-PIV Measurements: Corrected for Vortex Orientation

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughues Richard; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2003-01-01

    Three-component (3-C) particle image velocimetry (PIV) measurements, within the wake across a rotor disk plane, are used to determine wake vortex definitions important for BVI (Blade Vortex Interaction) and broadband noise prediction. This study is part of the HART II test program conducted using a 40 percent scale BO-105 helicopter main rotor in the German-Dutch Wind Tunnel (DNW). In this paper, measurements are presented of the wake vortex field over the advancing side of the rotor operating at a typical descent landing condition. The orientations of the vortex (tube) axes are found to have non-zero tilt angles with respect to the chosen PIV measurement cut planes, often on the order of 45 degrees. Methods for determining the orientation of the vortex axis and reorienting the measured PIV velocity maps (by rotation/projection) are presented. One method utilizes the vortex core axial velocity component, the other utilizes the swirl velocity components. Key vortex parameters such as vortex core size, strength, and core velocity distribution characteristics are determined from the reoriented PIV velocity maps. The results are compared with those determined from velocity maps that are not corrected for orientation. Knowledge of magnitudes and directions of the vortex axial and swirl velocity components as a function of streamwise location provide a basis for insight into the vortex evolution.

  5. Brownian vortexes.

    PubMed

    Sun, Bo; Lin, Jiayi; Darby, Ellis; Grosberg, Alexander Y; Grier, David G

    2009-07-01

    Mechanical equilibrium at zero temperature does not necessarily imply thermodynamic equilibrium at finite temperature for a particle confined by a static but nonconservative force field. Instead, the diffusing particle can enter into a steady state characterized by toroidal circulation in the probability flux, which we call a Brownian vortex. The circulatory bias in the particle's thermally driven trajectory is not simply a deterministic response to the solenoidal component of the force but rather reflects interplay between advection and diffusion in which thermal fluctuations extract work from the nonconservative force field. As an example of this previously unrecognized class of stochastic heat engines, we consider a colloidal sphere diffusing in a conventional optical tweezer. We demonstrate both theoretically and experimentally that nonconservative optical forces bias the particle's fluctuations into toroidal vortexes whose circulation can reverse direction with temperature or laser power. PMID:19658638

  6. The structure of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Leibovich, S.

    1978-01-01

    The term 'vortex breakdown', as used in the reported investigation, refers to a disturbance characterized by the formation of an internal stagnation point on the vortex axis, followed by reversed flow in a region of limited axial extent. Two forms of vortex breakdown, which predominate, are shown in photographs. One form is called 'near-axisymmetric' (sometimes 'axisymmetric'), and the other is called 'spiral'. A survey is presented of work published since the 1972 review by Hall. Most experimental data taken since Hall's review have been in tubes, and the survey deals primarily with such cases. It is found that the assumption of axial-symmetry has produced useful results. The classification of flows as supercritical or subcritical, a step that assumes symmetry, has proved universally useful. Experiments show that vortex breakdown is always preceded by an upstream supercritical flow and followed by a subcritical wake. However, a comparison between experiments and attempts at prediction is less than encouraging. For a satisfactory understanding of the structure of vortex breakdown it is apparently necessary to take into account also aspects of asymmetry.

  7. Delaying vortex breakdown by waves

    NASA Astrophysics Data System (ADS)

    Yao, M. F.; Jiang, L. B.; Wu, J. Z.; Ma, H. Y.; Pan, J. Y.

    1989-03-01

    The effect of spiral waves on delaying vortex breakdown in a tube is studied experimentally and theoretically. When a harmonic oscillation was imposed on one of guiding vanes in the tube, the breakdown was observed to be postponed appreciately. According to the generalized Lagrangian mean theory, proper forcing spiral waves may produce an additional streaming momentum, of which the effect is favorable and similar to an axial suction at downstream end. The delayed breakdown position is further predicted by using nonlinear wave theory. Qualitative agreement between theory and experiment is obtained, and experimental comparison of the effects due to forcing spiral wave and axial suction is made.

  8. Superfluid Vortex Cooler

    NASA Astrophysics Data System (ADS)

    Tanaeva, I. A.; Lindemann, U.; Jiang, N.; de Waele, A. T. A. M.; Thummes, G.

    2004-06-01

    A superfluid vortex cooler (SVC) is a combination of a fountain pump and a vortex cooler. The working fluid in the SVC is 4He at a temperature below the lambda line. The cooler has no moving parts, is gravity independent, and hardly requires any additional infrastructure. At saturated vapour pressure the SVC is capable of reaching a temperature as low as 0.75 K. At pressures close to the melting pressure the temperature can be brought down to 0.65 K. As the SVC operates only below the lambda line, it has to be precooled e.g. by a liquid-helium bath or a cryocooler. As a first step of our research we have carried out a number of experiments, using a liquid-helium bath as a precooler for the SVC. In this arrangement we have reached temperatures below 1 K with 3.5 mW heating power supplied to the fountain part of the SVC at 1.4 K. The next step was combining the SVC with a pulse tube refrigerator (PTR), developed at the University of Giessen. It is a two-stage G-M type refrigerator with 3He as a working fluid that reached a lowest temperature of 1.27 K. In this contribution we report on the results of the SVC tests in liquid helium and the progress in the integration of the SVC with the PTR.

  9. Mechanics of viscous vortex reconnection

    NASA Astrophysics Data System (ADS)

    Hussain, Fazle; Duraisamy, Karthik

    2011-02-01

    This work is motivated by our long-standing claim that reconnection of coherent structures is the dominant mechanism of jet noise generation and plays a key role in both energy cascade and fine-scale mixing in fluid turbulence [F. Hussain, Phys. Fluids 26, 2816 (1983); J. Fluid Mech. 173, 303 (1986)]. To shed further light on the mechanism involved and quantify its features, the reconnection of two antiparallel vortex tubes is studied by direct numerical simulation of the incompressible Navier-Stokes equations over a wide range (250-9000) of the vortex Reynolds number, Re (=circulation/viscosity) at much higher resolutions than have been attempted. Unlike magnetic or superfluid reconnections, viscous reconnection is never complete, leaving behind a part of the initial tubes as threads, which then undergo successive reconnections (our cascade and mixing scenarios) as the newly formed bridges recoil from each other by self-advection. We find that the time tR for orthogonal transfer of circulation scales as tR≈Re-3/4. The shortest distance d between the tube centroids scales as d ≈a[Re(t0-t)]3/4 before reconnection (collision) and as d ≈b[Re(t -t0)]2 after reconnection (repulsion), where t0 is the instant of smallest separation between vortex centroids. We find that b is a constant, thus suggesting self-similarity, but a is dependent on Re. Bridge repulsion is faster than collision and is more autonomous as local induction predominates, and, given the associated acceleration of vorticity, is potentially a source of intense sound generation. At the higher Re studied, the tails of the colliding threads are compressed into a planar jet with multiple vortex pairs. For Re>6000, there is an avalanche of smaller scales during the reconnection, the rate of small scale generation and the spectral content (in vorticity, transfer function and dissipation spectra) being quite consistent with the structures visualized by the λ2 criterion. The maximum rate of vortex

  10. Vortex Flow Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Campbell, J. F. (Editor); Osborn, R. F. (Editor); Foughner, J. T., Jr. (Editor)

    1986-01-01

    Vortex modeling techniques and experimental studies of research configurations utilizing vortex flows are discussed. Also discussed are vortex flap investigations using generic and airplane research models and vortex flap theoretical analysis and design studies.

  11. Sadovskii vortex in strain

    NASA Astrophysics Data System (ADS)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2014-11-01

    A Sadovskii vortex is a patch of fluid with uniform vorticity surrounded by a vortex sheet. Using a boundary element type method, we investigate the steady states of this flow in an incompressible, inviscid straining flow. Outside the vortex, the fluid is irrotational. In the limiting case where the entire circulation is due to the vortex patch, this is a patch vortex (Moore & Saffman, Aircraft wake turbulence and its detection 1971). In the other limiting case, where all the circulation is due to the vortex sheet, this is a hollow vortex (Llewellyn Smith and Crowdy, J. Fluid Mech. 691, 2012). This flow has two governing nondimensional parameters, relating the strengths of the straining field, vortex sheet, and patch vorticity. We study the relationship between these two parameters, and examine the shape of the resulting vortices. We also work towards a bifurcation diagram of the steady states of the Sadovskii vortex in an attempt to understand the connection between vortex sheet and vortex patch desingularizations of the point vortex. Support from NSF-CMMI-0970113.

  12. Induced vacuum current and magnetic field in the background of a vortex

    NASA Astrophysics Data System (ADS)

    Gorkavenko, Volodymyr M.; Ivanchenko, Iryna V.; Sitenko, Yurii A.

    2016-02-01

    A topological defect in the form of the Abrikosov-Nielsen-Olesen vortex is considered as a gauge-flux-carrying tube that is impenetrable for quantum matter. Charged scalar matter field is quantized in the vortex background with the perfectly reflecting (Dirichlet) boundary condition imposed at the side surface of the vortex. We show that a current circulating around the vortex and a magnetic field directed along the vortex are induced in the vacuum, if the Compton wavelength of the matter field exceeds considerably the transverse size of the vortex. The vacuum current and magnetic field are periodic in the value of the gauge flux of the vortex, providing a quantum-field-theoretical manifestation of the Aharonov-Bohm effect. The total flux of the induced vacuum magnetic field attains notable finite values even for the Compton wavelength of the matter field exceeding the transverse size of the vortex by just three orders of magnitude.

  13. Sadovskii vortex in strain

    NASA Astrophysics Data System (ADS)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2015-11-01

    Sadovskii vortices are patches of fluid with uniform vorticity surrounded by a vortex sheet. They were first constructed as models for wakes behind bluff objects. We investigate the Sadovskii vortex in a straining field and examine limiting cases to validate our computational method. One limit is the patch vortex in strain (Moore & Saffman, Aircraft wake turbulence and its detection 1971), where there is no vortex sheet. We solve this as a free-boundary problem, and show that a simple method using the Biot-Savart law quickly gives solutions for stable shapes. When used for the more elongated (stronger straining field) situations, the method also leads to new vortex shapes. In the hollow vortex case, where there is no vortex patch and the circulation is entirely due to the vortex sheet (Llewellyn Smith and Crowdy, J. Fluid Mech. 691 2012), we use the Birkhoff-Rott equation to calculate the velocity of the fluid on the vortex boundary. The combination of these two methods can then be used to calculate the shape and velocity field of the Sadovksii vortex in strain.

  14. Wake Vortex Transport and Decay in Ground Effect: Vortex Linking with the Ground

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Han, Jongil

    2000-01-01

    Numerical simulations are carried out with a three-dimensional Large-Eddy Simulation (LES) model to explore the sensitivity of vortex decay and transport in ground effect (IGE). The vortex decay rates are found to be strongly enhanced following maximum descent into ground effect. The nondimensional decay rate is found to be insensitive to the initial values of circulation, height, and vortex separation. The information gained from these simulations is used to construct a simple decay relationship. This relationship compares well with observed data from an IGE case study. Similarly, a relationship for lateral drift due to ground effect is constructed from the LES data. In the second part of this paper, vortex linking with the ground is investigated. Our numerical simulations of wake vortices for IGE show that a vortex may link with its image beneath the ground, if the intensity of the ambient turbulence is moderate to high. This linking with the ground (which is observed in real cases)gives the appearance of a vortex tube that bends to become vertically oriented and which terminates at the ground. From the simulations conducted, the linking time for vortices in the free atmosphere; i.e., a function of ambient turbulence intensity.

  15. Formation of Small-Scale Vortex Rings from Vortex Pairs Close to the Ground

    NASA Astrophysics Data System (ADS)

    Asselin, Daniel; Williamson, Charles

    2013-11-01

    In this research, we examine the effect of a solid boundary on the dynamics and instabilities of a pair of counter-rotating vortices. An isolated vortex pair is subject to a short-wave elliptic instability and a long-wave Crow (1970) instability. Near a wall, the boundary layer between the primary vortices and the wall can separate, leading to the generation of secondary vorticity. These secondary vortices can be subject to small-scale instabilities (Harris & Williamson, 2012) as they come under the influence of the primary vortices. In contrast, in the present study we are interested in the long-wave Crow instability interrupted by interaction with a wall. This can cause significant axial flow, resulting in a periodic concentration of fluid containing vorticity at the peaks of each wavy vortex tube and a corresponding evacuation of fluid containing vorticity from the troughs. It appears that this axial flow is driven at least in part by the formation of vortex ring-like structures in the secondary vortex as it is deformed by the primary vortex. Furthermore, additional small scale-vortex rings evolve from the secondary vorticity and from the concentrated vortical regions in the primary vorticity. In both cases, these rings cause vorticity to rebound away from the ground.

  16. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  17. Rotor blade system with reduced blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Leishman, John G. (Inventor); Han, Yong Oun (Inventor)

    2005-01-01

    A rotor blade system with reduced blade-vortex interaction noise includes a plurality of tube members embedded in proximity to a tip of each rotor blade. The inlets of the tube members are arrayed at the leading edge of the blade slightly above the chord plane, while the outlets are arrayed at the blade tip face. Such a design rapidly diffuses the vorticity contained within the concentrated tip vortex because of enhanced flow mixing in the inner core, which prevents the development of a laminar core region.

  18. Vortex diode jet

    DOEpatents

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  19. Scientist Examines Tornado Vortex

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this Quick Time movie, a scientist examines what appears to be a tornado vortex (blue) coming out of a thunderstorm. The scientist uses 3D glasses to be able to see in 3 dimensions the different flows going out into the vortex. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

  20. Improved vortex reactor system

    DOEpatents

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  1. Feeding Tubes

    MedlinePlus

    ... administer the TPN. Tubes Used for Enteral Feeds NG (Nasogastric Tube) A flexible tube is placed via ... down through the esophagus into the stomach. The NG tube can be used to empty the stomach ...

  2. Ear Tubes

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media ... and throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through ...

  3. Vortex shedding by matched asymptotic vortex method

    NASA Astrophysics Data System (ADS)

    Guo, Xinjun; Mandre, Shreyas

    2014-11-01

    An extension of the Kutta condition, using matched asymptotic expansion applied to the Navier-Stokes equations, is presented for flow past a smooth body at high Reynolds number. The goal is to study the influence of unsteady fluid dynamical effects like leading edge vortex, unsteady boundary layer separation, etc. In order to capture accurately the location and strength of vortex shedding, the simplified Navier-Stokes equations in the form of boundary layer approximation are solved in the thin inner region close to the solid body. In the outer region far from the structure, the vortex methods are applied, which significantly reduces the computational cost compared to CFD in the whole domain. With this method, the flow past an airfoil with two degrees of freedom, pitching and heaving, is investigated.

  4. Vortex cutting in superconductors

    NASA Astrophysics Data System (ADS)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  5. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  6. Vortex Rings in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Alamri, Sultan Z.; Barenghi, Carlo F.

    2008-11-01

    We present results of numerical simulations of large-scale vortex rings in superfluid helium. These large-scale vortex rings consists of many discrete (quantized) vortex filaments which interact with each other moving according to the Biot-Savart law. Lifetime, structural stability and speed of large-scale vortex rings will be discussed and compared to experimental results.

  7. A study of short wave instability on vortex filaments

    SciTech Connect

    Wang, Hong Yun

    1996-12-01

    The numerical stability and accuracy of the vortex method are studied. The effect of the ordinary differential equations (ODE) solver and of the time step on the numerical stability is analyzed. Various ODE solvers are compared and a best performer is chosen. A new constraint on the time step based on numerical stability is proposed and verified in numerical simulations. It is shown through numerical examples that empirical rules for selecting the spatial discretization obtained in simple test problems may not be extended to more general problems. The thin tube vortex filament method is applied to the problem of Widnall`s instability on vortex rings. Numerical results different from previous calculations are presented and the source of the discrepancies is explained. The long time behavior of the unstable mode on thin vortex rings is simulated and analyzed. The short wave instability on vortex filaments is investigated both theoretically and numerically. It is shown that the short wave instability always occurs on co-rotating vortex filaments of fixed core structure. Furthermore when they are close to each other, vortex filaments produce short wave unstable modes which lead to wild stretching and folding. However, when the inter-filament distance is large in comparison with the core size of the filaments, unstable modes are bounded by a small fraction of the core size and the vortex filaments do not create hairpins nor wild stretching. These findings may explain the smooth behavior of the superfluid vortices. The formation of hairpin structures on numerical vortex filaments is investigated. It is shown that the formation of hairpin structures is independent of the ODE solver, of the time step and of other numerical parameters. The hairpin structures are primarily caused by short wave instability on co-rotating vortex filaments.

  8. Vortex breakdown simulation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Leonard, A.; Spalart, P. R.

    1985-01-01

    A vortex breakdown was simulated by the vortex filament method, and detailed figures are presented based on the results. Deformations of the vortex filaments showed clear and large swelling at a particular axial station which implied the presence of a recirculation bubble at that station. The tendency for two breakdowns to occur experimentally was confirmed by the simulation, and the jet flow inside the bubble was well simulated. The particle paths spiralled with expansion, and the streamlines took spiral forms at the breakdown with expansion.

  9. NASA wake vortex research

    NASA Technical Reports Server (NTRS)

    Stough, H. P., III; Greene, George C.; Stewart, Eric C.; Stuever, Robert A.; Jordan, Frank L., Jr.; Rivers, Robert A.; Vicroy, Dan D.

    1993-01-01

    NASA is conducting research that will enable safe improvements in the capacity of the nation's air transportation system. The wake-vortex hazard is a factor in establishing the minimum safe spacing between aircraft during landing and takeoff operations and, thus, impacts airport capacity. The ability to accurately model the wake hazard and determine safe separation distances for a wide range of aircraft and operational scenarios may provide the basis for significant increases in airport capacity. Current and planned NASA research is described which is focused on increasing airport capacity by safely reducing wake-hazard-imposed aircraft separations through advances in a number of technologies including vortex motion and decay prediction, vortex encounter modeling, wake-vortex hazard characterization, and in situ flow sensing.

  10. Vortex/surface interaction

    NASA Technical Reports Server (NTRS)

    Bodstein, G. C. R.; George, A. R.; Hui, C. Y.

    1993-01-01

    This paper considers the interaction of a vortex generated upstream in a flow field with a downstream aerodynamic surface that possesses a large chord. The flow is assumed to be steady, incompressible, inviscid and irrotational, and the surface to be semiinfinite. The vortex is considered to be a straight vortex filament. To lowest order the problem is modeled using potential theory, where the 3D Laplace's equation for the velocity potential on the surface is solved exactly. The closed-form equation for pressure distribution obtained from this theory is found to have a square root singularity at the leading-edge. It also converges, as x goes to infinity, to the solution of the 2D point-vortex/infinite plane problem. The pressure coefficient presents an anti-symmetric behavior, near the leading-edge and a symmetric behavior as x goes to infinity.

  11. Vortex flow hysteresis

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1986-01-01

    An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.

  12. The singing vortex

    PubMed Central

    Arndt, R.; Pennings, P.; Bosschers, J.; van Terwisga, T.

    2015-01-01

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures. PMID:26442147

  13. Improved vortex reactor system

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  14. Evolution of a vortex in gas-discharge plasma with allowance for gas compressibility

    NASA Astrophysics Data System (ADS)

    Sukhomlinov, V. S.; Mustafaev, A. S.

    2016-09-01

    The dynamics of a vortex tube in a compressible medium with the Rayleigh energy release mechanism has been considered theoretically. The analytic theory of this phenomenon is constructed and various approximations have been considered. The range of applicability conditions for the vortex formation theory has been extended substantially. It has been shown based on the model of a plasma as a Rayleigh medium that, for a certain relative orientation of the vortex axis and the electric field vector at an air pressure of tens of Torr, a vortex tube in the glow discharge plasma is destroyed over time intervals on the order of hundredths of a second. It has been found that allowance for the compressibility leads to an increase in the rate of vortex destruction. For this medium, the time dependences of the tangential velocity in a vortex tube have been calculated for various initial parameters. The similarity rules for the given phenomena and the universal dependence of the vortex tube dynamics have been obtained.

  15. Locally Induced Dynamics of Thin Cored Vortex Geometries with Application to Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Strong, Scott A.; Carr, Lincoln D.

    2010-03-01

    The self-induced dynamics of a vortex defect in a Bose-Einstein condensate (BEC) are well modeled by phenomenological hydrodynamics. At the macroscopic scale, vortex defects are thought to be precursory to turbulent fluid dynamics. However, at the microscopic scale, the vortex defects take on additional structure since some of their important features become quantized. While the study of vortex-tubes is most applicable for these phenomenon, nontrivial dynamics also manifests from idealized line vortices and are expressed by a concise asymptotic expansion consistent with the Euler equations relating the local dynamics of the defect to nonlinear Scrödinger (NLS) evolution. This local induction approximation (LIA) states that a bent line-vortex generates a local velocity field with an asymmetry in the binormal direction. Binormal flows correspond to NLS, which is a completely integrable nonlinear PDE admitting soliton solutions whose amplitude and phase controls the line-vortex curvature and torsion, respectively. Our recent work, generalizing LIA, indicates that higher order expansions offer no new dynamics in the case of a line-vortex, which is in contrast to existing results relating the dynamics of slender vortex tubes to a hierarchy of integrable dynamics. We also discuss the applicability of these expansions to BEC vortex dynamics.

  16. TUBE TESTER

    DOEpatents

    Gittings, H.T. Jr.; Kalbach, J.F.

    1958-01-14

    This patent relates to tube testing, and in particular describes a tube tester for automatic testing of a number of vacuum tubes while in service and as frequently as may be desired. In it broadest aspects the tube tester compares a particular tube with a standard tube tarough a difference amplifier. An unbalanced condition in the circuit of the latter produced by excessive deviation of the tube in its characteristics from standard actuates a switch mechanism stopping the testing cycle and indicating the defective tube.

  17. Vortex Apparatus and Demonstrations

    NASA Astrophysics Data System (ADS)

    Shakerin, Said

    2010-05-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies.2-5 In this paper, we focus on a particular vortex known as bathtub vortex (BTV). It occurs when water is drained from a hole at the bottom of a container such as a bathtub or a sink under the action of gravity. The vortex has a funnel shape with a central air core, resembling a tornado. We have designed a portable apparatus to demonstrate bathtub vortex on a continual basis. The apparatus consists of a clear cylinder supported by a frame over a water reservoir and a submersible pump. Young and old have been equally amazed by watching the demonstrations at various public presentations held at the University of the Pacific recently. With material cost of less than 100, the apparatus can be easily fabricated and used at other universities. With a short set-up time, it is an ideal device for promoting science to the general public, and it can be used to enhance lectures in physics courses as well.

  18. The giant dipole vortex

    NASA Astrophysics Data System (ADS)

    Arnoldus, Henk F.; Li, Xin; Xu, Zhangjin

    2016-06-01

    The field lines of energy flow of radiation emitted by an oscillating electric dipole in free space are either straight lines (linear dipole) or they form a vortex (rotating dipole). When the dipole is embedded in a material, the properties of the medium affect the direction of energy flow. Damping due to the imaginary part of the relative permittivity ? makes the field lines curve for the case of a linear dipole, and for a rotating dipole, the shape of the vortex is altered. In addition, a negative value of the real part of ? has the effect that the rotation direction of the vortex reverses for the case of a rotating dipole. The value of the relative permeability ? has in general not much effect on the redistribution of the direction of energy propagation. We show that a dramatic effect occurs when the embedding material is near-single-negative (both ? and ? approximately real, and the real parts of opposite sign). The curving of field lines is in general a sub-wavelength phenomenon. For near-single-negative materials, however, this curving extends over large distances from the dipole. In particular, the small free-space vortex of a rotating dipole becomes a vortex of enormous dimensions when the radiation is emitted into a near-single-negative material.

  19. Fluid Mechanics of the ``Vortex Fluidic Device''

    NASA Astrophysics Data System (ADS)

    Dalziel, Stuart; Britton, Joshua; Raston, Colin

    2014-11-01

    The Vortex Fluidic Device (VFD) provides a new ``green'' alternative for many industrially important organic chemistry processes including the generation of biodiesel. Improved chemical kinetics have also been demonstrated for a number of reactions. This relatively simple device, comprising essentially of a rapidly rotating tube, provides advantages ranging from reduced energy requirements and waste streams to high flow rates and the avoidance of clogging. The VFD is effective due to the interplay between fluid mechanics and chemistry providing near optimal conditions for the required reactions. This contribution provides an insight into the rich fluid mechanics of the device.

  20. Vortex attenuation flight experiments

    NASA Technical Reports Server (NTRS)

    Barber, M. R.; Hastings, E. C., Jr.; Champine, R. A.; Tymczyszyn, J. J.

    1977-01-01

    Flight tests evaluating the effects of altered span loading, turbulence ingestion, combinations of mass and turbulence ingestion, and combinations of altered span loading turbulance ingestion on trailed wake vortex attenuation were conducted. Span loadings were altered in flight by varying the deflections of the inboard and outboard flaps on a B-747 aircraft. Turbulence ingestion was achieved in flight by mounting splines on a C-54G aircraft. Mass and turbulence ingestion was achieved in flight by varying the thrust on the B-747 aircraft. Combinations of altered span loading and turbulence ingestion were achieved in flight by installing a spoiler on a CV-990 aircraft and by deflecting the existing spoilers on a B-747 aircraft. The characteristics of the attenuated and unattenuated vortexes were determined by probing them with smaller aircraft. Acceptable separation distances for encounters with the attenuated and unattenuated vortexes are presented.

  1. Aircraft vortex marking program

    NASA Technical Reports Server (NTRS)

    Pompa, M. F.

    1979-01-01

    A simple, reliable device for identifying atmospheric vortices, principally as generated by in-flight aircraft and with emphasis on the use of nonpolluting aerosols for marking by injection into such vortex (-ices) is presented. The refractive index and droplet size were determined from an analysis of aerosol optical and transport properties as the most significant parameters in effecting vortex optimum light scattering (for visual sighting) and visual persistency of at least 300 sec. The analysis also showed that a steam-ejected tetraethylene glycol aerosol with droplet size near 1 micron and refractive index of approximately 1.45 could be a promising candidate for vortex marking. A marking aerosol was successfully generated with the steam-tetraethylene glycol mixture from breadboard system hardware. A compact 25 lb/f thrust (nominal) H2O2 rocket chamber was the key component of the system which produced the required steam by catalytic decomposition of the supplied H2O2.

  2. Quantum vortex reconnections

    NASA Astrophysics Data System (ADS)

    Zuccher, S.; Caliari, M.; Baggaley, A. W.; Barenghi, C. F.

    2012-12-01

    We study reconnections of quantum vortices by numerically solving the governing Gross-Pitaevskii equation. We find that the minimum distance between vortices scales differently with time before and after the vortex reconnection. We also compute vortex reconnections using the Biot-Savart law for vortex filaments of infinitesimal thickness, and find that, in this model, reconnections are time symmetric. We argue that the likely cause of the difference between the Gross-Pitaevskii model and the Biot-Savart model is the intense rarefaction wave which is radiated away from a Gross-Pitaeveskii reconnection. Finally we compare our results to experimental observations in superfluid helium and discuss the different length scales probed by the two models and by experiments.

  3. The Acoustically Driven Vortex Cannon

    NASA Astrophysics Data System (ADS)

    Perry, Spencer B.; Gee, Kent L.

    2014-03-01

    Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon"2 and "Airzooka."3 We will briefly discuss the uses of a vortex cannon in teaching and a new type of vortex cannon for teaching.

  4. Vortex Characterization for Engineering Applications

    SciTech Connect

    Jankun-Kelly, M; Thompson, D S; Jiang, M; Shannahan, B; Machiraju, R

    2008-01-30

    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach.

  5. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  6. Consider vortex shedding flowmeters

    SciTech Connect

    Wilbeck, K.

    1988-08-01

    Precise flow control is becoming a critical concern in the hydrocarbon processing industry. The old practice of ''one flowmeter fits all services'' is no longer possible with the different service conditions and measurement requirements of refineries and petrochemical plants in the late 1980s. Proper selection of a flowmeter for a given service requires consideration of all flowmeter types and a detailed examination of the application's measurement requirements. This article discusses the vortex shedding flowmeter, an instrument that can be used in a wide variety of applications in the hydrocarbon processing industry. This article will discuss the theory of operation and offer guidelines for the application, installation and maintenance of vortex meters.

  7. Experimental study of vortex diffusers

    SciTech Connect

    Shakerin, S.; Miller, P.L.

    1995-11-01

    This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

  8. Vortex Apparatus and Demonstrations

    ERIC Educational Resources Information Center

    Shakerin, Said

    2010-01-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies. In this paper, we focus on a…

  9. Titan's Winter Polar Vortex

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2008-01-01

    Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not

  10. Passive Wake Vortex Control

    SciTech Connect

    Ortega, J M

    2001-10-18

    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging.'' This active concept

  11. Control of submersible vortex flows

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Donaldson, C. D.

    1990-01-01

    Vortex flows produced by submersibles typically unfavorably influence key figures of merit such as acoustic and nonacoustic stealth, control effectiveness/maneuverability, and propulsor efficiency/body drag. Sources of such organized, primarily longitudinal, vorticity include the basic body (nose and sides) and appendages (both base/intersection and tip regions) such as the fairwater, dive planes, rear control surfaces, and propulsor stators/tips. Two fundamentally different vortex control approaches are available: (1) deintensification of the amplitude and/or organization of the vortex during its initiation process; and (2) downstream vortex disablement. Vortex control techniques applicable to the initiation region (deintensification approach) include transverse pressure gradient minimization via altered body cross section, appendage dillets, fillets, and sweep, and various appendage tip and spanload treatment along with the use of active controls to minimize control surface size and motions. Vortex disablement can be accomplished either via use of control vortices (which can also be used to steer the vortices off-board), direct unwinding, inducement of vortex bursting, or segmentation/tailoring for enhanced dissipation. Submersible-applicable vortex control technology is also included derived from various aeronautical applications such as mitigation of the wing wake vortex hazard and flight aircraft maneuverability at high angle of attack as well as the status of vortex effects upon, and mitigation of, nonlinear control forces on submersibles. Specific suggestions for submersible-applicable vortex control techniques are presented.

  12. Rotor-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amiet, R. K.

    1983-01-01

    A theoretical and experimental study was conducted to develop a validated first principles analysis for predicting noise generated by helicopter main-rotor shed vortices interacting with the tail rotor. The generalized prediction procedure requires a knowledge of the incident vortex velocity field, rotor geometry, and rotor operating conditions. The analysis includes compressibility effects, chordwise and spanwise noncompactness, and treats oblique intersections with the blade planform. Assessment of the theory involved conducting a model rotor experiment which isolated the blade-vortex interaction noise from other rotor noise mechanisms. An isolated tip vortex, generated by an upstream semispan airfoil, was convected into the model tail rotor. Acoustic spectra, pressure signatures, and directivity were measured. Since assessment of the acoustic prediction required a knowledge of the vortex properties, blade-vortes intersection angle, intersection station, vortex stength, and vortex core radius were documented. Ingestion of the vortex by the rotor was experimentally observed to generate harmonic noise and impulsive waveforms.

  13. Waves on a vortex filament: exact solutions of dynamical equations

    NASA Astrophysics Data System (ADS)

    Brugarino, Tommaso; Mongiovi, Maria Stella; Sciacca, Michele

    2014-09-01

    In this paper, we take into account the dynamical equations of a vortex filament in superfluid helium at finite temperature (1 K < T < 2.17 K) and at very low temperature, which is called Biot-Savart law. The last equation is also valid for a vortex tube in a frictionless, unbounded, and incompressible fluid. Both the equations are approximated by the Local Induction Approximation (LIA) and Fukumoto's approximation. The obtained equations are then considered in the extrinsic frame of reference, where exact solutions (Kelvin waves) are shown. These waves are then compared one to each other in terms of their dispersion relations in the frictionless case. The same equations are then investigated for a quantized vortex line in superfluid helium at higher temperature, where friction terms are needed for a full description of the motion.

  14. Waves on a vortex filament: exact solutions of dynamical equations

    NASA Astrophysics Data System (ADS)

    Brugarino, Tommaso; Mongiovi, Maria Stella; Sciacca, Michele

    2015-06-01

    In this paper, we take into account the dynamical equations of a vortex filament in superfluid helium at finite temperature (1 K < T < 2.17 K) and at very low temperature, which is called Biot-Savart law. The last equation is also valid for a vortex tube in a frictionless, unbounded, and incompressible fluid. Both the equations are approximated by the Local Induction Approximation (LIA) and Fukumoto's approximation. The obtained equations are then considered in the extrinsic frame of reference, where exact solutions (Kelvin waves) are shown. These waves are then compared one to each other in terms of their dispersion relations in the frictionless case. The same equations are then investigated for a quantized vortex line in superfluid helium at higher temperature, where friction terms are needed for a full description of the motion.

  15. An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor. Ph.D. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Patel, D. K.

    1974-01-01

    A description of the flow field within a vortex sink rate sensor was obtained, and the influence of viscous effects on its performance was observed. The sensor basically consisted of a vortex chamber and a sink tube. The vortex chamber consisted of two circular coaxial disks held apart, at their periphery, by a porous coupling. One circular disk had an opening to permit the mounting of the sink tube, in such a manner that the vortex chamber as well as the sink tube had a common axis of rotation. Air was supplied radially to the sensor through its porous coupling as the sensor was rotated at various speeds. Particular emphasis was directed toward an understanding of the flow field in the sink tube region. Thus velocity measurements at various stations along the length of the sink tube as well as along a given radius at any designated station were taken.

  16. Consider vortex flowmeters for gas custody transfer

    SciTech Connect

    Ostling, H.

    1995-07-01

    Much natural gas measurement falls under the category of custody transfer, where inaccurate metering could mean financial disaster (or windfall) for one of the parties. Modern vortex flowmeters eliminate the inaccuracies of DP/orifice plate installations and provide the added security of reduced fugitive emissions. What follows are seven reasons why you should consider vortex flow measurement technology for custody transfer or any other measurement of natural gas. Vortex flowmeters offer higher accuracy; vortex flowmeters have no density/viscosity distortion; vortex flowmeters feature low installation costs; vortex flowmeters mean low cost of ownership; vortex flowmeters reduce pressure drop; vortex flowmeters allow accurate billing; nd vortex flowmeters have fewer fugitive emission sources.

  17. Vortex equations: Singularities, numerical solution, and axisymmetric vortex breakdown

    NASA Technical Reports Server (NTRS)

    Bossel, H. H.

    1972-01-01

    A method of weighted residuals for the computation of rotationally symmetric quasi-cylindrical viscous incompressible vortex flow is presented and used to compute a wide variety of vortex flows. The method approximates the axial velocity and circulation profiles by series of exponentials having (N + 1) and N free parameters, respectively. Formal integration results in a set of (2N + 1) ordinary differential equations for the free parameters. The governing equations are shown to have an infinite number of discrete singularities corresponding to critical values of the swirl parameters. The computations point to the controlling influence of the inner core flow on vortex behavior. They also confirm the existence of two particular critical swirl parameter values: one separates vortex flow which decays smoothly from vortex flow which eventually breaks down, and the second is the first singularity of the quasi-cylindrical system, at which point physical vortex breakdown is thought to occur.

  18. Towards a theory for vortex filaments in stratified-rotating fluids

    NASA Astrophysics Data System (ADS)

    Billant, Paul; Deloncle, Axel; Chomaz, Jean-Marc; Otheguy, Pantxika

    2014-12-01

    In inviscid fluids with uniform density, it is common to idealize three-dimensional vortex tubes by filaments (i.e., single lines of an infinitesimal cross section). Thanks to the Kelvin and Helmholtz theorems, it is known that these vortex filaments are transported with the fluid and their circulation is conserved. The induced motions can be computed by the Biot-Savart law, with an appropriate cut off in the integral to avoid singularity. Hence, this approach allows one to model the linear or nonlinear dynamics of vortex flows. A priori, vortex filaments cannot be used in density-stratified and rotating fluids since the circulation is not conserved and the vortex lines are not material lines. However, in this paper we review a theory that is equivalent to vortex filaments. It is based on matched asymptotic expansions for small vortex-core size, weak curvature, and small vortex displacements. The resulting stability equations are formally identical to those of vortex filaments in homogeneous fluids. However, striking differences between homogeneous and stratified-rotating fluids exist, such as the reversal of the self-induced motion for strong stratification or complex self-induction for moderate stratification due to the presence of critical points. The three-dimensional linear stability of vertical vortex pairs and vortex arrays (Karman street, double symmetric row) in stratified and rotating fluids has been investigated using this analytical approach. The results are in very good agreement with the results of direct numerical stability analyses of smooth vortex configurations. Possible extensions to include nonlinear and baroclinic effects are briefly discussed.

  19. Vortex flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Smith, J. H. B.; Campbell, J. F.; Young, A. D. (Editor)

    1992-01-01

    The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.

  20. Vortex perturbation dynamics

    NASA Technical Reports Server (NTRS)

    Criminale, W. O.; Lasseigne, D. G.; Jackson, T. L.

    1995-01-01

    An initial value approach is used to examine the dynamics of perturbations introduced into a vortex under strain. Both the basic vortex considered and the perturbations are taken as fully three-dimensional. An explicit solution for the time evolution of the vorticity perturbations is given for arbitrary initial vorticity. Analytical solutions for the resulting velocity components are found when the initial vorticity is assumed to be localized. For more general initial vorticity distributions, the velocity components are determined numerically. It is found that the variation in the radial direction of the initial vorticity disturbance is the most important factor influencing the qualitative behavior of the solutions. Transient growth in the magnitude of the velocity components is found to be directly attributable to the compactness of the initial vorticity.

  1. Delta Wing Vortex Breakdown Suppression by Vortex Core Oscillation

    NASA Astrophysics Data System (ADS)

    Cain, Charles

    2000-11-01

    The flow over a delta wing is characterized by two counter-rotating vortices that can undergo a sudden radial expansion at high angles of attack known as vortex breakdown. Downstream of this breakdown is a region of organized unsteady flow that can cause tail buffeting and structural fatigue, especially on twin-tailed aircraft. The recent self-induction theory of vortex breakdown points to the "pile-up" of vorticity due to the linear addition of vorticity in the spiraling shear layer that surrounds the vortex core as a principal cause of vortex breakdown (Kurosaka 1998). Based on that theory, this research attempts to relieve vorticity pile-up by altering the straight-line path of the vortex core and preventing the linear addition of vorticity. This is accomplished by applying a combination of periodic blowing and suction with low mass and momentum flux. The blowing and suction are directed normal to the low-pressure surface and supplied from ports under the vortex core which are near the forward tip of the delta wing. This oscillating input causes the vortex core to transition into a spiral formation downstream of the input ports. Initial results indicate that this change in the vortex core path may prevent vortex breakdown over the surface of the delta wing.

  2. Experimental Study of Vortex Dynamics during Blade-Vortex Interactions

    NASA Astrophysics Data System (ADS)

    Peng, Di; Gregory, James

    2013-11-01

    Vortices incident upon bodies, such as cylinders, airfoils, and rotor blades, can give rise to substantial unsteady loading, sound generation, and vibration in a variety of engineering applications. A comprehensive study on vortex dynamics during blade-vortex interaction (BVI) is performed in this work. Evidence has been found in previous studies that the vortex behavior during BVI varies with Reynolds number, but the effects are not clear. In the current study, the experiments are performed in a 3' × 5' low speed wind tunnel where the Reynolds number can be varied from 6 × 104 to 8 × 105 by adjusting freestream speed and airfoil size. The vortex is generated by the pitching motion of a wing, which is driven by an air cylinder. Another wing is placed downstream to initiate parallel interactions with the generated vortices. Smoke visualization is used originally to characterize the vortex. Then the BVI problem is studied in detail using time-resolved PIV and unsteady pressure measurements on the downstream target airfoil. The vortex behaviors at selected Reynolds numbers are investigated. The influence of other factors on vortex behavior, such as vortex strength and core size, is also discussed.

  3. Dynamics of a Vortex Pair Impinging on a Horizontal Ground Plane

    NASA Astrophysics Data System (ADS)

    Asselin, Daniel; Williamson, Charles

    2012-11-01

    We study the effect of a solid boundary on the dynamics and instabilities of a pair of counter-rotating vortices. An isolated vortex pair is typically subject to a short-wave elliptic instability and a long-wave Crow (1971) instability. Near a wall, the boundary layer between the primary vortices and the wall can separate, leading to the generation of secondary vorticity. These secondary vortices can be subject to small-scale instabilities (Harris & Williamson, 2012) as they come under the influence of the primary vortices. Using LIF, our facility is able to visualize both the primary and secondary vortices separately, depending on how we introduce the fluorescent dye. The long-wave Crow instability, when interacting with the wall, can cause significant axial flow, resulting in a periodic concentration of fluid at the peaks of each wavy vortex tube and a corresponding evacuation of fluid from the troughs. We are interested to determine the cause of these axial flows and to understand the vortex dynamics leading to what appear to be rebounding vortex ring structures. The vortex dynamics leading to strong axial flows seem to be a fundamental mechanism by which coherent vortex structures, such as vortex pairs or vortex rings (Lim, 1989), break up in the presence of a wall.

  4. Single vortex core recording in a magnetic vortex lattice

    NASA Astrophysics Data System (ADS)

    Mitin, D.; Nissen, D.; Schädlich, P.; Arekapudi, S. S. P. K.; Albrecht, M.

    2014-02-01

    We investigated the reversal characteristics of magnetic vortex cores in a two dimensional assembly of magnetic vortices. The vortex lattice was created by film deposition of 30-nm-thick permalloy onto large arrays of self-assembled spherical SiO2-particles with a diameter of 330 nm. The vortex core reversal was investigated by employing a write/read tester. This device uses a state-of-the-art magnetic recording head of a hard disc drive, which allows imaging as well as applying a local magnetic field pulse to individual vortices. The successful writing and reading of individual vortex cores is demonstrated, including a switching map, which indicates the switching behavior dependent on the relative position of the field pulse with respect to the vortex core.

  5. The Acoustically Driven Vortex Cannon

    ERIC Educational Resources Information Center

    Perry, Spencer B.; Gee, Kent L.

    2014-01-01

    Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon" and…

  6. Wingtip vortex dissipator for aircraft

    NASA Technical Reports Server (NTRS)

    Patterson, J. C., Jr. (Inventor)

    1976-01-01

    A means for attenuating the vortex created at aircraft wingtips which consists of a retractable planar surface transverse to the airstream and attached downstream of the wingtip which creates a positive pressure gradient just downstream from the wing is presented. The positive pressure forces a break up of the rotational air flow of the vortex.

  7. Robustness of a coherence vortex.

    PubMed

    Alves, Cleberson R; Jesus-Silva, Alcenisio J; Fonseca, Eduardo J S

    2016-09-20

    We study, experimentally and theoretically, the behavior of a coherence vortex after its transmission through obstacles. Notably, we find that such a vortex survives and preserves its effective topological charge. Despite suffering changes on the modulus of the coherence function, these changes disappear during propagation.

  8. Nasogastric feeding tube

    MedlinePlus

    Feeding - nasogastric tube; NG tube; Bolus feeding; Continuous pump feeding; Gavage tube ... A nasogastric tube (NG tube) is a special tube that carries food and medicine to the stomach through the nose. It can be ...

  9. Feeding tube insertion - gastrostomy

    MedlinePlus

    ... tube insertion; G-tube insertion; PEG tube insertion; Stomach tube insertion; Percutaneous endoscopic gastrostomy tube insertion ... and down the esophagus, which leads to the stomach. After the endoscopy tube is inserted, the skin ...

  10. Variable residence time vortex combustor

    DOEpatents

    Melconian, Jerry O.

    1987-01-01

    A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

  11. The VOrtex Ring Transit EXperiment (VORTEX) GAS project

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Langenderfer, Lynn S.; Jardon, Rebecca D.; Cutlip, Hansford H.; Kazerooni, Alexander C.; Thweatt, Amber L.; Lester, Joseph L.; Bernal, Luis P.

    1995-01-01

    Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.

  12. Wingtip-Vortex Turbine Lowers Aircraft Drag

    NASA Technical Reports Server (NTRS)

    Patterson, J. C. J.

    1982-01-01

    Turbine captures some of energy lost in aircraft wingtip vortexes. Wing-tip vortex turbine operates in crossflow of the lift-induced vortex; i.e., flow not parallel to the flightpath. Each turbine blade generates a force as a result of angle of attack between blade and nonstreamwise local flow. Turbine converts lost vortex energy to rotational energy and reduces induced drag.

  13. Minimal model for Brownian vortexes.

    PubMed

    Sun, Bo; Grier, David G; Grosberg, Alexander Y

    2010-08-01

    A Brownian vortex is a noise-driven machine that uses thermal fluctuations to extract a steady-state flow of work from a static force field. Its operation is characterized by loops in a probability current whose topology and direction can change with changes in temperature. We present discrete three- and four-state minimal models for Brownian vortexes that can be solved exactly with a master-equation formalism. These models elucidate conditions required for flux reversal in Brownian vortexes and provide insights into their thermodynamic efficiency through the rate of entropy production. PMID:20866791

  14. Josephson-vortex Cherenkov radiation

    SciTech Connect

    Mints, R.G.; Snapiro, I.B.

    1995-10-01

    We predict the Josephson-vortex Cherenkov radiation of an electromagnetic wave. We treat a long one-dimensional Josephson junction. We consider the wavelength of the radiated electromagnetic wave to be much less than the Josephson penetration depth. We use for calculations the nonlocal Josephson electrodynamics. We find the expression for the radiated power and for the radiation friction force acting on a Josephson vortex and arising due to the Cherenkov radiation. We calculate the relation between the density of the bias current and the Josephson vortex velocity.

  15. Vortex loops and Majoranas

    SciTech Connect

    Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  16. Cylindrical sound wave generated by shock-vortex interaction

    NASA Technical Reports Server (NTRS)

    Ribner, H. S.

    1985-01-01

    The passage of a columnar vortex broadside through a shock is investigated. This has been suggested as a crude, but deterministic, model of the generation of 'shock noise' by the turbulence in supersonic jets. The vortex is decomposed by Fourier transform into plane sinusoidal shear waves disposed with radial symmetry. The plane sound waves produced by each shear wave/shock interaction are recombined in the Fourier integral. The waves possess an envelope that is essentially a growing cylindrical sound wave centered at the transmitted vortex. The pressure jump across the nominal radius R = ct attenuates with time as 1/(square root of R) and varies around the arc in an antisymmetric fashion resembling a quadrupole field. Very good agreement, except near the shock, is found with the antisymmetric component of reported interferometric measurements in a shock tube. Beyond the front r approximately equals R is a precursor of opposite sign, that decays like 1/R, generated by the 1/r potential flow around the vortex core. The present work is essentially an extension and update of an early approximate study at M = 1.25. It covers the range (R/core radius) = 10, 100, 1000, and 10,000 for M = 1.25 and (in part) for M = 1.29 and, for fixed (R/core radius) = 1000, the range M = 1.01 to infinity.

  17. Improving propulsive efficiency through passive mechanisms using a Starling vortex generator

    NASA Astrophysics Data System (ADS)

    Whittlesey, Robert; Dabiri, John

    2011-11-01

    Ruiz et al. (2011) demonstrated that pulsed propulsion with vortex rings, much like those seen in the wake of jellyfish and squid, can greatly enhance the overall efficiency of submersible vehicles. The objective of the present research is to achieve pulsed propulsion passively using a Starling vortex generator which consists of a collapsible tube within an airtight box. Recent work has shown that a Starling vortex generator is able to generate vortex rings, which indicates enhanced propulsion, while requiring less energy to generate pulsatility than the system by Ruiz et al. (2011). Current work is focused on conducting an experimental parameter study to determine an empirical scaling law suitable for design purposes, with the aim to integrate the device into a full-scale unmanned undersea vehicle. Support is greatly appreciated from ONR Awards N000140810918 and N000141010137.

  18. Quantum magnetic flux lines, BPS vortex zero modes, and one-loop string tension shifts

    NASA Astrophysics Data System (ADS)

    Alonso-Izquierdo, A.; Mateos Guilarte, J.; de la Torre Mayado, M.

    2016-08-01

    Spectral heat kernel/zeta function regularization procedures are employed in this paper to control the divergences arising from vacuum fluctuations of Bogomolnyi-Prasad-Sommerfield vortices in the Abelian Higgs model. Zero modes of vortex fluctuations are the source of difficulties appearing when the standard Gilkey-de Witt expansion is the tool used in the calculations of one-loop shifts of vortex masses and string tensions. A modified GdW expansion is developed to diminish the impact of the infrared divergences due to the vortex zero modes of fluctuation. With this new technique at our disposal we compute the one-loop vortex mass shifts in the planar AHM and the quantum corrections to the string tension of the magnetic flux tubes living in three dimensions. In both cases it is observed that weak repulsive forces surge between these classically noninteracting topological defects caused by vacuum quantum fluctuations.

  19. Visualization of compressible vortex rings using the background-oriented schlieren method

    NASA Astrophysics Data System (ADS)

    Mizukaki, T.

    2010-12-01

    In this article, we attempt to validate flow visualization using the high-speed background-oriented schlieren (HiBOS) method, which is the BOS technique combined with a high-speed video camera as the recording device in the experiment. The method has been applied to shock-induced flow near the open end of a shock tube. Three incident shock Mach numbers were examined so that the BOS measurements could be compared with results given in the literature of particle-image velocimetry (PIV) measurements. Using the HiBOS technique, we were able to clearly view developing, compressible vortex rings and diffracted shock waves discharged from the open end of the shock tube. From the BOS images, we extracted the history of the propagation velocity, the diameter of the vortex ring, and the diameter of the vortex core, all of which agree with the corresponding PIV values reported in the literature.

  20. Structure of leading-edge vortex flows including vortex breakdown

    SciTech Connect

    Payne, F.M.

    1987-01-01

    An experimental investigation of the structure of leading-edge vortex flows on thin sharp-edged delta wings was carried out at low Reynolds numbers. Flow-visualization techniques were used to study the topology of the vortex and the phenomenon of vortex breakdown. Seven-hole probe-wake surveys and laser-doppler-anemometer measurements were obtained and compared. Delta wings with sweep angles of 70, 75, 80, and 85/sup 0/ were tested at angles of attack of 10, 20, 30, and 40/sup 0/. The test were conducted in a Reynolds number range of 8.5 x 10/sup 4/ to 6.4 x 10/sup 5/. Smoke-flow visualization revealed the presence of small Kelvin-Helmholtz type vortical structures in the shear layer of a leading-edge vortex. These shear-layer vortices follow a helical path and grow in the streamwise direction as they wind into the vortex core where the individual shear layers merge. The phenomenon of vortex breakdown was studied using high-speed cinema photography. The bubble and spiral types of breakdown were observed and appear to represent the extremes in a continuum of breakdown forms.

  1. On the interaction of a moving hollow vortex with an aerofoil, with application to sound generation

    NASA Astrophysics Data System (ADS)

    Leppington, F. G.; Sisson, R. A.

    1997-08-01

    A hollow vortex in the form of a straight tube, parallel to the z-axis, and of radius a, moves in a uniform stream of fluid with velocity U in the x-direction, with U small compared with the sound speed c. This steady flow is disturbed by the presence of a thin symmetric fixed aerofoil. With a change of x-coordinate, the problem is equivalent to that of a moving aerofoil cutting through an initially fixed vortex in still fluid. The aim of this work is to determine the resulting perturbed flow, and to estimate the distant sound field. A detailed calculation is given for the perturbed velocity potential in the incompressible flow case, for the linearized equations in the limit of small aerofoil thickness. A formally exact solution involves a four-fold integral and an infinite sum over all mode numbers. For the important special case where the vortex tube has small radius a compared with the aerofoil width, the deformed vortex is characterized by a hypothetical vortex filament located at the ‘mean centre’ x¯(z, t), y¯(z, t) of the tube. Explicit results are given for x¯(z, t), y¯(z, t) for the case where the aerofoil has the elementary rectangular profile; results can then be obtained for more general and realistic cylindrical aerofoils by a single integral weighted with the derivative of the aerofoil thickness function. Finally the distant sound field is estimated, representing the aerofoil by a distribution of moving monopole sources and representing the effect of the deformed vortex in terms of compressible dipoles along the mean centre of the vortex.

  2. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  3. Numerical simulation of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Shi, X.

    1985-01-01

    The breakdown of an isolated axisymmetric vortex embedded in an unbounded uniform flow is examined by numerical integration of the complete Navier-Stokes equations for unsteady axisymmetric flow. Results show that if the vortex strength is small, the solution approaches a steady flow and the vortex is stable. If the strength is large enough, the solution remains unsteady and a recirculating zone will appear near the axis, its form and internal structure resembling those of the axisymmetric breakdown bubbles with multi-cells observed by Faler and Leibovich (1978). For apppropriate combinations of flow parameters, the flow reveals quasi-periodicity. Parallel calculations with the quasi-cylindrical approximation indicate that so far as predicting of breakdown is concerned, its results coincide quite well with the results mentioned above. Both show that the vortex breakdown has little concern with the Reynolds number or with the critical classification of the upstream flow, at least for the lower range of Reynolds numbers.

  4. Vortex state in ferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Betto, Davide; Coey, J. M. D.

    2014-05-01

    The evolution of the magnetic state of a soft ferromagnetic nanoparticle with its size is usually thought to be from superparamagnetic single domain to blocked single domain to a blocked multidomain structure. Néel pointed out that a vortex configuration produces practically no stray field at the cost of an increase in the exchange energy, of the order of RJS2lnR /c, where JS2 is the bond energy, R is the particle radius, and c is of the order of the exchange length. A vortex structure is energetically cheaper than single domain when the radius is greater than a certain value. The correct sequence should include a vortex configuration between the single domain and the multidomain states. The critical size is calculated for spherical particles of four important materials (nickel, magnetite, permalloy, and iron) both numerically and analytically. A vortex state is favored in materials with high magnetisation.

  5. Vortex dynamics in anisotropic traps

    SciTech Connect

    McEndoo, S.; Busch, Th.

    2010-07-15

    We investigate the dynamics of linear vortex lattices in anisotropic traps in two dimensions and show that the interplay between the rotation and the anisotropy leads to a rich but highly regular dynamics.

  6. New omega vortex identification method

    NASA Astrophysics Data System (ADS)

    Liu, ChaoQun; Wang, YiQian; Yang, Yong; Duan, ZhiWei

    2016-08-01

    A new vortex identification criterion called Ω-method is proposed based on the ideas that vorticity overtakes deformation in vortex. The comparison with other vortex identification methods like Q-criterion and λ 2-method is conducted and the advantages of the new method can be summarized as follows: (1) the method is able to capture vortex well and very easy to perform; (2) the physical meaning of Ω is clear while the interpretations of iso-surface values of Q and λ 2 chosen to visualize vortices are obscure; (3) being different from Q and λ 2 iso-surface visualization which requires wildly various thresholds to capture the vortex structure properly, Ω is pretty universal and does not need much adjustment in different cases and the iso-surfaces of Ω=0.52 can always capture the vortices properly in all the cases at different time steps, which we investigated; (4) both strong and weak vortices can be captured well simultaneously while improper Q and λ 2 threshold may lead to strong vortex capture while weak vortices are lost or weak vortices are captured but strong vortices are smeared; (5) Ω=0.52 is a quantity to approximately define the vortex boundary. Note that, to calculate Ω, the length and velocity must be used in the non-dimensional form. From our direct numerical simulation, it is found that the vorticity direction is very different from the vortex rotation direction in general 3-D vortical flow, the Helmholtz velocity decomposition is reviewed and vorticity is proposed to be further decomposed to vortical vorticity and non-vortical vorticity.

  7. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  8. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  9. Ear tube insertion

    MedlinePlus

    Myringotomy; Tympanostomy; Ear tube surgery; Pressure equalization tubes; Ventilating tubes; Ear infection - tubes; Otitis - tubes ... trapped fluid can flow out of the middle ear. This prevents hearing loss and reduces the risk ...

  10. Inverse Problem of Vortex Reconstruction

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz; Danaila, Ionut

    2014-11-01

    This study addresses the following question: given incomplete measurements of the velocity field induced by a vortex, can one determine the structure of the vortex? Assuming that the flow is incompressible, inviscid and stationary in the frame of reference moving with the vortex, the ``structure'' of the vortex is uniquely characterized by the functional relation between the streamfunction and vorticity. To focus attention, 3D axisymmetric vortex rings are considered. We show how this inverse problem can be framed as an optimization problem which can then be efficiently solved using variational techniques. More precisely, we use measurements of the tangential velocity on some contour to reconstruct the function defining the streamfunction-vorticity relation in a continuous setting. Two test cases are presented, involving Hill's and Norbury vortices, in which very good reconstructions are obtained. A key result of this study is the application of our approach to obtain an optimal inviscid vortex model in an actual viscous flow problem based on DNS data which leads to a number of nonintuitive findings.

  11. Forebody vortex control

    NASA Astrophysics Data System (ADS)

    Malcolm, Gerald N.

    Because conventional fighter aircraft control surfaces (e.g. rudder) become ineffective at high angles of attack, alternate means of providing aerodynamic control are being explored. A prime potential source for improved control power is the vortex flowfield existing on typical fighter aircraft forebodies. Several techniques to manipulate the forebody vortices to produce controlled forces and moments at high angles of attack have been investigated by a number of researchers in the past few years. This paper reviews some of the reported research results and discusses the merits of several methods applied directly to the forebody, including: (1) movable strakes, (2) blowing surface jets, (3) blowing and suction through surface slots, (4) suction through surface holes, and (5) miniaturized rotatable tip strakes. All of these were found to be effective over a varying range of angles of attack and sideslip. Most of the methods work on the basis of boundary layer separation control. The presence of closely spaced forebody vortices enhances the effectiveness since controlling the separation controls the vortices which, in turn, creates large changes in the forebody forces. Regardless of which method is employed, the maximum effectiveness is realized if it is applied near the forebody tip. The advantage of one method over another will depend on the configuration and specific performance requirements.

  12. The vortex interaction in a propeller/stator flow field

    NASA Technical Reports Server (NTRS)

    Johnston, R. T.; Sullivan, J. P.

    1991-01-01

    The vortex interaction encounered in the flow field of a propeller and a stator has been investigated using smoke flow visualization. A stator at angle of attack was used to generate a line vortex which interacted with the helical vortex filaments generated by a propeller. Changes in the relative vortex strengths and vortex rotational directions yielded several distinct vortex structures. Axial flow in the vortex cores is determined to influence the development of the vortex interaction.

  13. Tube Feedings.

    ERIC Educational Resources Information Center

    Plummer, Nancy

    This module on tube feedings is intended for use in inservice or continuing education programs for persons who work in long-term care. Instructor information, including teaching suggestions and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then provided. A brief discussion follows…

  14. Entrainment in interacting vortex rings

    NASA Astrophysics Data System (ADS)

    Shami, Rammah; Ganapathisubramani, Bharathram

    2014-11-01

    The efficiency of entrainment in single vortex rings has been examined by various studies in the literature. These studies have shown that this efficiency is greatly increased for smaller stroke-time to nozzle-diameter ratios, L/D. However, no clear consensus exists regarding the effect on the entrainment process for the sectioned delivery of the vortex forming impulse. In the present work the entrainment mechanism associated with the interaction between two co-axially separated vortex rings is explored. Planar, time-resolved particle image velocimetry (PIV) measurements are taken of a interacting vortex flow field. Lagrangian coherent structures (LCS) extracted from the finite-time Lyapunov exponent (FTLE) fields are employed to determine the vortex boundaries of the interacting rings and is then used to measure entrainment. Preliminary results indicate that whilst the most efficient entrainment of ambient fluid by the ring pairs occurs at larger separations, the rate and overall mass transport increase can be controlled by altering the spatial/temporal separation between successive rings and is higher at smaller ring spacing. Variation in mass transport behaviour for different ring strengths (L/D) and Reynolds numbers will also be discussed.

  15. The Onset of Vortex Turbulence.

    NASA Astrophysics Data System (ADS)

    Huber, Greg

    The onset of turbulence in two-dimensional, excitable media close to a global Hopf bifurcation is investigated. There one finds that the turbulence is associated with the appearance of topological point defects (vortices). A discrete form of the complex Ginzburg-Landau equation is used to explore this dynamics. Linear stability analysis of the complex Ginzburg -Landau equation indicates in what regions of parameter space the global, homogeneous solution is stable. However, in general the system does not asymptotically settle into this homogeneous state, rather it finds a many-vortex state. This can be either a 'frozen' state of stationary vortices, or a highly turbulent state with vortex-antivortex creation and annihilation. These states are related to the dynamics of the vortex statistics, as computed numerically. A phase diagram, based on the numerical simulations, is presented. Transient turbulence, near the transition line that separates the frozen states and the turbulent states, is discovered. These transients are identified as metastable states having a well-defined vortex density. Just below the transition to turbulence, the metastable states break down through the nucleation and growth of single-vortex droplets, leading to a finite-density frozen state. The lifetime of the metastable state is found to depend on the distance to the transition line. A relation between the nucleation time and droplet radius is derived, and their dependence on the distance to the turbulence transition is found.

  16. The onset of vortex turbulence

    SciTech Connect

    Huber, G.

    1993-01-01

    The onset of turbulence in two-dimensional, excitable media close to a global Hopf bifurcation is investigated. There one finds that the turbulence is associated with the appearance of topological point defects (vortices). A discrete form of the complex Ginzburg-Landau equation is used to explore this dynamics. Linear stability analysis of the complex Ginzburg-Landau equation indicates in what regions of parameter space the global, homogeneous solution is stable. However, in general the system does not asymptotically settle into this homogeneous state, rather it finds a many-vortex state. This can be either a [open quotes]frozen[close quotes] state of stationary vortices, or a highly turbulent state with vortex-antivortex creation and annihilation. These states are related to the dynamics of the vortex statistics, as computed numerically. A phase diagram, based on the numerical simulations, is presented. Transient turbulence, near the transition line that separates the frozen states and the turbulent states, is discovered. These transients are identified a metastable states having a well-defined vortex density. Just below the transition to turbulence, the metastable states break down through the nucleation and growth of single-vortex droplets, leading to a finite-density frozen state. The lifetime of the metastable state is found to depend on the distance to the transition line. A relation between the nucleation time and droplet radius is derived, and their dependence on the distance to the turbulence transition is found.

  17. Geometries of Karman Vortex Street

    NASA Astrophysics Data System (ADS)

    Roushan, Pedram; Wu, X. L.

    2004-03-01

    The Bénard-von Kármán vortex street is studied in a flowing soap film channel. The two-dimensional fluid flow in the film allows stable vortex streets to be generated and investigated over a broad range of Reynolds numbers, 10vortex street is analyzed for different diameter rods, which span more than two orders of magnitude in their diameters. The parameters that characterize the envelop of the vortex street, such as the growth rate and the saturation amplitude, are measured for different Reynolds numbers. It is found that all of the curves representing the envelope can be collapsed onto a single master curve, suggesting that the shape of Karman vortex streets is universal, independent of Re. We construct a simple model that takes into account the energy transfer into vortices by periodic oscillations of transverse velocity fluctuations beneath the rod. This simple model not only explains the near wake shape of the street, but also allows other useful information such as the kinetic energy injected into the fluid and the drag coefficient CD to be extracted.

  18. Vortex Formation in Shallow Flows

    NASA Astrophysics Data System (ADS)

    Rockwell, Donald

    2006-11-01

    Vortical structures having a scale much larger than the depth of the flow, which arise in bluff body wakes, jets, and mixing layers generated in shallow layers, show distinctive features due to the influence of bed friction. Cinema techniques of high-image-density particle image velocimetry are employed to characterize quasi-two-dimensional and three-dimensional aspects of the vortex development in terms of: patterns of vorticity; flow topology involving definition of critical points; and global spectral and cross-spectral analyses, based on simultaneous time records at thousands of grid points of the cinema imaging. Taken together, these representations lead to an understanding of the relationship between coherent vortex development and unsteadiness along the bed and, furthermore, provide a basis for exploration of concepts generic to separated shear layers in shallow flows. These concepts include: suppression of a primary mode of vortex formation due to bed friction and emergence of another mode; resonant coupling between a gravity wave of the shallow layer and vortex formation, leading to large-scale vortices; and passive and active (open loop) control, which can either retard or enhance the onset of vortex formation. These studies suggest opportunities for further investigation on both experimental and numerical fronts. Collaboration with Haojun Fu, Alis Ekmekci, Jung-Chang Lin, and Muammer Ozgoren is gratefully acknowledged.

  19. Vortex Flows at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2003-01-01

    A review of research conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data are for flat plates, cavities, bodies, missiles, wings, and aircraft with Mach numbers of 1.5 to 4.6. Data are presented to show the types of vortex structures that occur at supersonic speeds and the impact of these flow structures on vehicle performance and control. The data show the presence of both small- and large-scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices. Data are shown that highlight the effect of leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber on the aerodynamics of and flow over delta wings. Finally, a discussion of a design approach for wings that use vortex flows for improved aerodynamic performance at supersonic speeds is presented.

  20. Vortex waves in sunspots

    NASA Astrophysics Data System (ADS)

    López Ariste, A.; Centeno, R.; Khomenko, E.

    2016-06-01

    Context. Waves in the magnetized solar atmosphere are one of the favourite means of transferring and depositing energy into the solar corona. The study of waves brings information not just on the dynamics of the magnetized plasma, but also on the possible ways in which the corona is heated. Aims: The identification and analysis of the phase singularities or dislocations provide us with a complementary approach to the magnetoacoustic and Aflvén waves propagating in the solar atmosphere. They allow us to identify individual wave modes, shedding light on the probability of excitation or the nature of the triggering mechanism. Methods: We use a time series of Doppler shifts measured in two spectral lines, filtered around the three-minute period region. The data show a propagating magnetoacoustic slow mode with several dislocations and, in particular, a vortex line. We study under what conditions the different wave modes propagating in the umbra can generate the observed dislocations. Results: The observed dislocations can be fully interpreted as a sequence of sausage and kink modes excited sequentially on average during 15 min. Kink and sausage modes appear to be excited independently and sequentially. The transition from one to the other lasts less than three minutes. During the transition we observe and model the appearance of superoscillations inducing large phase gradients and phase mixing. Conclusions: The analysis of the observed wave dislocations leads us to the identification of the propagating wave modes in umbrae. The identification in the data of superoscillatory regions during the transition from one mode to the other may be an important indicator of the location of wave dissipation.

  1. Reduced order model of draft tube flow

    NASA Astrophysics Data System (ADS)

    Rudolf, P.; Štefan, D.

    2014-03-01

    Swirling flow with compact coherent structures is very good candidate for proper orthogonal decomposition (POD), i.e. for decomposition into eigenmodes, which are the cornerstones of the flow field. Present paper focuses on POD of steady flows, which correspond to different operating points of Francis turbine draft tube flow. Set of eigenmodes is built using a limited number of snapshots from computational simulations. Resulting reduced order model (ROM) describes whole operating range of the draft tube. ROM enables to interpolate in between the operating points exploiting the knowledge about significance of particular eigenmodes and thus reconstruct the velocity field in any operating point within the given range. Practical example, which employs axisymmetric simulations of the draft tube flow, illustrates accuracy of ROM in regions without vortex breakdown together with need for higher resolution of the snapshot database close to location of sudden flow changes (e.g. vortex breakdown). ROM based on POD interpolation is very suitable tool for insight into flow physics of the draft tube flows (especially energy transfers in between different operating points), for supply of data for subsequent stability analysis or as an initialization database for advanced flow simulations.

  2. Analysis and control of asymmetric vortex flows and supersonic vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1991-01-01

    Topics relative to the analysis and control of asymmetric vortex flow and supersonic vortex breakdown are discussed. Specific topics include the computation of compressible, quasi-axisymmetric slender vortex flow and breakdown; supersonic quasi-axisymmetric vortex breakdown; and three-dimensional Navier-Stokes asymmetric solutions for cones and cone-cylinder configurations.

  3. Angular glass tubing drawn from round tubing

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Round glass tubing softened in a furnace is drawn over a shaped plug or mandel to form shapes with other than a circular cross section. Irregularly shaped tubing is formed without limitations on tube length or wall thickness.

  4. Vortex trails in stratified fluids

    NASA Astrophysics Data System (ADS)

    Pao, H.-P.; Lai, R. Y.; Schemm, C. E.

    1982-03-01

    A framework is proposed which accounts for the properties of atmospheric vortex trails used by wind flow. Similarities between atmospheric vortex patterns and those in stratified fluids are observed noting that the generation of vortex trails is primarily due to density stratification. Horizontal vortices form for values of Froude numbers between 2-505, and for Reynolds numbers between 600-100,000. The cause of late-wake vortices and the reason for their great regularity is the presence of a large-scale coherent structure in the early wake. A critical Froude number exists above which no horizontal vortices form and its value for a bluff body is about 160. Finally, it is also noted that ambient shear can prevent or destroy late-wake horizontal vortices.

  5. Magnetic Vortex Based Transistor Operations

    PubMed Central

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  6. Vortex methods for separated flows

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1988-01-01

    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented and includes the relationship with traditional point-vortex studies, convergence to smooth solutions of the Euler equations, and the essential differences between two and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. Two-dimensional flows around bluff bodies are emphasized. Robustness of the method and the assessment of accuracy, vortex-core profiles, time-marching schemes, numerical dissipation, and efficient programming are treated. Operation counts for unbounded and periodic flows are given, and two algorithms designed to speed up the calculations are described.

  7. Unsuccessful Concepts for Aircraft Wake Vortex Minimization

    NASA Technical Reports Server (NTRS)

    Dunham, R. E., Jr.

    1977-01-01

    Exploratory concepts are described which were investigated to achieve a reduction in the vortex induced rolling upsets produced by heavy aircraft trailing vortexes. The initial tests included the use of mass injection, oscillating devices, wingtip shape design, interacting multiple vortexes, and end plates. Although later refinements of some of these concepts were successful, initial test results did not indicate a capability of these concepts to significantly alter the vortex induced rolling upset on a following aircraft.

  8. Cutting of bent vortex lines

    SciTech Connect

    Wagenleithner, P.

    1982-07-01

    One of the major problems in the application of type II superconductors is the appearance of resistivity in case where a current-carrying specimen is in a longitudinal magnetic field. This is explained by the onset of flux-line cutting events, followed by cross-joining of the line parts. The calculation given here shows the amount of repulsive force and energy between two curved vortex lines and examines the general stability of the vortex-vortex system. First, the actual interaction potential between curved vortices is computed. It includes all electromagnetic and core overlap terms of interactions and self-interaction, and allows computation of the system energy under all curved vortex-line configurations. A computer program is used to find the form of lowest free energy. To do this, special trial functions are established to describe the three-dimensional form of the vortex-vortex system. In these functions parameters determine the qualitative and quantitative form. The asymptotic boundary conditions are built into the nature of the trial functions. The computer program now minimizes the free energy with respect to these parameters. The resulting repulsive energy and force are more than ten times less than the known results for straight flux lines, especially for small asymptotic cutting angles. There is no sharp maximum in the plot of repulsive force versus flux-line separation. A remarkable results is the loss of general stability below a separation distance of several London penetration depths, depending on the cutting angle and the Ginzburg-Landau parameter. The explanation lies in the local attraction of central sections of the vortices as a result of configurational adaption. This explains the onset of resistance at small currents and small magnetic fields.

  9. Coulombic contribution and fat center vortex model

    SciTech Connect

    Rafibakhsh, Shahnoosh; Deldar, Sedigheh

    2007-02-27

    The fat (thick) center vortex model is one of the phenomenological models which is fairly successful to interpret the linear potential between static sources. However, the Coulombic part of the potential has not been investigated by the model yet. In an attempt to get the Coulombic contribution and to remove the concavity of the potentials, we are studying different vortex profiles and vortex sizes.

  10. A Experimental Study of Viscous Vortex Rings.

    NASA Astrophysics Data System (ADS)

    Dziedzic, Mauricio

    Motivated by the role played by vortex rings in the process of turbulent mixing, the work is focused on the problem of stability and viscous decay of a single vortex ring. A new classification is proposed for vortex rings which is based on extensive hot-wire measurements of velocity in the ring core and wake and flow visualization. Vortex rings can be classified as laminar, wavy, turbulence-producing, and turbulent. Prediction of vortex ring type is shown to be possible based on the vortex ring Reynolds number. Linear growth rates of ring diameter with time are observed for all types of vortex rings, with different growth rates occurring for laminar and turbulent vortex rings. Data on the viscous decay of vortex rings are used to provide experimental confirmation of the accuracy of Saffman's equation for the velocity of propagation of a vortex ring. Experimental data indicate that instability of the vortex ring strongly depends on the mode of generation and can be delayed by properly adjusting the generation parameters. A systematic review of the literature on vortex-ring interactions is presented in the form of an appendix, which helps identify areas in which further research may be fruitful.

  11. Generation of Nonlinear Vortex Precursors.

    PubMed

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required.

  12. Vortex ice in nanostructured superconductors

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, Andras J

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  13. Generation of Nonlinear Vortex Precursors.

    PubMed

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required. PMID:27447507

  14. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  15. QUANTIZING TUBE

    DOEpatents

    Jensen, A.S.; Gray, G.W.

    1958-07-01

    Beam deflection tubes are described for use in switching or pulse amplitude analysis. The salient features of the invention reside in the target arrangement whereby outputs are obtained from a plurality of collector electrodes each correspondlng with a non-overlapping range of amplitudes of the input sigmal. The tube is provded with mcans for deflecting the electron beam a1ong a line in accordance with the amplitude of an input signal. The target structure consists of a first dymode positioned in the path of the beam wlth slots spaced a1ong thc deflection line, and a second dymode posltioned behind the first dainode. When the beam strikes the solid portions along the length of the first dymode the excited electrons are multiplied and collected in separate collector electrodes spaced along the beam line. Similarly, the electrons excited when the beam strikes the second dynode are multiplied and collected in separate electrodes spaced along the length of the second dyode.

  16. Electron tube

    DOEpatents

    Suyama, Motohiro; Fukasawa, Atsuhito; Arisaka, Katsushi; Wang, Hanguo

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  17. QCD flux tubes and anomaly inflow

    NASA Astrophysics Data System (ADS)

    Xiong, Chi

    2013-07-01

    We apply the Callan-Harvey anomaly-inflow mechanism to the study of QCD (chromoelectric) flux tubes, quark (pair) creation, and the chiral magnetic effect, using new variables from the Cho-Faddeev-Niemi decomposition of the gauge potential. A phenomenological description of chromoelectric flux tubes is obtained by studying a gauged Nambu-Jona-Lasinio effective Lagrangian, derived from the original QCD Lagrangian. At the quantum level, quark condensates in the QCD vacuum may form a vortexlike structure in a chromoelectric flux tube. Quark zero modes trapped in the vortex are chiral and lead to a two-dimensional gauge anomaly. To cancel it, an effective Chern-Simons coupling is needed and, hence, a topological charge density term naturally appears.

  18. Tube Feeding Troubleshooting Guide

    MedlinePlus

    ... profile tube also has a stem length). Note: NG and NJ tubes (that go through a person’s ... Immediate Action: • Discontinue feeding. • If you have an NG or NJ tube, and the tube is curled ...

  19. Chest tube insertion

    MedlinePlus

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... When your chest tube is inserted, you will lie on your side or sit partly upright, with one arm over your head. Sometimes, ...

  20. Scanning SQUID-on-tip microscopy of vortex matter

    NASA Astrophysics Data System (ADS)

    Anahory, Yonathan; Embon, Lior; Vasyukov, Denis; Cuppens, Jo; Lachman, Ella; Halbertal, Dorri; Yaakobi, Elad; Uri, Aviram; Myasoedov, Yuri; Rappaport, Michael L.; Huber, Martin E.; Zeldov, Eli; Weizmann Institute of Science Team; University of Colorado at Denver Team

    2014-03-01

    We present a scanning nanoSQUID microscope with record spatial resolution, spin sensitivity, and operating magnetic fields for the study of vortex matter. The key element of the microscope is the SQUID-on-tip (SOT) device, which is fabricated by pulling a quartz tube into a sharp pipette, followed by three steps of thermal evaporation of a thin superconducting film onto the sides and the apex of the pipette. The devices operate at 4.2 K in applied fields of up to 1T and can be made with diameters down to 50 nm. The SQUIDs-on-tip display an extremely low flux noise of Φn = 50 nΦ0/Hz1/2 and corresponding spin sensitivity of better than 1 μB/Hz1/2, which is about two orders of magnitude improvement over any previous SQUID. Using this new tool we have investigated static and dynamic behavior of vortices in superconducting Pb films. By driving ac and dc transport current we can study vortex displacement and the vortex potential landscape with sub-atomic precision. Azrieli and Minerva Foundation, FQRNT(Quebec), ERC (Europe)

  1. Optimising a vortex fluidic device for controlling chemical reactivity and selectivity

    NASA Astrophysics Data System (ADS)

    Yasmin, Lyzu; Chen, Xianjue; Stubbs, Keith A.; Raston, Colin L.

    2013-07-01

    A vortex fluidic device (VFD) involving a rapidly rotating tube open at one end forms dynamic thin films at high rotational speed for finite sub-millilitre volumes of liquid, with shear within the films depending on the speed and orientation of the tube. Continuous flow operation of the VFD where jet feeds of solutions are directed to the closed end of the tube provide additional tuneable shear from the viscous drag as the liquid whirls along the tube. The versatility of this simple, low cost microfluidic device, which can operate under confined mode or continuous flow is demonstrated in accelerating organic reactions, for model Diels-Alder dimerization of cyclopentadienes, and sequential aldol and Michael addition reactions, in accessing unusual 2,4,6-triarylpyridines. Residence times are controllable for continuous flow processing with the viscous drag dominating the shear for flow rates >0.1 mL/min in a 10 mm diameter tube rotating at >2000 rpm.

  2. Evolution of a plasma vortex in air.

    PubMed

    Tsai, Cheng-Mu; Chu, Hong-Yu

    2016-01-01

    We report the generation of a vortex-shaped plasma in air by using a capacitively coupled dielectric barrier discharge system. We show that a vortex-shaped plasma can be produced inside a helium gas vortex and is capable of propagating for 3 cm. The fluctuation of the plasma ring shows a scaling relation with the Reynolds number of the vortex. The transient discharge reveals the property of corona discharge, where the conducting channel within the gas vortex and the blur plasma emission are observed at each half voltage cycle. PMID:26871181

  3. Evolution of a plasma vortex in air.

    PubMed

    Tsai, Cheng-Mu; Chu, Hong-Yu

    2016-01-01

    We report the generation of a vortex-shaped plasma in air by using a capacitively coupled dielectric barrier discharge system. We show that a vortex-shaped plasma can be produced inside a helium gas vortex and is capable of propagating for 3 cm. The fluctuation of the plasma ring shows a scaling relation with the Reynolds number of the vortex. The transient discharge reveals the property of corona discharge, where the conducting channel within the gas vortex and the blur plasma emission are observed at each half voltage cycle.

  4. Vortex telegraph noise in high magnetic fields

    SciTech Connect

    Shung, E.; Rosenbaum, T.F.; Coppersmith, S.N.; Crabtree, G.W.; Kwok, W.

    1997-11-01

    We cool untwinned single crystals of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} with columnar defects down to liquid-He temperatures and study the development of pinning in the strongly interacting Bose glass with local Hall-probe magnetometry. We are able to resolve discrete fluctuations in the local vortex density resulting from reconfigurations of the vortex assembly between metastable states nearby in energy. By varying the applied magnetic field, and therefore the mean vortex density, we gain microscopic information about vortex-vortex interactions. {copyright} {ital 1997} {ital The American Physical Society}

  5. Perturbative theory for Brownian vortexes.

    PubMed

    Moyses, Henrique W; Bauer, Ross O; Grosberg, Alexander Y; Grier, David G

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers. PMID:26172698

  6. Perturbative theory for Brownian vortexes

    NASA Astrophysics Data System (ADS)

    Moyses, Henrique W.; Bauer, Ross O.; Grosberg, Alexander Y.; Grier, David G.

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers.

  7. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  8. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  9. Reduction of vortex induced forces and motion through surface roughness control

    SciTech Connect

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  10. Collapse Tubes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02154 Collapse Tubes

    The discontinuous channels in this image are collapsed lava tubes.

    Image information: VIS instrument. Latitude -19.7N, Longitude 317.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Preliminary study of the three-dimensional deformation of the vortex in Karman vortex street

    NASA Astrophysics Data System (ADS)

    Ling, Guocan; Guo, Liang; Wu, Zuobin; Ma, Huiyang

    1992-03-01

    The mechanism for 3D evolution of the isolated Karman vortex and the thin-vortex filament in a circular cylinder wake is studied numerically using the LIA method. The results show that the vortex motion is unstable for small 3D disturbances in the separated wake of a circular cylinder. Karman vortex in the time-averaged wake flowfield wolves into a horseshoe-spoon-like 3D structure. The thin vortex filament deforms three-dimensionally in the braid and generates streamwise vortex structures which incline to the region maximum-deformation direction of the flowfield.

  12. Shock/vortex interaction and vortex-breakdown modes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  13. Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2011-03-01

    An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.

  14. Interaction of Vortex Ring with Cutting Plate

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa

    2015-11-01

    The interaction of a vortex ring impinging on a thin cutting plate was made experimentally using Volumetric 3-component Velocitmetry (v3v) technique. The vortex rings were generated with piston-cylinder vortex ring generator using piston stroke-to-diameter ratios and Re at 2-3 and 1500 - 3000, respectively. The cutting of vortex rings below center line leads to the formation of secondary vortices on each side of the plate which is look like two vortex rings, and a third vortex ring propagates further downstream in the direction of the initial vortex ring, which is previously showed by flow visualization study of Weigand (1993) and called ``trifurcation''. Trifurcation is very sensitive to the initial Reynolds number and the position of the plate with respect to the vortex ring generator pipe. The present work seeks more detailed investigation on the trifurcation using V3V technique. Conditions for the formation of trifurcation is analyzed and compared with Weigand (1993). The formed secondary vortex rings and the propagation of initial vortex ring in the downstream of the plate are analyzed by calculating their circulation, energy and trajectories.

  15. Study of junction flows in louvered fin round tube heat exchangers using the dye injection technique

    SciTech Connect

    Huisseune, H.; Willockx, A.; De Paepe, M.; T'Joen, C.; De Jaeger, P.

    2010-11-15

    Detailed studies of junction flows in heat exchangers with an interrupted fin design are rare. However, understanding these flow structures is important for design and optimization purposes, because the thermal hydraulic performance of heat exchangers is strongly related to the flow behaviour. In this study flow visualization experiments were performed in six scaled-up models of a louvered fin round tube heat exchanger. The models have three tube rows in a staggered layout and differ only in their fin spacing and louver angle. A water tunnel was designed and built and the flow visualizations were carried out using dye injection. At low Reynolds numbers the streakline follows the tube contours, while at higher Reynolds numbers a horseshoe vortex is developed ahead of the tubes. The two resulting streamwise vortex legs are destroyed by the downstream louvers (i.e. downstream the turnaround louver), especially at higher Reynolds numbers, smaller fin pitches and larger louver angles. Increasing the fin spacing results in a larger and stronger horseshoe vortex. This illustrates that a reduction of the fin spacing results in a dissipation of vortical motion by mechanical blockage and skin friction. Furthermore it was observed that the vortex strength and number of vortices in the second tube row is larger than in the first tube row. This is due to the thicker boundary layer in the second tube row, and the flow deflection, which is typical for louvered fin heat exchangers. Visualizations at the tube-louver junction showed that in the transition part between the angled louver and the flat landing a vortex is present underneath the louver surface which propagates towards the angled louver. (author)

  16. A tube-in-tube thermophotovoltaic generator

    SciTech Connect

    Ashcroft, J.; Campbell, B.; Depoy, D.

    1996-12-31

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  17. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, John; Campbell, Brian; DePoy, David

    1998-01-01

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  18. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, J.; Campbell, B.; DePoy, D.

    1998-06-30

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.

  19. Wake Vortex Algorithm Scoring Results

    NASA Technical Reports Server (NTRS)

    Robins, R. E.; Delisi, D. P.; Hinton, David (Technical Monitor)

    2002-01-01

    This report compares the performance of two models of trailing vortex evolution for which interaction with the ground is not a significant factor. One model uses eddy dissipation rate (EDR) and the other uses the kinetic energy of turbulence fluctuations (TKE) to represent the effect of turbulence. In other respects, the models are nearly identical. The models are evaluated by comparing their predictions of circulation decay, vertical descent, and lateral transport to observations for over four hundred cases from Memphis and Dallas/Fort Worth International Airports. These observations were obtained during deployments in support of NASA's Aircraft Vortex Spacing System (AVOSS). The results of the comparisons show that the EDR model usually performs slightly better than the TKE model.

  20. Vortex boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1986-01-01

    Parametric studies to identify a vortex generator were completed. Data acquisition in the first chosen configuration, in which a longitudinal vortex pair generated by an isolated delta wing starts to merge with a turbulent boundary layer on a flat plate fairly close to the leading edge is nearly completed. Work on a delta-wing/flat-plate combination, consisting of a flow visualization and hot wire measurements taken with a computer controlled traverse gear and data logging system were completed. Data taking and analysis have continued, and sample results for another cross stream plane are presented. Available data include all mean velocity components, second order mean products of turbulent fluctuations, and third order mean products. Implementation of a faster data logging system was accomplished.

  1. Drag of buoyant vortex rings

    NASA Astrophysics Data System (ADS)

    Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S.-K.; Turner, John Stewart

    2015-10-01

    Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015), 10.1017/jfm.2015.126], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers.

  2. Perturbations of vortex ring pairs

    NASA Astrophysics Data System (ADS)

    Gubser, Steven S.; Horn, Bart; Parikh, Sarthak

    2016-02-01

    We study pairs of coaxial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.

  3. Drag of buoyant vortex rings.

    PubMed

    Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S-K; Turner, John Stewart

    2015-10-01

    Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015)], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers.

  4. Gastrostomy feeding tube - bolus

    MedlinePlus

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... Your child's gastrostomy tube (G-tube) is a special tube in your child's stomach that will help deliver food and medicines until your ...

  5. Vortex methods for separated flows

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1988-01-01

    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented in an elementary fashion and includes the relationship with traditional point-vortex studies, the convergence to smooth solutions of the Euler equations, and the essential differences between two- and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. The overlap with the excellent review articles available is kept to a minimum and more emphasis is placed on the area of expertise, namely two-dimensional flows around bluff bodies. When solid walls are present, complete mathematical models are not available and a more heuristic attitude must be adopted. The imposition of inviscid and viscous boundary conditions without conformal mappings or image vortices and the creation of vorticity along solid walls are examined in detail. Methods for boundary-layer treatment and the question of the Kutta condition are discussed. Practical aspects and tips helpful in creating a method that really works are explained. The topics include the robustness of the method and the assessment of accuracy, vortex-core profiles, timemarching schemes, numerical dissipation, and efficient programming. Calculations of flows past streamlined or bluff bodies are used as examples when appropriate.

  6. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  7. Birth and evolution of an optical vortex

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Sponselli, Anna; D'Ambrosio, Vincenzo; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2016-07-01

    When a phase singularity is suddenly imprinted on the axis of an ordinary Gaussian beam, an optical vortex appears and starts to grow radially, by effect of diffraction. This radial growth and the subsequent evolution of the optical vortex under focusing or imaging can be well described in general within the recently introduced theory of circular beams, which generalize the hypergeometric-Gaussian beams and which obey novel kinds of ABCD rules. Here, we investigate experimentally these vortex propagation phenomena and test the validity of circular-beam theory. Moreover, we analyze the difference in radial structure between the newly generated optical vortex and the vortex obtained in the image plane, where perfect imaging would lead to complete closure of the vortex core.

  8. Vortex Breakdown-Aircraft Tail Interaction

    NASA Astrophysics Data System (ADS)

    Kim, Younjong; Rockwell, Donald

    2003-11-01

    The interaction of vortex breakdown with the tail of an aircraft can lead to severe unsteady loading and vibration. A technique of high-image-density particle image velocimetry is employed to characterize the instantaneous and averaged structure of a broken-down vortex with a generic tail configuration. Interaction of the primary (incident) vortex with the tail results in formation of a relatively large-scale cluster of secondary vorticity. The coexistence of these primary and secondary vortical structures is intimately associated with the unsteadiness of the vortex system, and thereby the near-surface fluctuations associated with buffet loading. Instantaneous and averaged representations of the vortex-tail interaction provide insight into the complex physics. Furthermore, a low order POD model is employed to characterize the most energetic modes of the vortex-tail interaction.

  9. Short-wavelength stability analysis of Hill's vortex with/without swirl

    NASA Astrophysics Data System (ADS)

    Hattori, Y.; Hijiya, K.

    2010-07-01

    The stability of Hill's vortex with/without swirl is studied by the short-wavelength stability analysis or WKB analysis. It is shown that the classical Hill's spherical vortex is subjected not only to the Widnall instability but also to the curvature instability found for thin vortex rings and helical vortex tubes. A new "combined" mode of instability caused by the two instabilities is discovered. The magnitude of the exponential growth rate of the combined mode is similar with the curvature instability around the stagnation point; it exceeds the Widnall instability near the boundary. The effects of swirl on the instabilities are investigated using a family of solutions obtained by Moffatt ["The degree of knottedness of tangled vortex lines," J. Fluid Mech. 35, 117 (1969)]. As the swirl parameter α increases, a stable region appears around the stagnation point; the maxima of the growth rates decrease; the combined mode region disappears for α ≥3. As α increases further, however, the region of the generalized centrifugal instability emerges from the stagnation point.

  10. Evolution of Vortex Pairs Subject to the Crow Instability in Wall Effect

    NASA Astrophysics Data System (ADS)

    Asselin, Daniel; Williamson, C. H. K.

    2014-11-01

    In this research, we examine the effect of a solid boundary on the dynamics and instabilities of a pair of counter-rotating vortices. An isolated vortex pair is subject to both a short-wave elliptic instability and a long-wave Crow (1970) instability. Near a wall, the boundary layer that forms between the primary vortices and the wall can separate, leading to the generation of secondary vorticity. In the present study, we are examining the long-wave Crow instability as it is modified by interaction with a wall. Several key features of the flow are observed. Strong axial flows cause fluid containing vorticity to move from the ``troughs'' of the initially wavy vortex tube to the ``peaks.'' This process is associated with distinct differences in vortex concentration at the peak and the trough, which lead to the establishment of an axial pressure gradient. Furthermore, the primary and secondary vortices interact to form additional small-scale vortex rings. The exact number and orientation of these small-scale rings is highly dependent on the extent to which the Crow instability has developed prior to interaction with the ground. Finally, significant changes to the vortex dynamics, including circulation, core size, and topology, are also observed during and after interaction with the boundary. This work was supported by the Office of Naval Research under ONR Award No. N00014-12-1-0712.

  11. Contributions to theory of vortex breakdown

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.; Uberoi, M. S.

    A study is made of vortex breakdown in stratified flows, and it is found that a positive stratification in the vortex where the density is increasing away from the axis, postpones the vortex breakdown and vice versa. This is apparent due to the density increasing in a direction opposite to that of an effective gravity which would correspond to a topheavy arrangement under gravity. It is also shown that a wavemotion promotes the possibility of axisymmetric flow downstream of the transaction.

  12. An investigation of counterrotating tip vortex interaction

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Uenishi, K.; Gliebe, P. R.

    1989-01-01

    A tip vortex interaction model originally developed for compressors has been extended and adapted for use with counterrotating open rotors. Comparison of available acoustic data with predictions (made with and without the tip vortex model included) illustrate the importance of this interaction effect. This report documents the analytical modeling, a limited experimental verification, and certain key parametric studies pertaining to the tip vortex as a noise source mechanism for the unsteady loading noise of counterrotating properllers.

  13. Vortex knot cascade in polynomial skein relations

    NASA Astrophysics Data System (ADS)

    Ricca, Renzo L.

    2016-06-01

    The process of vortex cascade through continuous reduction of topological complexity by stepwise unlinking, that has been observed experimentally in the production of vortex knots (Kleckner & Irvine, 2013), is shown to be reproduced in the branching of the skein relations of knot polynomials (Liu & Ricca, 2015) used to identify topological complexity of vortex systems. This observation can be usefully exploited for predictions of energy-complexity estimates for fluid flows.

  14. On the structure of the turbulent vortex

    NASA Technical Reports Server (NTRS)

    Roberts, L.

    1985-01-01

    The trailing vortex generated by a lifting surface, the structure of its turbulent core and the influence of axial flow within the vortex on its initial persistence and on its subsequent decay are described. Similarity solutions of the turbulent diffusion equation are given in closed form and results are expressed in sufficiently simple terms that the influence of the lifting surface parameters on the length of persistence and the rate of decay of the vortex can be evaluated.

  15. Facts and fallacies of vortex flowmeters

    SciTech Connect

    DeVries, E.A.

    1982-08-01

    Vortex flowmeters have been popular since the late 1960s. They have been sold as everything from a panacea for severe service flow applications to a direct replacement for orifice meters. In many ways, vortex flowmeters have not lived up to industry expectations and therefore, have obtained a bad reputation. However, vortex flowmeters can be good flow measurement devices if applied properly, and they do have a place in the processing industries for certain flow applications.

  16. Effect of Ripple Geometry on Vortex Generation, Ejection, and Strength in Oscillatory Flow

    NASA Astrophysics Data System (ADS)

    Smith, H. D.

    2012-12-01

    and development of vortex tubes, along with the usual vortex cores. Swirling strength will also be used as a proxy for sediment-carrying capacity, allowing for the estimation of the location of sediment deposition as the vortex dissipates. Simulations will be evaluated with laboratory data available in the literature, and will include comparisons of the velocity, vorticity, and Reynolds stress. The simulations will then be extended into higher Reynolds and Keulegan-Carpenter number scenarios, where multiple ejection events may occur. Waves with varying degrees of skewness will also be considered to examine the effect of flow field acceleration on the vortex structures.

  17. Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays

    NASA Astrophysics Data System (ADS)

    Baldacchino, D.; Ferreira, C.; Ragni, D.; van Bussel, G. J. W.

    2016-09-01

    In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the infinite vortex cascade, a numerical model of four base-vortices is chosen to represent two primary counter-rotating vortex pairs and their mirror plane images, introducing the vortex strength ratio as a free parameter. The resulting system of equations is also defined in terms of the vortex row separation and the qualitative features of the ensuing motion are mapped. A translating and orbiting regime are identified for different cascade separations. The latter occurs for all unequal strength vortex pairs. Thus, the motion is further classified by studying the cyclic behaviour of the orbiting regime and it is shown that for small mismatches in vortex strength, the orbiting length and time scales are sufficiently large as to appear, in the near wake, as translational (non-orbiting). However, for larger mismatches in vortex strength, the orbiting motion approaches the order of the starting height of the vortex. Comparisons between experimental data and the potential flow model show qualitative agreement whilst viscous effects account for the major discrepancies. Despite this, the model captures the orbital mode observed in the measurements and provides an impetus for considering the impact of these complex interactions on vortex generator designs.

  18. Spin transport in tilted electron vortex beams

    NASA Astrophysics Data System (ADS)

    Basu, Banasri; Chowdhury, Debashree

    2014-12-01

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  19. ASRS Reports on Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  20. The permeability of the Antarctic vortex edge

    NASA Technical Reports Server (NTRS)

    Chen, Ping

    1994-01-01

    Mixing and cross-vortex mass transport along isentropic surfaces in the lower stratosphere are investigated with a 'contour advection' technique and a semi-Lagrangian transport model for the Antarctic winter of 1993 using analyzed winds from the United Kingdom Meteorological Office data assimilation system. Results from the 'contour advection' technique show that at the vortex edge there exists a potential vorticity (PV) contour that has the smallest lengthening rate. This PV contour is referred to as the 'line of separation' because it essentially separates the inner and outer vortex. The average e-folding time for the lengthening of the 'line of separation' increases monotonically with altitude, ranging from about 7 days on the 350 K isentropic surface to about 105 days on the 500 K isentropic surface. The results also suggest the existence of a transition layer around the 400 K isentropic surface, above which the vortex is nearly completely isolated from the midlatitudes and below which the vortex is less isolated. Results from a semi-Lagrangian transport model with an idealized tracer initially inside the inner vortex show that at 425 K and above virtually no tracer is transported out of the vortex during a 40-day integration starting from July 21, 1993. At 400 K and below a small amount of the tracer is transported out of the vortex while the bulk of the tracer remains confined within the inner vortex.

  1. Spin transport in tilted electron vortex beams

    SciTech Connect

    Basu, Banasri; Chowdhury, Debashree

    2014-12-10

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  2. Leapfrogging of multiple coaxial viscous vortex rings

    SciTech Connect

    Cheng, M. Lou, J.; Lim, T. T.

    2015-03-15

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior.

  3. Tree Method for Quantum Vortex Dynamics

    NASA Astrophysics Data System (ADS)

    Baggaley, A. W.; Barenghi, C. F.

    2012-01-01

    We present a numerical method to compute the evolution of vortex filaments in superfluid helium. The method is based on a tree algorithm which considerably speeds up the calculation of Biot-Savart integrals. We show that the computational cost scales as Nlog( N) rather than N 2, where N is the number of discretization points. We test the method and its properties for a variety of vortex configurations, ranging from simple vortex rings to a counterflow vortex tangle, and compare results against the Local Induction Approximation and the exact Biot-Savart law.

  4. Vortex Line Density Fluctuations of Quantum Turbulence

    NASA Astrophysics Data System (ADS)

    Fujiyama, Shoji; Tsubota, Makoto

    2010-02-01

    We investigate vortex line density fluctuations of quantum turbulence generated by an oscillating grid in superfluid 3He- B. The scenario of quantum turbulence experimentally suggested by the Lancaster group is confirmed in the numerical simulation. The spectrum of the vortex line density fluctuations with respect to frequency obeyed a -5/3 power law, which is consistent with the experiment of the Lancaster group. Based on the argument of time scales experienced by vortex rings with different sizes and on the power spectrum, the connection between the self-similar structure of the vortex tangle and the power spectrum is discussed.

  5. Measurements of a supersonic turbulent vortex

    NASA Technical Reports Server (NTRS)

    Metwally, O. M.; Settles, G. S.

    1988-01-01

    Mean-flow measurements of a supersonic turbulent streamwise vortex are presented. This vortex was produced by the injection of a swirling flow along the centerline of a supersonic airstream at Mach 3. Directional Mach number distributions, obtained via a five-hole flow-angularity probe, reveal vortex characteristics similar to those of the incompressible case, even though rotational Mach numbers up to 0.8 were obtained. This work is the first step of a study of the supersonic vortex breakdown phenomenon.

  6. Flow visualizations of perpendicular blade vortex interactions

    NASA Technical Reports Server (NTRS)

    Rife, Michael C.; Davenport, William J.

    1992-01-01

    Helium bubble flow visualizations have been performed to study perpendicular interaction of a turbulent trailing vortex and a rectangular wing in the Virginia Tech Stability Tunnel. Many combinations of vortex strength, vortex-blade separation (Z(sub s)) and blade angle of attack were studied. Photographs of representative cases are presented. A range of phenomena were observed. For Z(sub s) greater than a few percent chord the vortex is deflected as it passes the blade under the influence of the local streamline curvature and its image in the blade. Initially the interaction appears to have no influence on the core. Downstream, however, the vortex core begins to diffuse and grow, presumably as a consequence of its interaction with the blade wake. The magnitude of these effects increases with reduction in Z(sub s). For Z(sub s) near zero the form of the interaction changes and becomes dependent on the vortex strength. For lower strengths the vortex appears to split into two filaments on the leading edge of the blade, one passing on the pressure and one passing on the suction side. At higher strengths the vortex bursts in the vicinity of the leading edge. In either case the core of its remnants then rapidly diffuse with distance downstream. Increase in Reynolds number did not qualitatively affect the flow apart from decreasing the amplitude of the small low-frequency wandering motions of the vortex. Changes in wing tip geometry and boundary layer trip had very little effect.

  7. Vortex lattice inhomogeneity in spatially inhomogeneous superfluids

    NASA Astrophysics Data System (ADS)

    Sheehy, Daniel E.; Radzihovsky, Leo

    2004-11-01

    A trapped degenerate Bose gas exhibits superfluidity with spatially nonuniform superfluid density. We show that the vortex distribution in such a highly inhomogeneous rotating superfluid is nevertheless nearly uniform. The inhomogeneity in vortex density, which diminishes in the rapid-rotation limit, is driven by the discrete way vortices impart angular momentum to the superfluid. This effect favors the highest vortex density in regions where the superfluid density is most uniform (e.g., the center of a harmonically trapped gas). A striking consequence of this is that the boson velocity deviates from a rigid-body form exhibiting a radial-shear flow past the vortex lattice.

  8. Dynamics of non Newtonian vortex rings

    NASA Astrophysics Data System (ADS)

    Palacios-Morales, C. A.; Barbosa, C.; Zenit, R.

    2012-11-01

    The dynamics of formation and evolution of non-Newtonian vortex rings generated in a piston-cylinder arrangement are studied. The ratio of the piston displacement Lm to the internal cylinder diameter D0, the piston velocity Up and fluid properties determine the vortex properties and evolution. Measurements of the 2D velocity field were obtained with a PIV technique. The vortex circulation Γ was computed considering a vortex identification scheme (Q criterion). Experiments with fluids with different rheological properties (shear thinning and viscoelastic) are presented. Our Newtonian experiments agree with previous investigations. For shear-thinning liquids, we observed that the final vortex circulation decreases with the fluid power index, n. We show that the total circulation ejected from the cylinder is reduced when the thinning property of the liquid increases; thus, the circulation confined inside the vortex ring, is reduced too. For vortex rings in a viscoelastic liquid, the formation of a `negative wake' (returning flow) and a second vortex ring with opposite whirl are observed. We show that the negative wake results from the high extension rates produced during the vortex formation.

  9. Certainties and Uncertainties in CFD Prediction of the End of the Vortex Behaviour in Centrifugal Separators

    NASA Astrophysics Data System (ADS)

    Pisarev, Gleb I.; Hoffmann, Alex C.

    2011-09-01

    This paper compares CFD simulations of the `end of the vortex' (EoV) behaviour in centrifugal separators with experiment. The EoV was studied in `swirl tubes', cylindrical cyclone separators with swirl vanes. We refer to the EoV as the phenomenon whereby the core of the vortex does not reach the bottom of the separator, but deviates from the swirl tube axis and attaches to the wall, where it rotates at some level above the bottom. The crucial parameters governing the EoV are geometrical, specifically the ratio of the separator length to its diameter (L/D), and operational, specifically the fluid flowrate. Swirl tubes with varying body lengths have been studied experimentally and numerically. CFD simulations were carried out using the commercial package Star-CD. The 3-D Navier-Stokes equations were solved using the finite volume method based on the SIMPLE pressure-correction algorithm and the LES turbulence model. The vortex behaviour was very similar between the experiments and the numerical simulations, this agreement being both qualitative and quantitative. However, there were some cases where the CFD predictions showed only qualitative agreement with experiments, with some of the parameter-values delimiting given types of flows being somewhat different between experiment and simulations.

  10. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  11. Exploration of vortex dynamics for transitional flows in a three-dimensional backward-facing step channel

    NASA Astrophysics Data System (ADS)

    Sheu, Tony W. H.; Rani, H. P.

    2006-03-01

    The eddy structures and their mutual interactions in a three-dimensional channel with a backward-facing step for the transitional Reynolds number 900 were investigated numerically. The aim was to reveal the structural development of the entire vortical flow field, which could immensely enhance the knowledge about vortical structures occurring in the recirculation region near the step wall. Simulations were made to reproduce the experimental observations and provide clear indications about the strong interaction between the shear layer instabilities. Physical instabilities of this type were amplified by the shedding-type instabilities and induced by the interaction of coherent structures with the sidewalls of the duct. These interactions were responsible for the flapping motion of interior shear layer. Careful attempts were made to reveal the behaviour of these vortical structures by means of vortex stretching, roll-up of vortex lines and formation of vortex tubes. Also, the three-dimensional flow topology of the velocity field corresponding to stationary helical vortex (SHV) was analysed extensively. The SHV flow consisted of a pair of counter-rotating helical cells in a double helix structure wrapped around the vortex tube. The roll-up shear-layer hovering vortices were observed near the step to initiate the Kelvin Helmholtz-like instability. The Kelvin Helmholtz vortices were developed into lambda-shaped vortices which impinged on the step-wall and were elongated into the hairpin-like vortices.

  12. Investigation of the Vortex Tab. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoffler, K. D.

    1985-01-01

    An investigation was made into the drag reduction capability of vortex tabs on delta wing vortex flaps. The vortex tab is an up-deflected leading edge portion of the vortex flap. Tab deflection augments vortex suction on the flap, thus improving its thrust, but the tab itself is drag producing. Whether a net improvement in the drag reduction can be obtained with vortex tabs, in comparison with plane vortex flaps of the same total area, was the objective of this investigation. Wind tunnel tests were conducted on two models, and analytical studies were performed on one of them using a free vortex sheet theory.

  13. Recent Laboratory and Numerical Trailing Vortex Studies

    NASA Technical Reports Server (NTRS)

    Delisi, Donald P.; Greene, George C.; Robins, Robert E.; Singh, Raminder

    1996-01-01

    Results from two laboratory studies and two numerical studies are presented. In the first laboratory study, measurements of the strength of vortices from a three-dimensional (3-D) model wing are presented. The measurements follow the vortices as they evolve in time from a two-dimensional (2-D) line vortex pair to the development and migration of 3-D vortex rings. It is shown that the resulting vortex rings can contain up to 40 percent of the initial vortex circulation. Thus, the formation of vortex rings may not necessarily signal the end of the wake hazard to following aircraft. In the second laboratory study, we present the results of an experiment which shows how the spanwise drag distribution affects wake-vortex evolution. In this experiment, we modified the spanwise drag distribution on a model wing while keeping the total lift and drag constant. The results show that adding drag on or near the centerline of the wing has a larger effect than adding drag at or near the wingtips. These measurements complement the results of NASA studies in the 1970s. In the first numerical study, results of 3-D numerical calculations are presented which show that the vortex Reynolds number has a significant influence on the evolution and migration of wake vortices. When the Reynolds number is large, 3-D vortex rings evolve from the initially 2-D line vortex pairs. These vortex rings then migrate vertically. When the Reynolds number is lower, the transition of vorticity from 2-D to 3-D is delayed. When the Reynolds number is very low, the vortices never transition to 3-D, and the vertical migration is significantly reduced. It is suggested that this effect may have been important in previous laboratory wake-evolution studies. A second numerical study shows the influence that vertical wind shear can have on trailing vortex evolution.

  14. Rotating hot-wire investigation of the vortex responsible for blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Fontana, Richard Remo

    1988-01-01

    This distribution of the circumferential velocity of the vortex responsible for blade-vortex interaction noise was measured using a rotating hot-wire rake synchronously meshed with a model helicopter rotor at the blade passage frequency. Simultaneous far-field acoustic data and blade differential pressure measurements were obtained. Results show that the shape of the measured far-field acoustic blade-vortex interaction signature depends on the blade-vortex interaction geometry. The experimental results are compared with the Widnall-Wolf model for blade-vortex interaction noise.

  15. Vortex metrology using Fourier analysis techniques: vortex networks correlation fringes.

    PubMed

    Angel-Toro, Luciano; Sierra-Sosa, Daniel; Tebaldi, Myrian; Bolognini, Néstor

    2012-10-20

    In this work, we introduce an alternative method of analysis in vortex metrology based on the application of the Fourier optics techniques. The first part of the procedure is conducted as is usual in vortex metrology for uniform in-plane displacement determination. On the basis of two recorded intensity speckled distributions, corresponding to two states of a diffuser coherently illuminated, we numerically generate an analytical signal from each recorded intensity pattern by using a version of the Riesz integral transform. Then, from each analytical signal, a two-dimensional pseudophase map is generated in which the vortices are located and characterized in terms of their topological charges and their core's structural properties. The second part of the procedure allows obtaining Young's interference fringes when Fourier transforming the light passing through a diffracting mask with multiple apertures at the locations of the homologous vortices. In fact, we use the Fourier transform as a mathematical operation to compute the far-field diffraction intensity pattern corresponding to the multiaperture set. Each aperture from the set is associated with a rectangular hole that coincides both in shape and size with a pixel from recorded images. We show that the fringe analysis can be conducted as in speckle photography in an extended range of displacement measurements. Effects related with speckled decorrelation are also considered. Our experimental results agree with those of speckle photography in the range in which both techniques are applicable.

  16. The effect of tip vortex structure on helicopter noise due to blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Wolf, T. L.; Widnall, S. E.

    1978-01-01

    A potential cause of helicopter impulsive noise, commonly called blade slap, is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade. The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory, and expressions are derived for the directivity, frequency spectrum, and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading. A few cases of tip loading are investigated, and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure.

  17. Ergoregion instability: The hydrodynamic vortex

    NASA Astrophysics Data System (ADS)

    Oliveira, Leandro A.; Cardoso, Vitor; Crispino, Luís C. B.

    2014-06-01

    Four-dimensional, asymptotically flat spacetimes with an ergoregion but no horizon have been shown to be linearly unstable against a superradiant-triggered mechanism. This result has wide implications in the search for astrophysically viable alternatives to black holes, but also in the understanding of black holes and Hawking evaporation. Here we investigate this instability in detail for a particular setup that can be realized in the laboratory: the hydrodynamic vortex, an effective geometry for sound waves, with ergoregion and without an event horizon.

  18. Spectral stability of Taylor's vortex array

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Tobak, M.

    1986-01-01

    In a global sense it is shown that the two-dimensional Taylor vortex array, an exact solution of the Navier-Stokes equation, is absolutely and monotonically stable with respect to infinitesimal disturbances of all discrete frequencies as long as the viscosity is positive. It is suggested that the Taylor vortex array may also be stable with respect to finite amplitude disturbances.

  19. Shadowgraphs Of Helicopter-Rotor-Tip Vortexes

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai P.; Cho, Young I.; Back, Lloyd H.

    1988-01-01

    Optical apparatus produces full-scale or larger shadowgraph of tip vortexes of helicopter rotor. Stroboscope projects shadow image of helicopter rotor on large, square screen. Commercial, highly reflecting projection screen used; simply projecting image on white wall does not yield enough light for photographing vortexes with standard 35-mm camera. Apparatus adapts to use in large wind tunnels.

  20. The modelling of symmetric airfoil vortex generators

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Wendt, B. J.

    1996-01-01

    An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.

  1. Obstacle-induced spiral vortex breakdown

    NASA Astrophysics Data System (ADS)

    Pasche, Simon; Gallaire, François; Dreyer, Matthieu; Farhat, Mohamed

    2014-08-01

    An experimental investigation on vortex breakdown dynamics is performed. An adverse pressure gradient is created along the axis of a wing-tip vortex by introducing a sphere downstream of an elliptical hydrofoil. The instrumentation involves high-speed visualizations with air bubbles used as tracers and 2D Laser Doppler Velocimeter (LDV). Two key parameters are identified and varied to control the onset of vortex breakdown: the swirl number, defined as the maximum azimuthal velocity divided by the free-stream velocity, and the adverse pressure gradient. They were controlled through the incidence angle of the elliptical hydrofoil, the free-stream velocity and the sphere diameter. A single helical breakdown of the vortex was systematically observed over a wide range of experimental parameters. The helical breakdown coiled around the sphere in the direction opposite to the vortex but rotated along the vortex direction. We have observed that the location of vortex breakdown moved upstream as the swirl number or the sphere diameter was increased. LDV measurements were corrected using a reconstruction procedure taking into account the so-called vortex wandering and the size of the LDV measurement volume. This allows us to investigate the spatio-temporal linear stability properties of the flow and demonstrate that the flow transition from columnar to single helical shape is due to a transition from convective to absolute instability.

  2. Vortex dynamics in thin elliptic ferromagnetic nanodisks

    NASA Astrophysics Data System (ADS)

    Wysin, G. M.

    2015-10-01

    Vortex gyrotropic motion in thin ferromagnetic nanodisks of elliptical shape is described here for a pure vortex state and for a situation with thermal fluctuations. The system is analyzed using numerical simulations of the Landau-Lifshitz-Gilbert (LLG) equations, including the demagnetization field calculated with a Green's function approach for thin film problems. At finite temperature the thermalized dynamics is found using a second order Heun algorithm for a magnetic Langevin equation based on the LLG equations. The vortex state is stable only within a limited range of ellipticity, outside of which a quasi-single-domain becomes the preferred minimum energy state. A vortex is found to move in an elliptical potential, whose force constants along the principal axes are determined numerically. The eccentricity of vortex motion is directly related to the force constants. Elliptical vortex motion is produced spontaneously by thermal fluctuations. The vortex position and velocity distributions in thermal equilibrium are Boltzmann distributions. The results show that vortex motion in elliptical disks can be described by a Thiele equation.

  3. Flight tests of vortex-attenuating splines

    NASA Technical Reports Server (NTRS)

    Patterson, J. C., Jr.

    1974-01-01

    Visual data on formation and motion of lift-induced wingtip vortex were obtained by stationary, airflow visualization method. Visual data indicated that vortex cannot be eliminated by merely reshaping wingtip. Configuration change will likely have only small effect on far-field flow.

  4. Vortex avalanches in a type II superconductor

    SciTech Connect

    Behnia, K.; Capan, C.; Mailly, D.; Etienne, B.

    1999-12-01

    The authors report on a study of the spatiotemporal variation of magnetic induction in a superconducting niobium sample during a slow sweep of external magnetic field. A sizable fraction of the increase in the local vortex population occurs in abrupt jumps. They compare the size distribution of these avalanches with the predictions of self-organized-criticality models for vortex dynamics.

  5. An investigation of the vortex method

    SciTech Connect

    Pryor, D.W. Jr.

    1994-05-01

    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. This is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.

  6. Vortex motion on surfaces of small curvature

    SciTech Connect

    Dorigoni, Daniele Dunajski, Maciej Manton, Nicholas S.

    2013-12-15

    We consider a single Abelian Higgs vortex on a surface Σ whose Gaussian curvature K is small relative to the size of the vortex, and analyse vortex motion by using geodesics on the moduli space of static solutions. The moduli space is Σ with a modified metric, and we propose that this metric has a universal expansion, in terms of K and its derivatives, around the initial metric on Σ. Using an integral expression for the Kähler potential on the moduli space, we calculate the leading coefficients of this expansion numerically, and find some evidence for their universality. The expansion agrees to first order with the metric resulting from the Ricci flow starting from the initial metric on Σ, but differs at higher order. We compare the vortex motion with the motion of a point particle along geodesics of Σ. Relative to a particle geodesic, the vortex experiences an additional force, which to leading order is proportional to the gradient of K. This force is analogous to the self-force on bodies of finite size that occurs in gravitational motion. -- Highlights: •We study an Abelian Higgs vortex on a surface with small curvature. •A universal expansion for the moduli space metric is proposed. •We numerically check the universality at low orders. •Vortex motion differs from point particle motion because a vortex has a finite size. •Moduli space geometry has similarities with the geometry arising from Ricci flow.

  7. CFD Modelling of a Quadrupole Vortex Inside a Cylindrical Channel for Research into Advanced Hybrid Rocket Designs

    NASA Astrophysics Data System (ADS)

    Godfrey, B.; Majdalani, J.

    2014-11-01

    This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.

  8. Acoustic emission from magnetic flux tubes in the solar network

    NASA Astrophysics Data System (ADS)

    Vigeesh, G.; Hasan, S. S.

    2013-06-01

    We present the results of three-dimensional numerical simulations to investigate the excitation of waves in the magnetic network of the Sun due to footpoint motions of a magnetic flux tube. We consider motions that typically mimic granular buffeting and vortex flows and implement them as driving motions at the base of the flux tube. The driving motions generates various MHD modes within the flux tube and acoustic waves in the ambient medium. The response of the upper atmosphere to the underlying photospheric motion and the role of the flux tube in channeling the waves is investigated. We compute the acoustic energy flux in the various wave modes across different boundary layers defined by the plasma and magnetic field parameters and examine the observational implications for chromospheric and coronal heating.

  9. Supersonic shock wave/vortex interaction

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Cattafesta, L.

    1993-01-01

    Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of

  10. Origin of reversed vortex ratchet motion.

    PubMed

    Gillijns, W; Silhanek, A V; Moshchalkov, V V; Reichhardt, C J Olson; Reichhardt, C

    2007-12-14

    We experimentally demonstrate that the origin of multiply reversed rectified vortex motion in an asymmetric pinning landscape not only is a consequence of the vortex-vortex interactions but also essentially depends on the ratio between the characteristic interaction distance and the period of the asymmetric pinning potential. We study four samples with different periods d of the asymmetric potential. For large d the dc voltage V(dc) recorded under a ac excitation indicates that the average vortex drift is from bigger to smaller dots for all explored positive fields. As d is reduced, a series of sign reversals in the dc response are observed as a function of field. We show that the number of sign reversals increases as d decreases. These findings are in agreement with recent computer simulations and illustrate the relevance of the different characteristic lengths for the vortex rectification effects.

  11. Calculation of vortex flows on complex configurations

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Rao, B. M.

    1982-01-01

    The calculation of aerodynamic characteristics of complex configurations having strongly coupled vortex flows is a non-linear problem requiring iterative solution techniques. This paper discusses the use of a low-order panel method as a means of obtaining practical solutions to such problems. The panel method is based on piecewise constant source and doublet quadrilateral panels and uses the internal Dirichlet boundary condition of zero perturbation potential. The problems of predicting vortex/surface interaction and vortex separation are discussed. Some example calculations are included but further test cases have yet to be carried out, in particular for comparisons with experimental data. The problem of convergence on the iterative calculation for the shape of the free vortex sheet is addressed and a preprocessor routine, based on an unsteady, two-dimensional version of the panel method, is put forward as a cost-effective way of generating an initial vortex structure for use as a starting solution for general configurations.

  12. Nature of counterflow and circulation in vortex separators

    NASA Astrophysics Data System (ADS)

    Shtern, Vladimir N.; Borissov, Anatoli A.

    2010-08-01

    This paper focuses on the physical mechanism of elongated counterflows occurring in vortex tubes and hydrocyclones. To this end, a new solution to the Navier-Stokes equations is obtained which describes a flow pattern consisting of two through-flows and the global meridional circulation. One of the through-flows has U-shape geometry. It is shown that swirl decay due to fluid-wall friction induces both the U-shape through-flow and the circulation. The circulation does not deteriorate particle separation. The solution illustrates how the swirl-induced pressure distribution drives the counterflow and results in the paradoxical centrifugal stratification where the high-density fluid located at the periphery is hot while the low-density fluid located near the axis is cold.

  13. Steady axisymmetric vortex flows with swirl and shear

    NASA Astrophysics Data System (ADS)

    Elcrat, Alan R.; Fornberg, Bengt; Miller, Kenneth G.

    A general procedure is presented for computing axisymmetric swirling vortices which are steady with respect to an inviscid flow that is either uniform at infinity or includes shear. We consider cases both with and without a spherical obstacle. Choices of numerical parameters are given which yield vortex rings with swirl, attached vortices with swirl analogous to spherical vortices found by Moffatt, tubes of vorticity extending to infinity and Beltrami flows. When there is a spherical obstacle we have found multiple solutions for each set of parameters. Flows are found by numerically solving the Bragg-Hawthorne equation using a non-Newton-based iterative procedure which is robust in its dependence on an initial guess.

  14. PREFACE: Special section on vortex rings Special section on vortex rings

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill

  15. Augmentation of heat transfer by longitudinal vortices in plate-fin heat exchangers with two rows of tubes

    SciTech Connect

    Rodrigues, R. Jr.; Yanagihara, J.I.

    1999-07-01

    The thermal performance of fin-tube compact heat exchangers is highly affected by the thermal resistance occurring on the air side, which is much higher than the thermal resistance inside the tubes. Since this kind of heat exchanger is widely used in these days, with applications on air-conditioning, refrigeration, automobilistic industry and many other areas, the development of more efficient and cheaper heat exchangers is highly attractive, because it will permit the manufacturing of more competitive equipments. This work presents results of numerical simulations for fin-tube compact heat exchangers using smooth fins and longitudinal vortex generators. The computational model has two rows of round tubes in staggered arrangement. Built-in delta winglet vortex generators were used, and its geometric dimensions were chosen according to the best results of literature. The steady-state numerical simulations were carried out at Re = 300, with a code based on the finite volume method. The typical configuration, where the vortex generators of both tube rows have identical parameters set, was compared with new ones where the vortex generators of the second row have different attack angles and positions. The global and local influence of vortex generators on heat transfer and flow losses are analyzed by comparison with a smooth fin model without vortex generators. The results show that a best heat transfer performance can be obtained by positioning the vortex generators of the second row at a particular position and angle of attack, when the increasing of the flow losses was smaller than the heat transfer enhancement achieved.

  16. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  17. Phenomena, dynamics and instabilities of vortex pairs

    NASA Astrophysics Data System (ADS)

    Williamson, C. H. K.; Leweke, T.; Asselin, D. J.; Harris, D. M.

    2014-12-01

    Our motivation for studying the dynamics of vortex pairs stems initially from an interest in the trailing wake vortices from aircraft and the dynamics of longitudinal vortices close to a vehicle surface. However, our motivation also comes from the fact that vortex-vortex interactions and vortex-wall interactions are fundamental to many turbulent flows. The intent of the paper is to present an overview of some of our recent work concerning the formation and structure of counter-rotating vortex pairs. We are interested in the long-wave and short-wave three-dimensional instabilities that evolve for an isolated vortex pair, but also we would like to know how vortex pairs interact with a wall, including both two-dimensional interactions, and also the influence of the surface on the three-dimensional instabilities. The emphasis of this presentation is on physical mechanisms by which vortices interact with each other and with surfaces, principally from an experimental approach, but also coupled with analytical studies.

  18. Dynamics of Isolated Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Pennings, Pepijn; Bosschers, Johan; van Terwisga, Tom

    2014-11-01

    Performance of ship propellers and comfort levels in the surroundings are limited by various forms of cavitation. Amongst these forms tip vortex cavitation is one of the first appearing forms and is expected to be mainly responsible for the emission of broadband pressure fluctuations typically occurring between the 4th to the 7th blade passing frequency (approx. 40--70 Hz). These radiated pressure pulses are likely to excite parts of the hull structure resulting in a design compromise between efficiency and comfort. Insight is needed in the mechanism of acoustic emission from the oscillations by a tip vortex cavity. In the current experimental study the tip vortex cavity from a blade with an elliptic planform and sections based on NACA 662 - 415 with meanline a = 0 . 8 is observed using high speed shadowgraphy in combination with blade force and acoustic measurements. An analytic model describing three main cavity deformation modes is verified and used to explain the origin of a cavity eigenfrequency or ``vortex singing'' phenomenon observed by Maines and Arndt (1997) on the tip vortex cavity originating from the same blade. As no hydrodynamic sound originating from the tip vortex cavity was observed it is posed that a tip flow instability is essential for ``vortex singing.'' This research was funded by the Lloyd's Register Foundation as part of the International Institute for Cavitation Research.

  19. Topology of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, C.; Rockwell, D.

    2016-10-01

    A trailing vortex incident upon a wing can generate different modes of vortex-wing interaction. These modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing, are classified on the basis of the present experiments together with computations at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is relatively insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic interaction modes is clarified using streamline topology with associated critical points that show compatibility between complex streamline patterns in the vicinity of the tip of the wing. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-reattachment bubble bounded by downwash at the wing tip.

  20. Vortex Ring Interaction with a Heated Screen

    NASA Astrophysics Data System (ADS)

    Smith, Jason; Krueger, Paul S.

    2008-11-01

    Previous examinations of vortex rings impinging on porous screens has shown the reformation of the vortex ring with a lower velocity after passing through the screen, the creation of secondary vortices, and mixing. A heated screen could, in principle, alter the vortex-screen interaction by changing the local liquid viscosity and density. In the present investigation, a mechanical piston-cylinder vortex ring generator was used to create vortex rings in an aqueous sucrose solution. The rings impinged on a screen of horizontal wires that were heated using electrical current. The flow was visualized with food color and video imaging. Tests with and without heat were conducted at a piston stroke-to-jet diameter ratio of 4 and a jet Reynolds number (Re) of 1000. The vortex rings slowed after passing through the screen, but in tests with heat, they maintained a higher fraction of their before-screen velocity due to reduction in fluid viscosity near the wires. In addition, small ``fingers'' that developed on the front of the vortex rings as they passed through the screen exhibited positive buoyancy effects in the heated case.

  1. Torsion Tests of Tubes

    NASA Technical Reports Server (NTRS)

    Stang, Ambrose H; Ramberg, Walter; Back, Goldie

    1937-01-01

    This report presents the results of tests of 63 chromium-molybdenum steel tubes and 102 17st aluminum-alloy tubes of various sizes and lengths made to study the dependence of the torsional strength on both the dimensions of the tube and the physical properties of the tube material. Three types of failure are found to be important for sizes of tubes frequently used in aircraft construction: (1) failure by plastic shear, in which the tube material reached its yield strength before the critical torque was reached; (2) failure by elastic two-lobe buckling, which depended only on the elastic properties of the tube material and the dimensions of the tube; and (3) failure by a combination of (1) and (2) that is, by buckling taking place after some yielding of the tube material.

  2. Chemical definition of the mesospheric polar vortex

    NASA Astrophysics Data System (ADS)

    Harvey, V. L.; Randall, C. E.; Collins, R. L.

    2015-10-01

    We present a simple chemical definition to demark the edge of the mesospheric polar vortices. Because this vortex definition does not rely on the wind field, it is useful in the mesosphere where wind observations are sparse and reanalysis winds are unreliable. The chemical definition is also insensitive to double jets that complicate vortex identification in the mesosphere. The algorithm is based on horizontal gradients of carbon monoxide (CO) and mirrors the widely used vortex edge definition in the stratosphere based on potential vorticity (PV) gradients. Here the approach is used to identify the Arctic vortex in the mesosphere during a 10 year (2004-2014) record of Microwave Limb Sounder data. Vortex size and shape comparisons are made where the CO and PV methods overlap in the upper stratosphere. A case study is presented during the NH 2008-2009 winter that demonstrates the fidelity of the CO gradient method on individual days and emphasizes the impact of double jets on methods to identify the polar vortex. We recommend transitioning from a PV or stream function-based vortex definition in the stratosphere to using a CO gradient definition above 0.1 hPa (~60 km). The CO gradient method identifies a coherent region of high CO at 80 km that is confined to mid-to-high latitudes 99.8% of the time during Arctic winter. Taking advantage of the CO gradient method to identify the polar vortex adds ~20 km of reliable vortex information (from 60 to 80 km) in a region of the atmosphere where reanalyses are most suspect.

  3. Zero-Gravity Vortex Vent and PVT Gaging System

    NASA Technical Reports Server (NTRS)

    Downey, M. G.; Trevathan, J. T.

    1989-01-01

    Space Station and satellite reservicing will require the ability to vent gas on orbit from liquid supply or storage tanks and to gage liquid quantity under microgravity conditions. In zero gravity, (zero-g) the vortex vent is capable of venting gas from a tank of liquid containing gas randomly distributed as bubbles. The concept uses a spinning impeller to create centrifugal force inside a vortex tube within a tank. This creates a gas pocket and forces the liquid through a venturi and back into the tank. Gas is then vented from the gas pocket through a liquid detector and then out through an exhaust port. If the liquid detector senses liquid in the vent line, the fluid is directed to the low-pressure port on the venturi and is returned to the tank. The advantages of this system is that it has no rotating seals and is compatible with most corrosive and cryogenic fluids. A prototype was designed and built at the NASA Johnson Space Center and flown on the KC-135 zero-g aircraft. During these test flights, where microgravity conditions are obtained for up to 30 sec, the prototype demonstrated that less than 0.10 percent of the volume of fluid vented was liquid when the tank was half full of liquid. The pressure volume temperature (PVT) gaging system is used in conjunction with the vortex vent to calculate the amount of liquid remaining in a tank under microgravity conditions. The PVT gaging system is used in conjunction with the vortex vent to gage liquid quantity in zero or low gravity. The system consists of a gas compressor, accumulator, and temperature and pressure instrumentation. To measure the liquid in a tank a small amount of gas is vented from the tank to the compressor and compressed into the accumulator. Pressure and temperature in the tank and accumulator are measured before and after the gas transfer occurs. Knowing the total volume of the tank, the volume of the accumulator, the volume of the intermediate lines, and initial and final pressures and

  4. Evaluation of travelling vortex speed by means of vortex tracking and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2016-06-01

    The article deals with the analysis of unsteady periodic flow field related to synthetic jet creation. The analyses are based on the data obtained using ANSYS Fluent solver. Numerical results are validated by hot wire anemometry data measured along the jet centerline. The speed of travelling vortex ring is evaluated by using vortex tracking method and by using dynamic mode decomposition method. Vortex identification is based on residual vorticity which allows identifying regions in the flow field where fluid particles perform the rotational motion. The regime of the synthetic jet with Re = 329 and S = 19.7 is chosen. Both the vortex tracking and the dynamic mode decomposition based vortex speed evaluation indicate an increase in the vortex speed close to the orifice and then decrease with maximum reaching almost one and half of orifice centerline velocity. The article contains extended version the article presented at the conference AEaNMiFMaE 2016.

  5. Simulation of vortex-dominated aerodynamic flows by a point-vortex method

    SciTech Connect

    Jia, Z.

    1988-01-01

    A numerical study was made to simulate vortex-dominated aerodynamic flows by the point-vortex method. Attention was divided into three different aspects: a nascent vortex-shedding algorithm, numerical demonstration of the point-vortex method, and the calculation of some example of aerodynamic interesting flows, which include two major categories: unsteady flow about a flat plate at a fixed angle of attack with and without a leading edge flap, and the transient, vortical cross flow produced by a slender delta wing. Evolution of the vortex traces, streamlines, surface pressure, and forces are studied. Flow features based on data obtained by different point-vortex shedding rates and different integration time steps and schemes are found to be consistent with each other on length and time scales comparable to as well as considerably smaller than those of the global flow.

  6. Multi-vortex states in magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Gan, W. L.; Chandra Sekhar, M.; Wong, D. W.; Purnama, I.; Chiam, S. Y.; Wong, L. M.; Lew, W. S.

    2014-10-01

    We demonstrate a fabrication technique to create cylindrical NiFe magnetic nanoparticles (MNPs) with controlled dimensions and composition. MNPs thicker than 200 nm can form a double vortex configuration, which consists of a pair of vortices with opposite chirality. When MNPs thicker than 300 nm are relaxed after saturation, it forms a frustrated triple vortex state which produces a higher net magnetization as verified by light transmissivity measurements. Therefore, a greater magnetic torque can be actuated on a MNP in the triple vortex state.

  7. Vortex dynamics in oscillatory chemical systems.

    PubMed

    Wu, Xiao-Guang; Chee, Merk-Na; Kapral, Raymond

    1991-12-01

    Vortex core dynamics is studied in the Brusselator both near to and far from the Hopf bifurcation line for random and pair initial conditions. Extensive simulations are carried out for a pair of counter-rotating vortices close to the Hopf bifurcation line. Provided the vortices are not so far apart that wave-front annihilation produces strong gradients between their centers, the simulation results compare favorably with theories based on the complex Ginzburg-Landau equation. Far from the Hopf line the vortex core dynamics changes character and phenomena such as periodic motion of the vortex centers arise. PMID:12779938

  8. Dynamic visualization of nanoscale vortex orbits.

    PubMed

    Timmermans, Matias; Samuely, Tomas; Raes, Bart; Van de Vondel, Joris; Moshchalkov, Victor V

    2014-03-25

    Due to the atomic-scale resolution, scanning tunneling microscopy is an ideal technique to observe the smallest objects. Nevertheless, it suffers from very long capturing times in order to investigate dynamic processes at the nanoscale. We address this issue, for vortex matter in NbSe2, by driving the vortices using an ac magnetic field and probing the induced periodic tunnel current modulations. Our results reveal different dynamical modes of the driven vortex lattices. In addition, by recording and synchronizing the time evolution of the tunneling current at each pixel, we visualize the overall dynamics of the vortex lattice with submillisecond time resolution and subnanometer spatial resolution.

  9. Observations of the Mars Polar Vortex

    NASA Technical Reports Server (NTRS)

    McConnochie, T. H.; Conrath, B. J.; Gierasch, P. J.; Banfield, D.; Smith, M. D.

    2003-01-01

    The winter season, westerly circumpolar flow of the Martian atmosphere, and of the terrestrial stratosphere, is concentrated into a jet whose latitude falls between 60 and 80 degrees. This jet is known as the polar vortex. The terrestrial polar vortex has been understood to be the dynamical controlling mechanism for ozone depletion in the polar stratosphere for more than a decade. More recently, the earth's stratospheric annular modes, which are essentially a weakening/strengthening oscillation of the polar vortex jet, have been shown to be coupled to and possibly even a driving mechanism for, the tropospheric Arctic Oscillation (AO) / North Atlantic Oscillation (NAO) phenomenon.

  10. Vortex motion behind a circular cylinder

    NASA Technical Reports Server (NTRS)

    Foeppl, L.

    1983-01-01

    Vortex motion behind a circular cylinder moving through water is discussed. It is shown that a pair of vortices form behind a moving cylinder and that their centers will move along a predictable curve. This curve represents an equilibrium condition which, however, is subject to perturbation. The stability of the vortex pair is investigated. Movement of the vortex pair away from the cylinder is calculated as an explanation of the resistance of the cylinder. Finally, the principles elaborated are applied to the flow around a flat plate.

  11. RANS computations of tip vortex cavitation

    NASA Astrophysics Data System (ADS)

    Decaix, Jean; Balarac, Guillaume; Dreyer, Matthieu; Farhat, Mohamed; Münch, Cécile

    2015-12-01

    The present study is related to the development of the tip vortex cavitation in Kaplan turbines. The investigation is carried out on a simplified test case consisting of a NACA0009 blade with a gap between the blade tip and the side wall. Computations with and without cavitation are performed using a R ANS modelling and a transport equation for the liquid volume fraction. Compared with experimental data, the R ANS computations turn out to be able to capture accurately the development of the tip vortex. The simulations have also highlighted the influence of cavitation on the tip vortex trajectory.

  12. Observation of an x-ray vortex

    NASA Astrophysics Data System (ADS)

    Peele, Andrew G.; McMahon, Philip J.; Paterson, David; Tran, Chanh Q.; Mancuso, Adrian P.; Nugent, Keith A.; Hayes, Jason P.; Harvey, Erol; Lai, Barry; McNulty, Ian

    2002-10-01

    Phase singularities are a ubiquitous feature of waves of all forms and represent a fundamental aspect of wave topology. An optical vortex phase singularity occurs when there is a spiral phase ramp about a point phase singularity. We report an experimental observation of an optical vortex in a field consisting of 9-keV x-ray photons. The vortex is created with an x-ray optical structure that imparts a spiral phase distribution to the incident wave field and is observed by use of diffraction about a wire to create a division-of-wave-front interferometer.

  13. Anatomy of a Bathtub Vortex

    NASA Astrophysics Data System (ADS)

    Andersen, A.; Bohr, T.; Stenum, B.; Rasmussen, J. Juul; Lautrup, B.

    2003-09-01

    We present experiments and theory for the “bathtub vortex,” which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating “drainpipe” from the free surface down to the drain hole. Surrounding this drainpipe is a region with slow upward flow generated by the Ekman layer at the bottom of the container. This flow structure leads us to a theoretical model similar to one obtained earlier by Lundgren [

    J. Fluid Mech.JFLSA70022-1120 155, 381 (1985)
    ], but here including surface tension and Ekman upwelling, comparing favorably with our measurements. At the tip of the needlelike surface depression, we observe a bubble-forming instability at high rotation rates.

  14. Vortex Structures of Whistler Waves

    NASA Astrophysics Data System (ADS)

    Zaliznyak, Yu.; Davydova, T.; Yakimenko, A.

    Starting with two-dimensional nonlinear Scroedinger equation for a parallel electric field of spatially localized beam of whistler waves we investigate formation, evolu- tion and stability of nonlinear whistler waveguides (or ducts) which are frequently observed during heating active experiments in the ionosphere. When the generator frequency is close to the half of electron cyclotron frequency, one have take into ac- count the additional terms of the next order in the equation for the interpretation of existing experimental data. It is needed to use a full Maxwell's equation set to describe the propagation of whistlers and to account for the nonlinearity saturation at high val- ues of pump power. Nonlinear waveguides of vortex type (with topological charge 1, 2 and 3) are found and their stability properties are investigated by means of numerical simulations.

  15. Vortex generator for flow control

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor); Marner, Wilbur J. (Inventor); Rohatgi, Naresh K. (Inventor)

    1989-01-01

    Fluidics flow control of a multiphase supply using a cylindrical chamber is achieved by introducing the supply flow radially into the chamber. The supply flow exits through a port in the center at the chamber. A control fluid is then introduced tangentially about 90.degree. upstream from the supply port. A second control fluid port may be added about 90.degree. upstream from the first control fluid port, but preferably two sets of supply and control ports are added with like ports diametrically opposite each other. The control fluid flows against the circular wall of the control chamber, which introduces a vortex in the flow of the supply flow that decays into a spiral path to the exit port in the center of the chamber. The control flow rate may thus be used to control the spiral path, and therefore the supply flow rate through the exit port.

  16. Interaction of a turbulent vortex with a lifting surface

    NASA Technical Reports Server (NTRS)

    Lee, D. J.; Roberts, L.

    1985-01-01

    The impulsive noise due to blade-vortex-interaction is analyzing in the time domain for the extreme case when the blade cuts through the center of the vortex core with the assumptions of no distortion of the vortex path or of the vortex core. An analytical turbulent vortex core model, described in terms of the tip aerodynamic parameters, is used and its effects on the unsteady loading and maximum acoustic pressure during the interaction are determined.

  17. Prediction and control of vortex-dominated and vortex-wake flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1993-01-01

    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  18. The transition from vortex liquid to vortex slush in YB2Cu3Oy superconductors

    NASA Astrophysics Data System (ADS)

    Liu, S. L.; Wu, G. J.; Tan, H. J.; Xu, X. B.; Shao, H. M.

    2006-06-01

    The phase transition from vortex liquid to vortex slush has been confirmed in resistance measurements for YBCO crystal superconductors, on the basis of scaling analysis. The temperature dependence of the resistivity under various magnetic fields collapses onto two branches in the scaling behaviour, associated with the vortex slush and the vortex liquid states. The lower branch, for temperatures below the transition point, has a negative curvature, while the upper one shows a plateau above the transition point. The critical exponents are estimated from the scaling result. The phase diagram in the H-T plane is presented and compared with previous reports.

  19. Nested contour-dynamic models for axisymmetric vortex rings and vortex wakes

    NASA Astrophysics Data System (ADS)

    O'Farrell, Clara; Dabiri, John O.

    2013-11-01

    Jetting swimmers, such as squid and jellyfish, propel themselves by forming vortex rings. It is known that vortex rings cannot grow indefinitely, but rather ``pinch off'' once they reach their physical limit, and that a decrease in efficiency of fluid transport is associated with pinch-off. Previously, the Norbury family of vortices has been used as a model for axisymmetric vortex rings, and the response of this family to shape perturbations has been characterized. We improve upon the Norbury models, using nested patches of vorticity to construct a family of models for vortex rings generated by a piston-cylinder apparatus at different stroke ratios. The perturbation response of this family is considered by the introduction of a small region of vorticity at the rear of the vortex, which mimics the addition of circulation to a growing vortex ring by a feeding shear layer. Model vortex rings are found to either accept the additional circulation or shed it into a tail, depending on the perturbation size. A change in the behavior of the model vortex rings is identified at a stroke ratio of three. We hypothesize that this change in response is analogous to pinch-off, and that pinch-off might be understood and predicted based on the perturbation responses of model vortex rings.

  20. Curved optical tubes in a 4Pi focusing system.

    PubMed

    Yan, Shaohui; Yu, Xianghua; Li, Manman; Yao, Baoli

    2015-08-24

    We demonstrate the possibility of creating curved optical tubes in a 4Pi focusing system. The focal fields of such optical tubes have interesting properties: the energy is concentered in the neighborhood of a prescribed three-dimensional (3D) curve while the cross section is of hollow shape. The creation of these optical tubes is based on the annular focal spot of a vortex beam, which is employed as a building block. An optical tube is thus obtained by covering the central-axis curve of the tube by various such building blocks. Each building block has a certain orientation and position, realized by a rotation plus a certain translation. The spatial spectrum (the input field as well) of the optical tube is obtained by linearly superposing the spectrum of each transformed building block. The curve is rather arbitrary. Three examples of optical tubes: a torus, a solenoid and a trefoil knot are given, showing a good agreement with the expected results. PMID:26368256

  1. 'Optimal' vortex rings and aquatic propulsion mechanisms

    NASA Astrophysics Data System (ADS)

    Linden, Paul; Turner, Stewart

    2004-11-01

    Fish swim by flapping their tail and other fins. Other sea creatures, such as squid and salps, eject fluid intermittently as a jet. We discuss the fluid mechanics behind these propulsion mechanisms, and show that these animals produce optimal vortex rings, which give the maximum thrust for a given energy input. We show fish optimise both their steady swimming and their ability to accelerate and turn by producing an individual optimal ring with each flap of the tail or fin. Salps produce vortex rings directly by ejecting a volume of fluid through a rear orifice, and these are also optimal. An important implication of this paper is that the repetition of vortex production is not necessary for an individual vortex to have the `optimal' characteristics.

  2. Titan's South Polar Vortex in Motion

    NASA Video Gallery

    This movie captured by NASA'S Cassini spacecraft shows a south polar vortex, or a swirling mass of gas around the pole in the atmosphere, at Saturn’s moon Titan. The swirling mass appears to exec...

  3. Analysis of vortex wake encounter upsets

    NASA Technical Reports Server (NTRS)

    Johnson, W. A.; Teper, G. L.

    1974-01-01

    The problem of an airplane being upset by encountering the vortex wake of a large transport on takeoff or landing is currently receiving considerable attention. This report describes the technique and results of a study to assess the effectiveness of automatic control systems in alleviating vortex wake upsets. A six-degree-of-freedom nonlinear digital simulation was used for this purpose. The analysis included establishing the disturbance input due to penetrating a vortex wake from an arbitrary position and angle. Simulations were computed for both a general aviation airplane and a commercial jet transport. Dynamic responses were obtained for the penetrating aircraft with no augmentation, and with various command augmentation systems, as well as with human pilot control. The results of this preliminary study indicate that attitude command augmentation systems can provide significant alleviation of vortex wake upsets; and can do it better than a human pilot.

  4. Investigation of aircraft vortex wake structure

    NASA Astrophysics Data System (ADS)

    Baranov, N. A.; Turchak, L. I.

    2014-11-01

    In this work we analyze the mechanisms of formation of the vortex wake structure of aircraft with different wing shape in the plan flying close to or away from the underlying surface cleaned or released mechanization wing.

  5. Vortex phase separation in mesoscopic superconductors

    PubMed Central

    Iaroshenko, O.; Rybalko, V.; Vinokur, V. M.; Berlyand, L.

    2013-01-01

    We demonstrate that in mesoscopic type II superconductors with the lateral size commensurate with London penetration depth, the ground state of vortices pinned by homogeneously distributed columnar defects can form a hierarchical nested domain structure. Each domain is characterized by an average number of vortices trapped at a single pinning site within a given domain. Our study marks a radical departure from the current understanding of the ground state in disordered macroscopic systems and provides an insight into the interplay between disorder, vortex-vortex interaction, and confinement within finite system size. The observed vortex phase segregation implies the existence of the soliton solution for the vortex density in the finite superconductors and establishes a new class of nonlinear systems that exhibit the soliton phenomenon.

  6. Josephson vortex lattice in layered superconductors

    SciTech Connect

    Koshelev, A. E.; Dodgson, M. J. W.

    2013-09-15

    Many superconducting materials are composed of weakly coupled conducting layers. Such a layered structure has a very strong influence on the properties of vortex matter in a magnetic field. This review focuses on the properties of the Josephson vortex lattice generated by the magnetic field applied in the direction of the layers. The theoretical description is based on the Lawrence-Doniach model in the London limit, which takes only the phase degree of freedom of the superconducting order parameter into account. In spite of its simplicity, this model leads to an amazingly rich set of phenomena. We review in detail the structure of an isolated vortex line and various properties of the vortex lattice, in both dilute and dense limits. In particular, we extensively discuss the influence of the layered structure and thermal fluctuations on the selection of lattice configurations at different magnetic fields.

  7. Cavitating vortex generation by a submerged jet

    SciTech Connect

    Belyakov, G. V.; Filippov, A. N.

    2006-05-15

    The surface geometry of a cavitating vortex is determined in the limit of inviscid incompressible flow. The limit surface is an ovaloid of revolution with an axis ratio of 5: 3. It is shown that a cavitating vortex ring cannot develop if the cavitation number is lower than a certain critical value. Experiments conducted at various liquid pressures and several jet exit velocities confirm the existence of a critical cavitation number close to 3. At cavitation numbers higher than the critical one, the cavitating vortex ring does not develop. At substantially lower cavitation numbers (k {<=} 0.1), an elongated asymmetric cavitation bubble is generated, with an axial reentrant jet whose length can exceed the initial jet length by several times. This flow structure is called an asymmetric cavitating vortex, even though steady motion of this structure has not been observed.

  8. Valley Vortex States in Sonic Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Jiuyang; Qiu, Chunyin; Ke, Manzhu; Liu, Zhengyou

    2016-03-01

    Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.

  9. The dynamics of barotropic vortex merging

    NASA Astrophysics Data System (ADS)

    Kieu, Chanh

    2016-08-01

    The merging of multiple vortices is a fundamental process of the dynamics of Earth's atmosphere and oceans. In this study, the interaction of like-signed vortices is analytically and numerically examined in a framework of two-dimensional inviscid barotropic flows. It is shown that barotropic vortex interaction turns out to be more intricate than simple merging scenarios often assumed in previous studies. Some particular configurations exist in which the vortex merging process is never complete despite strong interaction of like-signed vortices, regardless of the strengths or distances between the vortices. While the conditions for a complete vortex merging process introduced in this study appear to be too strict for most practical applications, this study suggests that careful criteria for vortex mergers should be properly defined when simulating the interaction of vortices, because the merging may not always result in a final enhanced circulation at the end of the interaction, as usually assumed in the literature.

  10. Optical Scully vortex and its spatial evolution.

    PubMed

    Aksenov, Valerii P; Pogutsa, Cheslav E

    2012-04-01

    The structure of an optical vortex formed in a partially coherent Laguerre-Gauss laser beam was considered. The main object of study was the recorded vector field of wavefront tilts that consisted of the vortical and potential components. It was found that the vortical motion weakened as the coherence decreased. Main regularities in the behavior of the vortical component can be described by the Scully vortex model of vortical liquid flow. In the spatial evolution, the potential component of tilts may alternate the sign, thus determining the direction of energy flow to the center or to the periphery of the vortex. Energy flow lines in the beam demonstrate the pattern of decay of an optical vortex similar to the pattern of decaying vortical motion in viscous liquid.

  11. Vortex ring impingement and particle suspension

    NASA Astrophysics Data System (ADS)

    Staymates, Matthew

    2005-11-01

    Previous research has shown that the impact of a vortex ring with a solid surface can dislodge particles attached to that surface and suspend them in the surrounding fluid. A possible use for this phenomenon arises in the detection of trace explosives on clothing and belongings: Once liberated from the surface, suspended particles can be collected and interrogated. The current technology successfully uses round turbulent jets for this purpose, but also generates a large concomitant airflow due to entrainment. Here we present the results of initial experiments to construct vortex-ring generators producing a similar particle release from surfaces with much less entrainment than jets. A discussion of vortex-ring-generator design issues and semi-quantitative flow visualization results will be presented. Both normal and oblique vortex-ring impacts are considered.

  12. Tracheostomy tube - speaking

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000465.htm Tracheostomy tube - speaking To use the sharing features on ... are even speaking devices that can help you. Tracheostomy Tubes and Speaking Air passing through vocal cords ( ...

  13. Glass tube splitting tool

    NASA Technical Reports Server (NTRS)

    Klein, J. A.; Murray, C. D.; Stein, J. A.

    1971-01-01

    Tool accurately splits glass tubing so cuts are aligned 180 deg apart and reassembled tube forms low pressure, gastight enclosure. Device should interest industries using cylindrical closed glass containers.

  14. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina ...

  15. Eustachian tube (image)

    MedlinePlus

    ... are more common in children because their eustachian tubes are shorter, narrower, and more horizontal than in ... become trapped when the tissue of the eustachian tube becomes swollen from colds or allergies. Bacteria trapped ...

  16. Feeding tube - infants

    MedlinePlus

    ... tube is misplaced and not in the proper position, the baby may have problems with: An abnormally slow heart rate (bradycardia) Breathing Spitting up Rarely, the feeding tube can puncture the stomach.

  17. Shallow flow vortex formation and control

    NASA Astrophysics Data System (ADS)

    Fu, Haojun

    Vortical structures in shallow flow past a vertical cylinder are addressed in this investigation. A cinema technique of digital particle image velocimetry (DPIV) provided quantitative representations of the wholefield flow patterns in both instantaneous and averaged forms. Techniques for passive and active control of these vortices, and their influence on the loading of the bed, were explored. In a fully-developed, laminar shallow flow, the unstable structure in the near-wake of the cylinder correlates with the horseshoe (necklace) vortex system about the upstream surface of the cylinder. A coherent varicose mode of vortex formation is observed in the near-wake, even though the classical large-scale vortex shedding is suppressed due to bed friction effects. It is also demonstrated that when the near-wake is stable at a sufficiently low value of Reynolds number, applications of external perturbations lead to destabilization of the wake. Classes of small-scale three-dimensional structures arise in a fully-turbulent shallow flow past a surface-piercing cylinder. A prevalent feature is an upward moving jet-like flow from the bed surface, through the center of the developing quasi-two-dimensional primary vortex, at a location in the very near-wake of the cylinder. Passive control via base-bleed through a narrow streamwise slot leads to substantially delay/attenuation of vortex formation in the near-wake. The large-scale near-wake structure is recoverable through combined positive-active control, in the form of rotational perturbations in the presence of small magnitude base bleed. These alterations of the near-wake structure occur in conjunction with modifications of the streamline topology and Reynolds stress at the bed, as well as the shallow approach flow. Active control via rotational perturbations of the cylinder at the most unstable shear-layer frequency promotes well-defined vortical structures in the separating shearlayer, which contribute to the earlier

  18. Spatiotemporal complexity of the aortic sinus vortex

    NASA Astrophysics Data System (ADS)

    Moore, Brandon; Dasi, Lakshmi Prasad

    2014-07-01

    The aortic sinus vortex is a classical flow structure of significant importance to aortic valve dynamics and the initiation and progression of calcific aortic valve disease. We characterize the spatiotemporal characteristics of aortic sinus vortex dynamics in relation to the viscosity of blood analog solution as well as heart rate. High-resolution time-resolved (2 kHz) particle image velocimetry was conducted to capture 2D particle streak videos and 2D instantaneous velocity and streamlines along the sinus midplane using a physiological but rigid aorta model fitted with a porcine bioprosthetic heart valve. Blood analog fluids used include a water-glycerin mixture and saline to elucidate the sensitivity of vortex dynamics to viscosity. Experiments were conducted to record 10 heart beats for each combination of blood analog and heart rate condition. Results show that the topological characteristics of the velocity field vary in timescales as revealed using time bin-averaged vectors and corresponding instantaneous streamlines. There exist small timescale vortices and a large timescale main vortex. A key flow structure observed is the counter vortex at the upstream end of the sinus adjacent to the base (lower half) of the leaflet. The spatiotemporal complexity of vortex dynamics is shown to be profoundly influenced by strong leaflet flutter during systole with a peak frequency of 200 Hz and peak amplitude of 4 mm observed in the saline case. While fluid viscosity influences the length and timescales as well as the introduction of leaflet flutter, heart rate influences the formation of counter vortex at the upstream end of the sinus. Higher heart rates are shown to reduce the strength of the counter vortex that can greatly influence the directionality and strength of shear stresses along the base of the leaflet. This study demonstrates the impact of heart rate and blood analog viscosity on aortic sinus hemodynamics.

  19. Towards a string formulation of vortex dynamics

    SciTech Connect

    Elsebeth Schroeder; Ola Toernkvist

    1998-01-01

    We derive an exact equation of motion for a non-relativistic vortex in two- and three-dimensional models with a complex field. The velocity is given in terms of gradients of the complex field at the vortex position. We discuss the problem of reducing the field dynamics to a closed dynamical system with non-locally interacting strings as the fundamental degrees of freedom.

  20. Spontaneous splitting of a quadruply charged vortex.

    PubMed

    Isoshima, T; Okano, M; Yasuda, H; Kasa, K; Huhtamäki, J A M; Kumakura, M; Takahashi, Y

    2007-11-16

    We studied the splitting instability of a quadruply charged vortex both experimentally and theoretically. The density defect, which is a signature of the vortex core, is experimentally observed to deform into a linear shape. The deformed defect is theoretically confirmed to be an array of four linearly aligned singly charged vortices. The array of vortices rotates and precesses simultaneously with different angular velocities. The initial state of the system is not rotationally symmetric, which enables spontaneous splitting without external perturbations. PMID:18233124

  1. Spontaneous Splitting of a Quadruply Charged Vortex

    SciTech Connect

    Isoshima, T.; Okano, M.; Yasuda, H.; Kasa, K.; Huhtamaeki, J. A. M.; Kumakura, M.; Takahashi, Y.

    2007-11-16

    We studied the splitting instability of a quadruply charged vortex both experimentally and theoretically. The density defect, which is a signature of the vortex core, is experimentally observed to deform into a linear shape. The deformed defect is theoretically confirmed to be an array of four linearly aligned singly charged vortices. The array of vortices rotates and precesses simultaneously with different angular velocities. The initial state of the system is not rotationally symmetric, which enables spontaneous splitting without external perturbations.

  2. White-light optical vortex coronagraph

    NASA Astrophysics Data System (ADS)

    Kanburapa, Prachyathit

    An optical vortex is characterized by a dark core of destructive interference in a light beam. One of the methods commonly employed to create an optical vortex is by using a computer-generated hologram. A vortex hologram pattern is computed from the interference pattern between a reference plane wave and a vortex wave, resulting in a forked grating pattern. In astronomy, an optical vortex coronagraph is one of the most promising high contrast imaging techniques for the direct imaging of extra-solar planets. Direct imaging of extra-solar planets is a challenging task since the brightness of the parent star is extremely high compared to its orbiting planets. The on-axis light from the parent star gets diffracted in the coronagraph, forming a "ring of fire" pattern, whereas the slightly off-axis light from the planet remains intact. Lyot stop can then be used to block the ring of fire pattern, thus allowing only the planetary light to get through to the imaging camera. Contrast enhancements of 106 or more are possible, provided the vortex lens (spiral phase plate) has exceptional optical quality. By using a vortex hologram with a 4 microm pitch, and an f/300 focusing lens, we were able to demonstrate the creation of a "ring of fire" using a white light emitting diode as a source. A dispersion compensating linear diffraction grating of 4 microm pitch was used to bring the rings together to form a single white light ring of fire. To our knowledge, this is the first time a vortex hologram based OVC has been demonstrated, resulting in a well-formed white light ring of fire. Experimental results show measured power contrast of 1/515 when HeNe laser source was used as a light source and 1/77 when using a white light emitting diode.

  3. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  4. Boundary Layers in Laminar Vortex Flows.

    NASA Astrophysics Data System (ADS)

    Baker, Glenn Leslie

    A detailed experimental study of the flow in an intense, laminar, axisymmetric vortex has been conducted in the Purdue Tornado Vortex Simulator. The complicated nature of the flow in the boundary layer of laboratory vortices and presumably on that encountered in full-scale tornadoes has been examined. After completing a number of modifications to the existing facility to improve the quality of the flow in the simulator, hot-film anemometry was employed for making velocity-component and turbulence-intensity measurements of both the free-stream and boundary layer portions of the flow. The measurements represent the first experimental boundary layer investigation of a well-defined vortex flow to appear in the literature. These results were compared with recent theoretical work by Burggraf, Stewartson and Belcher (1971) and with an exact similarity solution for line-sink boundary layers developed by the author. A comparison is also made with the numerical simulation of Wilson (1981) in which the boundary conditions were matched to those of the present experimental investigation. Expressions for the vortex core radius, the maximum tangential velocity and the maximum pressure drop are given in terms of dimensionless modeling parameters. References. Burggraf, O. R., K. Stewartson and R. Belcher, Boundary layer. induced by a potential vortex. Phys. Fluids 14, 1821-1833 (1971). Wilson, T., M. S. thesis, Vortex Boundary Layer Dynamics, Univ. Calif. Davis (1981).

  5. Magnetism near Vortex Cores of Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Lee, J. C.; Prudchenko, K.; Launspach, B.; Ruiz, E. J.; Boekema, C.

    2005-03-01

    We examined muon-spin-resonance (μSR) vortex data of Bi2212, Tl2223, and YBCO to search for antiferromagnetism (AF) near the vortex cores. [1] Field distributions were obtained from μSR data using Maximum-Entropy analysis. The grainboundary and vortex signals were fitted by Gaussian and Lorentzian curves, the latter suggestive of extra AF ordering. Narrow Gaussians fit the grainboundary signals well, independent of temperature. For T < 0.4Tc, Lorentzians fit much better than Gaussians on the high-field side associated with the vortex core. Such results suggest that magnetism exists near the vortex cores. [1,2] The field dependence of the YBCO AF Lorentzian width is discussed. An AF presence near vortex cores supports theories that predict spin ordering for cuprate superconductivity. Research supported by REU-NSF, WiSE@SJSU & SJSU College of Science. [1] J. Lee et al, J Appl Phys 95 (2004) 6906, and Virtual J Appl of Superconductivity, June 2004 V6 Issue11; K Prudchenko et al, www.jyi.org/volumes/volume10/issue6/articles/prudchenko.html [2] C. Boekema et al, Int J Modern Phys B17 (2003) 3436.

  6. Vortex lattices in theory and practice

    SciTech Connect

    Capmbell, Laurence J.

    1988-01-01

    The formal simplicity of ideal point vortex systems in two dimensions has long attracted interest in both their exact solutions and in their capacity to simulate physical processes. Attention here is focused on infinite, two-fold periodic vortex arrays, including an expression for the energy density of an arbitrary vortex lattice (i.e., an arbitrary number of vortices with arbitrary strengths in a unit cell parallelogram of arbitrary shape). For the case of two vortices per unit cell, the morphology of stable lattices can be described completely. A non-trivial physical realization of such lattices is a rotating mixture of /sup 3/He and /sup 4/He at temperatures so low that both isotopic components are superfluid. The structure of the expected lattices is quite different from the usual triangular structure. Magnetic flux lines in high-temperature superconductors show a one-parameter family of degenerate ground state of the lattice due to the anisotropy of the vortex--vortex interaction. A final topic, closely related to Josephson-junction arrays, is the case of vortices confined to a grid. That is, the vortices interact pair-wise in the usual manner but are constrained to occupy only locations on an independent periodic grid. By using vortex relaxation methods in the continuum and then imposing the grid it is possible to find low-lying states extremely rapidly compared to previous Monte Carlo calculations. 11 refs., 8 figs.

  7. Vortex sound in confined flows

    NASA Astrophysics Data System (ADS)

    Hofmans, Gerardus Carolus Johannus

    The interaction of vortex structures with the acoustic velocity field is prerequisite for the production or absorption of acoustic energy. When the source region in which this interaction occurs is much smaller than the wavelength of the acoustic wave, it is possible to neglect wave propagation in the source region itself. Such a source region is called 'compact' and it results in a simplified description of the acoustic source. We have restricted ourselves to compact source regions. Three relevant applications have been studied: speech modelling, damping of acoustic waves by means of diaphragms, and the prediction of flow-induced resonances in bifurcated pipe systems with T-shaped junctions. Experimental as well as numerical work has been carried out for rigid in vitro models of the vocal folds. It was found that it is possible to use a simplified quasi- steady model, which describes the boundary-layer flow in the glottis, to reasonably predict the separation point during a part of one cycle of the vocal-fold movement. This results in a reasonable prediction of the source of sound in voiced speech. Furthermore, it was found that the instability of the jet, that is formed downstream of the glottis, can be a significant source of broad-band sound. A diaphragm used as a constriction in a pipe is a common element in mufflers. This configuration is investigated theoretically, numerically, and experimentally. Results of the quasi-steady flow model and of the numerical calculations are in good agreement with results of experiments. Theory also correctly describes the limit of high frequencies. For the intermediate frequencies we found some deviation between theory and experiments, which is not yet fully understood. The flow through T-joints, with sharp edges, has been numerically investigated as a function of the acoustic amplitude, the Strouhal number, and the flow configuration. In the limit of low frequencies the acoustic source in a T-joint can be described by means

  8. Heat transfer, erosion and acid condensation characteristics for novel H-type finned oval tube

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhao, X.; Tang, G.

    2015-09-01

    Low efficiency of heat transfer, acid corrosion and erosion of economizers affect the economy and security in coal-fired power plants significantly. The H-type finned oval tube is proposed to alleviate these problems. Based on the H-type finned oval tube, we investigated three novel types of fins, including bleeding dimples, longitudinal vortex generators (LVGs), and compound dimple-LVG. We considered the three aspects together, and obtained the heat transfer, acid condensation rate and erosion loss. The results show that the tube bank with the new structured fins can improve the performance on the three aspects, and the compound dimple-LVG performs the highest comprehensive effect.

  9. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  10. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  11. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  12. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  13. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  14. Effects of draft tube on the hydraulic performance of a Francis turbine

    NASA Astrophysics Data System (ADS)

    Jeon, J. H.; Byeon, S. S.; Kim, Y. J.

    2013-12-01

    The draft tube is an important component of a Francis turbine which influences the hydraulic performance. It is located just under the runner and allowed to decelerate the flow velocity exiting the runner, thereby converting the excess of kinetic energy into static pressure. In this study, we have numerically investigated the hydraulic performance of a Francis turbine on the 15MW hydropower generation with various design parameters (three types of draft tube, thickness of guide vane) through a three-dimensional numerical method with the SST turbulent model. The vortex rope characteristics of the draft tube were confirmed. The results of the vortex flow fields and flow characteristics were graphically depicted with different design parameters and operating conditions.

  15. Direct numerical simulation of transitional flow in a staggered tube bundle

    NASA Astrophysics Data System (ADS)

    Linton, D.; Thornber, B.

    2016-02-01

    A series of Direct Numerical Simulations (DNS) of the flow through a staggered tube bundle has been performed over the range 1030 ≤ Rem ≤ 5572 to capture the flow transition that occurs at the matrix transition point of Rem ≈ 3000. The matrix transition is the point at which a second frequency becomes prominent in tube bundles. To date, this is the highest published Reynolds number at which a DNS has been performed on cross-flow over a tube bundle. This study describes the flow behaviour in terms of: the mean flow field, Strouhal numbers, vortex shedding, 3-D flow features, and turbulence properties. These results support the hypothesis that the transition in the vortex shedding behaviour at Rem ≈ 3000 is similar to that which occurs in single cylinder flow at the equivalent Reynolds number. The visualisations presented also demonstrate the nature of the shedding mechanisms before and after the matrix transition point.

  16. REACTOR COOLANT TUBE SEAL

    DOEpatents

    Morris, W.J.

    1958-12-01

    A plle-flattenlng control element and a fluid seal therefore to permit movement of the element into a liquld contnining region of a neutronlc reactor are described. The device consists of flattened, thin-walled aluminum tubing contalnlng a uniform mixture of thermal neutron absorbing material, and a number of soft rubber closures for the process tubes, having silts capable of passing the flattened elements therethrough, but effectively sealing the process tubes against fluld leaknge by compression of the rubber. The flattened tubing is sufficiently flexible to enable it to conform to the configuratlon of the annular spacing surrounding the fuel elements ln the process tubes.

  17. Numerical simulation of vortex breakdown by the vortex-filament method

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Leonard, A.; Spalart, P. R.

    1983-01-01

    The vortex-filament method was applied to the simulation of vortex breakdown. The principal vortex region was represented by multiple filaments, and an axial velocity component was induced by a spiral winding of the filaments. An accuracy check was performed for a cylindrical swirling flow with simple analytical expressions for the axial and theta velocities. The result suggests that the flow field can be simulated to any accuracy by increasing the number of filaments. An axisymmetric-type vortex breakdown was simulated, with experimental data serving as upstream conditions. The calculated axial- and theta-velocity contours show the breakdown of the vortex, including a rapid change in the vortex core, followed axially by a recovery zone and then a second breakdown. When three dimensional initial data are used the second breakdown appears to be of the spiral type in correspondence with experimental observations. The present method can easily be used to simulate other types of vortex breakdown or other vortex flows with axial velocity.

  18. Vortex Cores of Inertial Particles.

    PubMed

    Günther, Tobias; Theisel, Holger

    2014-12-01

    The cores of massless, swirling particle motion are an indicator for vortex-like behavior in vector fields and to this end, a number of coreline extractors have been proposed in the literature. Though, many practical applications go beyond the study of the vector field. Instead, engineers seek to understand the behavior of inertial particles moving therein, for instance in sediment transport, helicopter brownout and pulverized coal combustion. In this paper, we present two strategies for the extraction of the corelines that inertial particles swirl around, which depend on particle density, particle diameter, fluid viscosity and gravity. The first is to deduce the local swirling behavior from the autonomous inertial motion ODE, which eventually reduces to a parallel vectors operation. For the second strategy, we use a particle density estimation to locate inertial attractors. With this, we are able to extract the cores of swirling inertial particle motion for both steady and unsteady 3D vector fields. We demonstrate our techniques in a number of benchmark data sets, and elaborate on the relation to traditional massless corelines. PMID:26356967

  19. Vortex Cores of Inertial Particles.

    PubMed

    Günther, Tobias; Theisel, Holger

    2014-12-01

    The cores of massless, swirling particle motion are an indicator for vortex-like behavior in vector fields and to this end, a number of coreline extractors have been proposed in the literature. Though, many practical applications go beyond the study of the vector field. Instead, engineers seek to understand the behavior of inertial particles moving therein, for instance in sediment transport, helicopter brownout and pulverized coal combustion. In this paper, we present two strategies for the extraction of the corelines that inertial particles swirl around, which depend on particle density, particle diameter, fluid viscosity and gravity. The first is to deduce the local swirling behavior from the autonomous inertial motion ODE, which eventually reduces to a parallel vectors operation. For the second strategy, we use a particle density estimation to locate inertial attractors. With this, we are able to extract the cores of swirling inertial particle motion for both steady and unsteady 3D vector fields. We demonstrate our techniques in a number of benchmark data sets, and elaborate on the relation to traditional massless corelines.

  20. Three-vortex configurations in trapped Bose-Einstein condensates

    SciTech Connect

    Seman, J. A.; Henn, E. A. L.; Shiozaki, R. F.; Ramos, E. R. F.; Caracanhas, M.; Castilho, P.; Castelo Branco, C.; Tavares, P. E. S.; Poveda-Cuevas, F. J.; Magalhaes, K. M. F.; Bagnato, V. S.; Haque, M.; Roati, G.

    2010-09-15

    We report on the creation of three-vortex clusters in a {sup 87}Rb Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulations, so that we are able to create several types of vortex clusters using the same mechanism. The three-vortex configurations are dominated by two types, namely, an equilateral-triangle arrangement and a linear arrangement. We interpret these most stable configurations respectively as three vortices with the same circulation and as a vortex-antivortex-vortex cluster. The linear configurations are very likely experimental signatures of predicted stationary vortex clusters.

  1. Spur-type instability observed on numerically simulated vortex filaments

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1988-01-01

    An instability observed on vortex filaments during numerical simulations of the three-dimensional, time-dependent dynamics of vortex wakes is studied to determine when and why it occurs. It is concluded that the observed instability is a consequence of the use of straight-line vortex segments of finite length to model continuously curving vortex filaments. The instability appears to occur only when the link length is a sizable fraction of the vortex span and, therefore, is not expected in an experiment. Guidelines are then given that help avoid numerical instabilities when vortex filaments are used in flow simulations.

  2. Devices that Alter the Tip Vortex of a Rotor

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.; Tung, Chee; Heineck, James T.

    2001-01-01

    Small devices were attached near the tip of a hovering rotor blade 'in order to alter the structure and trajectory of the trailing vortex. Stereo particle image velocimetry (PIV) images were used to quantify the wake behind the rotor blade during the first revolution. A procedure for analyzing the 3D-velocity field is presented that includes a method for accounting for vortex wander. The results show that a vortex generator can alter the trajectory of the trailing vortex and that a major change in the size and intensity of the trailing vortex can be achieved by introducing a high level of turbulence into the core of the vortex.

  3. Intercostal drainage tube or intracardiac drainage tube?

    PubMed Central

    Anitha, N.; Kamath, S. Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure. PMID:27397467

  4. NEI You Tube Videos: Amblyopia

    MedlinePlus

    ... YouTube Videos > NEI YouTube Videos: Amblyopia NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia ... of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia NEI on Twitter NEI on YouTube NEI ...

  5. Intraventricular vortex properties in nonischemic dilated cardiomyopathy

    PubMed Central

    Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Martínez-Legazpi, Pablo; del Villar, Candelas Pérez; Pérez-David, Esther; González-Mansilla, Ana; Santa-Marta, Cristina; Barrio, Alicia; Fernández-Avilés, Francisco; del Álamo, Juan C.

    2014-01-01

    Vortices may have a role in optimizing the mechanical efficiency and blood mixing of the left ventricle (LV). We aimed to characterize the size, position, circulation, and kinetic energy (KE) of LV main vortex cores in patients with nonischemic dilated cardiomyopathy (NIDCM) and analyze their physiological correlates. We used digital processing of color-Doppler images to study flow evolution in 61 patients with NIDCM and 61 age-matched control subjects. Vortex features showed a characteristic biphasic temporal course during diastole. Because late filling contributed significantly to flow entrainment, vortex KE reached its maximum at the time of the peak A wave, storing 26 ± 20% of total KE delivered by inflow (range: 1–74%). Patients with NIDCM showed larger and stronger vortices than control subjects (circulation: 0.008 ± 0.007 vs. 0.006 ± 0.005 m2/s, respectively, P = 0.02; KE: 7 ± 8 vs. 5 ± 5 mJ/m, P = 0.04), even when corrected for LV size. This helped confining the filling jet in the dilated ventricle. The vortex Reynolds number was also higher in the NIDCM group. By multivariate analysis, vortex KE was related to the KE generated by inflow and to chamber short-axis diameter. In 21 patients studied head to head, Doppler measurements of circulation and KE closely correlated with phase-contract magnetic resonance values (intraclass correlation coefficient = 0.82 and 0.76, respectively). Thus, the biphasic nature of filling determines normal vortex physiology. Vortex formation is exaggerated in patients with NIDCM due to chamber remodeling, and enlarged vortices are helpful for ameliorating convective pressure losses and facilitating transport. These findings can be accurately studied using ultrasound. PMID:24414062

  6. The evolution of swirling axisymmetric vortex rings

    NASA Astrophysics Data System (ADS)

    Gargan-Shingles, C.; Rudman, M.; Ryan, K.

    2015-08-01

    Swirling vortex rings form in any turbulent flow where a swirling component is present, such as in combustion chambers or the downwash of helicopter blades. Instabilities on initially non-swirling vortex rings result in a localized swirl velocity being generated within the core. The presence of a swirl component of velocity in a vortex ring modifies the relaxation and evolution of numerical Gaussian cores in a manner that is currently unknown. The evolution of Gaussian axisymmetric vortex rings of size 0.2 < Λ < 0.5, with Gaussian swirls of magnitude 0.0 < W < 0.5, is analyzed with reference to the governing equations. A relaxation time, at which the initial Gaussian approximation has minimal influence on the subsequent evolution, has been estimated for each case. An axial vortex forms along the axis of the ring and is responsible for the growth of a shear layer that is found to form at the leading edge. The circulation based Reynolds number is set at 10 000 to encourage the growth of shear layer instabilities from within this region. Secondary vortex rings are subsequently shown to evolve from the Kelvin-Helmholtz instability for shear layers of sufficient strength and are convected around the original ring and shed from the system. It is shown that complete settling of the strain rate within the core does not occur until all sheddings have ceased. Increasing the swirl magnitude past that considered in this paper is expected to result in the original ring losing its structure before the instability can occur. The evolution is found to be qualitatively similar to that of a piston generated axisymmetric vortex ring with swirl, with both cases eventually reaching a similar quasi-steady state.

  7. IN MEMORIAM: In Memoriam: Alexander A Golovin and Alexei M Oparin In Memoriam: Alexander A Golovin and Alexei M Oparin

    NASA Astrophysics Data System (ADS)

    2008-10-01

    2008 In Memoriam of Alexei M Oparin (1964-2008) Alexei (Lesha) Oparin passed away on 4 December 2008. Alexei graduated from the Moscow Institute for Physics and Technology in 1987, received his PhD at Landau Institute for Theoretical Physics in 1996, and, after training at the Max Plank Institute for Quantum Optics in Germany, worked at the Institute for Computer Aided Design of the Russian Academy of Sciences, where he became the chair of the Department of Numerical Methods and Turbulence. He built the Department so that in a short period of time it grew from 3 to 15 scientists and became one of the leading centers in Russia in numerical modeling of turbulent flows. In Lesha's works, his talent was combined with the academic depth and the breadth of his scientific interests. Lesha's scientific heritage covers many fields of computational physics, including ignition and burn of deuterium-tritium fuel for the inertial confinement fusion; the flow of matter induced by ultra-short laser impulse; the exact expansion law for the Richtmyer-Meshkov turbulent mixing zone; growth-rate of the Rayleigh-Taylor instability for nuclear fusion; temperature and entropy separation in the Ranque-Hilsch tube; tornado origination from mezzo-cycle; turbulent nature of Jupiter spot; secondary vortex of the gas centrifuge; cascade of instabilities in Couette flow. One of these works is published in this issue. What make it necessary to get the flow rolled up in zones of high gradients? Why do we have to restrict ourselves to the Reynolds number only, rather than to follow the experiment and get more parameters for stability? Where are the nuts and bolts of the turbulence? Many of these investigations were initiated and led by Lesha, and were based on his ability to identify the essence of the challenging problems and to formulate and address the right questions with mathematical elegance and physical intuition. A lot of work has been done by Lesha. Other problems remain to be solved, to our

  8. Low-amplitude magnetic vortex core reversal by non-linear interaction between azimuthal spin waves and the vortex gyromode

    SciTech Connect

    Sproll, Markus; Noske, Matthias; Kammerer, Matthias; Dieterle, Georg; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Bauer, Hans; Gangwar, Ajay; Woltersdorf, Georg; Back, Christian H.

    2014-01-06

    We show, by experiments and micromagnetic simulations in vortex structures, that an active “dual frequency” excitation of both the sub-GHz vortex gyromode and multi-GHz spin waves considerably changes the frequency response of spin wave mediated vortex core reversal. Besides additional minima in the switching threshold, a significant broadband reduction of the switching amplitudes is observed, which can be explained by non-linear interaction between the vortex gyromode and the spin waves. We conclude that the well known frequency spectra of azimuthal spin waves in vortex structures are altered substantially, when the vortex gyromode is actively excited simultaneously.

  9. The Rise of Twisted Magnetic Tubes in a Stratified Medium

    NASA Astrophysics Data System (ADS)

    Moreno-Insertis, F.; Emonet, T.

    1996-11-01

    First results from a two-dimensional numerical study of the buoyant rise of twisted magnetic flux tubes in the solar convection zone are presented. We show in detail the process by which the transverse component of the field can suppress the splitting of the rising tube into two vortex filaments. For the suppression to be effective, the pitch angle of the twisted field lines has to be above a threshold given by the condition that the magnetic equivalent of the Weber number (see § 2.2) be below 1. The shape obtained for the tube and wake is strongly reminiscent of laboratory experiments with air bubbles rising in liquids. The magnetized region outside an equipartition boundary is peeled away from the tube: two sidelobes are formed, which lag behind the tube and contain only a fraction of the initial magnetic flux. This is similar to the formation of a skirt in the fluid dynamical case. The velocities of rise predicted by the thin flux tube approximation are compared with those obtained here.

  10. NASA Aircraft Vortex Spacing System Development Status

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.

  11. Vortex-based line beam optical tweezers

    NASA Astrophysics Data System (ADS)

    Cheng, Shubo; Tao, Shaohua

    2016-10-01

    A vortex-based line beam, which has a straight-line shape of intensity and possesses phase gradient along the line trajectory is developed and applied for optical manipulation in this paper. The intensity and phase distributions of the beam in the imaging plane of the Fourier transform are analytically studied. Simulation results show that the length of the line and phase gradient possessed by a vortex-based line beam are dependent on the topological charge and the azimuthal proportional constant. A superposition of multiple phase-only holograms with elliptical azimuthal phases can be used to generate an array of vortex-based line beams. Optical trapping with the vortex-based line beams has been implemented. Furthermore, the automatic transportation of microparticles along the line trajectory perpendicular to the optical axis is realized with an array of the beams. The generation method for the vortex-based line beam is simple. The beam would have potential applications in fields such as optical trapping, laser machining, and so on.

  12. Nonlinear Binormal Flow of Vortex Filaments

    NASA Astrophysics Data System (ADS)

    Strong, Scott; Carr, Lincoln

    2015-11-01

    With the current advances in vortex imaging of Bose-Einstein condensates occurring at the Universities of Arizona, São Paulo and Cambridge, interest in vortex filament dynamics is experiencing a resurgence. Recent simulations, Salman (2013), depict dissipative mechanisms resulting from vortex ring emissions and Kelvin wave generation associated with vortex self-intersections. As the local induction approximation fails to capture reconnection events, it lacks a similar dissipative mechanism. On the other hand, Strong&Carr (2012) showed that the exact representation of the velocity field induced by a curved segment of vortex contains higher-order corrections expressed in powers of curvature. This nonlinear binormal flow can be transformed, Hasimoto (1972), into a fully nonlinear equation of Schrödinger type. Continued transformation, Madelung (1926), reveals that the filament's square curvature obeys a quasilinear scalar conservation law with source term. This implies a broader range of filament dynamics than is possible with the integrable linear binormal flow. In this talk we show the affect higher-order corrections have on filament dynamics and discuss physical scales for which they may be witnessed in future experiments. Partially supported by NSF.

  13. Wake Vortex Study at Wallops Island

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The air flow from the wing of this agricultural plane is made by a technique that uses colored smoke rising from the ground. The swirl at the wingtip traces the aircraft's wake vortex, which exerts a powerful influence on the flow field behind the plane. Because of wake vortex, the Federal Aviation Administration (FAA) requires aircraft to maintain set distances behind each other when they land. A joint NASA-FAA program aimed at boosting airport capacity, however, is aimed at determining conditions under which planes may fly closer together. NASA researchers are studying wake vortex with a variety of tools, from supercomputers to wind tunnels to actual flight tests in research aircraft. Their goal is to fully understand the phenomenon, then use that knowledge to create an automated system that could predict changing wake vortex conditions at airports. Pilots already know, for example, that they have to worry less about wake vortex in rough weather because windy conditions cause them to dissipate more rapidly.

  14. Point vortex interactions on a toroidal surface

    NASA Astrophysics Data System (ADS)

    Sakajo, Takashi; Shimizu, Yuuki

    2016-07-01

    Owing to non-constant curvature and a handle structure, it is not easy to imagine intuitively how flows with vortex structures evolve on a toroidal surface compared with those in a plane, on a sphere and a flat torus. In order to cultivate an insight into vortex interactions on this manifold, we derive the evolution equation for N-point vortices from Green's function associated with the Laplace-Beltrami operator there, and we then formulate it as a Hamiltonian dynamical system with the help of the symplectic geometry and the uniformization theorem. Based on this Hamiltonian formulation, we show that the 2-vortex problem is integrable. We also investigate the point vortex equilibria and the motion of two-point vortices with the strengths of the same magnitude as one of the fundamental vortex interactions. As a result, we find some characteristic interactions between point vortices on the torus. In particular, two identical point vortices can be locally repulsive under a certain circumstance.

  15. Numerical analysis of slender vortex motion

    SciTech Connect

    Zhou, H.

    1996-02-01

    Several numerical methods for slender vortex motion (the local induction equation, the Klein-Majda equation, and the Klein-Knio equation) are compared on the specific example of sideband instability of Kelvin waves on a vortex. Numerical experiments on this model problem indicate that all these methods yield qualitatively similar behavior, and this behavior is different from the behavior of a non-slender vortex with variable cross-section. It is found that the boundaries between stable, recurrent, and chaotic regimes in the parameter space of the model problem depend on the method used. The boundaries of these domains in the parameter space for the Klein-Majda equation and for the Klein-Knio equation are closely related to the core size. When the core size is large enough, the Klein-Majda equation always exhibits stable solutions for our model problem. Various conclusions are drawn; in particular, the behavior of turbulent vortices cannot be captured by these local approximations, and probably cannot be captured by any slender vortex model with constant vortex cross-section. Speculations about the differences between classical and superfluid hydrodynamics are also offered.

  16. Universal statistics of vortex lines.

    PubMed

    Nahum, Adam; Chalker, J T

    2012-03-01

    We study the vortex lines that are a feature of many random or disordered three-dimensional systems. These show universal statistical properties on long length scales, and geometrical phase transitions analogous to percolation transitions but in distinct universality classes. The field theories for these problems have not previously been identified, so that while many numerical studies have been performed, a framework for interpreting the results has been lacking. We provide such a framework with mappings to simple supersymmetric models. Our main focus is on vortices in short-range-correlated complex fields, which show a geometrical phase transition that we argue is described by the CP(k|k) model (essentially the CP(n-1) model in the replica limit n→1). This can be seen by mapping a lattice version of the problem to a lattice gauge theory. A related field theory with a noncompact gauge field, the 'NCCP(k|k) model', is a supersymmetric extension of the standard dual theory for the XY transition, and we show that XY duality gives another way to understand the appearance of field theories of this type. The supersymmetric descriptions yield results relevant, for example, to vortices in the XY model and in superfluids, to optical vortices, and to certain models of cosmic strings. A distinct but related field theory, the RP(2l|2l) model (or the RP(n-1) model in the limit n→1) describes the unoriented vortices that occur, for instance, in nematic liquid crystals. Finally, we show that in two dimensions, a lattice gauge theory analogous to that discussed in three dimensions gives a simple way to see the known relation between two-dimensional percolation and the CP(k|k) σ model with a θ term.

  17. Universal statistics of vortex lines.

    PubMed

    Nahum, Adam; Chalker, J T

    2012-03-01

    We study the vortex lines that are a feature of many random or disordered three-dimensional systems. These show universal statistical properties on long length scales, and geometrical phase transitions analogous to percolation transitions but in distinct universality classes. The field theories for these problems have not previously been identified, so that while many numerical studies have been performed, a framework for interpreting the results has been lacking. We provide such a framework with mappings to simple supersymmetric models. Our main focus is on vortices in short-range-correlated complex fields, which show a geometrical phase transition that we argue is described by the CP(k|k) model (essentially the CP(n-1) model in the replica limit n→1). This can be seen by mapping a lattice version of the problem to a lattice gauge theory. A related field theory with a noncompact gauge field, the 'NCCP(k|k) model', is a supersymmetric extension of the standard dual theory for the XY transition, and we show that XY duality gives another way to understand the appearance of field theories of this type. The supersymmetric descriptions yield results relevant, for example, to vortices in the XY model and in superfluids, to optical vortices, and to certain models of cosmic strings. A distinct but related field theory, the RP(2l|2l) model (or the RP(n-1) model in the limit n→1) describes the unoriented vortices that occur, for instance, in nematic liquid crystals. Finally, we show that in two dimensions, a lattice gauge theory analogous to that discussed in three dimensions gives a simple way to see the known relation between two-dimensional percolation and the CP(k|k) σ model with a θ term. PMID:22587072

  18. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  19. Interaction of a line vortex with a round parachute canopy

    NASA Astrophysics Data System (ADS)

    Johari, H.; Levshin, A.

    2009-11-01

    The interaction of a rectilinear vortex with an inflated round parachute canopy model was studied experimentally in a water tunnel where the vortex core was aligned with the axis of the canopy. Three different canopy diameters were used, and the canopy model was attached to a streamlined forebody. Dye flow visualization indicated that vortex breakdown was present when the core trajectory was within the canopy opening. Vortex breakdown occurred about one to two canopy diameters upstream of the canopy opening. The vortex core completely disintegrated when it interacted with the forebody near the canopy centerline. The vortex breakdown and disintegration caused unsteady, asymmetric deformations on the canopy surface. A reduction in the time-averaged drag and an increase in the fluctuating drag was observed when the vortex core was within the canopy opening. The disintegration of the vortex core near the canopy centerline lessened the drag reduction brought on by the presence of the core.

  20. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    PubMed

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures. PMID:25594961

  1. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    PubMed

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  2. Ruggedized electronographic tube development

    NASA Technical Reports Server (NTRS)

    Nevin, S.

    1981-01-01

    Because of their glass components and lack of far ultraviolet sensitivity, currently available Spectracons are not suited for rocket launch. Technology developed for second generation image tubes and for magnetically focused image tubes can be applied to improve the optical and mechanical properties of these magnetically focused electronographic tubes whose 40 kilovolt signal electrons exit a 4-micrometer thick mica window and penetrate a photographic recording emulsion.

  3. Conduction cooled tube supports

    DOEpatents

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  4. TUBE SPLITTING APPARATUS

    DOEpatents

    Frantz, C.E.; Cawley, W.E.

    1961-05-01

    A tool is described for cutting a coolant tube adapted to contain fuel elements to enable the tube to be removed from a graphite moderator mass. The tool splits the tube longitudinally into halves and curls the longitudinal edges of the halves inwardly so that they occupy less space and can be moved radially inwardly away from the walls of the hole in the graphite for easy removal from the graphite.

  5. COAXIAL TUBE COUPLING

    DOEpatents

    Niemoth, H.R.

    1963-02-26

    BS>This patent shows a device for quickly coupling coaxial tubes in metal-to-metal fashion, so as to be suitable for use in a nuclear reactor. A threaded coliar urges a tapered metal extension on the outer coaxial tube into a tapered seat in the device and simultaneously exerts pressure through a coaxial helical spring so that a similar extension on the inner tube seats in a similar seat near the other end. (AEC)

  6. Development of a nonlinear vortex method

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.

    1982-01-01

    Steady and unsteady Nonliner Hybrid Vortex (NHV) method, for low aspect ratio wings at large angles of attack, is developed. The method uses vortex panels with first-order vorticity distribution (equivalent to second-order doublet distribution) to calculate the induced velocity in the near field using closed form expressions. In the far field, the distributed vorticity is reduced to concentrated vortex lines and the simpler Biot-Savart's law is employed. The method is applied to rectangular wings in steady and unsteady flows without any restriction on the order of magnitude of the disturbances in the flow field. The numerical results show that the method accurately predicts the distributed aerodynamic loads and that it is of acceptable computational efficiency.

  7. Optical vortex array in spatially varying lattice

    NASA Astrophysics Data System (ADS)

    Kapoor, Amit; Kumar, Manish; Senthilkumaran, P.; Joseph, Joby

    2016-04-01

    We present an experimental method based on a modified multiple beam interference approach to generate an optical vortex array arranged in a spatially varying lattice. This method involves two steps which are: numerical synthesis of a consistent phase mask by using two-dimensional integrated phase gradient calculations and experimental implementation of produced phase mask by utilizing a phase only spatial light modulator in an optical 4f Fourier filtering setup. This method enables an independent variation of the orientation and period of the vortex lattice. As working examples, we provide the experimental demonstration of various spatially variant optical vortex lattices. We further confirm the existence of optical vortices by formation of fork fringes. Such lattices may find applications in size dependent trapping, sorting, manipulation and photonic crystals.

  8. Vortex knots in tangled quantum eigenfunctions

    NASA Astrophysics Data System (ADS)

    Taylor, Alexander J.; Dennis, Mark R.

    2016-07-01

    Tangles of string typically become knotted, from macroscopic twine down to long-chain macromolecules such as DNA. Here, we demonstrate that knotting also occurs in quantum wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The probability that a vortex loop is knotted is found to increase with its length, and a wide gamut of knots from standard tabulations occur. The results follow from computer simulations of random superpositions of degenerate eigenstates of three simple quantum systems: a cube with periodic boundaries, the isotropic three-dimensional harmonic oscillator and the 3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunctions at relatively low energy, and are constrained by the spatial symmetries of the modes. The results suggest that knotted vortex structures are generic in complex three-dimensional wave systems, establishing a topological commonality between wave chaos, polymers and turbulent Bose-Einstein condensates.

  9. Quasinormal modes of the polytropic hydrodynamic vortex

    NASA Astrophysics Data System (ADS)

    Oliveira, Leandro A.; Cardoso, Vitor; Crispino, Luís C. B.

    2015-07-01

    Analogue systems are a powerful instrument to investigate and understand in a controlled setting many general-relativistic effects. Here, we focus on superradiant-triggered instabilities and quasinormal modes. We consider a compressible hydrodynamic vortex characterized by a polytropic equation of state, the polytropic hydrodynamic vortex, a purely circulating system with an ergoregion but no event horizon. We compute the quasinormal modes of this system numerically with different methods, finding excellent agreement between them. When the fluid velocity is larger than the speed of sound, an ergoregion appears in the effective spacetime, triggering an "ergoregion instability." We study the details of the instability for the polytropic vortex, and in particular find analytic expressions for the marginally stable configuration.

  10. Optical vortex beam generator at nanoscale level

    NASA Astrophysics Data System (ADS)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; de Angelis, Francesco

    2016-07-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications.

  11. Sphagnum moss disperses spores with vortex rings.

    PubMed

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  12. Vortex knots in tangled quantum eigenfunctions

    PubMed Central

    Taylor, Alexander J.; Dennis, Mark R.

    2016-01-01

    Tangles of string typically become knotted, from macroscopic twine down to long-chain macromolecules such as DNA. Here, we demonstrate that knotting also occurs in quantum wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The probability that a vortex loop is knotted is found to increase with its length, and a wide gamut of knots from standard tabulations occur. The results follow from computer simulations of random superpositions of degenerate eigenstates of three simple quantum systems: a cube with periodic boundaries, the isotropic three-dimensional harmonic oscillator and the 3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunctions at relatively low energy, and are constrained by the spatial symmetries of the modes. The results suggest that knotted vortex structures are generic in complex three-dimensional wave systems, establishing a topological commonality between wave chaos, polymers and turbulent Bose–Einstein condensates. PMID:27468801

  13. Vortex generation in oscillatory canopy flow

    NASA Astrophysics Data System (ADS)

    Ghisalberti, Marco; Schlosser, Tamara

    2013-03-01

    In this paper, we demonstrate for the first time the generation of coherent vortices at the top of a canopy in oscillatory (i.e., wave-dominated) flow. Through a series of flow visualization experiments, vortex formation is shown to occur when two conditions described by the Keulegan-Carpenter (KC) and Reynolds (Re) numbers are met. First, the wave period must be sufficiently long to allow the generation of the shear-driven instability at the top of the canopy; this occurs when KC ≳ 5. Second, the vortex instability must be able to overcome the stabilizing effects of viscosity; this occurs when Re ≳ 1000. The vortices greatly increase the rate of vertical mixing within the canopy, such that any prediction of residence time in a coastal canopy requires an understanding of whether vortex generation is occurring.

  14. Vortex knots in tangled quantum eigenfunctions.

    PubMed

    Taylor, Alexander J; Dennis, Mark R

    2016-01-01

    Tangles of string typically become knotted, from macroscopic twine down to long-chain macromolecules such as DNA. Here, we demonstrate that knotting also occurs in quantum wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The probability that a vortex loop is knotted is found to increase with its length, and a wide gamut of knots from standard tabulations occur. The results follow from computer simulations of random superpositions of degenerate eigenstates of three simple quantum systems: a cube with periodic boundaries, the isotropic three-dimensional harmonic oscillator and the 3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunctions at relatively low energy, and are constrained by the spatial symmetries of the modes. The results suggest that knotted vortex structures are generic in complex three-dimensional wave systems, establishing a topological commonality between wave chaos, polymers and turbulent Bose-Einstein condensates. PMID:27468801

  15. Flame-vortex interactions imaged in microgravity

    NASA Technical Reports Server (NTRS)

    Driscoll, James F.; Dahm, Werner J. A.; Sichel, Martin

    1995-01-01

    The scientific objective is to obtain high quality color-enhanced digital images of a vortex exerting aerodynamic strain on premixed and nonpremixed flames with the complicating effects of buoyancy removed. The images will provide universal (buoyancy free) scaling relations that are required to improve several types of models of turbulent combustion, including KIVA-3, discrete vortex, and large-eddy simulations. The images will be used to help quantify several source terms in the models, including those due to flame stretch, flame-generated vorticity, flame curvature, and preferential diffusion, for a range of vortex sizes and flame conditions. The experiment is an ideal way to study turbulence-chemistry interactions and isolate the effect of vortices of different sizes and strengths in a repeatable manner. A parallel computational effort is being conducted which considers full chemistry and preferential diffusion.

  16. Vortex states and magnetization curve of square mesoscopic superconductors.

    SciTech Connect

    Melnikov, A. S.; Nefedov, I. M.; Ryzhov, D. A.; Shereshevskii, I. A.; Vinokur, V. M.; Vysheslavtsev, P. P.; Materials Science Division; Russian Academy of Sciences

    2002-03-22

    The structure of the vortex states in a square mesoscopic superconductor is analyzed in detail using the numerical simulation within the time-dependent Ginzburg-Landau (TDGL) theory. Various vortex states (vortices, vortex molecules, multiquanta vortices) are observed and the magnetization curve is obtained. Different changes in vortex structures are identified with the peculiarities on the magnetization curve. Stability of a state consisting of vortices and antivortices is discussed.

  17. Stabilization of vortex solitons in nonlocal nonlinear media

    SciTech Connect

    Minzoni, Antonmaria A.; Smyth, Noel F.; Worthy, Annette L.; Kivshar, Yuri S.

    2007-12-15

    We study the evolution of vortex solitons in optical media with a nonlocal nonlinear response. We employ a modulation theory for the vortex parameters based on an averaged Lagrangian, and analyze the azimuthal evolution of both the vortex width and diffractive radiation. We describe analytically the physical mechanism for vortex stabilization due to the long-range nonlocal nonlinear response, the effect observed earlier in numerical simulations only.

  18. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  19. Flared tube attachment fitting

    NASA Technical Reports Server (NTRS)

    Alkire, I. D.; King, J. P., Jr.

    1980-01-01

    Tubes can be flared first, then attached to valves and other flow line components, with new fitting that can be disassembled and reused. Installed fitting can be disassembled so parts can be inspected. It can be salvaged and reused without damaging flared tube; tube can be coated, tempered, or otherwise treated after it has been flared, rather than before, as was previously required. Fitting consists of threaded male portion with conical seating surface, hexagonal nut with hole larger than other diameter of flared end of tube, and split ferrule.

  20. Composite Pulse Tube

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.; Cloyd, Jason H.

    2007-01-01

    A modification of the design of the pulse tube in a pulse-tube cryocooler reduces axial thermal conductance while preserving radial thermal conductance. It is desirable to minimize axial thermal conductance in the pulse-tube wall to minimize leakage of heat between the warm and cold ends of the pulse tube. At the same time, it is desirable to maximize radial thermal conductance at the cold end of the pulse tube to ensure adequate thermal contact between (1) a heat exchanger in the form of a stack of copper screens inside the pulse tube at the cold end and (2) the remainder of the cold tip, which is the object to which the heat load is applied and from which heat must be removed. The modified design yields a low-heat-leak pulse tube that can be easily integrated with a cold tip. A typical pulse tube of prior design is either a thin-walled metal tube or a metal tube with a nonmetallic lining. It is desirable that the outer surface of a pulse tube be cylindrical (in contradistinction to tapered) to simplify the design of a regenerator that is also part of the cryocooler. Under some conditions, it is desirable to taper the inner surface of the pulse tube to reduce acoustic streaming. The combination of a cylindrical outer surface and a tapered inner surface can lead to unacceptably large axial conduction if the pulse tube is made entirely of metal. Making the pulse-tube wall of a nonmetallic, lowthermal- conductivity material would not solve the problem because the wall would not afford the needed thermal contact for the stack of screens in the cold end. The modified design calls for fabricating the pulse tube in two parts: a longer, nonmetallic part that is tapered on the inside and cylindrical on the outside and a shorter, metallic part that is cylindrical on both the inside and the outside. The nonmetallic part can be made from G-10 fiberglass-reinforced epoxy or other low-thermal-conductivity, cryogenically compatible material. The metallic part must have high

  1. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  2. Numerical study of a round tube heat exchanger with louvered fins and delta winglets

    NASA Astrophysics Data System (ADS)

    Huisseune, H.; T'Joen, C.; De Jaeger, P.; Ameel, B.; De Paepe, M.

    2012-11-01

    Louvered fin and round tube heat exchangers are widely used in air conditioning devices and heat pumps. In this study the effect of punching delta winglet vortex generators in the louvered fin surface is studied numerically. The delta winglets are located in a common-flow-down orientation behind each tube of the staggered tube layout. It is shown that the generated vortices significantly reduce the size of the tube wakes. Three important heat transfer enhancement mechanisms can be distinguished: a better flow mixing, boundary layer thinning and a delay in flow separation from the tube surface. The compound heat exchanger has a better thermal hydraulic performance then when only louvers or only delta winglets are used. Comparison to other enhanced fin designs clearly shows its potential, especially for low Reynolds number applications.

  3. Dynamical evolution of twisted magnetic flux tubes. I - Equilibrium and linear stability

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Schnack, Dalton D.; Van Hoven, Gerard

    1990-01-01

    The three-dimensional dynamical evolution of twisted magnetic flux tubes is studied using a time-dependent magnetohydrodynamic (MHD) model. The flux tubes are intended to model solar coronal loops, and include the stabilizing effect of photospheric line tying. The model permits the complete evolution of flux tubes to be followed self-consistently, including the formation, equilibrium, linear instability, and nonlinear behavior. Starting from an initial uniform background magnetic field, a twisted flux tube is created by the application of slow, localized photospheric vortex flows. The flux tube evolves quasi-statically through sequences of equilibria with increasing twist, until it becomes linearly unstable to an ideal MHD kink mode. In this paper, the equilibrium properties and the linear stability behavior are discussed. The application of the method to the uniform-twist, Gold-Hoyle field confirms the previous stability threshold for kink instability and provides estimates of the resulting growth rate.

  4. Vortex lattice theory: A linear algebra approach

    NASA Astrophysics Data System (ADS)

    Chamoun, George C.

    Vortex lattices are prevalent in a large class of physical settings that are characterized by different mathematical models. We present a coherent and generalized Hamiltonian fluid mechanics-based formulation that reduces all vortex lattices into a classic problem in linear algebra for a non-normal matrix A. Via Singular Value Decomposition (SVD), the solution lies in the null space of the matrix (i.e., we require nullity( A) > 0) as well as the distribution of its singular values. We demonstrate that this approach provides a good model for various types of vortex lattices, and makes it possible to extract a rich amount of information on them. The contributions of this thesis can be classified into four main points. The first is asymmetric equilibria. A 'Brownian ratchet' construct was used which converged to asymmetric equilibria via a random walk scheme that utilized the smallest singular value of A. Distances between configurations and equilibria were measured using the Frobenius norm ||·||F and 2-norm ||·||2, and conclusions were made on the density of equilibria within the general configuration space. The second contribution used Shannon Entropy, which we interpret as a scalar measure of the robustness, or likelihood of lattices to occur in a physical setting. Third, an analytic model was produced for vortex street patterns on the sphere by using SVD in conjunction with expressions for the center of vorticity vector and angular velocity. Equilibrium curves within the configuration space were presented as a function of the geometry, and pole vortices were shown to have a critical role in the formation and destruction of vortex streets. The fourth contribution entailed a more complete perspective of the streamline topology of vortex streets, linking the bifurcations to critical points on the equilibrium curves.

  5. Relationship Between Vortex Meander and Ambient Turbulence

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Hardy, Gordon H.; Meyn, Larry A.

    2006-01-01

    Efforts are currently underway to increase the capacity of airports by use of closely-spaced parallel runways. If such an objective is to be achieved safely and efficiently during both visual and instrument flight conditions, it will be necessary to develop more precise methods for the prediction of the motion and spread of the hazard posed by the lift-generated vortex-wakes of aircraft, and their uncertainties. The purpose of the present study is to relate the motion induced in vortex filaments by turbulence in the ambient flow field to the measured turbulence in the flow field. The problem came about when observations made in the two largest NASA wind tunnels indicated that extended exposure of vortex wakes to the turbulence in the wind tunnel air stream causes the centers of the vortices to meander about with time at a given downstream station where wake measurements are being made. Although such a behavior was expected, the turbulence level based on the maximum amplitude of meander was much less than the root-mean-squared value measured in the free-stream of the wind tunnel by use of hot-film anemometers. An analysis of the time-dependent motion of segments of vortex filaments as they interact with an eddy, indicates that the inertia of the filaments retards their motion enough in the early part of their travel to account for a large part of the difference in the two determinations of turbulence level. Migration of vortex filaments from one turbulent eddy to another (probably with a different orientation), is believed to account for the remainder of the difference. Methods that may possibly be developed for use in the measurement of the magnitude of the more intense eddies in turbulent flow fields and how they should be adjusted to predict vortex meander are then discussed.

  6. Recent advances in applying Free Vortex Sheet theory to the estimation of vortex flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.; Schoonover, W. E., Jr.; Frink, N. T.

    1982-01-01

    Free Vortex Sheet theory has been applied to a variety of configurations for the estimation of three-dimensional pressure distributions for wings developing separation-induced leading-edge vortex flows. Correlations with experiment show reasonable estimates for the effects of compressibility, side-slip, side edges, swept-wing blast-induced loads, and leading-edge vortex flaps. Theoretical studies expand upon these correlations to show general aerodynamic trends. Consideration is also given to simple, yet effective techniques which expedite convergence and therefore reduce computational expense.

  7. Vortex reconnections between coreless vortices in binary condensates

    SciTech Connect

    Gautam, S.; Suthar, K.; Angom, D.

    2014-02-11

    Vortex reconnections plays an important role in the turbulent flows associated with the superfluids. To understand the dynamics, we examine the reconnections of vortex rings in the superfluids of dilute atomic gases confined in trapping potentials using Gross-Petaevskii equation. Further more we study the reconnection dynamics of coreless vortex rings, where one of the species can act as a tracer.

  8. Vortex gyroscope imaging of planar superfluids.

    PubMed

    Powis, A T; Sammut, S J; Simula, T P

    2014-10-17

    We propose a robust imaging technique that makes it possible to distinguish vortices from antivortices in quasi-two-dimensional Bose-Einstein condensates from a single image of the density of the atoms. Tilting the planar condensate prior to standard absorption imaging excites a generalized gyroscopic mode of the condensate, revealing the sign and location of each vortex. This technique is anticipated to enable experimental measurement of the incompressible kinetic energy spectrum of the condensate and the observation of a negative-temperature phase transition of the vortex gas, driven by two-dimensional superfluid turbulence.

  9. Aerodynamics of a promising vortex furnace design

    NASA Astrophysics Data System (ADS)

    Anufriev, I. S.; Strizhak, P. A.; Chernetskii, M. Yu.; Shadrin, E. Yu.; Sharypov, O. V.

    2015-08-01

    The aerodynamics of a promising vortex furnace design with secondary top blasting has been studied. Flow velocity fields have been measured in an isothermal laboratory model of the furnace using a digital tracer imaging (particle image velocimetry) technique. Three-dimensional diagnostics of flow structure in the combustion chamber has been carried out by the method of laser Doppler anemometry. Processing of the obtained data using the criterion of "minimum total pressure" has been used to visualize the spatial structure of the vortex core.

  10. Theoretical and experimental investigation of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Krause, E.

    1986-01-01

    The slender-vortex approximation was analyzed for incompressible and compressible flow. First the equations of motion were reduced in an order of magnitude analysis. Then compatibility conditions were formulated for the inflow conditions. Thereafter finite-difference-solutions were constructed for incompressible and compressible flow. Finally it was shown that these solutions can be used to describe the flow in slender vortices. The analysis of the breakdown process must, however, be excluded, since its upstream influence cannot be predicted with the slender vortex approximation. The investigaton of this problem is left for future work.

  11. Effect of vortex flows on ammonia oxidation

    SciTech Connect

    Beskov, V.S.; Shpinel', E.E.

    1988-09-01

    The oxidation of ammonia over platinum sieve catalysts was investigated given the vortex flows found in industrial contact units. Mathematical and physical models were used to assess the influence of vortices on ammonia oxidation. The flow pattern of the ammonia-air mixture in the reactor was modeled as a stream with a partial recycle. It is shown that vortex flows reduce the conversion of ammonia to nitrogen monoxide and increase the passage of unconverted ammonia through the catalyst sieve. Over long contact periods, the main effect of vortices is to increase the passage of unconverted ammonia, which may lead to the formation of explosive compounds.

  12. Paramagnetic excited vortex states in superconductors

    NASA Astrophysics Data System (ADS)

    Gomes, Rodolpho Ribeiro; Doria, Mauro M.; Romaguera, Antonio R. de C.

    2016-06-01

    We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The solution for any number of vortices in any cross-section geometry can be read off from the Schwarz-Christoffel mapping. The method is based on the first-order equations used by Abrikosov to discover vortices.

  13. Vortex-lift roll-control device

    NASA Technical Reports Server (NTRS)

    Lamar, J. E. (Inventor)

    1979-01-01

    A wing is described for aircraft of cropped, arrow-type planform with thin leading and side edges. The wing has a pivotable tip to alter the crop angle of the wing during flight. Increasing the crop angle causes the wing side edge to become a trailing edge which reduces the strength of the side edge vortex flow. Decreasing the crop angle causes opposite results, in particular the side edge is now a leading edge and can generate a leading edge vortex flow. The wing constitutes a roll control device for aircraft of the stated design particularly effective at higher angles of attack.

  14. Quantum dynamics of a Bose superfluid vortex.

    PubMed

    Thompson, L; Stamp, P C E

    2012-05-01

    We derive a fully quantum-mechanical equation of motion for a vortex in a 2-dimensional Bose superfluid in the temperature regime where the normal fluid density ρ(n)(T) is small. The coupling between the vortex "zero mode" and the quasiparticles has no term linear in the quasiparticle variables--the lowest-order coupling is quadratic. We find that as a function of the dimensionless frequency Ω=ℏΩ/k(B)T, the standard Hall-Vinen-Iordanskii equations are valid when Ω≪1 (the "classical regime"), but elsewhere, the equations of motion become highly retarded, with significant experimental implications when Ω≳1.

  15. Quasi-Porous Plug With Vortex Chamber

    NASA Technical Reports Server (NTRS)

    Walsh, J. V.

    1985-01-01

    Pressure-letdown valve combines quasi-porous-plug and vortex-chamber in one controllable unit. Valve useful in fossil-energy plants for reducing pressures in such erosive two-phase process streams as steam/water, coal slurries, or combustion gases with entrained particles. Quasi-Porous Plug consists of plenums separated by perforated plates. Number or size of perforations increases with each succeeding stage to compensate for expansion. In Vortex Chamber, control flow varies to control swirl and therefore difference between inlet and outlet pressures.

  16. Vortex core-driven magnetization dynamics

    SciTech Connect

    Choe, Sug-Bong; Acremann, Yves; Scholl, Andreas; Bauer, Andreas; Doran, Andrew; Stohr, Joachim; Padmore, Howard A.

    2004-04-16

    Time-resolved x-ray imaging shows that the magnetization dynamics of a micron-size pattern containing a ferromagnetic vortex is determined by its handedness, or chirality. The out-of-plane magnetization in the nanometer-scale vortex core induces a 3-dimensional handedness in the planar magnetic structure, leading to a precessional motion of the core parallel to a sub-nanosecond field pulse. The core velocity is found to be an order of magnitude higher than expected from the static susceptibility. These results demonstrate that handedness, already well known to be important in biological systems, plays an important role in the dynamics of microscopic magnets.

  17. Multi-Model Ensemble Wake Vortex Prediction

    NASA Technical Reports Server (NTRS)

    Koerner, Stephan; Ahmad, Nash'at N.; Holzaepfel, Frank; VanValkenburg, Randal L.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  18. Wall reflection of a viscous vortex ring

    NASA Technical Reports Server (NTRS)

    Sa, J. Y.; Chang, K. S.; Liu, C. H.

    1986-01-01

    The behavior of a viscous axisymmetric vortex ring being reflected from a wall is investigated. The incompressible Navier-Stokes equations formulated in terms of the vorticity function and vector potential are numerically integrated by implicit finite difference methods. To specify the vector potential at a far boundary from the wall, the existing integral method used so far only for an unbounded domain is modified by a kind of image method. The trajectory of the vortex ring calcualted as a result closely resembles that observable from the experiment.

  19. Steam generator tube failures

    SciTech Connect

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  20. Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes

    SciTech Connect

    O'Brien, James Edward; Sohal, Manohar Singh

    2000-08-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.

  1. Method for shaping polyethylene tubing

    NASA Technical Reports Server (NTRS)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  2. Gastrostomy feeding tube - pump - child

    MedlinePlus

    Feeding - gastrostomy tube - pump; G-tube - pump; Gastrostomy button - pump; Bard Button - pump; MIC-KEY - pump ... Your child has a gastrostomy tube (G-tube). This is a soft, plastic tube placed into your child's stomach. It delivers nutrition (food) and medicines until your ...

  3. Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2014-03-01

    Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.

  4. Some Progress in Large-Eddy Simulation using the 3-D Vortex Particle Method

    NASA Technical Reports Server (NTRS)

    Winckelmans, G. S.

    1995-01-01

    This two-month visit at CTR was devoted to investigating possibilities in LES modeling in the context of the 3-D vortex particle method (=vortex element method, VEM) for unbounded flows. A dedicated code was developed for that purpose. Although O(N(sup 2)) and thus slow, it offers the advantage that it can easily be modified to try out many ideas on problems involving up to N approx. 10(exp 4) particles. Energy spectrums (which require O(N(sup 2)) operations per wavenumber) are also computed. Progress was realized in the following areas: particle redistribution schemes, relaxation schemes to maintain the solenoidal condition on the particle vorticity field, simple LES models and their VEM extension, possible new avenues in LES. Model problems that involve strong interaction between vortex tubes were computed, together with diagnostics: total vorticity, linear and angular impulse, energy and energy spectrum, enstrophy. More work is needed, however, especially regarding relaxation schemes and further validation and development of LES models for VEM. Finally, what works well will eventually have to be incorporated into the fast parallel tree code.

  5. Hologram recording tubes

    NASA Technical Reports Server (NTRS)

    Rajchman, J. H.

    1973-01-01

    Optical memories allow extremely large numbers of bits to be stored and recalled in a matter of microseconds. Two recording tubes, similar to conventional image-converting tubes, but having a soft-glass surface on which hologram is recorded, do not degrade under repeated hologram read/write cycles.

  6. A vortex-filament and core model for wings with edge vortex separation

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Lan, C. E.

    1981-01-01

    A method for predicting aerodynamic characteristics of slender wings with edge vortex separation was developed. Semiempirical but simple methods were used to determine the initial positions of the free sheet and vortex core. Comparison with available data indicates that: the present method is generally accurate in predicting the lift and induced drag coefficients but the predicted pitching moment is too positive; the spanwise lifting pressure distributions estimated by the one vortex core solution of the present method are significantly better than the results of Mehrotra's method relative to the pressure peak values for the flat delta; the two vortex core system applied to the double delta and strake wing produce overall aerodynamic characteristics which have good agreement with data except for the pitching moment; and the computer time for the present method is about two thirds of that of Mehrotra's method.

  7. Vortex penetration depth of organic superconductors: Evidence for vortex lattice melting

    SciTech Connect

    Tea, N.H.; Giannetta, R.W.; Salamon, M.B.; Williams, J.M.; Wang, H.H.; Geiser, U.

    1997-07-01

    The authors observe a crossover field H* in the temperature and magnetic field dependence of the rf vortex penetration depth in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br for {rvec H}{sub dc}{parallel}{cflx b}-axis. They find that H* can be described quantitatively by the 3D Lindemann melting theory; thus, it corresponds to the melting of the vortex lattice in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br and lies very close to the irreversibility line. In the vortex-liquid state, they argue that the saturation of the vortex penetration depth in a magnetic field results from the finite size of the sample. The results do not have the scaling form predicted by the Coffey-Clem model in contrast to previous findings.

  8. Fallopian Tube Catheterization

    PubMed Central

    Thurmond, Amy Suzanne

    2013-01-01

    Fallopian tube catheterization is used for treatment of infertility caused by proximal tubal occlusion, and has replaced surgical treatment for this condition. More recently, fallopian tube catheterization has been used for tubal sterilization. Interventional radiologists tested numerous methods for tubal occlusion using the rabbit as an animal model. As a result, a tubal device has recently been Food and Drug Administration approved for permanent sterilization using hysteroscopic guidance; it can also be placed fluoroscopically by fallopian tube catheterization as an “off-label” procedure. This is a 5-year continuation and update on a procedure that has been done by interventional radiologists for 25 years; history of the development of fallopian tube catheterization in women has been published in detail in this journal. Highlighted in this article will be description of the basic components needed for fallopian tube catheterization. PMID:24436565

  9. Non-analytic vortex core and non-linear vortex flow in bosonic superfluids

    NASA Astrophysics Data System (ADS)

    Agam, O.; Aleiner, I. L.

    2015-11-01

    We analyze the disorder limited motion of quantum vortices in a two-dimensional bosonic superfluid with a large healing length. It is shown that the excitations of low-energy degrees of freedom associated with the non-analytic reconstruction of the vortex core (Ann. Phys., 346 (2014) 195) determine strong non-linear effects in the vortex transport at velocities much smaller than Landau's critical velocity. Experiments are suggested to verify our predictions.

  10. Triple vortex ring structure in superfluid helium II.

    PubMed

    Kivotides, D; Barenghi, C F; Samuels, D C

    2000-10-27

    Superfluids such as helium II consist of two interpenetrating fluids: the normal fluid and the superfluid. The helium II vortex ring has generally been considered merely as a superfluid object, neglecting any associated motion of the normal fluid. We report a three-dimensional calculation of the coupled motion of the normal-fluid and superfluid components, which shows that the helium II vortex ring consists of a superfluid vortex ring accompanied by two coaxial normal-fluid vortex rings of opposite polarity. The three vortex rings form a coherent, dissipative structure. PMID:11052935

  11. Metamorphosis of a Hairpin Vortex into a Young Turbulent Spot

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Joslin, Ronald D.

    1995-01-01

    Direct numerical simulation was used to study the formation and growth of a hairpin vortex in a flat-plate boundary layer and its later development into a young turbulent spot. Fluid injection through a slit in the wall triggered the initial vortex. The legs of the vortex were stretched into a hairpin shape as it traveled downstream. Multiple hairpin vortex heads developed between the stretched legs. New vortices formed beneath the streamwise-elongated vortex legs. The continued development of additional vortices resulted in the formation of a traveling region of highly disturbed ow with an arrowhead shape similar to that of a turbulent spot.

  12. Spin Vortex Resonance in Non-planar Ferromagnetic Dots

    PubMed Central

    Ding, Junjia; Lapa, Pavel; Jain, Shikha; Khaire, Trupti; Lendinez, Sergi; Zhang, Wei; Jungfleisch, Matthias B.; Posada, Christian M.; Yefremenko, Volodymyr G.; Pearson, John E.; Hoffmann, Axel; Novosad, Valentine

    2016-01-01

    In planar structures, the vortex resonance frequency changes little as a function of an in-plane magnetic field as long as the vortex state persists. Altering the topography of the element leads to a vastly different dynamic response that arises due to the local vortex core confinement effect. In this work, we studied the magnetic excitations in non-planar ferromagnetic dots using a broadband microwave spectroscopy technique. Two distinct regimes of vortex gyration were detected depending on the vortex core position. The experimental results are in qualitative agreement with micromagnetic simulations. PMID:27143405

  13. Large-scale superfluid vortex rings at nonzero temperatures

    NASA Astrophysics Data System (ADS)

    Wacks, D. H.; Baggaley, A. W.; Barenghi, C. F.

    2014-12-01

    We numerically model experiments in which large-scale vortex rings—bundles of quantized vortex loops—are created in superfluid helium by a piston-cylinder arrangement. We show that the presence of a normal-fluid vortex ring together with the quantized vortices is essential to explain the coherence of these large-scale vortex structures at nonzero temperatures, as observed experimentally. Finally we argue that the interaction of superfluid and normal-fluid vortex bundles is relevant to recent investigations of superfluid turbulence.

  14. MULTI-PARAMETRIC STUDY OF RISING 3D BUOYANT FLUX TUBES IN AN ADIABATIC STRATIFICATION USING AMR

    SciTech Connect

    Martínez-Sykora, Juan; Cheung, Mark C. M.; Moreno-Insertis, Fernando

    2015-11-20

    We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, magnetohydrodynamic simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively large diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vorticity in the main body of the tube of opposite sign on the opposite sides of the apex. This is a consequence of the inhomogeneity of the azimuthal component of the field on the flux surfaces. The lift force associated with this global vorticity makes the flanks of the tube move away from their initial vertical plane in an antisymmetric fashion. The trajectories have an oscillatory motion superimposed, due to the shedding of vortex rolls to the wake, which creates a Von Karman street.

  15. Multi-parametric Study of Rising 3D Buoyant Flux Tubes in an Adiabatic Stratification Using AMR

    NASA Astrophysics Data System (ADS)

    Martínez-Sykora, Juan; Moreno-Insertis, Fernando; Cheung, Mark C. M.

    2015-11-01

    We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, magnetohydrodynamic simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively large diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vorticity in the main body of the tube of opposite sign on the opposite sides of the apex. This is a consequence of the inhomogeneity of the azimuthal component of the field on the flux surfaces. The lift force associated with this global vorticity makes the flanks of the tube move away from their initial vertical plane in an antisymmetric fashion. The trajectories have an oscillatory motion superimposed, due to the shedding of vortex rolls to the wake, which creates a Von Karman street.

  16. Diverging vortex separator description and operation

    SciTech Connect

    Schilling, J.R.

    1981-10-01

    Geothermal field test results of the diverging vortex separator have shown operating efficiencies of 99.998% liquid removal at well head conditions in the Salton Sea Geothermal Field. These results indicate this separator concept to be a viable process alternative.

  17. Nonlinear stability of Taylor's vortex array

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Tobak, M.

    1987-01-01

    It is proved that the two-dimensional Taylor vortex array, which is an exact unsteady solution of the Navier-Stokes equation, is globally and asymptotically stable in the mean with respect to three-dimensional periodic disturbances. A time-dependent bound on the decay rate of the kinetic energy of disturbances is obtained.

  18. Predicting Vortex Shedding in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Perkins, S. C., Jr.

    1986-01-01

    Nonlinear aerodyanmic characteristics of missile bodies computed. Program NOZVTX calculates nonlinear aerodynamic characteristics and flow fields of missile bodies at various angles-of-attack and roll in supersonic flow. Output includes geometry, centroids, and surface pressure of source panels and positions, strengths, and velocity components of shed vortexes. NOZVTX written in FORTRAN IV for batch execution.

  19. Soliton algebra by vortex-beam splitting.

    PubMed

    Minardi, S; Molina-Terriza, G; Di Trapani, P; Torres, J P; Torner, L

    2001-07-01

    We experimentally demonstrate the possibility of breaking up intense vortex light beams into stable and controllable sets of parametric solitons. We report observations performed in seeded second-harmonic generation, but the scheme can be extended to all parametric processes. The number of generated solitons is shown to be determined by a robust arithmetic rule.

  20. Interactions between unidirectional quantized vortex rings

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Evans, M. L.; Brown, R. A.; Walmsley, P. M.; Golov, A. I.

    2016-08-01

    We have used the vortex filament method to numerically investigate the interactions between pairs of quantized vortex rings that are initially traveling in the same direction but with their axes offset by a variable impact parameter. The interaction of two circular rings of comparable radii produces outcomes that can be categorized into four regimes, dependent only on the impact parameter; the two rings can either miss each other on the inside or outside or reconnect leading to final states consisting of either one or two deformed rings. The fraction of energy that went into ring deformations and the transverse component of velocity of the rings are analyzed for each regime. We find that rings of very similar radius only reconnect for a very narrow range of the impact parameter, much smaller than would be expected from the geometrical cross-section alone. In contrast, when the radii of the rings are very different, the range of impact parameters producing a reconnection is close to the geometrical value. A second type of interaction considered is the collision of circular rings with a highly deformed ring. This type of interaction appears to be a productive mechanism for creating small vortex rings. The simulations are discussed in the context of experiments on colliding vortex rings and quantum turbulence in superfluid helium in the zero-temperature limit.

  1. Effective vortex mass from microscopic theory

    NASA Astrophysics Data System (ADS)

    Han, Jung Hoon; Kim, June Seo; Kim, Min Jae; Ao, Ping

    2005-03-01

    We calculate the effective mass of a single quantized vortex in the Bardeen-Cooper-Schrieffer superconductor at finite temperature. Based on effective action approach, we arrive at the effective mass of a vortex as integral of the spectral function J(ω) divided by ω3 over frequency. The spectral function is given in terms of the quantum-mechanical transition elements of the gradient of the Hamiltonian between two Bogoliubov-deGennes (BdG) eigenstates. Based on self-consistent numerical diagonalization of the BdG equation we find that the effective mass per unit length of vortex at zero temperature is of order m(kfξ0)2 ( kf=Fermi momentum, ξ0=coherence length), essentially equaling the electron mass displaced within the coherence length from the vortex core. Transitions between the core states are responsible for most of the mass. The mass reaches a maximum value at T≈0.5Tc and decreases continuously to zero at Tc .

  2. Chemical Observations of a Polar Vortex Intrusion

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Kawa, S. R.; Douglass, A. R.; McGee, T. J.; Browell, E.; Waters, J.; Livesey, N.; Read, W.; Froidevaux, L.

    2006-01-01

    An intrusion of vortex edge air in D the interior of the Arctic polar vortex was observed on the January 31,2005 flight of the NASA DC-8 aircraft. This intrusion was identified as anomalously high values of ozone by the AROTAL and DIAL lidars. Our analysis shows that this intrusion formed when a blocking feature near Iceland collapsed, allowing edge air to sweep into the vortex interior. along the DC-8 flight track also shows the intrusion in both ozone and HNO3. Polar Stratospheric Clouds (PSCs) were observed by the DIAL lidar on the DC-8. The spatial variability of the PSCs can be explained using MLS HNO3 and H2O observations and meteorological analysis temperatures. We also estimate vortex denitrification using the relationship between N2O and HNO3. Reverse domain fill back trajectory calculations are used to focus on the features in the MLS data. The trajectory results improve the agreement between lidar measured ozone and MLS ozone and also improve the agreement between the HNO3 measurements PSC locations. The back trajectory calculations allow us to compute the local denitrification rate and reduction of HCl within the filament. We estimate a denitrification rate of about lO%/day after exposure to below PSC formation temperature. Analysis of Aura MLS observations made

  3. Vortex dynamics in jets from inclined nozzles

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Longmire, E. K.

    1997-03-01

    Experimental tests were performed on round jets exiting inclined nozzles at a Reynolds number of 9000. Both natural jets and jets forced with single frequencies corresponding to StD=0.25, 0.5, 0.75, and 1.0 were examined. In the natural case, the nozzle incline caused a mild increase in the radial spreading in the plane of azimuthal symmetry. The forcing amplified the asymmetric radial spreading by altering the vortex structure. In general, the inclined vortex rings rolled up at an angle slightly smaller than the nozzle incline angle. As the rings moved downstream, they migrated away from the jet centerline and their incline angle increased. Vortex rings generated at StD=0.5 did not pair because that Strouhal number was near the "preferred" mode. For nozzles with slight inclines, forcing at larger Strouhal numbers led to pairing near x/D=2 in order to achieve the "preferred" mode. For nozzles with larger inclines, the vortex cores broke down before pairing could occur. Forcing at a lower Strouhal number (StD=0.25) yielded ring formation at StD=0.5 and subsequent pairing. Increasing the incline angle moved the pairing location closer to the nozzle lip. Also, the pairing process was found to depend on the nozzle incline angle.

  4. Anticyclonic Vortex in a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Abrahamyan, M. G.

    2016-06-01

    The dynamics of protoplanetary disks is studied in a local approximation. A solution in the form of an anticyclonic vortex with a triaxial-ellipsoidal shape is obtained with linear circulation of matter in the plane of rotation of the disk. The formation of planetesimals from dust by vortices of this type is examined.

  5. Doppler radar detection of vortex hazard indicators

    NASA Technical Reports Server (NTRS)

    Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.

    1994-01-01

    Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.

  6. Vortex formation with a snapping shrimp claw.

    PubMed

    Hess, David; Brücker, Christoph; Hegner, Franziska; Balmert, Alexander; Bleckmann, Horst

    2013-01-01

    Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus) were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was studied using both High-Speed Particle Image Velocimetry (HS-PIV) and flow visualization. During claw closure a channel-like cavity was formed between the plunger and the socket featuring a nozzle-type contour at the orifice. Closing the mechanism led to the formation of a leading vortex ring with a dimensionless formation number of approximate ΔT*≈4. This indicates that the claw might work at maximum efficiency, i.e. maximum vortex strength was achieved by a minimum of fluid volume ejected. The subsequent vortex cavitation with the formation of an axial reentrant jet is a reasonable explanation for the large penetration depth of the water jet. That snapping shrimp can reach with their claw-induced flow. Within such a cavitation process, an axial reentrant jet is generated in the hollow cylindrical core of the cavitated vortex that pushes the front further downstream and whose length can exceed the initial jet penetration depth by several times. PMID:24244273

  7. Superconducting vortex pinning with artificial magnetic nanostructures.

    SciTech Connect

    Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego

    2008-11-01

    This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

  8. Optical vortex behavior in dynamic speckle fields.

    PubMed

    Kirkpatrick, Sean J; Khaksari, Kosar; Thomas, Dennis; Duncan, Donald D

    2012-05-01

    The dynamic behavior of phase singularities, or optical vortices, in the pseudo-phase representation of dynamic speckle patterns is investigated. Sequences of band-limited, dynamic speckle patterns with predetermined Gaussian decorrelation behavior were generated, and the pseudo-phase realizations of the individual speckle patterns were calculated via a two-dimensional Hilbert transform algorithm. Singular points in the pseudo-phase representation are identified by calculating the local topological charge as determined by convolution of the pseudo-phase representations with a series of 2×2 nabla filters. The spatial locations of the phase singularities are tracked over all frames of the speckle sequences, and recorded in three-dimensional space (x,y,f), where f is frame number in the sequence. The behavior of the phase singularities traces 'vortex trails' which are representative of the speckle dynamics. Slowly decorrelating speckle patterns results in long, relatively straight vortex trails, while rapidly decorrelating speckle patterns results in tortuous, relatively short vortex trails. Optical vortex analysis such as described herein can be used as a descriptor of biological activity, flow, and motion.

  9. Experimental investigation of vortex-fin interaction

    NASA Technical Reports Server (NTRS)

    Washburn, Anthony E.; Jenkins, Luther N.; Ferman, Marty A.

    1993-01-01

    An experimental investigation has been conducted to examine the mechanisms of vortex-fin interaction on a twin-fin configuration. The investigation included a parametric study of the effect of tail location. The vortices were generated by a 76 deg sharp-edged delta wing with vertical tails mounted behind the wing. The model included both a dynamically-scaled flexible tail and a pressure instrumented rigid tail. Surface oil-flow patterns, off-body laser light sheet visualizations, aerodynamic load measurements, mean and unsteady flexible tail response, and unsteady tail surface pressure measurements were obtained. The results show that the tail location did not affect the upstream trajectory of the delta wing vortex. The tail location did affect the location of vortex breakdown, the global structure of the flow field, the aerodynamic loads, and the fin buffeting levels. The buffeting levels were reduced as the fins were moved laterally toward the vortex core trajectory. Two distinct peaks were observed in the pressure excitation spectra in the post-breakdown flow. Finally, the presence of the flexible tail opposite the rigid pressure tail altered the pressure measurements at one angle of attack.

  10. Rotorcraft Blade-Vortex Interaction Controller

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric H. (Inventor)

    1995-01-01

    Blade-vortex interaction noises, sometimes referred to as 'blade slap', are avoided by increasing the absolute value of inflow to the rotor system of a rotorcraft. This is accomplished by creating a drag force which causes the angle of the tip-path plane of the rotor system to become more negative or more positive.

  11. Vortex matter driven through mesoscopic channels

    NASA Astrophysics Data System (ADS)

    Kes, P. H.; Kokubo, N.; Besseling, R.

    2004-08-01

    The dynamics of vortex matter confined to mesoscopic channels has been investigated by means of mode locking experiments. When vortices are coherently driven through the potential provided by static vortices pinned in the channel edges, interference between the washboard frequency of the moving vortex lattice and the frequency of the superimposed rf-drive causes (Shapiro-like) steps in the dc- I- V curves. The position of the voltage steps uniquely determines the number of moving rows in each channel. It also shows how the frustration between row spacing and channel width behaves as a function of magnetic field. Maxima in flow stress (∼ Ic) occur at mismatch conditions. They are related to the traffic-jam-like flow impedance caused by the disorder in the edges. At higher fields, near the 2D-melting line Bm( T), the mode-locking interference characteristic for crystalline motion, strongly depends on the velocity, i.e. the applied frequency at which the vortex motion is probed. The minimum velocity at which coherent motion could be observed, diverges when the melting line is approached from below. Above the melting line interference is absent for any frequency. These observations give the first direct evidence for a dynamic phase transition of vortex matter driven through a disorder potential as predicted by Koshelev and Vinokur.

  12. Flow regimes in a trapped vortex cell

    NASA Astrophysics Data System (ADS)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  13. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid

    PubMed Central

    Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M.; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M.; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H.; Sanvitto, Daniele

    2015-01-01

    Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings. PMID:26665174

  14. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.

    PubMed

    Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H; Sanvitto, Daniele

    2015-12-01

    Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings. PMID:26665174

  15. Vortex generation and wave-vortex interaction over a concave plate with roughness and suction

    NASA Technical Reports Server (NTRS)

    Bertolotti, Fabio

    1993-01-01

    The generation and amplification of vortices by surface homogeneities, both in the form of surface waviness and of wall-normal velocity, is investigated using the nonlinear parabolic stability equations. Transients and issues of algebraic growth are avoided through the use of a similarity solution as initial condition for the vortex. In the absence of curvature, the vortex decays as the square root of 1/x when flowing over streamwise aligned riblets of constant height, and grows as the square root of x when flowing over a corresponding streamwise aligned variation of blowing/suction transpiration velocity. However, in the presence of wall inhomogeneities having both streamwise and spanwise periodicity, the growth of the vortex can be much larger. In the presence of curvature, the vortex develops into a Gortler vortex. The 'direct' and 'indirect' interaction mechanisms possible in wave-vortex interaction are presented. The 'direct' interaction does not lead to strong resonance with the flow conditions investigated. The 'indirect' interaction leads to K-type transition.

  16. On the evolution of vortex rings with swirl

    SciTech Connect

    Naitoh, Takashi; Okura, Nobuyuki; Gotoh, Toshiyuki; Kato, Yusuke

    2014-06-15

    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as “peeling off” appears. The amount of discharging fluid due to the “peeling off” increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the “peeling off” is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions.

  17. Dynamic origin of vortex core switching in soft magnetic nanodots.

    PubMed

    Guslienko, Konstantin Yu; Lee, Ki-Suk; Kim, Sang-Koog

    2008-01-18

    The magnetic vortex with in-plane curling magnetization and out-of-plane magnetization at the core is a unique ground state in nanoscale magnetic elements. This kind of magnetic vortex can be used, through its downward or upward core orientation, as a memory unit for information storage, and thus, controllable core switching deserves some special attention. Our analytical and micromagnetic calculations reveal that the origin of vortex core reversal is a gyrotropic field. This field is induced by vortex dynamic motion and is proportional to the velocity of the moving vortex. Our calculations elucidate the physical origin of the vortex core dynamic reversal, and, thereby, offer a key to effective manipulation of the vortex core orientation.

  18. Robotic Tube-Gap Inspector

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.; Maslakowski, John E.

    1993-01-01

    Robotic vision system measures small gaps between nearly parallel tubes. Robot-held video camera examines closely spaced tubes while computer determines gaps between tubes. Video monitor simultaneously displays data on gaps.

  19. What Are Neural Tube Defects?

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Neural Tube Defects (NTDs): Condition Information Skip sharing on ... media links Share this: Page Content What are neural tube defects? Neural (pronounced NOOR-uhl ) tube defects ...

  20. Borneo vortex and mesoscale convective rainfall

    NASA Astrophysics Data System (ADS)

    Koseki, S.; Koh, T.-Y.; Teo, C.-K.

    2014-05-01

    We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite data sets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the Equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a "perpetual" cold surge. The Borneo vortex is manifested as a meso-α cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth/maintenance of the meso-α cyclone was achieved mainly by the vortex stretching. This vortex stretching is due to the upward motion forced by the latent heat release around the cyclone centre. The comma-shaped rainband consists of clusters of meso-β-scale rainfall cells. The intense rainfall in the comma head (comma tail) is generated by the confluence of the warmer and wetter cyclonic easterly flow (cyclonic southeasterly flow) and the cooler and drier northeasterly surge in the northwestern (northeastern) sector of the cyclone. Intense upward motion and heavy rainfall resulted due to the low-level convergence and the favourable thermodynamic profile at the confluence zone. In particular, the convergence in the northwestern sector is responsible for maintenance of the meso-α cyclone system. At both meso-α and meso-β scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is significantly self-enhanced by the nonlinear dynamics.

  1. Glory, Vortex Street off Baja California

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On June 19, 2007, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured both a vortex street and a glory visible amid the lattice of clouds over the Pacific Ocean off Baja California. In this image, the swirling clouds known as vortex streets appear along the left edge of the image, stretching southward from Isla Guadalupe. Another NASA satellite captured an earlier example of vortex streets in June 2000. These atmospheric vortices, known as Von Karman vortex streets, often occur in the wake of an obstacle to air flow, such as an island. Stratocumulus clouds--low-lying, sheets of puffy clouds-- over the ocean show the impact of the island on air flow visible though their alternating pattern of clockwise and counter-clockwise swirls. Southeast of the vortex street, a glory, which resembles a rainbow, hovers above the cloud cover. The glory is faint but large, 200 to 300 kilometers long, along a north-south orientation. This phenomenon can occur when the satellite passes directly between the Sun and a bank of clouds below. (People also observe them while looking down on clouds from airplanes.) Not just any kind of cloud can produce a glory; only clouds composed entirely of water droplets (as opposed to ice crystals) can make them. The droplets that form glories generally have diameters of less than 50 micrometers (a micrometers is a millionth of a meter). The water droplets bend the light, showing its different wavelengths, or colors. In this glory, reds and oranges are most visible. NASA image by Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center.

  2. Wake-Vortex Hazards During Cruise

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; James, Kevin D.; Nixon, David (Technical Monitor)

    1998-01-01

    Even though the hazard posed by lift-generated wakes of subsonic transport aircraft has been studied extensively for approach and departure at airports, only a small amount of effort has gone into the potential hazard at cruise altitude. This paper reports on a studio of the wake-vortex hazard during cruise because encounters may become more prevalent when free-flight becomes available and each aircraft, is free to choose its own route between destinations. In order to address the problem, the various fluid-dynamic stages that vortex wakes usually go through as they age will be described along with estimates of the potential hazard that each stage poses. It appears that a rolling-moment hazard can be just as severe at cruise as for approach at airports, but it only persists for several minutes. However, the hazard posed by the downwash in the wake due to the lift on the generator aircraft persists for tens of minutes in a long narrow region behind the generating aircraft. The hazard consists of severe vertical loads when an encountering aircraft crosses the wake. A technique for avoiding vortex wakes at cruise altitude will be described. To date the hazard posed by lift-generated vortex wakes and their persistence at cruise altitudes has been identified and subdivided into several tasks. Analyses of the loads to be encounter and are underway and should be completed shortly. A review of published literature on the subject has been nearly completed (see text) and photographs of vortex wakes at cruise altitudes have been taken and the various stages of decay have been identified. It remains to study and sort the photographs for those that best illustrate the various stages of decay after they are shed by subsonic transport aircraft at cruise altitudes. The present status of the analysis and the paper are described.

  3. Thermal depinning of a single superconducting vortex

    SciTech Connect

    Sok, J.

    1995-10-01

    Thermal depinning has been studied for a single vortex trapped in a superconducting thin film in order to determine the value of the superconducting order parameter and the superfluid density when the vortex depins and starts to move around the film. For the Pb film in Pb/Al/Al{sub 2}O{sub 3}/PbBi junction having a gold line, the vortex depins from the artificial pinning site (Au line) and reproducibly moves through the same sequence of other pinning sites before it leaves the junction area of the Pb film. Values of the normalized order parameter {triangle}/{triangle}{sub o} vary from {triangle}/{triangle}{sub o}=0.20 at the first motion of the vortex to {triangle}/{triangle}{sub o}=0.16 where the vortex finally leaves the junction. Equivalently, the value of the normalized superfluid density changes from 4% to 2.5% for this sample in this same temperature interval. For the Nb film in Nb/Al/Al{sub 2}O{sub 3}/Nb junction, thermal depinning occurs when the value of {triangle}/{triangle}{sub o} is approximately 0.22 and the value of {rho}{sub s}/{rho}{sub so} is approximately 5%. These values are about 20% larger than those of a Pb sample having a gold line, but the values are really very close. For the Nb sample, grain boundaries are important pinning sites whereas, for the Pb sample with a gold line, pinning may have been dominated by an array Pb{sub 3}AU precipitates. Because roughly the same answer was obtained for these rather different kinds of pinning site, there is a reasonable chance that this is a general value within factors of 2 for a wide range of materials.

  4. Intermittent dissipation field in multi-mode stretched-spiral vortex

    NASA Astrophysics Data System (ADS)

    Horiuti, Kiyosi; Fujisawa, Takeharu

    2006-11-01

    The property of the stretched spiral vortex (SSV) (Lundgren 1982) is studied using DNS data of homogeneous isotropic and shear turbulence and the entire process of its creation, growth and annihilation is revealed. SSV is composed of three modes of configurations regarding the alignment of the vorticity vectors on the tube in the core region of SSV and the spiral sheets which emanate from the core, and all three modes are indeed identified. It is shown that the differential rotation induced by the tube and that self-induced by the sheets causes the vortex sheets in the spiral to continually tighten. With the tightening of the spiral turns of the spiral sheets, the sheets are stretched to extreme length (<=2 η, where η is the averaged Kolmogorov length). Intense turbulent energy cascade and dissipation are caused associated with this stretching of the sheets in accordance with Lundgren (1982), while no appreciable dissipation is generated in the core region. As a result, the local dissipation rate ɛ and Kolmogorov length η exhibit strong intermittency. Therefore, the eduction of the dissipation field is critically dependent on the grid resolution (Schumacher, Sreenivasan & Yeung 2005), and the grids with at least 1024^3 or kmax η 4.0 (kmax is the largest wavenumber) is indispensable for a precise capture of the spiral turns and dissipation field at Rλ 78.0.

  5. [Enteral tube feeding].

    PubMed

    Haller, Alois

    2014-03-01

    Tube feeding is an integral part of medical therapies, and can be easily managed also in the outpatient setting. Tube feeding by the stomach or small intestine with nasogastral or nasojejunal tubes is common in clinical practice. Long-term nutrition is usually provided through a permanent tube, i. e. a percutaneous endoscopic gastrostomy (PEG). Modern portable nutrition pumps are used to cover the patient's nutritional needs. Enteral nutrition is always indicated if patients can not or should not eat or if nutritional requirements cannot be covered within 3 days after an intervention, e. g. after abdominal surgery. Industrially produced tube feedings with defined substrate concentrations are being used; different compositions of nutrients, such as glutamine fish oil etc., are used dependent on the the condition of the patient. Enteral nutrition may be associated with complications of the tube, e. g. dislocation, malposition or obstruction, as well as the feeding itself, e. g.hyperglycaemia, electrolyte disturbances, refeeding syndrome diarrhea or aspiration). However, the benefit of tube feeding usually exceeds the potential harm substantially.

  6. Confined vortex scrubber. Quarterly technical progress report, April 1, 1990--June 30, 1990

    SciTech Connect

    Not Available

    1990-07-01

    The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards using a cleanup technology appropriate to small scale coal combustors. This to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber (CVS), which consists of a cylindrical vortex chamber with tangential flue gas inlets. The clean gas exit is via vortex finder outlets, one at either end of the tube. Liquid is introduced into the chamber and is confined within the vortex chamber by the centrifugal force generated by the gas flow itself. This confined liquid forms a layer through which the flue gas is then forced to bubble, producing a strong gas/liquid interaction, high inertial separation forces and efficient particulate cleanup. During this quarter a comprehensive series of cleanup experiments have been made for three CVS configurations. The first CVS configuration tested gave very efficient fine particulate removal at the design air mass flow rate (1 MM BUT/hr combustor exhaust flow), but had over 20{double_prime}WC pressure drop. The first CVS configuration was then re-designed to produce the same very efficient particulate collection performance at a lower pressure drop. The current CVS configuration produces 99.4 percent cleanup of ultra-fine fly ash at the design air mass flow at a pressure drop of 12 {double_prime}WC with a liquid/air flow ratio of 0.31/m{sup 3}. Unlike venturi scrubbers, the collection performance of the CVS is insensitive to dust loading and to liquid/air flow ratio.

  7. Polar Vortex Structure with ACE and OSIRIS Ozone Data

    NASA Astrophysics Data System (ADS)

    Evans, W. F.

    2005-12-01

    The polar vortex is the dominant feature of stratospheric wind field. The ACE instrument on SCISAT-1 can map ozone fields from 8 to 50 km in 16 days. The OSIRIS instrument on ODIN can map the ozone fields at 2 km intervals from 10 km to over 65 km on a daily basis. They can also provide aerosol maps at the lower levels. These can be used for dynamical studies such as vortex breakdown. Four years of ozone data from the OSIRIS instrument on ODIN have been processed using the Kerr three wavelength algorithm. The OSIRIS ozone data is on the web as orbital slices. TOMS like maps have been formed at 2 km intervals from 10 km to 42 km by mapping the OSIRIS ozone product onto polar map projections. This mapset allows investigations of the vertical structure and evolution of the vortex. The downward motion in the vortex is clearly demonstrated by aerosol maps which show a clean vortex due to the descent within the vortex. The Antarctic vortex and the Arctic vortex were investigated using the ACE profiles and the OSIRIS ozone product. OSIRIS data is available from Oct 1, 2001 to April 30, 2005 as maps at 2km intervals from 10 km to 42 km. An example is demonstrated using the split vortex event of September 25, 2002; the split extends from 14 km up to 42 km. However, the 10 km and 12 km levels showed no vortex during the split. There is a close relationship of vortex ozone with PV and hence to the vortex wind. These maps are used to study the vortex in the Arctic and the Antarctic. In particular, the vortex breakdown in the two hemispheres is compared. The ozone vortex extends up to 55 km at the wind null region. There are significant differences in the hemispheres in the vortex below 24 km. A comparison of the features of the Arctic and Antarctic vorticies was conducted. The Antarctic vortex usually extends from 10 km up to over 42 km whereas in the Arctic, the vortex is only obvious from 16 km to 42km. The main hemispheric differences seem to be in the lower stratosphere

  8. Eustachian Tube Function.

    PubMed

    Ars, Bernard; Dirckx, Joris

    2016-10-01

    The fibrocartilaginous eustachian tube is part of a system of contiguous organs including the nose, palate, rhinopharynx, and middle ear cleft. The middle ear cleft consists of the tympanic cavity, which includes the bony eustachian tube (protympanum) and the mastoid gas cells system. The tympanic cavity and mastoid gas cells are interconnected and allow gaseous exchange and pressure regulation. The fibrocartilaginous eustachian tube is a complex organ consisting of a dynamic conduit with its mucosa, cartilage, surrounding soft tissue, peritubal muscles (ie, tensor and levator veli palatine, salpingopharyngeus and tensor tympani), and superior bony support (the sphenoid sulcus). PMID:27468632

  9. Tube flare inspection tool

    NASA Technical Reports Server (NTRS)

    Meunier, G. E.

    1980-01-01

    Flare angle and symmetry of tube ends can be checked by simple tool that consists of two stainless steel pins bonded to rubber plug. Primary function of tool is to inspect tubes before they are installed, thereby eliminating expense and inconvenience of repairing leaks caused by imperfect flares. Measuring hole tapers, countersink angles, and bearing race angles are other possible uses. Tool is used with optical comparator. Axis of tool is alined with centerline of tube. Shadow of seated pins on comparator screen allows operator to verify flare angle is within tolerance.

  10. Study on flow instability and countermeasure in a draft tube with swirling flow

    NASA Astrophysics Data System (ADS)

    Nakashima, T.; Matsuzaka, R.; Miyagawa, K.; Yonezawa, K.; Tsujimoto, Y.

    2014-03-01

    The swirling flow in the draft tube of a Francis turbine can cause the flow instability and the cavitation surge and has a larger influence on hydraulic power operating system. In this paper, the cavitating flow with swirling flow in the diffuser was studied by the draft tube component experiment, the model Francis turbine experiment and the numerical simulation. In the component experiment, several types of fluctuations were observed, including the cavitation surge and the vortex rope behaviour by the swirling flow. While the cavitation surge and the vortex rope behaviour were suppressed by the aeration into the diffuser, the loss coefficient in the diffuser increased by the aeration. In the model turbine test the aeration decreased the efficiency of the model turbine by several percent. In the numerical simulation, the cavitating flow was studied using Scale-Adaptive Simulation (SAS) with particular emphasis on understanding the unsteady characteristics of the vortex rope structure. The generation and evolution of the vortex rope structures have been investigated throughout the diffuser using the iso-surface of vapor volume fraction. The pressure fluctuation in the diffuser by numerical simulation confirmed the cavitation surge observed in the experiment. Finally, this pressure fluctuation of the cavitation surge was examined and interpreted by CFD.

  11. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    PubMed

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-01

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  12. Persistence of Metastable Vortex Lattice Domains in MgB2 in the Presence of Vortex Motion

    SciTech Connect

    Rastovski, Catherine; Schlesinger, Kimberly; Gannon, William J; Dewhurst, Charles; Debeer-Schmitt, Lisa M; Zhigadlo, Nikolai; Karpinski, Janusz; Eskildsen, Morten

    2013-01-01

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  13. LDA measurements in the Francis-99 draft tube cone

    NASA Astrophysics Data System (ADS)

    Sundstrom, L. R. J.; Amiri, K.; Bergan, C.; Cervantes, M. J.; Dahlhaug, O. G.

    2014-03-01

    Velocity measurements were performed in the draft tube cone of a 1:5.1 scaled model of the Tokke hydropower plant, Norway; also known as the Francis-99 model. Results from the laser Doppler anemometry measurements undertaken at three operating points will be used as validation data for an upcoming workshop on the state of the art of Francis turbine numerical simulation. With the turbine operating at the best efficiency point, a sensitivity analysis of the flow parameters head, flow rate and runner rotational speed shows that the effects on the dimensionless velocity profiles are small as long as nED and QED are held constant. The results indicate a well-functioning turbine at the best efficiency point and high load. At the part load operating point, a vortex breakdown occurs which distorts the velocity profiles and significantly lowers the turbine's hydraulic efficiency. Frequency spectrums of each LDA signal at part load reveals a peak which is asynchronous to that of the runner angular speed. The peaks might be related to the precession of a rotating vortex rope but the characteristics of the LDA signals are different compared to previous studies involving rotating vortex ropes.

  14. Tube Alinement for Machining

    NASA Technical Reports Server (NTRS)

    Garcia, J.

    1984-01-01

    Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.

  15. Kinking of medical tubes.

    PubMed

    Ingles, David

    2004-05-01

    The phenomenon of kinking in medical tubing remains a problem for some applications, particularly critical ones such as transporting gasses or fluids. Design features are described to prevent its occurrence.

  16. Ear tube insertion - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100045.htm Ear tube insertion - series—Normal anatomy To use the ... 4 Overview The eardrum (tympanic membrane) separates the ear canal from the middle ear. Update Date 8/ ...

  17. Tracheostomy tube - eating

    MedlinePlus

    Trach - eating ... take your first bites. Certain factors may make eating or swallowing harder, such as: Changes in the ... easier to swallow. Suction the tracheostomy tube before eating. This will keep you from coughing while eating, ...

  18. Tube-Forming Assays.

    PubMed

    Brown, Ryan M; Meah, Christopher J; Heath, Victoria L; Styles, Iain B; Bicknell, Roy

    2016-01-01

    Angiogenesis involves the generation of new blood vessels from the existing vasculature and is dependent on many growth factors and signaling events. In vivo angiogenesis is dynamic and complex, meaning assays are commonly utilized to explore specific targets for research into this area. Tube-forming assays offer an excellent overview of the molecular processes in angiogenesis. The Matrigel tube forming assay is a simple-to-implement but powerful tool for identifying biomolecules involved in angiogenesis. A detailed experimental protocol on the implementation of the assay is described in conjunction with an in-depth review of methods that can be applied to the analysis of the tube formation. In addition, an ImageJ plug-in is presented which allows automatic quantification of tube images reducing analysis times while removing user bias and subjectivity.

  19. Building with Tubes.

    ERIC Educational Resources Information Center

    D'Eugenio, Terrance, Ed.

    Text and illustrations show how to assemble furniture and toys out of cardboard tubes and sheets. Basic directions are provided, and the tools and materials necessary to the assembly of specific items are described. (MLF)

  20. Draft tube flow phenomena across the bulb turbine hill chart

    NASA Astrophysics Data System (ADS)

    Duquesne, P.; Fraser, R.; Maciel, Y.; Aeschlimann, V.; Deschênes, C.

    2014-03-01

    In the framework of the BulbT project launched by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University) in 2011, an intensive campaign to identify flow phenomena in the draft tube of a model bulb turbine has been done. A special focus was put on the draft tube component since it has a particular importance for recuperation in low head turbines. Particular operating points were chosen to analyse flow phenomena in this component. For each of these operating points, power, efficiency and pressure were measured following the IEC 60193 standard. Visualizations, unsteady wall pressure and efficiency measurements were performed in this component. The unsteady wall pressure was monitored at seven locations in the draft tube. The frequency content of each pressure signal was analyzed in order to characterize the flow phenomena across the efficiency hill chart. Visualizations were recorded with a high speed camera using tufts and cavitation bubbles as markers. The predominant detected phenomena were mapped and categorized in relation to the efficiency hill charts obtained for three runner blade openings. At partial load, the vortex rope was detected and characterized. An inflection in the partial load efficiency curves was found to be related to complex vortex rope instabilities. For overload conditions, the efficiency curves present a sharp drop after the best efficiency point, corresponding to an inflection on the power curves. This break off is more severe towards the highest blade openings. It is correlated to a flow separation at the wall of the draft tube. Also, due to the separation occurring in these conditions, a hysteresis effect was observed on the efficiency curves.

  1. On the Origin of Polar Vortex Air

    NASA Technical Reports Server (NTRS)

    Rosenfield, J. E.; Schoeberl, M. R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The existence of the multi-year HALOE CH4 data set, together with some comparisons of forward with back trajectory calculations which we have carried out, has motivated us to reexamine the question of polar vortex descent. Three-dimensional diabatic trajectory calculations have been carried out for the seven month fall to spring period in both the northern hemisphere (NH) and southern hemisphere (SH) polar stratosphere for the years 1992-1999. These computations are compared to fixed descent computations where the parcels were fixed at their latitude-longitude locations and allowed to descend without circulating. The forward trajectory computed descent is always less than the fixed descent due to horizontal parcel motions and variations in heating rates with latitude and longitude. Although the forward calculations estimate the maximum amount of descent that can occur, they do not necessarily indicate the actual origin of springtime vortex air. This is because more equator-ward air can be entrained within the vortex during its formation. To examine the origin of the springtime vortex air, the trajectory model was run backward for seven months from spring to fall. The back trajectories show a complex distribution of parcels in which one population originates in the upper stratosphere and mesosphere and experiences considerable descent in the polar regions, while the remaining parcels originate at lower altitudes of the middle and lower stratosphere and are mixed into the polar regions during vortex formation without experiencing as much vertical transport. The amount of descent experienced by the first population shows little variability from year to year, while the computed descent and mixing of the remaining parcels show considerable interannual variability due to the varying polar meteorology. Because of this complex parcel distribution it is not meaningful to speak of a net amount of descent experienced over the entire winter period. Since the back trajectories

  2. Observations of a tropical instability vortex

    NASA Astrophysics Data System (ADS)

    Kennan, Sean Christopher

    1997-11-01

    Observations of an upper ocean vortex associated with tropical instabilities in the tropical Pacific were made in the vicinity of the South Equatorial Current and North Equatorial Counter Current (SEC-NECC) shear at 140oW during November-December of 1990. The dynamic and thermohaline structure of the observed vortex is mapped in three dimensions using a suite of measurements from shipboard, hydrographic, and satellite sensors and drifting buoys. Evidence that the sampled flow field is steady in a frame of reference moving with the disturbance is used to study the underlying dynamical balances and the effects on heat, fresh water, and eddy energy fluxes in the region. The vortex translated westward at 30 cm/s (0.24o/day), less than half the speed of westward propagating meridional oscillations of the Equatorial Undercurrent (EUC) and SEC system. The associated flow deformed the North Equatorial Front through northward advection of cold equatorial water and southward entrainment of warmer tropical water, giving the surface temperature field the cusp-like pattern which is commonly associated with tropical instabilities. A dipole of convergence and divergence had magnitudes comparable to the local inertial frequency and confirms predictions by various numerical models. Relative vorticity advection balanced convergence at the front, allowing northward moving cold water to subduct beneath the warmer tropical water. The growth of the vortex appears to have been limited by the inertial frequency via a vortex instability mechanism. The same features are present in shear vortices in a general circulation model. The vortex transported heat and fresh water equatorward at rates of about 0.2 MW/m2 and 5 g/(m2s), respectively. The heat flux agrees with previous estimates from observations and models. The region from 2-5oN gained heat and fresh water at 2-5 W/m3 and 0.1 μg/(m3s). Eddy kinetic energy increased via barotropic instability at a rate of 0.15 mW/m3 and via baroclinic

  3. The VORTEX project: first results and perspectives

    NASA Astrophysics Data System (ADS)

    Absil, Olivier; Mawet, Dimitri; Delacroix, Christian; Forsberg, Pontus; Karlsson, Mikael; Habraken, Serge; Surdej, Jean; Absil, Pierre-Antoine; Carlomagno, Brunella; Christiaens, Valentin; Defrère, Denis; Gomez Gonzalez, Carlos; Huby, Elsa; Jolivet, Aïssa; Milli, Julien; Piron, Pierre; Vargas Catalan, Ernesto; Van Droogenbroeck, Marc

    2014-07-01

    Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They feature a very small inner working angle (down to the diffraction limit of the telescope), a clear 360 degree discovery space, have demonstrated very high contrast capabilities, are easy to implement on high-contrast imaging instruments, and have already been extensively tested on the sky. Since 2005, we have been designing, developing and testing an implementation of the charge-2 vector vortex phase mask based on concentric sub-wavelength gratings, referred to as the Annular Groove Phase Mask (AGPM). Science-grade mid-infrared AGPMs were produced in 2012 for the first time, using plasma etching on synthetic diamond substrates. They have been validated on a coronagraphic test bench, showing broadband peak rejection up to 500:1 in the L band, which translates into a raw contrast of about 6 x 10-5 at 2λ=D. Three of them have now been installed on world-leading diffraction-limited infrared cameras, namely VLT/NACO, VLT/VISIR and LBT/LMIRCam. During the science verification observations with our L-band AGPM on NACO, we observed the beta Pictoris system and obtained unprecedented sensitivity limits to planetary companions down to the diffraction limit (0:1"). More recently, we obtained new images of the HR 8799 system at L band during the AGPM first light on LMIRCam. After reviewing these first results obtained with mid-infrared AGPMs, we will discuss the short- and mid-term goals of the on-going VORTEX project, which aims to improve the performance of our vortex phase masks for future applications on second-generation high-contrast imager and on future extremely large telescopes (ELTs). In particular, we will briefly describe our current efforts to improve the manufacturing of mid-infrared AGPMs, to push their operation to shorter wavelengths, and to provide deeper starlight extinction by creating new designs for higher

  4. Using a nasogastric tube.

    PubMed

    Candy, C

    1986-09-01

    This discussion of the use of a nasogastric tube covers the equipment needed, the method, rehydration and feeding, prolonged nasogastric feeding, and stopping nasogastric feeding. A nasogastric tube is useful when children are unable to drink safely and in sufficient amounts for any of the following reasons: severe dehydration; if intravenous (IV) therapy is unavailable; low birth weight infants; or the child is drowsy or vomiting. Severely malnourished children may be fed initially in this way if they are too weak or anorexic to eat or drink normally. The following equipment is needed: nasogastric tube; lubricating fluid; a syringe; blue litmus paper, if available; adhesive tape; stethoscope if available; and fluid to be given. Explain to the child's parents and the child, if old enough to understand, what will be done; lie infants flat; measure the approximate length from the child's nostril to the ear lobe and then to the top of the abdomen with the tube and mark the position; clean the nostrils to remove the mucus, and lubricate the tip of the tube and gently insert into the nostril; give the child a drink of water if he or she is conscious; continue to pass the tube down until the position marked reaches the nostril; use the syringe to suck up some fluid and test with blue litmus paper to check that the tube is in the stomach; and inject 5-10 ml of fluid (saline or oral rehydration solution, not milk formula) by syringe if satisfied the tube is in the correct position. Where possible, give a continuous drip of fluid. If this is not possible, give frequent small amounts using the syringe as a funnel. If feeding continues for more than 24 hours, clean the nostrils daily with warm water and change the tube to the other nostril every few days. Also keep the mouth very clean with a dilute solution of 8% sodium bicarbonate, if available, or citrus fruit juice. To remove the tube, remove the adhesive tape, take the tube out gently and smoothly, and offer the child a

  5. Tubing crimping pliers

    DOEpatents

    Lindholm, G.T.

    1981-02-27

    The disclosure relates to pliers and more particularly to pliers for crimping two or more pieces of copper tubing together prior to their being permanently joined by brazing, soldering or the like. A die containing spring-loaded pins rotates within a cammed ring in the head of the pliers. As the die rotates, the pins force a crimp on tubing held within the pliers.

  6. Some observations on vortex-ring collisions upon inclined surfaces

    NASA Astrophysics Data System (ADS)

    New, T. H.; Shi, Shengxian; Zang, B.

    2016-06-01

    This paper reports upon a laser-induced fluorescence visualization and time-resolved particle image velocimetry study to resolve the detailed dynamics associated with Re = 2000 and 4000 circular vortex rings colliding with 30°-75° inclined surfaces. Two-dimensional visualization results show that larger inclination angles lead to increasingly rapid size reduction in the primary vortex-ring core closer to the surface, faster formation of the secondary vortex-ring core, and subsequent ingestion by the former. In contrast, primary vortex-ring core further away from the surface becomes physically larger and incoherent more rapidly, with slower formation and entrainment of the secondary vortex-ring core. Interestingly, a vortex dipole and small vortex-ring-like structure are produced for the largest inclination angle of 75°, possibly due to vortex disconnection and reconnection processes. Results taken along the non-inclined plane show significant bulging of the primary vortex-ring cores when the inclination angle increases from 30° onwards. More importantly, additional vortex cores are observed to entwine with the primary vortex-ring core and provide strong direct evidence for the bi-helical vortex line flow mechanism put forward by Lim (Exp Fluids 7:453-463, 1989). Lastly, the behaviour of the primary and secondary vortex-ring cores further away from the surface is highly sensitive towards the state of the bi-helical lines compressed at that region. Strong compression driven by circumferential flows due to large inclination angles may explain the unique flow structures and behaviour observed for 75° inclination angle here.

  7. Aeronautical tubes and pipes

    NASA Astrophysics Data System (ADS)

    Beauclair, N.

    1984-12-01

    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  8. Clearing obstructed feeding tubes.

    PubMed

    Marcuard, S P; Stegall, K L; Trogdon, S

    1989-01-01

    This is a report of an in vitro study evaluating the ability of six solutions to dissolve clotted enteral feeding, which can cause feeding tube occlusion. The following clotted enteral feeding products were tested: Ensure Plus, Ensure Plus with added protein (Promod 20 g/liter), Osmolite, Enrich, and Pulmocare. Clot dissolution was then tested by adding Adolf's Meat Tenderizer, Viokase, Sprite, Pepsi, Coke, or Mountain Dew. Distilled water served as control. Dissolution score for each mixture was assessed blindly. Best dissolution was observed with Viokase in pH 7.9 solution (p less than 0.01). Similar results were obtained when feeding tube patency was restored in eight in vitro occluded feeding tubes (Dobbhoff, French size 8) by using first Pepsi (two/eight successful) and then Viokase in pH 7.9 (six/six successful). We also report our experience in the first 10 patients with occluded feeding tubes using this Viokase solution injected through a Drum catheter into the feeding tube. In seven patients, this method proved to be successful, and the reasons for failure in three patients include a knotted tube, impacted tablet powder, and a formula clot fo 24 hr duration and 45 cm in length. PMID:2494372

  9. Clearing obstructed feeding tubes.

    PubMed

    Marcuard, S P; Stegall, K L; Trogdon, S

    1989-01-01

    This is a report of an in vitro study evaluating the ability of six solutions to dissolve clotted enteral feeding, which can cause feeding tube occlusion. The following clotted enteral feeding products were tested: Ensure Plus, Ensure Plus with added protein (Promod 20 g/liter), Osmolite, Enrich, and Pulmocare. Clot dissolution was then tested by adding Adolf's Meat Tenderizer, Viokase, Sprite, Pepsi, Coke, or Mountain Dew. Distilled water served as control. Dissolution score for each mixture was assessed blindly. Best dissolution was observed with Viokase in pH 7.9 solution (p less than 0.01). Similar results were obtained when feeding tube patency was restored in eight in vitro occluded feeding tubes (Dobbhoff, French size 8) by using first Pepsi (two/eight successful) and then Viokase in pH 7.9 (six/six successful). We also report our experience in the first 10 patients with occluded feeding tubes using this Viokase solution injected through a Drum catheter into the feeding tube. In seven patients, this method proved to be successful, and the reasons for failure in three patients include a knotted tube, impacted tablet powder, and a formula clot fo 24 hr duration and 45 cm in length.

  10. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns

    SciTech Connect

    Tang, L.H.; Zeng, M.; Wang, Q.W.

    2009-07-15

    Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (D{sub o} = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method. (author)

  11. A broad-band scalar vortex coronagraph

    NASA Astrophysics Data System (ADS)

    Errmann, R.; Minardi, S.; Pertsch, T.

    2013-10-01

    Broad-band coronagraphy with deep nulling and small inner working angle has the potential of delivering images and spectra of exoplanets and other faint objects. In recent years, many coronagraphic schemes have been proposed, the most promising being the optical vortex phase mask coronagraphs. In this paper, a new scheme of broad-band optical scalar vortex coronagraph is proposed and characterized experimentally in the laboratory. Our setup employs a pair of computer-generated phase gratings (one of them containing a singularity) to control the chromatic dispersion of phase plates and achieves a constant peak-to-peak attenuation below 1 × 10-3 over a bandwidth of 120 nm centred at 700 nm. An inner working angle of ˜λ/D is demonstrated along with a raw contrast of 11.5 mag at 2λ/D.

  12. A broadband scalar optical vortex coronagraph

    NASA Astrophysics Data System (ADS)

    Errmann, Ronnie; Minardi, Stefano; Pertsch, Thomas

    2014-07-01

    In recent years, new coronagraphic schemes have been proposed, the most promising being the optical vortex phase mask coronagraphs. In our work, a new scheme of broadband optical scalar vortex coronagraph is proposed and characterized experimentally in the laboratory. Our setup employs a pair of computer generated phase gratings (one of them containing a singularity) to control the chromatic dispersion of phase plates and achieves a constant peak-to-peak attenuation below 1:1000 over a bandwidth of 120 nm centered at 700 nm. An inner working angle of λ/D is demonstrated along with a raw contrast of 11.5magnitudes at 2λ/D. A more compact setup achieves a peak-to-peak attenuation below 1:1000 over a bandwidth of 60 nm with the other results remaining the same.

  13. Vortex identification and tracking in unsteady flows

    NASA Astrophysics Data System (ADS)

    Berson, Arganthaël; Michard, Marc; Blanc-Benon, Philippe

    2009-02-01

    The present Note deals with the identification and tracking of vortices in a time-resolved unsteady flow. The approach is based on the combination of two existing post-processing tools that are Galilean invariant functions: feature flow field f and vortex identification algorithm γ. An analytical development shows that the joint use of γ and the streamlines of f allows to identify and track the location of the center of a vortex core with a non-zero convection velocity. We discuss the applicability of this procedure to actual flows for which the assumptions of the analytical approach may not be strictly valid. The procedure is validated using PIV measurements performed in an oscillating flow in a model of thermoacoustic refrigerator. This method proves to be efficient for the automated analysis of convection processes when large numbers of vortices are involved. To cite this article: A. Berson et al., C. R. Mecanique 337 (2009).

  14. Numerical Study of Tip Vortex Flows

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer; Hafez, Mohamed

    1998-01-01

    This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.

  15. Vortex Generators to Control Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  16. ``Soft'' Anharmonic Vortex Glass in Ferromagnetic Superconductors

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo; Ettouhami, A. M.; Saunders, Karl; Toner, John

    2002-03-01

    Ferromagnetic order in superconductors can induce a spontaneous vortex (SV) state. For external field H=0, rotational symmetry guarantees a vanishing tilt modulus of the SV solid, leading to drastically different behavior than that of a conventional, external-field-induced vortex solid. We show that quenched disorder and anharmoinc effects lead to elastic moduli that are wave-vector dependent out to arbitrarily long length scales, and to non-Hookean elasticity. The latter implies that for weak external fields H, the magnetic induction scales universally like B(H) ~ B(0)+ cH^α, with α ≈ 0.72. For weak disorder, we predict the SV solid is a topologically ordered glass, in the ``columnar elastic glass'' universality class.

  17. Dynamics and Instabilities of Vortex Pairs

    NASA Astrophysics Data System (ADS)

    Leweke, Thomas; Le Dizès, Stéphane; Williamson, Charles H. K.

    2016-01-01

    This article reviews the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena. Since the reviews in this journal by Widnall (1975) and Spalart (1998) , who studied the fundamental structure and dynamics of vortices and airplane trailing vortices, respectively, there have been many analytical, computational, and experimental studies of vortex pair flows. We discuss two-dimensional dynamics, including the merging of same-sign vortices and the interaction with the mutually induced strain, as well as three-dimensional displacement and core instabilities resulting from this interaction. Flows subject to combined instabilities are also considered, in particular the impingement of opposite-sign vortices on a ground plane. We emphasize the physical mechanisms responsible for the flow phenomena and clearly present the key results that are useful to the reader for predicting the dynamics and instabilities of parallel vortices.

  18. A viscous vortex pair in ground effect

    NASA Astrophysics Data System (ADS)

    Peace, A. J.; Riley, N.

    1983-04-01

    Attention is given to the unsteady fluid motion which is induced when a vortex pair moves in an incompressible viscous fluid towards a plane boundary. The vortex pair at the initial instant is represented by two inviscid line vortices and the line which joins them is parallel to the boundary surface. The boundary surface may be either a rigid boundary at which the no-slip condition must be satisfied or a free surface corresponding to zero shear stress. The governing equations and a solution procedure are discussed, taking into account a finite-difference approach. Research of calculations are presented for both a non-slip boundary and a stress-free boundary. The phenomenon or rebound of the vortices from the boundary is found to occur in both cases. An explanation for this result in terms of viscous effects is provided.

  19. Vortex flow for a holographic superconductor

    SciTech Connect

    Maeda, Kengo; Okamura, Takashi

    2011-03-15

    We investigate energy dissipation associated with the motion of the scalar condensate in a holographic superconductor model constructed from the charged scalar field coupled to the Maxwell field. Upon application of constant magnetic and electric fields, we analytically construct the vortex-flow solution and find the vortex-flow resistance near the second-order phase transition where the scalar condensate begins. The characteristic feature of the nonequilibrium state agrees with the one predicted by the time-dependent Ginzburg-Landau (TDGL) theory. We evaluate the kinetic coefficient in the TDGL equation along the line of the second-order phase transition. At zero magnetic field, the other coefficients in the TDGL equation are also evaluated just below the critical temperature.

  20. Geometric symmetries in superfluid vortex dynamics

    SciTech Connect

    Kozik, Evgeny; Svistunov, Boris

    2010-10-01

    Dynamics of quantized vortex lines in a superfluid feature symmetries associated with the geometric character of the complex-valued field, w(z)=x(z)+iy(z), describing the instant shape of the line. Along with a natural set of Noether's constants of motion, which - apart from their rather specific expressions in terms of w(z) - are nothing but components of the total linear and angular momenta of the fluid, the geometric symmetry brings about crucial consequences for kinetics of distortion waves on the vortex lines, the Kelvin waves. It is the geometric symmetry that renders Kelvin-wave cascade local in the wave-number space. Similar considerations apply to other systems with purely geometric degrees of freedom.

  1. Vortex Density Models for Superconductivity and Superfluidity

    NASA Astrophysics Data System (ADS)

    Baldo, S.; Jerrard, R. L.; Orlandi, G.; Soner, H. M.

    2013-02-01

    We study some functionals that describe the density of vortex lines in superconductors subject to an applied magnetic field, and in Bose-Einstein condensates subject to rotational forcing, in quite general domains in 3 dimensions. These functionals are derived from more basic models via Gamma-convergence, here and in the companion paper (Baldo et al. in Arch Rat Mech Anal 205(3):699-752, 2012). In our main results, we use these functionals to obtain leading order descriptions of the first critical applied magnetic field (for superconductors) and forcing (for Bose-Einstein), above which ground states exhibit nontrivial vorticity, as well as a characterization of the vortex density in terms of a non local vector-valued generalization of the classical obstacle problem.

  2. Helicity of a toroidal vortex with swirl

    NASA Astrophysics Data System (ADS)

    Bannikova, E. Yu.; Kontorovich, V. M.; Poslavsky, S. A.

    2016-04-01

    Based on the solutions of the Bragg-Hawthorne equation, we discuss the helicity of a thin toroidal vortex in the presence of swirl, orbital motion along the torus directrix. The relation between the helicity and circulations along the small and large linked circumferences (the torus directrix and generatrix) is shown to depend on the azimuthal velocity distribution in the core of the swirling ring vortex. In the case of nonuniform swirl, this relation differs from the well-known Moffat relation, viz., twice the product of such circulations multiplied by the number of linkages. The results can find applications in investigating the vortices in planetary atmospheres and the motions in the vicinity of active galactic nuclei.

  3. Vortex structures in exponentially shaped Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Semerdjieva, E. G.; Boyadjiev, T. L.

    2005-04-01

    We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Stability of the static solutions is investigated by checking the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. The change in the junction width leads to the renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. We study the influence of the model's parameters, and particularly, the shape parameter on the stability of the states of the magnetic flux. We compare the vortex structure and critical curves for the in-line and overlap geometries. Our numerically constructed critical curve of the Josephson junction matches well with the experimental one.

  4. Finite vortex numbers and symmetric vortex structures in a rotating trapped Fermi gas in the BCS-BEC crossover

    NASA Astrophysics Data System (ADS)

    Song, T. L.; Ma, Y. L.

    2011-08-01

    The ground state of a three-dimensional (3D) rotating trapped superfluid Fermi gas in the BCS-BEC crossover is mapped to finite N v -body vortex states by a simple ansatz. The total vortex energy is measured from the ground-state energy of the system in the absence of the vortices. The vortex state is stable since the vortex potential and rotation energies are attractive while the vortex kinetic energy and interaction between vortices are repulsive. By combining the analytical and numerical works for the minimal vortex energy, the 2D configurations of N v vortices are studied by taking into account of the finite size effects both on xy-plane and on z-direction. The calculated vortex numbers as a function of the interaction strength are appropriate to the renew experimental results by Zwierlein in [ High-temperature superfluidity in a ultracold Fermi gas, Ph.D. thesis, Massachusetts Institute of Technology, 2006]. The numerical results show that there exist two types of vortex structures: the trap center is occupied and unoccupied by a vortex, even in the case of N v < 10 with regular polygon and in the case of N v ≥ 10 with finite triangle lattice. The rotation frequency dependent vortex numbers with different interaction strengths are also discussed.

  5. Computation of leading-edge vortex flows

    NASA Technical Reports Server (NTRS)

    Newsome, R. W.; Thomas, J. L.

    1986-01-01

    The simulation of the leading edge vortex flow about a series of conical delta wings through solution of the Navier-Stokes and Euler equations is studied. The occurrence, the validity, and the usefulness of separated flow solutions to the Euler equations of particular interest. Central and upwind difference solutions to the governing equations are compared for a series of cross sectional shapes, including both rounded and sharp tip geometries. For the rounded leading edge and the flight condition considered, viscous solutions obtained with either central or upwind difference methods predict the classic structure of vortical flow over a highly swept delta wing. Predicted features include the primary vortex due to leading edge separation and the secondary vortex due to crossflow separation. Central difference solutions to the Euler equations show a marked sensitivity to grid refinement. On a coarse grid, the flow separates due to numerical error and a primary vortex which resembles that of the viscous solution is predicted. In contrast, the upwind difference solutions to the Euler equations predict attached flow even for first-order solutions on coarse grids. On a sufficiently fine grid, both methods agree closely and correctly predict a shock-curvature-induced inviscid separation near the leeward plane of symmetry. Upwind difference solutions to the Navier-Stokes and Euler equations are presented for two sharp leading edge geometries. The viscous solutions are quite similar to the rounded leading edge results with vortices of similar shape and size. The upwind Euler solutions predict attached flow with no separation for both geometries. However, with sufficient grid refinement near the tip or through the use of more accurate spatial differencing, leading edge separation results. Once the leading edge separation is established, the upwind solution agrees with recently published central difference solutions to the Euler equations.

  6. Motion, decay and merging of vortex filaments

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Ting, L.

    1988-01-01

    The asymptotic solutions of Navier-Stokes equations for vortex filaments of finite strength with small effective vortical cores are summarized. Emphases are placed on the physical meaning and the practical limit to the applicability of the asymptotic solution. Finite-difference solutions of Navier-Stokes equations for the merging of the filament(s) are described. It is focused on the development of the approximate boundary conditions for the computational domain.

  7. Electronic speckle pattern interferometry using vortex beams.

    PubMed

    Restrepo, René; Uribe-Patarroyo, Néstor; Belenguer, Tomás

    2011-12-01

    We show that it is possible to perform electronic speckle pattern interferometry (ESPI) using, for the first time to our knowledge, vortex beams as the reference beam. The technique we propose is easy to implement, and the advantages obtained are, among others, environmental stability, lower processing time, and the possibility to switch between traditional ESPI and spiral ESPI. The experimental results clearly show the advantages of using the proposed technique for deformation studies of complex structures.

  8. Historical evolution of vortex-lattice methods

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1976-01-01

    A review of the beginning and some orientation of the vortex-lattice method were given. The historical course of this method was followed in conjunction with its field of computational fluid dynamics, spanning the period from L.F. Richardson's paper in 1910 to 1975. The following landmarks were pointed out: numerical analysis of partial differential equations, lifting-line theory, finite-difference method, 1/4-3/4 rule, block relaxation technique, application of electronic computers, and advanced panel methods.

  9. Monopole-antimonopole and vortex rings

    NASA Astrophysics Data System (ADS)

    Teh, Rosy; Wong, Khai-Ming

    2005-08-01

    The SU(2) Yang-Mills-Higgs theory supports the existence of monopoles, antimonopoles, and vortex rings. In this paper, we would like to present new exact static antimonopole-monopole-antimonopole (A-M-A) configurations. The net magnetic charge of these configurations is always -1, while the net magnetic charge at the origin is always +1 for all positive integer values of the solution's parameter m. However, when m increases beyond 1, vortex rings appear coexisting with these AMA configurations. The number of vortex rings increases proportionally with the value of m. They are located in space where the Higgs field vanishes along rings. We also show that a single-point singularity in the Higgs field does not necessarily correspond to a structureless 1-monopole at the origin but to a zero-size monopole-antimonopole-monopole (MAM) structure when the solution's parameter m is odd. This monopole is the Wu-Yang-type monopole and it possesses the Dirac string potential in the Abelian gauge. These exact solutions are a different kind of Bogomol'nyi-Prasad-Sommerfield (BPS) solutions as they satisfy the first-order Bogomol'nyi equation but possess infinite energy due to a point singularity at the origin of the coordinate axes. They are all axially symmetrical about the z-axis.

  10. Competing stability modes in vortex structure formation

    NASA Astrophysics Data System (ADS)

    Garrett, Stephen; Gostelow, J. Paul; Rona, Aldo; McMullan, W. Andrew

    2015-11-01

    Nose cones and turbine blades have rotating components and represent very practical geometries for which the behavior of vortex structures is not completely understood. These two different physical cases demonstrate a common theme of competition between mode and vortex types. The literature concerning boundary-layer transition over rotating cones presents clear evidence of an alternative instability mode leading to counter-rotating vortex pairs, consistent with a centrifugal instability. This is in contrast to co-rotating vortices present over rotating disks that arise from crossflow effects. It is demonstrated analytically that this mode competes with the crossflow mode and is dominant only over slender cones. Predictions are aligned with experimental measurements over slender cones. Concurrent experimental work on the flow over swept cylinders shows that organized fine-scale streamwise vorticity occurs more frequently on convex surfaces than is appreciated. The conventional view of purely two-dimensional laminar boundary layers following blunt leading edges is not realistic and such boundary layers need to be treated three-dimensionally, particularly when sweep is present. The vortical structures are counter-rotating for normal cylinders and co-rotating under high sweep conditions. Crossflow instabilities may have a major role to play in the transition process but the streamline curvature mode is still present, and seemingly unchanged, when the boundary layer becomes turbulent.

  11. Fast vortex core switching at high temperatures

    NASA Astrophysics Data System (ADS)

    Lebecki, Kristof M.; Legut, Dominik

    2016-08-01

    Fast ferromagnetic vortex core switching is investigated employing micromagnetic simulations. Short pulse (in the range of a few hundreds of picoseconds) of an in-plane oscillating magnetic field is applied to a thin disk (diameter 200 nm and thickness 20 nm) with material parameters resembling permalloy. Fundamental frequency of this excitation field is close to the resonance with the material spin waves. Thermal effects are introduced by replacing the Landau-Lifshitz-Gilbert equation by the Landau-Lifshitz-Bloch equation. Temperature from 300 K to 850 K is considered, just below the Curie temperature TC = 870 K. Calculations are done within the OOMMF simulation framework. We find that: (i) Period of the field necessary to switch the vortex increases approximately from 141 ps at 300 K to 572 ps for the high-temperature limit. (ii) Amplitude of the field necessary to switch the vortex core decreases roughly from 60 mT to 15 mT - even at high temperatures this amplitude is nonzero, contrary to the case of quasi-static switching. (iii) Time span between the excitation and switching (switching time) seems not to depend on the temperature. (iv) Duration of the switching itself (movement of the Bloch point in the sample) increases from a few picoseconds at low temperatures to tens of picoseconds at high temperatures.

  12. Control of vortex rings for manoeuvrability

    PubMed Central

    Gemmell, Brad J.; Troolin, Daniel R.; Costello, John H.; Colin, Sean P.; Satterlie, Richard A.

    2015-01-01

    Manoeuvrability is critical to the success of many species. Selective forces acting over millions of years have resulted in a range of capabilities currently unmatched by machines. Thus, understanding animal control of fluids for manoeuvring has both biological and engineering applications. Within inertial fluid regimes, propulsion involves the formation and interaction of vortices to generate thrust. We use both volumetric and planar imaging techniques to quantify how jellyfish (Aurelia aurita) modulate vortex rings during turning behaviour. Our results show that these animals distort individual vortex rings during turns to alter the force balance across the animal, primarily through kinematic modulation of the bell margin. We find that only a portion of the vortex ring separates from the body during turns, which may increase torque. Using a fluorescent actin staining method, we demonstrate the presence of radial muscle fibres lining the bell along the margin. The presence of radial muscles provides a mechanistic explanation for the ability of scyphomedusae to alter their bell kinematics to generate non-symmetric thrust for manoeuvring. These results illustrate the advantage of combining imaging methods and provide new insights into the modulation and control of vorticity for low-speed animal manoeuvring. PMID:26136226

  13. Optical vortex beam generator at nanoscale level.

    PubMed

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications. PMID:27404659

  14. Integrability of vortex equations on Riemann surfaces

    NASA Astrophysics Data System (ADS)

    Popov, Alexander D.

    2009-11-01

    The Abelian Higgs model on a compact Riemann surface Σ of genus g is considered. We show that for g>1 the Bogomolny equations for multi-vortices at critical coupling can be obtained as compatibility conditions of two linear equations (Lax pair) which are written down explicitly. These vortices correspond precisely to SO(3)-symmetric Yang-Mills instantons on the (conformal) gravitational instanton Σ×S with a scalar-flat Kähler metric. Thus, the standard methods of constructing solutions and studying their properties by using Lax pairs (twistor approach, dressing method, etc.) can be applied to the vortex equations on Σ. In the twistor description, solutions of the integrable vortex equations correspond to rank-2 holomorphic vector bundles over the complex 3-dimensional twistor space of Σ×S. We show that in the general (nonintegrable) case there is a bijection between the moduli spaces of solutions to vortex equations on Σ and of pseudo-holomorphic bundles over the almost complex twistor space.

  15. A Visual Study of Vortex Generator Jets

    NASA Astrophysics Data System (ADS)

    Compton, Debora A.; Stadnicki, John

    1997-11-01

    A jet which issues from a small hole in a flow surface, pitched and skewed relative to the crossflow, creates a single streamwise vortex which resembles the flow downstream of a half-delta-wing vortex generator. The term ``vortex generator jet'' (VGJ) has been used to describe such a flow. Investigators of jet-generated vortices have recognized their applicability to active control and their flexibility in terms of being activated and deactivated. We have installed a spanwise array of VGJ's in a turbulent boundary layer in the zero-pressure-gradient test section of the 12" × 36" boundary layer wind tunnel at Boston University. The Reynolds number based on jet diameter is in the range 4000 < Re < 10000. Our experimental investigations include flow visualization of a single pitched and skewed jet in crossflow, as well as wall shear stress measurements downstream of the array of jets. To capture still images of a cross-section of the jet flow, a light sheet formed by a pulsed Nd:YAG laser is used to illuminate smoke-tagged jet fluid. The wall shear stress measurements are made using an oil-film interferometry technique. Parameters varied include jet velocity and angles of jet pitch and skew.

  16. Optical vortex beam generator at nanoscale level

    PubMed Central

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications. PMID:27404659

  17. Vortex formation in a complex plasma

    NASA Astrophysics Data System (ADS)

    Ishihara, Osamu

    Complex plasma experiments in ground-based laboratories as well as in microgravity conditions have shown the formation of vortex structures in various conditions (e.g., 1,2,3,4). The vortex structures formed in a complex plasma are visible by naked eyes with the help of irradiating laser and the individual dust particles in the structure give us the opportunity to study detailed physics of the commonly observed natural phenomena known such as tornadoes, typhoons, hurricanes and dust devils. Based on the Navier-Stokes equation with proper complex plasma conditions we analyze as much as possible in a universal way the vortex structure and clarifies the role of the controlling parameters like flow velocity and external magnetic field. 1. G. E. Morfill,H. M. Thomas, U. Konopka,H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys,. Rev. Lett. 83, 1598 (1999). 2. E. Nebbat and R. Annou, Phys. Plasmas 17, 093702 (2010). 3. Y. Saitou and O. Ishihara, Phys. Rev. Lett. 111, 185003 (2013). 4. V. N. Tsytovich and N. G. Gusein-zade, Plasma Phys. Rep. 39, 515 (2013).

  18. Perturbation response of model vortex rings and dipoles

    NASA Astrophysics Data System (ADS)

    O'Farrell, Clara; Dabiri, John O.

    2012-11-01

    Jetting swimmers, such as squid or jellyfish, propel themselves by forming axisymmetric vortex rings. It is known that vortex rings cannot grow indefinitely, but rather ``pinch off'' once they reach their physical limit, and that a decrease in efficiency of fluid transport is associated with pinch-off. In contrast, two-dimensional vortex dipoles have been found to grow well beyond the physical limit observed in axisymmetric vortex rings. Previously, the Norbury and Pierrehumbert families of vortices have been used as models for axisymmetric vortex rings and two-dimensional dipoles respectively, and the response of these two families to shape perturbations has been characterized. In this study, we improve upon the Norbury and Pierrehumbert models, using nested contours to obtain more realistic models for experimentally-generated vortex rings and dipoles. The resulting vortices are subjected to shape perturbations akin to those previously introduced to members of the Norbury and Pierrehumbert families, and their response is characterized.

  19. Origin and dynamics of vortex rings in drop splashing

    NASA Astrophysics Data System (ADS)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-01

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  20. Origin and dynamics of vortex rings in drop splashing

    DOE PAGESBeta

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  1. Origin and dynamics of vortex rings in drop splashing

    SciTech Connect

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  2. Origin and dynamics of vortex rings in drop splashing

    PubMed Central

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-01-01

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing. PMID:26337704

  3. Feasibility of wake vortex monitoring systems for air terminals

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Shrider, K. R.; Lawrence, T. R.

    1972-01-01

    Wake vortex monitoring systems, especially those using laser Doppler sensors, were investigated. The initial phases of the effort involved talking with potential users (air traffic controllers, pilots, etc.) of a wake vortex monitoring system to determine system requirements from the user's viewpoint. These discussions involved the volumes of airspace to be monitored for vortices, and potential methods of using the monitored vortex data once the data are available. A subsequent task led to determining a suitable mathematical model of the vortex phenomena and developing a mathematical model of the laser Doppler sensor for monitoring the vortex flow field. The mathematical models were used in combination to help evaluate the capability of laser Doppler instrumentation in monitoring vortex flow fields both in the near vicinity of the sensor (within 1 kilometer and at long ranges(10 kilometers).

  4. Rankine combined vortex interaction with a rectangular prism

    NASA Astrophysics Data System (ADS)

    Gorecki, Piotr; Panneer Selvam, Rathinam

    2015-01-01

    Large eddy simulation is utilised to study the three-dimensional interaction between a travelling Rankine combined vortex and a rectangular prism. The study examines the strength and the topology of a vortex during the interaction with a prism that is much wider than the vortex core diameter. The physics of the interaction is revealed for the straight (β = 0°) and the oblique (β = 45°) impacts. For both cases, the low-level portion of the vortex undergoes displacements in the streamwise and the lateral directions. Also the vortex shape and the core vorticity are substantially disrupted. Behind the prism the full vortex circulation is recovered after a considerable distance. This created a low-velocity region. The sheltering effect of the prism is noticed for both straight and oblique impacts. The flow velocities in the sheltering region, right behind the prism, are reduced by more than 42% compared to the maximum flow speeds before the interaction.

  5. A Discretized Method for Deriving Vortex Impulse from Volumetric Datasets

    NASA Astrophysics Data System (ADS)

    Buckman, Noam; Mendelson, Leah; Techet, Alexandra

    2015-11-01

    Many biological and mechanical systems transfer momentum through a fluid by creating vortical structures. To study this mechanism, we derive a method for extracting impulse and its time derivative from flow fields observed in experiments and simulations. We begin by discretizing a thin-cored vortex filament, and extend the model to account for finite vortex core thickness and asymmetric distributions of vorticity. By solely using velocity fields to extract vortex cores and calculate circulation, this method is applicable to 3D PIV datasets, even with low spatial resolution flow fields and measurement noise. To assess the performance of this analysis method, we simulate vortex rings and arbitrary vortex structures using OpenFOAM computational fluid dynamics software and analyze the wake momentum using this model in order to validate this method. We further examine a piston-vortex experiment, using 3D synthetic particle image velocimetry (SAPIV) to capture velocity fields. Strengths, limitations, and improvements to the framework are discussed.

  6. Distinct magnetic signatures of fractional vortex configurations in multiband superconductors

    SciTech Connect

    Silva, R. M. da; Domínguez, D.; Aguiar, J. Albino

    2014-12-08

    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.

  7. Optical vortex interaction and generation via nonlinear wave mixing

    SciTech Connect

    Lenzini, F.; Residori, S.; Bortolozzo, U.; Arecchi, F. T.

    2011-12-15

    Optical vortex beams are made to interact via degenerate two-wave mixing in a Kerr-like nonlinear medium. Vortex mixing is shown to occur inside the medium, leading to exchange of topological charge and cascaded generation of vortex beams. A mean-field model is developed and is shown to account for the selection rules of the topological charges observed after the wave-mixing process. Fractional charges are demonstrated to follow the same rules as for integer charges.

  8. Vortex-dominated flow with viscous core structure

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Krause, E.; Ting, L.

    1985-01-01

    Recent theoretical studies of vortex-dominated flows are reviewed with special emphasis on those for which the viscous core structures play an important role. The problems to be described are: The interaction and merging of two-dimensional vortices and of curved vortex filaments, the roll-up and decay of trailing far wakes, and the initiation of vortex breakdown. The analysis utilizes finite-difference solutions of the Navier-Stokes equations complemented by asymptotic expansion techniques.

  9. Statistics of optical vortex wander on propagation through atmospheric turbulence.

    PubMed

    Gu, Yalong

    2013-04-01

    The transverse position of an optical vortex on propagation through atmospheric turbulence is studied. The probability density of the optical vortex position on a transverse plane in the atmosphere is formulated in weak turbulence by using the Born approximation. With these formulas, the effect of aperture averaging on topological charge detection is investigated. These results provide quantitative guidelines for the design of an optimal detector of topological charge, which has potential application in optical vortex communication systems.

  10. X-ray vortex beams: A theoretical analysis

    NASA Astrophysics Data System (ADS)

    Peele, A. G.; Nugent, K. A.

    2003-09-01

    The recent demonstration that an optical vortex could be generated at x-ray wavelengths brings this interesting topological phenomenon into an entirely new regime with several possible applications. We examine the analytic propagation of an optical vortex generated in a synchrotron x-ray beam line. We compare the results obtained with the existing experimental data and further consider the generation and interpretation of mixed vortex-edge discontinuities which might be considered as non-integer charge vortices.

  11. Wake Vortex Inverse Model User's Guide

    NASA Technical Reports Server (NTRS)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input

  12. Tube plug inspection system

    SciTech Connect

    Pirl, W.E.; Ray, E.A.; Costlow, A.M.; Roth, C.H. Jr.; Gradich, F.X.; Chizmar, D.A.

    1992-03-31

    This patent describes a system for inspecting a tube plug defining a chamber therein and having an open end in communication with the chamber, the chamber having disposed therein an expander element having a bore therethrough. It comprises: probe means having a sensor probe connected thereto for inspecting the tube plug, the probe means capable of being connected to the tube plug for extending the sensor probe a predetermined distance into the chamber through the open end of the tube plug; means connected to the probe means for rotating and translating the sensor probe within the chamber to provide an inspection scan interiorly of the tube plug, the rotating and translating means including: a flexible hose connected to the probe means for translating and rotating the probe means, the hose having adjacent segments so that the hose is flexible; and a connector interposed between adjacent segments of the hose for maintaining the hose in a tangle-free state; and drive means engaging the rotating and translating means for driving the rotating and translating means.

  13. Performance and flow analysis of vortex wind power turbines

    SciTech Connect

    Rangwalla, A.A.; Hsu, C.T.

    1982-10-01

    The theoretical study presented investigates some possible vortex flow solutions in the tornado-type wind energy system and evaluates the power coefficient that can be obtained theoretically. The actuator disc concept is applied to the vortex wind turbine configuration. The Burgers vortex model is then introduced and the performance of a turbine using it is derived. A generalized analytical solution of the model is given, followed by a numerical solution of the complete equations. The stability of a Burgers vortex is discussed. (LEW)

  14. Octave-band tunable optical vortex parametric oscillator.

    PubMed

    Abulikemu, Aizitiaili; Yusufu, Taximaiti; Mamuti, Roukuya; Araki, Shungo; Miyamoto, Katsuhiko; Omatsu, Takashige

    2016-07-11

    We developed an octave-band tunable optical vortex laser based on a 532 nm optical vortex pumped optical parametric oscillator with a simple linear-cavity configuration by employing cascaded non-critical phase-matching LiB3O5 crystals. The optical vortex output was tunable from 735 to 1903 nm. For a pump energy of 9 mJ, an optical vortex pulse energy of 0.24-2.36 mJ was obtained, corresponding to an optical-optical efficiency of 0.3-26%.

  15. Trailing Vortex-Induced Loads During Close Encounters in Cruise

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J; Kelly, Michael J.

    2015-01-01

    The trailing vortex induced aerodynamic loads on a Falcon 20G business jet flying in the wake of a DC-8 are predicted to provide a preflight estimate of safe trail distances during flight test measurements in the wake. Static and dynamic loads on the airframe flying in the near wake are shown at a matrix of locations, and the dynamic motion of the Falcon 20G during traverses of the DC-8 primary trailing vortex is simulated. Safe trailing distances for the test flights are determined, and optimum vortex traverse schemes are identified to moderate the motion of the trailing aircraft during close encounters with the vortex wake.

  16. Vortex dynamics and correlated disorder in high-{Tc} superconductors

    SciTech Connect

    Vinokur, V.M.

    1993-08-01

    We develop a theory for the vortex motion in the presence of correlated disorder in the form of the twin boundaries and columnar defects. Mapping vortex trajectories onto boson world lines enables us to establish the duality of the vortex transport in the systems with correlated disorder and hopping conductivity of charged particles in 2D systems. A glassy-like dynamics of the vortex lines with zero linear-resistivity and strongly nonlinear current-voltage behavior as V {proportional_to} exp[{minus} const/J{sup {mu}}] in a Bose glass state is predicted.

  17. Wake Vortex Field Measurement Program at Memphis, Tennessee: Data Guide

    NASA Technical Reports Server (NTRS)

    Campbell, S. D.; Dasey, T. J.; Freehart, R. E.; Heinrichs, R. M.; Mathews, M. P.; Perras, G. H.; Rowe, G. S.

    1997-01-01

    Eliminating or reducing current restrictions in the air traffic control system due to wake vortex considerations would yield increased capacity, decreased delays, and cost savings. Current wake vortex separation standards are widely viewed as very conservative under most conditions. However, scientific uncertainty about wake vortex behavior under different atmospheric conditions remains a barrier to development of an adaptive vortex spacing system. The objective of the wake vortex field measurement efforts during December, 1994 and August, 1995 at Memphis, TN were to record wake vortex behavior for varying atmospheric conditions and types of aircraft. This effort is part of a larger effort by the NASA Langley Research Center to develop an Aircraft Vortex Spacing System (AVOSS) as an element of the Terminal Area Productivity (TAP) program. The TAP program is being performed in concert with the FAA Terminal Air Traffic Control Automation (TATCA) program and ATC Automation. Wake vortex behavior was observed using a mobile continuous-wave (CW) coherent laser Doppler radar (lidar) developed at Lincoln Laboratory. This lidar features a number of improvements over previous systems, including the first-ever demonstration of an automatic wake vortex detection and tracking algorithm.

  18. Microscopic vortex velocity and implications for neutron star dynamics

    NASA Astrophysics Data System (ADS)

    Gügercinoǧlu, Erbil; Alpar, Mehmet Ali

    2016-07-01

    Rotational dynamics of a neutron star is governed by the distribution and motion of vortex lines within the neutron superfluid. Interaction of the vortex lines with the ambient matter plays an important role in the glitches, thermal evolution and magnetic field evolution of pulsars. Thus, correctly treating the vortex motion both in the inner crust and in the outer core of neutron stars is a key ingredient in modeling a great variety of observational phenomena of pulsars. In this work we outline the first principles to calculate the microscopic vortex velocity in the inner crust as well as in the outer core. Then we discuss some implications for neutron star's dynamics.

  19. Dynamics of a vortex pair in radial flow

    SciTech Connect

    Bannikova, E. Yu. Kontorovich, V. M. Reznik, G. M.

    2007-10-15

    The problem of vortex pair motion in two-dimensional radial flow is solved. Under certain conditions for flow parameters, the vortex pair can reverse its motion within a bounded region. The vortex-pair translational velocity decreases or increases after passing through the source/sink region, depending on whether the flow is diverging or converging, respectively. The rotational motion of a corotating vortex pair in a quiescent environment transforms into motion along a logarithmic spiral in radial flow. The problem may have applications in astrophysics and geophysics.

  20. Documentation for Three Wake Vortex Model Data Sets from Simulation of Flight 587 Wake Vortex Encounter Accident Case

    NASA Technical Reports Server (NTRS)

    Switzer, George F.

    2008-01-01

    This document contains a general description for data sets of a wake vortex system in a turbulent environment. The turbulence and thermal stratification of the environment are representative of the conditions on November 12, 2001 near John F. Kennedy International Airport. The simulation assumes no ambient winds. The full three dimensional simulation of the wake vortex system from a Boeing 747 predicts vortex circulation levels at 80% of their initial value at the time of the proposed vortex encounter. The linked vortex oval orientation showed no twisting, and the oval elevations at the widest point were about 20 meters higher than where the vortex pair joined. Fred Proctor of NASA?s Langley Research Center presented the results from this work at the NTSB public hearing that started 29 October 2002. This document contains a description of each data set including: variables, coordinate system, data format, and sample plots. Also included are instructions on how to read the data.